

Analyzing Multiple Product Development Projects Based
On Information and Resource Constraints

Ali Yassine+ & Tyson Browning*
+Massachusetts Institute of Technology

*Lockheed Martin Aeronautics Company

Abstract

Product development (PD) and engineering design processes are often characterized by the

information flowing among activities. In PD, this flow forms a complex activity web—a process

that can be viewed as a complex system. Most literature on the subject of information flow in

PD focuses on a single project, where precedence information constraints (based solely on

necessary information and possible assumptions) determine the execution sequence for the

activities and the resultant project lead-time. In this paper, we consider multiple PD projects that

share a common set of design resources. Especially in this setting, precedence information

availability is insufficient to assure that activities will execute on time. We extend the

information flow modeling literature by including resource availability. We model several PD

projects as a portfolio, where activity execution is based on both information and resource

availability. We demonstrate the effects of accounting for resource constraints on both

individual projects’ and portfolio lead-time distributions.

+ Corresponding author: MIT, CTPID, Rm. E40-253, Cambridge, MA. 02139. Tel. (617)258-7734, Fax (617)452-2265, E-mail:
yassine@mit.edu

02/08/01 2

1. Introduction

A fast product development (PD) process can provide a source of competitive advantage

[17, 23]. The speed of a PD process is largely influenced by how it is structured and managed.

However, managing PD projects has always been a challenge in the manufacturing industry due

to the unpredictable nature of engineering design, where design iterations are a pervasive

phenomenon. Successful project completion requires repetition and updating of many

development activities. Iteration influences PD cost and schedule immensely. Even though

particular iterations are not necessarily known with certainty prior to project execution, a skilled

manger (equipped with the right tools) can identify many potentially iterative development

activities and plan accordingly. Understanding the web of information flow in a project can help

identify potential iterations. Unfortunately, many PD managers fail to plan for iterations;

consequently, PD projects incur schedule and cost overruns [2, 5] - often forcing them ultimately

to sacrifice scope or to fail.

The PD process management problem is compounded when companies manage a

portfolio of PD projects at once. In a multi-project PD environment, organizations tend to

micromanage their PD portfolio [9, 11, 26]. That is, managers direct attention to one project at a

time and allocate resources accordingly, ignoring the interactions and interdependencies between

projects. Instead, scarce development resources should be managed from a PD system

perspective and allocated to maximize the value of the whole portfolio.

Researchers have suggested many models, tools, and techniques to help managers plan

and control PD projects more effectively [22]. One such tool is the Design Structure Matrix

(DSM), which provides a means of representing a complex system (such as a process) based on

its constituent elements (activities) and their relationships (information flow). DSM-based

methods show promising results in managing complex PD processes [10]. However, the DSM

02/08/01 3

literature focuses on a single project and the flow of information within. In the DSM

methodology, precedence constraints based on information dependencies determine the optimal

execution sequence for a set of activities. In this paper, we introduce an important, new

constraint, resources, into the DSM analysis. When we consider multiple, simultaneous

development projects within an organization (sharing a common set of design resources), the

availability of predecessor information is insufficient to assure that activities will be executed on

time. We address resource availability through a project portfolio plan that constrains activity

execution based on both information and resource availability.

This paper has two primary purposes. First, we demonstrate that a DSM model can

meaningfully represent both multiple PD projects and resource constraints. Second, based on

this extension, we develop a simulation model of multiple PD projects, which results in the

development of performance measures for each individual project and for the portfolio as a

whole.

Resource constraints force choices about which activities to support at a given time. To

make this decision, we define a preference function that determines the insertion points of

resource constraints in an aggregate DSM representing the entire portfolio of projects. The

preference function is used to simulate the mental decision-making process that resources (i.e.,

project participants or processors) go through when dealing with multiple projects, thereby

allowing us to simulate the execution of activities in a multi-tasking environment.

The simulation model presented in this paper provides organizations with an analytical

tool to analyze the impact of multi-tasking and resource allocation policies on project and

portfolio lead times. This will ultimately assist organizations in the development of better multi-

tasking and resource allocation policies.

02/08/01 4

The paper is organized as follows. Section 2 surveys the literature for existing single and

multi-project modeling and management techniques, and Section 3 reviews the DSM

methodology. In Section 4, we introduce several modeling constructs that are essential for the

building the multi-project model. Section 5 describes how the model is simulated, and Section 6

provides an example with simulation results and sensitivity analysis of some important model

parameters. Finally, Section 7 summarizes and concludes the paper.

2. Literature review

A review of project management literature in general, and PD management in particular,

reveals the existence of numerous models addressing both single and multiple projects. Perhaps

the most visited problem is the well-known resource-constrained-project-scheduling problem

(RCPSP) resulting in many exact solutions (all based on a 0-1 integer linear programming

formulation) and numerous heuristic procedures. Brucker et al. [6] provide a recent,

comprehensive review. A natural extension to the RCPSP deals with multiple projects [13]. The

major deficiency of the RCPSP formulations in dealing with PD management problems is their

inability to address feedback loops that result in the rework of some activities.1 This literature

differs from our paper in a major way. While RCPSP techniques seek to optimize the scheduling

of activities based on generic precedence and resource constraints, we are evaluating project lead

times using predetermined and fixed project architectures and schedules based on a fuller

characterization of information flow.

Other researchers suggest the use of queuing networks [20], Petri nets [14], or stochastic

dynamic programming [3] to capture the stochastic nature of information flows in PD processes

1 Methods such as GERT (Graphical Evaluation and Review Technique) addressed this deficiency by accounting for uncertainties
in the sequence of activities in the project (Neumann, 1990). However, GERT charts provide poor visualization of the full
information flow in a design process and do not account for multiple projects.

02/08/01 5

and build corresponding simulation models. For instance, Adler et al. [1] analyze an activity

network allowing for reentrant queues (to model rework) using a discrete event simulation. The

simulation allowed them to identify bottleneck activities and several other process

characteristics. Our paper is closely related to this research stream, but contrary to these models

that assume stochastic arrivals of activities, instead we assume, at the outset of the simulation,

that the number of projects and activities are planned; uncertainty is only found in rework

occurrence and activity duration.

Simulation of PD projects has also been used in computational, micro-contingency

organization theory by Levitt et al. [15]. This research relates to our work even though we focus

on project management and Levitt’s research focuses on organizational design. Levitt’s research

employs simulation techniques to understand and predict the effects of alternative organization

and work process designs on project performance in complex organizations. In order to simulate

a project in an organizational setting, Levitt and his research team define a set of attributes that

describe the project activities, the project participants, communication between participants, and

the organizational structure. Similarly, our simulation employs attributes for activities, projects,

and personal preferences to build the processor preference function. We are interested in

understanding how the preference dynamics of PD participants involved in multiple projects

influences PD performance.

Another related research stream is multi-criteria methods for project selection [4], usually

in R&D environments [16, 24]. These techniques utilize a set of measures to evaluate each

project within a portfolio and then calculate a weighted utility measure for each. This allows the

prioritization of the projects. However, this approach utilizes little if any information about the

efficiency of each project’s PD process architecture. In this paper, we utilize a similar technique

to build a preference function that determines resource priorities at each time step of the

02/08/01 6

simulation, thus combining these multi-criteria techniques with information flow simulation

techniques.

Finally, our model relates to the critical chain methodology developed by Goldratt [11].

Goldratt established a set of generic rules to improve multi-project performance that include, in

addition to buffer management, avoidance of resource multitasking. He conjectured that

resource multitasking results in lead time increase due to the lack of clear priority, but he did not

show how to measure these priorities in order to eliminate possible resource confusion. In this

paper, we explicitly account for different priorities in a multitasking environment.

3. The Design Structure Matrix (DSM) Model

DSM-based models have been used to represent the technical relationships between

design activities in complex PD projects. The simplest DSM model of a design project is a

binary, square matrix with n rows and columns, and m non-zero elements, where n is the number

of activities and m is the number of dependencies between the activities. Activity names are

listed down the left side of the matrix as row headings and across the top as column headings in

the same order. If activity i depends on activity j, then the value of element ij (row i, column j) is

unity (or marked with a “n”). Otherwise, the value of the element is zero (or left empty). In the

binary matrix representation, the diagonal elements of the matrix do not have any interpretation

in describing the project, so they are usually either left empty or blacked out. Sample DSMs are

shown in Figure 1. In this convention, subdiagonal elements in the DSM represent feed-forward

information flows among the activities and superdiagonal elements represent feedbacks.2

Feedback information flow captures much of the iteration and rework potential in a design

project.

2 Some DSMs use the opposite convention—showing feedback below the diagonal—which conveys equivalent information.

02/08/01 7

The DSM model can be used to determine an improved sequence for the design activities

[10]. Reordering the activities within the DSM can eliminate or reduce the number and impact

of feedback loops in the project. Partitioning3 is the process of resequencing the DSM rows and

columns such that the new DSM arrangement contains minimal feedback marks—i.e., towards

lower-triangular form. For complex engineering projects, it is highly unlikely that mere row and

column manipulation will achieve a complete lower-triangular form. Therefore, the analyst’s

objective changes from eliminating the feedback marks to moving them as close as possible to

the diagonal (this form of the matrix is known as block triangular). In doing so, fewer activities

will be involved in iteration cycles, resulting in a faster and more predictable development

process. Figure 1b shows the result of partitioning the DSM in Figure 1a.

The partitioned DSM (Figure 1b) shows the existence of three iterative blocks (the

highlighted squares along the diagonal): A-E-J, B-H-I, and D-G. The activities included in a

block are coupled and are candidates for iteration. For example, consider the execution of the

activities within block (B-H-I) and assume that all activities prior to activity B are completed.

Activity B requires inputs from activities C and A (already completed) and activity I, which is

not completed yet. Therefore, activity B starts with missing information (perhaps making a

guess on the value required from activity I). Once activity B is completed, it delivers its output

information to both activities H and I. When activity I finishes its original work, it delivers its

output information back to activity B (as represented by the feedback mark in the block). At this

point, activity B reevaluates its earlier results in light of the new information received; thus,

activity B might or might not need to perform another iteration (some rework). If iteration is

performed by activity B, then we refer to it as first-order rework. Due to the coupled nature of

the block, second-order rework is also possible. That is, if activity B, which feeds activities H

3 Also referred to as block diagonalization or block triangularization of the DSM.

02/08/01 8

and I, is reworked, then there is a chance that either activity H, activity I, or both will also need

to be repeated. This is called second-order rework. If activity I is reworked, then the iterative

process, described above, might be repeated several times, resulting in higher-order rework.

Several extensions to the base DSM model have been proposed to include more

information in the matrix (e.g., [5, 7, 28]). Reviewing all of these extensions is outside the scope

of this paper. However, one such extension directly related to this paper is a method to perform

Monte Carlo simulation on the DSM [28]. The DSM simulation model characterizes the design

process as being composed of activities that depend on each other for information. Changes in

that information cause rework. As discussed earlier, rework in one activity can cause a chain

reaction through supposedly finished and in-progress activities. Activity rework is a function of

rework risk, which combines the probability of a change in inputs and the impact this change

might have on the dependent activities. The impact measure used in the simulation represents

the fraction of the original work (i.e., activity duration) that needs to be repeated or reworked.

Both probabilities and impacts are numbers between 0 and 1 and they replace the marks in the

binary DSM. Thus, the simulation model is represented by two identical DSMs, one containing

probabilities of information change and the other containing the impacts of change. In the

probability DSM, the superdiagonal marks are replaced by first-order rework probabilities, and

the lower-diagonal marks are replaced by second-order rework probabilities. The simulation

also accounts for stochastic activity duration by using three point estimates (optimistic, most

likely, and pessimistic) to form a triangle distribution. In this paper, we utilize a similar

simulation; however, we expand the simulation into multiple projects and include the impact of

resource constraints.

02/08/01 9

4. A Framework for Multi-Project Simulation

This section discusses three modeling constructs employed: aggregate DSMs, project

queues, and processor preference functions.

4.1 The Multi-Project DSM Model

In this subsection, we discuss the extension of the single-project DSM to include multiple

projects and resource constraints. We refer to the multi-project DSM as the aggregate DSM.

Building the aggregate DSM is best illustrated through a simple example. Consider three

development projects occurring simultaneously (projects 1, 2, and 3) and involving four

development resources/processors (A, B, C, and D), as shown in the top part of Figure 2.

Processor A is assigned to all projects as depicted in the Figure by A1, A2, and A3. Processor B

is assigned to projects 1 and 2 as depicted in the Figure by B1 and B2. The same representation

holds for processors C and D.

The aggregate DSM, shown in the lower part of Figure 2, combines the DSMs for each

project. The square marks (“n”) inside the aggregate DSM represent information constraints,

while the diamond marks (“v”) represent resource constraints. Note that the diamond marks

shown in the figure represent only one possible resource constraint profile. The arrangement

shown assumes that activities in project 1 are preferred to activities in project 2, and activities in

project 2 are preferred to activities in project 3. For example, the diamond mark in row 5 and

column 1 conveys that A2 depends on A1 finish for its execution. Inserting this mark in row 1

column 5, instead, would reverse the resource dependency. In general, if a processor is assigned

to p projects, then there are (p!) possible priority profiles for that processor.

The aggregate DSM provides managers of multiple projects a simple snapshot of the

whole development portfolio, allowing them to clearly see and trace information dependencies

02/08/01 10

within projects and across multiple projects, while explicitly accounting for resource contention.4

Partitioning the aggregate DSM reveals an improved information flow and clear resource

prioritization across the whole PD portfolio as compared to independently partitioning the

individual project DSMs.

4.2 Project Queues

Each processor can be involved in multiple activities (from the same or different

projects), but they can only work on one project’s activity at any given moment. The list of

activities from different projects is called the project queue for a processor. We will refer to each

processor’s project queue as Qi, where i is the processor index. At any time, t, Qi(t) consists of

two mutually exclusive and collectively exhaustive partitions: Ai(t) and Ii(t).

The processor’s active queue, Ai(t), contains a subset of Qi(t) that is readily available for

work (based on predecessor information availability only) at time t. The processor must choose

one of these activities to work on. The inactive queue, Ii(t), contains all other activities. Recall

that coupled activities are those activities involved in an iterative block. A work policy is used to

allocate coupled activities to either Ai(t) or Ii(t) based on how the activities are sequenced in the

DSM (the process architecture determined by partitioning). The first activities in the coupled

block make assumptions about the later activities’ inputs and are assigned to Ai(t).

4 In this paper we assume no information dependencies (only resource constraints) between projects, but the aggregate DSM can
accommodate such dependencies by allowing the insertion of a combination of square and diamond marks outside the individual
projects blocks.

02/08/01 11

4.3 The Preference Function

If a processor is assigned to two projects and it can perform work on either one, at a

given instant in time, the choice is made based on a preference function that includes activity,

project, and processor characteristics. The preference function addresses the following concerns:

a. When faced with a choice, which activity (in which project) should a processor work on?

b. What is the impact of the above decision on PD time?

The preference function (or priority profile) ranks the activities in processors’ active

queues, so that the activity with the highest priority is selected to work on. Preference or priority

is a function of activity, project, and processor attributes. The attribute hierarchy is shown in the

tree of Figure 3. Determining how to weight the attributes requires conducting interviews with

the processors involved in the different projects to solicit their mental value model they use when

determining activity priorities. For an extensive explanation of the method we used for building

the attribute hierarchy and selecting convenient attribute measures, the reader is referred to

Keeney’s book on value focused thinking [12]. Our preference function consists of a weighted

combination of the eight attributes listed and discussed in Table 1.

Each branch, i, in the attribute hierarchy (Figure 3) has a weight, ki, and a utility or

preference value, Ui, which is a function of the attribute level, xi. The utility functions or curves

used are shown in Figure 5. To arrive at an overall preference index for each activity, we use a

weighted sum: U(x1, …., xn) = ∑
=

n

i
iii xUk

1

)(. Each utility curve is defined over [0,1], and all of

the weights are positive and sum to one, so the overall preference index is also defined over

[0,1]. Once a preference index is calculated for each activity in a processor’s active queue, the

activity with the highest preference index is preferred.

02/08/01 12

Assessing the weight and utility curve for each attribute requires interviews with the

different processors. There are numerous assessment techniques suggested in the decision

analysis literature. Discussing all such techniques is outside the scope of this paper; however,

the interested reader is referred to [8]. The simplest technique is the direct assessment technique,

where participants are asked to score each attribute on a scale (say from 0 to 100). Then, these

scores are normalized through dividing each attribute’s score by the sum of all scores. A more

sophisticated assessment can be employed using the AHP method of pair-wise comparisons [27].

Table 2 provides the attribute weights directly assessed by conducting a set of structured

interviews with PD project managers from a chemical products manufacturing firm.5 The single

attribute utility functions shown in Figure 5 were assessed during the same interview process

using the mid-level splitting method [8].6

It is worth noting that we have run our simulations using one set of attribute weights and

the same utility curves for all the processors because we recommend conducting interviews for

their assessment in a group environment. This will eliminate any biases in the assessment

process and achieve group consensus on the attribute weights and the shape of the utility curves.

Alternatively, the model can easily be modified to allow for different weights and utility curves

for each processor; however, multiple one-on-one interviews will be required instead of the

group assessments.

5 The authors gratefully acknowledge the help of Brad Boersen, an SDM Masters student at MIT, in conducting the interviews for
determining the set of relevant attributes, assessing the attributes’ weights, and soliciting the shapes of the single utility functions.
6 Initally, it might be more practical to use linear utility functions (after assessing the end points) instead of expending effort
during an interview to solicit non-linear ones. After performing the first round of simulations and conducting some sensitivity
analysis to determine if lead times are highly sensitive to the shape of the utility functions, then it will be worth going back to the
participants to reassess their utility functions. Otherwise, linear utility functions may suffice.

02/08/01 13

4.4 Model Assumptions

a. Each project is important to somebody (no consensus on the most important project to work

on), so processors must choose which activities to work on based on various criteria.

b. There is a one-to-one correspondence between activities and processors.

c. Projects are independent except for resource constraints (i.e., all marks in the aggregate

DSM, outside of the individual project blocks, represent resource constraints).

d. Initially, switching costs / penalties are not considered. However, we later remove this

assumption by accounting for switching penalties when a processor begins working on a new

activity.

5. Simulating the Model

The simulation is implemented in a spreadsheet model using Excel Visual Basic macro

programming.7 All input information (i.e. project data and the corresponding activity details) is

entered into the Excel spreadsheet. Then, the simulation starts by executing the simulation

macros. The results of the simulation are displayed as a set of lead-time distributions for each

project and for the whole portfolio.

In our simulation, project execution is guided by a specific work policy. We use a simple

work policy that requires all predecessor activities to be completed before an activity is eligible

to begin work. However, coupled activities can begin work without inputs from downstream

activities within their block (by making assumptions about the nature of those inputs). Prior to

the beginning of the simulation, the aggregate DSM is partitioned in order to the minimal set of

coupled activities.8 Then, a nominal duration for each activity is randomly sampled from its

7 The multi-project DSM simulation program can be downloaded from <http://web.mit.edu/dsm/Tutorial/Multiple-DSMs.htm>
8 We use the partitioning algorithm described in Warfield (1973).

02/08/01 14

triangular distribution.9 These sampled durations are saved in a temporary vector for later use

within a single simulation run.

Once the DSM is partitioned and nominal activity durations are sampled, the simulation

proceeds through increments of time, ∆t.10 At each time step, the simulation must (a) determine

which activities are worked on (b) record the amount of work accomplished, and (c) check for

possible rework. Determining which activities can be worked requires two steps:

a. Determine which activities are eligible to do work based only on information constraints.

Activities that have work to do and for which all predecessor activities are completed (i.e.,

for which all upstream input information is available) are eligible.

b. Assign eligible activities to their processors, thereby determining each processor’s active

queue. If any processor has more than one activity in their active queue, then the preference

algorithm is invoked to select the activity the processor will address in the current time step.

This step essentially entails temporarily inserting additional marks into the DSM that

represent processors’ preferences for eligible activities.

Each processor’s active queue is redetermined at each time step. If it is empty, then the

processor is idle. If it contains a single activity, then the processor works on that activity. If the

active queue contains more than one activity, then the preference function is invoked to

determine which activity the processor will work on. At each time step, the simulation deducts a

fraction of “work to be done” from each working activity. Finally, at the end of each time step,

the simulation macro notes all activities that have just finished (nominal duration or rework). The

macro performs another check to determine the coupled ones by inspecting the partitioned

aggregate DSM. For each one of these finished and coupled activities, a probabilistic call is

9 The triangular distribution for each activity duration is represented by the minimum, likely, and maximum duration values in
the input spreadsheet

02/08/01 15

made to determine whether this activity will trigger rework for other coupled activities within its

block. If rework is triggered, then the amount of rework is determined from the impact DSM and

added to the “work to be done” on the impacted activity.

A simulation run provides a simulated duration for each project in the portfolio, and for

the portfolio as a whole. The simulation is run many times (e.g., 1000 times) to provide a

distribution of duration outcomes. A pictorial flowchart for the above algorithm is shown in

Figure 6.

6. Example

In this section we illustrate the application of the simulation model. This example

consists of three PD projects (numbered 1, 2, and 3) sharing eight development resources (named

A through H). The aggregate DSMs showing information dependencies, feedback probabilities,

and rework impacts are shown in Figure 7. The three-point duration estimates for each activity

and its deadline are shown in Table 3. Table 4 contains project-related input data such as project

type, deadline, budget, and cost of delay.

6.1 Simulation Results

The simulation output is represented by a series of lead-time distributions as shown in

Figure 8.11 The first chart (Figure 8a) represents the development time distribution for the whole

PD portfolio. The other three charts (Figures 8b, 8c, and 8d) represent lead-time distributions for

the individual projects. The solid curves represent time distributions when resource constraints

are not accounted for—i.e., assuming unlimited resources. The dashed curves, however,

10 A discrete event simulation was considered (and could provide a superior approach) but would be more difficult to implement
in a spreadsheet without substantial additional coding and/or third party software. The simple, time-advancing simulation
suffices to demonstrate the insights of the model.

02/08/01 16

represent time distributions when activities compete for resources and priorities are assigned to

them based on the eight attributes discussed earlier. The shift form the solid curves to the dashed

curves represents the strength of resource contention and the degree of error in information flow

models that do not account for resource contention. For example, inspecting Figure 8d shows

that project 3 was minimally impacted by the resource constraints as compared to projects 1 and

2. Similarly, inspecting Figure 8b reveals that project 1 was the most impacted. The means and

standard deviations for all distributions are shown in Table 5.

6.2 Sensitivity Analysis

Sensitivity analysis can be performed on any of the model parameters including activity

duration, probabilities of feedback, and rework impacts. In this paper, however, we restrict the

sensitivity analyses to those parameters that directly relate to the preference attributes and

resource constraints. See [5] for additional sensitivity analyses.

6.2.1 Project Versus Activity Priority Rules

In this scenario, we simulated the example problem using only the project attributes in

the preference function (i.e., all attributes within the project category were equally weighted,

while activity and processor attributes were set to zero). Then, we reversed this scenario by

considering only activity attributes in the preference function. The results of both simulations are

shown in Figure 9a. The figure does not show a major difference between the scenarios. Testing

did not show any significant statistical difference between both means and variances.

11 Simulation used 1000 runs with ∆t = 1.

02/08/01 17

6.2.2 Faster Versus Slower Rework Policy

In a similar fashion, the model was modified to shed light on whether processors should

react to design changes faster or slower (i.e., rework schedule) and its impact on development

lead times. This was accomplished by assigning a relatively high weight to the “rework risk”

attribute (other attributes were scaled back) and then running the simulation with two different

utility shapes: increasing and decreasing utility functions. That is, at each time step (and for all

processors), if there is rework to be done, then it will be a priority to work on. The reverse

scenario implements a work policy that prohibits processors from doing rework on any activity

unless they have no other work to do. The results of both simulations are shown in Figure 9b.

The figure shows that if faster rework policy is implemented in this development environment,

then a more predictable development process will be achieved (dashed curve has a relatively

smaller variance compared to the solid curve).

6.2.3 Effect of Adding Resources

To assess the impact of adding an extra processor of a specific type (i.e., of type A, B, or

C, etc.) on portfolio and projects’ lead times, we simulated the portfolio eight times. Each of

these eight simulations assumes that there are two processors of a certain type.12 We increase the

capacity of the processors one at a time, while keeping the capacity of the rest of the processors

at their nominal values (i.e., one processor of each type). For the processor that has a capacity of

two, when faced with a choice to work on more than one activity, it works on the one with the

highest priority and the second processor is called upon to perform work on the activity with the

second highest priority.13

12 The number of processors available for each type is entered by the user as part of the simulation inputs.
13 It is worth noting that if the processor with a capacity of two has only one activity to work on at a certain time, then having two
processors available to work on the same activity does not reduce the duration of that activity. Only one processor does the work
required.

02/08/01 18

Figure 10 shows the results of the eight different simulations compared to the base case

(one processor of each type). The figure shows that the addition of an extra processor (of any

type) does not really benefit the project portfolio in general (i.e., reduce mean lead-time). In this

example, at the portfolio level, no one single processor is significantly responsible for the delay

due to multi-tasking.14 Similarly, at the project level, projects 1 and 3 would not benefit from

such an increase in resources.15 However, project 2 benefits from adding a second processor of

type B (significant reduction in project 2 lead time as marked by the ellipse in the figure).

6.3 Including Switching Costs

Switching between activities typically causes a period of reduced productivity as the

processor begins the new activity. We account for this phenomenon by allowing a percentage of

the new activity’s duration to proceed at 50% efficiency. This percentage (10% for the

example)16 is converted into a number of time steps in which the reduction of the activity’s

remaining work is only reduced by half its normal amount.

Including the 10% switching penalty resulted in the distributions shown in Figure 11.

Contrary to expectation, the lead-time distribution was not shifted to the right due to switching

cost penalty. Instead, the two distributions (i.e. “without switching penalty” and “with

switching”) overlap. The reason for this is due to the fact that none of the activities were

preempted during execution and that there was a consistent priority for each activity at every

time step of the simulation. Therefore, in this graph, the magnitude of a shift can be viewed as a

measure for the amount of preemption that occurred during the execution of the projects.

14 Of course, this is only true in the case of this example problem, not for any project portfolio.
15 No statistically significant difference was detected in the means of projects 1 or 3 under the eight different resource
configurations.
16 This percentage is set by the user as part of the simulation inputs.

02/08/01 19

7. Summary and Conclusion

This paper discusses an extension to information flow modeling to analyze the

performance of multiple PD projects sharing a common set of development resources. We utilize

a set of activity, project, and personal attributes in order to prioritize executable activities. This

preference function is imbedded in a DSM simulation model to build lead-time distributions for

the project portfolio and the individual projects.

Some of the model limitations, which could be overcome by possible extensions, are as

follows. First, the model assumes that all the projects and their activities are known prior to

running the simulation. In some organizations, their PD portfolio evolves dynamically over time

and projects are continuously added to and deleted from the portfolio. This situation could be

accounted for by revisiting the model at whenever such an event occurs. In fact, the model could

help with the analysis of the impacts of such events. Second, projects within the same portfolio

might be interdependent through more than shared resources. That is, the success or failure of,

or rework in, one project might influence other projects. Our model assumes that projects are

only interdependent through shared resources. However, additional dependencies could also be

included. Another extension can address PD performance issues resulting from placing a ceiling

on the number of projects a processor can be involved in at any point in time. Furthermore, our

model does not currently explore overlapping of dependent activities or other alternative work

policies. However, the work policy we use could be modified. Finally, the sensitivity of

development lead time to changes in attributes’ weights could be assessed in more details by

designing a full-blown factorial experiment (where each attribute is treated as a factor) and

running the simulation for the different factor configurations [18].

In conclusion, the main advantage of the methodology presented in this paper over other

traditional multi-project techniques is it allows users to simulate a wide range of possible

02/08/01 20

scenarios in a multi-project environment. These scenarios can include all, or a subset, of the

following: (a) feedback structure and process architecture within individual projects, (b) the use

of partitioning to arrive at an improved information flow, (c) limited resources shared among

multiple projects, (d) project switching penalties or costs, and (e) different preference profiles for

activity executions. All of the above features are implemented in a user-friendly, Excel-based

environment allowing users to interact with the simulation, adjust its parameters, and perform

sensitivity analysis in a very simple manner.

02/08/01 21

References

[1] P. Adler, A. Mandelbaum, V. Nguyen, and E. Schwerer, "From Project to Process
 Management: Empirically-Based Framework for Analyzing Product Development Time,"
 Management Science, Vol. 41, No. 3, pp. 458-483, March 1995.

[2] H. Bashir and V. Thomson, “Metrics for Design Projects: A Review,” Design Studies, Vol
 20, No 3, pp. 263-277, May 1999.

[3] U. Belhe and A. Kusiak, “Dynamic Scheduling of Design Activities with
 Resource Constraints,” IEEE Transactions on Systems, Man, and Cybernetics – Part A:
 Systems and Humans, Vol. 27, No. 1, January 1997, pp. 105-111.

[4] J. Brad, “Using Multicriteria Methods in Early Stages of New Product Development,”
 Journal of Operational Research Society, Vol. 41, No. 8, pp. 755-766, 1990.

[5] T. Browning and S. Eppinger, "A Model for Development Project Cost and Schedule
 Planning," M.I.T. Sloan School of Management, Cambridge, MA, Working Paper
 no. 4050, November 1998.

[6] P. Brucker, A. Drexl, R. Mohring and K. Neumann, “Resource Constrained Project
 Scheduling: Notation, Classification, Models, and Methods,” European Journal of
 Operational Research, Vol. 112, pp. 3-41, 1999.

[7] M. Carrascosa, S. Eppinger and D. Whitney, “Using the Design Structure
 Matrix to Estimate Product Development Time,” Proceedings of the ASME Design
 Engineering Technical Conferences, Sep. 1998, Atlanta, Georgia, USA.

[8] R. Clemen, Making Hard Decisions: An Introduction to Decision Analysis. Duxbury
 Press, New York, 1996.

[9] M. Cusumano and K. Nobeoka, Thinking Beyond Lean. Free Press, 1998.

[10] S. Eppinger, D. Whitney, R. Smith and D. Gebala, "A Model-Based Method for Organizing
 Tasks in Product Development," Research in Engineering Design, Vol. 6, No. 1, pp. 1-13,
 1994.

[11] E. Goldratt, Critical Chain. The North River Press, Great Barrington, MA., 1997.

[12] R. Keeney. Value Focused Thinking. Harvard University Press, Cambridge, MA, 1992.

[13] R. Kolisch. Project Scheduling under Resource Constraints. Physica-Verlag, 1995.

[14] A. Kumar and L. Ganesh, “Use of Petri Nets for Resource Allocation in Projects,”
 IEEE Transactions in Engineering Management, Vol. 45, No. 1, Feb 1998, pp. 49-56.

02/08/01 22

[15] R. Levitt, J. Thomsen, T. Christiansen, J. Kunz, Y. Jin, and C. Nass, “Simulating Project
 Work Processes and Organizations: Toward a Micro-Contingency Theory of Organizational
 Design,” Management Science, Vol. 45, No. 11, November 1999, pp. 1479-1495.

[16] M. Liberatore, “An Extension of the Analytic Hierarchy Process for Industrial R&D
 Project Selection and Resource Allocation,” IEEE Transactions on Engineering
 Management, Vol. EM-34, No. 1, pp. 12-18, Feb. 1987.

[17] M. Meyer and J. Utterback, “Product Development Time and Commercial Success,” IEEE
 Transactions on Engineering Management, Vol 42, No 4, pp. 297-304, Nov 1995.

[18] D. Montgomery. Design and Analysis of Experiments. New York: John Wiley &
 Sons, 1996.

[19] K. Neumann, Stochastic Project Networks: Temporal Analysis, Scheduling and Cost
 Minimization. Berlin: Springer-Verlag, 1990.

[20] D. Reinertsen. Managing the Design Factory: A Product Developer's Toolkit. Free Press,
 1997.

[21] Smith, Preston and Reinertsen, Donald, Developing Products in Half the Time. New
 York, NY: ITP, 1995.

[22] R. Smith and J. Morrow, "Product Development Process Modeling," Design
 Studies, Vol. 20, pp. 237-261, 1999.

[23] G. Stalk, “Time – The Next Source of Competitive Advantage,” Harvard Business Review,
 Vol 66, No 4, pp. 41-51, July/Aug 1988.

[24] T. Stewart, “A Multi-Criteria Decision Support System for R&D Project Selection,”
 Journal of Operational Research Society, Vol. 42, No. 1, pp. 17-26, 1991.

[25] J. Warfield, "Binary Matrices in System Modeling," IEEE Transactions on Systems,
 Man, and Cybernetics, vol. 3, pp. 441-449, 1973.

[26] S. Wheelwright and K. Clark, "Creating Project Plans to Focus Product Development,"
 Harvard Bus. Rev., Mar-Apr 1992.

[27] W. Winston, Operations Research: Applications and Algorithms. Wadsworth
 Publishing, 1997.

[28] A. Yassine, D. Falkenburg and K. Chelst, “Engineering Design Management: an
 Information Structure Approach,” International Journal of Production Research, vol. 37,
 no. 13, 1999.

02/08/01 23

 A B C D E F G H I J
 A A n n n
B n B n n
C C
D D n n n
E n E n
F n n n n F n
G n G n
H n n H n
I n n n I
J n n J

 C A E J B H I D G F
C C
A n A n n
E n E n
J n n J
B n n B n
H n n n H
I n n n I
D n n D n
G n n G
F n n n n n F

(a) Original DSM (b) Partitioned DSM

Figure 1: DSM Example

Figure 2: DSM Representation of Three Projects and Their Aggregate DSM

Project 1 Project 2 Project 3
A1 B1 C1D1 A2 B2 D2 A3 D3

A1 n A2 n A3 n
B1 n B2 n D3 n
C1 n n D2 n
D1 n n

Aggregate DSM
1 2 3 4 5 6 7 8 9

A1 1 n
B1 2 n
C1 3 n n
D1 4 n n
A2 5 v n
B2 6 v n
D2 7 v n
A3 8 v v n
D3 9 v v n

02/08/01 24

Activity
Deadline

Finished Remaining

Case A

t

t

Case B

Case C

Figure 4: Schedule Pressure Calculation

Overall Preference
Function

Activity
Characteristics

Project
Characteristics

Personal
Characteristics

of dependent
activities

Nearness to
completion

Rework
Expectations

Delay Cost

Project Type

Emotional
factors Perceived

Pressure

Figure 3: Attribute Hierarchy Tree

Relative
Duration

02/08/01 25

0

0.2

0.4

0.6

0.8

1

Rework Risk

(a) Rework Risk

0

0.2

0.4

0.6

0.8

1

6 5 4 3 2 1 0

Dependent Tasks

(b) Number of dependent activities

0

0.2

0.4

0.6

0.8

1

% Work Remaining

(c) Nearness to completion

0

0.2

0.4

0.6

0.8

1

R e l a t i v e D u r a t i o n

(d) Relative duration

0

0.2

0.4

0.6

0.8

1

60 50 40 30 20 10 0

Cost of Delay

(e) Cost of project delay

0

0.2

0.4

0.6

0.8

1

3 2 1

Project Type

(f) Project type

0

0.2

0.4

0.6

0.8

1

20% 10% 0%

% Schedule Overrun (Projected)

(g) Schedule pressure

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Random number

U
til

ity

(h) Personal / Random factors

Figure 5: Utility Curves Used in the Simulation

02/08/01 26

Multiple DSMs

Projects/Activities

A1(t)

Active Queues

Rank Ordering

Attribute 1 Attribute 2 Attribute n

P.D. Performance

Figure 6: The Simulation Model

Schedules Activities

TIME

PROJECT Done

No

Yes

Increment
Simulation
Clock

A2(t)

Aggregate DSM

Partition DSM

……..

Check for unfinished
activities

Sample Activity Durations

02/08/01 27

A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 F2 D2 H2 B3 D3 A3 C3 G3 H3
A1 .2

B1 .5

C1 .7

D1 .9 .4 .3

E1
F1 .6

G1 .5 .5

H1 .9 .6 .8 .8

A2 .1

B2 .4 .4

C2 .5

F2 .9 .7

D2 .5 .6

H2 .4 .3 .7

B3 .3 .2 .3

D3 .5 .4

A3
C3 .7 .8

G3 .8 .8 .9

H3 .8 .9
(a) Rework probabilities

A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 F2 D2 H2 B3 D3 A3 C3 G3 H3
A1 .9

B1 .5

C1 .5

D1 .9 .5 .4

E1
F1 .9

G1 .5 .4

H1 .8 .5 .8 .9

A2 .4

B2 .4 .5

C2 .5

F2 .9 .7

D2 .5 .6

H2 1.0 .6 .7

B3 .4 .4 .2

D3 .2 .6

A3
C3 .7 .5

G3 .9 .6 .5

H3 1.0 .7
(a) Rework Impacts

Figure 7: Aggregate DSMs for Example Problem

02/08/01 28

0
50

100
150
200
250
300
350
400
450

47 55 63 71 79 87 95 10
3

11
2

12
0

12
8

Duration (days)

F
re

q
u

e
n

c
y

(a) Lead time distributions for the overall project
portfolio: with and without resource constraints

0

50

100

150

200

250

300

350

400

45 50 55 61 66 71 76 81 87 92 97

Duration (days)

F
re

q
u

en
cy

(b) Lead time distributions for Project 1: with
and without resource constraints

0

50

100

150

200

250

300

350

33 40 48 55 63 70 78 85 93 10
0

10
8

Duration (days)

F
re

q
u

en
cy

(c) Lead time distributions for Project 2

0

100

200

300

400

500

600

700

33 44 55 66 77 88 98 109 120

Duration (days)

F
re

q
u

en
cy

 (d) Lead time distributions for Project 3

Figure 8: Simulation Results

0

50

100

150

200

250

300

47 55 63 71 79 87 95 10
3

11
2

12
0

Duration (days)

F
re

q
u

e
n

c
y

(a) Project versus Activity Attributes

0

50

100

150

200

250

300

47 55 63 71 79 87 95 10
3

11
2

12
0

Duration (days)

F
re

q
u

e
n

c
y

(b) Slower versus faster rework

Figure 9: Scenario Analysis

Resource
Constrained

No Resource
Constrains

Resource
Constrained

Project
attributes
only

Activity
attributes
only

Faster
rework

Slower
rework

No Resource
Constrains

02/08/01 29

Figure 10: Sensitivity of Lead Time to Resource Addition

(“2A” denotes the availability of two processors of type “A”

and one processor of each of the other remaining types)

0
50

100
150
200
250
300
350

47 55 63 71 79 87 95 10
3

11
2

12
0

12
8

Duration (days)

F
re

q
u

en
cy

Figure 11: Including Switching Penalties

Without Switching
Penalty

With Switching
Penalty

0

10

20

30

40

50

60

70

80

Base 2A 2B 2C 2D 2E 2F 2G 2H

Portfolio Proj1 Proj2 Proj3

Lead-time (days) Decrease in Project 2 lead-time

02/08/01 30

Table 1: The Eight Attributes Used in Developing the Preference Function

Activity

Attributes

1. Expectations for activity rework (Rework Risk). People’s choice of whether or not to work on an

activity can be influenced by their knowledge of the likelihood of that activity to change or be

reworked later. What is the point of working on something that is likely to have to be changed?

Prior to running the simulation, a “rework risk” is estimated for each activity based on the

likelihood and the impact of changes in the activity’s inputs. The estimate combines the impacts

of both first- and second-order rework. First-order rework is caused by changes in inputs from

downstream activities and is the sum of the product of rework probability and rework impact for

all such inputs. Second-order rework is caused by changes in inputs from upstream activities

which themselves have some risk of first-order rework. Second-order rework is the sum of the

product of rework probability and rework impact for all such inputs, where each such product is

further multiplied by the upstream activity’s estimated rework risk. For examp le, if the first

activity in a DSM has two feedback inputs (P(rework) = .3 and .5; Impact(rework) = .3 and .4),

then Risk(rework) = 1 - [1 – (..3)(.3)][1 – (.5)(.4)] = .27. Then, say activity two has no inputs

from downstream activities, but it depends on activity one (P(rework) = .1; Impact(rework) = 1).

In this case, the rework risk for activity two stems only from second-order rework: Risk(rework)

= (.1)(1)(.27) = .027. Higher-order rework possibilities are usually small and are not included in

the estimate (a realistic assumption in practice).

 2. Number of dependent activities. People are more likely to work on activities upon which a large

number of other people depend. The number of marks in each column of the binary DSM is

counted to determine the number of dependent activities.

 3. Nearness to completion. This attribute is a function of the amount of work remaining for the

activity. It assumes that people would rather finish nearly complete activities than begin new

activities17 [14].

 4. Relative duration. This attribute assumes that shorter activities will be preferred to longer ones.

Prior to running the simulation (but after a random sample has been obtained for each activity’s

duration), the relative duration of each processor’s activities is determined. Each processor’s

17 The attribute can also be set to reflect the reverse situation.

02/08/01 31

activities are classified as either the shortest or the longest duration activity for that processor, or

else in-between. (This attribute can also be set to prefer longer activities.)

Project

Attributes

5. Cost of project delay [21]. A cost of delay is supplied for each project as an input to the

simulation. Activities in projects with higher costs of delay are given greater priority.

 6. Project type. Project type is also given for each project as an input to the simulation. We

classify project type based on project visibility and/or priority—which is either “high,”

“medium/normal,” or “low.”

 7. Schedule pressure. As a project falls behind schedule, pressure builds to finish its activities.

Each project and each activity within it have scheduled completion times or deadlines, which are

provided as inputs to the simulation. Project schedule pressure is the sum of the schedule

pressure contributions of all of its activities. The schedule pressure contribution of each activity

is calculated depending on which of three cases it falls into, as shown in Figure 4. In Case A, the

activity is running ahead of schedule, and it makes no contribution to its project’s schedule

pressure. In Case B, the activity has not yet missed its deadline, but it is projected to do so. In

this case, the schedule pressure contribution is proportional to the amount of projected overrun.

In Case C, the activity has already missed its deadline. The entire, remaining portion of the

activity contributes to the schedule pressure, along with the amount by which the activity is

running behind its deadline. The schedule pressure contributions of all activities in a project are

summed to arrive at a number, which is normalized against the deadline to arrive at a percentage

of anticipated schedule overrun. As this percentage grows, schedule pressure increases. Thus,

delinquent activities with early deadlines contribute much more to schedule pressure than

activities with later deadlines.

Processor

Attribute

8. Personal and interpersonal factors. It is impossible to represent the comprehensive set of

factors that influence a processor’s choice of projects and activities. Therefore, we utilize a

random factor to represent other influences, including personal and interpersonal (and even

irrational) factors. The random factor can represent personality, risk propensity or averseness,

interpersonal relationships—really anything not attributable to the other attributes.

02/08/01 32

Attribute Name Weight
1. Rework Expectation 0.20
2. Number of Dependencies 0.06
3. Nearness to completion 0.17
4. Relative Duration 0.07
5. Project delay cost 0.16
6. Project Type 0.16
7. Schedule pressure 0.16
8. Emotional factors 0.02

 Table 2: Attribute Weights

 Duration (days)
Activity
Name Min. Likely Max.

Activity
Deadlines

A1 5 10 15 10
B1 3 5 7 15
C1 6 7 8 22
D1 15 17 20 32
E1 6 7 8 7
F1 3 4 5 19
G1 5 7 10 29
H1 10 11 12 40
A2 5 8 10 8
B2 3 5 7 13
C2 10 13 15 26
F2 2 4 6 30
D2 8 10 14 40
H2 4 6 8 46
B3 6 7 8 7
D3 10 12 15 19
A3 8 12 15 12
C3 4 6 9 25
G3 10 10 12 35
H3 8 10 13 45

Table 3: Activity Data

Project
Number

Project
Type

Deadline

Budget Cost of Delay
($k/day)

1 3 = Low visibility 40 80 50
2 2 = Normal 46 50 40
3 2 = Normal 45 40 50

Table 4: Project Data

02/08/01 33

Without
Resource

Constraints
(Unconstrained)

With Resource
Constraints &

Considering all
Attributes

Considering all
Attributes & 10%

Switching
Penalty

Mean 60.29 76.94 76.55
95% CI* 2.65 3.51 3.60

Portfolio

Std. Dev. 17.62 17.71 17.22

Mean 52.86 70.79 72.17
95% CI* 0.49 10.18 0.45

Project 1

Std. Dev. 2.26 2.23 2.27

Mean 46.86 57.61 58.96

95% CI* 3.30 2.45 3.09

Project 2

Std. Dev. 15.48 11.52 14.26

Mean 54.04 64.76 63.32
95% CI* 3.16 3.04 3.97

Project 3

Std. Dev. 14.57 19.11 19.65

Table 5: Simulation Results and Comparison of Means
*(95% Confidence Interval around the mean based on 100 observations/simulation)

