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Abstract

Spread-spectrum systems with large transmission bandwidth present significant challenges
from the standpoint of achieving synchronization before communication commences. This
research investigates a rapid acquisition procedure that exploits the multipath to aid the
synchronization. In particular, we consider a class of serial search strategies and determine
the optimal search procedure for the uncertainty space consisting of NS total cells and
NQ correct cells. We derive closed-form expressions for both the minimum and maximum
mean acquisition times (MATs) and the conditions for achieving these limits. We prove
that the fixed-step serial search (FSSS), with the step size NQ, achieves the near-optimal
MAT. We also prove that the conventional serial search, in which consecutive cells are tested
sequentially, and the FSSS with the step size NS −1 should be avoided as they result in the
maximum MAT. Analytical tools used in the research include Markov chain diagrams, the
transformation of feasible spaces, and convexity theory. Our results apply to all signal-to-
noise ratio values, regardless of the detection-layer decision rule and the fading distribution.
The impact of this research is significant for the design, implementation, and deployment
of spread-spectrum systems.

Thesis Supervisor: Moe Z. Win
Title: Charles Stark Draper Assistant Professor
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Chapter 1

Introduction

This thesis is divided into five chapters. Chapter 1 discusses the motivation, the objectives,

the scope, the commonly used notations, and the contributions of the research. Chapter 2

reviews the previous work that is related to this thesis. The steps that are used to accomplish

the research objectives are outlined in Chapter 3. Chapter 4 presents the research results.

Chapter 5 summarizes the important findings.

1.1 Motivation

Spread-spectrum systems present significant challenges from the standpoint of achieving

synchronization at the receivers. Before communication commences, the receiver must

search for the location of sequence phase within a required accuracy. This task is not easy

to achieve, especially when the transmission bandwidth is large. This research investigates

a method that exploits the multipath to aid the acquisition.

The receiver performs hypothesis testing in the acquisition stage. The number of phases

or cells to test is proportional to the transmission bandwidth, while the number of correct

cells is proportional to the number of resolvable paths. Because the resolvable paths arrive

at the receiver near one another in the dense multipath channel, the correct cells are con-

secutive in the uncertainty index set. A flow chart in Fig. 1-1 depicts the steps that the

receiver performs in the acquisition stage. The goal of designing an acquisition receiver is to

minimize the mean acquisition time (MAT), the average duration required for the receiver

to perform the acquisition stage.

In general, there are two approaches to improve the MAT. The first approach uses the

11



FINISHSTART
reset b

next b

search layer:

Select the next cell

detection layer:

Is b a correct cell?

yes

no

Figure 1-1: An acquisition receiver searches for a correct cell. The goal is to minimize the
mean acquisition time (MAT), the average time to transit from START to FINISH.

optimal decision rule to improves the MAT at the detection layer. The second approach

uses the optimal search order to improve the MAT at the search layer. Under certain

conditions, one can optimize separately the two layers and still have the optimal acquisition

receiver. This thesis improves the MAT at the search layer under the conditions that allow

the separation between the search and detection layers. Section 1.3 will discuss the scope

of the research and outline these conditions.

After selecting a search order, one can evaluate the MAT. Some search orders will yield

a shorter MAT than does the others. Therefore, the central questions for this research are

the following:

• What are the fundamental limits of the achievable MATs? In other words, what are

the minimum and maximum MATs?

• What are the search orders that achieve the minimum MAT?

• What are the search orders that result in the maximum MAT?

• What are the benefits of using intelligent search strategies?

This thesis will investigate those questions.

1.2 Objectives of the Research

1. To find the minimum MAT.

2. To find the maximum MAT.

12



3. To find the search orders that achieve the minimum or the near-optimal MATs.

4. To avoid the search orders that exhibit the maximum MAT.

5. To quantify the benefits of using intelligent search strategies.

1.3 Scope of the Research

This research investigates a technique that improves the MAT and studies any spread-

spectrum receiver with the following characteristics:

• The receiver employs a serial search.

• The receiver does not know the location of a correct cell.

• The receiver is equally likely to select any cell to test when it begins the search.

• The receiver tests the cells in the predetermined search order.

• If two distinct cells i and j are both correct cells, the decision variable Zi for cell i and

the decision variable Zj for cell j are independent and identically distributed (i.i.d).

• If two distinct cells i and j are both incorrect cells, the decision variable Zi for cell i

and the decision variable Zj for cell j are i.i.d.

Section 4.1 will model the receiver by a non-preferential flow diagram.

1.4 Notations and Definitions

1. NS

The number of total cells. This parameter satisfies 1 ≤ NS.

2. NQ

The number of correct cells. This parameter satisfies 1 ≤ NQ ≤ NS.

3. x

A vector. If the dimension n of the vector is clear from the context, vector x may be

referred to as (x1, x2, . . . , xn).

13



4. x ⊕ y

A modulo NS addition, which is defined to equal x + y − lNS, for the unique integer

l such that 1 ≤ x + y − lNS ≤ NS.

5. x , y

Equal by definition.

6. The uncertainty index set

The set of cells to test. This set is denoted by

U , {1, 2, 3, . . . , NS}.

7. B

The first correct cell in the uncertainty index set. This random variable has a uniform

distribution over U .

8. HC(b)

The index set of the correct cells, conditioned on B = b:

HC(b) , {b, b ⊕ 1, b ⊕ 2, . . . , b ⊕ (NQ − 1)}.

9. K

The first cell that the receiver tests. This random variable is statistically independent

of B and has a uniform distribution over U .

10. An in-phase cell

A cell in which the timing error between the received signal and the locally generated

reference resides within a fraction of chip duration. This term is also referred to as a

correct cell, a correct phase, or an H1-state.

11. A non-in-phase cell

An incorrect cell. This term is also referred to as an incorrect phase or an H0-state.

12. The mean acquisition time (MAT)

The average duration from the start of the acquisition stage until the end, in which

the receiver finds a correct cell.

14



13. A search order

An order of cells in which the receiver tests. The set of search orders is denoted by

P ,
{

π
∣

∣

∣ π : U → U is a permutation function and π(1) = 1
}

.

One may refer to a search order π by the tuple [π(1), π(2), . . . , π(NS)]. A receiver that

uses the search order π begins the search at any cell π(k), for 1 ≤ k ≤ NS, and tests

the cells in the order

π(k), π(k + 1), . . . , π(NS), π(1), π(2), . . . , π(NS), π(1), π(2), . . . .

14. E {TACQ(π)}

The mean acquisition time associated with the search order π.

15. The serial search

A technique to search for a correct cell in the uncertainty index set. In particular, a

receiver that uses a serial search must accept or reject a cell before it tests the next

cell.

16. The conventional serial search (CSS)

The serial search with the search order π1 , [1, 2, 3, . . . , NS]. In particular, a receiver

uses the CSS if it tests the consecutive cells sequentially.

17. The fixed-step serial search with the step size NJ (FSSS-NJ)

A serial search with the search order πNJ , [1, 1 ⊕ NJ, 1 ⊕ 2NJ, . . . , 1 ⊕ (NS − 1)NJ].

In particular, a receiver uses the FSSS-NJ if it skips NJ cells after a test in one cell

is complete. The step size NJ must be relatively prime with NS, so that πNJ is an

element of the set P of search orders.

18. An η-optimal search order

A search order πη that satisfies

E {TACQ(πη)} − minπ∈P E {TACQ(π)}

minπ∈P E {TACQ(π)}
≤ η(NS, NQ), (1.1)

where η(·) is some function only of NS and NQ, with the limit η(NS, NQ) → 0 as

15



NQ/NS → 0.

19. A non-preferential flow diagram

A Markov flow diagram which has the following properties:

(a) The probability of entering any non-absorbing state is uniform.

(b) Every path going into the absorbing state has the same path gain.

(c) Every path going out of an H0-state has the same path gain.

(d) Every path going out of an H1-state to the adjacent non-absorbing state has the

same path gain.

20. A description

A tuple (π, b) of the search order and the location of the first in-phase cell. This tuple

describes the arrangement of H1-states and H0-states in a flow diagram: the states

are ordered according to π and the H1-states are the elements of the set HC(b). The

set of descriptions is denoted by

D ,
{

(π, b)
∣

∣

∣ π : U → U is a permutation function, π(1) = 1, and 1 ≤ b ≤ NS

}

.

21. A spacing rule

A tuple (m1, m2, . . . , mNQ
), which describes the arrangement of H1-states and H0-

states in a non-preferential flow diagram: an in-phase cell is followed by m1 non-in-

phase cells, which are then followed by another in-phase-cell, which is then followed

by m2 non-in-phase cells, and so on. Therefore, the non-negative integer mi is the

number of H0-states between two neighboring H1-states. The set of spacing rules is

denoted by

S ,
{

(m1, m2, . . . , mNQ
)

∣

∣

∣

∣

NQ
∑

i=1

mi = NS − NQ; ∀i, integer mi ≥ 0
}

.

22. The absorption time

The average time to arrive at an absorbing state of a Markov flow diagram.

23. v(m)

The absorption time for the flow diagram associated with the spacing rule m.

16



24. An η-optimal subset of the set of spacing rules

A subset Sη ⊂ S that has the following property: for every mη ∈ Sη,

v(mη) − minm∈S v(m)

minm∈S v(m)
≤ η(NS, NQ), (1.2)

where η(·) is some function only of NS and NQ, with the limit η(NS, NQ) → 0 as

NQ/NS → 0.

25. Clustering states in the flow diagram with the search order [π(1), π(2), . . . , π(NS)]

Elements s1, s2, . . . , sn of the uncertainty index set, for some n ≥ 1, such that

{s1, s2, . . . , sn} =
{

π(i), π(i ⊕ 1), π(i ⊕ 2), . . . , π(i ⊕ (n − 1))
}

,

for some index i ∈ U .

26. A decreasing function

A multi-variate function h : Wn → R, for some set W and some positive integer n ≥ 1,

which has the following property:

For any x ∈ Wn and y ∈ Wn, if ∀1 ≤ i ≤ n, xi ≤ yi, then h(x) ≥ h(y).

27. An increasing function

A multi-variate function h : Wn → R, for some set W and some positive integer n ≥ 1,

which has the following property:

For any x ∈ Wn and y ∈ Wn, if ∀1 ≤ i ≤ n, xi ≤ yi, then h(x) ≤ h(y).

28. Bounded from below

A property of a function f : W → R, for some set W. In particular, f is bounded

from below, if there is a real number a such that

a ≤ f(w),

for all elements w ∈ W.

29. Bounded from above

A property of a function f : W → R, for some set W. In particular, f is bounded

17



from above, if there is a real number a such that

f(w) ≤ a,

for all elements w ∈ W.

1.5 Contributions of the Research

• We introduce a concept of a spacing rule, which describes the structure of the flow

diagram. Then, we derive an explicit expression for the absorption time as a function

of a spacing rule, and derive the optimal spacing rule by using convexity theory.

• We derive the explicit expression for the minimum MAT over all possible search orders,

and then prove that the search order πNQ is η-optimal.

• We derive the explicit expression for the maximum MAT, and then show that the

conventional serial search and the fixed-step serial search with the step size NS − 1

yield this maximum.

• We show that the MAT of the optimal serial search is approximately constant, when

the uncertainty index set is refined by a factor of r. In contrast, the MAT of the

conventional serial search increases approximately r times.

• We show that the optimal serial search is approximately NQ times faster than the

conventional serial search in a high signal-to-noise ratio (SNR) environment.

• We show that the optimal serial search is approximately one to two times faster than

the conventional serial search in a low SNR environment.

18



Chapter 2

Literature Review

Sequence synchronization is an important task of the spread spectrum receiver. Before

communication commences, the receiver must search for the location of the sequence phase

within the required accuracy, which depends on the autocorrelation properties of the spread-

ing waveforms and is typically less than one chip duration. The synchronization process

occurs in two stages: the acquisition stage and the tracking stage [8, 16]. The acquisition

stage is the focus of this thesis.

The receiver performs a series of tasks during the acquisition stage. It coarsely aligns the

sequence of the locally generated reference (LGR) with the sequence of the received signal.

If the LGR phase does not correspond to the phase of the received signal, the receiver will

move the LGR to a new phase position according to some strategy. If the receiver finds a

correct sequence phase, it will enter the tracking stage to finely align the two sequences and

maintain the synchronization throughout the communication. Therefore, the acquisition

receiver is faced with the hypothesis testing problem [19].

There are two key parameters associated with the acquisition stage. The first parameter

is the number NS of phases or cells to test. The second parameter is the number NQ of

correct phases (in-phase cells), which is proportional to the number of resolvable paths.

The uncertainty index set

U = {1, 2, 3, . . . , NS} (2.1)

denotes the collection of cells to test. The signal acquisition is difficult to achieve when the

number NS of cells is large.

The parameter NS depends on several factors, including the sequence period (Tperiod),
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the relative clock uncertainty (Tclock) between the transmitter and the receiver, and the

accuracy (Tres) within which the acquisition system must resolve its uncertainty. The ex-

pression for NS is given by

NS =
min{Tperiod, Tclock}

Tres
. (2.2)

The parameter 1/Tres is proportional to the transmission bandwidth, and so is NS. There-

fore, the number of cells to test can be very large for the wide bandwidth transmission

system.

Designing an acquisition system involves two broad design aspects. One aspect deals

with how the decision is made at the detection layer. Examples of the relevant issues at

the detection layer include combining methods for decision variables and the evaluations

of the detection and false-alarm probabilities in the multipath channel. The other aspect

deals with how the search for a correct cell is performed at the search layer. Examples of

the relevant issues in the search layer include the following:

• What is the search strategy (fully parallel search, hybrid search, or serial search) to

use?

• What is the search order (the sequence of cells to test)?

The performance of the acquisition system is measured by the mean acquisition time, the

average duration required for the receiver to perform the acquisition stage.

A common approach for finding the mean acquisition time (MAT) is the use of flow

diagram. For an additive white Gaussian noise (AWGN) channel, a flow diagram simply

has one in-phase cell [9–11]. The expression of the MAT for an AWGN channel is given

in [10]. For a multipath fading channel, the flow diagram has multiple in-phase cells, which

correspond to the multiple resolvable paths [6,15,17,20–22]. The MATs are derived for the

Rayleigh [15,20], Rician [17], and Nakagami-m fading channels [21]. A MAT expression as

a function of parameters at the detection layer is given in [6]. Analysis based on a flow

diagram that takes into account the dependence among the decision variables representing

different cells is given in [14]. In general, the goal of the acquisition receiver is to find a

correct sequence phase as fast as possible.

There are a number of approaches to improve the MAT. One approach is to dedicate

more resources, such as correlators or matched filters, to improve the decision at the de-

tection layer. The receiver in [20] uses the serial search with two correlators, while that
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in [15] uses the serial search with three correlators. Toward this end, [17] uses the hybrid

search with an arbitrary number of correlators and [12] uses a fully parallel search with NS

correlators. The decision variables are formed by appropriately combining the correlator

outputs [15, 21]. For frequency-selective Rayleigh and Rician fading channels, the optimal

decision rules are given in [13]. For a hybrid search, each receiver in [3–5] partitions the

uncertainty index set into smaller subsets, selects from a subset the cell with the maximum

decision variable, and accepts the cell if its decision variable exceeds the threshold.

Another approach to improve the acquisition time is to use an intelligent search proce-

dure. For example, the receivers in [6,15] skip a fixed number of cells after a test in one cell

is completed. The focus of this thesis is to improve the MAT by using an intelligent search

procedure.

In a dense multipath channel, an intelligent search procedure will improve the MAT. If

there is only one resolvable path, the number NQ of correct cells is also one. Assume that

every cell in the uncertainty index set is equally likely to be the correct cell. Then every

search order gives the same MAT. By improving the MAT with an intelligent search order,

we take advantage of the multipath, which has long been considered deleterious for efficient

communication.

The set of all possible search orders is denoted by

P =
{

π
∣

∣

∣
π : U → U is a permutation function and π(1) = 1

}

. (2.3)

An element π of P is called a search order or a permutation function. One can denote π

by the NS-tuple [π(1), π(2), . . . , π(NS)] to emphasize that the receiver tests the cells in the

order

π(k), π(k + 1), . . . , π(NS), π(1), π(2), . . . , π(NS), π(1), π(2), . . . .

Here, π(k) ∈ U is the first cell that the receiver tests. Some common search orders that

have been used in the literature are shown in Fig. 2-1.

The conventional serial search (CSS) [20, 21], where the consecutive cells are tested

sequentially, yields the search order [1, 2, 3, . . . , NS]. The permutation function for this

search order is

π1(k) = k. (2.4)
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Figure 2-1: A receiver tests the cells according to the search order: (a) a generic search
order π; (b) the search order π1 of the CSS; (c) the search order π2 of the FSSS with the
step size NJ = 2; (d) the search order πR of the bit-reversal serial search.

The fixed-step serial search (FSSS) [6, 15], where the receiver skips NJ ≥ 1 cells before

it performs the next test, corresponds to the search order1

[1, 1 ⊕ NJ, 1 ⊕ 2NJ, . . . , 1 ⊕ (NS − 1)NJ] .

The permutation function for this search order is

πNJ(k) = 1 ⊕ (k − 1)NJ. (2.5)

1The symbol ⊕ denotes the modulo NS addition defined by x⊕ y , x + y − lNS, for some unique integer

l such that x + y − lNS ∈ U .
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To ensure that the mapping πNJ : U → U is a bijection, we require that NJ and NS be

relatively prime. Clearly, the CSS π1 is a special case of the FSSS πNJ with the step size

NJ = 1.

The bit-reversal serial search is proposed in [6] and corresponds to the search order

[πR(1) = 1, πR(2), . . . , πR(NS)], where elements πR(·) are defined relatively to one another.

For i 6= j,

πR(i) < πR(j) ⇔ rev(i) < rev(j), (2.6)

where rev(i) is the reversal of the dlog2 NSe binary digit representation of the integer i− 1.

Equation (2.6) specifies the unique order of NS cells in the uncertainty index set: assign the

cost rev(i) to cell i and arrange the cells in the ascending order according to their costs. In

general, there are (NS − 1)! different search orders, and it is imperative to find the one that

minimizes the MAT.

There are a few works that compare different search orders. For a Rayleigh fading

channel, the MAT of the FSSS with NJ = NQ is shorter than that of the CSS for certain

signal-to-interference ratio (SIR) values [15]. It is unclear, however, if the result of [15] is

valid for all SIR values and all detection schemes. The search order πNQ is shown to result

in a shorter MAT than π1 does, in [6], for the specific example that fixes the probability of

detection to 0.95, the probability of false-alarm to 0.10, the dwell-time to 1 time-unit, the

penalty time to 10 time-units, and the number of total cells to 16. It is again unclear if this

conclusion is valid for other values of the detection probability, the false-alarm probability,

the dwell-time, the penalty time, and the number of total cells.

In this thesis, we find a search order that is optimal or near-optimal for all values of

SIR, regardless of the decision rules at the detection layer or the operating environments.

Our goal is to investigate the following questions:

• What are the fundamental limits of the achievable MATs? In other words, what are

the minimum and maximum MATs?

• What are the search orders that achieve the minimum MAT?

• What are the search orders that result in the maximum MAT?

• What are the benefits of using intelligent search strategies?
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We focus on the most commonly used search strategy, the serial search [6,9–11,14,15,20,21].

The key contributions of this thesis are as follows:

• We introduce a concept of a spacing rule, which describes the structure of the flow

diagram. Then, we derive an explicit expression for the absorption time2 as a function

of a spacing rule, and derive the optimal spacing rule by using convexity theory.

• We derive the explicit expression for the minimum MAT over all possible search orders,

and then prove that the search order πNQ yields the near-optimal MAT.

• We derive the explicit expression for the maximum MAT, and then show that the CSS

π1 and the FSSS with the step size NS − 1 yield this maximum.

• We derive the performance gain, which is a ratio of the MAT of the CSS and that of

the optimal serial search.

In the next chapter, we present the steps for achieving the objectives of this research.

2The average time to arrive at the absorption state in a Markov flow diagram.
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Chapter 3

Methods

We outline the steps that are used to achieve the thesis’ objectives, which are listed in

Section 1.2.

3.1 Approach to Find the Minimum MAT

1. We formulate an optimization problem

min
π∈P

E {TACQ(π)} , (3.1)

whose solution corresponds to the minimum MAT.

2. We express the MAT as the average of the absorption times:

E {TACQ(π)} =
1

NS

NS
∑

b=1

v(s(π, b)). (3.2)

Here, v(s(π, b)) is the absorption time of the flow diagram with the spacing rule s(π, b).

3. We derive the explicit closed-form expression for the absorption time v(·).

4. We show that the minimum MAT in (3.1) is lower-bounded by the solution of the

convex optimization problem minm∈Q v(m):

min
m∈Q

v(m) ≤ min
π∈P

E {TACQ(π)} , (3.3)
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where Q is the convex hull of the set S of spacing rules, and v(·) is the natural

extension of v(·).

5. We derive the unique solution TL
min of the convex optimization problem minm∈Q v(m)

and conclude that the optimal MAT satisfies the bound

TL
min ≤ min

π∈P
E {TACQ(π)} . (3.4)

3.2 Approach to Find the Maximum MAT

1. We formulate an optimization problem

max
π∈P

E {TACQ(π)} , (3.5)

whose solution corresponds to the maximum MAT.

2. We show that the maximum MAT in (3.5) is equal to the solution of the convex

optimization problem maxm∈Q v(m):

max
π∈P

E {TACQ(π)} = max
m∈Q

v(m). (3.6)

3. We derive the explicit expression Tmax = maxm∈Q v(m) and conclude that the maxi-

mum MAT satisfies

max
π∈P

E {TACQ(π)} = Tmax. (3.7)

3.3 Approach to Find an η-Optimal Search Order

1. We prove that the lower-bound in (3.4) is satisfied with equality if and only if NQ = 1

or NQ = NS.

2. We prove that the search order πNQ is η-optimal with η =
(

2NQ

NS−NQ

)

. Thus, the MAT

of the FSSS πNQ satisfies the following bounds:

TL
min ≤ E

{

TACQ(πNQ)
}

≤
(

1 +
2NQ

NS − NQ

)

TL
min.
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3.4 Approach to Avoid the Worst Search Orders

1. We prove that the complete solutions to the maximization problem maxm∈Q v(m) are

the elements of the set

E ,
{

(0, 0, . . . , 0, NS − NQ), (0, 0, . . . , 0, NS − NQ, 0), . . . , (NS − NQ, 0, 0, . . . , 0)
}

.

2. We prove that the CSS and the FSSS with the step size NS−1 result in the maximum

MAT:

E
{

TACQ(π1)
}

= E
{

TACQ(πNS−1)
}

= Tmax.

3. We prove that for NS and NQ satisfying 2 ≤ NQ ≤ NS − 2, the CSS and the FSSS

with the step size NS − 1 are the only two search orders that result in the maximum

MAT.

3.5 Approach to Quantify the Benefits of Using Intelligent

Search Strategies

1. We use the explicit expressions of TL
min and Tmax to show that the MAT of the optimal

serial search is approximately constant, when the uncertainty index set is refined by

a factor of r. In contrast, the MAT of the CSS increases approximately r times.

2. To show that the optimal serial search is approximately NQ times faster than the CSS

in a high SNR environment, we perform the following steps:

(a) We derive the explicit expression for the MAT of the CSS with the optimal

thresholds at the detection layer in a high SNR environment,

E
{

TACQ(π1)
}

∣

∣

∣

high SNR, optimal thresholds
. (3.8)

(b) We derive the upper and lower-bounds for the MAT of the optimal serial search

with the optimal thresholds at the detection layer in a high SNR environment,

E {TACQ(π∗)}
∣

∣

∣

high SNR, optimal thresholds
. (3.9)

27



(c) We define the performance gain GH in a low SNR environment to be the ratio

of (3.8) to (3.9).

(d) We use the expression of (3.8) and the bounds of (3.9) to show that the perfor-

mance gain GH is approximately equal to NQ.

3. To show that the optimal serial search is approximately one to two times faster than

the CSS in a low SNR environment, we perform the following steps:

(a) We derive the upper and lower-bounds for the MAT of the CSS with the optimal

thresholds at the detection layer in a low SNR environment,

E
{

TACQ(π1)
}

∣

∣

∣

low SNR, optimal thresholds
. (3.10)

(b) We derive the upper and lower-bounds for the MAT of the optimal serial search

with the optimal thresholds at the detection layer in a low SNR environment,

E {TACQ(π∗)}
∣

∣

∣

low SNR, optimal thresholds
. (3.11)

(c) We define the performance gain GL in a low SNR environment to be the ratio of

(3.10) to (3.11).

(d) We use the bounds of (3.10) and (3.11) to show that the performance gain GL is

in the approximated range from one to two.

In the next chapter, we present the details from the approaches outlined in this chapter.
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Chapter 4

Research Results

This chapter contains the research results and the details from the approaches, which are

outlined in the last chapter. This chapter is divided into six sections. In Section 4.1, we

present the system model for the acquisition system and define the terms description and

spacing rule. In Section 4.2, we derive the absorption time as a function of the spacing

rule. In Section 4.3, we derive the explicit expression of the lower-bound for the MAT and

prove that the search order πNQ yields the near-optimal MAT. In Section 4.4, we derive the

explicit expression for the maximum MAT and prove that the CSS and the FSSS πNS−1

result in the maximum MAT. In Section 4.5 and Section 4.6, we compare the MAT of the

CSS and the MAT of the optimal serial search when the uncertainty index set is refined,

when the signal-to-noise ratio (SNR) is high, and when the SNR is low.

4.1 System Model

We consider the flow diagram in Fig. 4-1, which models a serial search with the permutation

function π. There are NS + 1 states totally: 1 absorbing state (ACQ), NQ states of type

H1, and NS − NQ states of type H0. The ACQ state represents the event of successful

acquisition. Each of the NQ states of type H1 corresponds to an in-phase cell, while each of

the remaining NS − NQ states of type H0 corresponds to a non-in-phase cell. The disjoint

union of the in-phase and non-in-phase cells forms an uncertainty set that can be represented

by the index set U = {1, 2, 3, . . . , NS}.

The location B of the first in-phase cell is unknown to the receiver. We consider the

uniform distribution for random variable B, which takes the value in U . Conditioned on
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π(kNQ
)

π(NS)

k2 − k1 − 1 states

k1 + NS − kNQ
− 1 states

Figure 4-1: A flow diagram for the serial search with the permutation function π. The
state labeled ACQ is the absorbing state. The states in thick circles are H1-states. The
remaining states are H0-states.

B = bo, the index set corresponding to the in-phase cells HC(bo) ⊂ U is then

HC(bo) , {bo, bo ⊕ 1, . . . , bo ⊕ (NQ − 1)}. (4.1)

The probability Pr {K = k} that the receiver begins the search at cell k is also uniform and

equal to 1/NS.

Since π is bijective, there are exactly NQ values of k ∈ U such that the state π(k) is of

type H1. Let k1 < k2 < k3 < · · · < kNQ
denote the unique integers such that the set

{π(k1), π(k2), . . . , π(kNQ
)} = HC(bo)
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Figure 4-2: The spacing rule m = (m1, m2, . . . , mNQ
) characterizes the structure of the flow

diagram.

is the index set of in-phase cells. In a flow diagram, those in-phase cells π(ki) have paths

to the absorbing state.

The path gains PDzτD , PMzτM , and zτP depend on the probabilities and durations of

the detection process. The receiver spends τD time-units and makes the correct decision

with probability PD when testing an in-phase cell. The receiver spends τM time-units and

makes the incorrect decision with probability PM = 1 − PD when testing an in-phase cell.

The receiver spends τP time-units to eventually make the correct decision when testing a

non-in-phase cell. The variable z on a path gain represents a unit-delay. The quantities PD,

PM, τD, τM, and τP are parameters of the detection layer.

Path gains of any flow diagram with one absorbing state (ACQ) can be reduced to the

forms PDzτD , PMzτM , and zτP . Let HD(z) denote a generic path gain from an H1-state to
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ACQ, HM(z) denote a generic path gain from an H1-state to the adjacent non-absorbing

state, and H0(z) denote a generic path gain from an H0-state to the adjacent non-absorbing

state. These path gains HD(z), HM(z), and H0(z) can be represented respectively by the

simplified forms PDzτD , PMzτM , and zτP , where

PD = HD(1),

τD =











H ′
D(1)/HD(1) HD(1) 6= 0

1 HD(1) = 0,

PM = HM(1),

τD =











H ′
M(1)/HM(1) HD(1) 6= 0

1 HM(1) = 0,

τP = H ′
0(1).

(4.2)

The absorption time depends only on Hi(1) and H ′
i(1), for i ∈ {D, M, 0} [6,9–11]. Therefore,

the flow diagram with path gains Hi(z), i ∈ {D, M, 0}, and the flow diagram with path gains

PDzτD , PMzτM , and zτP have the same absorption time.

We note that the flow diagram under consideration in Fig. 4-1 has one absorbing state

and is non-preferential.

Definition 4.1 (Non-preferential flow diagram). The flow diagram is non-preferential

if it has the following properties:

1. Probability of entering any non-absorbing state is equally likely.

2. Every path going into the absorbing state has the same path gain.

3. Every path going out of an H0-state has the same path gain.

4. Every path going out of an H1-state to the adjacent non-absorbing state has the same

path gain.

The structure of the flow diagram describes the arrangement of the in-phase and non-

in-phase cells. This structure is important because it strongly influences the absorption

time and the MAT. One method to describe the structure of any flow diagram, including

the non-preferential one, is by its description.
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Definition 4.2 (Description). A description is a tuple (π, b) of the permutation function

π and the location b of the first in-phase cell. The set of descriptions is

D =
{

(π, b)
∣

∣

∣ π : U → U is a permutation function, π(1) = 1, and 1 ≤ b ≤ NS

}

. (4.3)

The description (π, b) characterizes the structure of a flow diagram. In particular, π

constrains the order [π(1), π(2), . . . , π(NS)] of the non-absorbing state, while b indicates the

set HC(b) of states that have transition edges to the absorbing state. When a flow diagram

is non-preferential, one has an alternative method to describe the flow diagram structure.

The structure of a non-preferential flow diagram can be specified by the number of non-

in-phase cells between the two neighboring in-phase cells. For the flow diagram in Fig. 4-1,

there are (ki+1 − ki − 1) non-in-phase-cells between the in-phase cells π(ki) and π(ki+1),

for 1 ≤ i ≤ NQ − 1, and (k1 + NS − kNQ
− 1) non-in-phase-cells between the in-phase cells

π(kNQ
) and π(k1). These NQ integers collectively form a spacing rule.

Definition 4.3 (Spacing rule). A spacing rule of a non-preferential flow diagram with

NQ H1-states and (NS − NQ) H0-states is an element m of the set

S =
{

(m1, m2, . . . , mNQ
)

∣

∣

∣

∣

NQ
∑

i=1

mi = NS − NQ; ∀i, integer mi ≥ 0
}

. (4.4)

The spacing rule m = (m1, m2, . . . , mNQ
) characterizes the structure of a non-pre-

ferential flow diagram. In particular, the flow diagram has an H1-state, which are followed

by m1 H0-states, which is followed by another H1-state, which is followed by m2 H0-states,

and so on. The sum
∑NQ

i=1 mi must equal the number NS −NQ of H0-states. Fig. 4-2 is the

flow diagram with the spacing rule m = (m1, m2, . . . , mNQ
).

Given the description (π, b), one can find the spacing rule

s(π, b) , (m1, m2, . . . , mNQ
) (4.5)

corresponding to (π, b). Here, mi , ki+1 − ki − 1, for the unique integers k1 < k2 < · · · <

kNQ
< kNQ+1 , k1 + NS that satisfy {π(k1), π(k2), . . . , π(kNQ

)} = HC(b). Equation (4.5)

establishes the mapping s : D → S.

Fig. 4-3 shows the flow diagrams of the CSS π1 when the first in-phase cells are B =
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Figure 4-3: Flow diagrams for the conventional serial search correspond to the different
locations B of the first in-phase cell: (a) B = 1; (b) B = NS − NQ + 1.

1 and B = NS − NQ + 1. The spacing rule corresponding to the description (π1, 1) is

(0, 0, . . . , 0, NS − NQ), while the spacing rule corresponding to the description (π1, NS −

NQ + 1) is (NS − NQ, 0, 0, . . . , 0). For different values of B, the spacing rule of the CSS

becomes an element of the set

E ,
{

(0, 0, . . . , 0, NS − NQ), (0, 0, . . . , 0, NS − NQ, 0), . . . , (NS − NQ, 0, 0, . . . , 0)
}

. (4.6)

Every spacing rule in E corresponds to the flow diagram with consecutive H1-states and

consecutive H0-states.

The properties of set D, set S, and their mapping s(·, ·) are as follows. First, the

mapping s : D → S is surjective:

S = {s(π, b) | (π, b) ∈ D}. (4.7)

Second, the cardinalities |D| and |S| satisfy

|D| = NS! (4.8)
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and

|S| =

(

NS − 1

NQ − 1

)

. (4.9)

We note that |S| is the number of ways to distribute NS − NQ undistinguishable objects

into NQ distinguishable boxes. Third, s : D → S is not injective, because |D| > |S|. In

other words, many descriptions are redundant because they correspond to the same flow

diagram structure. Fourth, the mapping s is non-invertible. Therefore, we cannot always

find the unique description corresponding to a given spacing rule. In the next section, we

use the description and the spacing rule to calculate the absorption time.

4.2 The Absorption Time

For a given search order π, the description and the spacing rule provide two possible ap-

proaches to calculate the absorption time. The first approach directly finds the absorption

time from the description (π, b):

E {TACQ(π)} =

NS
∑

b=1

NS
∑

k=1

E {TACQ(π) |B = b, K = k}Pr {B = b}Pr {K = k}

=
1

NS

NS
∑

b=1

f(π, b).

(4.10)

Here, f(π, b) is the absorption time for the flow diagram corresponding to the description

(π, b):

f(π, b) ,
NS
∑

k=1

E {TACQ(π) |B = b, K = k}Pr {K = k}

(a)
=

1

NS

d

ds

(∑NS

k=1

∑NS

i=1 Hb
π(i⊕k)(z)

∏i
j=1 Hb

π(j⊕k)(z)

1 −
∏NS

i=1 Gb
i(z)

)∣

∣

∣

∣

∣

z=1

,

(4.11)

where

Hb
i (z) =











PDzτD i ∈ HC(b)

0 otherwise,
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and

Gb
i(z) =











PMzτM i ∈ HC(b)

zτP otherwise.

The equality (a) follows from a loop-reduction technique, which is used to find the MATs

in [6, 10,11,15]. Note that (4.11) is an implicit expression of the search order π.

The second approach finds the absorption time from the spacing rule s(π, b):

E {TACQ(π)} =

NS
∑

b=1

NS
∑

k=1

E {TACQ(π) |B = b, K = k}Pr {B = b}Pr {K = k}

=
1

NS

NS
∑

b=1

v(s(π, b)).

(4.12)

Here, v(m) , v(s(π, b)) is the absorption time when the spacing rule is m = s(π, b):

v(s(π, b)) ,
NS
∑

k=1

E {TACQ(π) |B = b, K = k}Pr {K = k}

= f(π, b).

(4.13)

The explicit form of v(m) is given in the next subsection.

Although both approaches can be used to find the MAT in principle when the search or-

der π is given, the second approach is more suitable for finding the minimum and maximum

MATs. In particular, any search order π will result in the MAT that satisfies

min
(π,b)∈D

f(π, b) = min
m∈S

v(m) ≤ E {TACQ(π)} ≤ max
m∈S

v(m) = max
(π,b)∈D

f(π, b). (4.14)

Note that minm∈S v(m) and maxm∈S v(m) are integer programming problems [1, 2]. Be-

cause the expression of f(π, b) does not reveal how the absorption time f(π, b) explicitly de-

pends on the search order π, it is unclear how one can solve efficiently—if at all possible—the

optimization problems min(π,b)∈D f(π, b) and max(π,b)∈D f(π, b). Therefore, we transform

the descriptions into the spacing rules and then employ the convex optimization theory.

To accentuate the need for optimization over the set of spacing rules, we note that

the direct approach, which searches exhaustively over P for the best and the worst search

orders, is impractical. Evaluation of the right-hand side of (4.10) or (4.12) requires at least

NS arithmetic operations. As a result, the exhaustive search of the permutation function
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Figure 4-4: The structure of the flow diagram for the bit-reversal serial search πR varies
with the location B of the first in-phase cell: (a) B = 1; (b) B = 2; (c) B = 3; (d) B = 4.

requires at least NS · |P| = NS! arithmetic operations. For a small size NS = 100 of the

uncertainty index set and a fictional machine that has a clock speed of 1020 Hz and performs

1 arithmetic operation per cycle, the exhaustive search requires more than 10130 years to

complete. The direct approach is clearly inefficient.

In general, we note that averaging over b in (4.10) and (4.12) is required. Fig. 4-4

depicts flow diagrams, which correspond to different values of the first in-phase cell B. All

flow diagrams model the bit-reversal search πR and has the following parameters: NS = 4,

NQ = 2, PD = 0.5, τD = τM = 1, and τP = 2. When B = 1 or B = 3, the absorption time is

f(πR, 1) = f(πR, 3) = 5.
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When B = 2 or B = 4, the absorption time is

f(πR, 2) = f(πR, 4) = 51
6 .

Averaging over b, we have the MAT

E {TACQ(πR)} = 5 1
12 ,

which is not equal to f(πR, 1), f(πR, 2), f(πR, 3), or f(πR, 4). In general, the absorption

time is a function of a particular value of B. Therefore, the MATs in [6,15], which assumes

that B = 1, are only the approximations.

In a few special cases, averaging over b is not necessary. When NQ = 1 [9–11], when

the CSS [15,20] is used, or when the FSSS with the step size NS − 1 is used, the absorption

time does not depend on B. Therefore, one can assume that B = 1 in those cases. In the

next subsection, we derive explicit form of v(·).

4.2.1 Closed-Form Expression of v(m)

The goal of this subsection is to derive the explicit absorption time expression v(m) for

m ∈ S. Because the flow diagram has one absorbing state, finding the MAT reduces to

simply solving a system of linear equations. The closed-form expression of v(m) is given

explicitly by the following theorem.

Theorem 4.1 (Absorption Time). The absorption time of the flow diagram with the

spacing rule m ∈ S is given by

v(m) = A

NQ
∑

i=1

m2
i +

NQ
∑

i=1

NQ
∑

j=i+1

Bijmimj + C (4.15a)

=
1

2
mTHm + C, (4.15b)
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where

A =
τP

(

1 + P
NQ

M

)

2NS

(

1 − P
NQ

M

) , (4.16)

Bij =
τP

(

P
NQ−(j−i)
M + P j−i

M

)

NS

(

1 − P
NQ

M

) , (4.17)

C =

(

1 −
NQ

NS

)

·

(

1 + PM

1 − PM

)

τP

2
+

PM

1 − PM
τM + τD, (4.18)

H =
τP

NS

(

1 − P
NQ

M

)

[

P
NQ−|i−j|
M + P

|i−j|
M

]

ij
, (4.19)

with 00 , 1 and
∑0

j=1 , 0.

Proof. Let Ti denote the conditional absorption time, conditioned on the start location of

the search at the H1-state i, 1 ≤ i ≤ NQ. The states are labeled according to the convention

in Fig. 4-2. Define α , PMτP and β , PDτD + PMτM. We have the relationship

T1 = PDτD + PM(τM + m1τP + T2)

= β + αm1 + PMT2

T2 = β + αm2 + PMT3

T3 = β + αm3 + PMT4

...

TNQ
= β + αmNQ

+ PMT1.

Solving the above system of equations yields

Ti =
α

1 − P
NQ

M

·





i−1
∑

j=1

P
NQ+j−i
M mj +

NQ
∑

j=i

P j−i
M mj



 +
β

1 − PM
,

for 1 ≤ i ≤ NQ and where
∑0

i=1 , 0.

For 1 ≤ i ≤ NQ, 1 ≤ j ≤ mj , let Tij denote the conditional absorption time, conditioned

on the start location of the search at the H0-state (i, j). Then,

Tij = Ti+1 + (mi − j + 1)τP,
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with TNQ+1 , T1.

Once we have the expressions for Ti and Tij , the expression of the absorption time is

available:

v(m) =
1

NS

(NQ
∑

i=1

Ti +

NQ
∑

i=1

mi
∑

j=1

Tij

)

=
1

NS

[NQ
∑

i=1

Ti + miTi+1 +
mi(mi + 1)

2
τP

]

=
1

NS

[NQ
∑

i=1

(αP
NQ−1
M

1 − P
NQ

M

+
τP

2

)

m2
i

+

NQ
∑

i=1

NQ
∑

j=i+1

(αP j−i−1
M

1 − P
NQ

M

+
αP

NQ−j+i−1
M

1 − P
NQ

M

)

mimj

+

NQ
∑

i=1

( α + β

1 − PM
+

τP

2

)

mi +
βNQ

1 − PM

]

(a)
= A

NQ
∑

i=1

m2
i +

NQ
∑

i=1

NQ
∑

j=i+1

Bijmimj + C

=
1

2
mTHm + C.

The simplification in (a) uses the constraint
∑NQ

i=1 mi = NS − NQ. The proof is completed.

In the subsequent analysis, we will allow the right-hand side of (4.15) to take the argu-

ment m, which contains a non-integer component. In particular, let

Q =
{

(m1, m2, . . . , mNQ
)
∣

∣

∣

NQ
∑

i=1

mi = NS − NQ;∀i, mi ≥ 0
}

(4.20)

denote the convex hull of S and consider the function v : Q → R to be the natural extension

of v : S → R. That is, we evaluate v(m) by simply allowing v(m) in (4.15) to take the value

in m ∈ Q. Because S ⊂ Q, the MAT for the search order π satisfies the following bounds:

min
m∈Q

v(m) ≤ E {TACQ(π)} ≤ max
m∈Q

v(m). (4.21)

Before delving into the derivations of the bounds in (4.21) explicitly, we first examine the

properties of v(m). In the next subsection, we use the explicit expression of the absorption
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time in Thm. 4.1 to prove the convexity and some other important properties of v(·).

Evidently, the properties of v(m) with m ∈ Q also hold for v(m) with m ∈ S.

4.2.2 Properties of v(m)

In this subsection we prove three important properties of v(m) for m ∈ Q. The first and

second properties will be crucial for the development of the forthcoming sections. The three

properties are the results of the theorem below.

Theorem 4.2 (Convexity, Rotational Invariance, and Reversal Invariance). As-

sume that PM < 1, so that v(·) is finite.

1. Function v(·) is strictly convex on Q.

2. v(m1, m2, . . . , mNQ
) = v(m2, m3, . . . , mNQ

, m1),∀(m1, m2, . . . , mNQ
) ∈ Q.

3. v(m1, m2, . . . , mNQ
) = v(mNQ

, mNQ−1, . . . , m2, m1),∀(m1, m2, . . . , mNQ
) ∈ Q.

Proof. 1. Let any elements x ∈ Q and y ∈ Q be given. For any λ ∈ (0, 1), we want to

show that

v(λx + (1 − λ)y) < λv(x) + (1 − λ)v(y).

Because (λ2−λ) < 0 and H is a positive definite matrix (see Appendix A), we conclude

that

(λ2 − λ)(x − y)TH(x − y) < 0.

We expand the appropriate terms in the above inequality and have the following

results:

(λ2 − λ)
(

xTHx − 2xTHy + yTHy
)

< 0

λ2xTHx + 2λ(1 − λ)xTHy + (1 − λ)2yTHy < λxTHx + (1 − λ)yTHy
(

λx + (1 − λ)y
)T

H
(

λxT + (1 − λ)y
)

< λxTHx + (1 − λ)yTHy

v(λx + (1 − λ)y) < λv(x) + (1 − λ)v(y).

Therefore, v(·) is strictly convex on Q.
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2. Let (m1, m2, . . . , mNQ
) ∈ Q be given.

v(m2, m3, . . . , mNQ
, m1)

= A

NQ
∑

i=1

m2
i +

NQ−1
∑

i=1

NQ−1
∑

j=i+1

Bijmi+1mj+1 +

NQ−1
∑

i=1

BiNQ
mi+1m1 + C

(a)
= A

NQ
∑

i=1

m2
i +

NQ−1
∑

i=1

NQ−1
∑

j=i+1

B(i+1)(j+1)mi+1mj+1 +

NQ−1
∑

i=1

B1(i+1)mi+1m1 + C

= A

NQ
∑

i=1

m2
i +

NQ
∑

i=2

NQ
∑

j=i+1

Bijmimj +

NQ
∑

j=2

B1jm1mj + C

= v(m1, m2, . . . , mNQ
).

The equality (a) follows from Bij = B(i+1)(j+1) and BiNQ
= B1(i+1).

3. Let (m1, m2, . . . , mNQ
) ∈ Q be given.

v(mNQ
,mNQ−1, . . . , m2, m1)

= A

NQ
∑

i=1

m2
i +

NQ
∑

i=1

NQ
∑

j=i+1

BijmNQ−i+1mNQ−j+1 + C

(a)
= A

NQ
∑

i=1

m2
i +

NQ
∑

i=1

NQ
∑

j=i+1

B(NQ−j+1)(NQ−i+1)mNQ−i+1mNQ−j+1 + C

= A

NQ
∑

i=1

m2
i +

NQ
∑

i=1

NQ
∑

j=i+1

Bijmimj + C

= v(m1, m2, . . . , mNQ
).

The equality (a) follows from Bij = B(NQ−j+1)(NQ−i+1).

That completes the proof.

Before ending this section, we provide an interpretation of the second and third prop-

erties associated with non-preferential flow diagrams. Consider a case when m ∈ S. The

second property then states that the absorption time is invariant when every state in the

flow diagram is rotated to the left. Applying the second property to the flow diagram

several times, we can show that the absorption time is also invariant when the flow dia-

gram is rotated to the right. Thus, the absorption time is rotationally invariant. The third

property states that the absorption time is invariant when the flow diagram is viewed in a
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Figure 4-5: The three flow diagrams have the same absorption time, but they have different
spacing rules: (a) a flow diagram with the spacing rule (m1, m2, . . . , mNQ

); (b) a rotated
flow diagram with the spacing rule (m2, m3, . . . , mNQ

, m1); (c) a reversed flow diagram with
the spacing rule (mNQ

, mNQ−1, . . . , m1). To simplify the drawing, we show the case when
NS = 5, NQ = 3, and (m1, m2, m3) = (1, 1, 0).

reverse direction. These assertions are valid because the flow diagram is non-preferential.

See Fig. 4-5 for an illustration. In the next section, we will use the explicit expression v(·)

and its properties to bound the minimum MAT.

4.3 The Minimum MAT

In this section, we find the upper and lower-bounds for the minimum MAT

Tmin , min
π∈P

E {TACQ(π)} .

We will show that for certain values of NQ, there exists a search order that achieves the

lower-bound. Furthermore, we will obtain a “near-optimal” search order that results in

the MAT reasonably close to the minimum one. The lower-bound of Tmin is given in the

following theorem.
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Theorem 4.3 (Minimum MAT). The optimal mean acquisition time Tmin satisfies

TL
min

≤ Tmin, (4.22)

where TL
min

is given by

TL
min

=

(

NS

NQ
− 1

) (

1 + PM

1 − PM

)

τP

2
+

PM

1 − PM
τM + τD. (4.23)

Moreover, the equality in (4.22) is achieved if and only if NQ = 1 or NQ = NS.

Proof. Tmin is lower-bounded by

Tmin =
1

NS
min
π∈P

NS
∑

b=1

v(s(π, b))

≥
1

NS

NS
∑

b=1

min
π∈P

v(s(π, b))

≥
1

NS

NS
∑

b=1

min
(π,i)∈D

v(s(π, i))

= min
(π,i)∈D

v(s(π, i))

= min
m∈S

v(m)

≥ min
m∈Q

v(m)

(a)
= TL

min.

(4.24)

The equality (a) follows from part two of Lemma B.1 in Appendix B, which shows that

min
m∈Q

v(m) = v
(

NS

NQ
− 1, NS

NQ
− 1, . . . , NS

NQ
− 1

)

= TL
min.

(4.25)

Therefore, we have the bound Tmin ≥ TL
min.

Now, we show that the equality in (4.22) is achieved if and only if NQ = 1 or NQ = NS.

Assume that there is one in-phase cell (NQ = 1). Then, for any description (π, b) ∈ D,

the spacing rule satisfies s(π, b) = (NS − 1), and the absorption time v(s(π, b)) = v(NS − 1)
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is a constant.1 The optimal MAT satisfies

Tmin =
1

NS
min
π∈P

NS
∑

b=1

v(s(π, b))

=
1

NS
min
π∈P

NS
∑

b=1

v(NS − 1)

= v(NS − 1)

= TL
min.

Next, assume that all cells are in-phase cells (NQ = NS). Then, for any descrip-

tion (π, b) ∈ D, the spacing rule satisfies s(π, b) = (0, 0, . . . , 0), and the absorption time

v(s(π, b)) = v(0, 0, . . . , 0) is a constant. The optimal MAT satisfies

Tmin =
1

NS
min
π∈P

NS
∑

b=1

v(s(π, b))

=
1

NS
min
π∈P

NS
∑

b=1

v(0, 0, . . . , 0)

= v(0, 0, . . . , 0)

= TL
min.

Therefore, if NQ = 1 or NQ = NS, the equality in (4.22) is achieved.

To show that the equality in (4.22) implies NQ = 1 or NQ = NS, we consider a contra-

positive proof. Assume that NQ 6= 1 and NQ 6= NS. Lemma C.1 in Appendix C shows that

for all π ∈ P, there exists bo ∈ U such that

s(π, bo) 6=
(

NS

NQ
− 1, NS

NQ
− 1, . . . , NS

NQ
− 1

)

. (4.26)

In particular, (4.26) holds for the optimal search order

π∗ , arg min
π∈P

E {TACQ(π)} .

π∗ , arg min
π∈P

E {TACQ(π)}

1When NQ = 1, the spacing rule contains only one element.
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be the optimal search order.

Part one of Lemma B.1 shows that the right-hand side is the unique minimizer of v(·).

As a result, the absorption time v(s(π∗, bo)) satisfies the following bound:

v(s(π∗, bo)) > v
(

NS

NQ
− 1, NS

NQ
− 1, . . . , NS

NQ
− 1

)

= min
m∈Q

v(m).
(4.27)

Then, the minimum MAT is strictly greater than its lower-bound:

Tmin = E {TACQ(π∗)}

=
1

NS

[

v(s(π∗, bo)) +

NS
∑

b=1
b 6=bo

v(s(π∗, b))

]

(a)
>

1

NS

[

min
m∈Q

v(m) +

NS
∑

b=1
b 6=bo

v(s(π∗, b))

]

≥
1

NS

[

min
m∈Q

v(m) +

NS
∑

b=1
b 6=bo

min
m∈Q

v(m)

]

= min
m∈Q

v(m)

= TL
min.

(4.28)

The inequality (a) follows from (4.27). Therefore, the equality in (4.22) is not achieved.

That completes the proof.

Next, we will show that if NQ and NS are relatively prime, the MAT E
{

TACQ(πNQ)
}

achieved by the search order πNQ is near optimal.

Definition 4.4 (η-Optimal Search Order). Let η(NS, NQ) be a function only of NQ and

NS, and let π∗ be the optimal search order. A search order π is η-optimal, if

E {TACQ(π)} − E {TACQ(π∗)}

E {TACQ(π∗)}
≤ η(NS, NQ), (4.29)

and η(NS, NQ) → 0 as the ratio NQ/NS → 0.

We point out that the rapid acquisition is crucial especially when the total number of

cells is significantly larger than the number of correct cells: NS À NQ À 1. In this case,
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the ratio NQ/NS is small and η-optimal solutions are almost as good as the optimal one.

Definition 4.5 (η-Optimal Subset of Set of Spacing Rules). Let η(NS, NQ) be a

function only of NQ and NS, and let m∗ be the optimal spacing rule. A subset Sη ⊂ S is

η-optimal, if for every m ∈ Sη

v(m) − v(m∗)
v(m∗)

≤ η(NS, NQ), (4.30)

and η(NS, NQ) → 0 as the ratio NQ/NS → 0.

...
...

P D S

Sηπ0

(π0, 1)

(π0, 2)

(π0, NS)

s(·)
v(·)

v(m∗)

η-optimal
absorption time

Figure 4-6: The search order π0 is η-optimal, because the spacing rules s(π0, 1), s(π0, 2),
. . . , s(π0, NS) are members of an η-optimal subset Sη ⊂ S.

Lemma D.1 in Appendix D establishes the relationship between the η-optimal search

order and the η-optimal spacing rules (see Fig. 4-6). In particular, the lemma states that if

Sη ⊂ S is η-optimal, and if the search order π satisfies

s(π, b) ∈ Sη, b = 1, 2, . . . , NS,

then π is η-optimal. In the next theorem, we use the relationship between the η-optimal

search order and the η-optimal subset of the set of spacing rules to prove that the search

order πNQ is η-optimal with η =
(

2NQ

NS−NQ

)

.

Theorem 4.4 (Near-Optimality). If NQ and NS are relatively prime, then the search

order πNQ is η-optimal, with

η =
2NQ

NS − NQ
.
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Proof. Let

R ,
{

(m1, m2, . . . , mNQ
)

∣

∣

∣

∣

NQ
∑

i=1

mi = NS − NQ; ∀i, integer 0 ≤ mi ≤
⌊

NS

NQ

⌋}

(4.31)

be a subset of S. Lemma E.1 in Appendix E shows that R is η-optimal with η =
(

2NQ

NS−NQ

)

.

For any b ∈ U , Lemma F.1 in Appendix F shows that

s(πNQ , b) ∈ R.

Therefore, by Lemma D.1, the search order πNQ is η-optimal with η =
(

2NQ

NS−NQ

)

. That

completes the proof.

Using Thm. 4.3 and Thm. 4.4, we immediately have the following corollary:

Corollary 4.1 (Narrow bounds). Let π∗ be the optimal search order. If NQ and NS are

relatively prime, then

TL
min

≤ E {TACQ(π∗)} ≤ E
{

TACQ(πNQ)
}

≤

(

1 +
2NQ

NS − NQ

)

TL
min

,

in which TL
min

is given in (4.23).

In the next section, we derive the search orders which result in the maximum MAT.

4.4 The Maximum MAT

In this section we show that the CSS and the FSSS with the step size NS − 1 should be

avoided because they yield the maximum MAT. This result is followed from the theorem

below.

Theorem 4.5 (Maximum MAT).
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1. The expression for the maximum MAT maxπ∈P E {TACQ(π)} is given by

Tmax =
(NS − NQ)2

NS
·

(

1 + P
NQ

M

1 − P
NQ

M

)

τP

2

+

(

1 −
NQ

NS

)

·

(

1 + PM

1 − PM

)

τP

2

+
PM

1 − PM
τM + τD.

(4.32)

If the receiver uses the CSS π1 or the FSSS πNS−1, it will result in the maximum

MAT.

2. If the number NQ of in-phase cells satisfies 2 ≤ NQ ≤ NS−2, and the receiver’s MAT

is equal to Tmax, then the receiver must use the CSS π1 or the FSSS πNS−1.

Proof. 1. The permutation functions π1 and πNS−1 correspond to the search orders

[1, 2, 3, . . . , NS] and [1, NS, NS − 1, . . . , 3, 2], respectively. For any b ∈ U , a careful

thought will reveal that the spacing rules s(π1, b) and s(πNS−1, b) satisfy

s(π1, b) ∈ E , (4.33)

s(πNS−1, b) ∈ E , (4.34)

in which

E =
{

(0, 0, . . . , 0, NS − NQ), (0, 0, . . . , 0, NS − NQ, 0), . . . , (NS − NQ, 0, 0, . . . , 0)
}

.

As a result,

E
{

TACQ(π1)
}

=
1

NS

NS
∑

b=1

v(s(π1, b))

(a)
=

1

NS

NS
∑

b=1

max
m∈S

v(m)

= max
m∈S

v(m)

(b)
= Tmax.

The equality (a) follows from equation (4.33) and part one of Lemma G.1, which shows

that elements of E are solutions of maxm∈S v(m). The equality (b) follows from part
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two of Lemma G.1, which gives the explicit closed-form expression for the maximum

absorption time.

Similarly, since

s(πNS−1, b) ∈ E , for all b ∈ U ,

we also have

E
{

TACQ(πNS−1)
}

= Tmax. (4.35)

Therefore, the search orders π1 and πNS−1 maximize the MAT.

2. Let NS and NQ such that 2 ≤ NQ ≤ NS − 2 be given. Assume that the receiver uses

the search order πw that results in the maximum MAT: E {TACQ(πw)} = Tmax.

We show in Subsection H.1 that the absorption time v(s(πw, b)) for each b ∈ U is

equal to the maximum absorption time:

v(s(πw, 1)) = v(s(πw, 2)) = · · · = v(s(πw, NS − 1)) = max
m∈S

v(m), (4.36)

v(s(πw, NS)) = max
m∈S

v(m). (4.37)

By Lemma H.2 in Appendix H, the conditions (4.36) imply that

πw ∈
{

[1, 2, 3, . . . , NS], [1, NS, NS − 1, . . . , 3, 2]
}

= {π1, πNS−1}.

The search orders π1 and πNS−1 both satisfy the remaining condition (4.37):

v(s(π1, NS)) = v(0, 0, . . . , 0, NS − NQ, 0)

(a)
= max

m∈S
v(m),

and

v(s(πNS−1, NS)) = v(0, NS − NQ, 0, . . . , 0, 0)

(b)
= max

m∈S
v(m),
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in which the equalities (a) and (b) follow from part one of Lemma G.1. As a result,

the worst search order πw is either π1 or πNS−1. Therefore, the receiver must use the

CSS or the FSSS with the step size NS − 1.

That completes the proof.
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Figure 4-7: When NQ = 3 and NS = 4, the search order [1, 3, 4, 2] maximizes the MAT
because the H1-states in HC(b) are clustering for every location B = b of the first in-phase
cell: (a) B = 1 and HC(1) = {1, 2, 3}; (b) B = 2 and HC(2) = {2, 3, 4}; (c) B = 3 and
HC(3) = {3, 4, 1}; (d) B = 4 and HC(4) = {4, 1, 2}.

Before we end this section, we note that the range 2 ≤ NQ ≤ NS−2 in Thm. 4.5 cannot

be expanded. In particular, for NQ ∈ {1, NS − 1, NS}, the search order πw that maximizes

the MAT is not necessarily the search order π1 or πNS−1. This is trivial when NQ = 1

or NQ = NS, because every search order results in the same MAT. For NQ = NS − 1, we

provide a simple counterexample, in which NQ = 3, NS = 4, and πw = [1, 3, 4, 2]. As shown
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in Fig. 4-7, the corresponding flow diagram for each B gives

s(πw, 1) = (0, 1, 0),

s(πw, 2) = (0, 0, 1),

s(πw, 3) = (0, 0, 1), and

s(πw, 4) = (1, 0, 0).

Note that Lemma G.1 implies that these spacing rules result in the maximum absorption

time, and thus

v(s(πw, 1)) = v(s(πw, 2)) = v(s(πw, 3)) = v(s(πw, 4)) = Tmax.

As a result, π yields the maximum MAT. Evidently, this search order π is not the search

order π1 of the CSS or the search order πNS−1 of the FSSS.

In a typical scenario, NQ is in the range 2 ≤ NQ ≤ NS − 2. As a result, the receiver

exhibits the maximum MAT if and only if it uses the CSS or the FSSS with the step size

NS − 1. Therefore the receiver can immediately improve the MAT by choosing another

search order other than the worst search orders π1 and πNS−1. In the next section, we

compare the MAT of the CSS to that of the optimal serial search, when the uncertainty

index set is refined.

4.5 Refining of the Uncertainty Index Set

In this section, we investigate the change in the MAT when the uncertainty index set is

refined. We will assume that the number of total cells is much larger than the number of

correct cells,

NS À NQ,

so that, from Corollary 4.1 of Section 4.3, the optimal MAT is approximately equal to its

lower-bound:

Tmin ≈ TL
min.

Using the closed-form expression of TL
min in (4.23), we note that TL

min depends on the

ratio NS/NQ, as opposed to the individual terms NS and NQ. When the uncertainty index
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set U is refined by a factor of r, the number of total states NS and the number of H1-states

NQ change to rNS and rNQ, respectively. Here, r ≥ 2 controls the refinement resolution.

If r is small enough, the new resulting flow diagram will still have approximately the same

path gains PDzτD , PMzτM , and zτP . Clearly, the ratio of the number of total cells to the

number of correct cells is unchanged,

(rNS)/(rNQ) = NS/NQ.

As a result, the MAT of the system with the refined uncertainty index set will not change

significantly. Therefore, refinement of the uncertainty index set does not significantly in-

crease the MAT of the system that employs the optimal search order.

In contrary, the MAT Tmax of the CSS in (4.32) depends on the individual terms NS

and NQ. As a result, the MAT of the CSS is affected by the refinement of the uncertainty

index set. Let Tmax(r) denote the MAT of the system that employs the CSS and refines

its uncertainty index set by a factor of r. When r is small enough, the path gains are

approximately unchanged. Then, we have the relationship

Tmax(r)

Tmax
≈

(rNS−rNQ)2

rNS
·
(

1+P
NQ
M

1−P
NQ
M

)

τP
2

(NS−NQ)2

NS
·
(

1+P
NQ
M

1−P
NQ
M

)

τP
2

= r.

Thus, the MAT of the CSS is increased approximately r times when the uncertainty index

set is refined by a factor of r. Because the MAT of the optimal serial search does not

change significantly when the uncertainty index set is refined, the optimal serial search is

more robust than the CSS. In the next section, we compare the MAT of the optimal serial

search to that of the CSS when the SNR is asymptotically high or low.

4.6 Asymptotic MATs of a Multi-Dwell Detector

In this section, we compare the CSS and the optimal serial search in terms of the MAT

in low and high SNR environments. At the detection layer, we consider the multi-dwell

detector.
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Figure 4-8: Cell d must pass n independent tests before the receiver begins the tracking
stage, which decides without the error whether d is a correct cell.

Fig. 4-8 shows the multi-dwell architecture with several decision stages. An acquisition

receiver tests whether d is a correct cell by employing n independent tests, n ≥ 1, one test

after the other. The receiver starts by employing test 1. After cell d passes test 1, the

receiver employs test 2. After cell d passes test 2, the receiver employs test 3 and so on. If

cell d passes all n tests, the receiver will enter the tracking stage, which decides without

the error after t time-units whether d is a correct cell. On the other hand, if cell d fails any

test, the receiver discards cell d and tests the next cell according to the search order π.

Test i involves a threshold test and lasts for a fixed duration of ti time-units. If a

decision variable Zd,i equals or exceeds γi, cell d passes test i. Otherwise, cell d fails test i.

The receiver selects the thresholds γ1, γ2, . . . , γn to minimize the acquisition time.

We consider the following four cases:

• The CSS π1 with the optimal thresholds at the detection layer in a high SNR envi-

ronment with the corresponding MAT

E
{

TACQ(π1)
}

∣

∣

∣

high SNR, optimal thresholds
. (4.38)

• The optimal serial search π∗ with the optimal thresholds at the detection layer in a

high SNR environment with the corresponding MAT

E {TACQ(π∗)}
∣

∣

∣

high SNR, optimal thresholds
. (4.39)
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• The CSS π1 with the optimal thresholds at the detection layer in a low SNR environ-

ment with the corresponding MAT

E
{

TACQ(π1)
}

∣

∣

∣

low SNR, optimal thresholds
. (4.40)

• The optimal serial search π∗ with the optimal thresholds at the detection layer in a

low SNR environment with the corresponding MAT

E {TACQ(π∗)}
∣

∣

∣

low SNR, optimal thresholds
. (4.41)

We want to bound the above four MATs by the expressions that depend only on the number

n of tests, the durations t1, t2, . . . , tn, t, the number NS of total cells, and the number NQ

of correct cells.

We consider a receiver that does not know the locations of the correct cells. As a result,

the probability that the receiver begins the test at each cell is uniform and equal to 1/NS.

We assume that all correct cells d ∈ HC(B) have the same probability pDi of passing test i:

Pr {Zd,i ≥ γi | d ∈ HC(B)} = pDi. (4.42)

Similarly, all incorrect cells d /∈ HC(B) have the same probability pFi of incorrectly passing

test i:

Pr {Zd,i ≥ γi | d /∈ HC(B)} = pFi. (4.43)

Equations (4.42) and (4.43) imply that the acquisition procedure can be modelled by a

non-preferential flow diagram. In the next subsection, we derive the path gains of this flow

diagram.

4.6.1 Path Gains

The path gain from an H1-state to the acquisition state is given by

HD(z) = (pD1pD2 · · · pDn) · z(t1+t2+...+tn)

=
(

n
∏

i=1

pDi

)

· z
∑

n

l=1 tl ,

55



while the path gain from an H1-state to the adjacent non-absorbing state is given by

HM(z) = (1 − pD1) · z
t1 + pD1(1 − pD2) · z

(t1+t2) + · · ·

+ (pD1pD2 · · · pDn−1)(1 − pDn) · z(t1+t2+···+tn)

=

n
∑

i=1

[(

i−1
∏

j=1

pDj

)

· (1 − pDi) · z
∑

i

l=1 tl
]

,

with
∏0

i=1 , 1. The path gain from an H0-state to the adjacent non-absorbing state is

given by

H0(z) = (1 − pF1) · z
t1 + pF1(1 − pF2) · z

(t1+t2) + · · ·

+ (pF1pF2 · · · pFn−1)(1 − pFn) · z(t1+t2+···+tn)

+ (pF1pF2 · · · pFn) · z(t1+t2+···+tn+t)

=
n

∑

i=1

[

(

i−1
∏

j=1

pFj

)

· (1 − pFi) · z
∑

i

l=1 tl

]

+
(

n
∏

i=1

pFi

)

· z(t+
∑

n

l=1 tl).
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Using (4.2), we can reduce the path gains HD(z), HM(z), and H0(z) into the forms PDzτD ,

PMzτM , and zτP , respectively. The path gain parameters become the following:

PD =
n

∏

i=1

pDi

PM = 1 −
n

∏

i=1

pDi

τD =
n

∑

l=1

tl

τM =
1

1 − PD
·

n
∑

i=1

[

(

i−1
∏

j=1

pDj

)

· (1 − pDi) ·
i

∑

l=1

tl

]

(a)
=

1

1 − PD
·

[ n
∑

i=1

(

i−1
∏

j=1

pDj

)

· ti −
n

∏

i=1

pDi ·
n

∑

l=1

tl

]

τP =
n

∑

i=1

[

(

i−1
∏

j=1

pFj

)

· (1 − pFi) ·
i

∑

l=1

tl

]

+
n

∏

i=1

pFi ·
(

t +
n

∑

l=1

tl

)

(b)
=

n
∑

i=1

(

i−1
∏

j=1

pFj

)

· ti +
(

n
∏

i=1

pFi

)

· t,

(4.44)

where (a) follows from Corollary I.1, and (b) follows from Lemma I.1 of Appendix I.

In the subsequent sections, we find pDi and pFi for a receiver that selects the thresholds

γi optimally when the SNR is asymptotically high or low.

4.6.2 The MAT of the CSS in a High SNR Environment

When the SNR is high, the probability of detection pDi approaches one for any value of the

probability of false-alarm pFi ∈ (0, 1] (see Fig. 4-9):

pDi → 1, i = 1, 2, 3, . . . , n.

Equation (4.44) implies that PM → 0. Therefore, Thm. 4.5 gives

E
{

TACQ(π1)
}

∣

∣

∣

high SNR

=
[(NS − NQ)2

NS
+ 1 −

NQ

NS

]

·
τP

2
+

n
∑

l=1

tl.
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Figure 4-9: In a high SNR environment and in test i, pDi → 1 for every positive value of
the probability of false-alarm pFi. In a low SNR environment, pDi → pFi.

The MAT can be reduced by selecting the optimal thresholds (or equivalently the optimal

probabilities of false-alarm) at the detection layer. Thus,

E
{

TACQ(π1)
}

∣

∣

∣

high SNR, optimal thresholds

=
[(NS − NQ)2

NS
+ 1 −

NQ

NS

]

· inf
pFi∈(0,1],
1≤i≤n

τP

2
+

n
∑

l=1

tl

(a)
=

[(NS − NQ)2

NS
+ 1 −

NQ

NS

]

·
t1
2

+
n

∑

l=1

tl.

(4.45)

Equality (a) follows from the third part of Lemma J.1, which finds the infimum of τP (see

Appendix J).

4.6.3 The MAT of the Optimal Serial Search in a High SNR Environment

Corollary 4.1 gives the lower-bound and the upper-bound on the optimal MAT. A simi-

lar argument to the previous subsection shows that when SNR is small, PM → 0. As a

58



consequence,

( NS

NQ
− 1

)

·
t1
2

+
n

∑

l=1

tl

≤ E {TACQ(π∗)}
∣

∣

∣

high SNR, optimal thresholds

≤
(

1 +
2NQ

NS − NQ

)

·

[

( NS

NQ
− 1

)

·
t1
2

+
n

∑

l=1

tl

]

.

(4.46)

4.6.4 The MAT of the CSS in a Low SNR Environment

When the SNR is low, the probability of detection pDi approaches the probability of false-

alarm pFi (see Fig. 4-9):

pDi → pFi, i = 1, 2, 3, . . . , n.

Equation (4.44) implies that PM → (1 −
∏n

i=1 pFi). Thus, the MAT is

E
{

TACQ(π1)
}

∣

∣

∣

low SNR

=
(NS − NQ)2

2NS
·

[

1 + (1 −
∏n

i=1 pFi)
NQ

1 − (1 −
∏n

i=1 pFi)NQ

]

·

[ n
∑

i=1

(

i−1
∏

j=1

pFj

)

· ti +
(

n
∏

i=1

pFi

)

· t

]

+
(

2 −
NQ

NS

)

·
n

∑

i=1

( ti
∏n

j=i pFj

)

−
(NS − NQ

2NS

)

·

[ n
∑

i=1

(

i−1
∏

j=1

pFj

)

· ti +
(

n
∏

i=1

pFi

)

· t

]

+
(NS − NQ

NS

)

· t

, f(pF1, pF2, . . . , pFn).

(4.47)

When the receiver selects the optimal thresholds (or equivalently the optimal probabilities

of false-alarm), the above MAT becomes

E
{

TACQ(π1)
}

∣

∣

∣

low SNR, optimal thresholds

= inf
pFi∈(0,1],
1≤i≤n

f(pF1, pF2, . . . , pFn).
(4.48)
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Using the lower-bound in Lemma K.1 and the upper-bound in Lemma K.3 in Appendix K,

we have the following result:

(NS − NQ)2

2NS
· t1 +

(NS − NQ

2NS

)

·
(

t +
n

∑

l=2

tl

)

≤ E
{

TACQ(π1)
}

∣

∣

∣

low SNR, optimal thresholds

≤ (NS + 3NQ) · t1 +
( ln 3 · NS

NQ
+ 2

)

n
∑

l=2

tl +
( ln 3 · NS

NQ
+ 1

)

· t,

(4.49)

in which
∑1

l=2 , 0.

4.6.5 The MAT of the Optimal Serial Search in a Low SNR Environment

Corollary 4.1 gives the lower-bound and the upper-bound on the optimal MAT. A similar

argument to the previous subsection shows that when SNR is small, PM → (1 −
∏n

i=1 pFi).

Because the receiver selects the optimal thresholds, we have the following bounds:

inf
pFi∈(0,1],
1≤i≤n

g(pF1, pF2, . . . , pFn) ≤ E {TACQ(π∗)}
∣

∣

∣

low SNR, optimal thresholds

≤
(

1 +
2NQ

NS − NQ

)

· inf
pFi∈(0,1],
1≤i≤n

g(pF1, pF2, . . . , pFn),

(4.50)

in which

g(pF1, pF2, . . . , pFn) , TL
min

∣

∣

∣

pDi=pFi, i=1,2,...,n

=
NS

NQ
·

n
∑

i=1

( tj
∏n

j=i pFj

)

−
(NS − NQ

2NQ

)

·

[ n
∑

i=1

(

i−1
∏

j=1

pFj

)

·ti +
(

n
∏

i=1

pFi

)

· t

]

+
(NS − NQ

NQ

)

· t .

(4.51)
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The infimum of g(·), evaluated in Lemma J.4 in Appendix J, together with (4.50), gives

( NS

NQ
− 1

)

·
( t +

∑n
l=1 tl

2

)

+

n
∑

l=1

tl

≤ E {TACQ(π∗)}
∣

∣

∣

low SNR, optimal thresholds

≤
(

1 +
2NQ

NS − NQ

)

·

[

( NS

NQ
− 1

)

·
( t +

∑n
l=1 tl

2

)

+
n

∑

l=1

tl

]

.

(4.52)

4.6.6 Asymptotic Gains

We compare the MAT of the optimal serial search to that of the CSS in high and low SNR

environments. Let

GH ,
E

{

TACQ(π1)
}

∣

∣

∣

high SNR, optimal thresholds

E {TACQ(π∗)}
∣

∣

∣

high SNR, optimal thresholds

denote the gain in a high SNR regime. Using (4.45) and (4.46), we bound the performance

gain GH by

[

(NS−NQ)2

NS
+ 1 −

NQ

NS

]

· t1
2 +

∑n
l=1 tl

(

1 +
2NQ

NS−NQ

)

·

[

(

NS

NQ
− 1

)

· t1
2 +

∑n
l=1 tl

] ≤ GH

≤

[

(NS−NQ)2

NS
+ 1 −

NQ

NS

]

· t1
2 +

∑n
l=1 tl

(

NS

NQ
− 1

)

· t1
2 +

∑n
l=1 tl

.

(4.53)

If the number NS of total cells is much larger than the number NQ of correct cells,

NS À NQ, (4.54)

then both the lower and upper-bounds are approximately equal to

NSt1
2 +

∑n
l=1 tl

NSt1
2NQ

+
∑n

l=1 tl
≈

NSt1
2

NSt1
2NQ

= NQ.

(4.55)

Thus, in a high SNR regime the serial search with the optimal search order is approximately

NQ times faster than the CSS:

GL ≈ NQ. (4.56)
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This clearly indicates that the multipath improves the acquisition in a high SNR regime.

For a low SNR regime, we let

GL ,
E

{

TACQ(π1)
}

∣

∣

∣

low SNR, optimal thresholds

E {TACQ(π∗)}
∣

∣

∣

low SNR, optimal thresholds

denote the gain. Using (4.49) and (4.52), we upper-bound the performance gain GL by

GL ≤
(NS + 3NQ) · t1 +

(

ln 3·NS

NQ
+ 2

)

∑n
l=2 tl +

(

ln 3·NS

NQ
+ 1

)

· t
(

NS

NQ
− 1

)

·
(

t+
∑

n

l=1 tl
2

)

+
∑n

l=1 tl
.

When NS À NQ and the tracking duration is much longer than the testing duration for

test i,

t À ti, i = 1, 2, . . . , n, (4.57)

the upper-bound can be approximated by

(

ln 3·NS

NQ
+ 1

)

· t

NS

2NQ
t

≈ 2 ln 3

≈ 2.

Because π∗ is the optimal search order in a low SNR regime, the performance gain is at

least one:

GL ≥ 1.

Therefore, the performance gain GL is constrained in the approximated range

1 ≤ GL . 2, (4.58)

in which the symbol “.” means “approximately less than.” In other words, the performance

gain in a low SNR environment is a small number that does not depend strongly on NQ.
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Chapter 5

Conclusion

In this thesis, we propose a technique that exploits the multipath to aid the sequence

acquisition. This technique improves the mean acquisition time (MAT) by utilizing an

intelligent search procedure. We consider a serial search and model a search procedure by

a non-preferential flow diagram. The uncertainty index set contains NS total cells and NQ

correct cells, and the rapid acquisition is a crucial problem when NS À NQ À 1.

To alleviate the difficulty associated with the direct derivation of the MAT from the

flow diagram’s descriptions, we transform the descriptions into the spacing rules and then

evaluate the MAT from the spacing rules. In this new framework, finding the fundamental

limits of the achievable MATs is equivalent to solving the convex optimization problems.

Solutions to those optimization problems give the analytical expressions for the minimum

and maximum MATs.

We derive the lower and the upper-bounds on the minimum MAT. The lower-bound is

achieved with equality if and only if there is one correct cell (NQ = 1), or there are NS

correct cells (NQ = NS). We introduce a notation of η-optimality and prove that the fixed-

step serial search (FSSS) with the step size NQ is η-optimal. As a consequence, the FSSS

πNQ can be effectively used to achieve the near-optimal MAT in a wide-band transmission

system.

We also investigate the search orders that result in the maximum MAT. It turns out that

the search order π1 of the conventional serial search (CSS) and the search order πNS−1 of

the FSSS exhibit the maximum MAT. For a typical range 2 ≤ NQ ≤ NS−2, we further show

that only those two search orders result in the maximum MAT. Therefore, the receiver can
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immediately improve the MAT by avoiding the CSS or the FSSS with the step size NS − 1.

The benefits of selecting the intelligent search order are evident. Unlike the CSS, the

optimal serial search is robust with respect to the refinement of the uncertainty region. Our

results show that the optimal serial search is approximately NQ times faster than the CSS in

a high SNR environment. This thesis provides the methodology for exploiting the multipath,

typically considered deleterious for efficient communications, to aid the acquisition and

quantifies the performance gain due to the intelligent utilization of the multipath.
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Appendix A

Positive Definiteness of the

Hessian Matrix H

The goal of this appendix is to show that an NQ × NQ matrix

H ,
τP

NS

(

1 − P
NQ

M

)

[

P
NQ−|i−j|
M + P

|i−j|
M

]

ij

is positive definite, where 00 , 1 and PM < 1. The result in this appendix is used in

Thm. 4.2 to prove the strict convexity of function v(·).

When PM = 1, the absorption time in Thm. 4.1 becomes infinite, and the receiver will

never find a correct phase. When PM = 0, the matrix H̃ becomes

H =
τP

NS
I,

where I is the identity matrix. Clearly, H is positive definite when PM = 0. Therefore, we

will consider the case when 0 < PM < 1.

We rewrite H as

H =
P

NQ/2
M τP

NS

(

1 − P
NQ

M

)H̃,
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where

H̃ ,
[

P
NQ/2−|i−j|
M + P

−NQ/2+|i−j|
M

]

ij

=

















P
NQ/2
M + P

−NQ/2
M P

NQ/2−1
M + P

−NQ/2+1
M . . . P

−NQ/2+1
M + P

NQ/2−1
M

P
NQ/2−1
M + P

−NQ/2+1
M P

NQ/2
M + P

−NQ/2
M . . . P

−NQ/2+2
M + P

NQ/2−2
M

...
...

. . .
...

P
−NQ/2+1
M + P

NQ/2−1
M P

−NQ/2+2
M + P

NQ/2−2
M . . . P

NQ/2
M + P

−NQ/2
M

















.

(A.1)

Note that the coefficient
P

NQ/2
M τP

NS

(

1 − P
NQ

M

)

is positive. Therefore, it is sufficient to show the positive definiteness of H from the positive

definiteness of H̃.

Lemma A.1 (Positive Definite Matrix). For any NQ ≥ 1 and any PM ∈ (0, 1), matrix

H̃ defined in (A.1) is positive definite.

Proof. For NQ ≥ 1 and PM ∈ (0, 1), the matrix H̃ is circulant, symmetric, and Toeplitz.

The NQ × NQ Fourier matrix

F ,
[

ω(i−1)(j−1)
]

ij

=

















1 1 1 . . . 1

1 ω ω2 . . . ωNQ−1

...
...

...
. . . ω2(NQ−1)

1 ωNQ−1 ω2(NQ−1) . . . ω(NQ−1)(NQ−1)

















.

(A.2)

diagonalizes the circulant matrix H̃ [18, p.268]. Here, ω , e2π
√
−1/NQ . Therefore, columns

of F are eigenvectors of H̃.

Note that the first element of every eigenvector is one. Therefore, the inner product of

the first row of H̃ and the k-th column of F is the eigenvalue corresponding to the k-th

eigenvector:

λk =

NQ
∑

j=1

H̃1jFjk, k = 1, 2, . . . , NQ.
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Substituting H̃1j and Fjk and simplifying terms, we have

λk =

NQ−1
∑

i=0

(

P
NQ/2−i
M + P

−NQ/2+i
M

)

· ωi(k−1)

= P
NQ/2
M ·

NQ−1
∑

i=0

(

P−1
M ωk−1

)i
+ P

−NQ/2
M ·

NQ−1
∑

i=0

(

PMωk−1
)i

(a)
= P

NQ/2
M

[1 −
(

P−1
M ωk−1

)NQ

1 − P−1
M ωk−1

]

+ P
−NQ/2
M

[1 −
(

PMωk−1
)NQ

1 − PMωk−1

]

(b)
= P

NQ/2
M

[

1 − P
−NQ

M

1 − P−1
M ωk−1

]

+ P
−NQ/2
M

[

1 − P
NQ

M

1 − PMωk−1

]

(c)
=

P
NQ/2
M

(

1 − PMωk−1
)(

1 − P
−NQ

M

)

+ P
−NQ/2
M

(

1 − P−1
M ωk−1

)(

1 − P
NQ

M

)

−P−1
M ωk−1

(

1 − PMω−(k−1)
)(

1 − PMωk−1
)

(d)
=

ωk−1
(

P
−(NQ+2)/2
M − P

−(NQ−2)/2
M + P

(NQ+2)/2
M − P

(NQ−2)/2
M

)

−P−1
M ωk−1

∣

∣

∣
1 − PMωk−1

∣

∣

∣

2

=

(

1 − P
NQ

M

)

(1 − P 2
M)

P
NQ/2
M

∣

∣

∣
1 − PMωk−1

∣

∣

∣

2 .

(A.3)

The equality (a) follows from the geometric sum. The equality (b) follows from the fact

that ωNQ = 1. The equality (c) follows from the combination of the two sums and the

factoring of the denominator. The equality (d) follows from the fact that the denominator

contains the product of a complex conjugate pair.

It is clear from (A.3) that for PM ∈ (0, 1),

λk > 0, k = 1, 2, . . . , NQ.

Since every eigenvalue of H̃ is positive, the matrix H̃ is positive definite [7, Thm 7.2.1,

p.402]. That completes the proof.

67



68



Appendix B

Solution to the Minimization

Problem

A lemma in this appendix is used to justify the proof statement of Thm. 4.3. The lemma

implies that the components m∗
i of the optimal spacing rule m∗ are close to one another.

The precise statement of the lemma is given below.

Lemma B.1 (Minimum Extended Absorption Time).

1. The unique solution m∗ to the optimization problem minm∈Q v(m) is

m∗
1 = m∗

2 = m∗
3 = · · · = m∗

NQ
= NS

NQ
− 1. (B.1)

2. The optimal cost minm∈Q v(m) satisfies

min
m∈Q

v(m) = v
(

NS

NQ
− 1, NS

NQ
− 1, . . . , NS

NQ
− 1

)

(B.2a)

=

(

NS

NQ
− 1

) (

1 + PM

1 − PM

)

τP

2
+

PM

1 − PM
τM + τD (B.2b)

, TL
min

. (B.2c)

3. If NS/NQ is an integer, m∗ is also the unique solution to the integer programming

problem minm∈S v(m).

Proof.
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1. By Weierstrass’ theorem [7, p.541], there exists m∗ ∈ Q such that v(m∗) ≤ v(m),

for all m ∈ Q. By strict convexity of v(·), m∗ is the unique optimal solution to the

relaxation problem. Furthermore, by property 2 of Thm. 4.2 any m ∈ Q satisfies

v(m1, m2, . . . , mNQ
) = v(m2, m3, . . . , mNQ

, m1)

= v(m3, m4, . . . , mNQ
, m1, m2)

...

= v(mNQ
, m1, m2, . . . , mNQ−1).

Applying the above property to the unique solution m∗, we have m∗
1 = m∗

2 = m∗
3 =

· · · = m∗
NQ

. Since the sum of its components is (NS − NQ), the optimal solution

satisfies

m∗
1 = m∗

2 = m∗
3 = · · · = m∗

NQ
= NS/NQ − 1.

2. Equation (B.2a) follows immediately from part one of this lemma. Equation (B.2b)

follows from the explicit expression of v(·) in Thm. 4.1.

3. Since S ⊂ Q, we have the relationship minm∈S v(m) ≥ minm∈Q v(m) = v(m∗). If

NS/NQ is an integer, then m∗ ∈ S, and the above lower-bound is satisfied with

equality, i.e.

min
m∈S

= v(m∗).

Therefore, m∗ is the unique solution to the integer programming problem.

That completes the proof.
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Appendix C

Anti-Symmetric Property

The lemma in this appendix is used to justify the proof statement of Thm. 4.3. The MAT

TL
min occurs when the receiver employs the search order that uniformly distributes the non-

in-phase cells in the search sequence. However, the lemma in the appendix will show that the

receiver cannot always distribute uniformly the non-in-phase cells in the search sequence.

Thus, the MAT TL
min is impossible to achieve in general.

Lemma C.1 (Anti-Symmetric Property). If 2 ≤ NQ ≤ NS − 1, then for all π ∈ P,

there is bo ∈ U such that

s(π, bo) 6=
(

NS

NQ
− 1, NS

NQ
− 1, . . . , NS

NQ
− 1

)

.

Proof. Let any π ∈ P be given. We consider three cases.

1. s(π, 1) 6= (NS/NQ − 1, NS/NQ − 1, . . . , NS/NQ − 1).

In this case, bo = 1 and the claim is completed.

2. s(π, 2) 6= (NS/NQ − 1, NS/NQ − 1, . . . , NS/NQ − 1).

In this case, bo = 2 and the claim is completed.

3. s(π, 1) = (NS/NQ − 1, NS/NQ − 1, . . . , NS/NQ − 1) and

s(π, 2) = (NS/NQ − 1, NS/NQ − 1, . . . , NS/NQ − 1).

We want to show that this case is impossible. Assume to the contrary that

s(π, 1) = (NS/NQ − 1, NS/NQ − 1, . . . , NS/NQ − 1) (C.1)
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ACQ

. . .

. . .

...

1/NS

1/NS

1/NS

1/NS

1/NS

PDzτD

PDzτD

PMzτM

PMzτM

zτP

zτP

zτP

1 = π(1)

π(2)

π(3)

π
(

NS

NQ

)

π
(

NS

NQ
+ 1

)

(

NS

NQ
− 1

)

states

Figure C-1: The set of in-phase cells is HC(1) = {1, 2, . . . , NQ}, and there are
(

NS

NQ
− 1

)

H0-states between two neighboring in-phase cells.

and

s(π, 2) = (NS/NQ − 1, NS/NQ − 1, . . . , NS/NQ − 1). (C.2)

Equation (C.1) implies that elements of

HC(1) , {1, 2, 3, . . . , NQ}

are equally spaced in the flow diagram (see Fig. C-1). Similarly, equation (C.2) implies

that elements of

HC(2) , {2, 3, 4, . . . , NQ, NQ ⊕ 1}.

are equally spaced in the flow diagram.

Because 2 ≤ NQ, we have 2 ∈ HC(1) ∩ HC(2), and HC(1) ∩ HC(2) 6= ∅. Select any

k0 ∈ HC(1) ∩ HC(2). Then, equation (C.1) implies that the NQ elements of HC(1)
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are as follows:

π
(

k0 ⊕ i NS

NQ

)

, i = 0, 1, 2, . . . , NQ − 1.

Similarly, equation (C.1) implies that the NQ elements of HC(2) are as follows:

π
(

k0 ⊕ i NS

NQ

)

, i = 0, 1, 2, . . . , NQ − 1.

Therefore,

HC(1) = HC(2). (C.3)

Because NS ≤ NQ − 1, state 1 ⊕ NQ and state 1 are distinct, and

HC(1) 6= HC(2). (C.4)

Using (C.3) and (C.4), we have a contradiction: HC(1) 6= HC(1). Therefore, the third

case is impossible.

That completes the proof.
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Appendix D

Relationship Between η-Optimal

Search Orders and η-Optimal

Spacing Rules

The rapid acquisition is crucial when NS À NQ À 1. In that case, an η-optimal search order

will achieve the near-optimal MAT. This appendix investigates one approach for proving

that a search order is η-optimal. This approach exploits the relationship s : D → S. The

result in this appendix is used to justify the proof statement of Thm. 4.4.

Lemma D.1 (Inheritance Property). If the subset Sη ⊂ S of the set of spacing rules is

η-optimal, and if the search order π satisfies

s(π, b) ∈ Sη, b = 1, 2, . . . , NS,

then π is η-optimal.

Proof. Let Sη ⊂ S be η-optimal, and m∗ be the optimal spacing rule. Then, for any m ∈ Sη,

v(m) − v(m∗)
v(m∗)

≤ η(NS, NQ),

and η(NS, NQ) → 0 as NQ/NS → 0.

Let π be a search order that satisfies

s(π, b) ∈ Sη, b = 1, 2, . . . , NS.

75



If π∗ is the optimal search order, then

v(m∗) ≤ E {TACQ(π∗)} .

Thus,

E {TACQ(π) − E {TACQ(π∗)}}

E {TACQ(π∗)}
≤

1
NS

[

∑NS

b=1 v(s(π, b))
]

− v(m∗)

v(m∗)

=
1

NS

NS
∑

b=1

[v(s(π, b)) − v(m∗)
v(m∗)

]

≤
1

NS

NS
∑

b=1

η(NS, NQ)

≤ η(NS, NQ).

Therefore, the search order π is η-optimal. That completes the proof.
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Appendix E

η-Optimal Spacing Rules

The goal of this appendix is to show that the subset R of S, in which

R ,
{

(m1, m2, . . . , mNQ
)

∣

∣

∣

∣

NQ
∑

i=1

mi = NS − NQ; ∀i, integer 0 ≤ mi ≤
⌊

NS

NQ

⌋}

, (E.1)

is η-optimal. Each spacing rule m ∈ R has components that are “almost equal to one

another.” As a result, the absorption time v(m) for m ∈ R is close to the minimum

absorption time TL
min. The lemma below provides a precise proof of this statement. The

result in this appendix is used in the proof of Thm. 4.4.

Lemma E.1 (η-Optimal Spacing Rules). Let m∗ be the optimal spacing rule. For any

m ∈ R,
v(m) − v(m∗)

v(m∗)
<

2NQ

NS − NQ
.

Thus, R is η-optimal with η =
(

2NQ

NS−NQ

)

.

Proof. Let any m = (m1, m2, . . . , mNQ
) ∈ R be given. By part two of Lemma B.1, the

optimal spacing rule satisfies

TL
min ≤ v(m∗).
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Using the definition of TL
min in (4.23), we have

v(m) − v(m∗)
v(m∗)

≤
v(m) − TL

min

TL
min

=
1

TL
min

{

A

NQ
∑

i=1

[

m2
i −

( NS

NQ
− 1

)2
]

+

NQ
∑

i=1

NQ
∑

j=i+1

Bij

[

mimj −
( NS

NQ
− 1

)2
]}

(a)
<

1

TL
min

{

A

NQ
∑

i=1

[

( NS

NQ

)2
−

( NS

NQ
− 1

)2
]

+

NQ
∑

i=1

NQ
∑

j=i+1

Bij

[

( NS

NQ

)2
−

( NS

NQ
− 1

)2
]}

=
1

TL
min

·
2NS − NQ

NQ

(

NQA +

NQ
∑

i=1

NQ
∑

j=i+1

Bij

)

=
1

TL
min

·
(2NS − NQ

NS

)

·
(1 − P

NQ

M

1 + P
NQ

M

)

·
(1 + PM

1 − PM

)

·
τP

2

<

(

2NS−NQ

NS

)

·
(

1−P
NQ
M

1+P
NQ
M

)

·
(

1+PM

1−PM

)

· τP
2

(

NS−NQ

NQ

)

·
(

1+PM

1−PM

)

· τP
2

(b)

≤
NQ(2NS − NQ)

NS(NS − NQ)

<
2NQ

NS − NQ
.

The strict inequality (a) follows from the fact that every mi ≤ NS/NQ and some mk <

NS/NQ. The inequality (b) follows from the fact that the expression (1− P
NQ

M )/(1 + P
NQ

M )

is maximum when PM = 0.

We note that
2NQ

NS − NQ
→ 0,

as NQ/NS → 0. Thus, the set R is η-optimal with η =
(

2NQ

NS−NQ

)

. That completes the

proof.
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Appendix F

The Search Order πNQ and the

Corresponding Spacing Rules

The result in this appendix is used to justify the proof statement of Thm. 4.4. The goal

here is to prove that for any b ∈ U , the description (πNQ , b) maps to the spacing rule

s(πNQ , b) ∈ R,

where R is defined in (4.31).

Lemma F.1 (Spacing Rules of πNQ). If NQ and NS are relatively prime, then

s(πNQ , b) ∈ R, for all b = 1, 2, . . . , NQ. (F.1)

Proof. Let any b ∈ U be given. Let s(πNQ , b) = (m1, m2, . . . , mNQ
). We want to show that

mi ≤ bNS/NQc for all i = 1, 2, . . . , NQ.

Let

l1 ,
⌊ NS

NQ

⌋

NQ, (F.2)

l2 ,
⌈ NS

NQ

⌉

NQ. (F.3)
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Because NS and NQ are relatively prime, the ratio NS/NQ is fractional. As a result,

⌊ NS

NQ

⌋

=
⌈ NS

NQ

⌉

− 1, (F.4)

⌊ NS

NQ

⌋

<
NS

NQ
, (F.5)

NS

NQ
<

⌈ NS

NQ

⌉

. (F.6)

The equality (F.4) implies that

l2 − l1 = NQ. (F.7)

The strict inequalities (F.5) and (F.6) imply that

l1 < NS < l2.

Let an H1-state a ∈ HC(b) be given. Consider the sequence

a ⊕ l1, a ⊕ (l1 + 1), a ⊕ (l1 + 2), . . . , a ⊕ NS, . . . , a ⊕ l2. (F.8)

Because a ⊕ NS = a, the state a is a member of the sequence. The number of elements in

the sequence is l2 − l1 + 1, which satisfies

l2 − l1 + 1 = NQ + 1

≤ NS.
(F.9)

The above inequality follows from that fact that NS and NQ are relatively prime, so that

NQ 6= NS and NQ ≤ NS − 1. The inequality (F.9) implies that elements of the sequence

(F.8) are distinct.

We want to show that a ⊕ l1 ∈ HC(b) or a ⊕ l2 ∈ HC(b). Assume to the contrary that

a ⊕ l1 /∈ HC(b) and (F.10)

a ⊕ l2 /∈ HC(b). (F.11)

The set

HC(b) , {b, b ⊕ 1, b ⊕ 2, . . . , b ⊕ NS}
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contains a by the assumption that a ∈ HC(b). Conditions (F.10) and (F.11), in addition to

the fact that a ∈ HC(b), imply that

HC(b) ⊂ {a ⊕ (l1 + 1), a ⊕ (l1 + 2), . . . , a ⊕ (l2 − 1)} , A.

As a consequence,

|HC(b)| ≤ |A|. (F.12)

The cardinalities |HC(b)| and |A| are given by

|HC(b)| = NQ,

and

|A|
(a)
= l2 − l1 − 1

= NQ − 1,

where the equality (a) follows from the fact that elements of the sequence (F.8) are distinct.

Thus, the cardinality relationship in (F.12) implies that

NQ ≤ NQ − 1,

and we have a contradiction: 0 ≤ −1. Therefore, a ⊕ l1 ∈ HC(b) or a ⊕ l2 ∈ HC(b).

If a ⊕ l1 ∈ HC(b), let m denote the number of H0-states between the two neighboring

H1-states a and a ⊕ l1 (see Fig. F-1). Then, there exists some k1 such that

a ⊕ (k1NQ) = a ⊕ l1.

Thus,

m = k1 − 1

=
l1

NQ
− 1

=
⌊ NS

NQ

⌋

− 1.
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PMzτM
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a ⊕ NQ

a ⊕ 2NQ

a ⊕ l1

k1 − 1 states

Figure F-1: States a and a⊕ l1 are two neighboring H1-states. There are (k1 − 1) H0-states
between states a and a ⊕ l1.

If a ⊕ l2 ∈ HC(b), let m denote the number of H0-states between the two neighboring

H1-states a and a ⊕ l2 (see Fig. F-2). Then, there exists some k2 such that

a ⊕ (k2NQ) = a ⊕ l2.

Thus,

m = k2 − 1

=
l2

NQ
− 1

=
⌈ NS

NQ

⌉

− 1

=
⌊ NS

NQ

⌋

.

Because a ∈ HC(b) is arbitrary, the number mi of H0-states between any two neighboring

82



ACQ

. . .

. . .

. . .

1/NS

1/NS

1/NS

1/NS

PDzτD

PDzτD

PMzτM

PMzτM

zτP

zτP

a

a ⊕ NQ

a ⊕ 2NQ

a ⊕ l2

k2 − 1 states

Figure F-2: States a and a⊕ l2 are two neighboring H1-states. There are (k2 − 1) H0-states
between states a and a ⊕ l2.

H1-states satisfies

mi ≤
⌊ NS

NQ

⌋

, i = 1, 2, . . . , NQ.

That completes the proof.
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Appendix G

Solution to the Maximization

Problem

A lemma in this appendix is used to justify the proof statement of Thm. 4.5. Intuitively, the

lemma states that the maximum absorption time occurs if and only if the non-in-phase cells

are consecutive in the flow diagram. The precise statement of the lemma is given below.

Lemma G.1 (Maximum Absorption Time).

1. The complete solutions of the integer programming problem maxm∈S v(m) are given

by

E ,
{

(0, 0, . . . , 0, NS − NQ), (0, 0, . . . , 0, NS − NQ, 0), . . . , (NS − NQ, 0, 0, . . . , 0)
}

.

(G.1)

2. The maximum absorption time is equal to

max
m∈S

v(m) =
(NS − NQ)2

NS
·

(

1 + P
NQ

M

1 − P
NQ

M

)

τP

2

+

(

1 −
NQ

NS

)

·

(

1 + PM

1 − PM

)

τP

2

+
PM

1 − PM
τM + τD

, Tmax.

(G.2)
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Proof. 1. Consider the relaxation problem maxm∈Q v(m). For 1 ≤ i ≤ NQ, let

mi , (0, 0, . . . , 0, NS − NQ, 0, 0, . . . , 0),

where only the i-th component of mi is non-zero. Therefore E = {m1,m2, . . . ,mNQ}.

For any m /∈ E , there exist i and j such that i 6= j, mi > 0, and mj > 0. Expressing

m as a convex combination of m1, m2, . . . , and mNQ , we obtain

m =

NQ
∑

k=1

(

mk

NS − NQ

)

mk.

Thus,

v(m)
(a)
<

NQ
∑

k=1

(

mk

NS − NQ

)

v(mk)

(b)
=

NQ
∑

k=1

(

mk

NS − NQ

)

v(m1)

= v(m1).

The inequality (a) follows from strict convexity of v(·), positivity of mi, and positivity

of mj . The equality (b) follows from the second property of Thm. 4.2, v(m1) = · · · =

v(mNQ). Thus, for any m /∈ E ,

v(m) < v(m1) = v(m2) = · · · = v(mNQ). (G.3)

Therefore, E contains all solutions to the relaxation problem.

Consider the integer programming problem maxm∈S v(m). Since

E ⊂ S ⊂ Q,

we have

max
m∈E

v(m) ≤ max
m∈S

v(m) ≤ max
m∈Q

v(m). (G.4)

Note that

arg
m∈Q max v(m) = m̃ ∈ E .
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As a consequence,

max
m∈E

v(m) = max
m∈Q

v(m). (G.5)

Therefore, (G.4) and (G.5) imply that

max
m∈S

v(m) = max
m∈Q

v(m).

2. This part of the lemma follows immediately from part one and the explicit expression

of v(·) in Thm. 4.1.

That completes the proof.
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Appendix H

Search Orders that Exhibit the

Maximum MAT

In this appendix, we show that the CSS π1 and the FSSS with the step size NS − 1 are the

only two search orders that result in the maximum MAT, when NQ is constrained in the

range 2 ≤ NQ ≤ NS − 2. For the other range of NQ, NQ ∈ {1, NS − 1, NS}, the other search

orders can also achieve the maximum MAT.

Throughout this appendix, we assume that the durations τD, τM, and τP are finite and

the probability PM is in the range PM ∈ [0, 1). Therefore, the absorption time v(·) in

Thm. 4.1 is finite for every spacing rule and so is the MAT.

This appendix is divided into three parts. In the first part, we define the term clustering

and provide the physical interpretation of the flow diagram with the worst search order πw.

In the second part, we consider a simple example, which will help to understand the proofs

in this appendix. In the last part, we presents the lemmas and their proofs.

H.1 Clustering States in the Flow Diagram

In this section, we explain the nature of spacing rules s(πw, 1), s(πw, 2), . . . , s(πw, NS) that

correspond to the worst search order πw.

Let the search order πw results in the maximum MAT,

E {TACQ(πw)} = Tmax.
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Then we have

Tmax = E {TACQ(π)}

=
1

NS

NS
∑

b=1

v(s(πw, b))

(a)

≤
1

NS

NS
∑

b=1

max
m∈S

v(m)

= max
m∈S

v(m)

(b)
= Tmax.

The equality (b) follows from part two of Lemma G.1, which shows that the maximum

absorption time is Tmax. Therefore, that inequality (a) is satisfied with equality, and the

absorption times are equal to maxm∈S v(m):

v(s(πw, 1)) = v(s(πw, 2)) = . . . = v(s(πw, NS)) = max
m∈S

v(m). (H.1)

By part one of Lemma G.1, the condition v(s(π, b)) = maxm∈S v(m) is equivalent to

the condition s(π, b) ∈ E , where

E ,
{

(0, 0, . . . , 0, NS − NQ), (0, 0, . . . , 0, NS − NQ), . . . , (NS − NQ, 0, 0, . . . , 0)
}

.

Thus, each constraint in (H.1) has a physical interpretation that the H1-states in the flow

diagram are clustered together. The next definition makes this statement precise.

Definition H.1 (Clustering property). For 1 ≤ n ≤ NS, elements s1, s2, . . . , sn ∈ U of

the uncertainty index set are clustering in the flow diagram with the permutation function

π, if there is an index i ∈ U , such that

{s1, s2, . . . , sn} =
{

π(i), π(i ⊕ 1), π(i ⊕ 2), . . . , π(i ⊕ (n − 1))
}

.

For example, in Fig. 4-4b, states 2 and 3 are clustering in the flow diagram with the

search order [1, 3, 2, 4], while in Fig. 4-4d, states 1 and 4 are clustering in the flow diagram
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with the search order [1, 3, 2, 4]. Therefore, for any b ∈ U , the condition

v(s(π, b)) = max
m∈S

v(m)

implies that the H1-states in HC(b) , {b, b ⊕ 1, . . . , b ⊕ (NQ − 1)} are clustering.

H.2 An Illustrative Example

We consider an example, in which NS = 5 and NQ = 3. Assume that the search order πw

results in the maximum MAT. Therefore,

v(s(πw, 1)) = v(s(πw, 2)) = . . . = v(s(πw, 5)) = max
m∈S

v(m), (H.2)

and the sets of clustering states are the following:

{1, 2, 3},

{2, 3, 4},

{3, 4, 5},

{4, 5, 1}, and

{5, 1, 2}.

Without using any constraints in (H.2), there are (NS − 1)! = 24 possibilities of πw.

Because the states in {1, 2, 3} are clustering, the possible form of πw becomes one of the

following NQ! = 3! possibilities:

[1, 2, 3,−,−],

[1, 3, 2,−,−],

[1, 2,−,−, 3],

[1, 3,−,−, 2],

[1,−,−, 2, 3], or

[1,−,−, 3, 2].

Here, the symbol “−” denotes an unknown number. See Fig. H-1 for an illustration.
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[1, 2, 3,−,−] [1, 3, 2,−,−] [1, 2,−,−, 3] [1, 3,−,−, 2] [1,−,−, 2, 3] [1,−,−, 3, 2]

[1, 2, 3, 4,−] [1, 3, 2, 4,−] [1,−, 4, 2, 3] [1,−, 4, 3, 2]

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

[1, 5, 4, 3, 2]

[1, 5, 4, 3, 2]

[1, 5, 4, 3, 2]

start

(a)

(b)

(c)

(d)

(e)

impossible impossible

impossibleimpossible

Figure H-1: The constraints v(s(π, ·)) = maxm∈S v(m) reduce the possible forms of the
worst search order πw. The constraints are imposed in the following order: (a) the states in
{1, 2, 3} must be clustering ; (b) in addition, the states in {2, 3, 4} must be clustering ; (c)
in addition, the states in {3, 4, 5} must be clustering ; (d) in addition, the states in {4, 5, 1}
must be clustering ; (e) in addition, the states in {5, 1, 2} must be clustering.
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When the states in {2, 3, 4} are additionally required to be clustering, the possible form

of πw becomes one of the following:

[1, 2, 3, 4,−],

[1, 3, 2, 4,−],

[1,−, 4, 2, 3], or

[1,−, 4, 3, 2].

When the states in {3, 4, 5} are additionally required to be clustering, the possible form

of πw becomes one of the following:

[1, 2, 3, 4, 5], or

[1, 5, 4, 3, 2].

When the states in {4, 5, 1} are additionally required to be clustering, the possible form

of πw becomes one of the following:

[1, 2, 3, 4, 5], or

[1, 5, 4, 3, 2].

When the states in {5, 1, 2} are additionally required to be clustering, the possible form

of πw becomes one of the following:

[1, 2, 3, 4, 5], or

[1, 5, 4, 3, 2].

When all five constraints in (H.2) are imposed, we conclude that πw is one of the two

forms,

πw ∈ {[1, 2, 3, 4, 5], [1, 5, 4, 3, 2]} = {π1, π4}.

Therefore, the receiver uses the CSS or the FSSS with the step size NS − 1 = 4.
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H.3 Reduction of Possible Forms of πw

We prove two lemmas in this section. The first lemma shows that if the search order πw

satisfies the conditions

v(s(πw, 1)) = v(s(πw, 2)) = · · · = v(s(πw, NQ)) = max
m∈S

v(m), (H.3)

the search order πw must be one of the following forms:

[1, 2, 3, . . . , NQ,−,−,−, . . . ,−], or

[1,−,−, . . . ,−, NQ, . . . , 3, 2].

The second lemma shows that if the search order πw satisfies conditions (H.3) and conditions

v(s(πw, NQ + 1)) = v(s(πw, NQ + 2)) = · · · = v(s(πw, NS − 1)) = max
m∈S

v(m), (H.4)

the search order πw must be one of the following forms:

[1, 2, 3, . . . , NQ, . . . , NS], or

[1, NS, NS − 1, . . . , NQ, . . . , 3, 2].

Therefore, πw ∈ π1, πNS−1.

The two lemmas in this section will use the notation

Υ(n, m) ,
{

ε
∣

∣

∣
ε : {n, n + 1, n + 2, . . . , m} → {n, n + 1, n + 2, . . . , m} is a bijection

}

,

(H.5)

to denote a set of bijections, for some integers n ≤ m.

Lemma H.1 (Front Reduction). For any NS, NQ, and b that satisfy 2 ≤ NQ ≤ NS − 2

and 2 ≤ b ≤ NQ, if the search order πw satisfies

v(s(πw, 1)) = v(s(π, 2)) = · · · = v(s(πw, b)) = max
m∈S

v(m),
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then the search order πw belongs to the set

πw ∈
{[

1, 2, . . . , b − 1, ε(b), ε(b + 1), . . . , ε(NQ), ξ(NQ + 1), ξ(NQ + 2), . . . , ξ(NS)
]

,
[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(NQ + 1), ε̂(NQ), ε̂(NQ − 1), . . . , ε̂(b), b − 1, b − 2, . . . , 2
]}

,

for some bijections ε̂, ε ∈ Υ(b, NQ) and ξ̂, ξ ∈ Υ(NQ + 1, NS).

Proof. Let NS and NQ such that 2 ≤ NQ ≤ NS − 2 be given. We prove the lemma by an

induction on b.

• Base case (b = 2):

Let any search order πw ∈ P such that

v(s(πw, 1)) = max
m∈S

v(m) (H.6)

v(s(πw, 2)) = max
m∈S

v(m) (H.7)

be given. Condition (H.6), together with part one of Lemma G.1, implies that the

states in {1, 2, . . . , NQ} are clustering in the flow diagram with the search order π.

Therefore, there exists i ∈ U such that

{

πw(i), πw(i ⊕ 1), πw(i ⊕ 2), . . . , πw(i ⊕ (NQ − 1))
}

= {1, 2, 3, . . . , NQ}. (H.8)

Similarly, (H.7) implies that the states in {2, 3, . . . , NQ, NQ + 1} are clustering in the

flow diagram with the search order π. Therefore, there exists j ∈ U such that

{

πw(j), πw(j ⊕ 1), πw(j ⊕ 2), . . . , πw(j ⊕ (NQ − 1))
}

= {2, 3, . . . , NQ, NQ + 1}. (H.9)

We want to show that conditions (H.8) and (H.9) imply that πw(i) = 1 or πw(i ⊕

(NQ − 1)) = 1.

For NQ = 2, condition (H.8) requires that

{

πw(i), πw(i ⊕ 1)
}

= {1, 2}.

Therefore, πw(i) = 1 or πw(i ⊕ 1) = 1.

For NQ ≥ 3, we assume to the contrary that πw(i) 6= 1 and πw(i ⊕ (NQ − 1)) 6= 1.
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Because π is a bijection, there is an index k, 1 ≤ k ≤ NQ − 2, such that

πw(i ⊕ k) = 1. (H.10)

Clearly,

πw(i ⊕ (k − 1)) ∈
{

πw(i), πw(i ⊕ 1), πw(i ⊕ 2), . . . , πw(i ⊕ (NQ − 1))
}

, and (H.11)

πw(i ⊕ (k + 1)) ∈
{

πw(i), πw(i ⊕ 1), πw(i ⊕ 2), . . . , πw(i ⊕ (NQ − 1))
}

. (H.12)

Condition (H.10) and the fact that πw is bijection imply that

πw(i ⊕ (k − 1)) 6= 1, and

πw(i ⊕ (k + 1)) 6= 1.

Therefore,

πw(i ⊕ (k − 1)) ∈ {2, 3, . . . , NQ} ⊂ {2, 3, . . . , NQ, NQ + 1}, and (H.13)

πw(i ⊕ (k + 1)) ∈ {2, 3, . . . , NQ} ⊂ {2, 3, . . . , NQ, NQ + 1}. (H.14)

Conditions (H.13) and (H.9) imply that there exists some l, 0 ≤ l ≤ NQ−1, such that

πw(j ⊕ l) = πw(i ⊕ (k − 1)). (H.15)

Similarly, conditions (H.14) and (H.9) imply that there exists some l̃ 6= l, 0 ≤ l̃ ≤

NQ − 1, such that

πw(j ⊕ l) = πw(i ⊕ (k − 1)). (H.16)

If l < l̃, condition (H.9) implies that

{

πw(j ⊕ (l + 1)), πw(j ⊕ (l + 2)), . . . , πw(j ⊕ (l̃ − 1))
}

⊂ {2, 3, . . . , NQ, NQ + 1}.
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From (H.15), we have

πw(j ⊕ (l + 1)) = πw(j ⊕ l ⊕ 1)

= πw(j ⊕ (k − 1) ⊕ 1)

= πw(j ⊕ k)

= 1.

Thus, 1 ∈ {2, 3, . . . , NQ, NQ + 1} and we have a contradiction.

If l̃ < l, condition (H.9) implies that

{

πw(j ⊕ l̃, πw(j ⊕ (l̃ + 1)), πw(j ⊕ l)
}

⊂ {2, 3, . . . , NQ, NQ + 1}. (H.17)

Condition (H.10) and the definition the set of search orders imply that πw(i ⊕ k) =

1 = πw(1). Thus,

πw(i ⊕ (k − 1)) = πw(NS), and (H.18)

πw(i ⊕ (k + 1)) = πw(2). (H.19)

Since πw(i⊕ (k − 1)) = πw(j ⊕ l) and πw(i⊕ (k + 1)) = πw(j ⊕ l̃), condition (H.17) is

equivalent to the condition

{

πw(2), πw(3), . . . , πw(NS − 1), πw(NS)
}

⊂ {2, 3, . . . , NQ, NQ + 1},

which implies that

∣

∣

∣

{

πw(2), πw(3), . . . , πw(NS − 1), πw(NS)
}∣

∣

∣
≤

∣

∣

∣
{2, 3, . . . , NQ, NQ + 1}

∣

∣

∣

NS − 1 ≤ NQ.

(H.20)

Using the assumption NQ ≤ NS − 2 on the rage of NQ and NS and the cardinality

relationship in (H.20), we have a contradiction: NS − 1 ≤ NS − 2.

Therefore, πw(i) = 1 or πw(i ⊕ (NQ − 1)) = 1.
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If πw(i) = 1, condition (H.8) and the fact that πw(1) = 1 imply that

{πw(2), πw(3), . . . , πw(NQ)} = {2, 3, . . . , NQ}.

As a result,

{

πw(NQ + 1), πw(NQ + 2), . . . , πw(NS)
}

= {NQ + 1, NQ + 2, . . . , NS},

and πw is of the form

[

πw(1), πw(2), πw(3), . . . , πw(NQ),

πw(NQ + 1), πw(NQ + 2), . . . , πw(NS)
]

=
[

1, ε(2), ε(3), . . . , ε(NQ),

ξ(NQ + 1), ξ(NQ + 2), . . . , ξ(NS)
]

,

for some bijections ε ∈ Υ(2, NQ) and ξ ∈ Υ(NQ + 1, NS).

On the other hand, if πw(i⊕(NQ−1)) = 1, condition (H.8) and the fact that πw(1) = 1

imply that

{

πw(NS − NQ + 2), . . . , πw(NS − 1), πw(NS)
}

= {2, 3, . . . , NQ}.

As a result,

{

πw(2), πw(3), . . . πw(NS − NQ + 1)
}

= {NQ + 1, NQ + 2, . . . , NS},

and πw is of the form

[

πw(1), πw(2), πw(3), . . . , πw(NS − NQ + 1),

πw(NS − NQ + 2), πw(NS − NQ + 3), . . . , πw(NS)
]

=
[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(NQ + 1),

ε̂(NQ), ε̂(NQ − 1), . . . , ε̂(2)
]

,
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for some bijections ε̂ ∈ Υ(2, NQ) and ξ̂ ∈ Υ(NQ + 1, NS).

We complete the base case.

• Inductive step:

Assume the inductive hypothesis for the case of some b, 2 ≤ b ≤ NQ − 1. Consider

the case of b + 1.

Let the search order πw ∈ P, such that

v(s(π, 1)) = v(s(π, 2)) = · · · = v(s(π, b)) = max
m∈S

v(m) (H.21)

v(s(π, b + 1)) = max
m∈S

v(m) (H.22)

be given. The condition (H.21) and the inductive hypothesis imply that the search

order πw belongs to the set

πw ∈
{[

1, 2, . . . , b − 1, ε(b), ε(b + 1), . . . , ε(NQ),

ξ(NQ + 1), ξ(NQ + 2), . . . , ξ(NS)
]

,
[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(NQ + 1),

ε̂(NQ), ε̂(NQ − 1), . . . , ε̂(b), b − 1, b − 2, . . . , 2
]}

,

for some bijections ε̂, ε ∈ Υ(b, NQ) and ξ̂, ξ ∈ Υ(NQ + 1, NS). We want to show that

ε(b) = b or ε̂(b) = b.

Using the condition (H.22), we conclude that the states in

C , {b + 1, b + 2, b ⊕ 3, b ⊕ 4, . . . , b ⊕ NQ} (H.23)

are clustering in the flow diagram with the search order πw.

First, we argue that b − 1 /∈ C. Assume to the contrary that b − 1 ∈ C. Therefore,

there is an integer k in the range 1 ≤ k ≤ NQ, such that

b − 1 = b ⊕ k. (H.24)
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Because b − 1 is strictly less than b + 1, condition (H.24) implies that

b − 1 = b ⊕ k = b + k − lNS, (H.25)

for some positive integer l ≥ 1. Hence,

1 = lNS − k

(a)

≥ lNS − NQ

(b)

≥ NS − NQ

(c)

≥ 2.

(H.26)

The inequality (a) follows from the fact that k ≤ NQ. The inequality (b) follows from

the fact that l ≥ 1. The inequality (c) follows from the fact that NQ ≤ NS − 2.

Using (H.26), we have a contradiction: 1 ≥ 2. Therefore, b − 1 /∈ C.

Consider two possible forms of πw.

1. πw is equal to

[

1, 2, . . . , b − 1, ε(b), ε(b + 1), . . . , ε(NQ),

ξ(NQ + 1), ξ(NQ + 2), . . . , ξ(NS)
]

. (H.27)

We want to show that ε(b) = b.

Assume to the contrary that ε(b) 6= b. Since

ε : {b, b + 1, . . . , NQ} → {b, b + 1, . . . , NQ}

is a bijection, there exists the index i, b + 1 ≤ i ≤ NQ, such that

ε(i) = b.

The assumption that ε(b) 6= b implies that

ε(b) ∈ {b + 1, b + 2, . . . , NQ}. (H.28)
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We note that

{b + 1, b + 2, . . . , NQ} ⊂ C, (H.29)

because of the definition of C in (H.23) and the cardinality relationship below:

∣

∣

∣
{b + 1, b + 2, . . . , NQ}

∣

∣

∣
= NQ − b

≤ NQ − 2

< NQ

= |C|.

Therefore, conditions (H.28) and (H.29) imply that ε(b) ∈ C. Furthermore,

(b − 1) /∈ C implies that b /∈ C, or equivalently, ε(i) /∈ C.

ACQ

. . .

. . .

. . .

...
...

1/NS

1/NS

1/NS

1/NS

1/NS
1/NS

PDzτD

PDzτD

PMzτM

zτP

zτP

zτP

zτP

zτP

zτP

zτP

ξ(NS)

1

2

b − 1

ε(b)

ε(i)

C

Figure H-2: The states in C ⊂ {ε(b), ε(b + 1), . . . , ε(i − 1)} are clustering.

Because (b− 1) /∈ C, ε(b) ∈ C, and ε(i) /∈ C (see Fig. H-2), the set C of clustering

states must satisfy

C ⊂ {ε(b), ε(b + 1), . . . , ε(i − 1)}.
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As a consequence, the cardinalities of two sets above satisfies

NQ = |C|

≤
∣

∣

∣{ε(b), ε(b + 1), . . . , ε(i − 1)}
∣

∣

∣

≤ i − b

≤ NQ − 2,

(H.30)

in which the last inequality follows from the fact that i ≤ NQ and 2 ≤ b. From

(H.30), we have a contradiction: 0 ≤ −2. Therefore, ε(b) = b.

Substituting ε(b) = b into (H.27), the search order πw is equal to

[

1, 2, . . . , b − 1, b, δ(b + 1), δ(b + 2), . . . , δ(NQ),

ξ(NQ + 1), ξ(NQ + 2), . . . , ξ(NS)
]

,

where a bijection δ ∈ Υ(b + 1, NQ) is given by

δ(i) , ε(i), i = b + 1, b + 2, . . . , NQ.

2. πw is equal to

[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(NQ + 1),

ε̂(NQ), ε̂(NQ − 1), . . . , ε̂(b), b − 1, b − 2, . . . , 2
]

. (H.31)

We want to show that ε̂(b) = b.

Assume to the contrary that ε̂(b) 6= b. Since

ε̂ : {b, b + 1, . . . , NQ} → {b, b + 1, . . . , NQ}

is a bijection, there exists the index j, b + 1 ≤ j ≤ NQ, such that

ε̂(j) = b.
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The assumption that ε̂(b) 6= b implies that

ε̂(b) ∈ {b + 1, b + 2, . . . , NQ}. (H.32)

By (H.29), the set in the right-hand side of (H.32) is a subset of C. Therefore,

ε̂(b) ∈ C.

ACQ

. . .

. . .

. . .

...
...

1/NS

1/NS

1/NS

1/NS

1/NS

1/NS

PDzτD
PDzτD

PMzτM

zτP

zτP

zτP

zτP

zτP

zτP

zτP

ξ̂(NS)

1

2

b − 1

ε̂(b)

ε̂(j)

C

Figure H-3: The states in C ⊂ {ε̂(b), ε̂(b + 1), . . . , ε̂(j − 1)} are clustering.

Because (b− 1) /∈ C, ε̂(b) ∈ C, and ε̂(j) /∈ C (see Fig. H-3), the set C of clustering

states must satisfy

C ⊂ {ε̂(b), ε̂(b + 1), . . . , ε̂(j − 1)}.

As a consequence, the cardinalities of two sets above satisfies

NQ = |C|

≤
∣

∣

∣{ε(b), ε(b + 1), . . . , ε(i − 1)}
∣

∣

∣

≤ NQ − 2.

(H.33)

Then, we have a contradiction: 0 ≤ −2. Therefore, ε̂(b) = b.

103



Substituting ε̂(b) = b into (H.31), the search order πw is equal to

[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(NQ + 1),

δ̂(NQ), δ̂(NQ − 1), . . . , δ̂(b + 1), b, b − 1, . . . , 2
]

,

where a bijection δ̂ ∈ Υ(b + 1, NQ) is given by

δ̂(i) , ε̂(i), i = b + 1, b + 2, . . . , NQ.

That completes the inductive proof.

Lemma H.2 (Tail Reduction). For any NS, NQ, and b that satisfy 2 ≤ NQ ≤ NS − 2

and NQ ≤ b ≤ NS − 1, if the search order πw satisfies

v(s(πw, 1)) = v(s(πw, 2)) = · · · = v(s(πw, b)) = max
m∈S

v(m),

then the search order πw belongs to the set

πw ∈
{[

1, 2, . . . , b, ξ(b + 1), ξ(b + 2), . . . , ξ(NS)
]

,
[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(b + 1), b, b − 1, . . . , 3, 2
]}

for some bijections ξ, ξ̂ ∈ Υ(b + 1, NS).

Proof. Let NS and NQ such that 2 ≤ NQ ≤ NS − 2 be given. We prove the lemma by an

induction on b.

• Base case (b = NQ):

Let any search order πw such that

v(s(πw, 1)) = v(s(πw, 2)) = · · · = v(s(πw, NQ)) = max
m∈S

v(m),

be given. By Lemma H.1, the search order πw belongs to the set

πw ∈
{[

1, 2, . . . , NQ, ξ(NQ + 1), ξ(NQ + 2), . . . , ξ(NS)
]

,
[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(NQ + 1), NQ, NQ − 1, . . . , 3, 2
]}

,
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where ξ, ξ̂ ∈ Υ(NQ + 1, NS).

• Inductive step:

Assume the inductive hypothesis for the case of some b, NQ ≤ b ≤ NS − 2. Consider

the case of b + 1.

Let any search order πw such that

v(s(πw, 1)) = v(s(πw, 2)) = · · · = v(s(πw, b)) = max
m∈S

v(m) (H.34)

v(s(πw, b + 1)) = max
m∈S

v(m) (H.35)

be given.

The condition (H.34) and the inductive hypothesis imply that the search order πw

belongs to the set

πw ∈
{[

1, 2, . . . , b, ξ(b + 1), ξ(b + 2), . . . , ξ(NS)
]

,
[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(b + 1), b, . . . , 3, 2
]}

,

for some bijections ξ, ξ̂ ∈ Υ(b + 1, NS). Since NQ ≤ b, we have

0 ≤ b − NQ, and

2 ≤ b − (NQ − 2)

≤ b,

where the last inequality follows from 2 ≤ NQ. Because 2 ≤ (b − NQ + 2) ≤ b, the

condition

v(s(πw, b − NQ + 2)) = max
m∈S

v(m)

appears in (H.34). Thus, the states {b − NQ + 2, b − NQ + 3, . . . , . . . , b, b + 1} are

clustering in the flow diagram with the search order πw. Notice that the smallest

element of the clustering set is (b − NQ + 2) ≥ 2 and the largest element is b + 1.

If πw is equal to
[

1, 2, . . . , b, ξ(b + 1), ξ(b + 2), . . . , ξ(NS)
]

,
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we must have ξ(b + 1) = b + 1. On the other hand, if πw is of the form

[

1, ξ̂(NS), ξ̂(NS − 1), . . . , ξ̂(b + 1), b, . . . , 3, 2
]

,

we must have ξ̂(b + 1) = b + 1. Therefore, the search order belongs to the set

πw ∈
{[

1, 2, . . . , b, b + 1, δ(b + 2), δ(b + 3), . . . , δ(NS)
]

,
[

1, δ̂(NS), δ̂(NS − 1), . . . , δ̂(b + 2), b + 1, b, . . . , 3, 2
]}

,

in which

δ(i) , ξ(i), i = b + 2, b + 3, . . . , NS, and

δ̂(i) , ξ̂(i), i = b + 2, b + 3, . . . , NS.

Because ξ and ξ̂ are bijections, δ, δ̂ ∈ Υ(b + 2, NS) are also bijections.

That completes the inductive proof.
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Appendix I

Simplification of the Parameters τP

and τM

In this appendix, we simplify the expressions of τP and τM in equation (4.44).

Lemma I.1 (Simplification of τP). Let a positive integer n ≥ 1 be given. Let real numbers

t, ti, and pFi, for i = 1, 2, . . . , n, be given. Then,

n
∑

i=1

[

(

i−1
∏

j=1

pFj

)

· (1 − pFi) ·
i

∑

l=1

tl

]

+
n

∏

i=1

pFi ·
(

t +
n

∑

l=1

tl

)

=
n

∑

i=1

(

i−1
∏

j=1

pFj

)

· ti +
(

n
∏

i=1

pFi

)

· t.

Proof. We prove the lemma by an induction on n.

• Base case (n = 1):

Let real numbers t, t1, and pF1 be given. Then,

(1 − pF1)t1 + pF1(t1 + t) = t1 + pF1t.

• Inductive step:

Assume the inductive hypothesis for the case of n, for some n ≥ 1. Consider the case

of n + 1.
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Let real numbers t, ti, and pFi, for i = 1, 2, . . . , n + 1, be given. Then,

n+1
∑

i=1

[

(

i−1
∏

j=1

pFj

)

· (1 − pFi) ·
i

∑

l=1

tl

]

+
n+1
∏

i=1

pFi ·
(

t +
n+1
∑

l=1

tl

)

= (1 − pF1)t1

+ pF1·

{ n+1
∑

i=2

[

(

i−1
∏

j=2

pFj

)

· (1 − pFi) ·
(

t +
n+1
∑

l=1

tl

)

]

+
n+1
∏

i=2

pFi ·
(

t +
n+1
∑

l=1

tl

)

}

= (1 − pF1)t1

+ pF1 ·

{ n
∑

i=1

[

(

i−1
∏

j=1

ρj

)

· (1 − ρi) ·
i

∑

l=1

τl

]

+
n

∏

i=1

ρi ·
(

t +
n

∑

l=1

τl

)

}

,

(I.1)

in which

τi ,











t1 + t2 i = 1

ti+1 i = 2, 3, . . . , n

ρi , pFi+1, i = 1, 2, 3, . . . , n.

Applying the inductive hypothesis to the last step of (I.1), we have

Equation (I.1) = (1 − pF1)t1 + pF1 ·

[ n
∑

i=1

(

i−1
∏

j=1

ρj

)

· τi +
(

n
∏

i=1

ρi

)

· t

]

=
n+1
∑

i=1

(

i−1
∏

j=1

pFj

)

· ti +
(

n+1
∏

i=1

pFi

)

· t.

That completes the proof.

One immediate result from the last lemma is given in the next corollary.

Corollary I.1 (Simplification of τD). Let a positive integer n ≥ 1 be given. Let real
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numbers t, ti, and pDi, for i = 1, 2, . . . , n, be given. Then,

n
∑

i=1

[

(

i−1
∏

j=1

pDj

)

· (1 − pDi) ·
i

∑

l=1

tl

]

=
n

∑

i=1

(

i−1
∏

j=1

pDj

)

· ti −
n

∏

i=1

pDi ·
n

∑

l=1

tl.

Proof. Let a positive integer n ≥ 1 be given. Let real numbers t, ti, and pDi, for i =

1, 2, . . . , n, be given. Then,

n
∑

i=1

[

(

i−1
∏

j=1

pDj

)

· (1 − pDi) ·
i

∑

l=1

tl

]

=

{ n
∑

i=1

[

(

i−1
∏

j=1

pDj

)

· (1 − pDi) ·
i

∑

l=1

tl

]

+
n

∏

i=1

pDi ·
(

t +
n

∑

l=1

tl

)

}

−
n

∏

i=1

pDi ·
(

t +
n

∑

l=1

tl

)

(a)
=

[ n
∑

i=1

(

i−1
∏

j=1

pDj

)

· ti +
(

n
∏

i=1

pDi

)

· t

]

−
n

∏

i=1

pDi ·
(

t +
n

∑

l=1

tl

)

=
n

∑

i=1

(

i−1
∏

j=1

pDj

)

· ti −
n

∏

i=1

pDi ·
n

∑

l=1

tl.

The equality (a) follows from Lemma I.1. That completes the proof.
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Appendix J

Important Decreasing and

Increasing Functions

In Section 4.6, we consider a receiver that selects the optimal thresholds. To derive the

MATs in that section, we need to find the solution of the form

inf
pFi∈(0,1],
1≤i≤n

h(pF1, pF2, . . . , pFn) (J.1)

or

sup
pFi∈(0,1],
1≤i≤n

h(pF1, pF2, . . . , pFn). (J.2)

Here, n ≥ 1 is the number of statistical tests that the receiver employs, and h(·) is some

objective function that is defined on the space (0, 1]n.

Definition J.1 (Decreasing function). A function h : (0, 1]n → R is decreasing on (0, 1]n,

if for any (x1, x2, . . . , xn) ∈ (0, 1]n and (y1, y2, . . . , yn) ∈ (0, 1]n,

h(x1, x2, . . . , xn) ≥ h(y1, y2, . . . , yn)

whenever

xi ≤ yi, for all i = 1, 2, . . . , n.

Definition J.2 (Increasing function). A function h : (0, 1]n → R is increasing on (0, 1]n,
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if for any (x1, x2, . . . , xn) ∈ (0, 1]n and (y1, y2, . . . , yn) ∈ (0, 1]n,

h(x1, x2, . . . , xn) ≤ h(y1, y2, . . . , yn)

whenever

xi ≤ yi, for all i = 1, 2, . . . , n.

we have

Lemma J.1 (Increasing Sum). Let a positive integer n ≥ 1, non-negative real number

t ≥ 0, and non-negative real numbers ti ≥ 0, for i = 1, 2, . . . , n, be given. Let

hsum(x1, x2, . . . , xn) ,
n

∑

i=1

(

i−1
∏

j=1

xj

)

· ti +
(

n
∏

i=1

xi

)

· t (J.3)

be a function on (0, 1]n. Then,

1. function hsum(·) is increasing on (0, 1]n,

2. function hsum(·) is bounded from above and below,

3. inf(x1,x2,...,xn)∈(0,1]n hsum(x1, x2, . . . , xn) = t1, and

4. sup(x1,x2,...,xn)∈(0,1]n hsum(x1, x2, . . . , xn) = t +
∑n

i=1 ti.

Proof. Let any tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be given. Assume that

0 < xi ≤ yi ≤ 1, for all i = 1, 2, . . . , n.

Then, we have the relationships

0 ≤
(

n
∏

j=1

xj

)

· t ≤
(

n
∏

j=1

yj

)

· t ≤ t

and

0 ≤
(

i−1
∏

j=1

xj

)

· ti ≤
(

i−1
∏

j=1

yj

)

· ti ≤ ti,

in which the index i is in the range 1 ≤ i ≤ n. Adding the appropriate terms, we have the
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bounds

0 ≤
n

∑

i=1

(

i−1
∏

j=1

xj

)

· ti +
(

n
∏

j=1

xj

)

· t

≤
n

∑

i=1

(

i−1
∏

j=1

yj

)

· ti +
(

n
∏

j=1

yj

)

· t

≤
(

n
∑

i=1

ti

)

+ t,

which imply that

0 ≤ hsum(x1, x2, . . . , xn)

≤ hsum(y1, y2, . . . , yn)

≤
(

n
∑

i=1

ti

)

+ t

Therefore, function hsum(·) is increasing on (0, 1]n and bounded from above and below. As

a consequence, the infimum and supremum exist and equal

inf
(x1,x2,...,xn)∈(0,1]n

hsum(x1, x2, . . . , xn) = lim
x1→0+

lim
x2→0+

· · · lim
xn→0+

h(x1, x2, . . . , xn)

= t1

and

sup
(x1,x2,...,xn)∈(0,1]n

hsum(x1, x2, . . . , xn) = h(1, 1, . . . , 1)

=
(

∑

i=1

ti

)

+ t,

respectively. That completes the proof.

Lemma J.2 (Decreasing Ratio). Let positive integers n ≥ 1 and NQ ≥ 1 be given. Let

hrat(x1, x2, . . . , xn) ,
1 + (1 −

∏n
i=1 xi)

NQ

1 − (1 −
∏n

i=1 xi)NQ
. (J.4)

be a function on (0, 1]n. Then,

1. function hrat(·) is decreasing on (0, 1]n,
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2. function hrat(·) is bounded from below, and

3. inf(x1,x2,...,xn)∈(0,1]n hrat(x1, x2, . . . , xn) = 1.

Proof. Let any tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be given. Assume that

0 < xi ≤ yi ≤ 1, for all i = 1, 2, . . . , n.

For any i in the range 1 ≤ i ≤ n, we have the relationships

0 ≤
(

1 −
n

∏

i=1

yi

)NQ

≤
(

1 −
n

∏

i=1

xi

)NQ

< 1.

Since (1 + x)/(1 − x) is increasing on [0, 1), we have the bounds

1 ≤
1 + (1 −

∏n
i=1 yi)

NQ

1 − (1 −
∏n

i=1 yi)NQ
≤

1 + (1 −
∏n

i=1 xi)
NQ

1 − (1 −
∏n

i=1 xi)NQ
,

which imply that

1 ≤ hrat(y1, y2, . . . , yn) ≤ hrat(x1, x2, . . . , xn).

Therefore, function hrat(·) is decreasing on (0, 1]n and bounded from below. As a conse-

quence, the infimum exists and equals

inf
(x1,x2,...,xn)∈(0,1]n

hrat(x1, x2, . . . , xn) = hrat(1, 1, . . . , 1)

= 1.

That completes the proof.

Lemma J.3 (Decreasing Reciprocal). Let a positive integer n ≥ 1 and non-negative

real numbers ti ≥ 0, for i = 1, 2, . . . , n, be given. Let

hrec(x1, x2, . . . , xn) ,
n

∑

i=1

( ti
∏n

j=i xi

)

(J.5)

be a function on (0, 1]n. Then,

1. function hrec(·) is decreasing on (0, 1]n,

2. function hrec(·) is bounded from below, and
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3. inf(x1,x2,...,xn)∈(0,1]n hrec(x1, x2, . . . , xn) =
∑n

i=1 ti.

Proof. Let any tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be given. Assume that

0 < xi ≤ yi ≤ 1, for all i = 1, 2, . . . , n.

For any i in the range 1 ≤ i ≤ n, we have the relationships

ti ≤
ti

∏n
j=i yj

≤
ti

∏n
j=i xj

.

Summing over the index i, we have the bounds

n
∑

i=1

ti ≤
n

∑

i=1

( ti
∏n

j=i yi

)

≤
n

∑

i=1

( ti
∏n

j=i xi

)

,

which imply that

n
∑

i=1

ti ≤ hrec(y1, y2, . . . , yn) ≤ hrec(x1, x2, . . . , xn).

Therefore, function hrec(·) is decreasing on (0, 1]n and bounded from below. As a conse-

quence, the infimum exists and equals

inf
(x1,x2,...,xn)∈(0,1]n

hrec(x1, x2, . . . , xn) = hrec(1, 1, . . . , 1)

=
n

∑

i=1

ti.

That completes the proof.

Lemma J.4 (Infimum of g). Let positive integer n ≥ 1, positive integer NQ ≥ 1, positive

integer NS ≥ NQ, non-negative real number t ≥ 0, and non-negative real numbers ti ≥ 0,

for i = 1, 2, . . . , n, be given. Let

g(x1, x2, . . . , xn) ,
NS

NQ
·

n
∑

i=1

( tj
∏n

j=i xj

)

−
(NS − NQ

2NQ

)

·

[ n
∑

i=1

(

i−1
∏

j=1

xj

)

· ti +
(

n
∏

i=1

xi

)

· t

]

+
(NS − NQ

NQ

)

· t
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be a function on (0, 1]n. Then, the infimum is equal to

inf
(x1,x2,...,xn)∈(0,1]n

g(x1, x2, . . . , xn) =
( NS

NQ
− 1

)

·
( t +

∑n
l=1 tl

2

)

+

n
∑

i=1

ti.

Proof. We rewrite g(·) in terms of hsum(·) and hrec(·), which are respectively given in (J.3)

and (J.5):

g(x) =
( NS

NQ

)

· hrec(x) −
(NS − NQ

2NQ

)

· hsum(x) +
(NS − NQ

NQ

)

· t,

for x ∈ (0, 1]n. By Lemma J.1 and Lemma J.3, the functions −hsum(·) and hrec(·) are

decreasing on (0, 1]n and bounded from below. Therefore, g(·) is decreasing on (0, 1]n and

bounded from below. As a consequence, the infimum exists and equals

inf
x∈(0,1]n

g(x) = g(1, 1, . . . , 1)

=
( NS

NQ
− 1

)

·
( t +

∑n
l=1 tl

2

)

+
n

∑

i=1

ti.

That completes the proof.
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Appendix K

Bounds for the MAT of the CSS in

a Low SNR Regime

We consider in Subsection 4.6.4 the MAT of the multi-dwell detector, which employs the

CSS and operates in a low SNR environment. Equations (4.47) and (4.48) imply that the

MAT, which is optimized over all thresholds, is given by

inf
pFi∈(0,1],
1≤i≤n

f(pF1, pF2, . . . , pFn), (K.1)

where f(·) can be written in terms of the functions hsum(·) in (J.3), hrat(·) in (J.4), and

hrec(·) in (J.5):

f(x) =
(NS − NQ)2

2NS
· hrat(x) · hsum(x) +

(

2 −
NQ

NS

)

· hrec(x)

−
(NS − NQ

2NS

)

· hsum(x) +
(NS − NQ

NS

)

· t,

(K.2)

for x ∈ (0, 1]n. We want to find the infimum in (K.1).

The explicit closed-form expression of (K.1) is difficult to derive. A direct approach,

which sets the partial derivative of f(·) to zero,

∂

∂pFi
f(pF1, pF2, . . . , pFn) = 0,

and finds the global minimum (p∗F1, p
∗
F2, . . . , p

∗
Fn), will require a method for solving the

system of polynomial equations. Because the degrees of those polynomials depend on NQ,
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the explicit closed-form expression for (p∗F1, p
∗
F2, . . . , p

∗
Fn) is unknown in general. In this

appendix, we find an upper-bound and a lower-bound of the infimum in (K.1).

To avoid repetition in the statements of the lemmas, we state the following ranges for

n, NS, NQ, t1, t2, . . . , tn, and t:

n ≥ 1

NS ≥ NQ ≥ 1

ti ≥ 0, i = 1, 2, . . . , n

t ≥ 0.

In the next subsection, we derive a lower-bound.

K.1 A Lower-Bound

In this subsection, we find the lower-bound of the infimum in (K.1) by using the results

from Appendix J.

Lemma K.1 (Low-SNR-CSS Lower-Bound). The infimum is lower-bounded by

(NS − NQ)2

2NS
· t1 +

(NS − NQ

2NS

)

·
(

t +
n

∑

l=2

tl

)

≤ inf
x∈(0,1]n

f(x).

Proof. Clearly,

inf
x∈(0,1]n

f(x) ≥
(NS − NQ)2

2NS
· inf
x∈(0,1]n

hrat(x) · inf
x∈(0,1]n

hsum(x)

+
(

2 −
NQ

NS

)

· inf
x∈(0,1]n

hrec(x)

−
(NS − NQ

2NS

)

· sup
x∈(0,1]n

hsum(x)

+
(NS − NQ

NS

)

· t

(a)
=

(NS − NQ)2

2NS
· 1 · t1 +

(

2 −
NQ

NS

)

·
n

∑

l=1

tl

−
(NS − NQ

2NS

)

·
(

t +
n

∑

l=1

tl

)

+
(NS − NQ

NS

)

· t
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=
((NS − NQ)2

2NS
+

3NS − NQ

2NS

)

· t1

+
(3NS − NQ

2NS

)

·
n

∑

l=2

tl +
(NS − NQ

2NS

)

· t

≥
(NS − NQ)2

2NS
· t1 +

(NS − NQ

2NS

)

·
(

t +
n

∑

l=2

tl

)

.

The equality (a) follows from the infimums and supremum in Lemma J.1, Lemma J.2, and

Lemma J.3. That completes the proof.

K.2 An Upper-Bound

In this subsection, we find the upper-bound of the infimum in (K.1) by evaluating its

objective function f(·) at some feasible solution p , (p1, p2, . . . , pn) ∈ (0, 1]n. To derive a

reasonable upper-bound, we need to select intelligently the feasible solution p. In the next

lemma, we will investigate a property of function

c(x) , x −
x

31/x
, x ∈ [1,∞). (K.3)

Then, we will select one component of p to be proportional to c(NQ). The plot of c(x) is

shown in Fig. K-1.

Lemma K.2 (Almost-Constant Function). For all x ≥ 1, the function c(x) in (K.3)

is constrained in the range
2

3
≤ c(x) < ln 3.

Proof. First, we show that c(x) is strictly increasing on [1,∞) by considering the first

derivative of c(x):

c′(x) = 1 −
1

31/x
−

ln 3

x · 31/x
.

See Fig. K-2 for the plots of c′(x).

Since the second derivative

c′′(x) = −
(ln 3)2

x3 · 31/x

is negative for all x ∈ [1,∞), the function c′(x) is strictly decreasing on [1,∞).
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Figure K-1: For x ∈ [1,∞), the function c(x) , x − x/31/x is upper-bounded by ln 3.

The limit of c′(x) when x approaches infinity is zero:

lim
x→∞

c′(x) = 0. (K.4)

Condition (K.4), together with the fact that c′(x) is strictly decreasing on [1,∞), implies

that c′(x) > 0, for all x ∈ [1,∞). Therefore, c(x) is strictly increasing on [1,∞).

The limit of c(x), as x approaches infinity, is

lim
x→∞

c(x) = lim
x→∞

31/x − 1

x−1 · 31/x

(a)
= lim

x→∞

d
dx(31/x − 1)
d
dx(x−1 · 31/x)

= lim
x→∞

ln 3
ln 3
x + 1

= ln 3,

where the equality (a) follows from L’ Hôspital’s rule. The limit of c(x) and the strictly-
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Figure K-2: The derivative c′(x) is strictly decreasing on [1,∞).

increasing property of c(x) imply that

c(x) ≤ ln 3, for all x ∈ [1,∞). (K.5)

Because c(x) is strictly increasing, c(x) is lower-bounded by

2

3
≤ c(1) ≤ c(x).

That completes the proof.

We use the results in the last lemma to prove the upper-bound in the next lemma.

Lemma K.3 (Low-SNR-CSS Upper-Bound). The infimum is upper-bounded by

inf
x∈(0,1]n

f(x) ≤ (NS + 3NQ) · t1 +
( ln 3 · NS

NQ
+ 2

)

n
∑

l=2

tl +
( ln 3 · NS

NQ
+ 1

)

· t.
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Proof. Consider the tuple p , (p1, p2, . . . , pn), in which

p1 ,
c(NQ)

NQ
= 1 −

1

31/NQ

pi , 1, i = 2, 3, . . . , n.

Clearly, p ∈ [0, 1)n is a feasible solution. Therefore,

inf
x∈(0,1]n

f(x) ≤ f(p)

=
(NS − NQ)2

2NS
· hrat

(c(NQ)

NQ
, 1, 1, . . . , 1

)

· hsum

(c(NQ)

NQ
, 1, 1, . . . , 1

)

+
(

2 −
NQ

NS

)

· hrec

(c(NQ)

NQ
, 1, 1, . . . , 1

)

−
(NS − NQ

2NS

)

· hsum

(c(NQ)

NQ
, 1, 1, . . . , 1

)

+
(NS − NQ

NS

)

· t

=

[

(NS − NQ)2

NS
−

NS − NQ

2NS

]

·

[

t1 +
c(NQ)

NQ
·
(

t +
n

∑

l=2

tl

)

]

+
(

2 −
NQ

NS

)

·

(

NQt1
c(NQ)

+

n
∑

l=2

tl

)

+
(NS − NQ

NS

)

· t

(a)
< NS

[

t1 +
ln 3

NQ

(

t +

n
∑

l=2

tl

)

]

+ 2
(NQt1

2/3
+

n
∑

l=2

tl

)

+ t

= (NS + 3NQ) · t1 +
( ln 3 · NS

NQ
+ 2

)

n
∑

l=2

tl +
( ln 3 · NS

NQ
+ 1

)

· t.

The inequality (a) follows from the bound 2/3 ≤ c(NQ) < ln 3 in Lemma K.2 and the fact

that NS ≥ NQ. That completes the proof.
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