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Abstract

Product devdopment (PD) and engineering design processes are often characterized by the
information flowing among activities. In PD, this flow forms a complex activity web—a process
that can be viewed as a complex sysem. Mog literature on the subject of information flow in
PD focuses on a sngle project, where precedence information condraints (based solely on
necessary information and possble assumptions) determine the execution sequence for the
activities and the resultant project lead-time. In this paper, we consder multiple PD projects that
share a common set of desgn resources. Especidly in this setting, precedence information
avalability is inaufficent to assure that activities will execute on time We extend the
information flow modeing literature by incduding resource avalability. We modd severd PD
projects as a portfolio, where activity execution is based on both information and resource
avalability. We demondgrate the effects of accounting for resource condraints on both

individud projects and portfolio lead-time ditributions.
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1. Introduction

A fast product development (PD) process can provide a source of competitive advantage
[17, 23]. The speed of a PD process is largely influenced by how it is structured and managed.
However, managing PD projects has dways been a chdlenge in the manufacturing indusry due
to the unpredictable nature of engineering dedgn, where dedgn iterations ae a pervasve
phenomenon. Successful  project completion requires repetition and updating of many
development activities.  Iteration influences PD cost and schedule immensdy.  Even though
particular iterations are not necessarily known with certainty prior to project execution, a skilled
manger (equipped with the right tools) can identify many potentidly iterative development
activities and plan accordingly. Understanding the web of information flow in a project can help
identify potentia iterations.  Unfortunately, many PD managers fall to plan for iteraions,
consequently, PD projects incur schedule and cost overruns [2, 5] - often forcing them ultimatdy
to sacrifice scope or to fall.

The PD process management problem is compounded when companies manage a
portfolio of PD projects a once. In a multi-project PD environment, organizations tend to
micromanage their PD portfolio [9, 11, 26]. That is, managers direct attention to one project a a
time and dlocate resources accordingly, ignoring the interactions and interdependencies between
projects.  Instead, scarce development resources should be managed from a PD system
perspective and alocated to maximize the vaue of the whole portfolio.

Researchers have suggested many models, tools, and techniques to help managers plan
and control PD projects more effectively [22]. One such tool is the Design Structure Matrix
(DSM), which provides a means of representing a complex system (such as a process) based on
its condituent dements (ectivities) and their reationships (information flow). DSM-based

methods show promising results in managing complex PD processes [10]. However, the DSM
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literature focuses on a dngle project and the flow of information within. In the DSM
methodology, precedence condraints based on information dependencies determine the optima
execution sequence for a set of activities.  In this paper, we introduce an important, new
condrant, resources, into the DSM andyss. ~ When we condder multiple, sSmultaneous
development projects within an organization (sharing a common set of desgn resources), the
avalability of predecessor information is insufficient to assure that activities will be executed on
time. We address resource availability through a project portfolio plan that condrains activity
execution based on both information and resource availability.

This paper has two primary purposes. Fird, we demondrate that a DSM modd can
meaningfully represent both multiple PD projects and resource condraints. Second, based on
this extenson, we devdop a smulation modd of multiple PD projects, which results in the
development of performance measures for each individua project and for the portfolio as a
whole.

Resource condraints force choices about which activities to support a a given time. To
make this decison, we define a preference function that determines the insertion points of
resource congdraints in an aggregate DSM representing the entire portfolio of projects. The
preference function is used to Smulate the mental decison-making process that resources (i.e,
project participants or processors) go through when deding with multiple projects, thereby
alowing usto smulate the execution of activitiesin a multi-tasking environment.

The smulation modd presented in this paper provides organizations with an anaytica
tool to andyze the impact of multi-tasking and resource dlocation policies on project and
portfolio lead times. This will ultimaidy assst organizetions in the development of better multi-

tasking and resource dlocation policies.
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The paper is organized as follows. Section 2 surveys the literature for exiging single and
multi-project  modding and management techniques, and Section 3 reviews the DSM
methodology. In Section 4, we introduce severd modding congructs that are essentid for the
building the multi-project model. Section 5 describes how the model is smulated, and Section 6
provides an example with smulation results and sengtivity andyss of some important mode

parameters. Finaly, Section 7 summarizes and concludes the paper.

2. Literaturereview

A review of project management literature in generd, and PD management in particular,
reveds the exisence of numerous models addressing both single and multiple projects. Perhaps
the most vidgted problem is the wel-known resource-congtrained-project-scheduling problem
(RCPSP) reaulting in many exact solutions (dl based on a 0-1 integer linear programming
formulation) and numerous heurisic procedures.  Brucker et al. [6] provide a recent,
comprehensve review. A natural extenson to the RCPSP deds with multiple projects [13]. The
mgor deficiency of the RCPSP formulations in deding with PD management problems is ther
inability to address feedback loops that result in the rework of some activities® This literature
differs from our paper in a mgor way. While RCPSP techniques seek to optimize the scheduling
of ativities based on generic precedence and resource condraints, we are evauating project lead
times usng predetermined and fixed project architectures and schedules based on a fuller
characterization of information flow.

Other researchers suggest the use of queuing networks [20], Petri nets [14], or Sochastic

dynamic programming [3] to capture the stochastic nature of information flows in PD processes

! Methods such as GERT (Graphical Evaluation and Review Technique) addressed this deficiency by accounting for uncertainties
in the sequence of activities in the project (Neumann, 1990). However, GERT charts provide poor visudization of the full
information flow in adesign process and do not account for multiple projects.
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and build corresponding smulation modds.  For indance, Adler et al. [1] andyze an activity
network allowing for reentrant queues (to modd rework) usng a discrete event smulation.  The
amulation dlowed them to identify bottleneck activiies and severd other process
characteristics.  Our paper is closdy related to this research stream, but contrary to these modds
that assume stochadtic arivas of activities, indtead we assume, a the outset of the simulation,
that the number of projects and activities are planned; uncertainty is only found in rework
occurrence and activity duration.

Smulaion of PD projects has dso been used in computationa, micro-contingency
organization theory by Levitt et al. [15]. This research relates to our work even though we focus
on project management and Levitt's research focuses on organizational design. Levitt's research
employs smulation techniques to understand and predict the effects of dternative organization
and work process designs on project performance in complex organizations. In order to smulate
a project in an organizationd setting, Levitt and his research team define a set of attributes that
describe the project activities, the project participants, communication between participants, and
the organizationd dructure.  Similarly, our Smulation employs aitributes for activities, projects,
and persona preferences to build the processor preference function. We are interested in
understanding how the preference dynamics of PD paticipants involved in multiple projects
influences PD performance.

Another related research stream is multi-criteria methods for project sdection [4], usualy
in R&D environments [16, 24]. These techniques utilize a st of measures to evduate each
project within a portfolio and then caculaie a weighted utility measure for each. This dlows the
prioritiztion of the projects. However, this approach utilizes little if any information about the
efficiency of each project's PD process architecture. In this paper, we utilize a smilar technique

to build a preference function that determines resource priorities a each time sep of the
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smulation, thus combining these multi-criteria techniques with information flow smulation
techniques.

Findly, our modd relates to the criticd chan methodology developed by Goldratt [11].
Goldratt established a set of generic rules to improve multi-project performance tha include, in
addition to buffer management, avoidance of resource multitasking. He conjectured that
resource multitasking results in leed time increase due to the lack of clear priority, but he did not
show how to messure these priorities in order to eiminate possble resource confuson. In this

paper, we explicitly account for different priorities in amultitasking environment.

3. The Design Structure Matrix (DSM) Model

DSM-based models have been used to represent the technica rdationships between
design activities in complex PD projects The smples DSM modd of a desgn project is a
binary, square matrix with n rows and columns, and m non-zero eements, where n is the number
of activities and m is the number of dependencies between the activities. Activity names are
listed down the left Sde of the matrix as row headings and across the top as column headings in
the same order. If activity i depends on activity |, then the vaue of dement ij (row i, column j) is
unity ©r marked with a ‘®”). Otherwise, the vaue of the dement is zero (or left empty). In the
binary matrix representation, the diagond dements of the matrix do not have any interpretation
in describing the project, so they are usudly either left empty or blacked out. Sample DSMs are
shown in Figure 1. In this convention, subdiagond eements in the DSV represent feed-forward
information flows among the activiies and superdiagond dements represent feedbacks?
Feedback information flow captures much of the iteration and rework potentid in a desgn

project.

2 Some DSM s use the opposite convention—showing feedback below the diagonal—which conveys equivalent information.
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The DSM modd can be used to determine an improved sequence for the design activities
[10]. Reordering the activities within the DSM can diminate or reduce the number and impact
of feedback loops in the project.  Partitioning® is the process of resequencing the DSM rows and
columns such that the new DSM arangement contains minima feedback marks—i.e., towards
lower-triangular form.  For complex engineering projects, it is highly unlikely that mere row and
column manipulation will achieve a complete lower-triangular form.  Therefore, the andyd’'s
objective changes from diminating the feedback marks to moving them as close as possble to
the diagond (this form of the matrix is known as block triangular). In doing so, fewer activities
will be involved in iteration cycles, resulting in a faster and more predictable development
process. Figure 1b showsthe result of partitioning the DSM in Figure 1a

The partitioned DSM (Figure 1b) shows the exigence of three iterative blocks (the
highlighted squares dong the diagond): A-E-J, B-H-I, and D-G. The activities included in a
block are coupled and are candidates for iteration. For example, consder the execution of the
activities within block (B-H-1) and assume that dl activities prior to activity B are completed.
Activity B requires inputs from activities C and A (dready completed) and activity I, which is
not completed yet. Therefore, activity B gSats with missng information (perhaps meking a
guess on the vaue required from activity 1). Once activity B is completed, it deivers its output
information to both activities H and I.  When activity | finishes its origind work, it ddivers its
output information back to activity B (as represented by the feedback mark in the block). At this
point, activity B reevduates its earlier results in light of the new information received; thus,
activity B might or might not need to peform another iteration (some rework). If iteration is
performed by activity B, then we refer to it as firg-order rework. Due to the coupled nature of

the block, second-order rework is dso possble That is if activity B, which feeds activities H

3 Also referred to as block diagonalization or block triangularization of the DSM.
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and |, is reworked, then there is a chance that ether activity H, activity |, or both will aso need
to be repested. This is caled second-order rework. If activity | is reworked, then the iterative
process, described above, might be repeated severd times, resulting in higher-order rework.

Severd extensons to the base DSM model have been proposed to include more
information in the matrix (eg., [5, 7, 28]). Reviewing al of these extensons is outsde the scope
of this paper. However, one such extension directly related to this paper is a method to perform
Monte Carlo smulation on the DSM [28]. The DSM smulation mode characterizes the design
process as being composed of activities that depend on each other for information. Changes in
that information cause rework. As discussed earlier, rework in one activity can cause a chan
reaction through supposedly finished and in-progress activities. Activity rework is a function of
rework risk, which combines the probability of a change in inputs and the impact this change
might have on the dependent activities The impact messure used in the Smulation represents
the fraction of the origina work (i.e, activity duration) that needs to be repeated or reworked.
Both probabilities and impacts are numbers between 0 and 1 and they replace the marks in the
binary DSM. Thus, the smulaiion modd is represented by two identicdl DSMs, one containing
probabilities of information change and the other containing the impacts of change. In the
probability DSM, the superdiagond marks are replaced by firs-order rework probabilities, and
the lower-diagond marks are replaced by second-order rework probabilitiess The smulation
adso accounts for sochadtic activity duration by using three point estimates (optimistic, most
likdy, and pessmidic) to form a triangle digribution. In this paper, we utilize a smilar
amulation; however, we expand the smulation into multiple projects and include the impact of

resource constraints.
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4. A Framework for Multi-Project Simulation

This section discusses three modding congtructs employed:  aggregate DSMS, project

gueues, and processor preference functions.

4.1 TheMulti-Project DSM M odel

In this subsection, we discuss the extenson of the single-project DSM to include multiple
projects and resource condraints. We refer to the multi-project DSM as the aggregate DSM.
Building the aggregate DSM is best illudrated through a smple example  Consider three
development projects occurring sSmultaneoudy (projects 1, 2, and 3) and involving four
development resources/processors (A, B, C, and D), as shown in the top pat of Figure 2.
Processor A is assigned to al projects as depicted in the Figure by Al, A2, and A3. Processor B
is assigned to projects 1 and 2 as depicted in the Figure by B1 and B2. The same representation
holds for processors C and D.

The aggregate DSM, shown in the lower part of Figure 2, combines the DSMs for each
project. The sguare marks (“W”) indde the aggregate DSM represent information condraints,
while the diamond marks (“++”) represent resource congraints. Note that the diamond marks
shown in the figure represent only one possible resource condraint profile.  The arrangement
shown assumes that activities in project 1 are preferred to activities in project 2, and activities in
project 2 are preferred to activities in project 3. For example, the diamond mark in row 5 and
column 1 conveys tha A2 depends on Al finish for its execution. Insarting this mark in row 1
column 5, ingtead, would reverse the resource dependency. In generd, if a processor is assigned
to p projects, then there are (p!) possible priority profiles for that processor.

The aggregate DSM provides managers of multiple projects a smple sngpshot of the

whole development portfolio, dlowing them to clearly see and trace information dependencies
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within projects and across multiple projects, while explicitly accounting for resource contention.”
Patitioning the aggregate DSM reveds an improved informaion flow and clear resource
prioritizetion across the whole PD portfolio as compared to independently partitioning the

individud project DSMs.

4.2 Project Queues

Each processor can be involved in multiple activities (from the same or different
projects), but they can only work on one project’s activity a any given moment. The list of
activities from different projects is caled the project queue for a processor. We will refer to each
processor’s project queue as Q, where i is the processor index. At any time, t, Q(t) consgts of
two mutudly exclusve and callectively exhaudtive partitions: A;(t) and I;(t).

The processor’s active queue, Ai(t), contains a subset of Qi(t) thet is readily avalable for
work (based on predecessor information availability only) a time t. The processor must choose
one of these activities to work on. The inactive queue, Ii(t), contains al other activities Recdl
that coupled activities are those activities involved in an iterative block. A work policy is used to
dlocate coupled activities to ether Ai(t) or Ii(t) based on how the activities are sequenced in the
DSM (the process architecture determined by partitioning). The firg activities in the coupled

block make assumptions about the later activities inputs and are assigned to A;(t).

4 In this paper we assume no information dependencies (only resource constraints) between projects, but the aggregate DSM can
accommodate such dependencies by allowing the insertion of a combination of square and diamond marks outside the individual
projects blocks.
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4.3 The Preference Function

If a processor is assigned to two projects and it can perform work on either one, a a
given ingant in time, the choice is made based on a preference function that includes activity,
project, and processor characteristics. The preference function addresses the following concerns.

a. When faced with a choice, which activity (in which project) should a processor work on?
b. What istheimpact of the above decison on PD time?

The preference function (or priority profile) ranks the activities in processors active
queues, S0 tha the activity with the highest priority is sdected to work on. Preference or priority
is a function of activity, project, and processor etributes. The attribute hierarchy is shown in the
tree of Fgure 3. Determining how to weight the atributes requires conducting interviews with
the processors involved in the different projects to solicit their mentad vaue modd they use when
determining activity priorities. For an extensve explandion of the method we used for building
the attribute hierarchy and sdecting convenient attribute measures, the reader is referred to
Keeney’s book on vaue focused thinking [12]. Our preference function conssts of a weighted
combination of the eight attributes listed and discussed in Table 1.

Each branch, i, in the atribute hierarchy (Figure 3) has a weight, ki, and a utility or
preference value, U;, which is a function of the atribute levd, x;. The utility functions or curves

used are shown in Figure 5. To arive a an overdl preference index for each activity, we use a

weighted sum: U(Xq, ..., Xn) = & kU, (x). Each utility curve is defined over [0,1], and all of

i=1
the weights are podtive and sum to one, s0 the overdl preference index is dso defined over
[0,1]. Once a preference index is calculated for each activity in a processor's active queue, the

activity with the highest preference index is preferred.
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Asessing the weght and utility curve for each dtribute requires interviews with the
different processors. There are numerous assessment techniques suggested in the decison
andysis literature.  Discussng al such techniques is outsde the scope of this paper; however,
the interested reader is referred to [8]. The smplest technique is the direct assessment technique,
where participants are asked to score each attribute on a scae (say from O to 100). Then, these
scores are hormalized through dividing each attribute's score by the sum of al scores. A more
sophisticated assessment can be employed using the AHP method of pair-wise comparisons [27].
Table 2 provides the attribute weights directly assessed by conducting a set of dructured
interviews with PD project managers from a chemica products manufacturing firm.> The single
atribute utility functions shown in Figure 5 were assessed during the same interview process
using the mid-level splitting method [8].°

It is worth noting that we have run our Smulations usng one set of atribute weights and
the same utility curves for al the processors because we recommend conducting interviews for
their assessment in a group environment.  This will diminate any biases in the assessment
process and achieve group consensus on the attribute weights and the shgpe of the utility curves.
Alternatively, the modd can easly be modified to dlow for different weights and utility curves
for each processor; however, multiple one-on-one interviews will be required insdead of the

group assessments.

® The authors gratefully acknowledge the help of Brad Boersen, an SDM Masters student at MIT, in conducting the interviews for
determining the set of relevant attributes, ng the attributes’ weights, and soliciting the shapes of the single utility functions.
8 Initally, it might be more practical to use linear utility functions (after assessing the end points) instead of expending effort
during an interview to solicit non-linear ones. After performing the first round of simulations and conducting some sensitivity
analysisto determine if lead times are highly sensitive to the shape of the utility functions, then it will be worth going back to the
participants to reassess their utility functions. Otherwise, linear utility functions may suffice.
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4.4 Modd Assumptions

a. Each project is important to somebody (no consensus on the most important project to work
0n), so processors must choose which activities to work on based on various criteria

b. Thereisaone-to-one correspondence between activities and processors.

c. Projects are independent except for resource condraints (i.e, al marks in the aggregate
DSM, outside of the individud project blocks, represent resource congraints).

d. Initidly, switching costs / pendties are not consdered. However, we later remove this
assumption by accounting for switching pendties when a processor begins working on a new

activity.

5. Simulating the M odel

The dmulaion is implemented in a goreadsheet model usng Excd Visud Basc macro
progranming.”  All input information (i.e. project data and the corresponding activity details) is
entered into the Excd greadshest.  Then, the smulaion dats by executing the smulation
macros. The results of the smulation are displayed as a set of lead-time didributions for each
project and for the whole portfalio.

In our smulation, project execution is guided by a specific work policy. We use a smple
work policy that requires al predecessor activities to be completed before an activity is digible
to begin work. However, coupled activities can begin work without inputs from downstream
activities within their block (by making assumptions about the nature of those inputs). Prior to
the beginning of the smulation, the aggregate DSM is patitioned in order to the minima set of

coupled activities® Then, a nomind duration for esch adtivity is randomly sampled from its

" The multi-project DSM simulation program can be downloaded from <http://web.mit.edu/dsm/Tutorial /M ultiple-DSMs.htm>
8 We use the partitioning algorithm described in Warfield (1973).
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triangular distribution.’  These sampled durations are saved in a temporary vector for later use

within asngle smulation run.

Once the DSM is patitioned and nomind activity duraions are sampled, the smulation
proceeds through increments of time, Dt.'° At esch time step, the Smulation must (a) determine
which activities are worked on (b) record the amount of work accomplished, and (c) check for
possible rework. Determining which activities can be worked requires two steps.

a. Determine which activities are digible to do work based only on information condraints.
Activities that have work to do and for which al predecessor activities are completed (i.e,
for which dl upstream input information is available) are digible.

b. Asign digble adtivities to their processors, thereby determining each processor's active
queue. If any processor has more than one activity in ther active queue, then the preference
dgorithm is invoked to sdect the activity the processor will address in the current time step.
This dep essentidly entaills temporarily inserting additiond marks into the DSM  tha
represent processors preferences for eigible activities.

Each processor's active queue is redetermined at each time step.  If it is empty, then the
processor is dle. If it contains a dangle activity, then the processor works on that activity. If the
active queue contains more than one activity, then the preference function is invoked to
determine which activity the processor will work on. At each time step, the smulation deducts a
fraction of “work to be done’ from each working activity. Findly, a the end of each time step,
the amulation macro notes dl activities that have just finished (nomina dureation or rework). The
macro performs another check to determine the coupled ones by inspecting the partitioned

aggregate DSM. For each one of these finished and coupled activities, a probabiligic cdl is

% The triangular distribution for each activity duration is represented by the minimum, likely, and maximum duration values in
the input spreadsheet
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made to determine whether this activity will trigger rework for other coupled activities within its
block. If rework is triggered, then the amount of rework is determined from the impact DSM and
added to the “work to be done” on the impacted activity.

A dmulation run provides a smulated duration for each project in the portfolio, and for
the portfolio as a whole  The smulation is run many times (eg., 1000 times) to provide a
digribution of duration outcomes. A pictorid flowchat for the above dgorithm is shown in

Figure 6.

6. Example

In this section we illusrate the application of the Smulation modd. This example
consists of three PD projects (numbered 1, 2, and 3) sharing eight development resources (named
A through H). The aggregate DSMs showing information dependencies, feedback probabilities,
and rework impacts are shown in Figure 7. The three-point duration estimates for esch activity
and its deadline are shown in Table 3. Table 4 contains project-related input data such as project

type, deadline, budget, and cost of delay.

6.1 Smulation Results

The smulation output is represented by a series of lead-time digributions as shown in
Figure 81 The first chart (Figure 8a) represents the development time distribution for the whole
PD portfolio. The other three charts (Figures 8b, 8c, and 8d) represent lead-time digtributions for
the individud projects. The solid curves represent time distributions when resource congraints

are not accounted for—i.e, assuming unlimited resources. The dashed curves, however,

10 A discrete event simulation was considered (and could provide a superior approach) but would be more difficult to implement
in a spreadsheet without substantial additional coding and/or third party software. The simple, time-advancing simulation
suffices to demonstrate the insights of the model.

02/08/01 15



represent time digtributions when activities compete for resources and priorities are assgned to
them based on the eght attributes discussed earlier.  The shift form the solid curves to the dashed
curves represents the strength of resource contention and the degree of error in information flow
modes that do not account for resource contention. For example, ingpecting Figure 8d shows
that project 3 was minimally impacted by the resource congraints as compared to projects 1 and
2. Smilarly, inspecting Figure 8b revedls that project 1 was the most impacted. The means and

sandard deviations for al distributions are shown in Table 5.

6.2 Sendtivity Analysis

Sengtivity andyss can be peformed on any of the modd parameters including activity
duration, probabilities of feedback, and rework impacts. In this paper, however, we regtrict the
sengtivity andyses to those parameters that directly relate to the preference atributes and

resource condraints. See [5] for additiona sengtivity anadyses.

6.2.1 Project VersusActivity Priority Rules

In this scenario, we smulated the example problem using only the project atributesin
the preference function (i.e., dl attributes within the project category were equally weighted,
while activity and processor attributes were set to zero). Then, we reversed this scenario by
conddering only activity attributesin the preference function. The results of both smulations are
shown in Figure 9a. The figure does not show amgor difference between the scenarios. Testing

did not show any sgnificant gatistica difference between both means and variances.

1 Simulation used 1000 runs with Dt = 1.
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6.2.2 Faster Versus Slower Rework Policy

Inasmilar fashion, the modd was modified to shed light on whether processors should
react to desgn changes faster or dower (i.e., rework schedule) and itsimpact on development
lead times. This was accomplished by assgning ardatively high weight to the “rework risk”
attribute (other attributes were scaed back) and then running the simulation with two different
utility shapes: increasing and decreasing utility functions. That is, at each time step (and for dl
processors), if there isrework to be done, then it will be a priority to work on. The reverse
scenario implements awork policy that prohibits processors from doing rework on any activity
unless they have no other work to do. The results of both smulations are shown in Figure 9b.
The figure shows that if faster rework policy isimplemented in this development environment,
then amore predictable development process will be achieved (dashed curve has ardatively

smaller variance compared to the solid curve).

6.2.3 Effect of Adding Resources

To assess the impact of adding an extra processor of a specific type (i.e, of type A, B, or
C, etc.) on portfolio and projects lead times, we smulated the portfolio eight times. Each of
these eight Smulations assumes that there are two processors of a certain type.l> We increase the
capacity of the processors one at a time, while keeping the capacity of the rest of the processors
at their nomina values (i.e., one processor of each type). For the processor that has a capacity of
two, when faced with a choice to work on more than one activity, it works on the one with the
highest priority and the second processor is caled upon to perform work on the activity with the

second highest priority.*3

2 The number of processors available for each typeis entered by the user as part of the simulation inputs.

131t isworth noting that if the processor with a capacity of two has only one activity to work on at a certain time, then having two
processors available to work on the same activity does not reduce the duration of that activity. Only one processor does the work
required.
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Figure 10 shows the results of the eight different smulaions compared to the base case
(one processor of each type). The figure shows that the addition of an extra processor (of any
type) does not redly benefit the project portfolio in generd (i.e, reduce mean lead-time). In this
example, a the portfolio level, no one single processor is dgnificantly responsible for the delay
due to multi-tasking.'* Similarly, & the project level, projects 1 and 3 would not benefit from
such an increase in resources’® However, project 2 benefits from adding a second processor of

type B (sgnificant reduction in project 2 lead time as marked by the élipsein the figure).

6.3 Including Switching Costs

Switching between activities typicdly causes a period of reduced productivity as the
processor begins he new activity. We account for this phenomenon by dlowing a percentage of
the new activity's duration to proceed a 50% efficiency. This percentage (10% for the
example)*® is converted into a number of time steps in which the reduction of the activity's
remaining work is only reduced by haf its norma amount.

Including the 10% switching pendty resulted in the didributions shown in Fgure 11.
Contrary to expectation, the lead-time didribution was not shifted to the right due to switching
cos pendty. Indead, the two didributions (i.e “without switching pendty” and “with
switching”) overlap. The reason for this is due to the fact that none of the activities were
preempted during execution and that there was a condggent priority for each activity at every
time step of the smulation. Therefore, in this graph, the magnitude of a shift can be viewed as a

measure for the amount of preemption that occurred during the execution of the projects.

14 Of course, thisis only true in the case of this example problem, not for any project portfolio.

5 No statistically significant difference was detected in the means of projects 1 or 3 under the eight different resource
configurations.

18 This percentage is set by the user as part of the simulation inputs.
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7. Summary and Conclusion

This peper discusses an extenson to information flow modding to andyze the
performance of multiple PD projects sharing a common set of development resources. We tilize
a st of activity, project, and persond attributes in order to prioritize executable activities. This
preference function is imbedded in a DSM dmulation modd to build lead-time didributions for
the project portfolio and the individual projects.

Some of the modd limitations, which could be overcome by possble extensons ae as
follows. Fire, the modd assumes that dl the projects and their activities are known prior to
running the smulation. In some organizations, their PD portfolio evolves dynamicdly over time
and projects are continuoudy added to and deleted from the portfolio. This Stuation could be
accounted for by revigting the mode a whenever such an event occurs. In fact, the mode could
help with the andyss of the impacts of such events. Second, projects within the same portfolio
might be interdependent through more than shared resources. That is, the success or falure of,
or rework in, one project might influence other projects. Our mode assumes that projects are
only interdependent through shared resources. However, additional dependencies could aso be
included. Another extensgon can address PD performance issues resulting from placing a ceiling
on the number of projects a processor can be involved in a any point in time. Furthermore, our
model does not currently explore overlapping of dependent activities or other dternaive work
policies. However, the work policy we use could be modified Findly, the senstivity of
development lead time to changes in attributes weights could be assessed in more detals by
desgning a full-blown factorid experiment (where each atribute is treated as a factor) and
running the smulation for the different factor configurations [18].

In concluson, the main advantage of the methodology presented in this paper over other

traditiond multi-project techniques is it dlows users to smulate a wide range of posshble
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scenarios in a multi-project environment.  These scenarios can include dl, or a subset, of the
following: (a) feedback structure and process architecture within individud projects, (b) the use
of patitioning to arive a an improved informetion flow, (c) limited resources shared among
multiple projects, (d) project switching pendties or costs, and (€) different preference profiles for
activity executions.  All of the above features are implemented in a user-friendly, Exce-based
environmet dlowing users to interact with the smulation, adjust its parameters, and perform

sengtivity andyssin avery smple manner.
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Table 1: The Eight Attributes Used in Developing the Preference Function

Activity

Attributes

1

Expectations for activity rework (Rework Risk). Peopl€e’s choice of whether or not to work on an
activity can be influenced by their knowledge of the likelihood of that activity to change or be
reworked later. What is the point of working on something that is likely to have to be changed?
Prior to running the simulation, a “rework risk” is estimated for each activity based on the
likelihood and the impact of changes in the activity’sinputs. The estimate combines the impacts
of both first- and second-order rework. First-order rework is caused by changes in inputs from
downstream activities and is the sum of the product of rework probability and rework impact for
al such inputs. Second-order rework is caused by changes in inputs from upstream activities
which themselves have some risk of first-order rework. Second-order rework is the sum of the
product of rework probability and rework impact for al such inputs, where each such product is
further multiplied by the upstream activity’s estimated rework risk. For example, if the first
activity in a DSM has two feedback inputs (P(rework) = .3 and .5; Impact(rework) = .3 and .4),
then Risk(rework) = 1 - [1 — (.3)(.3)][1 — (.5)(.4)] = .27. Then, say activity two has no inputs
from downstream activities, but it depends on activity one (P(rework) = .1; Impact(rework) = 1).
In this case, the rework risk for activity two stems only from second-order rework: Risk(rework)
= ()(1)(.27) = .027. Higher-order rework possibilities are usually small and are not included in

the estimate (arealistic assumption in practice).

Number of dependent activities. People are more likely to work on activities upon which alarge
number of other people depend. The number of marks in each column of the binary DSM is

counted to determine the number of dependent activities.

Nearness to completion. This attribute is a function of the amount of work remaining for the
activity. It assumes that people would rather finish nearly complete activities than begin new

activities™’ [14].

Relative duration. This attribute assumes that shorter activities will be preferred to longer ones.
Prior to running the simulation (but after a random sample has been obtained for each activity’s

duration), the relative duration of each processor’'s activities is determined. Each processor’s

7 The attribute can also be set to reflect the reverse situation.
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activities are classified as either the shortest or the longest duration activity for that processor, or

elsein-between. (Thisattribute can also be set to prefer longer activities.)

Project

Attributes

Cost of project delay [21]. A cost of delay is supplied for each project as an input to the

simulation. Activitiesin projects with higher costs of delay are given greater priority.

Project type. Project type is aso given for each project as an input to the simulation. We
classify project type based on project visibility and/or priority—which is either “high,”

“medium/normal,” or “low.”

Schedule pressure. As a project falls behind schedule, pressure builds to finish its activities.
Each project and each activity within it have scheduled completion times or deadlines, which are
provided as inputs to the simulation. Project schedule pressure is the sum of the schedule
pressure contributions of al of its activities. The schedule pressure contribution of each activity
is calculated depending on which of three casesit fallsinto, as shown in Figure 4. In Case A, the
activity is running ahead of schedule, and it makes no contribution to its project’s schedule
pressure. In Case B, the activity has not yet missed its deadline, but it is projected to do so. In
this case, the schedule pressure contribution is proportional to the amount of projected overrun.
In Case C, the activity has aready missed its deadline. The entire, remaining portion of the
activity contributes to the schedule pressure, along with the amount by which the activity is
running behind its deadline. The schedule pressure contributions of all activitiesin a project are
summed to arrive at a number, which is normalized against the deadline to arrive at a percentage
of anticipated schedule overrun. As this percentage grows, schedule pressure increases. Thus,
delinquent activities with early deadlines contribute much more to schedule pressure than

activitieswith later deadlines.

Processor

Attribute

Personal and interpersonal factors. It is impossible to represent the comprehensive set of
factors that influence a processor’s choice of projects and activities. Therefore, we utilize a
random factor to represent other influences, including personal and interpersonal (and even
irrational) factors. The random factor can represent personality, risk propensity or averseness,

interpersonal relationships—really anything not attributable to the other attributes.
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Attribute Name Weight
1. Rework Expectation 0.20
2. Number of Dependencies 0.06
3. Nearness to completion 0.17
4. Relative Duration 0.07
5. Project delay cost 0.16
6. Project Type 0.16
7. Schedule pressure 0.16
8. Emotiond factors 0.02

Table 2: Attribute Weights

Duration (days)
Activity Activity
Name Min. Likely Max. | Deadlines

Al 5 10 15 10
Bl 3 5 7 15
C1 6 7 8 22
D1 15 17 20 32
El 6 7 8 7

F1 3 4 5 19
Gl 5 7 10 29
H1 10 11 12 40
A2 5 8 10 8

B2 3 5 7 13
C2 10 13 15 26
F2 2 4 6 30
D2 8 10 14 40
H2 4 6 8 46
B3 6 7 8 7

D3 10 12 15 19
A3 8 12 15 12
C3 4 6 9 25
G3 10 10 12 35
H3 8 10 13 45

Table 3: Activity Data

Project | Project Deadline | Budget | Cost of Delay
Number | Type ($k/day)

1 3=Low vishility |40 80 50

2 2=Norma 46 50 40

3 2=Norma 45 40 50

Table 4. Project Data
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Without
Resource

With Resource
Constraints &

Considering all
Attributes & 10%

Constraints Considering all Switching

(Unconstrained) Attributes Penalty

Portfolio | Mean 60.29 76.94 76.55

95% CI* 2.65 3.51 3.60

Std. Dev. 17.62 17.71 17.22

Project 1| pean 52.86 70.79 72.17

95% CI* 0.49 10.18 0.45

Std. Dev. 2.26 2.23 2.27

Project 2| \jean 46.86 57.61 58.96

95% CI* 3.30 2.45 3.09

Std. Dev. 15.48 11.52 14.26

Project 3| \ean 54.04 64.76 63.32

95% CI* 3.16 3.04 3.97

Std. Dev. 14.57 19.11 19.65

Table 5: Simulation Results and Comparison of Means
*(95% Confidence Interval around the mean based on 100 observations/simulation)
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