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Abstract

Human concept learning presents a version of the classic problem of induction, which
is made particularly di�cult by the combination of two requirements: the need to
learn from a rich (i.e. nested and overlapping) vocabulary of possible concepts and
the need to be able to generalize concepts reasonably from only a few positive exam-
ples. I begin this thesis by considering a simple number concept game as a concrete
illustration of this ability. On this task, human learners can with reasonable con�-
dence lock in on one out of a billion billion billion logically possible concepts, after
seeing only four positive examples of the concept, and can generalize informatively
after seeing just a single example. Neither of the two classic approaches to inductive
inference { hypothesis testing in a constrained space of possible rules and computing
similarity to the observed examples { can provide a complete picture of how people
generalize concepts in even this simple setting.

This thesis proposes a new computational framework for understanding how peo-
ple learn concepts from examples, based on the principles of Bayesian inference.
By imposing the constraints of a probabilistic model of the learning situation, the
Bayesian learner can draw out much more information about a concept's extension
from a given set of observed examples than either rule-based or similarity-based ap-
proaches do, and can use this information in a rational way to infer the probability
that any new object is also an instance of the concept. There are three components
of the Bayesian framework: a prior probability distribuion over a hypothesis space
of possible concepts; a likelihood function, which scores each hypothesis according to
its probability of generating the observed examples; and the principle of hypothesis
averaging, under which the learner computes the probability of generalizing a con-
cept to new objects by averaging the predictions of all hypotheses weighted by their
posterior probability (proportional to the product of their priors and likelihoods).
The likelihood, under the assumption of randomly sampled positive examples, em-
bodies the size principle for scoring hypotheses: smaller consistent hypotheses are
more likely than larger hypotheses, and they become exponentially more likely as
the number of observed examples increases. The principle of hypothesis averaging
allows the Bayesian framework to accomodate both rule-like and similarity-like gen-
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eralization behavior, depending on how peaked the posterior probability is. Together,
the size principle plus hypothesis averaging predict a convergence from similarity-like
generalization (due to a broad posterior distribution) after very few examples are
observed to rule-like generalization (due to a sharply peaked posterior distribution)
after su�ciently many examples have been observed.

The main contributions of this thesis are as follows. First and foremost, I show how
it is possible for people to learn and generalize concepts from just one or a few positive
examples (Chapter 2). Building on that understanding, I then present a series of case
studies of simple concept learning situations where the Bayesian framework yields
both qualitative and quantitative insights into the real behavior of human learners
(Chapters 3-5). These cases each focus on a di�erent learning domain. Chapter 3
looks at generalization in continuous feature spaces, a typical representation of objects
in psychology and machine learning with the virtues of being analytically tractable
and empirically accessible, but the downside of being highly abstract and arti�cial.
Chapter 4 moves to the more natural domain of learning words for categories of
objects and shows the relevance of the same phenomena and explanatory principles
introduced in the more abstract setting of Chapters 1-3 for real-world learning tasks
like this one.

In each of these domains, both similarity-like and rule-like generalization emerge
as special cases of the Bayesian framework in the limits of very few or very many
examples, respectively. However, the transition from similarity to rules occurs much
faster in the word learning domain than in the continuous feature space domain. I
propose a Bayesian explanation of this di�erence in learning curves that places cru-
cial importance on the density or sparsity of overlapping hypotheses in the learner's
hypothesis space. To test this proposal, a third case study (Chapter 5) returns to the
domain of number concepts, in which human learners possess a more complex body
of prior knowledge that leads to a hypothesis space with both sparse and densely
overlapping components. Here, the Bayesian theory predicts { and human learners
produce { either rule-based or similarity-based generalization from a few examples,
depending on the precise examples observed. I also discusses how several classic rea-
soning heuristics may be used to approximate the much more elaborate computations
of Bayesian inference that this domain requires.

In each of these case studies, I confront some of the classic questions of concept
learning and induction: Is the acquisition of concepts driven mainly by pre-existing
knowledge or the statistical force of our observations? Is generalization based primar-
ily on abstract rules or similarity to exemplars? I argue that in almost all instances,
the only reasonable answer to such questions is, \Both." More importantly, I show
how the Bayesian framework allows us to answer much more penetrating versions
of these questions: How does prior knowledge interact with the observed examples
to guide generalization? Why does generalization appear rule-based in some cases
and similarity-based in others? Finally, Chapter 6 summarizes the major contribu-
tions in more detailed form and discusses how this work �ts into the larger picture of
contemporary research on human learning, thinking, and reasoning.
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Chapter 1

Introduction: The computational

problem of concept learning

The ability to learn concepts from examples is a central aspect of human cognition.

Yet while every child can naturally acquire many concepts from only very limited

evidence of what the concept refers to, the computational basis of this ability is

still poorly understood. Consider the state of the art in machine learning, a �eld

which has seen tremendous progress in the last 15 years. Computers can learn to

tell the di�erence between images of the handwritten digits 2, 3, and so on, after

training on thousands of labeled examples of each class (Hinton, Dayan, Frey & Neal,

1995; Simard, LeCun & Denker, 1993). Other systems can learn to detect faces in

images at varying scales and positions, after training with thousands of examples of

images labeled either \face" or \no face" (Osuna, Freund, & Girosi, 1997; Rowley,

Baluja & Kanade, 1998). Now consider the \state of the art" in human learning:

children only six years old routinely learn words that refer to coherent, but complex

and overlapping, units of their worlds, such as \`dog", \�sh", \pet", \Rover", and

\animal". They learn these words at the remarkable rate of �ve or more a day,

being given only a few relevant examples of how each word is used and no systematic

evidence of how words are not to be used (Carey, 1978; Markman, 1989; Regier, 1996;

Bloom & Markson, 1998). Computers, for all their impressive successes on certain

learning tasks, don't even come close to the everyday achievements of any child.
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This thesis presents a computational theory of concept learning with three inti-

mately linked goals: �rst, to account for how concept learning is even possible from

the limited evidence typically available to human learners; second, to explain some

of the most central empirical phenomena of human concept learning; and third, to

suggest how arti�cial systems may begin to approach the generalization capabilities

of human learners. Learning theories are usually classi�ed as normative, if they are

meant to provide a standard for ideal or optimal learning behavior, or descriptive, if

they are meant to provide an account of actual human learning behavior. Normative

learning theories are, these days, in the realm of computer science (formerly philos-

ophy); descriptive theories the province of psychologists (and increasingly, neurosci-

entists). This thesis attempts to bridge the normative and the descriptive traditions

by constructing, within the accepted normative framework of Bayesian inference, a

realistic theory of human learning that explains important aspects of human behav-

ior not successfully explained in the past. This work thus contributes to the growing

body of \rational" cognitive science exemple�ed by Shepard (1987), Anderson (1990),

and the papers in Oaksford & Chater (1998). It is not meant to be a mechanistic

theory, to describe the details of neural systems or the processes of memory and at-

tention that underlie concept learning. Rather, in the traditions of Chomsky (1986)

and Marr (1982), it is a theory of knowledge { what sort of knowledge is brought to

bear in learning concepts, what sort of knowledge is acquired from experience, and

how that knowledge is used to generalize concepts to new situations { and it is a

theory of computation { what is the computational problem that the concept learner

must solve, what is the nature of the input, and what are the constraints necessary

to guarantee a useful solution. These are the issues at the intersection of psychol-

ogy and computer science (not to mention neuroscience and philosophy) that must

be addressed by anyone who wants to understand the nature of concept learning in

humans or machines.

I hope that my attempts to balance normative and descriptive goals will make this

work of interest to readers coming from both traditions. To sum up the message for

psychologists in one sentence: we should think more like computer scientists, focusing
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on an analysis of the hard computational problems underlying concept learning and

asking whether or not our psychological models are capable of solving these problems.

To sum up for computer scientists: we should think more like psychologists, focusing

on the learning situations that play the most important roles in human cognition and

asking whether or not our computational models are appropriate for these situations.

I think that both of these �elds have the tendency to focus on problems that are

more tractable than relevant, which is probably wise given how far we stand from a

scienti�c understanding of mind. Although I will not claim to have solved the really

hard problems of human concept learning, I do hope that I can make them seem at

least a little bit more tractable, and thus, worthy of our attention at this stage of the

inquiry.

The plan of this introductory chapter is as follows. After laying out the necessary

vocabularly and background material (Section 2), I illustrate by way of a simple

and concrete example { the \number concept game" { what makes human concept

learning so remarkable from a computational point of view (Section 3). I argue

that concept acquisition presents a version of the classic problem of induction, which

is made exceptionally di�cult by the combination of two requirements: the need

to learn from a rich (i.e. nested and overlapping) vocabulary of possible concepts

and the need to be able to generalize concepts reasonably from only a few positive

examples. In Sections 4 and 5, I review two classic approaches to inductive inference

{ hypothesis testing in a constrained space of possible rules and computing similarity

to the observed examples { and argue that neither one alone can provide a complete

picture of even such a simple concept learning task as the number concept game.

Section 6 considers how we might construct a theory that bridges traditional rule-

based and similarity-based approaches to concept learning, distinguishing a uni�ed

theory { the target of this thesis { from modular theories, typi�ed by several recently

published models.

Let me also briey outline the main contributions of this thesis (and the plan

for subsequent chapters). First and foremost, I develop an understanding of how it

is possible for people to learn concepts from just a few positive examples based on

17



the principles of Bayesian inference (Chapter 2). Then, building on that understand-

ing, I present a series of case studies of simple concept learning situations where the

Bayesian framework yields both qualitative and quantitative insights into the real

behavior of human learners (Chapters 3-5). These cases each focus on a di�erent

learning domain. Chapter 3 looks at generalization in continuous feature spaces, a

typical representation of objects in psychology and machine learning with the virtues

of being analytically tractable and empirically accessible, but the downside of be-

ing highly abstract and arti�cial. Chapter 4 moves to the more natural domain of

learning words for categories of objects and shows the relevance of the phenomena

and explanatory principles introduced in more abstract settings for real-world learn-

ing tasks like this one. Chapter 5 considers a domain of number concepts, in which

human learners possess a more complex body of prior knowledge that leads to more

subtle phenomena not observed in the earlier case studies, and discusses how various

classic reasoning heuristics may be used to approximate the much more elaborate

computations of Bayesian inference.

In each of these case studies, I confront some of the classic questions of concept

learning and induction: Is the acquisition of concepts driven mainly by pre-existing

knowledge or the statistical force of our observations? Is generalization based primar-

ily on abstract rules or similarity to exemplars? I argue that in almost all instances,

the only reasonable answer to such questions is, \Both." More importantly, I show

how the Bayesian framework allows us to ask much more penetrating versions of these

questions, such as: How does prior knowledge interact with the observed examples

to guide generalization? Why does generalization appear rule-based in some cases

and similarity-based in others? Finally, Chapter 6 summarizes the major contribu-

tions in more detailed form and discusses how this work �ts into the larger picture of

contemporary research on human learning, thinking, and reasoning.
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1.1 Vocabulary and Background

Practically nothing about \concepts" and \concept learning" is universally accepted

by all who study them, least of all the essential de�nitions of these terms. In this

thesis, I will begin by treating concepts as pointers from the mind to subsets of the

world (Millikan, 1998). I will focus primarily on object concepts, that is, pointers to

subsets of objects in the world. The subset of entities in the world to which a concept

points or applies is called its extension. The extensions of concepts are often called

categories. Our most basic object concepts are captured by the words (in particular,

the count nouns) of our native language { \dog" points to the set of dogs, \bee" points

to the set of bees { but more complex pointers { \raindrops on roses", \whiskers on

kittens", \warm woolen mittens" { may serve as concepts as well.

The acquisition of even relatively simple object concepts like \dog" is undoubtedly

a complex business, drawing on multiple cognitive processes over an extended period

of time. This thesis focuses on the stage of ostensive concept learning: learning a

concept's extension from examples, i.e. object-label pairs. Examples belonging to the

concept's extension are called positive; those outside the extension are called negative.

Examples may also be implicit, that is, dependent on inferences from other existing

pieces of knowledge. For instance, a positive example of \dog" may implicitly also

be a positive example of \animal" and a negative example of \cat", if we know that

dogs are also animals and that no animal is both a dog and a cat.

Crucially, examples may be generated by many di�erent processes. For the case of

a child learning the concept \dog", labeled examples could be provided deliberately

by a knowledgeable adult { \Here's a dog", \Here's another dog", \This one's also a

dog' { or selected by the child herself in the form of queries to the adult { \Is this

a dog?", \What about this one?" { or encountered at random as the child moves

through her world and notices the labels adults use spontaneously. Frequently there

is an asymmetry between how positive and negative examples are generated. While

adults routinely label positive examples of object concepts { \See the doggie?" { they

much more rarely provide spontaneous negative examples { \See that? That's not a
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doggie." However, negative examples may often occur in the form of feedback on a

child's mistaken identi�cations { \No dear, that's not a dog, that's a cat." A formal

model of the process generating the learner's observations will be called a generative

model. Di�erences between generative models, such as between deliberately provided

samples and feedback on the learner's misidenti�cations, will turn out in the next

chapter to be crucial for the possibilities of concept learning. This thesis focuses

primarily on the case when a teacher provides the learner with a small number of

positive examples sampled at random from the concept, because this is the basic

situation of word learning. However, we also want to leave room for negative evidence

provided in the form of corrective feedback. Hence our models need to be able to learn

meaningfully from only positive evidence, but also need to be able to accomodate

negative evidence when available.

1.2 The problem

To begin to see where the di�culties of ostensive concept learning lie, consider the

following simple learning game. I have written some short computer programs, each

of which checks to see if numbers satisfy a single easy-to-state arithmetical concept.

The concepts are nothing fancy or tricky; some possibilities might be \X is even",

\X is between 30 and 45", \X is a power of 3", \X is less than 10", and so on.

Each program takes as input a natural number (i.e. an integer greater than zero) and

returns as output either \yes" or \no", depending on whether the number satis�es

some particular concept. To keep things simple, we'll assume that only numbers less

than 100 are under consideration. Your job as learner is to guess what one of these

programs will do from seeing only examples of its inputs and outputs. Speci�cally,

the computer will show you a few examples of numbers which that program says \yes"

to, and you will identify the other numbers you think the program will say \yes" to,

and also how con�dent you are. Keep in mind that there is nothing special about the

examples you will see { they are chosen randomly from all the numbers (less than

100) that the program would say \yes" to. Ready?
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. . . The computer has chosen a program . . .

. . . and a random example of a number it says \yes" to: 16.

Now, what other numbers do you think this program will say \yes" to? 17? 5?

6? 2? 64? It's very hard to say with only one example, but it does seem that some

numbers are more likely to be accepted than others. For example, to me, it seems

that 17 is more likely to be accepted than 87, based on its relative proximity to 16.

However, numerical proximity isn't the whole story; 32 seems to me somewhat more

likely to be accepted than 30, because it shares more arithmetical properties with

16. Similarly, 4 seems to me more likely to to be accepted than 5 or 6. But these

preferences are pretty vague { nothing I would want to bet on. And you may feel

rather di�erently; maybe you think 6 is more likely to be accepted than 4, because

it shares the same last digit as 16. After all, we do have very little information to go

on.

Suppose the computer now generates three more random examples of numbers its

program says \yes" to: 8, 2, and 64. These three examples, in addition to \16", help

a lot. Now it is much clearer to me which other numbers the program will accept:

32 and 4 become much more likely to be accepted than 30 or 6, and both 17 and

87 seem quite unlikely to be accepted. Of course no �rm proof has been established

for any of these generalizations. Yet most readers would agree that given the four

random \yes" examples of 16, 8, 2, and 64, this program seems most likely to pick

out the powers of two, i.e. 2, 4, 8, 16, 32, 64 and so on. (If you �nd that you're not

in agreement, let me assure you that these examples were randomly chosen from all

those numbers the program accepts. Does that help?)

The major phenomena I seek to explain in this thesis are judgments of generaliza-

tion like these. Figure 3 shows the average responses that people make to precisely

these questions on an experimental survey. 1 Participants in this study were asked to

rate the probability that various numbers would be accepted by the computer pro-

gram, given �rst one example 16 (Figure 3, top row) and then three more examples

1This study is discussed in detail in Chapter 5.
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Figure 1

8, 2, and 64 (Figure 3, bottom row). Ratings were made on a scale of 1-7, here

normalized to a probability between 0 and 1. It is clear that people's judgments are

quite uncertain { but not arbitrary { given just one example, but that they quickly

converge to the judgment that all and only the powers of two will be accepted after

seeing just three more examples.

Now, appearances perhaps to the contrary, something quite remarkable happens

inside your brain when you produce these generalization judgments. Even restricting

the game to natural numbers between 1 and 100, there are more than a billion billion

billion subsets of numbers that such a program could possibly have picked out and

which are consistent with the observed \yes" examples of 16, 8, 2, and 64.2 That's

2To be precise, there are 2100 subsets of numbers between 1 and 100, and each positive example
cuts in half the number of logically consistent subsets (i.e. those containing all the positive examples).

22



⇒
16
 8
 2
64

4 random "yes" examples:

32

31

4

17

87

powers of 2!

Yes

No

Yes

No

No

Figure 2

a billion for every second since the beginning of the universe. These subsets include

not just all powers of two, but all even numbers, or all numbers less than 100, not to

mention possibilities like all powers of two and also 37, or all powers of two except

32. Yet despite this practically in�nite range of possibilities, you feel to some degree

con�dent that you can identify numbers in the one subset that this program actually

does pick out. Moreover, this con�dence comes after seeing just four random examples

known to be in that set { positive examples of the computer's concept { and no

negative examples, i.e. numbers known to be not in that set. Trying to explain

This is because for every subset s containing a particular number x, there is exactly one other subset
that contains all of the same numbers as s except x. Thus, after four examples, we are left with
2100�4 = 296 logically consistent subsets.
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away this inference as merely \common sense" only highlights how mysterious the

processes involved really are. This is an instance of the classic problem of induction,

which has been at the center of philosophical attention since Bacon's New Organon

(1620) and at the center of philosophical controversy at least since Hume's famous

Treatise (1739). It will not be dismissed lightly.

Perhaps this game of guessing numerical concepts can be brushed o� on psycho-

logical grounds, as too arti�cial or impoverished a task; perhaps it should be treated

as only a puzzle for philosophers. However, the number-program game deserves our

attention because it highlights the essential inductive challenge underlying many more

natural { but much more complex { concept learning tasks. To see this, consider �rst

the case of learning words for object concepts, perhaps the most basic form of human

concept learning. Speci�cally, let's consider what sort of inferences are required of a

child learning to use a word like \dog".

There is some subset of the entities in the world { the set of dogs { which the

word \dog" refers to. Again, this subset is called the extension of the concept labeled

by \dog". In coming to use the word \dog" competently, the child has to learn to

identify all and only those entities which fall into its extension. Now, if an expert were
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to correctly label every object in the world as either \dog" or \not a dog", and the

child could somehow observe and remember all of these labelings, then the problem

would be solved. Or if there were a simple de�nition of \dog" that picked out all and

only the dogs, and if somebody could communicate this de�nition to the child, then

too the problem would be solved. But neither of these learning modes is realistic for

most words.

In general, the child must infer the correct extension of \dog" from only a few

experiences of dogs in conjunction with the linguistic label \dog" (Figure 4). After

having heard the word \dog" applied to, say, a particular beagle, a particular labrador,

and a particular dalmation, the child ideally should be willing to apply that term not

to only those three individual animals, nor to only beagles, golden retrievers and

dalmations, nor to all animals nor all living things, but to all and only the dogs.

Receiving negative feedback on her mistaken identi�cations, as when she calls a cat

\dog" and then hears \no, cat", will certainly be helpful in establishing precisely the

extensions of new concepts. However, extensive negative feedback is de�nitely not

necessary { and could hardly be helpful! { before she is willing to call only a restricted,

nonarbitary set of things in the world \dog" (Carey, 1978; Markman, 1989; Regier,

1997; Bloom & Markson 1998).

Now consider a computer system that must learn concepts from interacting with

human users. It will face essentially the same inferential ambiguities. A good example

is a computer system for interactive scene analysis (Barrow, Bolles, Garvey, Kremers,

Lantz, Tenenbaum & Wolf, 1977) that learns to identify images or image regions

satisfying a particular visual concept such as trees, sand, or even dogs. 3 I might

like such a system to automatically label all regions of trees or dogs in an image or

set of images, given a few regions that I have labeled as examples of trees or dogs.

Ideally, the computer should be just as productive yet selective as the child above in

generalizing these concepts to new image regions, because that is how I, the human

user, am used to interacting with other human learners. Providing more than a few

3For contemporary examples of such a system, see Minka & Picard (1997) and De Bonet & Viola
(1997).
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examples of trees regions quickly gets tedious, and providing informative negative

examples, e.g. good examples of non-trees, may be di�cult for the average user.

My claim is that the enterprises of learning to use words, learning scene concepts,

or guessing numerical concepts have at their core the same computational problem:

they all require the learner to infer how far and in what ways to generalize from only a

limited number of positive examples. Inferring \how far" to generalize a concept means

that the learner must choose the appropriate generalization from many possibilities

that are nested inside each other: e.g. f labradors, dogs, animals g, f pine trees, trees,
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plants g, or f powers of two, even numbers, all numbers g. Inferring \in what ways"

to generalize means that the learner must choose from possible generalizations that

are partially overlapping: e.g. f dogs, pets, four-legged animals g, f trees, leaves, green

plants g, or f powers of two, square numbers, cube numbers g. Somehow, from all

of these reasonable ways to generalize, the learner must determine the one subset

that contains all and only the instances of the relevant concept. The restriction to

a \limited number of positive examples" means that the learner must be able to

generalize informatively { if not perfectly { after seeing any number of examples

drawn only from the concept's extension. Again, this is not to say that negative

evidence is never available or helpful, but that it is generally of secondary importance,

i.e. provided as negative feedback on the learner's own mistaken identi�cations of

instances of a concept, rather than as the primary evidence on which these initial

tentative identi�cations are based.

Perhaps the major result of computational studies of learning in the last few

decades is this: the broader and more complex the range of possible concepts a

learner is capable of acquiring, the greater the number (and/or the stronger the kind)

of examples required to learn successfully (Geman, Bienenstock & Doursat, 1992;

Vapnik, 1995; Valiant, 1984; Kearns & Vazirani, 1994). Human concept learning

poses a particularly thorny version of this challenge, combining the need to learn

from a rich (i.e. nested and overlapping) vocabulary of possible concepts with the

need to learn each concept more or less from only a few positive examples. Dealing

with either of these requirements on its own would be much less di�cult. Seeing

most of the possible positive examples, or seeing good negative examples, would cut

down the nested and overlapping possibilities the learner must usually contend with.

Restricting the possible concepts to only disjoint (non-nested, non-overlapping) sets

of objects would allow any concept to be learned trivially from just a single positive

example, because each object would belong to at most one possible concept! How

such a range of potential concepts can be acquired from such limited evidence is the

great mystery of human concept learning, the great challenge of machine concept

learning.
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1.3 The rule-based approach to induction (and why

it doesn't work as a theory of concept learn-

ing)

The classic problem of induction that underlies concept learning has a classic solution,

which in various forms is one of the major positions on learning in cognitive psychol-

ogy, machine learning, and philosophy of science. For reasons that will become clear,

I will call this cluster of approaches to inductive inferences rule-based approaches. In

this section, I describe the basic rule-based approaches and illustrate why they are

not adequate to explain how people learn concepts from just a few positive examples.

1.3.1 Simple hypothesis elimination with a priori constraints

on the hypothesis space

There are two main ideas behind the classic rule-based approach to inductive infer-

ence. The �rst idea is that learning proceeds via hypothesis elimination, otherwise

known as the hypothetico-deductive method. That is, the learner considers various

hypotheses about what the extension of the concept could be, and eliminates those

which are not consistent with the examples observed. This idea alone is not worth

much as a theory of learning, because an in�nite number of general hypotheses will al-

ways be consistent with any �nite set of observations; how is the learner to generalize?

Enter the second idea of the rule-based approach: the process of hypothesis elimina-

tion is guided by a hypothesis space subject to a priori constraints. That is, instead

of considering all logically possible hypotheses consistent with a set of examples, the

learner considers only a much smaller subset of hypotheses { those in his hypothesis

space { which according to his prior knowledge are natural candidates for being the

concept's extension. Generalization from limited evidence becomes practical because

most of the possible ways to generalize are never even considered by the learner. The

hope is that, with strong enough constraints on the hypothesis space and a reasonable

number of observations, the learner can rule out all but one hypothesis as inconsistent
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with the evidence, and the remaining hypothesis will determine his generalizations.

This way of looking at concept learning was �rst proposed by Hovland (1952), in the

form of a \communication analysis" of the teacher-learner exchange, and developed

in the last twenty years primarily in the �eld of machine learning (Mitchell, 1979;

1997).

Let's see how the notion of a hypothesis space of natural rules would be useful in

explaining concept learning in the number concept game. In particular, we want to

explain the intuition that, given the random \yes" examples of 16, 8, 2, and 64, the

program probably accepts all and only the powers of two, as opposed to any of the

other logically possible subsets of numbers it could accept.

Why do we infer that the program probably accepts all and only the powers of

two, i.e. f2; 4; 8; 16; 32; 64; : : :g, and not the powers of two plus one other arbitrary

number, e.g. f2; 4; 8; 16; 32; 37; 64; : : :g, or all of the powers of two except one, e.g.

f2; 4; 8; 16; 64; : : :g? The classic rule-based approach answers this question by saying

that we have (implicitly or explicitly) adopted a certain hypothesis space of candidate

extensions for the concept, containing not all logically possible extensions but only

those that seem natural in the context of learning a simple arithmetical concept.

This hypothesis space includes what seem like mathematically natural hypotheses,

such as all powers of two, but does not include seemingly unnatural hypotheses like

all powers of two, and also 37, or all powers of two, except 32. Then, if we decide

how to generalize by searching our hypothesis space for a candidate concept that

is consistent with the observed examples, these psychologically bizarre but logically

possible generalizations simply never come up. In other words, before we have seen

any examples of the concept at all, our possible generalizations are constrained by our

prior beliefs about the natural concepts in this domain.

The importance of a strong hypothesis space in guiding generalization from limited

evidence was �rst recognized by nineteenth century British philosophers trying to

understand the logical basis of inductive inference in science. Like many ideas in the

philosophy of science, this one was stated �rst and best by William Whewell:

But supposing the Facts to be adequately observed, they can never be
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combined into any new Truth, except by means of some new Conceptions,

clear and appropriate, such as I have endeavored to characterize. When

the observer's mind is prepared with such instruments, a very few facts,

or it may be a single one, may bring the process of discovery into action.

(Whewell, Novum Organon Renovatum, 1858)

In this century, the idea that meaningful inductive inference requires some prior

knowledge about which hypotheses are more natural than others has become well

entrenched in philosophy through the work of Goodman (1955) and those who picked

up the challenge of his \new riddle of induction". Philosophers following Goodman

distinguish between \projectible" hypotheses, which receive con�rming support from

the observation of evidence consistent with them, and \nonprojectible" hypotheses,

which do not receive support from consistent observations. The classic case is the

contrast between green and grue, where grue means \green if observed before Jan.

1, 2000, and blue if observed thereafter." The hypothesis \All emeralds are green"

receives support from the observation of green emeralds, but the hypothesis \All

emeralds are grue" { just as consistent with the observation of all green emeralds

seen up to the present day { does not seem intuitively to be con�rmed by the same

evidence. Goodman attributed the di�erence to a di�erence in projectibility { green

is projectible, grue is not { and philosophers ever since have been trying to �gure out

what this really means.

From its mid-1800's Cambridge origins and its renaissance in Cambridge, Mass.

in the mid-1900's, the notion of a hypothesis space constrained by prior knowledge

has spilled over into modern cognitive psychology, linguistics, and machine learning,

and now occupies a central place in those �elds' major paradigms. The earliest empir-

ical studies of human concept learning (Bruner, Goodnow & Austin, 1956; Shepard,

Hovland & Jenkins, 1961; Hunt, 1962; Bower & Trabasso, 1964) fall primarily into

this rule-based approach. Cognitive development researchers have seized on the im-

portance of constraints in guiding the child's process of word learning and concept

acquisition (Keil, 1979; Osherson, 1978; Markman, 1989; Bloom, in press; Shipley,
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1993). For instance, it has been proposed that children's �rst concepts are arranged

hierarchically in a taxonomic tree, with no concept a subset of more than one other

concept (Keil, 1979), and that their �rst words map onto nodes in this taxonomic tree

(Markman, 1989). Linguists have repeatedly invoked hypothesis space constraints to

explain how children can acquire the grammar of their native language from only

positive evidence (Chomsky, 1986; Pinker, 1995; Gibson & Wexler, 1994; Osherson,

Stob & Weinstein, 1986). Machine learning researchers have likewise stressed the

learner's need for \inductive bias," prior knowledge that somehow restricts the space

of possible concepts that can be learned in order to make hypothesis elimination a

computationally tractable strategy (Mitchell, 1982; Haussler, 1988). The most pop-

ular sources of inductive bias in machine learning take the form of limitations on the

complexity of concept descriptions (e.g. the number of terms in a logical formula) {

a version of Ockham's razor (Valiant, 1984; Kearns & Vazirani, 1994). In fact, the

machine learning literature has produced a number of proofs that meaningful gener-

alization would be impossible without such biases (e.g. Mitchell, 1980, or Watanabe,

1985).4

With such a wide base of precedents, constraints on conceptual naturalness are

the obvious place to start looking for a solution to the computational problem of

concept learning. Moreover, it is clear that prior knowledge plays an essential role in

how people generalize concepts. For example, making any inferences at all about the

powers of two clearly requires the prior knowledge (or at least the prior disposition

to think) that this is a class worth paying attention to. A child who only knows the

rudiments of arithmetic may think the set f2; 4; 8; 16; 32; 64; : : :g just as strange as the

set f2; 4; 8; 16; 64; : : :g; to him, both are just \random" collections of even numbers.

At the other extreme of prior knowledge, mathematicians know the triangular num-

bers f1; 3; 6; 10; 15; : : : n(n � 1)=2 : : :g have special signi�cance in many arithmetical

problems. Given the positive examples 10, 3, 6, and 21, a mathematician on the

lookout for such a sequence might be quick to generalize to 15 and 28, but not 16

4That is, the probability that any entity x belongs to any concept C would be 1/2, unless x had
been speci�cally labeled as a positive or negative instance of C.
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and 27; a normal adult most likely would not have these preferences.

So, no one can doubt that hypothesis space constraints play an important role.

The question is, are they the whole story? And the answer to that is just as clearly

\no". Looking back at the number concept example shows us what is missing. The

observed examples 16, 8, 2, and 64 are consistent with more than one a priori natural

hypothesis, yet we infer that a single hypothesis is signi�cantly more likely than the

others to be the true concept. Why do we infer that the program picks out all and

only the powers of two, as opposed to all even numbers, or all numbers less than

100? It seems that a priori { before we have seen any examples of numbers that the

program accepts { all three of these classes are reasonably natural candidates for what

such a simple program might pick out. Certainly, none of these hypotheses is nearly

as bizarre as the class of all powers of two except 32. 5 Moreover, the even numbers

seem to be, if anything, more familiar and natural a class, a priori, as the powers of

two. Thus prior beliefs about the relative naturalness of these di�erent classes cannot

explain why we settle with some con�dence on just one of these hypotheses, all and

only the powers of two, after observing examples which are logically consistent with

all of them.

The real problem with this rule-based approach to induction, as I have portrayed

it so far, is that it tries to force inductive inference into the rigorous but rigid mold

of deductive inference. Theoretically, this strategy can work if we have a limited

enough hypothesis space and a large enough supply of examples to guarantee that

only one hypothesis will survive elimination by inconsistent data. Then, given the

premises that the true concept belongs to the hypothesis space and that the true

concept is consistent with the observed examples, it follows deductively that the one

remaining hypothesis is the true concept. However, this strategy is bound to fail

5One good test for a \bizarre" or \unnatural" hypothesis is whether the hypothesis fails to be com-
pelling even after all of its instances have been observed as examples. After seeing the examples 16,
8, 2, 64, 4, 32, it is pretty compelling that the program accepts all and only powers of two. Likewise
after seeing all the even numbers as examples, or all the numbers less than 100. However, after seeing
the examples 16, 8, 2, 64, and 4, the hypothesis all powers of two except 32 still fails to be compelling;
it starts to become compelling after seeing perhaps 15 examples, 16, 8, 2, 64, 2, 8, 4, 64, 16, 4, 2, 64,
8, 8, 16. Likewise for all powers of two and also 37: it's not compelling after seeing just 16, 8, 2, 64,
37, 4, 32, but starts to become so after 16; 8; 2; 64; 37; 4; 32; 8; 64; 16; 37; 32; 32; 4; 2; 64; 8; 37; 16; : : :.
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for most cases of human concept learning, which are essentially inductive. Recall

the point made above, that the natural candidate extensions for concepts are often

nested (e.g. f animal, dog, labrador, Rover g) or partially overlapping (e.g. f woman,

parent, mother g ). Thus any very small set of positive examples of a concept is

likely to belong to more than one candidate extension, and some further criterion {

beyond a priori naturalness { will be required to distinguish among these possible

generalizations. In many situations, such as the healthy levels task considered in

Chapter 3, the learner may even have to face an in�nite set of nested and overlapping

generalizations, each consistent with the given set of examples, and each an a priori

natural candidate for the concept to be learned. These situations make the starkest

case for some additional source of information in concept learning.

1.3.2 Ranked hypothesis elimination

Perhaps this simple rule-based view is too simple; perhaps it can be saved if the

initial constraints are allowed to be soft, not hard. That is, rather than merely

allowing or disallowing candidate hypotheses, the constraints induce a ranking of all

possible hypotheses in order of a priori conceptual naturalness, and the learner chooses

the highest ranked hypothesis that is consistent with the examples. Such a view of

constraints has been advanced in psycholinguistic accounts of language acquisition

(Pinker, 1984; Wexler & Manzini, 1987; Berwick, 1985). It is also probably closer

to how most cognitive developmentalists envision the role of constraints than the

strict in-or-out picture presented above. I will call the idea of an a priori ranking of

hypotheses the ranked rule-based approach to induction, to be distinguished from the

simple rule-based approach given above.

Under the ranked rule-based view, to justify the preference for powers of two over

even numbers after 16, 8, 2, and 64, we would have to assume that powers of two is

placed signi�cantly higher than even numbers in the a priori ranking. But then we

are at a loss to explain why generalization from one example, 16, or two examples,

16 and 8, is so di�erent from generalization from the four examples 16, 8, 2, and

64. If the preference for powers of two over even numbers is explained solely by an
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a priori ranking, then it should be just as strong after only one or two examples {

equally consistent with both hypotheses { have been observed. However, this does

not agree with intuition: powers of two seems to have little (if any) advantage over

even numbers after just 16 has been observed, but seems to become rapidly more

compelling after we have seen just a few more consistent examples.

1.3.3 Flexible hypothesis preferences

Perhaps we can amend the ranked rule approach by allowing the rankings of hypothe-

ses to vary from their a priori settings, depending on the particular examples observed.

In this case, many hypotheses including powers of two and even numbers would have

very similar (perhaps equal) rankings a priori. After we have seen one example, these

rankings might change slightly but not enough to give any one hypothesis a clear

advantage over the others. After we have seen a few more examples, however, the

rankings change enough to clearly favor one hypothesis { powers of two { and we now

generalize strictly according to that rule. The story sounds good, but it is no more

than a redescription of the phenomena unless we can provide a mechanism for how

(and an explanation for why) the rankings of hypotheses change with the observed

examples. This is in a sense where this thesis is headed. Work in coming chapters

will be devoted to understanding exactly how the weights of hypotheses depend on

the observed examples, and how generalization behavior depends on those weights.

The number concept task illustrates another, deeper problem with rule-based

approaches to concept learning; namely, the very character of generalization seems to

shift as we go from one example to four, in a way that the rule-based approach cannot

explain. After we have seen the four examples 16, 8, 2, and 64, one hypothesis seems

clearly better than any others and generalization is based strictly on whether or not

numbers conform to the rule powers of two. However, when we have only seen the

one example 16, and many hypotheses seem more or less reasonable, generalization

to other numbers seems more graded, based on their overall similarity to 16. 4

seems more likely to be accepted than 5, 17 seems more likely to be accepted than

87, and so on. The idea that concepts are always generalized in accordance with

34



the best �tting rule { or any one rule at all { just seems wrong in cases like this

one. Numerous experiments in the psychological literature have documented the

importance of similarity-based generalization in cognition (see Goldstone, 1994, for a

review).

In sum, neither the simple rule-based account of induction via a constrained hy-

pothesis space nor the ranked rule variant can account for two important aspects of

learning on the number concept task. First, candidate extensions which are roughly

equal in a priori naturalness, and which have similar degrees of plausibility given

only one example, may take on very di�erent plausibilities after a few more examples

{ consistent with both! { are observed. Second, how we generalize is not always

determined by the single best hypothesis. When many hypotheses receive roughly

equal plausibility, e.g. when just a single example has been observed, a gradient of

generalization based on overall similarity seems more natural than sharp, all-or-none

generalization based on any single rule. These phenomena will arise whenever the

hypothesis space is rich enough, and the number of examples few enough, to ensure

that the observed data cannot eliminate all but one candidate hypothesis. That is to

say, they will occur virtually always when people are learning natural concepts from

just a few positive examples.

What we need in a model of human concept learning is a model that can manage

the uncertainty of multiple consistent hypotheses, a model that explains why some

consistent hypotheses seem increasingly more likely than others as more examples

are observed and how generalization can be based on multiple hypotheses of (per-

haps) varying plausibilities. The Bayesian framework for concept learning proposed

in this thesis addresses these two core needs. Most generally, the essence of Bayesian

inference is the use of probability theory to represent and reason about uncertainty.

In the case of concept learning, the relevant uncertainty is the learner's uncertainty

about the concept's extension { i.e. the presence of multiple consistent hypotheses

{ given only a few positive examples. The Bayesian framework for concept learning

incorporates the classic notion of an a priori constrained hypothesis space and adds to

it the sophisticated inferential machinery necessary to decide how to generalize when

35



the observed examples do not uniquely determine a single consistent hypothesis, thus

forming the basis for a model of how people learn and generalize concepts from very

limited positive evidence.

1.4 The similarity-based approach (and why it doesn't

work either)

While the classic approaches to inductive inference have been rule-based, there is

an alternative tradition in induction that has been extremely inuential in psychol-

ogy and machine learning, and that seems to succeed precisely where rule-based ap-

proaches fail as accounts of human concept learning. Before turning to the Bayesian

approach to concept learning that is the heart of this thesis, it is worth considering

what these alternatives have to o�er. These approaches reject wholesale the idea that

generalization is guided by an a priori hypothesis space of candidate rules. Rather,

they assume that the learner's prior knowledge and/or innate endowment equips him

with a primitive sense of similarity, and that the learner generalizes a concept from

observed examples to a new object on the basis of that new object's degree of simi-

larity to the examples.

1.4.1 Concept learning based on pairwise similarity

To be precise, we will take similarity to be a function SIM(y!x) from pairs of objects

x and y to some space of degrees of resemblance; these degrees of similarity will be

assumed to be real-valued (e.g. SIM(Bill !Hillary) = .8, SIM(Bill !Monica) = .4,

SIM(Bill!Ken) = .05, where 1 denotes complete similarity { \everything in common"

{ and 0 denotes complete dissimilarity { \nothing in common"), but could also be

ordinal-valued (e.g. SIM(Bill !Hillary) > SIM(Bill !Monica) > SIM(Bill !Ken)).

The similarity function is potentially asymmetric, that is, SIM(y!x) { the similarity

of y to x { is not necessarily equal to SIM(x!y).

Historically, the similarity-based view of induction has its basis in Hume's doctrine
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of association by resemblance. According to Hume (1739), resemblance is one of the

three main forces that establishes the \connexion of ideas", along with contiguity (in

time) and cause-and-e�ect. William James (1890/1981) elevated association by sim-

ilarity, over association by contiguity and other means of inductive inference, as \our

chief help towards noticing those special characters of phenomena, which, when once

possessed and named, are used as reasons, class names, essences, or middle terms...."

(pp. 971-972). In the twentieth century, the most notable advocate for similarity as

the foundation of induction has been W. V. Quine. In numerous writings over the

last forty years, Quine (1960, 1969, 1995) has argued that an innate similarity space

is all the guide a human infant has on his earliest and most fundamental inductive

adventures. This animal sense of similarity is the product of natural selection, and

as such can be expected to be a generally adaptive bias in acquiring concepts in

the natural world. Wittgenstein (1953), too, is associated with the similarity-based

view, through his arguments that many everyday concepts are not held together by a

common essence shared by all category members, but rather by a network of \family

resemblances". In legal philosophy, generalization on the basis of similarity to previ-

ous cases is a standard and accepted method of reasoning from established precedents

to novel legal situations (Levi, 1949).

In psychology and machine learning as well, similarity has often been taken as

the foundation of learning and reasoning. Behaviorists trumpeted similarity as the

major force behind \stimulus generalization", whereby a conditioned response could

be elicited not only by stimuli physically identical to the conditioned stimulus, but

also to a lesser degree by stimuli similar on a relevant physical dimension (e.g. tones

of similar pitches, lights of similar brightnesses). Most contemporary formal models

of classi�cation, too, incorporate some kind of similarity space as an explanatory

construct (Shepard, 1964; Medin & Scha�er, 1978; Smith & Medin, 1981; Nosofsky,

1986, 1992; Ashby, 1992; Estes, 1994). In particular, the most successful exemplar

theories of classi�cation (Medin & Scha�er, 1978; Nosofsky, 1986) assume that the

probability with which a subject will generalize a category label from a set of examples

X = fx1; : : : ; xng to a novel object y is some simple function (such as the average, sum
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or maximum) of the similarities SIM(y!xi) of y to each of the xi. In machine learning,

similar exemplar-based models have also become some of the most popular tools

(Mitchell, 1997; Aha, 1997). Perhaps the most robust and consistently successful of all

pattern recognition techiques is also the simplest: nearest neighbor (NN) classi�cation

(Duda & Hart, 1973). NN classi�cation is based entirely on a primitive similarity

function, which is used to assign each new object to the class that contains the most

similar previously encountered object.

Despite the clearly established utility of similarity in models of classi�cation, its

value in explaining how humans learn and generalize concepts from just a few posi-

tive examples is not so clear. Virtually all similarity-based models in both psychology

and machine learning were developed for discriminative learning tasks, in which pos-

itive and negative examples play equal and essential roles in guiding generalization.

As a consequence, these models require negative examples of a concept in order to

generalize in any meaningful way { quite unlike human concept learners. Appendix

A goes through this argument in detail. On these grounds, many of the most im-

portant similarity-based models of classi�cation learning from cognitive psychology {

Kruschke's (1992) ALCOVE model, Anderson's (1991) \rational model", and various

adaptive network models (e.g. Gluck & Bower, 1988; Gluck & Myers, 93; Estes, 1994)

{ fail to account for how people can infer, given only a few positive examples, which

new entities a concept is likely to pick out.

Nonetheless, the construct of similarity does seem to explain certain aspects of

concept learning and generalization that rule-based approaches do not. Recall that a

deep problem with rule-based approaches was their inability to capture generalization

behavior that did not conform to an all-or-none pattern. In the number concept game,

a single rule seems quite salient when we have seen all four examples 16, 8, 2, and

64; but when we have seen just one example of the program's target set, e.g. 16, no

single rule provides a very compelling case for generalization. Rather, the intuition is

that we generalize to new numbers based on how similar they are to 16. A similarity-

based theory of concept learning can capture this intuition directly, as follows: given

a positive example x of a concept C, the learner judges the probability that a new
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object y belongs to C to be proportional to its similarity to the observed example,

SIM(y!x).

1.4.2 Can similarity to a set of examples account for rule-like

generalization?

What about cases where people's generalization behavior seems more naturally de-

scribed by a rule, as after we have seen the four examples 16, 8, 2, and 64? In order

to discuss similarity-based generalization from more than one example of a concept in

a rigorous way, we need to extend the de�nition of similarity from a pairwise relation

SIM(y!x) to a setwise relation SIM(y!fx1; : : : ; xng) { the similarity of a new ob-

ject y to the set of n observed examples fx1; : : : ; xng). There is no generally accepted

model of how people evaluate the similarity of one object to a set of objects, although

there are a number of proposals in the psychological literature. All the major candi-

dates suggest that SIM(y!fx1; : : : ; xng) is a relatively simple function of the pairwise

similarities SIM(y!(xi). Three popular proposals are:
6

� total similarity: SIM(y!fx1; : : : ; xng) =
P

i SIM(y!xi).

� average similarity: SIM(y!fx1; : : : ; xng) =
1

n

P
i SIM(y!xi).

� maximum similarity: SIM(y!fx1; : : : ; xng) = maxi SIM(y!xi).

At �rst, it seems that these similarity-based models could describe apparently

rule-based cases of generalization as well. For instance, after seeing the examples 16,

8, 2, and 64, the number 4 becomes more likely to be accepted than it seemed to be

after just the example 16. Because 4 is probably more similar to 8 and to 2 than to 16,

it is plausible that all three setwise measures of exemplar similarity { total, average,

and maximum { increase with the three additional examples. Thus the increase in

generalization makes sense under any of the three exemplar models.

6Some references. Total similarity: Nosofsky (1986). Average similarity: Ashby & Leola-Reese
(1995). Maximum similarity: Goldstone (1994), Osherson et al. (1990).
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However, there are other cases where only one of three similarity models seems to

match our intuitions. The number 32 also becomes much more likely to be accepted

after 8, 2, and 64 are observed than after only 16 was observed. However, because

32 is not substantially more similar to any one of 8, 2, or 64 than it is to 16, only its

total exemplar similarity increases, not its average or maximum exemplar similarity.

Hence only the total similarity model seems appropriate in this case.

The number 14 seems much less likely to be accepted after 8, 2, and 64 are

observed than after only 16 was observed. Because 14 is probably at least as similar

to 16 as it is to 8, 2, or 64, only its average exemplar similarity can decrease with

these three additional examples, not its maximum or total similarity. Thus only the

average similarity model seems appropriate in this case.

Perhaps trivially, the number 16 seems equally likely { i.e. 100% likely { to be

accepted after 16, 8, 2, and 64 are observed and after only 16 is observed. Clearly

16 is more similar to itself than to 8, 2, or 64, hence only its maximum exemplar

similarity is equal before and after these three additional examples; its total exemplar

similarity increases and its average exemplar similarity decreases. So in this case, only

the maximum similarity model is appropriate.

In short, none of these similarity models can explain all cases of apparently rule-

based generalization. Worse than that, there are some cases which cannot be ex-

plained by any of these models. Consider the probability that 5 will be accepted

given the example 16, versus the probability that 5 will be accepted given the exam-

ples 16, 8, 2 and 4. Intuitively, generalization to 5 decreases with these additional

examples, but pretty clearly 5 is at least as similar { and probably more similar { to

8, 2, and 4 as it is to 16. Thus all three similarity models should predict an increase

in generalization, counter to intuition.

1.4.3 Making similarity more exible

Even in the face of phenomena like these, many theorists remain committed to the

idea of similarity as the basis of concept learning and generalization (Goldstone, 1994;

Nosofsky, 1986; Medin & Florian, 1995). The solution, they would claim, is that
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the similarity function SIM(y!x) should not be treated as a psychological primitive

�xed by a priori knowledge. Rather, our sense of similarity is exible across di�erent

contexts, weighting di�erent aspects of stimuli di�erently depending on the examples

that have been observed. Suppose we assume for concreteness that SIM(y!x) is

just a weighted count of the features common to x and y (Tversky, 1977; Shepard &

Arabie, 1979). In the context of number concepts, these features might be properties

of numbers such as divisible by two, less than 10, and so on. Each feature receives a

weight reecting how much it contributes to the sum total of similarity between two

numbers that share it. Under this model, similarity is exible to the extent that the

weights of these features can change.

This exible similarity approach would explain the di�erence in generalization

from 16 alone versus 16, 8, 2, and 64 as follows. Given just the one example 16, we

have no particular reason to weight the property of being a power of two much more

than the property of being an even number, or any other property, so generalization

is determined by the sum of many factors that comprise the \overall" similarity of a

number to 16. But after we have seen 16, 8, 2, and 64, the property of being a power

of two { because it is shared by all of these stimuli { becomes much more salient

than other properties. Now the computation of SIM(y!16) (along with the other

quantities SIM(y!8), SIM(y!2), and SIM(y!64), on which SIM(y!f16; 8; 2; 64g)

depends) places far greater weight on the feature power of two than on any other

property of y; consequently, other powers of two will be highly similar to these exam-

ples, and non-powers of two will be highly dissimilar. Thus generalization will appear

to follow a simple rule even while it's still really a similarity computation.

The power of exible similarity to model human concept learning and generl-

ization is obvious here. By allowing the weights of features to change, apparently

rule-based generalization can be accomodated as a \special case" of similarity-based

generalization, and we only need one mechanism for concept learning. The danger of

this approach should also be obvious: it's completely circular! Why does the feature

power of two receive greater weight than the feature even number { and much greater

weight after 8, 2, and 64 are observed { even though both features are shared by all
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four examples? Replace \feature" with \hypothesis" and \shared by" with \consis-

tent with", and we're back to the same dilemna that plagued the rule-based approach

to concept learning discussed in the previous section!

Frustration with this potential for circularity led Goodman (1972; see also Watan-

abe, 1985) to declare exible similarity a sham, a scandal that strips the construct

of similarity of any real explanatory power. More recently, Goldstone and colleagues

(Goldstone, 1994; Medin, Goldstone, & Gentner, 1993) have tried to reclaim a exible

but constrained sense of similarity as a valuable explanatory tool. Several computa-

tional models of classi�cation learning incorporate exible similarity metrics in the

form of variable feature weights (Kruscke, 1992; Aha & Goldstone, 1992; Shanks &

Gluck, 1994). However, these are discriminative learning models (see the appendix

to this chapter), not concept learning models. To learn, they require both positive

and negative examples of a category, as well as feedback on their classi�cation mis-

takes. They adjust their feature weights to maximally discriminate the set of positive

training examples from the set of negative training examples. But this doesn't say

anything about how people can learn which features are important from seeing just

a few positive examples of a concept.

To sum up, a similarity-based account of human concept learning requires two

things which current models don't have on o�er. First, we need a principled account

of exibility, how the weights of features in a similarity computation change depend-

ing on the examples observed. Second, we need a principled way to compute the

similarity of a new object to a set of examples. Above, we saw three proposals for

setwise similarity functions based on pairwse similarities to examples (total, average,

or maximum). Is the right way to generalize by similarity given by one of these

formulae, or some other procedure?

From the point of view of the similarity theorist, these two goals are the two

goals of this thesis. Recall that at the end of the last chapter, I described the goals

of this thesis from the perspective of rule-based approaches to inductive learning:

to provide an account of how the rankings of possible hypotheses for a concept's

extension change from their a priori settings as examples are observed, and to explain
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how people generalize when more than one reasonable hypothesis is consistent with

the examples. If it's not already clear, these two statements of goals are just two

ways of saying the same thing, �rst in terms borrowed from the rule-based tradition

and then in terms borrowed from the similarity-based tradition.

1.5 Two strategies for building a more complete

theory

Let's recap the �ndings of the previous two sections. We've seen how the two major

traditions in inductive inference suggest two di�erent approaches to modeling hu-

man concept learning, based on rules or similarity. Each approach speci�es a basic

algorithm for generalizing a concept from examples: applying an abstract rule or

computing the similarity of one object to another. Each approach also speci�es some

a priori knowledge that constrains the generalization algorithm: an a priori ranking

of hypotheses or a priori weights on the features of stimuli. Looking at our concrete

example of the number concept game, we saw di�erent kinds of generalization behav-

ior, some that seemed best described as similarity-based (generalizing from the single

example 16) and some that seemed best described as rule-like (generalizing from the

four examples 16, 8, 2, and 64). Each basic approach works best under certain ideal

conditions, { when there is a single clearly best rule to apply, or when generalizing by

similarity to a single observed example { and these conditions are usually mutually

exclusive. That is, when we have seen only one example of a concept, there will

generally be more than one reasonable rule that could pick out the concept's exten-

sion; when one rule seems clearly better than any other, we will generally have seen

more than example. Hence no simple model of generalization based on the ideal of

applying a single abstract rule or computing similarity to a single example can hope

to describe the whole course of human concept learning.
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1.5.1 Strategy 1: a uni�ed theory

Given this diagnosis, there are essentially two strategies for how to build a more

complete theory of concept learning that would combine the virtues of traditional

rule-based and similarity-based approaches. The �rst strategy is to aim for a uni�ed

theory that explains both \rule-like" and \similarity-like" generalization behavior

with a single mechanism. Such a theory could itself look nothing like either rule- or

similarity-based models as traditionally conceived { for example, it could look like a

neural network, { or it could be based on an extension of one of these approaches.

In the last two sections, I argued that either traditional approach could potentially

handle the full range of concept learning phenomena if extended in two ways: �rst, to

provide a more sophisticated generalization algorithm based on integrating multiple

consistent rules or computing similarity to a set of examples; second, to provide for

exible constraints on generalization { exible hypothesis rankings or feature weights

{ that allow apparently rule-guided or similarity-guided behavior to emerge from a

single model depending on the observed examples.

This is the strategy I pursue in this thesis. I develop a probabilistic extension

of the traditional rule-based approach, based on the principles of Bayesian infer-

ence. Speci�cally, the basic elements of the Bayesian learner's hypothesis space are

candidate rules for picking out a concept's extension, but the learner maintains a

probability distribution over those rules instead of choosing only a single rule to rep-

resent each concept. By integrating the predictions of multiple rules consistent with a

set of examples, the learner can generalize concepts based on a gradient of similarity

to those examples (as in Figure 3, top row). However, when the learner's probabil-

ity distribution is concentrated on a single hypothetical extension, exactly the same

procedure of integrating over the hypothesis space leads to apparently all-or-none,

rule-governed generalization (as in Figure 3, bottom row). The Bayesian framework

thus contains both rule-like and similarity-like generalization as special cases, o�ers

a uni�ed explanation of both sorts of behavioral phenomena, and explains why gen-

eralization appears rule-based or similarity-based in any particular situation.
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A full exposition of the Bayesian framework will be the subject of Chapter 2;

readers curious to see what the theory really looks like may want to skip ahead

now. For the rest of this section, let me briey try to justify why the unifying

Bayesian account takes rules rather than similarity as its starting-o� point { its basic

representation of concepts { and why a uni�ed account, as opposed to a modular one,

is worth pursuing at all.

There are intuitive reasons for starting with rules, as well as highly technical ones.

Intuitively, abstract rules seem fundamental to our concept of \concept", in a way that

similarity to exemplars does not. Throughout the Western philosophical tradition,

from the ancient Greeks to the twentieth century, a major goal has been to formulate

de�nitions or rules that pick out precisely the referents of our concepts. What is

man? The featherless biped. What is knowledge? Justi�ed true belief. Granted, this

sort of conceptual analysis is often a di�cult { or even impossible { task. Nonetheless

it has seemed to be the task worth undertaking, to many of the greatest minds of

the last two thousand years. Contemporary philosophers by and large recognize the

futility of such de�ntions but still act as though they're the only game in town for

conceptual analysis. Goldman (1986) states this position explicitly:

But given the longstanding failure of philosophers (or lexicographers) to

devise accurate de�nitions of this kind for very many (if any) words, it is

doubtful whether such analyses are indeed possible.... In the meantime,

however, I will follow the working practice of trying to give necessary

and su�cient conditions for important epistemological terms. This can

be regarded as a �rst approximation to a better way of treating meaning,

if such a better way can be devised. (pp. 38-39).

The conceptual work of the natural sciences has followed similar paths, in quest of

increasingly more precise de�nitions to pick out the true units of the mathematical,

physical, and biological worlds. In the social sphere, our dictionaries and legal codes

are monumental attempts to de�ne { in rules { the concepts behind how we think we

use words and how we think we ought to live together. In cognitive psychology, the
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so-called \classical theory" that dominated early work on concept learning (Bruner,

Goodnow & Austin, 1956) took it for granted that concepts were mentally represented

in the form of rules. While this view no longer holds sway as it once did, it continues

to be tremendously inuential as the \alternative" hypothesis to much contemporary

work. Even the pioneer of the prototype theory of concepts, Eleanor Rosch, accepts

the extensional side of the rule-based view of concepts: \A category exists whenever

two or more distinguishable objects or events are treated equivalently" (Mervis &

Rosch, 1981). Rules are simply our attempts to describe these equivalence classes of

objects as precisely as possible.

Last and certainly not least, the intuition that concepts in general are or ought to

be rule-based is also shared by the average person who is not a philosopher, physicist,

lawyer, or cognitive scientist engaged in the professional pursuit of these de�ntions.

Naive subjects (both adults and children), asked whether it is a matter of fact or

opinion whether something was a dog, responded \fact" to an overwhelming degree

(Kalish, 1998; Armstrong, Gleitman & Gleitman, 1983). Medin & Ortony (1989)

described this phenomenon as \psychological essentialism": even if we don't know

the true rule that picks out instances of a natural kind, we believe that there is some

underlying essence that all members of the kind share, which science has or could

potentially discover. An essentialist position, whether folk or scienti�c, is a rule-

based one; to believe in the existence of some dog essence is to believe that X is a

dog if and only if X has dog essence.

My point in bringing up each of these examples is not to prove that our concepts

really are describable in terms of rules; on the contrary, all of these attempts to

formalize concepts in rule form are either highly arti�cial or, more or less, failures!

Rather, the point is to illustrate that to a great many people over a great many years

of human history, rules for applicability have seemed to be at the core of conceptual

knowledge, or at least as close as we can get to it. I take this as good prima facie

evidence that there is something important about rules worth preserving in a theory

of concept learning. Clearly, from the fact that no one { despite exhaustive e�orts

{ has succeeded in capturing a natural concept in rule form, we can infer that rules
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are not a su�cient basis for our concepts. That's why I propose to extend rule-based

approaches, rather than embrace them and rest. But the most intriguing thing about

rules or de�nitions is how popular they remain despite their consistent failure to

capture the true structure of anything interesting in the real world. I take this as

the best possible evidence that our brains are set up to conceive of the world in this

way, in terms of classes de�ned by rules. If it turned out that rule-based concepts

in fact described the world successfully, their ubiquity would be unsurprising. But

their consistent failure to describe the world, combined with their ubiquity in both

scienti�c and lay thought, provides a \poverty of the stimulus"-like argument for their

primary psychological reality.

More intuitive support for the primacy of rule-based concepts comes from looking

at how rules and similarity intersect in language use. To a �rst approximation, words

are binary symbols; they are either used or not. If we want to comment on the dogness

of X, there is only one word we can use: \dog". We do not have multiple words {

such as \dog", \dogg", \doggg", \dogggg", and so on { to express varying degrees

of dogness or similarity to a dog prototype; we do not have a continuous family of

speech sounds between /dog/ and /kat/ to express the relative similarity of an animal

to the dog prototype versus the cat prototype. The fact that we frequently hedge or

qualify our words { \OK, technically speaking, a chihuahua is a dog; but a german

shepherd, now that's a real dog!" 7 { has been taken as good evidence that there is

more to our concepts than just rules of application (Lako�, 1972). It's a point well

made and well taken, but crucially, it's rule-based statements that are being hedged

to make way for variations in similarity, not the other way around.

The position that a uni�ed theory of concept learning ought to begin from a

rule-based approach is also supported by several technical arguments. Fodor (1998)

has argued that only rule-like representations can support what he sees as the most

important cognitive function of concepts: composition and combination. Rules { in

the form of necessary and su�cient conditions { can be combined with each other

7Or Paul Hogan's famous line from the movie Crocodile Dundee: \That's not a knife.... Now
that's a knife!"
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using the and, or, and not operators of classical logic. Moreover, these logical

combinations preserve the compositionality of meaning: X is a brown cow if and only

if X is brown and X is a cow. Other proposals for conceptual structure { stored

exemplars, feature statistics or theories { do not seem able to combine compositionally.

The Bayesian framework to be developed in this thesis preserves the compositionality

of classical rule-based approaches in cases where it is appropriate, and also makes

clear when such simple compositionality is not appropriate.

Perhaps the best reason to proceed from rules towards similarity is that the classic

explanatory models of similarity have themselves taken precisely this approach { if

under somewhat di�erent names! We have already seen that any similarity-based

account of concept learning requires a exible but constrained notion of similarity.

This means that the similarity between two objects cannot be a primitive relation

in the mind, but must derive from some more fundamental knowledge that allows

similarity to vary across contexts while still imposing some structure on how it is

allowed to vary. Tversky's (1977) well-known contrast model of similarity, mentioned

above, assigns this role to features. Objects are represented as sets of feature elements,

each feature is assigned a weight, and the similarity between two objects is a function

of the total weight of their common features minus the weight of their distinctive

features. But what are features if not rules in disguise? Instead of thinking of objects

as sets of features, we can think of features as sets of objects; the two pictures are

completely equivalent (mathematically speaking, they are dual). Once features are

seen as picking out sets of objects, they are no di�erent from rules. Saying that

two numbers 6 and 4 share the features less than 10 and even is no di�erent from

saying that they both belong to the set of numbers less than 10 or the set of even

numbers; it's also no di�erent from saying that the rules \X is less than 10" or \X is

an even number" classify both 6 and 4 as positive instances. Hence any feature-based

account of similarity is really just a rule-based account in disguise, where two objects

are similar to the extent that they fall under the extensions of the same rules.

Another inuential tradition of similarity models is based on the geometry of

metric spaces, otherwise known as the multidimensional scaling (MDS) approach.
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In MDS, we model the pairwise similarity relations over a set of objects by repre-

senting each object as a point in a low-dimensional metric space and de�ning the

similarity of two objects to be some decreasing function of the distance between their

corresponding points in this \psychological" space (Shepard, 1980). The exibility of

similarity is modeled by stretching or shrinking a set of coordinate axes for this space

(Nosofsky, 1986). Now, it is a non-trivial general �nding of the MDS approach that

similarity is very well described by an exponentially decaying function of distance in

psychological space (Shepard, 1987). The theory that Shepard o�ers to explain the

universality of the exponential decay can { like Tversky's model { be viewed as a

rule-based account of similarity. Shepard proposes that the similarity of two objects

reects the probability that they both belong to an arbitrarily chosen \consequential

region", a subset of the psychological space that corresponds to the extension of a

natural kind concept. Just as we did for Tversky's features, we can view each of these

consequential regions as the extension of a rule. Similarity under Shepard's theory

then measures the probability that two objects will fall under the extension of an

arbitrarily chosen rule.

I will have much more to say about Shepard's (1987) theory later in this thesis

(Chapters 2 and 3) { indeed, it was one of the principal inspirations for the Bayesian

framework developed here. The important point to take away from this discussion is

that the two classic explanatory pictures of similarity { as a measure of feature overlap

or distance in psychological space { can both be viewed as deriving similarity from

a computation over more primitive rule-based representations. This idea will �gure

centrally in the chapters to come, as we see how similarity-based generalization in

concept learning derives from probabilistic operations over an essentially rule-based

generalization mechanism. By formulating concept learning as Bayesian inference

over a base of rule-like hypotheses, we are able not only to account for both rule-

guided and similarity-guided generalization behavior, but also to explain the rational

basis of each kind of behavior, and to predict { within a given domain of objects as

well as across di�erent domains { the conditions under which each will occur.
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1.5.2 Strategy 2: a modular theory

The alternative to unifying rule-based and similarity-based approaches under one the-

ory is to develop a modular theory, which acknowledges the independent importance

of both rule and similarity-based generalization by hypothesizing two distinct concept

learning modules, one for each kind of processing, as well as perhaps a third controller

module for mediating between the other two. The idea that separate rule-based and

similarity-based computations both participate in human concept learning is proba-

bly in fact the modal view in contemporary cognitive science. Analogous proposals

have been made for a number of other aspects of cognition, ranging from reasoning

(Sloman, 1996) to language acquisition (Pinker, 1991). Several authors writing in a

recent special issue of Cognition devoted to the topic (Sloman and Rips, 1998) have

argued that rules and similarity are (the!) two fundamental operating modes for

human minds. In AI, similar ideologies underly the development of hybrid systems

that incorporate various combinations of rule-based and \fuzzy", \case-based" or

\similarity-based" reasoning components (e.g. Sun, 1995). Most relevantly for this

thesis, the categorization judgments of human subjects often seem to reect both

rule-based and similarity-based knowledge (Armstrong, Gleitman & Gleitman, 1983;

Osherson et al., 1990; Smith & Sloman, 1994). People can be taught to classify objects

based on either rule-based or exemplar/similarity-based procedures (Allen & Brooks,

1991), with di�erent brain systems thought to be involved in each case (Smith et

al., 1998). Finally, several authors in the mathematical psychology community have

recently proposed hybrid models of classi�cation learning based on something like a

combination of rule-based and similarity-based modules (Erickson & Kruschke, 1998;

Ashby et al., 1998; Nosofsky, Palmeri & McKinley, 1994; Nosofsky & Palmeri, 1998).

Despite the volume of work already in support of a modular account, there are still

good reasons to develop a uni�ed framework as I do in this thesis. A little exercise

in neuroscience-�ction shows us why. Suppose that we knew for certain that there

were two distinct modules in the brain devoted to concept learning, one specialized

in applying abstract rules and the other in computing similarity to exemplars. Even

50



then, we would still want to know the answers to many questions that only a uni�ed

theoretical treatment can address:

� Why is the processing behind concept learning divided into distinct brain mod-

ules? Does it reect the essential nature of the computational problem of con-

cept learning, the need to achieve an e�cient implementation in neural tissue,

or merely an accident of evolution? Would any machine concept learning system

that hoped to match human performance have to be modular in this way?

� Why are there two modules, and not three? Or seven, or seventeen?

� Why do those two modules implement rule-based and similarity-based compu-

tations, as opposed to some other functions?

� How does each module learn from examples, and why? Are there common

statistical principles that explain how learning works in both modules?

� How do the rule and similarity modules interact? When and why is each module

dominant in behavior? How do they work together to achieve a common pur-

pose? Should we expect to �nd a third module that coordinates their activity,

or should they be able to decide amongst themselves which module will control

behavior in any given situation?

In reality, we certainly don't know yet that these two modules exist in the brain. 8

However, there do seem to be two distinct behavioral modes corresponding to rule-

and similarity-based generalization, and all the above questions about brain modules

apply just as well to understanding dissociations in behavior. Why are there distinct

behavioral modes? Why two? Why these two? How does each mode work? How

do they interact? The Bayesian approach developed in this thesis o�ers a uni�ed

framework for answering all of these questions; no strictly modular theory can.

8Some studies have reported that rule-based and similarity-based computations activate di�erent
brain regions (Smith et al., 1998; Ullman, Corkin, Coppola, Hickok, Growdon, Koroshetz & Pinker,
1997), although the evidence is fairly preliminary.
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Moreover, no modular computational model has yet addressed the fundamental

question that launched this thesis: how can people learn concepts from only a few

positive examples? It's all very well to say that a similarity module handles general-

ization from the single example 16, while a rule module handles generalization from

the four examples 16, 8, 2, and 64, but we still want to know why the rule module set-

tles on the hypothesis powers of two, instead of even number or some other candidate.

Existing modular models (Erickson & Kruschke, 1998; Ashby et al., 1998; Nosofsky

& Palmeri, 1998) are all models of discrimination or classi�cation learning, requiring

both positive and negative examples for meaningful generalization, and thus can say

nothing about this case (see Appendix A for details). In the Bayesian framework, in

contrast, a single statistical principle explains not only why powers of two dominates

even number given the examples f16; 8; 2; 64g, but also why the rule \module" dom-

inates the similarity \module" after those four examples but not when only 16 was

observed. For the phenomena of concept learning from limited positive evidence, a

uni�ed Bayesian theory provides both a deeper and a more parsimonious explanation

than any strictly modular theory has to date.

Finally, it should be clear that the modular and uni�ed modeling strategies need

not be mutually exclusive { if, that is, we believe in multiple levels of explanation a

la Marr (1982). A uni�ed theory may o�er the best explanation of the computational

basis of concept learning, while a modular theory may better describe how those com-

putations are implemented cognitively or in the brain. Heit (1998) makes essentially

this argument in defense of a Bayesian account of category-based induction, which

is closely related to the Bayesian framework for concept learning developed here. In

Chapter 5, I'll come back to this idea that rules and similarity are uni�ed at a compu-

tational level but implemented in a modular fashion, when I discuss psychologically

plausible heuristic approximations to Bayesian concept learning.
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Chapter 2

A solution proposed

In the �rst chapter, I posed the challenge of concept learning in computational terms,

as an instance of the classic problem of induction. Working within the number con-

ceptdomain, I then showed the limitations of the two classic approaches to inductive

inference (testing hypotheses in a space of possible rules and computing similarity to

exemplars), which each account for di�erent aspects of how people generalize beyond

the observed examples of a concept. Finally, I argued that a more complete theory

of concept learning should aim to unify rule- and similarity-based approaches, taking

rules as the basic representation, as opposed to taking similarity as the primitive

notion, or constructing a strictly modular theory with distinct rule- and similarity-

based computations. This chapter follows up on that plan, developing a probabilistic

rule-based approach to concept learning based on the principles of Bayesian inference.

At the risk of wearing out its welcome, I'll continue to use the number concepttask

in this chapter's exposition, for the sake of continuity with the �rst chapter. The

scope of the Bayesian framework is far broader, however, as I will illustrate with ap-

plications to several di�erent domains in the following three chapters. (Readers who

become impatient with this arti�cial example are advised to glimpse every so often

at the pictures of real objects in Chapter 4.)

I should note from the outset that the framework presented here incorporates

and synthesizes many ideas already present individually in the literatures of cogni-

tive psychology, machine learning, Bayesian statistics, and philosophy of science. A
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comprehensive catalog of those inuences is impossible; however, let me acknowl-

edge the strongest inuences of which I am conscious: in psychology, Roger Shepard,

Amos Tversky, Whitman Richards, and Jacob Feldman; in machine learning, Satosi

Watanabe, David Haussler, Tom Mitchell, and Geo� Hinton; in Bayesian statistics,

Sir Harold Je�reys, E. T. Jaynes, Judea Pearl, Glenn Shafer, and David McKay; in

philosophy of science, Karl Popper and Paul Horwich. I should also mention Stephen

Muggleton, whose recent work in Bayesian inductive logic programming (Muggleton,

preprint) independently reaches conclusions about learning from only positive data

that are similar to mine in some important respects. I defer a detailed discussion of

these and other authors' related work until the end of this chapter, after I have laid

out my own framework and its implications.

Recall from last chapter the big question of inductive concept learning, and the

two gaps in the classic rule-based account which the Bayesian framework is meant to

bridge. The big issue is the problem of generalization: how does the learner infer,

from a small set of positive examples of a concept, which other objects are likely to

fall under that concept? Or, in the number conceptexample, why do we infer that,

given the random \yes" examples of 16, 8, 2, and 64, the program probably accepts

all and only the powers of two? In the rule-based approach, the learner adopts a

hypothesis space of candidate extensions for the concept, which does not contain all

logically possible extensions, but only a much smaller subset that are psychologically

natural in the relevant context. In the context of the number concepttask, these

hypotheses might include common mathematical classes such as all powers of two,

but not seemingly unnatural classes like all powers of two, and also 37, all powers

of two, except 32, and so on. The natural hypotheses may also be ranked in order

of a priori plausibility. Upon observing the examples 16, 8, 2, and 64, all of the a

priori natural but now inconsistent hypotheses (e.g. odd numbers, multiples of four)

are eliminated, and the learner chooses the top-ranked remaining hypothesis as his

rule for generalization: e.g. powers of two.

The two big questions left unanswered by this story are as follows. First, why

should the learner settle on one hypothesis, e.g. all powers of two, over others that

54



are equally consistent with the observations f16; 8; 2; 64g and that seem equally or

more natural a priori, such as all even numbers or all numbers less than 100? Second,

how should the learner generalize when no single hypothesis is clearly more compelling

than all others, as after the one example 16? These two problems are not patholo-

gies of arti�cal domains like the number concepttask, but occur frequently in natural

settings such as word learning { whenever the possible concepts in the learner's hy-

pothesis space have nested or overlapping extensions and the learner must generalize

from only one or a few positive examples of the concept.

2.1 Statistical intuitions and generative models

Before diving into the full Bayesian formalism, let me sketch an intuitive picture of

the proposed solution. Consider why, given the examples 16, 8, 2, and 64, we infer

that the program picks out only the powers of two, as opposed to all even numbers,

or all numbers less than 100. We cannot just explain this away on the basis of prior

beliefs about conceptual naturalness, i.e. by assigning the hypothesis all even num-

bers a much lower a priori ranking than all powers of two, as we did for all powers

of two and also 37. This would dictate, counter to intuition, that the hypothesis all

powers of two should be just as strongly preferred over all even numbers after only

one example, e.g. 16, had been observed, or even before any examples were observed!

Rather, a preference for powers of two that emerges only after several examples have

been observed must be intrinsically statistical, something like a drive to detect and

avoid unexplained coincidences in the relation between concepts and their examples.

It's true that the examples f16; 8; 2; 64g are compatible with a program that accepts

all even numbers. In that case, however, it would be a very suspicious coincidence

indeed that no even numbers which were not powers of two appeared in the �rst

four examples, if the examples really were drawn randomly from all acceptable num-

bers. The importance of avoiding \suspicious coincidences" in concept learning was

�rst stressed by Feldman (1997), and has roots in the study of genericity phenom-

ena in vision (Witkin & Tenenbaum, 1983; Koenderink, 1979; Binford, 1981; Lowe,
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1985; Freeman, 1994), Barlow's theories of cerebral cortex (Barlow, 1985, 1996), and

Garner's information theoretic analysis of category structure (Garner, 1962, 1974).

Crucially, the intuition that f16; 8; 2; 64g would be a very \suspicious" set of even

numbers rests on the learner having a particular generative model of his observations,

i.e. an assumption about the process generating the examples he sees. A simple

generative model appropriate in this case is that the examples are independent random

samples from the true concept. That is, each example is chosen at random from all of

the numbers (less than or equal to 100) that the program accepts. If the program picks

out all and only the even numbers, then each example could with equal probability

be any one of the 50 even numbers less than or equal to 100. If the program picks

out all and only the powers of two, then each example could with equal probability

be any one of the six such numbers less than 100. 1 On the other hand, suppose that

instead of randomly sampled examples, the learner himself chooses the examples and

the program merely labels them as \yes" or \no", in accordance with its concept. Or

suppose that the examples were chosen by spinning a 100-sided spinner, or rolling two

10-sided dice. Now, if the learner (or the spinner or the dice) happened to come up

with 16, 8, 2, and 64, and the program said \yes" to all four, what inferences could

we make about the computer's concept? The hypothesis that the program accepts

only the powers of two, rather than all even numbers, is not nearly as strong now

as when the computer generated the examples, i.e. when the examples were taken to

be sampled at random from the concept. The fact that all the examples happen to

be powers of two is still surprising, but the surprise is focused on the learner (or the

spinner or the dice) that happened to choose four powers of two in a row, and not on

the program, which merely labeled all the examples as \yes".

These intuitions will be formalized below. For now, I just want to point to the

1This is also called sampling with replacement. We can imagine that the acceptable numbers are
written on slips of paper in a box, and each example is generated by drawing (sampling) one slip
at random from the box. After the example is recorded, that slip is replaced in the box so that
all numbers have the same chance of being drawn for the next example. In some concept learning
situations, perhaps including this one, it might be more appropriate to consider sampling without

replacement, i.e. where the slips are not replaced after each example. For instance, if we expect
that when the teacher shows us n examples, they will always be n distinct examples, then sampling
without replacement is the right model.
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Strong sampling Weak sampling

Figure 1

importance of generative models for the possibilities of concept learning, and to iden-

tify these two alternative models. I will call the model of examples randomly sampled

from the true concept strong sampling, and models in which the examples are sampled

independently from the concept and merely labeled by it weak sampling models. Of

course other generative models are possible, but these two are some of the simplest

and most natural, and will be the main focus in this thesis. Figure 1 depicts the

di�erence between the strong and weak generative models in graphical format. The

nodes represent the (random) variables relevant to the learning situation; the arrows,

intuitively, represent direct causal inuences (formally, conditional independence re-

lationships; Pearl, 1988).

2.2 The independent need for prior beliefs and

generative models

The traditional source of inductive leverage in rule-based approaches is a strong base

of prior beliefs about the possible extensions of concepts, embodied in the a priori

ranking of hypotheses. This hypothesis space makes generalization from �nite experi-

ence possible, but at a severe cost: any concept not already in the hypothesis space is

not learnable at all, no matter how much data is observed! Now that we are introduc-

ing an additional source of inductive leverage, a generative model which allows us to

rank hypotheses on the basis of the actual observed data rather than on unveri�able

a priori grounds, it might be tempting to think that this statistical constraint is all
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we need, and that we can dispense altogether with the a priori hypothesis space and

the strict limitations on learnability it imposes.

In fact, prior knowledge and generative models provide complementary sources of

constraint, both of which are almost always necessary to learn concepts from small sets

of positive examples. Just as prior beliefs do not help much to explain our preference

for the hypothesis powers of two over the hypothesis even numbers, the drive to avoid

unexplained coincidences under a particular generative model does not help to explain

our preference for powers of two over strange hypotheses like powers of two except 32.

In fact, the coincidence argument slightly favors the strange hypothesis in this cases!

If the program really accepts all powers of two, then it is a minor coincidence that

one such number, 32, did not occur among four random examples all less than 100.

Of course, this could well happen by chance, but appeals to accident should be the

last resort of any explanation. The hypothesis that the program accepts all powers

of two except 32, on the other hand, explains this non-occurence as no coincidence

at all. Yet, we still do not think it likely that this strange hypothesis truly describes

the program's behavior; its slightly better explanation of a marginal coincidence is

more than outweighed by its high prima facie implausibility. 2 Thus, our inference

that the program accepts all and only the powers of two can only be justi�ed by the

interaction of two forces, one pulling us towards our prior belief in simple concepts

and the other pushing us away from unexplained coincidences.

2.3 The Bayesian framework for concept learning

I hope by now it is clear that the interaction between prior beliefs (about the ex-

tensions of possible concepts) and a preference to avoid unexplained coincidences (in

the relation between concepts and their examples) lies at the heart of the human

competence in concept learning. In the remainder of this chapter, I will show that

Bayesian inference provides a natural framework for formalizing and understanding

2The balance could shift, however, as the magnitude of the coincidence increases. What if we
saw these 15 random examples of numbers (less than 100) that the program accepts: 16, 8, 2, 64, 2,
8, 4, 64, 16, 4, 2, 64, 8, 8, 16?
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this interaction. In particular, the Bayesian framework addresses these three crucial

problems of knowledge in concept learning: 3

1. Content: what constitutes the learner's (uncertain) knowledge about which

entities a new concept refers to?

2. Acquisition: how can the learner acquire that (uncertain) knowledge from the

evidence provided { one or more positive examples of the concept, and possibly

(but not necessarily) negative examples?

3. Generalization: how does the learner use that (uncertain) knowledge to gener-

alize the concept, that is, to decide whether a particular new entity falls under

the concept?

I stress the uncertain character of the learner's knowledge as a reminder that con-

cept learning is a species of inductive inference. In contrast to deductive inferences,

which yield conclusions that follow necessarily from their premises, inductive infer-

ences yield conclusions that are merely probable given their premises. 4 Managing

uncertainty must thus be an essential aspect of any inductive system. The formalism

of Bayesian inference provides a principled and coherent framework for representing

and manipulating the uncertainties that arise in concept learning, based on the prob-

ability calculus. The rest of this section gives a high-level overview of a Bayesian

framework for concept learning in terms of the three questions posed above and il-

lustrates it on the number-program game; a richer and more technical picture of the

theory will be the subject of Chapters 3-5 (and Appendices B and C).

3These questions are patterned after Chomsky's organizing question for the study of language.
See, e.g. Chomsky (1986).

4For a good discussion on the di�erences between inductive and deductive inference, see Skyrms
(1986).
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2.3.1 What constitutes the learner's knowledge about a new

concept's extension?

We assume, as in the classic rule-based approach, that our knowledge about which

entities a concept refers to can be represented in terms of a hypothesis space H of

possible extensions of the concept. 5 The elements of this space H are our basic

hypotheses about what the concept could refer to; each hypothesis corresponds to

some candidate extension for the concept, some subset of the relevant universe of

entities. In the case of learning the word \dog", these hypotheses might include

various subsets of animals that could plausibly be the set of all dogs. In the case

of the number-program game, the hypothesis space could include all the previously-

mentioned possible subsets of numbers that the program might accept { powers of

two, even numbers, powers of two except 32, numbers less than 100, etc. { and many

others as well.

After we have seen a sequence X = fx1; : : : xng of n examples of a concept C, our

knowledge about C's extension in the classic rule-based approach consists of a subset

of H corresponding to those hypotheses which are consistent with the examples in

X. This subset of hypotheses in H consistent with X has been called the version

space of X (Mitchell, 1979), which we will write as HX . As we see more examples

and rule out more hypotheses in H as inconsistent with our observations, the version

space HX shrinks and we reach increasingly more certain states of knowledge about

C's extension.

In the Bayesian framework, our knowledge about C's extension is more �ne-

grained and thus more powerful than just HX . Instead of monitoring only whether

a hypothesis is consistent or not, we maintain a probability distribution over the hy-

pothesis space, indicating how likely each hypothesis is to be the true extension of C.

We denote this probability as p(hjX), the probability that hypothesis h is the true

extension of the concept, given the n examples fx1; : : : xng that we have seen so far.

5I certainly do not mean to imply that we can represent all of our knowledge about a concept
in this way, merely the information that is, to �rst order (i.e. ignoring inter-concept interactions),
relevant for identifying new instances.

60



These probabilities are numbers between 0 and 1 reecting our degree of belief in h;

p(hjX) is near 1 only if we are quite con�dent that h is the true extension, near 0 if

we are quite con�dent that h is not the true extension, and somewhere in between if

we are somewhat uncertain. As probabilities, these degrees of belief are normalized

to sum to 1 over the hypothesis space H:

X
h2H

p(hjX) = 1:

This means that if we believe one hypothesis is almost certainly the concept's true

extension, then we must be almost certain that all the other hypotheses are not.

In order to assign probabilities over the hypotheses, they must be assumed to be

mutually exclusive and exhaustive descriptions of the true state of a�airs. In other

words, one and only hypothetical extension is assumed to be the true extension of

the concept.6

Note that if we assign zero probability to any hypothesis that is not consistent

with one or more examples, then the distribution p(hjX) contains all the information

in the version space HX . But in fact, it contains much more information, in marking

some consistent hypothesis as more likely than others.

Figure 2 illustrates a simple hypothesis space for the number concept game and

a probability assignment over that space, given that we have seen the one positive

example 16, i.e. X = f16g. For present purposes, the exact probability values and

how they are determined are not important; I take up these issues in the next section.

Also, for the sake of concreteness, we have considered only a small set of simple

mathematical hypotheses: odd numbers, even numbers, square numbers, multiples of

j for 3 � j � 10, numbers ending in the digit j for 1 � j � 9, and powers of j for

2 � j � 10. These are meant to be representative only, and many more hypotheses

than those shown would be considered by a real human learner or a realistic computer

simulation. (The simulation of number conceptlearning in Chapter 5 uses more than

6If it seems odd to call two hypotheses like powers of two and even numbers mutually exclusive
(because every power of two is an even number), remember that powers of two is really short for
\the extension of C consists of all and only the powers of two."
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5000 hypotheses.) For their instructive value, we also consider a \default" hypothesis,

corresponding to all numbers between 1 and 100, and two \unnatural" hypotheses,

corresponding to the powers of two except 32 and the powers of two, and also 37.

Observe that the distribution is rather \broad" or \at": a number of hypotheses

are assigned roughly similar probabilities, and all are rather small. 7 In general,

broad probability distributions represent a high degree of uncertainty in our state

of knowledge, whereas highly peaked distribution represent states close to certainty.

The most peaked distribution possible has all of the probability mass on a single

hypothesis; this corresponds to being absolutely certain that we know the extension

of the concept. 8

The broad distribution in Figure 2 is reasonable, because after seeing only one

example of the concept, we are still rather unsure of how to generalize the concept to

other numbers. The distribution is not completely at, however; seeing the example

16 does give us some information about which numbers the program is likely to accept.

Looking at Figure 2, certain hypotheses, like powers of four, powers of two, or even

numbers, receive a relatively high probability. Others, like powers of two except 32

or numbers between 1 and 100, receive a relatively low probability. Still others, like

odd numbers, receive zero probability. Figure 3 shows the probability distribution

p(hj16; 8; 2; 64) after we have seen four examples. Now we are pretty certain that

the program accepts all and only the powers of two, which is represented by a highly

peaked distribution concentrated on that one hypothesis.

7Many roughly equal probabilities implies that they must all be much less than 1, due to the
normalization condition.

8The degree of uncertainty in a probability distribution can be quanti�ed by information-theoretic
measures such as the entropy, J(hjX) = �

P
h2H p(hjX) log p(hjX). See Cover & Thomas (1991)

for an introduction to information theory, and Attneave (1959), Dretske (1981), and Bobick (1987)
for some applications of these ideas in cognitive science.
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2.3.2 How is this knowledge acquired from observed exam-

ples?

Having shown how to represent our more or less uncertain knowledge about a con-

cept's extension using probability distributions, we now consider how these proba-

bilities could be determined from the observed examples. In general, the probability

assignments p(hjX) can be determined by Bayes' rule,

p(hjX) =
p(Xjh)p(h)

p(X)
; (2.1)

and thus depend on the product of the two terms p(Xjh) and p(h). 9 The likelihood

p(Xjh) measures the probability that we would observe the examples X if h were

in fact the true extension of the concept. The prior probability p(h) measures how

probable we think it is that h is the extension of the concept before we have observed

any examples. The posterior probability p(hjX) measures our belief in h after we

observed the examples X.

Bayes' rule is central to the theory of concept learning, because it capture the

intuitive interaction between our prior beliefs about the extensions of possible con-

cepts and our preference to avoid unexplained coincidences in the relation between

concepts and their examples.

9There are two (linked) reasons why, for the moment, we don't need to worry about the denomi-
nator p(X) in Equation 2.1, First, it is independent of h and only serves to enforce the normalization
constraint

P
h2H p(hjX) = 1. Second, because the hypotheses in H are assumed to be a mutually

exclusive and exhaustive set of events, the laws of probability tell us that p(X) can be expressed
strictly in terms of the other two terms in Equation 2.1: p(X) =

P
h2H p(X jh)p(h). Notice how this

expansion of p(X) ensures the normalization constraint:

X
h2H

p(hjX) =
X
h2H

p(X jh)p(h)

p(X)

=
X
h2H

p(X jh)p(h)P
h0
2H

p(X jh0)p(h0)

=

P
h2H p(X jh)p(h)P
h02H

p(X jh0)p(h0)

= 1:

65



2.3.3 The prior: p(h)

First consider the term p(h). Now one might ask, how could we have any idea about

the probability that some hypothesis h is the true extension of the concept before

we have seen any examples? However, as I argued above, we do in fact have such

beliefs, and they embody our fundamental ideas about conceptual naturalness. In the

number concept game, before we have seen even the �rst example 16, we do think it

more likely that this program (or any program) picks out all and only the powers of

two than that it picks out all the powers of two except 32, or all of the powers of two

and also 37. A child learning the word \dog" knows that it is more likely that this

word (or any word) picks out all and only the dogs in the world, than that it picks

out all dogs except Aunt Sally's, or all dogs and also the Lone Ranger's horse (but

nothing else). Not only are priors empirically real, they are in principle necessary

for any kind of inductive inference to succeed (Goodman, 1955; Watanabe, 1985;

Mitchell, 1980); recall my argument above that all powers of two except 32 would be

a better explanation of the observed examples 16, 8, 2, and 64 than all powers of two

if not for the former's high prima facie implausibility.

Figure 4 illustrates a possible prior distribution over the simple number-game

hypothesis space from Figure 2. The distribution is quite at, reecting our large

degree of uncertainty before any examples have been observed. However, it crucially

gives very low weight to bizarre hypotheses such as all powers of two except 32, placing

essential constraints on the inductions we can make from any �nite set of observations.

Let's also assume that we are somewhat biased towards the two simplest hypotheses

even numbers and odd numbers, reected in those two hypotheses' relatively higher

prior weight in Figure 4. This bias will make things a little more interesting later on

when we compare alternative Bayesian models, but is otherwise inconsequential to

the main points of this chapter.

Of course, the distribution depicted in Figure 4 represents only one possible state

of knowledge that a learner could be in before observing any examples of the number

concept. The appropriate priors { and the resulting generalization behavior { would
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clearly be di�erent in the case of a child who knows only how to count and pick

out even and odd numbers, but nothing of powers, multiples, and other mathemati-

cally distinguished subsets of integers; or in the case of a mathematician who knows

about primes, triangular numbers, Fibonacci numbers, and many other distinguished

subsets.

More dramatically, a particular person might, in di�erent contexts, have knowl-

edge that leads him to generalize quite di�erently from exactly the same stimuli.

Suppose we know that the numbers we are observing represent some physically mean-

ingful quantity, such as cholesterol levels in the blood. Suppose moreover that the

computer, instead of implementing some arbitrary program, is programmed to de-

tect healthy blood levels of cholesterol (although of course we don't know what those

healthy levels are { that's the learning challenge!). As before, we are given a few

positive examples of the concept { numbers representing examples of healthy choles-

terol levels { and asked to judge the probability that a new number also represents

a healthy level. Given 1200, 1500, 900, and 1400 as examples of healthy cholesterol

levels, 1183 seems quite likely also to be healthy while 400 seems rather unlikely to be

healthy. However, given the same four numbers as positive examples in the number-

program domain, 1183 would seem much less likely and 400 much more likely to be

acceptable by the program.

Traditional models of concept learning have not been able to accomodate the range

of background and contextual knowledge that human learners may have available to

them (Heit, 1997), and this severely limits their applicability. In the Bayesian frame-

work of this thesis, such knowledge e�ects can be modeled and understood as shifts

of the learner's prior probability distribution over the hypothesis space of possible

concept extensions, or as shifts of the hypothesis space itself. The di�erent roles of

prior knowledge in concept learning, and their e�ects on generalization behavior, will

be explored extensively over the case studies of the next three chapters.

It should also be noted that there is no clear line between the choice of a hypothesis

space and the choice of a prior. Omitting a particular hypothesis from the hypothesis

space is equivalent to including it but assigning it a prior probability of zero. Hence
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we can think of the choice of hypothesis space as an initial, qualitative prior which is

then subject to further re�nement in the assignment of p(h).

2.3.4 The likelihood: p(Xjh)

We now turn to the likelihood term p(Xjh). To compute the probability of observing

the examples in X given that hypothesis h is the true extension of the concept, we

require some assumption about the process that generates the examples and how it

depends on the hypothetical extension. This is where the construct of a generative

model, introduced above, enters into the formal theory.

A simple and powerful generative model that I will invoke frequently in this thesis

is the strong sampling model, already alluded to above:

Strong sampling: the observed examples of a concept are sampled ran-

domly and independently from the concept's (unknown) extension.

I call this model \strong sampling" because it treats the examples as a random

sample and makes the strong assumption that this sample comes from the true con-

cept. Of course, strong sampling is only one possible generative model for the exam-

ples of a concept. Other important possibilities include:

� Strong sampling with identi�cation noise: the examples are usually ran-

dom and independent samples from the concept's extension, but with some

small probability they are instances from outside the extension that have been

incorrectly identi�ed as positive instances.

� Weak sampling: the examples are generated by some random source inde-

pendent of the true concept, and then labeled positive or negative according to

their membership in the concept.

� Feedback: the observed examples are provided in the form of feedback occa-

sioned by the learner's own use of the concept. Feedback may be either positive,

i.e. con�rmations of correctly identi�ed instances, or negative, i.e. corrections

of incorrectly indenti�ed instances.
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� Helpful teacher: the observed examples are deliberately chosen to be in some

sense optimally informative about the concept's extension.

Each of these models suggests a somewhat di�erent learning strategy, and there

are natural situations under which each might be the most appropriate. Moreover,

they can all be formalized in a Bayesian framework; I will have more to say about

this later on. However, I have three principal reasons for taking strong sampling as

the default. First, it is in some sense the most basic model; of the others listed,

the �rst two are variations on it and the second two invoke resources (a deliberate

teacher or feedback source) which may often not be available. Second, strong sampling

describes in simpli�ed form the most typical instances of supervised concept learning.

Imagine that objects in the world appear according to some �xed (known) probability

distribution p. Suppose also that every time a positive instance of concept C appears,

there is some (perhaps quite variable) probability q that it will be labeled (e.g. in word,

gesture, image) by a competent user of C (e.g. by mommy, daddy, a friend, a child).

Assuming p and q are independent (which is quite an assumption), strong sampling

is the right generative model. Of course, word learning and other natural situations

are never as simple as this or any of the other models we might write down in one or

a few equations. Yet, it's somewhere to start. In Appendix C, I will consider some

ways to make this model more realistic by incorporating the possibilities of mislabeled

examples, homonyms and polysemy.

The �nal reason to focus on strong sampling is that it embodies a crucial insight

into how people can learn concepts from positive examples only. In particular, it

allows the likelihood term p(Xjh) in Equation 2.1 to implement our preference for

avoiding unexplained coincidences in the relation between the concept to be learned

and the examples we observe. To see why this is so, consider that the probability of

randomly sampling any particular object out of a set containing m objects is 1=m.

The probability of sampling any particular ordered pair of objects (under independent

sampling and with replacement) from the same set is 1=m2, and in general, the

probability of sampling any particular sequence of n objects from the set is 1=mn.

The key insight is this: as the size m of the set we sample from gets larger, the
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probability of obtaining any particular sequence of objects gets smaller by a factor

that depends exponentially on the number n of samples.

By the same reasoning, if X denotes a sequence of n randomly sampled examples,

then the likelihood of observing this evidence given a particular hypothetical extension

h for the concept is simply

p(Xjh) =

"
1

size(h)

#n
; (2.2)

if h includes those n objects, and 0 if it does not include one or more of them. We

will often denote size(h) as jhj. This simple equation will be crucial for understanding

many of the results derived in the thesis, so it deserves a name: the size principle.

In reading this thesis, if you remember only one equation other than Bayes' rule

(Equation 2.1), let it be Equation 2.2 and the size principle.

The size principle can be seen as a quantitative form of Ockham's razor, \Enti-

ties should not be multiplied without necessity." Given the examples fx1; : : : ; xng,

Ockham prefers the hypothesis with the minimal \number of entities" necessary to

explain their occurence. This is always just the set X = fx1; : : : ; xng itself if X 2 H,

or else the smallest hypothesis in H containing the set X. Any larger hypothesis pos-

tulates \unnecessary entities", i.e. potential examples which have not actually been

encountered. In general, the smaller the hypothesis, the fewer \unnecessary entities"

it postulates and the more Ockham { and the size principle { like it. This idea of a

thoroughly objective version of Ockham's razor, based on the range of data that a

hypothesis can predict, is central in the Bayesian statistics literature (Je�reys, 1961;

Je�erys & Berger, 1992; Gull, 1989). Largely through the work of David McKay

(1992), it has begun to penetrate into the statistical learning and neural computa-

tion �elds. Recently, Muggleton (preprint) has introduced the idea in the context of

inductive logic programming. This thesis is the �rst attempt to apply a size-based

Ockham's razor to understanding the central problem of concept learning: how hu-

mans (or machines) can learn concepts from only one or a few positive examples.

To make the implications of the size principle more concrete, let us return to

the number concept game, and suppose, as before, that we have seen one exam-
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ple which the program accepts: x1 = 16. Assuming that 16 is randomly sam-

pled from all numbers less than 100 that the program accepts, then the likelihood

p(16jpowers of two) = 1=6 = :1666 : : :, because there are 6 powers of two less than

100. Similarly, p(16jeven numbers) = 1=50 = :02, because there are 50 even numbers

less than 100, p(16jnumbers less than 20 ) = 1=20 = :05, because there are 20 num-

bers less than 20, and so on. However, p(16jodd numbers) = p(16jpowers of 10 ) = 0,

because there is no way that 16 could have been sampled from either of those subsets.

Figure 5 illustrates all the likelihoods p(16jh) for our hypothesis space. The message

is simple: while many hypothetical extensions are consistent with the one example,

the likelihoods that they assign to it vary inversely with their size. Smaller, more

speci�c hypotheses (e.g. all powers of two) assign a higher likelihood to { and thus

receive greater inductive support from { a consistent example than do larger, more

general hypotheses (e.g. even numbers).

Figure 6 shows how the likelihoods evolve as we see a few more examples. The

di�erences between hypotheses already present after one example become increasingly

exaggerated with each successive example, due to the size principle's exponential

dependence on the number n of examples observed (see Equation 2.2). After four

examples have been observed, the di�erence in likelihood between all powers of two

and even numbers comes to 1=64 = 7:7 � 10�4 vs. 1=504 = 1:6 � 10�7. Don't be

deceived by the small absolute values; what counts is the ratio, which favors all

powers of two by a factor of almost 5000:1. This quanti�es the earlier intuition that

it would be a very suspicious coincidence indeed to observe four examples which were

all powers of two, if in fact the program accepted all even numbers. To sum up the

e�ect of the size principle in words:

Size principle: smaller hypotheses are more likely than larger hypothe-

ses, and they become exponentially more likely as the number of consistent

examples increases.

One aspect of Figure 6 may be disturbing: after four examples, the preferred

hypothesis all powers of two does not have the highest likelihood. In fact, the \bizarre"
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hypothesis all powers of two except 32 beats out all powers of two by about 2:1

after four examples, because the former { missing 32 { is slightly smaller than the

latter. (Recall the intuition from before that the non-appearance of 32 in the �rst

four examples is a minor coincidence that is slightly better explained by this bizarre

hypothesis.) This is why it is essential that not all logically possible hypotheses

receive equal prior probability, and in particular, that such bizarre hypotheses receive

near-negligible priors to compensate for their slight likelihood advantage.

Figure 7 shows how the combination of priors and likelihoods into posterior prob-

abilities p(hjX), given by Bayes rule (Equation 2.1), evolves from 0 to 4 examples.

Notice that the single sharp peak in the posterior attained after 4 examples (Figure

7, right column) is present in neither priors (Figure 4) nor likelihoods (Figure 6, right

column) alone. It is only the product of these two terms, balancing a pull towards

our prior beliefs with a push away from unexplained coincidences, that shapes the

\peak" of relatively certain knowledge which we can acquire from just a few positive

examples.

2.3.5 How is this knowledge used to generalize the concept?

Finally, we consider how the learner can use this probabilistic knowledge about a

concept's extension to judge which new stimuli will belong to the concept. Intuitively,

when our knowledge takes the form of a distribution concentrated exclusively on

a single hypothesis h�, as is practically true after seeing the four examples 16, 8,

2, and 64 (Figure 7, bottom row), generalization should be a trivial matter. Any

new stimulus y either belongs to h� or not, and so the probability that the concept

generalizes to y is 1 if y is in h� and 0 otherwise. In other words, when we have

no remaining uncertainty about the concept's extension, generalization should be an

all-or-nothing behavior.

However, our state of knowledge is frequently far from this ideal of certainty. In

the case of a complex natural concept like \dog", merely observing a few examples will

not be su�cient to determine its extension precisely. Even in the arti�cial world of the

number concepttask, uncertainty is common. After we have seen only the one example
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16, our knowledge consists of a broad distribution over many possible extensions

(Figure 7, 2nd column). After the second example, 8, our uncertainty has been

reduced but there is still more than one reasonably plausible hypothesis (Figure 7,

3rd column). Only after some more examples, 2 and 64, does our knowledge approach

a state of certainty (Figure 7, right column). Given such uncertain knowledge about

the concept's extension as we have in Figure 7, columns 2 and 3, how are we to

generalize, to decide which new stimuli { 17; 87; 4; 31; 32; : : : { the concept might

apply to?

In the Bayesian framework, we cast the problem of generalization as computing

p(y 2 CjX), the probability that a new stimulus y belongs to concept C, given the

set X of previously observed examples. Our hypothesis space H is what enables us

to make the leap from the events we have seen, X, to the event we have not seen,

y 2 C. If we did accept a particular hypothesis h as a concept's true extension, i.e. if

our posterior probability was concentrated exclusively on h, then we should identify

a new entity as an instance of the concept if and only if it falls inside h. Formally,

p(y 2 CjX) would would equal 1 for all y 2 h and 0 for all y 62 h. When more than

one hypothesis receives signi�cant posterior probability, a Bayesian learner computes

p(y 2 CjX) by averaging the predictions of all these hypotheses, weighted by their

respective posterior probabilities p(hjX). In other words, we \count up" the number

of hypothetical extensions that include y relative to the number of hypotheses that

do not include y, with each hypothesis counted in proportion to its posterior p(hjX).

The resulting ratio gives the odds that y does in fact fall under the concept.

Here's a concrete illustration. Suppose that after we have observed the examples

X, there remain 10 consistent hypotheses. Suppose also, for simplicity's sake, that

these 10 hypotheses receive equal posterior probability assignments. Then a new

object y which happens to fall inside 9 out of 10 of these hypotheses has 9:1 odds

of being an instance of C, or p(y 2 CjX) = .9. An object that falls inside 3 out

of 10 hypotheses belongs to C with probability .3, and so on. Note that each of

the observed examples in X is by de�nition consistent with all 10 of the candidate

hypotheses, and thus belongs to C with probability 1. Hypotheses with unequal
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posterior probabilities present no di�culty; they are simply counted unequally, in

proportion to their probability.

Formally, this prescription for generalization by averaging over the set of consistent

hypotheses follows from the probability calculus and two additional premises: �rst,

that whether or not y belongs to C is conditionally independent of the examples X,

given that h is the true extension of C; second, that p(y 2 Cjh), the probability that

y falls under C given that h is the true extension of C, equals 1 if and only if y 2 h

and 0 otherwise. From the conditional independence of y 2 C and X, we have 10

p(y 2 CjX) =
X
h2H

p(y 2 Cjh)p(hjX): (2.3)

Recall the version space Hy, which denotes the subset of H that is consistent with the

stimulus y. The condition y 2 h is then equivalent to the condition h 2 Hy. Because

p(y 2 Cjh) = 1 if h 2 Hy and 0 otherwise, the only terms that actually contribute

to the sum over h in Equation 2.3 are those with h 2 Hy. Thus we can rewrite the

probability of generalization as

p(y 2 CjX) =
X
h2Hy

p(hjX): (2.4)

This is the formal statement of the above claim, that the probability of y belonging

to C given the examples X is computed by \counting up", or summing, the posterior

probabilities p(hjX) of all hypotheses including y.

The generalization probability from Equations 2.3 or 2.4 can be written in yet

one more form, which is often the most useful expression for actually computing a

10The complete derivation of Equation 2.3:

p(y 2 CjX) =
X
h2H

p(y 2 C; hjX)

=
X
h2H

p(y 2 Cjh;X)p(hjX)

=
X
h2H

p(y 2 Cjh)p(hjX)
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numerical answer or thinking about its signi�cance: 11

p(y 2 CjX) =

P
h2HX;y

p(h)=jhjnP
h2HX

p(h)=jhjn
: (2.5)

Here HX;y denotes the version space of X [ fyg (i.e. the subset of hypotheses consis-

tent with both X and y). This form can be interpreted intuitively as follows. Based

on the examples X, each hypothesis is assigned a score p(h)=jhjn that is the prod-

uct of two terms: p(h), which favors extensions with high a priori probability, and

p(Xjh) = 1=jhjn, which favors smaller extensions to a degree that increases exponen-

tially with the number of examples. The score thus formalizes the trade o� between

our prior beliefs about the natural extensions of concepts and the size principle, the

statistical version of Ockham's razor favoring better explanations of the data (under

the assumption of strong sampling). The probability of generalizing from the ex-

amples X to the new stimulus y is simply the ratio of the total score of hypotheses

containing both y and X to the total score of all hypotheses containing X. The more

hypotheses that include both y and X, and the higher the scores those hypotheses

receive, the more likely we are to conclude that y belongs to the concept exempli�ed

by X.

Figure 8 shows the probability of generalization for every number between 1 and

100, given the examples 16 (top row), f16; 8g (middle row), and f16; 8; 2; 64g (bottom

11This form comes from expanding the posterior p(hjX) in terms of priors and likelihoods (Equa-
tion 2.1) and inserting the explicit value of the likelihood under the strong sampling model (Equa-
tion 2.2). From Bayes' theorem and the constraint that

P
h2H p(hjX) = 1, we can write

p(hjX) =
p(X jh)p(h)P
h2H p(X jh)p(h)

:

Plugging this into Equation 2.4, we obtain

p(y 2 CjX) =
X
h2Hy

p(X jh)p(h)P
h2H p(X jh)p(h)

:

Finally, we use the fact that p(X jh) = 1=jhjn if h 2 HX (Equation 2.2), and 0 otherwise, to obtain

p(y 2 CjX) =

P
h2HX;y

p(h)=jhjnP
h2HX

p(h)=jhjn
:
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row). Observe the di�erent kinds of generalization behavior that arise after one

example and after four examples. Initially, given just 16, generalization is graded.

Most numbers receive probabilities of belonging to the concept that are greater than

0 but signi�cantly less than 1. Numbers very similar to 16, such as 4 or 64, receive

higher probabilities than moderately similar numbers, such as 10 or 20, which in turn

receive higher probabilities than very dissimilar numbers, such as 63 or 87. 12

As more examples are observed, generalization rapidly sharpens up to a practically

all-or-none function focused on the most speci�c hypothesis consistent with all the

12Notice how di�erent these theoretical generalization gradients look from the real judgments of
human subjects reported in Chapter 1, Figure 3. Remember this simulation uses only 30 hypotheses
and leaves out many that subjects probably used in the actual experiment. In Chapter 5, we present
a more comprehensive model with over 5000 hypotheses that captures human generalization behavior
much better than the toy model considered in this chapter.
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observations: all powers of two. Numbers that �t this rule receive probability close to

1, and all other numbers receive probability close to 0. Once again, the reason that

this rule emerges { as opposed to other consistent hypotheses like all even numbers or

all numbers between 1 and 100 { and the reason it emerges so quickly { after just four

examples { is the size principle (Equation 2.2): hypotheses corresponding to smaller

extensions make the examples more likely than do hypotheses corresponding to larger

extensions, and by a factor that increases exponentially with the number of examples

observed.

Fundamentally, what determines whether generalization will be sharp or graded

{ rule-like or similarity-like { is the width (technically, the entropy) of the posterior

probability distribution p(hjX). The broader the posterior distribution, the less cer-

tain we are of the concept's true extension. When the probability mass is very spread

out, as when we have seen only one example (Figure 7, 2nd column), many hypotheses

each contribute to the average in Equation 2.3 and a broad gradient of generalization

is the result. Figure 9 illustrates the process of averaging over all consistent hypothe-

ses in this case. When p(hjX) is concentrated narrowly on a single hypothesis, as

when we have seen four examples (Figure 7, right column), only that one hypothesis

contributes sign�cantly to the average in Equation 2.3 and generalization appears to

be based in an all-or-none fashion on that rule. Figure 10 illustrates this concretely.

Thus we can see that the Bayesian framework has achieved the two main theoret-

ical goals set out in Chapter 1. First, it explains how we can converge on a concept

after seeing only a few positive examples. While many hypotheses may be equally

consistent with the examples, the most speci�c hypothesis provides the best expla-

nation for the occurence of the examples, in a statistical sense. Second, it accounts

for how we can generalize when no single hypothesis dominates. By averaging the

predictions of all consistent hypotheses weighted by their probability, we obtain a

graded probability of generalization for any new object { a natural and principled

measure of the similarity of that new object to the set of observed examples. At least

in the domain of simple number concepts, we have succeeded in unifying rule-based

and similarity-based generalization under a single theoretical framework. One basic
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principle, the size principle, explains how the observed examples can shape the rel-

ative strengths of competing rules, and more deeply, can shift the very character of

generalization from what appears to be a similarity mechanism to what appears to

be a rule-based mechanism.

2.4 Variants of the Bayesian framework

In this section, I will discuss a number of existing approaches to concept learning

that can be seen as variants of the Bayesian framework developed here. Several

of these were direct inspirations for the present work. Others correspond more or

less to traditional rule- or similarity-based accounts of inductive inference. These

correspondences tie into the theme of the last section; just as the Bayesian theory can

explain both rule-like and similarity-like generalization behavior, it also contains as

special cases the standard rule-based and similarity-based models for those behaviors.

I should note that this section is not meant to be an exhaustive review of the

category learning literature. In particular, several important models of classi�cation

learning from cognitive psychology such as Kruschke's (1992) ALCOVE model, An-

derson's (1991) \rational model", and various adaptive network models (e.g. Gluck &

Bower, 1988; Estes, 1994) are not addressed here. These are models of discrimination

learning, which require negative examples in order to generalize meaningfully and

thus are not appropriate for the kinds of concept learning tasks that are the focus

of this thesis. Appendix A discusses these alternatives and their di�culties in more

detail.

To make clear the relationships between the di�erent variants of Bayesian concept

learning that we will consider, let me �rst summarize the four crucial ingredients of

the Bayesian framework of this thesis:

Summary of the Bayesian framework

1. The notion of a constrained hypothesis space of possible extensions of a con-

cept, and a probability distribution over that space, representing the learner's

state of knowledge as to which entities a concept refers to;
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2. An informative prior distribution over the hypothesis space reecting the

background and contextual knowledge that the learner brings to the task;

3. The size principle for scoring the likelihood of hypotheses under the strong

sampling generative model, favoring smaller consistent hypotheses with expo-

nentially greater weight as the number of observed examples increases (Equa-

tion 2.2);

4. The notion of hypothesis averaging, i.e. integrating the predictions of mul-

tiple consistent hypotheses, weighted by their posterior probabilities, to arrive

at the probability of generalizing a concept to a new entity (Equation 2.3).

Figure 11 illustrates the more or less sequential combination of these four ingre-

dients that makes up the Bayesian framework. In the discussion to follow, I will

refer to these ingredients both by number { ingredient 1, 2, 3, and 4 { or by their

catch-phrases { hypothesis space, prior, size principle, and hypothesis aver-

aging. What all the approaches below have in common is their use of a constrained

hypothesis space (ingredient 1), plus some kind of Bayesian or statistical procedure

for generalization, employing a combination of ingredients 2, 3, or 4. The approach

I propose in this thesis is the �rst to combine all four ingredients. To distinguish it

from the other alternatives, I will call this approach Strong Bayes, emphasizing the

power that comes from combining Bayesian generalization with the strong sampling

generative model.

After outlining each alternative approach below, I will evaluate its behavior on
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the number concept game using the same toy hypothesis space we used above (minus

the two \bizarre" hypotheses all powers of two except 32 and all powers of two, and

also 37). Besides giving a sense for the contributions of previous work, this will help

us to see why all four ingredients { combined for the �rst time in this thesis { are

necessary to understand how people learn and generalize concepts from just a few

positive examples.

Also, I should make clear what the major alternative to each ingredient is. There

is no alternative to ingredient 1; without some kind of constraints on the hypothesis

space, generalization from �nite evidence is hopeless. The alternative to ingredient 2,

an informative prior distribution, is to assume that all hypotheses are equally likely

a priori (i.e. p(h) = 1=jHj, for all h 2 H). The alternative to ingredient 3, the

size principle, is to use binary likelihoods that measure only whether a hypothesis

is consistent with the data (i.e. p(Xjh) = 1 if h 2 HX , and 0 otherwise). The

alternative to ingredient 4, hypothesis averaging, is to always pick the single most

probable hypothesis (i.e. h� = argmaxh p(hjX)) and generalize strictly according to

its extension (i.e. p(y 2 CjX) = 1 if y 2 h�, and 0 otherwise).

2.4.1 Simple hypothesis elimination: ingredient 1 only

I introduced the \simple hypothesis elimination" model in Chapter 1 as the most basic

rule-based approach to induction, and I include this case here for completeness only.

It assumes a constrained hypothesis space, but no statistical machinery in the form

of ingredients 2-4. Hypotheses are not scored, but merely accepted or rejected based

on whether or not they are consistent with the observed examples { the hypothetico-

deductive method. This model is equivalent to Hovland's (1952) \communication

analysis" of concept learning, and also forms the basis of Mitchell's (1982, 1997)

candidate-elimination algorithm.

Without any way to compare hypotheses based on likelihood, this simple rule-

based model has no way to generalize meaningfully from either the single example

16, or the four examples f16; 8; 2; 64g (Figure 12). In both cases, multiple hypotheses

are consistent with the observations and there is no principled reason (within this
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approach) to choose one hypothesis over the others. This was the main motivation

in Chapter 1 for looking at more sophisticated rule-based models.

2.4.2 Ranked hypothesis elimination: ingredients 1 and 2

In Chapter 1, I suggested that the simple hypothesis elimination approach might

be amended to ensure that a single best hypothesis could always be found. If the

hypotheses are ranked according to some a priori measure of conceptual naturalness,

we can always generalize by choosing the highest ranked hypothesis that has not

been eliminated as inconsistent with the observed examples. This \ranked hypothesis

elimination" approach is equivalent to ingredients 1 and 2 without ingredients 3 or

4. It also corresponds loosely to various proposals for concept learning and inductive

inference in the philosophical literature, e.g. Fodor (1975), Howson & Urbach (1989).

Figure 13 shows the generalization behavior of this approach given the example

sets f16g and f16; 8; 2; 64g, assuming the prior distribution in Figure 4. Because this

approach lacks ingredient 4, generalization is always based on a single rule and thus

always appears all-or-none. Because it lacks ingredient 3, generalization will always
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be determined strongly by the prior. The prior in Figure 4 places more weight on the

hypothesis all even numbers than on other consistent hypotheses, and thus the learner

generalizates from both f16g and f16; 8; 2; 64g to all even numbers with probability

1 (and all other numbers with probability 0).

2.4.3 MIN: ingredients 1 and 3

A more adaptive rule-based approach is the MIN algorithm for inductive inference.

MIN says: always choose the smallest (i.e. most speci�c) hypothesis consistent with

the observed positive examples. Because the smallest hypothesis also receives highest

likelihood under the size principle, MIN can be thought of as implementing ingredient

3 without ingredients 2 or 4. Alternatively, MIN can be thought of as a maximum

likelihood algorithm, a standard approximation to Bayesian inference which becomes

equivalent to Bayes in the limit of in�nite data, as the likelihood dominates the prior

(Duda & Hart, 1973).

MIN has been proposed many times in many di�erent inductive inference contexts.

Popper (1959) suggests MIN as a way for scientists to choose among several competing
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theories that all survive attempts at falsi�cation by experiment. Bruner, Goodnow

& Austin (1956), in the original cognitive studies of human concept learning, found

evidence that MIN was a strategy commonly used by their subjects. In machine

learning, Kearns & Vazirani (1994) and Mitchell (1997) present overviews of the

theoretical properties of MIN algorithms. Valiant (1984) and Haussler (1988) proved

some of the earliest formal learnability results for MIN, working in the probably

approximately correct (PAC) learning paradigm (see Kearns & Vazirani (1994) for an

introduction). In language acquisition, Pinker (1984), Berwick (1985) and Wexler &

Manzini (1987) have all explored the usefulness of MIN for learning natural language

grammars from only positive evidence. Last but not least, Feldman (1997) proposed

a version of MIN in a framework for concept learning that was one of the direct

inspirations for the present work.

With the exception of Feldman, none of these earlier authors thought of MIN

in a probabilistic context, as a maximum likelihood algorithm or otherwise. Quite

the contrary, Popper and many linguists working with MIN were actively opposed to

the idea of statistical inductive learning. Instead, MIN has usually been justi�ed in

terms of some kind of asymptotic consistency argument: i.e. in the limit of in�nite

(or su�ciently many) data, it allows the learner to converge (or get arbitrarily close)

to the true concept from only positive evidence. I'll return to the issue of justifying

MIN in the discussion chapter.

Figure 14 shows MIN's performance on the number concepttask. Again, because

MIN does not incorporate hypothesis averaging (ingredient 4), its generalization be-

havior is always strictly all-or-none. Given the one example 16, the minimal consis-

tent hypothesis is all powers of four, so only 4 and 64 receive a nonzero probability

of generalization. Given the four examples f16; 8; 2; 64g, the smallest consistent hy-

pothesis is all powers of two and MIN generalizes exactly the same as Strong Bayes.

In general, as more examples are observed, the extent of MIN's generalization can

only become broader or remain unchanged. This conservatism is what gives MIN its

asymptotic consistency guarantees; we never have to worry about \overshooting" the

true concept. Because Bayesian inference asymptotically converges to the maximum
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likelihood hypothesis, and MIN is a maximum likelihood algorithm under the strong

sampling generative model, MIN and strong Bayes must become equivalent after suf-

�ciently many examples have been observed, as happens here after four examples.

But MIN's conservatism after just one example runs strongly counter to intuition.

As MIN is such an important benchmark algorithm, I will return to it as a standard

of comparison many times in subsequent chapters.

2.4.4 MAP: ingredients 1, 2, and 3

Even more sophisticated than MIN is the MAP algorithm. This approach is equiva-

lent to adding an informative prior (ingredient 2) to MIN, or alternatively, to Strong

Bayes, without the �nal step of hypothesis averaging (ingredient 4). That is, hypothe-

ses (ingredient 1) are scored based on the combination of their a priori naturalness

(ingredient 2) and the likelihood they assign to the data, under the assumption that

the examples are random samples from the true concept to be learned (ingredient

3). The strong sampling generative model leads to the size principle favoring smaller

hypotheses as the number of exampes increases, just as in Strong Bayes. However,
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unlike strong Bayes, the MAP Bayes learner always chooses the single hypothesis

with maximum posterior probability as the sole basis for generalizing to new stimuli

(hence the name MAP, for \Maximum A Posteriori").

Figure 15 shows MAP Bayes generalization on the number conceptexample. In

order to illustrate the di�erence between MAP Bayes and MIN (i.e. Maximum Like-

lihood), I've exaggerated the prior to favor the hypotheses all even numbers and all

odd numbers over the other possibilities to an even greater extent than in Figure 4.

(A priori, all even numbers and all odd numbers are now 10 times more likely than

powers of two and all the rest.) As a result, after just the one example 16, the prior

bias of 10:1 in favor of all even numbers outwieghs the likelihood's preference for

smaller concepts like multiples of four (2:1 preference over even numbers) or powers

of 2 (~9:1 preference); generalization extends to all even numbers with probability 1.

In contrast, after 8, 2, and 64 have been observed, the likelihood term dominates the

prior, with a preference of 5000:1 in favor of powers of two over all even numbers;

generalization extends only to the powers of two. Thus, the strong sampling model

(ingredient 3) allows MAP Bayes to converge on the most speci�c rule after just a few

91



examples. However, without hypothesis averaging (ingredient 4), MAP Bayes cannot

account for similarity-based generalization, or for the shift from similarity-based to

rule-based generalization as the number of examples increases.

A MAP Bayes model of inductive inference was �rst proposed by Watanabe (1960),

and adapted to the case of concept learning by Hunt (1962). Horwich (1982) shows

how a MAP Bayes model of induction illuminates a number of long-standing puzzles

in the philosophy of science. Working in the context of inductive logic programming,

Muggleton (preprint) has recently suggested that the principles of MAP Bayes could

explain how people learn natural language grammars from only positive evidence.

Muggleton's insight is essentially the same as mine here: a strong sampling-type gen-

erative model provides the key to learning from positive examples only, by trading

o� the size of a hypothesis against its a priori probability. His goal and theoretical

analysis are quite di�erent, however. Muggleton's focus is on establishing the asymp-

totic learnability (i.e. in the limit of in�nite data) of languages and other complex

logical systems, for which the size of each hypothesis in H may not be known in

advance. A good part of the learning problem in Muggleton's case is estimating the

size of the relevant hypotheses; hence, full Bayesian generalization by averaging over

all hypotheses in H is not really an option for him. In contrast, my focus is on how

people generalize concepts for which they already have a notion of size from just one

or a few examples; hypothesis averaging is then essential, in order to understand the

relation between similarity-based and rule-based modes of generalization.

2.4.5 Weak Bayes (uninformative prior): ingredients 1 and 4

We now turn to variants of the Bayesian framework which incorporate the idea of

averaging the predictions of all consistent hypotheses (ingredient 4). Mitchell (1997)

proposes a simpli�ed version of optimal Bayesian concept learning, in which every

hypothesis receives equal prior probability and every consistent hypothesis receives

equal likelihood. The motivation for equal priors, or an \uninformative prior", comes

from trying to make as few nonempirical assumptions as possible. The motivation for

equal likelihoods comes from a weak sampling assumption, as opposed to the strong

92



4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

0

0.5

1
 p

(y
 ∈

 C
 |1

6)

Weak Bayes (uninformative prior)

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

0

0.5

1

 y

 p
(y

 ∈
 C

 |1
6,

 8
, 2

, 6
4)

Figure 16

sampling assumption we make here which leads to the size principle. For this reason,

I will call this approach Weak Bayes, and the approach developed in this thesis using

the strong sampling model Strong Bayes.

To compute the probability of generalization, the predictions of all consistent

hypotheses are averaged just as in Strong Bayes. Because of the uniform priors and

binary likelihoods, the generalization probability takes a very simple form:

p(y 2 CjX) =
jHX;yj

jHX j
;

where j � j denotes the cardinality of the corresponding version spaces.

Figure 16 shows the behavior of this approach in the number concepttask. Unlike

the previous two approaches, we now obtain a more intuitive gradient of generalization

from the single example 16. However, after we observe the three more examples 8, 2,

and 64, we do not converge to anything like all-or-none generalization on the powers

of two. This is because the predictions of all consistent hypotheses are averaged

independent of their size or the number of examples observed. In particular, there
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are three hypotheses consistent with the set of examples f16; 8; 2; 64g: all powers of

two, all even numbers, and all numbers less than 100. With no sense that one of

these hypotheses should be more likely than the others, numbers such as 88 which

fall under two consistent hypotheses receive a high probability (i.e. 2/3) of being

accepted by the program, and numbers such as 87 which fall under one consistent

hypothesis recieve a lower but still quite appreciable probability (i.e. 1/3). Intuition

suggests both of these probabilities should be much closer to 0 than they are under

this Weak Bayes model. Worse yet, it is impossible for Weak Bayes to converge on

the true concept from only positive examples. No matter how many powers of two

we see, we will never rule out any more hypotheses and the relative probabilities of

generalization will stay constant at these values.

2.4.6 Weak Bayes (informative prior): ingredients 1, 2, and

4

The Weak Bayes approach becomes slightly more powerful when an informative prior

(ingredient 2) is added { but only slightly. This version of Weak Bayes was thoroughly

studied by Haussler, Kearns & Schapire (1994), who also introduced a stochastic

variant they called the Gibbs algorithm that was inspired by work in the statistical

mechanics of learning from examples (Seung, Sompolinsky, & Tishby, 1992). In cog-

nitive psychology, Heit (1999) has presented a Bayesian analysis of category-based

induction that is equivalent to this Weak Bayes model.

Formally, the posterior probability of a hypothesis is now given simply by renor-

malizing the prior over all those hypotheses consistent with the observed examples:

p(hjX) =
p(h)P

h2HX
p(h)

: (2.6)

Inserting these values for p(hjX) into Equation 2.5, the probability of generalization

becomes:

p(y 2 CjX) =

P
h2HX;y

p(h)P
h2HX

p(h)
: (2.7)

94



4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

0

0.5

1
 p

(y
 ∈

 C
 |1

6)

Weak Bayes

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

0

0.5

1

 y

 p
(y

 ∈
 C

 |1
6,

 8
, 2

, 6
4)

Figure 17

Figure 17 shows the behavior of this approach in the number concepttask. Because

the prior is so weak in this case, there is little di�erence over the results without an

informative prior (Figure 16). Generalization still follows a gradient similarity to

the observed examples, with no sign of ever converging to a rule (due to the lack of

ingredient 3). The one noticeable change from Figure 16 is that whether or not a

number is even receives much higher weight in determining generalization, because of

the strong a priori bias towards all even numbers in the prior (Figure 4).

From the standpoint of cognitive psychology, Weak Bayes models are important

because they correspond to standard similarity-based approaches to concept learning.

Recall the identi�cation of hypotheses with \features" I suggested in Chapter 1 (i.e.

two objects share a feature corresponding to each hypothesis that they both belong

to). Then Weak Bayes with an uninformative prior (Equation 2.4.5) corresponds to

computing similarity based on a simple count of features common to all examples in

X and the new object y, relative to the number of features common to all examples

in X. Using an informative prior (Equation 2.7) corresponds to taking weighted

versions of the same feature counts, with the weight of each feature determined by
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the prior probability of the corresponding hypothesis. These models are thus very

closely related in spirit to Tversky's (1977) classic feature-based models of similarity.

Shepard's (1987) derivation of the universal law of generalization (see discussion

in Chapter 1 (Section 1.5.1) and Chapter 3 (Section 3.2.3)) can also be seen as a Weak

Bayes model of concept learning under an informative prior. Shepard was trying to

understand the rational basis of the similarity gradients that are observed empirically

when organisms are required to generalize from a single example. He showed that

under an appropriate Weak Bayes learning model, generalization gradients from a

single stimulus approximate an exponentially decaying function of distance in the

psychological space of stimuli. For readers not familiar with Shepard's work, we will

go through a very similar derivation in Chapter 3, where we consider the problem

of generalization in a continuous stimulus space, which was the concrete focus of his

work.

Note that Shepard (1987) did not formulate his analysis in the explicit form of

Weak Bayes; because he considered generalization from only a single example, he

never faced the problem of nonconvergence illustrated in Figures 16 and 17. His work

was one of the main inspirations for this thesis, because he was the �rst in psychology

to give a rational analysis of generalization, and the �rst to show that a graded sense

of similarity was the rational consequence of averaging over many consistent discrete

hypotheses. Russell (1986) gives an alternative rational analysis for the universal law

of generalization, focusing on stimuli represented by discrete features (see also Gluck,

1991). Tversky's (1977) theory, of course, also derives similarity from averaging over

discrete features, but without the basis in a rational analysis of the inductive inference

problem the organism is trying to solve. Stern (1991) explicitly noted that Tversky's

model could be given a rational basis, using essentially a Weak Bayes argument. I will

return to the connection between the Shepard and Tversky approaches to similarity

when I discuss heuristics for concept learing (Chapter 5).
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2.4.7 Conclusion

We have shown that many previous models of concept learning can be seen as limiting

cases of the Bayesian framework presented in this thesis. In particular, di�erent cases

reduce to some of the most well-known learning algorithms based on either rules or

similarity. MIN corresponds to a popular rule-based approach that is guaranteed to

converge to the true extension of a concept given enough su�ciently many examples.

Weak Bayes encompasses two of the major paradigms for modeling similarity-based

generalization, Tversky's (1977) feature contrast theory and Shepard's (1987) \psy-

chological space" analysis. We'll see more of both MIN and Weak Bayes in coming

chapters, when we try to evaluate the extent to which rules or similarity are capable

of describing the generalization behavior of human learners in real learning tasks.

In addition to showing the connections between my work and many previous mod-

els of concept learning, I hope this section has clari�ed the role that each ingredient

of the Bayesian framework plays in guiding generalization. The constrained hypoth-

esis space (ingredient 1) allows for the very possibility of generalization from �nite

evidence and is common to all approaches discussed above. The prior (ingredient

2) allows pre-existing conceptual biases (e.g. towards more familiar concepts like all

even numbers) to override statistical information when very little data (e.g. 1 exam-

ple) is available. The size principle (ingredient 3), a statistical principle derived from

the strong sampling assumption, enables the learner to converge on the true concept

after just a few examples. Finally, by averaging the predictions of all hypotheses

weighted by their probability (ingredient 4), the learner can automatically shift be-

tween similarity-based and rule-based modes of generalization as a function of how

con�dent he is of the concept's true extension.

It is really the combination of ingredients 3 and 4 { the size principle and hy-

pothesis averaging { that allows us to model the interaction of rules and similarity

in concept learning. Previous models that incorporate the size principle but not hy-

pothesis averaging (i.e. MIN and MAP) can converge to the best rule after several

examples, but do not show the phenomena of graded generalization by similarity af-
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ter only a single example (Figures 14 and 15). Models that incorporate hypothesis

averaging but not the size principle (i.e. Weak Bayes approaches) can generalize by

similarity but can never converge to the true concept no matter how many examples

are observed (Figures 13 and 14). This thesis is the �rst work to recognize the impor-

tance of both the size principle and hypothesis averaging for learning concepts from

just a few positive examples, and thus the �rst theory capable of unifying both rule-

and similarity-based generalization under a single explanatory framework.
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Chapter 3

Case Study #1: Learning concepts

in continuous feature spaces

The �rst two chapters have laid out the computational problems of learning and

generalizing concepts from just a few positive examples and shown how these problems

can be addressed in a Bayesian framework. In the next three chapters, I present a

series of detailed case studies of the framework, each in a di�erent domain of concept

learning. These case studies serve both an empirical purpose and a theoretical one.

On the empirical side, they show how the Bayesian approach is able to predict actual

human behavior on a range of di�erent learning tasks and across di�erent stimulus

domains. On the theoretical side, these studies seek to explain what it is about

these di�erent domains { or really, about the di�erent kinds of hypothesis spaces that

people bring to (or generate in) these domains { that give rise to what looks like such

di�erent patterns of generalization.

3.1 Introduction

Let me introduce the domain for the �rst case study. Consider a population of people

coming in for a medical checkup. Suppose that for each person, we can measure only

two numerical features: their blood concentration levels of insulin and cholesterol.

Thus we can represent each person by a point in a two-dimensional feature space
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(Figure 1). Suppose that a doctor shows us four examples of people considered to

have healthy blood levels of cholesterol and insulin (indicated by +'s in Figure 1),

and our job is to judge whether people with di�erent blood levels of these substances

(indicated by ?'s in Figure 1) should also be identi�ed as healthy.

Although it may not look like it at �rst, this \healthy levels" task is a very sim-

ple instance of concept learning. The concept \healthy levels" corresponds to some

subset of the possible pairs of blood concentration levels of insulin and cholesterol {

some region of the feature space depicted in Figure 1. We are given four random pos-

itive examples from this concept, four points known to belong to this region, and we

are required to generalize the concept, i.e. to decide which other points are likely to

belong to this region. Obviously, this is a very impoverished kind of concept learning.

Nonetheless, like the number concept game intoduced in the last chapter, it is worth

our attention because it isolates the essential challenge of inferring how far and in

what ways to generalize a concept beyond the observed examples, in a form that is
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analytically tractable and very amenable to empirical study in human subjects. Com-

pared to the last chapter's number concept game, the prior knowledge relevant for

this task is relatively simple: cholesterol and insulin are both important biochemical

substances produced naturally by the human body in some range of healthy con-

centrations, becoming unhealthy when they exceed some unknown maximum healthy

level or fall below some unknown minimum healthy level. Moreover, the healthy levels

task is very similar to other learning tasks studied empirically in cognitive psychology

(Shepard, 1964; Nosofsky, 1986) and explored theoretically in the literature on pat-

tern recognition (Duda & Hart, 1973) and machine learning (Mitchell, 1997). This

will facilitate comparisons of the present framework with the results of previous work.

This chapter begins by reviewing how existing theoretical frameworks for concept

learning could be applied to the healthy levels task. I will show that standard rule-

based (i.e. MIN) and similarity-based (i.e. Weak Bayes) learning algorithms are each

inadequate on their own, but can be thought of as special cases of a Strong Bayes

model that yields intuitively plausible patterns of generalization from one or more

positive examples. I will then present an experiment with human subjects on the

healthy levels learning scenario. The Bayesian framework provides a close quantitative

�t to how people actually generalize in this task, suggesting an explanation for some

aspects of the human ability to generalize concepts from only a few positive examples.

3.2 Theoretical analysis

3.2.1 Classical approaches

Let us begin by considering how standard approaches from the rule- and similarity-

based traditions behave on this task. For rule-based concept learning, we �rst need

to specify a hypothesis space of possible rules for picking out the concept's extension;

for similarity-based learning, we need to specify a similarity metric on this feature

space.

101



+ +

+ +

C

−

−

−

− +

+

+ +

+

+

+
+

+

++

+

(a) (b) (c)

Figure 2

Hypothesis space: axis-parallel rectangles

Suppose that the concept \healthy levels" applies to any individual whose cholesterol

and insulin levels are each greater than some minimum healthy level and less than

some maximum healthy level. Then the concept \healthy levels" corresponds to

a rectangle in the two-dimensional feature space de�ned by cholesterol and insulin

levels; in particular, a rectangle parallel to the coordinate axes of this space. If the

extent of the concept along each of these dimensions is assumed to be independent

a priori, then the hypothesis space H should consist of all axis-parallel rectangles

in this space. Figure 2 illustrates the notion of a rectangle concept (a) and several

possible hypotheses about its extension that are consistent with three examples (b).

In machine learning, the problem of learning axis-parallel rectangles is a com-

mon textbook example used to illustrate models of concept learning (Mitchell, 1997;

Kearns & Vazirani, 1994), and it is also the focus of state-of-the-art theoretical work

and applications (Dietterich et al., 1997). Rectangle learning tasks are not well known

per se in cognitive psychology, but many experimental studies of human learning have

investigated very similar tasks (Shepard, 1964; Goldstone, 1994; Nosofsky, 1986), with

stimuli de�ned over two perceptually separable dimensions (e.g. size and brightness)

and concepts de�ned by simple dimensional rules (e.g. size � 3, 2 � brightness � 5).

Shepard's (1987) analysis of generalization in a two-dimensional separable feature

space, one of the direct inspirations for this case study, also uses a hypothesis space
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of axis-parallel rectangles. 1

Similarity metric: city-block distance

We can assume that we have a metric, or distance measure, along each dimension

separately, corresponding to the di�erence between two levels of cholesterol or insulin

measured in the relevant units. Let dj = dj(x; y) denote the di�erence between

two points x and y on dimension j. What we need is a way to combine these one-

dimensional distances into a two-dimensional distance, and then a way of turning

that 2-D distance into a measure of similarity suitable for generalization.

The natural way to combine distances along two separable dimensions is called

the city-block, or L1, metric (Shepard, 1987). In the city-block metric, the distance

between two points is just the sum of their distances along each dimension individ-

ually. In order to allow for di�erent units on each dimension, or for the possibility

that one dimension is more important than the other in determining similarity, we

will allow for two scale parameters �1 and �2 which weight the relative contribution

of each dimension to the total distance (analogously to \north-south" vs. \east-west"

block length). Thus we have

d(x; y) =
d1

�1
+
d2

�2
: (3.1)

As a result of several classic experimental studies (Shepard, 1987; Nososfky, 1992),

it is generally accepted that similarity in separable feature spaces is best modeled as

an exponentially decaying function of city-block distance:

SIM(y!x) = expf�d(x; y)g

1The case of generalization in multidimensional feature spaces with integral dimensions is not
treated in this thesis, but there are several possibilities ways it might be treated. One possible
hypothesis space suggested by Shepard (1987) includes only regions with equal extent along both
dimensions, i.e. square instead of rectangular regions. Another possible hypothesis space includes
rectangles with all possible orientations in feature space, i.e. not only those aligned with a partcular
set of axes in the space. This second possibility is discussed in Appendix C. Both kinds of hypothesis
spaces would give rise to a Euclidean metric for generalization from a single example, but would
give rise to very di�erent behavior after multiple examples are observed. I leave it to future work to
decide between these and other possibilities.
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= expf�(
d1

�1
+
d2

�2
)g:

3.2.2 Generalization based on rules vs. similarity

Neither a hypothesis space of possible rules nor a pairwise similarity metric is a

complete model of concept learning. Any rule-based algorithm must specify some way

of choosing the best hypothesis to guide generalization; any similarity-based algorithm

must specify how an object's pairwise similarity to each of the examples gives rise to

its setwise similarity to the set of examples as a whole. (Recall the extensive discussion

of these issues in Chapter 1.) Here we consider two simple algorithms, min rule and

max sim, chosen as representatives of the wide range of possible approaches from

the rule- and similarity-based traditions. Both of these algorithms have a history in

human and machine learning, and both will soon be recognizable as variants of the

Bayesian framework that were discussed at the end of Chapter 2.

Given a set of examples X = fx1; : : : ; xng, the min rule algorithm chooses the

most speci�c rule hmin (i.e. the rule with the minimal extension) that is consistent

with all the examples in X. Under the city-block metric above, hmin is just the

rectangle with smallest volume that contains all the positives. 2 The probability of

generalization is then 1 for any object y 2 hmin, and 0 for any object outside hmin. In

the machine literature, min rule is the standard algorithm for concept learning with

axis-parallel rectangle hypotheses (Haussler, 1988; Kearns & Vazirani, 1994; Mitchell,

1997). In cognitive psychology, min rule was one of the principal strategies adopted

by human concept learners in the classic studies of Bruner et al. (1956), and was also

the main focus of Feldman's (1997) studies of perceptual concept learning { another

direct inspiration for the present work.

The max sim algorithm de�nes the probability of generalization to a new object

2More generally, the minimal rule can be de�ned without a metric, as long we have a partial
ordering of hypotheses by inclusion (Mitchell, 1982; Feldman, 1997).
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y as the maximum pairwise similarity of y to each of the examples in X,

p(y 2 CjX) = max
i

SIM(y!xi): (3.2)

Under the exponentially decaying similarity function introduced above (Equation 3.2),

max sim is equivalent to

p(y 2 CjX) = expf�min
i
(di1=�1 + di2=�2)g; (3.3)

where i ranges over all examples in X and dij denotes the distance from y to example

i along dimension j. Because it is much easier to analyze, we will consider a variation

on Equation 3.3 that assumes that the generalization function is separable in the two

dimensions of our feature space:

p(y 2 CjX) = expf�(min
i
di1=�1 +min

i
di2=�2)g: (3.4)

De�ning �dj = mini d
i
j, this generalization function becomes

p(y 2 CjX) = expf�( �d1=�1 + �d2=�2)g: (3.5)

Finally, we will replace �dj with an \e�ective distance" ~dj that is equal to �dj only

outside the range spanned by the examples (i.e. when y lies outside the min rule

bounding rectangle); inside the range of the examples, ~dj = 0. This e�ective distance

incorporates the prior knowledge that the region of healthy levels corresponds to a

continuous interval along each dimension. The generalization algorithm that results

from incorporating this prior knowledge along with separability into max sim will be

called max sim
�:

p(y 2 CjX) = expf�( ~d1=�1 + ~d2=�2)g: (3.6)

For lack of any a priori preference between the two dimensions, we will assume �1 = �2

in all that follows.

In the machine learning tradition, max sim or max sim
� are closely related to
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the standard nearest neighbor technique for classi�cation, in which each new object

y is assigned to the class with the most similar training exemplar. Of the vari-

ous similarity-based models for concept learning in the psychological literature, max

sim has been considered to be the most exible and robust alternative for modeling

higher-level cognitive tasks (Goldstone, 1994; Medin & Florian, 1995; Osherson et

al., 1990); other proposals (summed or average similarity { see section 1.4.2) would

have qualitatively similar results.

Figure 3 (�rst two columns) shows how the two simple algorithms min rule and

max sim
� generalize from several di�erent sets of healthy level exemplars. For max

sim
� we plot the contours of equal probability of generalization at intervals of 0:1

between p = 0:1 and p = 0:9. The bold curve corresponds to p(y 2 CjX) = 0:5, a

natural boundary for generalizing the concept and a standard for comparison with

min rule. Intuitively, min rule seems to provide a reasonable model when a large

number of examples have been seen (row 3), but appears far too conservative in gener-

alizing from only a few examples (row 1). Also, min rule's conservative bounds seem

more justi�ed when the examples are more tightly clustered (row 4, horizontal direc-

tion) than when they are relatively spread out (row 4, vertical direction). max sim
�

shows the opposite behavior, generalizing reasonably from a few evenly distributed

examples (row 1), but generalizing just as liberally beyond the observations regard-

less of their number and distribution (rows 2, 3, & 4). More generally, the very idea

of graded, similarity-based generalization seems most appropriate when only a few,

evenly distributed examples have been observed (row 1), while all-or-none, rule-based

generalization seems more appropriate after many examples have been observed to

lie in a given region (row 3), or the examples have been observed to cluster tightly

along one dimension (row 4).

Thus it appears that no single existing model will su�ce for all cases of concept

learning from positive evidence in the healthy levels domain. In other learning con-

texts, either min rule or max sim
� might be perfectly appropriate for modeling

generalization in a continuous feature space with separable dimensions. In particular,

min rule is a PAC learning algorithm for the rectangles task, which means that it
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is guaranteed to get arbitrarily close to the best rectangle concept given su�ciently

many (with an emphasis on many) examples (Kearns & Vazirani, 1994). But in this

problem, over 100 examples are required to reduce the error rate below 5% with 95%

con�dence, according to the simple bound in chapter 1 of Kearns & Vazirani (1994).

When both positive and negative examples are available, max sim (or really its close

cousin, nearest neighbor classi�cation) is guaranteed asymptotically (i.e. as the num-

ber of examples goes to in�nity) to come within twice the error rate of the optimal

Bayesian classi�er, and frequently does much better than expected with a \reason-

able" (i.e. in the hundreds) number of examples (Duda & Hart, 1973). However,

neither of these guarantees are of any use for the problems we are most interested in:

understanding how people can learn concepts from just a few positive examples.

Figure 3 (last column) shows how the Bayesian framework for concept learning

introduced in Chapter 2 combines the best of simple rule-based and similarity-based

algorithms on this task. The Strong Bayes concept learner generalizes liberally and in

a graded fashion where similarity-based generalization seems most appropriate (row

1), but sharpens up to more conservative, practically all-or-none behavior when rule-

based generalization is called for (rows 3 and 4). The same kind of transition from

similarity-based to rule-based generalization was illustrated on the number concept

game in Chapter 2, Figure 8, and is a hallmark of the Bayesian approach. The

Bayesian model's ability to infer how far and in what ways to generalize { whether

on the number concept game, the healthy levels task, or the word learning task in

the next chapter { comes from the same source: the combination of a hypothesis

space of candidate rules with a probabilistic model of our observations. This allows

us to weight di�erent consistent hypotheses as more or less likely to be the true

concept based on the particular examples observed. Speci�cally, we assume that

the examples are generated by random sampling from the true concept (the strong

sampling of Chapter 2). This leads to the size principle: smaller hypotheses become

more likely than larger hypotheses (Figure 2b { darker rectangles are more likely), and

they become exponentially more likely as the number of consistent examples increases

(Figure 2c). Together with the idea of hypothesis averaging, the size principle is the
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key to understanding how we can learn concepts from only a few positive examples.

3.2.3 The Strong Bayes model

This section gives a mathematical description of the Strong Bayes algorithm for learn-

ing rectangle concepts, and shows precisely how the min rule and max sim
� algo-

rithms emerge as special cases. This section features the heaviest mathematics of the

thesis. As a respite in the midst of it all, I will pause halfway through and try to

build up an intuitive picture of the Bayesian framework's behavior.

Recall the four components of the Bayesian framework for modeling concept learn-

ing, summarized at the end of Chapter 2:

Summary of the Bayesian framework

1. The notion of a constrained hypothesis space of possible extensions of a con-

cept and a probability distribution over that space, representing the learner's

state of knowledge about which entities a concept refers to;

2. An informative prior distribution over the hypothesis space reecting the

background and contextual knowledge that the learner brings to the task;

3. The size principle for scoring the likelihood of hypotheses under the strong

sampling generative model, favoring smaller consistent hypotheses with expo-

nentially greater weight as the number of observed examples increases;

4. The notion of hypothesis averaging, i.e. integrating the predictions of mul-

tiple consistent hypotheses, weighted by their posterior probabilities, to arrive

at the probability of generalizing a concept to a new entity.

In Chapter 2, each of these elements was illustrated on the number concept task;

here we adapt the same ingredients to the healthy levels task. The one major di�er-

ence is that we are now working over continuous spaces of objects and hypotheses.

As a result, probability distributions become probability densities and sums become

integrals. But all of the machinery of probability theory carries over to continuous
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spaces (Je�reys, 1961), and up to these two changes, the mathematical derivation of

the theory here will look just like Chapter 2. I should add that this derivation has

much in common with Je�reys' (1961) analysis of interval estimation and Shepard's

(1987) analysis of one-trial generalization, and my presentation below owes much to

the expositions of both Shepard and Je�reys.

We have already speci�ed our hypothesis spaceH to be the space of all axis-parallel

rectangles in our two-dimensional feature space. For mathematical simplicity, we will

assume for now that this feature space has in�nite extent in all directions and deal

with the consequences later. Then we can denote each rectangle hypothesis h by a

quadruple h(l1; l2; s1; s2), where li 2 [�1;1] is the location of h's upper-right corner

and si 2 [0;1] is the size of h along dimension i.

During learning, we observe n positive examples X = fx1; : : : ; xng of concept C

and want to compute the generalization function p(y 2 CjX), i.e. the probability

that some new object y belongs to C given the observations X. Our probabilistic

model consists of a prior density over the hypothesis space, p(h), and a likelihood

function p(Xjh) for each hypothesis h 2 H. We �rst consider the likelihood, which

is the more generally applicable and explanatorily central aspect of the model. Just

as in Chapter 2, we will focus on the case of strong sampling { examples are random

samples from the true extension of the concept { which leads to likelihoods inversely

related to hypothesis size. In the simplest case, each example in X is assumed to be

independently sampled from a uniform density over the concept C. For n examples

we then have:

p(Xjh) = 1=jhjn if 8i; xi 2 h (3.7)

= 0 otherwise;

where jhj denotes the size of h. For rectangle h(l1; l2; s1; s2), jhj is simply s1s2.
3

3Here we are implicitly using the similarity metric on our feature space introduced at the begin-
ning of this chapter. Unlike min rule (see Note 1), the Bayesian model requires a metric on our
space of objects (technically, only a measure), in order to be able to assign a probability density
over the hypotheses (which are subsets of that space).
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Note that because each hypothesis must distribute one unit mass of likelihood over

its volume for each example (
R
x2h p(xjh)dh = 1), the probability density for smaller

consistent hypotheses is greater than for larger hypotheses, and exponentially greater

as a function of n. This is the mathematical basis behind the size principle for

scoring hypotheses (illustrated in Figures 2b and 2c, with darker rectangles being

more likely). 4

We now turn to the prior probability p(h). The appropriate choice of p(h) de-

pends on our background knowledge. If we have no a priori reason to prefer any

rectangle hypothesis over any other, we can choose the scale- and location-invariant

uninformative prior (Je�reys, 1961; Berger, 1985), 5

p(h(l1; l2; s1; s2)) = 1=(s1s2): (3.8)

4While I stress the case of learning concepts from positive examples only, it is easy to adjust
the likelihood to include the inuence of negative examples as well. However, this does require
that we have a generative model for the negative examples, which may be quite di�erent from our
generative model for the positives. For instance, consider the case of word learning. Adults will
spontaneously use a word together with the objects it applies to, thus explicitly letting kids know
that those objects are positive examples of the word. This process of generating examples can
be described by the strong sampling model, as I argued in Section 2.3.4. However, adults do not

spontaneously and explicitly give kids negative examples of a word's use; they do not (in general) go
around saying things like, \Look at the cute non-doggie!", or \Would you like some non-apple juice
with your applesauce?" Adults do, on the other hand, sometimes provide negative evidence about
word meaning in the form of corrections to kids' misidenti�cations: \No, that's not a dog, that's a
bear." This feedback is a form of weak sampling (as de�ned in Chapter 2) and does not give the
same kind of information about the size of a concept's extension that strong sampling does, because
the object labeled was not sampled from the true concept. The easiest way to incorporate negative
feedback like this is just to set the likelihood to zero for any extension that includes one or more
negative examples.

5The usual justi�cation for the 1=s density as an \uninformative" prior comes from its invariance
(up to a constant) under power transformations of the variable s. Consider a nonlinear scaling
u = sm for some power m. Then by the chain rule, the prior becomes

p(u)du = p(u)msm�1ds:

This will be proportional to p(s)ds if p(u) = 1=u. In other words, choosing a prior of p(s) = 1=s
is equivalent to choosing the same prior for any power of s. Because the uninformative prior,
when combined with the strong sampling likelihood (1=sn), leads to a posterior of the same form
(/ 1=sn+1), the uninformative prior is said to be a conjugate prior for the uniform distribution of
data that we assumed under strong sampling. The fact that the uninformative prior is conjugate
to the likelihood we use is a convenience which makes analysis more tractable, but it does not
reect any deep correspondence between the two probability densities. It is perfectly reasonable to
use the strong sampling likelihood with other priors, such as Equations 3.9 or 3.10, when they are
appropriate to describe the learner's state of knowledge prior to seeing any examples.
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In any realistic application, however, we will have some prior information. For exam-

ple, we may know the expected size �i of rectangle concepts along dimension i in our

domain. If that is all we know, the appropriate prior is a maximum entropy density

(Berger, 1985), which takes the form of an exponential function:

p(h(l1; l2; s1; s2)) = expf�(s1=�1 + s2=�2)g: (3.9)

In other situations, we may want the prior to capture additional qualitative knowledge

about the possible sizes of concepts. For example, we may expect that concepts have

a typical size of �i, and that concepts very much smaller (si � 0) or larger (s >> �i)

than this are extremely rare. In that case, an Erlang density is appropriate:

p(h(l1; l2; s1; s2)) = s1s2 expf�(s1=�1 + s2=�2)g: (3.10)

All three of these densities are standard choices in the Bayesian literature for priors

on scale variables like si. They are also all special cases of a Gamma density (with

� = 0, 1, and 2, respectively), which for one variable s takes the form

p(s) / s��1 expf�s=�g: (3.11)

By setting the two parameters � and � appropriately, we can usually capture the basic

form of our prior knowledge about the sizes of a concept's extension in a continuous

feature space. These three priors are illustrated in Figure 4.

One of these priors p(h) is then combined with the size-based likelihood p(Xjh)

to compute the posterior probability p(hjX) using Bayes' rule:

p(hjX) =
p(Xjh)p(h)

p(X)
(3.12)

=
p(Xjh)p(h)R

h0 p(Xjh
0)p(h0)

: (3.13)

Finally, the generalization function p(y 2 CjX) is determined by integrating the

112



0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

s

p(
s)

Uninformative prior (Gamma with α → 0)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

s

p(
s)

Exponential prior (Gamma with α = 1)

0.5 1 1.5 2 2.5 3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

s

p(
s)

Erlang prior (Gamma with α = 2)

p(s) = 1/s

p(s) = exp(−s/σ), σ = 1

p(s) = s exp(−s/σ), σ = 1

Figure 4

113



predictions of all hypotheses, weighted by their posterior probabilities p(hjX):

p(y 2 CjX) =
Z
h2H

p(y 2 Cjh) p(hjX) dh; (3.14)

where from Bayes' theorem p(hjX) / p(Xjh)p(h) (normalized such that
R
h2H p(hjX)dh =

1), and p(y 2 Cjh) = 1 if y 2 h and 0 otherwise. In order to compute the probabil-

ity of generalization, we typically use the equivalent form (Equation 2.5, with sums

replaced by integrals),

p(y 2 CjX) =

R
h2HX;y

p(h)=jhjndhR
h2HX

p(h)=jhjndh
: (3.15)

(Recall the notation HX and HX;y for the subsets of hypotheses in H that contain X

and X [ fyg respectively.) The details of the calculations are relegated to Appendix

B. Here I just summarize the �nal answers.

Under the uninformative prior (Equation 3.8), the generalization function has a

simple closed-form expression:

p0(y 2 CjX) =

"
1

(1 + ~d1=r1)(1 + ~d2=r2)

#n�1
: (3.16)

The subscript \0" denotes the fact that using the uninformative prior corresponds to

a gamma prior with � = 0. Here ri is the maximum distance between the examples in

X along dimension i. ~di is de�ned to be 0 if y falls inside the range of values spanned

by X along dimension i, and otherwise is the distance from y to the nearest example

in X along dimension i. In other words, ri measures the size of the smallest rectangle

containing X and di measures how far outside this rectangle y falls, along dimension

i. 6

Under the exponential prior (Equation 3.9), p(y 2 CjX) has no simple closed-

6Note that Equation 3.16 is indeterminate for n = 1. This is reasonable under the uninformative
prior; if we really have zero prior knowledge about the size of the concept, then seeing one example
isn't going to tell us anything. Concepts of all sizes should still be equally likely, and thus the
probability of generalization should equal 1=2 for all stimuli not equal to the one observed example.
By taking the limit of Equation 3.16 as r!0 and n!1 (from the top) in a careful way, we can see
that this is indeed the limiting case of this expression.
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form expression valid for all n. The same is true for the Erlang prior (Equation 3.10).

However, when the number of examples n is greater than 2 (or when n > 3 for the

Erlang), we can compute both an upper bound and an approximate lower bound on

the generalization function using the following expression:

p(y 2 CjX) �
expf�( ~d1=�1 + ~d2=�2)gh
(1 + ~d1=r1)(1 + ~d2=r2)

in�� : (3.17)

For the exponential prior, � = 1 provides a lower bound and � = 2 the upper bound.

For the Erlang prior, these are obtained at � = 2 and 3, respectively. (These bounds

are also derived in Appendix B.) The approximate lower bound is usually a fairly good

approximation to the actual generalization function (i.e. within � 10%, except for

very small values of n ( < 3) and ri ( < �i=10)), so we will use these expressions as our

quick-and-dirty approximations to the probability of generalization with exponential

and Erlang priors respectively:

p1(y 2 CjX) �
expf�( ~d1=�1 + ~d2=�2)gh
(1 + ~d1=r1)(1 + ~d2=r2)

in�1 ; (3.18)

and

p2(y 2 CjX) �
expf�( ~d1=�1 + ~d2=�2)gh
(1 + ~d1=r1)(1 + ~d2=r2)

in�2 : (3.19)

Again, the subscripts \1" and \2" denote the correspondences between the exponen-

tial and Erlang priors and the gamma prior with � = 1 and 2 respectively.

Figure 3 (right column) illustrates the Bayesian learner's contours of equal prob-

ability of generalization (at p = 0:1 intervals), for di�erent values of n and ri. The

bold curve corresponds to p(y 2 CjX) = 0:5, the natural boundary for generalizing

the concept. Integrating over all hypotheses weighted by their size-based probabilities

yields a broad gradient of generalization for small n (row 1) that rapidly sharpens

up to the smallest consistent hypothesis as n increases (rows 2-3), and that extends

further along the dimension with a broader range ri of observations (row 4). This

�gure reects an exponential prior with �1 = �2 = half the width of the axes on the
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�gure; other priors produce qualitatively similar plots.

An intuitive picture

The intuition behind why the Bayesian analysis leads to the behavior observed in

Figure 3 rests on two ideas: the e�ect of hypothesis averaging and the size principle

for scoring hypotheses. Our belief in each hypothesis h as the true extension of the

concept is represented by its posterior probability, p(hjX). If we are quite certain that

we know the extension of the concept, then only one or a few hypotheses will receive

a high probability. In this case we say that the posterior probability is very peaked or

narrow. If, on the other hand, we are rather uncertain about the true extension, then

many hypotheses will all receive relatively equal { and relatively low { probability.

In this case we say that the posterior probability is very at or broad. Looking

back at Figure 7 of Chapter 2, we can see precisely why we use terms like \at" or

\peaked". The probability distribution in the top row is literally at, representing

our uncertainty before we have seen any examples of the concept at all. After one

example (row 2), the distribution develops something of a peak but it is still quite

broad. After four examples (row 5), when we have a good idea of what the concept

refers to, the peak has become so sharp that it falls practically to zero at everywhere

but the most probable hypothesis.

Now, each hypothesis on its own predicts all-or-none, rule-based generalization

of the concept. Di�erent hypotheses instantiate di�erent rules. When we average

together the predictions of all consistent hypotheses, weighted by their probabilities,

we will get out sharper or fuzzier generalization behavior depending on how the dif-

ferent rules are weighted by the posterior { whether it is peaked or at, narrow or

broad. When the posterior is very broad, many di�erent hypotheses making di�erent

predictions are all averaged together with roughly equal voices. Even though each

hypothesis follows a sharp rule, the e�ect of averaging together so many di�erent rules

is to produce a very fuzzy boundary of generalization { what looks like a gradient of

similarity (Figure 3, row 1). On the other hand, when the posterior is sharply peaked,

only one or a few hypotheses receive signi�cant weight in the averaging step. These
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one or two loud voices drowning out all others lends the appearance of unanimity {

what looks like all-or-none, rule-based generalization (Figure 3, row 3). The under-

lying computation is the same in both cases { integrating over a hypothesis space

of possible rules weighted by probability { but the resulting behavior can look quite

di�erent. Fundamentally, it is the steepness or atness of our posterior probability {

our degree of belief in di�erent candidate extensions { that generates the all-or-none

or graded character of our generalization behaviors.

The real question, then, is what determines how steep or at the posterior dis-

tribution will be? This is where the observed examples and the size principle enter

in. The size principle, based on the assumption of randomly sampled examples, dic-

tates that each hypothesis be assigned a probability inversely proportional to its size,

and exponentially dependent on the number of examples observed. This means that

small hypotheses have the advantage over larger hypotheses, and that their advan-

tage increases rapidly as the number of examples increases. In fact, because of the

size principle, the smallest hypothesis consistent with the observed examples will al-

ways be the most likely hypothesis. 7 However, how much more likely it is than the

alternatives depends on how many examples we have seen.

7Although not necessarily the one with greatest posterior probability { don't forget the prior!
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The size principle works exactly the same way here as it did in the number concept

game in Chapter 2. Recall the intuition that it would seem very unlikely to observe

the numbers 16, 8, 2, and 64 if we were sampling from all even numbers, or all numbers

under 100, as opposed to only the powers of two. Observing only one even number

that just happens also to be a power of two, e.g. 16, is still a coincidence, but far

less so. Similarly, it would seem very unlikely to observe the narrow cluster of 12

healthy levels depicted in Figure 5a if they were truly drawn randomly from inside

the medium-sized or the large enclosing rectangles, as opposed to just the smallest

rectangle. The magnitude of the coincidence is much reduced, though, if we observe

only two healthy levels in the same range (Figure 5b).

Now the key thing to realize about the healthy levels domain is that for any set

of examples, there are going to be many hypotheses consistent with the observed

examples that are all just a little bit bigger than the smallest consistent hypothesis.

To put it concretely, let h� be the smallest rectangle in feature space containing the

observed examples. Then there are many rectangles containing h� which are all just

a little bit bigger than it. This fact has a crucial impact on the posterior probability,

and thus on generalization behavior. Under the size principle, h� will always receive

greater likelihood than the slightly larger hypotheses containing it, but when only one

or a few examples have been observed, the likelihood preference for h� will be relatively

weak. Various hypotheses of only slightly larger size will receive only slightly lower

likelihood, giving rise to a posterior probability distribution that is spread roughly

equally over many di�erent hypotheses, i.e. a very at distribution. Under hypothesis

averaging, this will lead to a broad gradient of generalization, as in Figure 3, row 1.

However, this is only the case when a small number of examples have been ob-

served. For each new example observed, the smaller hypotheses receive an additional

preference over the larger ones, and these preferences multiply across examples. Thus,

a small di�erence in the relative sizes of two hypotheses can become quite important

after enough examples are observed, the way that the ratio of 1.1:1 becomes almost

2:1 after we multiply it by itself 7 times and almost 7:1 after we multiply it by itself

20 times. Although there will always be many consistent hypotheses that are just a
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little bit bigger than the smallest consistent hypothesis, they will receive lower and

lower likelihood, and thus become less and less important in guiding generalization,

as more examples are observed. This narrowing of the posterior probability with each

successive example is what gives rise to the sharpening of the generalization gradient

that we observe in Figure 3, from row 1 to row 2, and row 2 to row 3. Convergence

to all-or-none, rule-like generalization (row 3) comes when the posterior becomes

so narrowly concentrated on one candidate rule that it e�ectively silences all other

hypotheses in the averaging step.

min rule and max sim
� as special cases of the Bayesian framework

It is clear from Figure 3 that the Strong Bayes model combines the best of standard

approaches based on rules or similarity. Given only a few examples, Strong Bayes

generalization follows a broad gradient of similarity much like max sim
� (row 1).

As the number n of examples increases (rows 2-3) or their range r narrows (row 4,

horizontal direction), Strong Bayes converges to the most speci�c concept, equivalent

to min rule. This behavior can be understood analytically by seeing that max sim
�

and min rule correspond to di�erent special cases of the Bayesian framework, each

of which is approximately valid in di�erent regimes of n and r.

Recall from Chapter 2 that min rule (there called MIN) is equivalent to the

Strong Bayes model minus two ingredients: hypothesis averaging and an informative

prior distribution. In other words, the minimal rule corresponds to the hypothe-

sis with maximum likelihood in the Bayes framework. 8 Now, a basic property of

Bayesian inference (Duda & Hart, 1973) is that it converges to maximum likelihood

inference as the number of examples n becomes very large (assuming every hypothesis

has non-zero prior probability). Another way of saying this is that all of the poste-

rior probability mass becomes concentrated on the single hypothesis with the greatest

8Hypothesis averaging, and not the particular choice of prior, is the key di�erence between min

rule and strong Bayes here. Using any of the standard priors from Equations 3.8-3.10 without
adding hypothesis averaging { which corresponds to the MAP algorithm from Chapter 2 { would
still lead to behavior generally equivalent to min rule. However, adding hypothesis averaging in
conjunction with any prior, uninformative or informative, leads to behavior that is qualitatively
similar across di�erent priors but quite di�erent from min rule (or max sim

�).
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likelihood, with all other hypotheses receiving probability zero. 9 Mathematically, the

reason Bayes converges to maximum likelihood is that the prior (Equations 3.8-3.11)

is independent of n, while the likelihood (Equation 3.7) depends exponentially on n;

thus as n increases the likelihood term must eventually dominate any (�nite) prior

bias in its e�ect on the posterior. What is the implication of this fact for concept

learning? min rule, which neglects the prior and hypothesis averaging aspects of

Strong Bayes, will nonetheless be approximately correct after we have seen su�ciently

many examples of the concept.

We can see this concretely if we look at the generalization functions in Equa-

tions 3.16-3.19. All of these expressions include a term raised to the nth power that

is equal to 1 if ~d = 0 (i.e. if y falls inside the smallest rectangle containing X), and

otherwise is less than 1. Thus, in the limit that n!1, the probability of generaliza-

tion which is the product of these n terms will go to zero for all but those stimuli

inside the smallest rectangle containing the observed examples (with ~d = 0). We can

also see that each generalization function contains a factor of ~di=ri in the denomina-

tor. This means that when the examples are very tightly clustered along dimension

i (i.e. ri � 0), the denominator becomes very big and the probability of generaliza-

tion becomes very small unless y falls inside the smallest rectangle containing X (i.e.

~di = 0). Thus it is no accident that min rule seems to generalize most reasonably

after we have seen many examples (large n; Figure 3, row 3) or examples tightly clus-

tered along one dimension (small ri; Figure 3, row 4); these are precisely the cases

when min rule closely approximates the complete Strong Bayes model.

Unlike min rule, max sim was not explicitly discussed in Chapter 2's catalog

of Bayesian variants. However, it turns out to be equivalent to one model that

was discussed there: Weak Bayes. Recall that Weak Bayes corresponds to Strong

Bayes without the strong sampling generative model, and so leads to a much weaker

likelihood function than Equation 3.7. While Equation 3.7 came from assuming

examples sampled randomly from the true concept, Weak Bayes assumes the examples

9The signi�cance of this fact for concept learning was �rst noted by Watanabe (1969) and Hunt
(1962).
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are generated by an arbitrary process independent of the true concept. As a result,

the size principle for scoring hypotheses does not apply; all hypotheses consistent with

the examples receive a likelihood of 1 instead of the 1=jhjn factor in Equation 3.7.

Generalization is then determined solely by the prior and the power of the examples

to eliminate inconsistent hypotheses. In the healthy levels task, using the exponential

prior, the Weak Bayes generalization function is given by

p(y 2 CjX) = expf�( ~d1=�1 + ~d2=�2)g: (3.20)

Notice that this is exactly the same as the max sim
� algorithm (Equation 3.6). Estab-

lishing this connection between max sim
� and Weak Bayes was the main motivation

for the simplifying assumptions we made in moving from max sim to max sim
� earlier

in this chapter. Although there is no such clean correspondence between max sim

itself and a Bayesian algorithm, the quantitative predictions of max sim and max

sim
� are very similar for both of the experiments presented below. 10

This Bayesian derivation of similarity-based generalization tells us several useful

things. First, it illuminates the rational basis behind the max sim
� algorithm; it is no

longer just an equation pulled out of a hat, but can be interpreted as solving a de�nite

computational problem under a clear set of assumptions. This analysis was motivated

by Shepard's (1987) groundbreaking theory of one-shot generalization. In fact, the

Weak Bayes derivation of max sim
� is essentially equivalent to Shepard's derivation of

optimal one-shot generalization gradients extended to the case of multiple examples.

Connecting max sim
� with Weak Bayes also suggests an explanation of why max

sim
� appears to generalize more reasonably in certain cases than in others: these

are the cases when Weak Bayes best approximates the Strong Bayes framework.

Intuitively, because Weak Bayes is equivalent to Strong Bayes in all but the likelihood

term, we might expect weak Bayes to be most accurate when the inuence of the

10The main di�erence between max sim and max sim
� is that the max sim generalization func-

tion has some variability within the range spanned by the observed examples, while generalization
according to max sim

� is at within that range. (This range was not tested in the present experi-
ments.) Under some circumstances, this sort of variability in generalization might be quite natural;
see Appendix C for a discussion of some ways it might emerge from a Bayesian learning framework.
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likelihood is weakest, i.e. for low n. Comparing the generalization functions (using

exponential priors) of Strong Bayes (Equation 3.18) and Weak Bayes (Equation 3.20),

we see that this is indeed the case. Weak Bayes has no n dependence at all. The

approximate version of Strong Bayes in Equation 3.18 is actually identical to Weak

Bayes for n = 1, and close to it for small n and large ri (i.e. when the 1=(1+di=ri)
n�1

term is close to 1). Looking back at Figure 3, we see that the cases when max

sim looks most reasonable are just as this analysis would predict: when n is small

(compare row 1 with row 3) and when ri is large (compare the vertical and horizontal

directions of row 4). We might also expect that in situations where the weak sampling

generative model is actually appropriate to describe how examples are generated, then

Weak Bayes (hence max sim) will provide more generally reasonable predictions of

generalization.

Finally, viewing max sim
� as an approximation to Strong Bayes provides a ra-

tional basis for making this simple similarity-based algorithm more exible when it

needs to be. For some time, researchers trying to ground categorization in similarity

have recognized the need for some kind of exibility in the similarity computation, in

terms of how strongly di�erent properties of stimuli are weighted in the comparison

process (Goldstone, 1994; Medin & Florian, 1995). With stimuli represented as points

in a continuous metric feature space, as in the healthy levels task, this exibility is

typically modeled as a \stretching" or \shrinking" of distances along the di�erent axes

of feature space (Nosofsky, 1986). This stretching or shrinking would cause general-

ization gradients to become compressed or expanded along these directions, much as

we observe in the behavior of Strong Bayes in Figure 3. Following Nosofsky's (1986)

proposal, we might model these e�ects in max sim
� by allowing the �i parameters in

Equation 3.5 to change depending on the examples observed, rather than being �xed

a priori. (N.B. Because di is divided by �i, a smaller value of �i means that distance

along dimension i is weighted proportionately greater.)

But that leaves open the question of how the learner should adjust the �i param-

eters of his similarity metric, given one or more examples of a new concept. This

isn't just a minor issue of setting a model's free parameters; it is the heart of the
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matter if we want to explain how people generalize concepts from just a few posi-

tive examples in terms of a \exible similarity" construct. Nosofsky (1986) gives no

formal account of how to set �i, although he does suggest that in general, all the

�i should decrease as more training examples are encountered (because the stimuli

become more \distinctive"), and that �i should become greater for dimensions that

maximally discriminate the positive instances of the concept from the negatives (as a

result of \selective attention"). The category learning models of Kruschke (1992) and

Aha & Goldstone (1992) are capable of adjusting these attentional parameters in the

context of a classi�cation task, but they require both positive and negative examples

to do so (in order to maximize the discriminability of positive and negative training

instances). Moreover, none of these models explains why the feature space should be

stretched and shrunk in this way.

Strong Bayes, on the other hand, does explain why these distortions of the gen-

eralization gradient occur when the learner is given only a few positive examples of

the concept. In all of the expressions for the probability of generalization in Strong

Bayes (Equations 3.16-3.19), the e�ect of the distance ~di from a new object y to the

observed examples is scaled by the range ri spanned by those examples, and also

becomes greater as a function of n, the number of examples. Thus, instead of having

to postulate mechanisms of \increased distinctiveness" and \selective attention", we

can understand the exibility in generalization gradients illustrated in Figure 3 as the

direct consequence of rational Bayesian inference from a given set of examples.

In sum, two major existing approaches to concept learning in continuous feature

spaces, min rule and max sim can both be thought of as special cases of the

Strong Bayes framework, corresponding to maximum likelihood (MIN) and Weak

Bayes, respectively. We showed that for this problem, the maximum likelihood (MIN)

rectangle closely approximates Strong Bayesian generalization for large n or small ri.

Assuming that Strong Bayes is a good model for human concept learning on this

task (as we will indeed see in the next section), this analysis explains why similarity-

based generalization appears more reasonable given a few broadly spaced examples

(Figure 3, row 1), while rule-based generalization appears more reasonable given
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many examples (row 3) or a few examples tightly clustered along one dimension (row

4, horizontal direction). Strong Bayes can also be interpreted in the language of

exible similarity-based theories of concept generalization, as a rational prescription

for how the constraints on similarity should ex given a set of observed examples. But

in truth, Strong Bayes is neither strictly rule-based nor strictly similarity-based in

the traditional senses. It spans both of these approaches, automatically interpolating

between two regimes of \similarity-like" and \rule-like" generalization and o�ering the

best hope for a uni�ed theory of human concept learning. The rest of this chapter

will present experimental evidence that this Bayesian framework actually describes

the behavior of real human learners on healthy levels-type tasks.

3.3 Experiment 1

This experiment was intended to test how human learners generalize concepts in

continuous feature spaces, given only positive examples of the concept. Speci�cally,

participants were given the task of guessing two-dimensional axis-parallel rectangu-

lar concepts from one or more randomly chosen positive examples, under the cover

story of learning about the range of healthy blood levels of substances like insulin,

cholesterol, etc., described in Section 1. To ensure a fair test of the Bayesian frame-

work, the experimental conditions were designed to mimic as closely as possible the

assumptions made in the above theoretical analysis. The experimental procedure was

designed for maximal e�ciency of data collection, so that each participant was able

to generalize from over 200 di�erent sets of examples in a single 1-hour experimental

session. In contrast to conventional category learning experiments, in which partici-

pants learn only one or a few categories and observe only one example at a time on

each of a long series of trials, here participants learned a di�erent concept on each

trial and observed all examples of the concept at once. This procedure takes the

burden o� of participants' memory for exemplars and isolates the core problem of

inductive generalization that is our focus here.
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3.3.1 Methods

Six people participated in the study. Participants were members of the broad MIT

community. All gave informed consent and were compensated for their participation.

All had normal or corrected-to-normal vision.

Stimuli were presented within a 15" x 15" square window on a color computer

monitor, at normal viewing distance. Participants were instructed to think of the

screen as a graph on which the healthy blood levels of two di�erent substances would

be displayed as data points. Each point represented a person, and the horizontal and

vertical positions of that point represented the concentrations of two substances in

that person's blood. On each trial, one or more dots appeared in an otherwise blank

window. Participants were told that these dots were randomly chosen points from

some rectangular region of healthy levels decided upon by doctors. Their job was to

guess that rectangle as nearly as possible by clicking on-screen with the mouse. For

each rectangle, a participant would click three times, indicating the endpoints of the

rectangle's top edge with the �rst two clicks and the endpoints of the right edge with

the second two clicks. (The rest of the rectangle was automatically determined from

this input.) Participants were instructed as follows: \Try to include all the points

that you think could reasonably belong to the true rectangle. But don't include all

the points on the screen! Try to include only those that you think could reasonably

belong to the true rectangle." If they were unhappy with any guess after they had

entered it or if they felt like they had made a mistake, participants were allowed to

re-enter their guess as many times as they liked.

The stimuli were in fact randomly generated on each trial, subject to the con-

straints of three independent variables that were systematically varied across trials

in a (6� 6� 6) factorial design. The three independent variables were the horizontal

range r1 spanned by the dots (.25, .5, 1, 2, 4, 8 units in a 24-unit-wide window),

vertical range r2 spanned by the dots (same), and number n of dots (2, 3, 4, 6, 10,

50). Participants thus completed 216 trials in random order. In addition, 9 trials on

which only a single example appeared were randomly interspersed (but not analyzed
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here). The horizontal and vertical exents (s1 and s2, respectively) of the rectangles

entered by participants were recorded as the primary dependent variables. Figure 6

illustrates the relation between the three independent variables r1, r2, and n, and the

two dependent variables s1 and s2.

To ensure that subjects understood the task, they �rst completed 24 practice

trials in which they were shown, after entering their guess, the \true" rectangle that

the dots were drawn from. Because dots were drawn randomly, the \true" rectangles

that subjects saw during practice were quite variable and were rarely the \correct"

response according to any of the theories considered here. Thus it is unlikely that

this short practice was responsible for the consistent trends in subjects' behavior that

we observed. I will give a quantitative version of this argument in the discussion that

follows.

3.3.2 Results

Across trials, no consistent di�erence was observed between generalization in the

horizontal and vertical directions. Thus, for purposes of analysis, we collapsed the

data across these two directions. We also transformed from the dependent variables si

to di = (si�ri)=2, the average extent of subjects' rectangles beyond range spanned by

the observed examples, because this is the variable of interest in the various theories

under consideration (Equations 3.16-3.20). Figure 6 illustrates the relation between

di and si.
11

The data from six participants are shown in Figure 7, averaged across participants

and across the two directions (horizontal and vertical). The extent d of subjects'

rectangles beyond r, the range spanned by the observed examples, is plotted as a

function of r and n, the number of examples. Several patterns of generalization are

apparent. First, d increases monotonically with r and decreases with n. We will refer

to these two phenomena respectively as the sample variability and sample size e�ects

on generalization. Second, the rate of increase of d as a function of r is much slower for

11Strictly speaking, di as analyzed was the average of the top and bottom (or left and right)
extents of participants' rectangles, although only the top and right extents are shown in Figure 6.
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larger values of n. We will refer to this phenomenon as the sample variability-sample

size interaction.

3.3.3 Model �ts

Figure 8 con�rms that neither min rule (maximum likelihood) nor max sim
� (Weak

Bayes) can explain these e�ects. min rule always predicts zero generalization beyond

the examples { a horizontal line at d = 0 { for all values of r and n. The predictions

of max sim
� (Weak Bayes) are also independent of r and n: d = � log 2, assuming

subjects give the tightest rectangle enclosing all points y with p(y 2 CjX) > 0:5.

Any one of these horizontal lines may be reasonable for some combination of values

of r, n, d, and �, but clearly neither of the simple rule- or similarity-based approaches

describes participants' behavior over the whole range of the experiment.
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Under the same assumption, Figures 9 and 10 show the Strong Bayes model's

predicted bounds on generalization using uninformative and exponential priors, re-

spectively. Both versions of the model capture the qualitative dependence of d on r

and n, including both sample variability and sample size e�ects, as well as a sample

variability-sample size interaction. This con�rms the importance of the size principle

in guiding generalization independent of the choice of prior. Looking back to Figure

3, we can see these e�ects illustrated graphically in the predictions of the Strong

Bayes model.

However, the uninformative prior misses the nonlinear dependence on r for small

n (Figure 9), because it assumes an ideal scale invariance that clearly does not hold in

this experiment (due to the �xed size of the computer window in which the rectangles

appeared). In contrast, the exponential prior naturally embodies prior knowledge
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about typical scale in its one free parameter �. A reasonable value of � = 5 units

(out of the 24-unit-wide window) yields an excellent �t to the average generalization

behavior on this task (Figure 10).

3.3.4 Discussion

The predictions of Strong Bayes match the observed data to an impressive degree,

even taking into account the one free paratemer �. However, there are at least two

alternative explanations for people's behavior, neither of which has anything to do

with Bayesian models of concept learning. Let me consider each of these in turn.
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Training artifact?

One possibility is that these results reect a training artifact, due to the initial prac-

tice phase of the experiment. Recall that participants began the experiment with

24 practice trials in which the stimuli were generated at random from an arbitrary

rectangle and this \true" concept was then shown to participants after they entered

their guesses. The reason for giving participants these feedback trials was to ensure

that they understood the task instructions, including what it meant to say that the

observed examples were \randomly chosen" from all points inside the true rectan-

gle (which has an ambiguous meaning in English). Could exposure to this feedback

somehow have trained participants who had no such predisposition to respond in ac-

cordance with the predictions of the Strong Bayes model? That is, could participants

have learned how the expected sizes s of the true rectangles seen only during prac-
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tice were related to the range r and number n of the examples seen on those trials,

without already having an intuitive grasp of this relation?

There are several reasons not to think so. First, the practice phase consisted of

only 24 trials, which is hardly su�cient to learn an arbitrary (smooth) real-valued

function of two variables { i.e. how s depends on r and n { unless the learner already

has strong constraints on the form this function must take (Geman et al., 1992).

Second, 24 trials would be a short time to learn this relationship even from perfect

data, but the practice trials gave participants only very noisy information about how

the expected rectangle size s depends on the range r and number n of examples.

Remember that concept learning is an underconstrained problem; thus there is no

deterministic relationship between r, n, and the \true" value of s, for any one set

of examples. There is a statistical relationship, but it is extremely noisy and far

less consistent than the behavior of individual participants or of the participants as a

whole. Figure 11 shows the raw data (d = (s�r)=2 as a function of r and n) that four

di�erent participants saw in the form of feedback during their practice trials. Figure

12 shows the best-�tting linear �ts to these data as a function of r, for each value of

n. None of the several theoretically signi�cant trends found in the average behavior
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of human learners on the main part of the experiment (Figure 7) appear here at all

clearly. Figure 13 shows the individual behavior of each of the six participants on the

main part of the experiment. Five out of the six clearly show the same basic trends as

the aggregate data. It is very hard to believe that people could have been trained to

produce such consistent results (Figure 13) from such inconsistent feedback as they

received during practice (Figure 11).

Certainly the practice phase had an e�ect on participants' behavior. In pilot

experiments without a practice phase, people frequently reported that they did not

understand what they were supposed to do and their behavior appeared much more

erratic. But rather than \training" participants to generalize in a certain way, the

practice phase seems to have \triggered" or \cued" them to use a mode of concept

learning which they already had available to them. It seems reasonable that with such

an arti�cial task as this, people would only be able to generalize meaningfully if they

could activate learning algorithms normally designed for operating in much richer and

more realistic environments (Gigerenzer & Ho�rage, 1995; Brase, Cosmides & Tooby,

1998; Cosmides & Tooby, 1992). Because we want to study those natural inference

procedures under controlled conditions, we use an arti�cial task, but precede it with
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a practice phase designed to engage those procedures in a systematic way.

Stimulus artifact

A second alternative explanation is that participants' behavior was the result of a

stimulus artifact, somehow due to the graphical method in which the examples were

displayed. Examples were represented visually as points in the two-dimensional physi-

cal space of the computer monitor's screen, and participants indicated their best guess

at the concept by drawing a visible rectangle around the dots in that space. This

interface was adopted so that participants could process all the examples of a concept

quickly and at once, could easily apprehend any metric information that they chose
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to attend to, and could describe their judgments of generalization by making a quick

and intuitively appealing response. In pilot testing, people also found this graphical

interface much more engaging and natural than other interfaces we tried. Finally,

previous studies have shown that people are much better intuitive statisticians when

given perceptually vivid representations of data (Cosmides & Tooby, 1996). In the-

oretical terms, those studies posed a much simpler task for participants than ours

does; their task had an uncontroversial normative solution which required a single

application of Bayes' theorem, while ours asks participants to make inferences that

no existing machine learning algorithm is capable of and that require (in principle)

a full Bayesian decision process over an in�nite hypothesis space. Hence it seemed

essential to use the most vivid representations that we could, at least for our �rst

experiment.

Despite all these reasons behind our choice of a graphical stimulus interface, there

remains the danger that as a result of this choice, our experiment will be engaging

something other than people's concept learning algorithms. Is it possible that the

generalization behavior we observed was not primarily the product of intuitive sta-

tistical reasoning, but rather of a spatial reasoning process, or perhaps some sort of

aesthetic response? To test this possibility, we undertook a follow-up experiment.

3.4 Experiment 2

This experiment attempts to replicate the results of Experiment 1 using a less vivid

stimulus representation, while keeping as many other details of the design the same.

The major di�erences were as follows. Instead of representing the examples of healthy

levels by points drawn on screen, we now used a straightforward numerical represen-

tation. Each example of a healthy level was now given as an integer between 1000 and

2000 on an arbitrary scale. Participants entered their estimates for the minimum and

maximum healthy levels of each substance by adjusting two sliders on the computer

screen, which could vary between 1000 and 2000 in steps of 1. For instance, on one

trial a participant might be given two examples of healthy levels, 1410 and 1630, and
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she might estimate the minimum and maximum healthy levels to be at 1350 and 1700,

respectively. A perfect replication of Experiment 1 would show participants two sets

of numbers on each trial, corresponding to the horizontal and vertical positions of

the dots in Experiment 1. However, this made for a very crowded and confusing on-

screen display when large numbers of examples were presented. Instead of changing

the values of the independent variable n, we chose to show only one set of numbers

per trial. From the point of view of the Bayesian framework, of course, this change

from two dimensions to one is trivial { particularly since we conducted all of our

analysis in Experiment 1 on data from both dimensions collapsed as if they were one.

3.4.1 Methods

Six people, none of whom were subjects in Experiment 1, participated in the study.

Participants were members of the broad MIT community. All gave informed consent

and were compensated for their participation. All had normal or corrected-to-normal

vision.

Stimuli were presented within a 15" x 15" square window on a color computer

monitor, at normal viewing distance. Participants were instructed as follows. On each

trial, one or more numbers would appear on screen representing the healthy blood

levels of di�erent substances. Doctors had determined a minimum and maximum

healthy level for each substance, and these numbers represented randomly chosen

levels from within that healthy range. Their job was to guess that range as nearly as

possible by setting two sliders on screen, for the minimum and maximum healthy levels

respectively. Participants were told: \Try to include all the points that you think

could reasonably belong to the true healthy range. But don't include all the levels

between 1000 and 2000! Try to include only those that you think could reasonably

belong to the true healthy range." If they were unhappy with any guess after they

had entered it or if they felt like they had made a mistake, participants were allowed

to re-enter their guess as many times as they liked.

The stimuli were in fact randomly generated on each trial, subject to the con-

straints of two independent variables that were systematically varied across trials in a
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(6�6) factorial design. These two independent variables were the range r spanned by

the healthy levels (10, 21, 42, 83, 167, 333 on a scale from 1000 to 2000) and the num-

ber n of examples (2, 3, 4, 6, 10, 50). The ranges were chosen to correspond exactly

to those used in Experiment 1, as proportions of the total available range of stim-

uli. Each block of trials thus consisted of 36 trials, and participants completed three

identical blocks for a total of 108 trials. In addition, one trial on which only a single

example appeared were added at the end of each block (but not analyzed here). The

di�erence s between participants' estimates of the minimum and maximum healthy

levels was recorded as the primary dependent variable.

Just as in Experiment 1, to ensure that participants understood the task, they

�rst completed 24 practice trials with feedback on the \true" healthy range that the

levels were sampled from.

3.4.2 Results

As in experiment 1, we transformed from the dependent variable s to d = (s� r)=2,

the average extent of participants' range esimates beyond the range spanned by the

observed examples. The data from 6 subjects are shown in Figure 14, averaged across

subjects. The extent d of subjects' range estimates beyond r, the range spanned by the

observed examples, is plotted as a function of r and n, the number of examples. For

purposes of comparison with the results of Experiment 1, the d and r axes in Figure

14 are scaled by a factor of 24/1000 to make all absolute values directly comparable

with Figure 7. The multiplier 24/1000 comes from the fact that the total available

range of stimuli on Experiment 1 was 24 units (the screen width) and on Experiment

2 was 1000 units (between the integers 1000 and 2000). In other words, a di�erence of

6 units (out of a 24-unit-wide screen) in Experiment 1 was equivalent as a percentage

of the total stimulus range to a di�erence of 250 units (out of a 1000-unit-wide range)

in Experiment 2.

As in Experiment 1, we found that d increases monotonically with r and de-

creases with n, and the rate of increase of d as a function of r is much slower

for larger values of n. To illustrate concretely what these trends represent, con-

137



0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
Average data from 6 subjects in Experiment 2

 r:  Range spanned by  n examples

 d
: 

E
xt

en
t o

f g
en

er
al

iz
at

io
n

 n = 2

 n = 3

 n = 4

 n = 6

 n = 10

 n = 50

Figure 14

sider the following examples. Given n examples of healthy levels spanning a certain

range (e.g. f1400; 1700g), people estimated the minimum and maximum healthy lev-

els to lie further out than they did when given n examples spanning a narrower

range (e.g. f1400; 1450g). This is the sample variability e�ect. Given a certain

number of examples in a �xed range (e.g. f1400; 1700g), people generalized further

than they did when given a greater number of examples within the same range (e.g.

f1400; 1430; 1470; 1500; 1520; 1580; 1610; 1650; 1660; 1700g). This is the sample size ef-

fect. Finally, the di�erence in generalization between trials with di�erent ranges and

few examples (e.g. f1400; 1700g versus f1400; 1450g) was much greater than the dif-

ference in generalization between trials with the same di�erence in ranges but greater

numbers of examples (e.g. f1400; 1430; 1470; 1500; 1520; 1580; 1610; 1650; 1660; 1700g

versus f1400; 1402; 1410; 1417; 1420; 1426; 1433; 1435; 1441; 1450g). This is the sample

variability - sample size interaction. I �rst discussed these e�ects in this form, and
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presented a Bayesian model to account for them, in Tenenbaum (1997b).

3.4.3 Discussion

The qualitative dependence of d on r and n in this experiment was the same as in

Experiment 1, including both sample variability and sample size e�ects as well as an

interaction between these two factors. Also, the absolute values of d as a function of

r were remarkably similar in both experiments. There does not seem to be as strong

a nonlinear dependence of d on r for low n, relative to Experiment 1. It is not clear

whether this is due to the di�erences in stimulus format, or to the relatively small

number of participants in each experiment (or to some other factor).

Overall, the major predictions of the Bayesian framework that held in Experiment

1 also held in this experiment. The nonlinear dependence of d on r for small n, which

was not observed, is in any case not a central prediction of the Strong Bayes model;

it arises with an exponential prior (Figure 10) but not with the uninformative prior

(Figure 9). Thus, we can conclude that the excellent �t of the Strong Bayes model in

Experiment 1 was not primarily due to an artifact of the graphical stimulus interface.

3.5 General Discussion

The last forty years have seen numerous studies of concept learning in continuous

feature spaces like the healthy levels domain { both on how machines should, in

principle, learn such concepts, and on how people actually do. What distinguishes

the theory and experiments presented here is the focus on learning and generalizing

from just a few positive examples of a new concept. There are many alternative models

from both the machine learning and cognitive psychology literatures that I have not

addressed in this chapter because they are essentially discriminative techniques { not

capable of generalizing concepts in a principled way from positive evidence only. (I

discuss the limitations of these models at length in Appendix A.) Likewise, I have

not tried to address the many previous experiments on human category learning in

which subjects are trained over a long series of trials to discriminate positive from
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negative instances of a category, because I think they bear only limited relevance to

the typical situations of natural concept learning { such as word learning { in which

only one or a few labeled examples are observed before the learner must be able to

generalize reasonably to novel objects. Instead, I have explored in detail a single case

study { the healthy levels task { which tries to isolate the essential inductive challenge

involved in learning concepts from limited positive evidence. In presenting a model of

learning which is at once computationally principled and able to �t human behavior

on this task precisely, I hope to have shed some light on how people are in general

able to infer the correct extent of a concept from only a few positive examples.

Two components of the Bayesian model were crucial to its success on this case

study: (1) a generalization function that results from averaging the predictions of all

hypotheses weighted by their posterior probability; (2) the assumption that examples

are randomly sampled from the concept to be learned. Averaging predictions over the

whole hypothesis space explains why either broad gradients of generalization (Figure

3, row 1) or sharp, rule-based generalization (Figure 3, row 3) may emerge, depending

on how peaked the posterior is. Assuming examples drawn randomly from the concept

(the strong sampling assumption) explains why learners do not weight all consistent

hypotheses equally, but instead weight more speci�c hypotheses higher than more

general ones, by a factor that increases exponentially with the number of examples

observed (the size principle).

As I showed in Section 2, traditional approaches to concept learning based on rules

or similarity each embody only one of these two ingredients. The min rule algorithm

is essentially the size principle without hypothesis averaging { what I call MIN in

Chapter 2. max sim
� is essentially hypothesis averaging without the size principle for

weighting hypotheses di�erentially based on their likelihood { what I call Weak Bayes

in Chapter 2. In the limits of very many or very tightly clustered examples, the size

principle imposes such a strong preference for the smallest consistent hypothesis that

taking a weighted average over all hypotheses is hardly di�erent from just choosing

the single most likely one. Under these conditions, MIN is a good approximation

to the full Strong Bayes model, and pure rule-based generalization (as in Figure 3,
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row 3 or row 4 (horizontal direction)) seems quite reasonable. In the other limit,

when we have seen only a few broadly spaced examples, the size principle imposes

only very weak preferences. Then it is almost as good to average the predictions of

all consistent hypotheses weighted equally as it is to average them weighted by their

size-based likelihoods. Under these conditions, Weak Bayes is a good approximation

to Strong Bayes, and pure similarity-based generalization (Figure 3, row 1) seems

quite reasonable.

By incorporating hypothesis averaging together with the size principle, the Strong

Bayes model is able to describe generalization accurately in both of these extreme

regimes, as well as to interpolate between them automatically. Strong Bayes can also

be viewed in the tradition of exible similarity-based accounts of concept learning

(Nosofsky, 1986; Kruschke, 1992; Aha & Goldstone, 1992; Goldstone, 1994), as a

rational explanation of how and why the similarity metric of feature space changes

based on the observed examples.

In the course of testing the Bayesian framework with two experiments, I docu-

mented several robust phenomena of concept learning from more than one positive

example. These include the e�ects of increasing sample variability { which acts to

increase the extent of generalization { and increasing sample size { which acts to

decrease the extent of genralization, as well as the sample variability-sample size

interaction { which reduces the magnitude of the sample variability e�ect at large

sample sizes. The e�ect of sample variability on generalization has been previously

documented in the categorization literature (Fried & Holyoak, 1984; Rips, 1989).

The corresponding e�ects of sample size or sample variability-sample size interaction

have not, to my knowledge, been mentioned before. However, one of the more robust

�ndings of intuitive statistics is an appreciation for the e�ect of large sample sizes on

the con�dence with which generalizations can be asserted (Nisbett, Krantz, Jepson &

Kunda, 1983; Smith, Langston, & Nisbett, 1992). The e�ect of sample size that we

observed is consistent with that earlier work. As participants observe more examples

within a �xed rectangular region, they become increasingly con�dent that this region

(as opposed to any larger regions which it is a subset of) is the true extension of the
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concept, and thus become more conservative in generalizing outside that region.

3.5.1 Critiques of the Bayesian approach

Fully Bayesian learning algorithms, despite their claims to optimality and rationality,

are often avoided by machine learning practitioners and criticized by psychologists for

certain impracticalities. One general critique of Bayesian methods is that they may be

computationally intractable for realistic problems. That is, the learner's hypothesis

space may become so large that the computations necessary to maintain and average

out the posterior probability distribution would require unreasonable time or space

resources. This is why it is very important to be able to express the results of a

Bayesian analysis in a simple closed form, as we did in Section 2. Even though we

are operating over a continuous hypothesis space H containing an in�nite number

of distinct hypotheses, we are able to compute exact or approximate expressions for

the necessary integrals over H without having to explicitly count up the predictions

of each individual hypothesis. This tractability adds signi�cantly to the Bayesian

model's psychological plausibility as an account of human concept learning, as well as

its practicality as a machine learning algorithm. Moreover, the closed-form solution

is seen to depend on only a few relevant (and intuitively sensible) characteristics of

the observed examples: how many examples have been seen, how wide a range they

span, and how far they are from the new entity to be classi�ed.

Another important critique of Bayesian methods is that they make strong as-

sumptions about the possible hypotheses that can explain the data, and then have

no principled way to deal with violations of those assumptions (Vapnik, 1995). That

is, if the true concept does not correspond to an element of the learner's hypothesis

space, then all bets { not to mention all promises of optimality { are o� in Bayesian

inference. In contrast, Vapnik's (1995) Structural Risk Minimization (SRM) approach

to concept learning, and the related Probably Approximately Correct (PAC) paradigm

(Haussler, 1988), are capable of placing meaningful bounds on the probability of error

even if the true concept does not belong to the learner's hypothesis space.

Vapnik's point about the riskiness of Bayesian methods is a deep one. But far
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from taking it as a point against Bayesian models of concept learning, I take it

as a point in their favor. Human concept learners frequently jump to conclusions

from very little evidence, on the basis of strong assumptions. Occasionally their

inferences are wrong, even ridiculously wrong, as anyone who has ever observed a child

learning to use words could attest to. Bayesian learning algorithms have exactly this

general character, which recommends them strongly as accounts of human learning.

Machine learning theorists (Valiant, 1984; Haussler, 1988; Kearns & Vazirani, 1994;

Vapnik, 1995), on the other hand, have typically sought models with guaranteed

upper bounds on the probability of error that will hold independently of the truth of

the learner's assumptions about the concept to be learned. Unfortunately, the price

of these broad guarantees is that the bounds provided by SRM, PAC, and similarly

motivated learning theories are hopelessly weak from the point of view of human

learning. On the two-dimensional axis-parallel rectangle learning task, for instance,

well over 100 examples are required in the PAC framework to reduce the error rate

below 5% with 95% con�dence (Kearns & Vazirani, 1994); in contrast, most of the

interesting change in human learners' generalization behavior happens between 2 and

10 examples (Figure 7). There is no way to have this cake and eat it too. If we want

our learning algorithms to be able to learn concepts from just a few examples, the

way that people do, then we have to be willing to accept that sometimes they will

leap to incorrect generalizations, just as people do. Bayes takes the bad aspects of

human learning along with the good; SRM, PAC, and other conventional theories of

machine learning take neither.

That said, there are certainly assumptions in the Bayesian analysis of this chap-

ter that drastically oversimplify the circumstances of natural concept learning. We

have assumed that our observations are completely noise-free, and that no example

is mislabeled as a positive instance when it is really negative. We have assumed that

the extension of each concept corresponds to a single nicely shaped region in some

accessible feature space, ignoring the possibility that a single concept could label sev-

eral, disjoint such regions. We have assumed that we know the appropriate axes for

our feature space, ignoring the possibility that stimuli might be represented merely as
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points in a metric space with no speci�ed coordinate system. We have assumed that

the extension of a novel concept along one dimension of our feature space is indepen-

dent of its extension along other dimensions. All of these complexities can actually

be addressed in some form within an extended Bayesian treatment. In each case, we

can expand the learner's hypothesis space H to include these additional possibilities

of experience, such as noisy or mislabeled examples, non-connected extensions, arbi-

trary coordinate axes, nonindependent features, and so on. As in the Bayesian model

described in this chapter, the size principle continues to be the key for weighing the

relative likelihoods of these di�erent possibilities, and hypothesis averaging continues

to be the method for generalizing to new objects when we are unsure about exactly

which possibility describes the true state of our world. Appendix C sketches some of

these proposals.

3.5.2 Knowledge-driven versus data-driven concept learning

There is one more deep divide among researchers who study concept learning which we

have yet to touch on. This is the division between knowledge-driven and data-driven

views of concept learning. The knowledge-driven view emphasizes the importance of

people's prior knowledge in guiding their generalizations from the very limited data

of one or a few labeled examples. The data-driven view emphasizes the importance

of the actual observed examples in focusing people's generalizations of previously un-

known concepts. Not surprisingly, the data-driven view is most often by embraced by

researchers studying learning with abstract stimuli in arti�cial environments (Nosof-

sky, 1986; Gluck & Bower, 1988; Kruschke, 1992; Aha & Goldstone, 1992), where

people clearly have little or no relevant prior knowledge, while the knowledge-driven

view is more often embraced by researchers studying natural concepts (Murphy &

Medin, 1985), cognitive development (Fodor, 1975; Carey, 1985; Keil, 1989; Mark-

man, 1989; Spelke, 1995), and language acquisition (Chomsky, 1986; Pinker, 1995),

where the raw data appear far more impoverished than the abilities people ultimately

acquire. The origins of this debate go back to Hume's (1739) analysis of induction

and Kant's (1783) response, and ultimately to Plato's doctrine of recollection and
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Aristotle's discussions of `���!� { induction.

Also, the knowledge-driven view is most often associated with rule-based proposals

for learning, while the data-driven view is most often associated with similarity-based

algorithms. This is probably because rule-based approaches make explicit the role of

the learner's prior knowledge in the form of a constrained hypothesis space of possible

extensions, while similarity-based approaches make explicit the role of the data in the

form of the one or more examples to which similarity is computed. However, just as we

have seen how the Bayesian framework bridges the gap between rule- and similarity-

based algorithms, we can also see that it blurs the boundaries between knowledge-

and data-driven views of concept learning.

The Bayesian framework takes the roles of both knowledge and data seriously.

The prior probability (and of course the constrained hypothesis space) embodies our

relevant prior knowledge; the likelihood term allows the data to be heard, and to

\speak for themselves" when they speak with one voice. But more importantly,

Bayes explains how prior knowledge and observed data interact in guiding general-

ization, which no purely knowledge-driven or purely data-driven theory can tell us.

For example, suppose that in the healthy levels task, instead of judging the range of

healthy blood levels of a substance like insulin, which is produced normally by the

human body, we were asked to judge the range of healthy blood levels of an envi-

ronmental pollutant, like lead. What e�ect, if any, does this change to a potentially

toxic substance have on the generalizations that we make?

Suppose that doctors have determined the healthy range of blood levels of both

substances, insulin and lead. Now, we are given one example of an insulin level chosen

at random from the designated range of healthy insulin levels: 107 (on some arbitrary

scale). What can we say from this about the healthy range for this substance, what

the doctors consider minimum and maximum healthy levels? Not very much. Maybe

the healthy insulin range goes from 100 to 115, or from 50 to 150, or anywhere in

between. It does however seem a bit less likely to be from 100 to 1000, or 50 to 500.

Now, suppose that we are given one example of a lead concentration level chosen

at random from the range of levels that doctors consider healthy: 107. (Try to ignore
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the numerical coincidence.) What can we say from this about the healthy range for

lead, the minimum and maximum healthy levels? In the case of a toxic substance,

most people will have a much more de�nite feeling for its probable healthy range: the

lowest healthy level is zero, and the highest healthy level is around 200 (or maybe

214?).

What happened here? Why does the seemingly minor change in context from

a naturally produced bodily substance to a toxic environmental pollutant have a

signi�cant e�ect on the kind of generalizations we make from one example? Somehow,

this change in context activates di�erent background knowledge, which allows us to

draw di�erent conclusions from the same data. A purely data-driven account of

generalization obviously has no explanation for this shift, because what we take to be

the data, \107", is the same in both cases. A purely knowledge-driven account can

explain why people think the minimum healthy level shifts to zero { no amount of lead

in the blood is thought to be necessary for healthy living { but cannot explain why

people think the maximum healthy level now appears to be around 200 or 215. Some

kind of statistical, i.e. data-driven, reasoning is being invoked, along the lines that

if the maximum healthy level were much higher, e.g. 1000 or 2000, then it would be

rather an accident that the only example we were given was so low as 107. Moreover,

this data-driven process is being invoked only under the inuence of a knowledge-

driven process, which says that the healthy levels of toxic substances should extend

to zero while the healthy levels of natural bodily substances should not include zero.

As we see more random examples of lead levels that doctors consider healthy, the

statistical data-driven process begins to dominate. Here are 7 more healthy levels,

in addition to 107: 36, 68, 11, 98, 75, 49, 17. Now it seems quite plausible that

the maximum level doctors consider healthy is around 110 or 115, not much less or

much greater. At the other extreme, before we saw any examples of healthy levels,

prior knowledge clearly dominates. Just ask someone: \Lead is a potentially toxic

environmental pollutant. What do you think is the maximum blood concentration

level of lead that doctors consider healthy? What do you think is the minimum

level that doctors consider healthy?" Most people have no idea what the maximum
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healthy level is, but many would say that the minimum healthy level is probably at

or near zero. In the intermediate regime, when we have only seen one example of a

healthy lead level, the generalizations we make reect the joint inuence of our prior

knowledge and the likelihood of the data. Neither component alone can explain why

we think what we do.

Capturing this interaction is the speciality of Bayesian methods. Based on our

prior knowledge about the possible healthy levels of toxic substances, we restrict our

hypothesis space H to include not all possible ranges between some arbitrary mini-

mum and maximum values, but only those intervals containing a minimum at zero.

Every other ingredient of the Strong Bayes framework { prior probability, likelihood,

hypothesis averaging { is unchanged. The resulting probability of generalization (un-

der an uninformative prior) comes out to be

p(y 2 CjX) =

"
1

1 + ~d=r

#n
; (3.21)

where r is the maximum healthy level observed, and ~d equals 0 if y < r, and y � r

otherwise.

While I have not yet conducted a formal experiment to test how well Equation 3.21

describes people's generalizations on this task, I believe it has fairly good prospects.

Under the assumption we have made throughout this chapter that people will estimate

the maximum healthy level to fall where p(y 2 CjX) = 0:5, Equation 3.21 places the

maximum healthy level after the one example of 107 at 214, after the three examples

f107; 36; 68g at 135, and after f107; 36; 68; 11; 98; 75; 49; 17g at 117. These bounds

seem intuitively reasonable to many people. In a class exercise where students were

asked to solve a problem structurally equivalent to this one (but with a di�erent cover

story), people gave strikingly uniform answers. The median estimates for the bounds

were 232, 140, and 115, after 1, 3, and 8 examples (all less than 107) respectively.

When asked to justify their answers, several students gave sophisticated and cor-

rect statistical arguments (this was MIT after all!), many students gave intuitive but

informal statistical arguments, some gave formal but incorrect arguments, and sev-
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eral could give no justi�cation { \just gut feeling". Thus the uniformity in people's

judgments of generalization was not mirrored in the kind of reasons they could give to

back these judgments up. I draw two (tentative) conclusions from this demonstration.

First, people's level of formal statistical knowledge has relatively little e�ect on their

intuitive judgments of generalization, at least in this case. Second, people's intuitive

generalizations of simple concepts reect the interaction of their prior knowledge with

the observed examples in subtle ways that are fundamentally captured by a Bayesian

model. To argue that concept learning is driven primarily by knowledge or by data

is to miss what this ability is all about.

However, if we really want to understand the role of knowledge in human concept

learning, we need to turn from simpli�ed tasks like the healthy levels scenario, where

people have little or no relevant prior knowledge, to more complex and natural learn-

ing settings, where substantial prior knowledge is both available to human learners

and essential for making meaningful generalizations from just a few examples of a

concept. That is the mission of our next case study: to explore whether the phenom-

ena and principles uncovered in this chapter will extend to more naturalistic domains

of concept learning.
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Chapter 4

Case study #2: Learning words

The last chapter's case study of the healthy levels scenario illustrated how the Bayesian

framework can be used to explain the course of concept learning in simple continuous

feature spaces and to model quantitatively the generalization behavior of real human

learners. However the simplicity that makes the healthy levels problem so analytically

tractable and empirically accessible is also their most obvious shortcoming. What do

these results tell us about natural cases of human concept learning in the real world?

The purpose of this second case study is to show that the same principles that un-

derlie the Bayesian model of generalization in simple continuous feature spaces can

be applied to understanding the more natural cases of concept learning that we are

really interested in.

4.1 Introduction

The speci�c task we focus on is word learning; in particular, learning common nouns

like \dog", \car", and so on, that refer to coherent categories of physical objects,

from seeing examples of the words' referents. This task is, in some sense, the one we

have had in mind all along, the one which we were trying to study in simpli�ed form

by looking at number concepts and ranges of healthy levels. Like those much simpler

kinds of concept learning, learning words for objects requires the ability to generalize

reasonably to a potentially in�nite set of novel objects, and typically occurs from
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only one or a few labeled examples of each word's referents (Carey, 1978; Markson &

Bloom, 1997), with no explicit negative evidence available (Regier, 1995), and with

the possibility of many candidate extensions { nested and/or overlapping { being

consistent with any one example (Quine, 1960; Markman, 1989). These are precisely

the challenges that the Bayesian framework of this thesis was designed to address.

In particular, much contemporary work on word learning is motivated by the

following problem of induction (simpli�ed from Quine, 1960). Suppose that until

today, you had never heard the word \dog". All of a sudden, a dog (Rover, a black

labrador) runs by and someone points at him, shouting \Look at the dog!" From this

moment of experience, what can you infer about the extension of the word \dog"?

The extension could, of course, be the set of dogs, but many other extensions are

logically possible (i.e. consistent with this experience): all mammals, all animals, all

four-legged animals, all labradors, all black labradors, all black things, all things with

tails, all running things, this individual animal (Rover), all dogs and all horses, all

dogs plus the Lone Ranger's horse, and so on. The logical possibilities are endless, but

human word learners { child or adult { generally have no problem ignoring these red

herrings and locking in on the true meaning of \dog" from one or a few experiences

of this sort. How do they do it?

Existing theories of word learning fall more or less into the same divisions as

introduced in previous chapters. Some researchers have stressed the importance of

prior knowledge about possible word meanings (Clark, 1973, 1987; Macnamara, 1982;

Markman, 1989; Bloom, in press; { often but not always within a rule-based learning

framework { while others have stressed the importance of the concrete exemplars

observed, usually within a similarity-based learning framework (Quine, 1960; Jones

& Smith, 1993; Samuelson, Gasser & Smith, 1997). What follows is a highly selective

review of this literature, meant only to outline the basic positions and give a few

representative examples.

Researchers in the knowledge-based tradition have tried to formulate a number

of constraints on possible word meanings that could render the learner's induction

problem solvable. Implicit behind most of this work is the hypothesis elimination ap-
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proach to induction, the classic rule-based account discussed in Chapter 1, in which

the observed examples and a priori constraints work together to rule out logically

possible hypotheses, hopefully leaving the learner with a single acceptable general-

ization after a reasonable number of examples. For learning nouns, one of the most

basic constraints is the taxonomic bias, the assumption that new words refer to tax-

onomic classes in a hierarchical (tree-structured) system of natural kind categories

(Markman, 1989). Given the one example of \dog" above, the taxonomic bias means

that reasonable candidates for the extension of \dog" would include the subsets of

labradors or dogs or animals or mammals, but not the subsets of all black things, all

running things, all things with tails, all dogs plus the Lone Ranger's horse, etc. The

taxonomic constraint can be viewed as a reasonable basis for a rule-based learner's

hypothesis space, but given only one or a few examples of a word's referents, it still

leaves room for a great deal of ambiguity, in particular about the appropriate level of

generalization in the taxonomic tree.

Other, stronger constraints try to reduce this ambiguity, at the cost of dramat-

ically oversimplifying the possible meanings of words. Under the mutual exclusivity

constraint, the learner assumes that there is only word that applies to each object

(Markman, 1989). This helps to circumvent the problem of bounding generalization

without negative evidence, because it allows the inference that each positive example

of one word is a negative example of every other word. That is, if we've seen Sox

called \cat", then under mutual exclusivity we can assume that Sox cannot be called

\dog", and hence that any extension including both Rover and Sox (e.g. mammals,

animals) cannot be the extension of the word \dog" that we heard used to label Rover.

A mutual exclusivity assumption may be useful for children learning their �rst words,

but in general it is both too strong and too weak. Too strong, in that it's never true

that only one word can apply to a particular object; too weak, in that it still leaves

open the ambiguity of how far to generalize. (In the above case, \dog" could still

refer to all dogs, or all labradors, or all black labradors, or just Rover himself, etc.)

Based on work by Brown (1958), Rosch et al. (1980), and Mervis & Crisa� (1982),

Markman (1989) suggested the even stronger constraint that children (and in general,
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adults, as well) assume a new word maps to not just any level in a taxonomy, but

to an intermediate or basic level. Basic-level categories are generally intermediate

nodes in a taxonomic tree, which maximize many di�erent indices of category utility

and are widely recognized throughout a culture (Rosch et al., 1980). For instance,

in America, \dog" is the basic level in a taxonomic sequence that includes \Rover",

\labrador", \dog", \mammal", and \animal"; although if you are a labrador-lover,

\labrador" might be the basic level, and if you are Rover's master, then it might be

\Rover". Whether children really have a bias towards mapping words to basic-level

kinds is still a matter of controversy (Callanan, Repp, McCarthy & Latzke, 1994),

but it is certainly a well-known and plausible proposal. Unlike the taxonomic and

mutual exclusivity constraints, a basic-level constraint solves the induction problem

in principle, because each object belongs to only one basic-level category. However,

this assumption only applies to basic-level words, and indeed, is counterproductive for

all the words that do not map to basic level categories. How do we learn all the other

words we know at superordinate (higher than basic) or subordinate (lower than basic)

taxonomic levels (Waxman, 1990)? Some experimenters have found that seeing more

than one labeled example of a word may help childern learn superordinates (Callanan,

1989), but there have been no systematic theoretical explanations for these �ndings.

In the data-driven, similarity tradition, the proposals for word learning are not

very di�erent from the similarity-based approaches to concept learning in continuous

feature spaces discussed in Chapter 3. Linda Smith (Jones & Smith, 1993) proposes

that words are generalized �rst and foremost on the basis of similarity to exemplars

as computed in a continuous metric feature space. To explain how we can learn words

that refer selectively to di�erent aspects of objects, she appeals to Nosofsky's (1986)

proposal that the axes of this similarity space may stretch or shrink dynamically to

downplay or exaggerate certain features. There is also room for pre-existing biases

in this approach. Landau, Smith & Jones (1997) propose that children are initially

biased to place more weight on an object's shape than on its other properties (such

as color, size, etc.), presumably by exaggerating the axes of the similarity space

corresponding to shape features. However, the shape bias is exible and dynamic; it
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applies to inanimate objects, but not to animate objects which are known to change

shape spontaneously without altering their identity (Landau, Smith, & Jones 1997).

Finally, there are hybrid proposals that combine aspects of these di�erent tra-

ditions. For instance, Regier (1995) showed that a weakened version of the mutual

exclusivity constraint could be used within a neural network model to learn words

with overlapping extensions. He demonstrated this approach on a toy problem of

learning spatial terms (above, inside, left, etc.) without explicitly labeled negative

examples. While the network ultimately learned the referents of a dozen or so over-

lapping spatial terms, it too has limitations as a model of human word learning:

it requires thousands of training instances and must be trained with exemplars of

multiple contrasting terms simultaneously.

In summary, the word learning literature contains many promising partial theories,

but no uni�ed formal account of how people learn words for object kinds at multiple

levels of a taxonomy, given only one or a few labeled examples. In this chapter, I will

argue that the Strong Bayesian model of concept learning provides the basis for such

an account. The next section describes an experiment that attempts to capture the

key challenges of word learning with a microworld of 24 real objects. The behavior

of human learners on this task shows the e�ects of both prior knowledge and statis-

tical information from the examples, and aspects of both rule-like and similarity-like

patterns of generalization. Section 3 considers how these results might be explained

by the models of concept learning introduced in previous chapters. I demonstrate

concretely that the standard min rule and max sim learning algorithms cannot

account for how human learners generalize words in this task, and then develop a

version of the Strong Bayes model that does explain learners' generalizations quite

well. Section 4 discusses the relevance of these results for theories of word learning

and concept learning more generally.
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4.2 Word learning in a microwold

A classic word learning experiment proceeds as follows (Markman, 1989; Callanan,

1989). The experimenter shows the subject a sample object and names it with a novel

word, as in \See this? This is a blicket". The experimenter then shows the subject a

small set of test objects and asks, \Which of these ones are also blickets?" The test

items are chosen to represent di�erent possible meanings for the new word, so that

by observing which objects the subject chooses as blickets, the experimenter can infer

what the subject thinks the word \blicket" means. If there is more than one trial in

the experiment, the experimenter presents the subject with a new sample object, a

new name, and a new set of test objects on each trial.

This classic paradigm diverges from the natural situation of word learning in a

number of ways: in giving only a single labeled example, in showing only a small and

carefully chosen set of test objects for generalization, and in changing the set of test

objects from trial to trial. In our experiments, we 1 adapted the classic paradigm

to make it more like a microcosm of real-world word learning tasks. We constructed

a large set of test objects, 24 in all, which was held constant across all trials of the

experiment. The test set had a hierarchical structure that mirrored in limited form

the structure of natural object taxonomies in the world. Objects were distributed

across three di�erent superordinate categories (animals, vegetables, vehicles) and,

within those general classes, many di�erent basic-level and subordinate categories.

Hence any one novel word was expected to match only a small fraction of the test set

(two to eight objects, out of 24). On the �rst few trials of the experiment, learners

generalized from just a single example of each new word. On subsequent trials, they

were shown two additional examples of each word and again asked to generalize.

With this design, we could more accurately study the natural course of word learning

from one to several examples and the natural extent of learners' generalizations in a

complex, hierarchical world.

Because we are interested in the extent to which similarity to examples can explain

1The experiments reported in this chapter were carried out in collaboration with Fei Xu.
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how words are generalized, we also asked people to judge the similarity of pairs of

objects used as test and example stimuli. These similarity judgments will be used in

the analysis to follow.

4.2.1 Methods

Nine people participated in the study. Participants were members of the broad MIT

community. All gave informed consent and were compensated for their participation.

All were native speakers of English and had normal or corrected-to-normal vision.

Stimuli were presented within a 15" x 15" square window on a color computer

monitor, at normal viewing distance. Participants were told that they were helping

a puppet who speaks a di�erent language than they do to pick out the objects he

needs. 2 On each trial, learners were shown pictures of either one or three labeled

example(s) of a novel (monosyllabic) word, e.g. \blicket" (or \dax", \pog", etc.), and

were asked to pick out the other \blickets" from a test set of 24 objects, by clicking

on-screen with the mouse.

Test set. We constructed a single test set of 24 objects meant to mirror the hierar-

chical structure of natural object taxonomies. Objects were distributed across three

di�erent superordinate categories (animals, vegetables, vehicles) and, within those

general classes, many di�erent basic-level and subordinate categories. For example,

within the class of vegetables, there were peppers, a pumpkin, a carrot, a zucchini,

and an onion; within the class of peppers, there were green peppers, a yellow pepper,

and a red pepper. The test set is illustrated in Figure 1.

Example sets. Figure 2 shows all 12 sets of labeled examples used during the ex-

periment. The �rst three sets contain one example each: a dalmatian, a green pepper,

or a yellow truck, representing the three main branches of the microworld's taxonomy.

One of these three trials (green pepper) is illustrated in Figure 3. Notice that the

�xed test set contains objects matching the labeled example at subordinate (other

2While the experiment reported here was conducted with adult participants, the methodology
was designed to be suitable for preschool-age participants as well. Hence the puppet (Waxman,
1990).
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24 test objects on each trial

 subordinate

 basic

superordinate

Figure 1

green peppers), basic (non-green peppers), and superordinate levels (non-pepper veg-

etables), as well as many non-matching objects (animals and vehicles). The test set

is constructed so that, for any example set, there were always at least two test stimuli

matching at each of these levels. In particular, the test set always contained exactly

2 subordinate matches, 4 basic-level matches, 8 superordinate matches, and 16 non-

matching objects. Note that the test set is exactly the same over all trials, although

the order of objects in the array is randomly permuted.

The next nine sets contain three examples each: one of the three objects from the

single-example sets (the dalmatian, green pepper, or yellow truck), along with two

new objects that match the �rst at either the subordinate, basic, or superordinate level

of the taxonomy. The nine sets arise from the combination of three original objects

crossed with three levels of matching speci�city. Figure 4 illustrates a trial with three

stimuli matching at the basic level (three peppers: green, orange, and purple). Note
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12 possible example sets

1 subordinate

3 subordinate

3 basic

3 superordinate

Figure 2

that the test set is the same as in the single-example trials, with objects matching at

least one of the three examples at all di�erent levels of speci�city, along with many

non-matches.

The experiment began with participants being shown all 24 test objects, one at

a time, to familiarize them with the stimuli they would be working with. This fa-

miliarization was followed by the instructions and twelve experimental trials. On the

�rst three trials, participants saw only one example of each new word, e.g. \Here is

a blicket" (or \dax" or \pog"). On the next nine trials, they saw three examples of

each word, e.g. \Here are three blickets." Subject to these constraints, the 12 example

sets appeared in a pseudo-random order that counterbalanced the order of example

content (animal, vegetable, vehicle) and example speci�city (subordinate, basic, su-

perordinate) across participants. On each trial, participants were asked to pick out
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the other \blickets" from the test set by clicking on-screen with the mouse. The

frequencies with which di�erent test objects were selected during this generalization

phase were the primary data. Order of responses were also collected. The same test

set was used on every trial of the experiment, although the order in which objects

were arrayed on-screen was randomly permuted on each trial. Following these trials,

subjects completed approximately 10-15 more trials with di�erent example sets that

will not be discussed here.

Six of the participants (along with 3 participants in a pilot version of this task)

also participated in a similarity judgment task following the main experiment. Par-

ticipants were shown pictures of pairs of objects from the main study and asked to

rate the similarity of the two objects on a scale of 1 (not similar at all) to 9 (extremely

similar). They were instructed to base their ratings on the same aspects of the objects

that were important to them in making their choices during the main experiment.

Similarity judgments were collected for all pairs of 39 out of 45 objects used in the

word learning experiment { 13 animals, 13 vegetables, and 13 vehicles { including all

24 test objects and all but six of the possible training objects (which were omitted

to save time). The six omitted objects (two green peppers, two yellow trucks, two

dalmatians) were each practically identical to three of the 39 included objects, and

each was treated as identical to one of those 39 in constructing the model of learn-

ing reported below. Each participant rated the similarity of all pairs of 13 animals

(13*12/2 = 78 judgments), all pairs of 13 vegetables (78 judgments), and all pairs of

13 vehicles (78 judgments), along with one-third of all possible cross-superordinate

pairs (e.g. animal-vegetable, vegetable-vehicle, etc.) chosen pseudo-randomly (13*13

= 169 judgments), for a total of 403 judgments per participant. The order of trials

and the order of stimuli within trials was randomized across participants. These tri-

als were preceded by 30 practice trials (using a random sample of the same stimuli),

during which participants were familiarized with the range of similarities they would

encounter and were encouraged to develop a consistent way of using the 1-9 rating

scale. They were also encouraged to use the entire 1-9 scale and to spread their judg-

ments out evenly across the scale. Finally, similarity ratings for all 9 participants
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were averaged together.

4.2.2 Results

Figure 5 shows the generalization frequencies for all 12 example sets and all 24 test

objects used in the study. Each of the 12 subplots corresponds to one set of examples;

the subplots are grouped into columns according to example content (vegetables, ve-

hicles, or animals) and grouped into rows by level of example speci�city (1 example;

3 examples, subordinate level; 3 examples, basic level; or 3 examples, superordinate

level). Within each subplot, there are four bars representing the frequencies of gen-

eralization from the given example set to test objects that matched the examples

at one of four di�erent levels of speci�city: subordinate, basic, superordinate, or no

match. Here is a concrete illustration: In the upper-left-hand-corner subplot (i.e.
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row 1, column 1), the example set consists of a single green pepper, while the four

bars represent frequencies of generalization to green peppers (2 in test set), other

(non-green) peppers (2 in test set), other (non-pepper) vegetables (4 in test set), and

all other objects (16 in test set).

Some broad patterns are apparent. First consider the top row of subplots, repre-

senting trials in which only a single labeled example was provided. Collapsing across

all three kinds of example content, participants almost always (94% of trials) gen-

eralized to test objects matching the example at the subordinate level (e.g. green

peppers), often but not always (70% of trails) generalized to basic-level matches (e.g.

non-green peppers), and rarely (8% of trials) generalized to superordinate matches

(e.g. non-pepper vegetables). Generalization to nonmatching test objects (e.g. ani-

mals or vehicles) was practically non-existent (< 1% of trials). Within each kind of

example of content, di�erences between subordinate and basic matches, basic and su-

perordinate matches, and superordinate matches and nonmatches were all signi�cant

(p < :05, one-tailed tests), except for superordinate vs. nonmatches with the veg-

etable examples. Thus, generalization from one example appears to fall o� according

to a gradient of exemplar similarity.

A very di�erent pattern emerges in the bottom three rows of subplots, represent-

ing trials on which three labeled examples were provided. Instead of a gradient of

generalization decreasing from more similar to less similar test objects, there appears

in most cases to be a sharp transition from perfect or near-perfect generalization to

practically zero generalization. The cut-o� occurs at the level of the most speci�c

category containing all three labeled examples. That is, given three examples in the

same subordinate (or basic, or superodinate) class, participants generalized to all and

only the subordinate (or basic, or superordinate) test matches (e.g. all and only the

green peppers, the peppers, or the vegetables). Quantitative comparisons (collapsed

across the three kinds of example content) support this claim. For three examples in

the same basic category (e.g. three di�erent peppers), there was no signi�cant di�er-

ence in frequency of generalization to test objects matching these at the subordinate

versus basic levels. For three examples in the same superordinate category (e.g. three
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di�erent vegetables), there were no signi�cant di�erences in frequency of generaliza-

tion to test objects matching these at the subordinate, basic, or superordinate levels.

The only exceptions to this pattern of all-or-none generalization occur with three

examples of vehicles at the basic and subordinate levels. Because these are not dra-

matic exceptions, I will set them aside for now, but I will return to them later when

discussing possible models for these data.

4.2.3 Discussion

Our main results are consistent with the existing literature on word learning. 3 First,

we found that people often but not always generalized from a single labeled example

to other objects within the same basic-level category, and rarely to objects outside

the same basic-level category. Second, we found that giving participants more than

one labeled example had a dramatic e�ect on how they generalized to new objects;

they tended to select all objects at the most speci�c taxonomic level spanned by the

examples and no objects beyond that level.

The �rst �nding is consistent with the proposal that children have a preference

for mapping words onto basic-level categories (Markman, 1989; Mervis & Crisa�,

1982). On the other hand, this interpretation is complicated by the fact that our

participants already knew a very familiar word in English for each of these basic-

level categories, \pepper", \truck", and \dog". The tacit knowledge that objects

are almost always named spontaneously at the basic level (Rosch et al., 1980) may

have increased participants' propensity to map words in a new language onto basic-

level categories, i.e. by suggesting that these new words should be translated into

already familiar basic-level words in English. Because the basic-level naming bias is

particularly strong for single objects rather than collections of objects (Markman,

1989), we would expect such interference to show up particularly when only one

labeled example was provided. This bias in adults' tacit knowledge of how basic-level

3All of these connections should be interpreted with caution, because our studies employed adult
participants while most word learning studies work with 3- to 5-year old children. See the general
discussion of this chapter for remarks on this point.
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words are used in naming could exist over and above any preference children or adults

have to map new words onto basic-level categories.

The second �nding is consistent with studies of how children learn superordinate

words (Callanan, 1989; Golinko� et al., 1998). These studies have found that provid-

ing two labeled examples from di�erent basic-level categories signi�cantly increases

the frequency of generalization to other objects of the same superordinate category,

relative to when only a single example is provided. Callanan's (1989) design, in par-

ticular, was similar to ours in that she had learners choose from a test set of 12 stimuli

that matched the examples on multiple levels of speci�city. However, in her study,

the test set changed from trial to trial, each participant only saw either pairs of ex-

amples or single examples, and pairs of examples never belonged to the same basic or

subordinate class. Each of these di�erences reduces the ambiguity in generalization

that the learner faces.

Our results go beyond the existing literature in two important ways. First, we

found a qualitative di�erence in generalization from one labeled example versus sev-

eral labeled examples. While generalization from a single example decreased signif-

icantly with each decrease in similarity to the test objects (Figure 5, row 1), gener-

alization from three examples typically followed an all-or-none pattern with a sharp

threshold (Figure 5, rows 2-4). Second, we found that people used multiple labeled

examples of a new word to lock in its extension at the appropriate level of speci-

�city in a multi-level taxonomy of objects, corresponding to the most speci�c class

containing all the examples.

4.3 Models of concept learning applied to learning

words

As our �rst candidates for modeling these data, we consider the standard rule- and

similarity-based approaches from last chapter, min rule and max sim. Although

we ruled out these models as accounts of the healthy levels task in Chapter 3, it is
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possible that one of them might be more suited to the more natural { and certainly

more interesting { task of word learning. However, as we will see, that is not the case.

After we understand the di�culties each of these models faces, we will then show how

they can addressed in a unifying Bayesian framework.

4.3.1 Ingredients: a similarity metric and a hypothesis space

of candidate rules

None of these models can be assessed, however, until we have speci�ed some additional

ingredients. Rule-based approaches require a hypothesis space of candidate rules.

Similarity-based approaches require a measure of how similar any two objects are.

We obtained the similarity measure directly from the participants in the study.

After completing the main experiment, they were asked to rate the similarity of many

pairs of objects on a scale from 1 to 9 (see Methods section above). These ratings

were averaged across subjects and scaled to the interval [0; 1], to produce a normalized

measure of similarity for all pairs of objects.

There are several possibilities for deriving a hypothesis space of candidate rules.

The simplest approach would be to just assume that people use exactly the hypothe-

ses that we used in designing the stimuli, corresponding to subordinate, basic, and

superordinate categories for each of the three kinds of example content. Concretely,

this translates into just nine hypotheses: vegetable, vehicle, animal, pepper, truck,

dog, green pepper, yellow truck, and dalmatian (Figure 6). However, while this may

be �ne as an ideal model, it hardly exhausts all the hypotheses people could have

brought to bear on this task. There are other natural candidates at every level of

the taxonomy, corresponding to mammals, pets, food, legumes, four-wheeled vehi-

cles, toys, etc., not to mention hypotheses about cats, cars, onions, etc., which are

not consistent with any of the example sets but which the learner must nonetheless

consider going into each trial. Also, there may be classes for which we have no simple

name in English, but which are nonetheless psychologically natural candidates for

the extensions of new words. The fact that di�erent languages chop up the world in
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di�erent ways, and that people are capable of learning new languages, suggest that

there might be many hypotheses of exactly this sort lying around in our heads and

just waiting to be triggered by new words. For all of these reasons, it would be de-

sirable to construct a hypothesis space of candidate word extensions that was not so

dependent on our super�cial and linguistically biased introspections.

A more objective approach would be to ask a separate group of subjects to pick

out subsets of the total set of objects that seem like natural candidates for being the

extension of a word. This parallels the feature-listing methodology frequently used to

constrain models of similarity based on feature overlap (Osherson et al., 1990; Sloman,

1993; Smith, 1995). However, by relying on people to specify their hypothesis space

directly, this approach still confounds people's intuitions about how they learn words

with what we are trying to study, how they really learn words.

We pursue a more indirect approach, looking for a hypothesis space of rules in,

of all places, the similarity judgements that we collected. Recall from Chapters 1

and 2 that feature-based models of similarity can actually be thought of as rule-

166



based models, if we identify each feature with a rule that picks out all and only the

objects having that feature (i.e. red ! \x is red"). Then computing similarity by

counting up the number of features two objects have in common (Tversky, 1977) is

equivalent to counting up the number of rules that apply to both of them. Under this

view, the similarity ratings that we collected for every pair of objects x and y are an

approximate measure of how many rules that, in our participants' minds, apply to x,

also apply to y (or vice versa).

There are a number of computational procedures for reconstructing the set of

rules in peoples' minds that would give rise to a particular set of similarity judgments

in this way. These include additive clustering (Shepard & Arabie, 1979; Tenenbaum,

1996), hierarchical clustering (Duda & Hart, 1973), additive trees (Sattath & Tversky,

1977), and extended trees (Corter & Tversky, 1986). Each technique embodies some-

what di�erent assumptions about the possible structure of features/rules. Here, we

adopt one of the simplest and oldest techniques, average-link agglomerative hierarchi-

cal clustering, or average-link clustering for short (Duda & Hart, 1973). Average-link

clustering constructs a tree representation of the stimuli, in which each node of the

tree corresponds to a cluster of stimuli that are in some sense more similar to each

other than to other stimuli. Applying this technqiue to the similarity data we col-

lected yields the tree in Figure 7.

The cluster tree has several important structural features. The nodes are de-

picted as horizontal lines, while the vertical lines are called \branches". Each \leaf"

of the tree, where a branch terminates without a node, corresponds to one object

used in the study. (For clarity, only objects that appeared as labeled examples dur-

ing the main experiment are actually shown.) The height of each node represents

the average pairwise similarity of the objects in the corresponding cluster, i.e. the

objects corresponding to leaves that come under that node. (Lower height equals

greater average similarity.) The length of the branch above each node measures how

much more similar on average are the objects within it compared to objects in the

next nearest cluster, i.e. how distinctive that cluster is. It may be more intuitive to

think of distinctiveness in terms of distance, as a measure of how well separated the
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corresponding cluster of objects is from the next nearest cluster of objects.

I propose that each node in this tree { each recovered cluster { may be a can-

didate extension for the novel word (i.e. the word would apply to all and only the

objects falling under that node in the tree). There are several reasons why this pro-

posal is especially apt for generating hypothetical extensions of object kind terms,

particularly natural kind terms. First, we have the basic intuition that members of

a kind are, on average, more similar to each other than to other objects. This does

not mean that any one member of the kind cannot be more similar to a member of a

di�erent kind than to some member of its own kind, only that on average this is not

true. Average-link clustering captures this intuition by �nding clusters whose average

within-class similarity would only be increased by the addition of other objects (Duda

& Hart, 1973). More deeply, the candidate extensions generated by any hierarchical

clustering procedure are guaranteed to be either disjoint or nested, i.e. not partially
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overlapping, and to be related by inclusion in a tree structure. Tree structures are the

standard model for natural category systems in cognitive psychology (Rosch et al.,

1980; Murphy & Smith, 1982; Mervis & Crisa�, 1982), and there is some cross-cultural

evidence that they are a universal feature of folk biological systems (Coley, Medin,

& Atran, 1998; Atran, 1998). Also, the restriction to non-partially-overlapping cate-

gories is equivalent to the \M-constraint" of Keil (1979) and Sommers (1963), which

Keil argues is a fundamental constraint on peoples' earliest (and deepest) ontologi-

cal systems. Finally and most relevantly, the assumption that common nouns map

onto taxonomic categories appears to be a major guiding principle in word learning

(Markman, 1989).

Looking at the tree produced by hierarchical clustering (Figure 7), we can see

that it captures in an objective fashion much of our intuitive knowledge about this

domain of objects. Each of the nine main classes that we used in designing the stim-

uli (vegetable, vehical, animal, pepper, truck, dog, green pepper, yellow truck, and

dalmatian) corresponds to a node in the tree (marked by a circled number). More-

over, most of these nine clusters are highly distinctive (i.e. well-separated from other

clusters), as one would expect for the targets of kind terms. A notable exception is

the cluster corresponding to trucks (#17), which is barely separated from the next

higher cluster. By and large, though, the ideal hypothesis space that we constructed

based on intuition (Figure 6) actually turns out to have been a fairly good approxima-

tion to the actual structure latent in participants' similarity ratings. However, there

are many other hypotheses here as well, capturing more subtle relations between

the objects. For example, cluster #18 includes all of the trucks and also the yellow

schoolbus. While the schoolbus does not fall into the class of trucks, it comes much

closer intuitively than any other non-truck object in the set. Moreover, it is conceiv-

able that a language could have a word that applies to trucks and schoolbuses (and

buses), but not other kinds of vehicles like motorcycles and tractors. Other examples

of namable nodes include: cluster #36, containing all and only the toys; cluster #23,

containing the tractor, the bulldozer, and the crane, but no other vehicles; cluster

#33, containing all and only the mammals; etc.
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I am not suggesting that hierarchical clustering on similarity is always { or even

usually { the right way to generate a hypothesis space of candidate extensions for

new words, or more generaly, for new concepts. Even within the domain of natural

object kinds, the taxonomic assumption and the M-constraint have their limitations

(Carey, 1985). In other domains (including those in both the previous chapter and

the next chapter), psychologically natural hypothesis spaces are frequently non-tree-

structured. But when we do have reason to believe that a taxonomic hypothesis

space is appropriate, then hierarchical clustering on similarity may be an objective

and quite powerful way to construct it. In the next chapter, when I consider the

need for more complex spaces of overlapping hypotheses, I will briey discuss how

other clustering algorithms (e.g. additive clustering) can be used to generate those

hypothesis spaces from similarity data as well.

Given the necessary ingredients for rule-based and similarity-based learning algo-

rithms, we now turn to the various models' predictions for our word learning task.

4.3.2 Models based on rules

Recall the most basic of rule-based models of concept learning, min rule. min

rule chooses the smallest hypothesis h� consistent with all observed examples and

generalizes to all and only those new objects that fall under h�. Several authors in

the word learning literature have proposed essentially this algorithm, either explic-

itly (Berwick, 1985) or implicitly (Clark, 1973). Figure 8 shows the predictions of

min rule using the hypothesis space obtained by an average-link clustering of the

similarity judgments (Figure 7). Figure 9 shows the predictions of min rule using

the ideal hypothesis space of only nine hypotheses (Figure 6). Dark bars show the

original data, and light bars show the model predictions. To make the analysis more

revealing, the data and predictions for each individual test object are plotted with a

separate bar. Because neither the data nor min rule show any generalization outside

the superordinate category that the examples belong to, only the eight test objects

belonging to the same superordinate are shown in each subplot. These include two

subordinate matches (bars 1-2, from left to right), two basic matches (bars 3-4), and
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four superordinate matches (bars 5-8).

For trials with three labeled examples (rows 2-4), particularly at the basic level

and above, min rule provides a satisfactory �t (missing at most one probe stimulus

per trial). Using the ideal hypothesis space provides a slightly better �t than using the

cluster-derived hypothesis space, because the three labeled examples do not always

cover the ideal subordinate, basic, or superordinate category node in the more complex

tree of Figure 7. But the di�erence is minor. In short, on those trials where people

generalized in practically an all-or-none fashion, the min rule model provides a

reasonable account of their behavior.

However, min rule was not as successful at modeling trials with only one labeled

example (row 1). Here generalization falls o� in a more graded fashion, so a model

that always chooses the most speci�c hypothesis { or any single hypothesis { cannot
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very well capture this behavior. Figure 10 sums up the performance of these two

models, by plotting the observed frequency of generalization versus the predicted

probability of generalization for all test objects over all trials. The fact that data

points mostly fall above the diagonal line reects the conservatism of min rule.

Table 1 summarizes the model �ts in terms of the correlation between the predictions

of each model and the observed frequencies of generalization, measured across all

test objects (1st column) and also measured across only those test objects in the

same superordinate class as the example objects (2nd column), which is the source

of almost all of the variance in participants' data.

Because we only collected yes/no judgments from participants, we cannot con-

clusively eliminate the possibility that generalization from a single example, despite

its graded appearance in the aggregate data, was in fact rule-based on a subject-
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by-subject or trial-by-trial case. Suppose that people infer not the single smallest

consistent rule, but the single rule that maximizes a combination of small size and

high a priori probability. This was called the MAP algorithm at the end of Chapter

2. In that case, if people have di�erent prior probabilities, some could infer from one

example (e.g. a green pepper) that the word picks out the subordinate class (all and

only green peppers) while others could infer that it picks out the basic-level class

(all and only peppers). Then when we average over judgments over subjects, gener-

alization would appear to be graded even though each individual subject inferred a

single de�nite rule. It is di�cult to rule out this possibility without a more sensitive

dependent variable, or a more �ne-grained within-subjects analysis than could be

supported by our data.

Nonetheless, there is some circumstantial evidence which suggests that individual

participants did not infer a single rule from one labeled example as they seemed

to do from three labeled examples. This comes from looking at the order in which

test objects were picked on individual trials. In particular, we looked at two sets of

trials for which people saw di�erent labeled input but made the same generalizations:

trials in which a participant selected all four test objects in the same basic-level

class (e.g. two green peppers and two non-green peppers) after seeing one labeled

example, and trials in which a participant selected the same four test objects after
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Correlation (R2) with Correlation (R2) with
generalization data generalization data

Model (all test objects) (test objects in same
superordinate class)

Rule-based:
min rule (cluster hyp. space) 0.758 0.642
min rule (ideal hyp. space) 0.899 0.840

Similarity-based:
max sim 0.662 0.492
avg sim 0.593 0.250
Weak Bayes 0.730 0.801

Strong Bayes (cluster hyp. space) 0.940 0.888
Strong Bayes + basic-level bias 0.975 0.957

Table 1

seeing three examples spanning the basic-level category (e.g. a green, an orange, and

a purple pepper). 4 In both of these cases, the contents of people's generalizations

were equally consistent with either a rule-based strategy { applying a single rule at

the basic level { or a similarity-based strategy { responding to all test objects that

surpassed a certain level of similarity to the labeled example(s). But the order in

which these four test objects were selected was quite di�erent in the two cases. Given

only one example (green pepper), the two subordinate (hence more similar) matches

(green peppers) were on average chosen signi�cantly earlier than the two basic-level

matches (non-green peppers). The average rank (out of 4, with 1 indicating �rst

choice) of the subordinate matches was 1.77, while the average rank of the basic-level

matches was 3.23 (p < :001, t = 6:11, df = 50). However, given three examples at the

4This response pattern occurred on 13/27 trials with one example and 21/27 trials with three
examples that spanned a basic-level class.
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basic level (green, orange, and purple pepper), the two subordinate matches were not

chosen signi�cantly earlier, with an average rank of 2.29 versus 2.71 for the basic-level

matches (p > :08, t = 1:77, df = 82). Thus we can conclude that people were doing

something quite di�erent in these two cases, even though their generalization choices

were identical. Given three examples, people seemed to infer that the word referred

to the basic-level class and treated all probe objects in that class equivalently, picking

them out in more or less random order. Given one example, people seemed to infer

that the word de�nitely applied to the highly similar subordinate matches, and, after

some reection, that it might also apply to the less similar basic-level matches as well.

MIN, MAP, or any other model in which people generalize according to a single best

rule has no way to account for this preference gradient observed on single-example

trials.

4.3.3 Models based on similarity

The basic similarity-based model we introduced in the last chapter, max sim, as-

sumes that the probability of generalizing to a test object y is proportional to the

maximum pairwise similarity of y to each of the labeled examples. Figure 11 shows

the predictions of max sim using the pairwise similarities among objects as rated by

participants in the experiment. With only one labeled example (row 1), max sim cap-

tures the graded nature of people's generalization { exactly what min rule missed.

However, the max sim gradient does not fall nearly as fast as people's generalization

does. This causes max sim to �t particularly poorly with three labeled examples

(rows 2-4), where people are generalizing in a practically all-or-none manner. Figure

14a shows that globally, the predictions of max sim are very only weakly correlated

with the observed data (see also Table 1).

To show that these poor results are not simply an artifact of the particular way

in which max sim computes similarity to the set of examples, we also tested the

predictions of a di�erent similarity-based model, avg sim. avg sim de�nes the

probability of generalizing from a set of exemplars X = fx1; : : : xng to a new object
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y to be the average pairwise similarity of y to each of the examples xi,

p(y 2 CjX) =
1

n

X
i

SIM(y!xi): (4.1)

avg sim is in the same spirit as the classic exemplar models of classi�cation, Medin

& Scha�er's (1978) context model and Nosofsky's (1986) generalized context model.

However, avg sim is not the answer here. Figure 12 shows the speci�c predictions of

avg sim, and Figure 14b shows the global relationship between avg sim's predictions

and the observed data. In terms of correlation with the observed frequencies of

generalizaion, avg simperforms even worse than max sim (Table 1).

In Chapters 2 and 3, I argued that a variant of the Bayesian framework, Weak

Bayes, instantiates a principled similarity-based approach to concept learning. Fig-
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ures 13 and 14c show the predictions of Weak Bayes for this task. 5 These predictions

are qualitatively similar to but somewhat more accurate than the predictions of avg

sim and max sim _As the correlations in Table 1 show, Weak Bayes gives a particu-

larly better account of how participants generalized from three labeled examples to

other objects in the same superordinate class, and somewhat less accurate a picture

of generalization behavior across the entire set of test objects. Still, it never achieves

a value of R2 better than 0.8.

Although models based on similarity to exemplars have proven successful at ac-

counting for patterns of classi�cation learning behavior using arti�cial stimuli (Nosof-

5The details of the Bayesian framework are described below. Weak Bayes is equivalent to the
Strong Bayes model presented in Figures 16 and 18a, except with a likelihood term that measures
only whether a hypothesis is consistent with the observed examples (p(X jh) = 1 if h contains the
examples X and 0 otherwise).
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sky, 1992), they do not seem directly applicable to problems of concept learning from

several positive examples, like the one we face here. Figures 11 and 12 reveal the heart

of the problem. Compare the case of one labeled example, e.g. a green pepper, versus

three labeled examples all from the same subordinate class, e.g. three green peppers.

A test object from another subordinate in the same basic class, e.g. a red pepper, is

not signi�cantly more or less similar to each of the three green pepper examples than

to the single green pepper example; i.e. average or maximum similarity to examples

does not change for this test object with the addition of the two more labeled exam-

ples. 6 Yet the probability of generalization goes way down, as people look onto the

6The third similarity-based approach introduced in Chapter 1, \total similarity", is not even
appropriate for modeling generalization frequencies at all, because its predictions of generalization
are not normalized to lie between 0 and 1. They could be normalized by dividing them by the
number of labeled exemplars, but that is exactly equivalent to avg sim.
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most speci�c hypothesis containing the three examples, i.e. green peppers. Failing

to capture convergence to a highly speci�c, all-or-none state of generalization is the

main limitation of max sim avg sim and Weak Bayes { and is precisely where the

complementary approach of min rule excelled.

4.3.4 The Strong Bayes model

By now, if not long before, this story should be starting to sound familiar. The

basic phenomena of generalization we obtained, and the ways in which they frustrate

traditional concept learning algorithms based strictly on rules or similarity, parallel

quite closely what we found in the healthy levels case study. In both cases, initially

broad gradients of generalization converge, as more examples are observed, to the
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most speci�c rule consistent with all the examples. The same principles that allowed

the Strong Bayes model to explain this transition from similarity-like to rule-like

generalization on the healthy levels task also support an explanation of the analogous

transition on the word learning task.

Again, we list the four ingredients of Strong Bayes:

1. A constrained hypothesis space of possible extensions of a concept;

2. A prior distribution over the hypothesis space reecting the learner's relevant

background knowledge;

3. The size principle for scoring the likelihood of hypotheses under the strong

sampling generative model, favoring smaller consistent hypotheses with expo-

nentially greater weight as the number of observed examples increases;

4. The notion of hypothesis averaging, i.e. integrating the predictions of mul-

tiple consistent hypotheses, weighted by their posterior probabilities, to arrive

at the probability of generalizing a concept to a new entity.

The hypothesis space { ingredient 1 { is already given by the hierarchical clustering

solution we developed for the simple rule-based approaches (Figure 7). It remains

for us to determine ingredients 2 and 3, appropriate prior and likelihood terms for

scoring these hypotheses based on their a priori plausibility and their probability

of generating the observed data. Fortunately, the average-link clustering model of

similarity judgments already contains both of these kinds of information implicitly

represented in the taxonomic tree it generates.

First consider the likelihood term. Recall the content of the size principle underly-

ing Strong Bayes: the probability of observing n examples consistent with hypothesis

h is inversely proportional to the size of h raised to the nth power. This principle

follows as a simple consequence of assuming that examples are sampled from a uni-

form distribution over h. Thus what we really need is a measure of the size of each

hypothesis in our hypothesis space. Now, there is an intuitive (negative) relationship

between the size of a class and the average similarity of its members to each other:
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the smaller the class, the higher the average within-class similarity, and vice versa.

So the simplest measure of the \size" of each hypothesis is just one minus its average

similarity. I put size in quotes because this isn't the physical size of any real set; it's

the subjective size of a candidate extension, as reected in how (dis)similar people

think its members are to one another on average. Note that this measure of a hy-

pothesis' size is identical to the height of the corresponding node in the tree of Figure

7, i.e. lower nodes in the tree have higher average within-class similarity. Thus we

take the likelihood of hypothesis h, given the examples X = fx1; : : : ; xng, to be to be

p(Xjh) =

"
1

height(h)

#n
(4.2)

if xi 2 h for all i, and 0 otherwise. Figure 15
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illustrates the relation between the likelihood of a hypothesis and the height of

the corresponding node in the tree produced by hierarchical clustering. In practice,

we must add a small constant � > 0 to height(h), or else the likelihood term blows

up for the lowest nodes in the tree (which have height 0). The exact value of � is not

critical; we found the best results with � = 0:05.

Next consider the prior. Intuitively, a class whose members are much more similar

to each other than to objects outside the class seems like a good candidate concept, an

a priori natural hypothesis for the extension of a new word. In contrast, a class whose

members are no more similar to each other than to objects outside the class seems

like just another random collection of objects, not worthy of name or note. Earlier,

I used the term \distinctiveness" to refer to the average similarity of objects within

a class relative to the nearest objects outside that class { essentially a local version

of the intuition behind what makes a good candidate concept. Also, I noted that the

distinctiveness of a cluster was represented in tree of Figure 7 by the length of the

branch above the corresponding node. For example, the class containing all and only

the dogs (#29) is highly distinctive, but the classes immediately under it (#27) or

above it (#30) are not nearly as distinctive. Thus we take the prior probability to be

p(h) = height(PARENT (h))� height(h); (4.3)

where PARENT (h) denotes the parent node of h in the tree. Figure 15 illustrates this

branch-length prior, which gives a roughly 9-to-1 preference for the class containing

all and only the dogs (#29) versus the class immediately under it (#27), which

contains all dogs except one. The role that this prior probability plays in guiding

generalization is directly analogous to its role in Chapter 2, where, in explaining why

we generalize from 16, 8, 2, 64, to all powers of two, it was necessary to assign the

hypothesis all powers of two except 32 very low prior probability to make up for its

slight advantage in likelihood over the hypothesis all powers of two.

Figure 16 shows the predictions of Strong Bayes when all of these ingredients

(together with hypothesis averaging) are combined to compute the probability of
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generalization to a new object y:

p(y 2 CjX) =
X
h2H

p(y 2 Cjh)p(hjX): (4.4)

In contrast to the strictly rule- or similarity-based approaches considered above, the

Bayesian model generalizes more or less in a graded fashion after one example, and in

an all-or-none fashion after three examples. Figure 18a shows the global correlation

of the strong Bayes model with the observed data. The variance accounted for (Table

1) is clearly an improvement over the strict rule-based or similarity-based models,

but it is still far from perfect. Looking back at Figure 16, we see a few glaring errors

that could account for the discrepancy. We will come back to those errors shortly.

The intuition for why the model switches from graded to sharp generalization
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here is the same as in previous chapters: the combination of hypothesis averaging

and the size principle. Hypothesis averaging means that the more hypotheses that

include both the labeled examples and a test object y, and the more probable those

hypotheses are, the greater the probability of generalizing to y. The size principle

has the e�ect of weighting smaller hypotheses as more likely than larger hypotheses,

just as in the number concept or healthy levels tasks. Just as it would seem very

unlikely to observe the numbers 16, 8, 2, and 64 if we were sampling from all even

numbers or all numbers under 100, as opposed to only the powers of two, so it seems

very unlikely to observe three green peppers if our examples were drawn randomly

from the set of all peppers or the set of all vegetables, as opposed to just the set of

green peppers. This preference is more extreme as we observe more examples; with

just one green pepper, it seems like hardly a coincidence at all.

Hypothesis averaging and the size principle interact as follows to explain the

similarity-to-rule transition in generalization. From any one example, e.g. a green

pepper, there are many possible ways to generalize: to all and only green peppers,

all and only peppers, all and only vegetables, not to mention other classes in the tree

that do not have common names in English. Di�erent hypotheses receive di�erent

probabilities based on a combination of prior and likelihood terms; the likelihood

prefers smaller over larger hypotheses, but these preferences are relatively weak af-

ter only a single example. Probability of generalization is computed by averaging

the predictions of all hypotheses weighted by their probabilities. Because no single

hypothesis dominates the others in probability, the resulting generalization function

appears fuzzy { reecting the conicting predictions of multiple rules { and graded

{ as a function of how many candidate rules a test object satis�es. On the other

hand, after three examples are observed, e.g. three green peppers, the size principle's

preference for smaller hypotheses is multiplied exponentially, and the smallest con-

sistent hypothesis (all and only green peppers) takes on a much greater likelihood

than any of the alternatives. Now, following the weighted average of all hypotheses is

essentially equivalent to following only the single most likely and the Bayesian learner

locks in on the appropriate rule for generalizing the new word.
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Returning to Figure 16, we can see two main places where the Bayesian model

diverges signi�cantly from people's generalization behavior. First, given one example

(row 1), the model does not generalize enough to test objects matching at the basic

level. Second, given three examples in the same basic-level class (row 3), the model

generalizes too much to test objects outside that class (particularly columns 2 and 3).

Together, these two kinds of errors suggest that the model does not have as strong a

preference as people do to map words onto basic-level categories.

Earlier in this chapter, we mentioned several reasons why people might have such

a basic-level bias on this task. Without necessarily taking a stand on which of those,

if any, is correct, we can easily incorporate a basic-level bias into the model and see

whether that signi�cantly improves the �t. To do so, we added a component to the

prior probability of each of the three hypotheses corresponding to our participants'
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Figure 18

presumed basic-level categories: \pepper", \truck", and \dog". 7 Everything else

about the model was unchanged. Figure 17 shows that with the addition of this

one free parameter, the predictions for individual test objects become much closer to

the empirical frequencies. Figure 18b and Table 1 show that the global correlation

between model and data is now almost perfect, with R2 values greater than 0.95.

4.4 Discussion

The abstract problem of this thesis, concept learning from one or a few positive

examples, �nds one of its most important concrete expressions in the task of word

learning. Likewise, the foundational contemporary work on word learning places

the child's problems of induction and generalization at center stage (Quine, 1960;

Carey, 1978; Macnamara, 1982; Markman, 1989). The great debates that have framed

the study of concept learning and induction more generally { Is acquisition driven

mainly by pre-existing knowledge or the statistical force of our observations? Is

generalization based primarily on rule-like representations or similarity to exemplars?

{ are also among the central questions of word learning (Bloom, in press; Carey, 1982;

Jones & Smith, 1993). In this chapter, I have tried to argue that a formal Bayesian

7This component was treated as a free parameter. Here, it was set to equal an additional branch
length (recall that the prior probability of each hypothesis is proportional to the length of the
corresponding node's branch in the tree of Figure 7) of half the total tree height.
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framework for concept learning allows us to view these issues in word learning in new

and productive ways.

First, I presented empirical evidence that the way people generalize words from

one or more labeled examples appears to have both rule-based and similarity-based

aspects to it. This interpretation was supported by showing that simple learning

algorithms which incorporate only rules or similarity are not capable of modeling our

data. As in the more abstract concept learning tasks studied in the preceeding chap-

ters, similarity-based models are most applicable for modeling the broad gradients

of generalization observed in the earliest stages of learning, while rule-based models

become more reasonable as additional examples are encountered and learners restrict

generalization to the most speci�c natural class containing all the examples.

I then presented a Bayesian analysis of word learning, which treats the labeled

examples of a word as data and the problem of generalizing the word to new objects

as Bayesian inference over a hypothesis space of candidate word extensions. The

Bayesian model generates both similarity-like and rule-like behavior in the appropri-

ate regimes. We explained the transition between these two modes of generalization

in the Bayesian framework in terms of the size principle, which causes an initially

broad posterior probability distribution to become strongly concentrated on the small-

est consistent hypothesis after just a few examples, and hypothesis averaging, which

leads to graded or sharp generalization behavior depending on whether the posterior

probability distribution is broad or sharply peaked.

In the context of the debate between knowledge-driven and data-driven theories

of word learning (Bloom, in press), the present work clearly shows the need for both

factors. The Bayesian framework gives prior knowledge an explicit role in �xing the

hypothesis space of candidate extensions and assigning a prior probability over that

space. Constraints on word learning { the mainstay of the knowledge-driven approach

{ naturally enter into this stage of Bayesian modeling. In particular, we incorporated

two well-known constraints from the literature on children's word learning: the tree-

structured hypothesis space was suggested by the taxonomic bias (Markman, 1989),

while the prior probability embodied a bias for mapping words onto basic-level cate-
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gories (Markman, 1989; Mervis & Crisa�, 1982). However, all of this prior knowledge

cannot on its own account for how participants in our study generalized, without

also acknowledging the statistical role of the input data. Given a nested hierarchy

of candidate word extensions, there will typically be many a priori natural ways to

generalize a given set of examples; given three green peppers as examples of \blick-

ets", \blicket" could refer to all and only green peppers, to all and only peppers, to

all and only vegetables, etc. We need to invoke the size principle { fundamentally,

a statistical constraint deriving from a probabilistic model of the observed examples

{ to explain how people are able to lock in on the true extension of a word after

seeing only a few labeled examples. The Bayesian framework thus provides a formal

model of how prior knowledge { including conventional word learning constraints {

interacts with the word learner's input data to guide generalizations of word meaning

from very limited evidence. Neither data nor priors are much help without the other.

Indeed, the usual debate (Bloom, in press) about whether word learning is possible

in virtue of powerful a priori knowledge, or powerful statistical algorithms, doesn't

even make sense in a Bayesian context. For the Bayesian learner, the observed data

have great statistical power, but they have that power precisely because of the strong

models that the learner brings to the task.

To illustrate how radically di�erent this Bayesian framework is from what is often

thought of as statistical learning in the word learning literature, consider the dis-

tinction Bloom (in press) draws between empiricist and rationalist theories of word

learning. Empiricist theories claim that acquiring word meanings depends fundamen-

tally on noticing correlations between features in the environment, while rationalist

theories claim a central role for the learner's knowledge about possible individu-

als, speaker's intentionality, and other such abstract theoretical notions. In Bloom's

view, and probably in the eyes of many people on both sides of the debate, statistical

learning mechansims are primarily the province of empiricist or neo-empiricist (i.e.

connectionist) theories. However, rationalist notions like \individual" and \inten-

tionality" are actually essential pieces of the Bayesian framework presented here. A

Bayesian learner needs to know how many distinct examples of a concept (i.e. how
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many independent pieces of evidence) she has seen, in other words, what n should

be in the expression for the likelihood, p(Xjh) = 1=jhjn. This is critical because the

likelihood depends exponentially on n. In terms of the statistical inferences a word

learner can make, there is a big di�erence between seeing three di�erent green peppers

called \blicket" and seeing the same green pepper called \blicket" on three di�erent

occasions. Thus the abstract notion of \individual" has a central place in Bayesian

concept learning. Barsalou, Huttenlocher & Lamberts (1998) recently presented ev-

idence that subjects in arti�cial category learning tasks do in fact track individual

objects across stimulus presentations, as the Bayesian theory requires.

The notion of \intentionality" also �gures into the size-based likelihood. The size

principle comes from assuming a particular generative model, or process producing

the examples we observe. This is the strong sampling model, in which the examples

are sampled randomly from the true extension of the concept. Without such an as-

sumption, the Bayesian learner has no basis for asserting that three green peppers

were more likely to have been sampled from the set of all and only green peppers than

from the set of all vegetables. In the context of learning words from how they are

used by other people, the strong sampling model is clearly a claim about speakers'

intentionality. It amounts to assuming that people do not indiscriminately label all

objects in the world according to whether they are positive or negative examples of

a word, but that they use a word when they intend to pick out something from a

particular subset of the world, i.e. that word's extension, and so that labeled object

may be treated as having been sampled from that subset. Under weaker sampling sit-

uations, as when examples are provided in the form of feedback on the learner's own

misidenti�cations, this intentional connection between word and object is no longer

there, and a di�erent probabilistic model (e.g. Weak Bayes, instead of Strong Bayes)

is appropriate. In short, the Bayesian learner does not treat all observed pairings of

word w with object-percept p alike { as one might if one were merely collecting fea-

ture co-occurence statistics. Rather, the Bayesian is prepared to make very di�erent

inferences depending upon what she knows or assumes to be the process generating

these observations: i.e. whether or not p reects a random sample of things in w's ex-
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tension, whether or not this sample is independent from a di�erent percept p0, and so

on. Gricean notions, like the assumption that speaker's utterances are \informative"

which Bloom has suggested may actually underlie the mutual exclusivity constraint

in word learning, are clearly of a similar nature and could be naturally incorporated

into the Bayesian framework.

Finally, in light of the rules vs. similarity debate we have considered throughout

the thesis, an intriguing aspect of this chapter's Bayesian analysis was the origin of

the model's hypothesis space. We found that a reasonable set of candidate rules for

word extensions could be obtained from a hierarchical clustering of people's similarity

ratings. The hypothesis space produced by hierarchical clustering is guaranteed to

have the tree structure of natural kind taxonomies thought to underlie the learning of

common object terms (Markman, 1989); the individual clusters are also good candi-

dates for kind term extensions, in the sense of Quine (1969), because their members

are on average more similar to each other than to members of nearby clusters. The

metric properties of the clusters' average similarity levels were also used to de�ne the

prior probability and likelihoods of the Bayesian model. In a deep sense, then, the

spirits of both rules and similarity are at work here. Without the metric properties of

similarity telling us the relative sizes of di�erent classes, we could not have explained

why people's generalization converges after just three examples to the most speci�c

possible rule. But without a hypothesis space of possible rules, we could not have

explained how generalization could converge to a rule at all! And without either a

primitive measure of similarity or the notion of a rule-based taxonomy, there wouldn't

even have been a hypothesis space.

4.4.1 The Bayesian framework as a model of \exible simi-

larity"

Committed similarity theorists may want to view the Bayesian framework di�erently,

as an instance of the \exible similarity" approach to concept learning. Advocates of

this position (Goldstone, 1994; Medin, Goldstone, & Gentner, 1993; Nosofsky, 1986;
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Jones & Smith, 1993) argue that, despite the evidence against simple similarity-based

models like max sim, our primitive sense of similarity is in fact powerful enough to

provide the \groundwork for cognition", once we understand that similarity can be

exible, context-sensitive, and computationally sophisticated. The danger in letting

similarity be all of these wonderful things is that we lose the one characteristic that

made a primitive sense of similarity such an appealing theoretical foundation in the

�rst place { namely, that it was primitive. Once anything is allowed to inuence and

warp similarity, anything will, and the explanatory construct of similarity quickly

becomes \an impostor, a quack", to quote Goodman's (1972) famous appraisal.

The only way to prove that exible similarity is not an impostor is to unmask

its true identity, i.e. to build a formal model. The mathematical models of Nosofsky

(1986; 1992) and Kruschke (1992) have in fact made good on the promise of exible

similarity as the basis for human classi�cation learning in abstract arti�cial domains.

Nosofsky's (1986) groundbreaking idea was to start by constructing a feature space

representation of his stimuli (much like the two dimensional space of healthy levels

in Chapter 3) using multidimensional scaling (MDS) on similarity data, and then

to embed this stimulus representation in a exible model of classi�cation learning,

Medin & Scha�er's (1978) context model. Kruschke (1992) then showed how the

exible parameters of the model (attentional weights, etc.) could be learned to best

discriminate a set of positive and negative training instances of a concept. However,

these models have yet to address the biggest challenges in making exible similarity

work for more natural tasks, such as learning words for natural object kinds. Two key

challenges are: (1) developing an algorithm appropriate for learning concepts from

just one or a few positive examples only, and (2) developing representations suitable

for dealing with natural stimuli like peppers, trucks, and dogs.

In the paradigm of exible similarity, the Bayesian framework can be seen as

a generalization of the Nosofsky/Kruschke approach to concept learning which is

designed to address precisely these two challenges of algorithm and representation.

First, instead of using a classi�cation algorithm that can only learn to discriminate

positive from negative instances (see Appendix A for a discussion), I adopt the more
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powerful machinery of Bayesian inference. The Bayesian learner is quite capable of

acquiring concepts from both positive and negative examples, but can also, under

a suitable generative model of the examples, infer how to generalize from a small

number of positive examples only. Second, instead of using a continuous feature space

representation, I construct a hypothesis space of candidate extensions of the concept.

As we saw in Chapter 3 with the healthy levels task, the hypothesis space approach is

perfectly capable of modeling generalization in continuous feature spaces. 8 Indeed,

the Bayesian framework there predicted how gradients of generalization in feature

space will shrink or stretch depending on the number and distribution of examples

observed, a phenomenon for which the Nosofsky/Kruschke approach cannot formally

account without negative examples. However, as I've shown in this chapter, the

hypothesis space representation is far more general, including as another important

special case a taxonomic hierarchy of object kind classes. Taxonomic hypothesis

spaces, just like continuous feature space representations, may be constructed by

scaling similarity data (using hierarchical clustering instead of MDS). Hypothesis

spaces with yet more complex structure can be constructed with more elaborate

scaling procedures such as additive clustering (Arabie & Shepard, 1979; Tenenbaum,

1996; see next chapter for an application).

So, what is the verdict for similarity? Can it be, in some suitably exible form,

the basis for concept learning? While primitive similarity could not (through simple

models like max sim or avg sim) directly account for how people generalized new

words in this study, it did prove to be an important ingredient in the more successful

Bayesian model, as a means by which to generate the hypothesis space and to measure

the size of hypotheses. Also, in the healthy levels task of Chapter 3, we implicitly

invoked a primitive similarity metric in an analogous role when we de�ned the size of

each rectangle hypothesis. Together, these two case studies do bring the construct of

exible similarity closer to computational respectability. However, they hardly show

8Tversky (1977) and Tversky & Gati (1982) make an analogous point about the virtues of set-
theoretic models of similarity over metric models, which can be treated as a special case within the
set-theoretic framework.
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that similarity carries the main burden of concept learning. Similarity can only be

related to generalization behavior after being processed in a substantial and theoreti-

cally motivated way, via the machinery of Bayesian inference. Other ingredients, such

as a taxonomic constraint on the hypothesis space, are essentially rule-based. And in

some cases, such as the number concept task, a primitive sense of similarity may play

little or no role. Once we have a formal system like the Bayesian framework, it no

longer makes sense to ask whether similarity { or any other one factor { is \the basis

for concept learning". The only meaningful questions concern how, in a particular

case, does similarity interact with the other pieces of the framework to generate the

behavior that we observe in people or would like to observe in our computers.

4.4.2 The relevance for studies of word learning in childhood

Undoubtedly, we must exercise caution in generalizing �ndings and models of word

learning in adults to parallel claims about children. Children have di�erent cogni-

tive resources, and certainly di�erent resources for learning language than adults do.

However, it appears that word learning is very di�erent from syntax acquisition, in

that it does draw on domain-general learning mechanisms which adults and children

have in common for the most part (Markson & Bloom, 1997; Bloom & Markson,

1998). Hence studying adults could tell us a lot about the general strategies involved

in children's word learning, if not the speci�c details.

One major di�erence is that children do not already possess a whole vocabulary of

English words { as our adult learners did { when they begin to learn words. This could

explain why generalization in our experiment was much sharper { almost 100% correct

after just three examples { than might be expected with children who have not yet

learned the relevant words in any languge. Clearly, it is very important to test these

models on children directly, which is what I am now doing in collaboration with Fei

Xu. Hopefully, applying the same formal model to both children and adult learners

will help us to see what they have in common { what are the basic core abilities of

human word learning { and also to make sense of the di�erences in computational

terms.
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In particular, the Bayesian modeling framework may help to answer important

questions about the nature of the constraints and biases that children bring to the

task of word learning. For example, in order to assess the contribution of a taxonomic

bias, we could contrast the predictions of a Bayesian model using a taxonomic hy-

pothesis space with those of Bayesian models using other kinds of hypothesis spaces,

e.g. regions in a multidimensional space (as in Chapter 3) or overlapping clusters (as

in Chapter 5), which could both be obtained by scaling similarity judgments. To

take another example, Callanan et al. (1994) have argued that the basic-level bias

suggested by Markman (1989) and others, and frequently observed in word learning

experiments with children, is primarily a translation e�ect that occurs robustly only

when children are shown examples for which they already know a basic-level name

but no other name. In the present study, we found that adding a basic-level bias

to the model's prior probability was helpful in accounting for participants' behavior,

although this was not the only, or even the primary, source of explanatory power.

Applying the Bayesian model to studies with children, using some objects with famil-

iar basic-level names and others without, should help to resolve the translation issue,

by establishing the degree to which a basic-level bias in the model's prior probability

is necessary to account for children's generalization behavior in these di�erent cases.

4.5 Rules vs. similarity across domains

Why is a single instance, in some cases, su�cient for a complete induction,

while, in others, myriads of concurring instances, without a single excep-

tion known or presumed, go such a very little way toward establishing a

universal proposition? Whoever can answer this question knows more of

the philosophy of logic than the wisest of the ancients and has solved the

problem of induction.

John Stuart Mill, A System of Logic

We have now seen two case studies of human concept learning in quite di�erent

domains, the abstract world of healthy levels and the realistic microworld of peppers,
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trucks, and dogs. We saw that a basic phenomenon of learning emerged in both cases:

convergence of generalization from a broad gradient (of similarity) in the earliest

stages of learning to all-or-none generalization (by the minimal consistent rule) as

more examples were observed. We also saw that a Bayesian framework { in particular,

the Strong Bayes model { can explain how the learner makes this transition after

seeing a su�cient number of positive examples of a concept.

In a much broader context, the convergence from uncertainty to certainty { the

learning curve { is one of the classic themes of both human concept learning re-

search (Shepard, Hovland & Jenkins, 1964; Bower & Trabasso, 1964; Nosofsky, Gluck,

Palmeri, McKinley & Glauthier, 1994) and the Bayesian learning literature (Watan-

abe, 1960; Duda & Hart, 1973). A central question when studying learning curves

has always been, \How fast?" What determines the rate of the learner's convergence

to the target concept? Looking at our two case studies, we can see that the learning

curves are actually quite di�erent in each case. As Figure 19 illustrates, generaliza-

tion gradients in the healthy levels task took between 10 and 50 examples to converge

fully to the minimal rule (Chapter 3, Figures 7 and 14), while in the word learning

task, generalization was practically all-or-none after only three examples!

We can also frame this task di�erence in terms of the rules vs. similarity debate.

In the healthy levels task, the default mode of generalization from limited positive

evidence appears to be graded, or similarity-based. By \default mode", I mean the

manner of generalization after a few (i.e. three, not 1 or 100) examples have been

observed. Given a few samples of healthy levels, people have a sense that other

healthy levels must be similar to those, but they have no clear idea of where to draw

a boundary. Each successive example causes the generalization gradient to sharpen

up incrementally, converging after many examples to what looks like a rule, but no

single rule ever pops out (either in the mind or in the data) as the clear criterion for

generalization. There is no \aha" phenomenon typically associated with rule-based

learning. In contrast, on the word learning task the default mode of generalization

does appear to have an \aha", or rule-based, character. After just a few examples,

we feel fairly con�dent that we know the actual criterion for using this new word, and
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this is reected in the very sharp generalization data collected. Introspectively, our

uncertainty about how to generalize given just one labeled example feels more like the

choice between several possible rules than like a primitive sense of similarity. Until

now in the thesis, we have focused on understanding when and why rule-based versus

similarity-based generalization emerges within each of these domains, but we can also

ask the analogous question across domains: why do similarity gradients dominate in

the healthy levels task and rules dominate in the word learning task?

It is possible that this question has no clean theoretical answer. The di�erent

patterns of learning observed in these two tasks may be merely due to accidental

domain-dependent di�erences in how the mind/brain is wired up. Although at an

abstract level, both the healthy levels and word learning tasks can be cast as prob-

lems of concept learning from limited positive evidence, that may be a mistaken

generalization as far as the architecture of the mind is concerned. In other domains,

particularly linguistic ones, there is good evidence for more than one fundamental

learning mechanism (Pinker, 1991). Perhaps the mind is just set up to use rapid,

rule-based mechanisms for learning words and slower, similarity-based mechanisms
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for learning in continuous feature spaces, and that's the end of the story.

There are a few reasons not to give up so soon on a uni�ed understanding of

these phenomena. Learning to use words, unlike the acquisition of syntactic or mor-

phophonological rules, probably relies on domain-general learning mechanisms (Mark-

son & Bloom, 1997; Bloom & Markson, 1998); learning about the healthy levels of

a substance almost certainly does. Also, we can switch the default modes in each

domain by providing di�erent kinds of input. In the healthy levels task, giving nega-

tive examples, i.e. unhealthy levels, can make a rule for discriminating positives from

negatives seem perfectly natural. 9 In the word learning task, giving the same label

to two objects x1 and x2 which appear to have nothing in common might lead to a

last resort strategy of generalization based on similarity, e.g. \x1; x2 or anything very

similar to one of those". And even if it is just a fact that one task is carried out in

one brain module and the other task is carried out in a di�erent brain module, we

still would like to know why these tasks might be assigned to di�erent modules, and

why these modules work the way they do.

One intuitive answer is that the healthy levels task gives learners a continuum of

possible ways to generalize, while the word learning task gives learners only a discrete

set of choices. Perhaps similarity is the natural mode of generalization in continuous

domains, while rules are the natural mode in discrete domains. However, this can't

be true if taken literally. Recall the alternative version of the healthy levels task

which used a one-dimensional numerical stimulus representation { e.g. \1400" and

\1700" { instead of the graphical representation of dots in a two-dimensional space.

In the numerical version, the set of possible generalizations is discrete and clearly

enumerable: the minimum healthy level can be any number between 1000 and 2000,

and the maximum can be any number between the minimum and 2000, for a total of

(1001� 1000)=2 = 500; 500 possible ways to generalize. Clearly, having a countable

set of alternative generalizations is not the determinant of a rule-based default mode.

9Here are three random examples of levels that doctors consider healthy, 192, 195, and 198, and
two random examples of levels considered unhealthy, 189 and 202. Exactly what the rule is that
discriminates them is not certain, but the idea that there is a rule at all, e.g. positives lie between
190 and 200, is now intuitive.
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It is also not the size (cardinality) of the set of possible generalizations that matters.

In the word learning task, there are 224 = 1; 073; 741; 824 possible ways to generalize,

far more than in the numerical version of the healthy levels task.

Maybe it is the size of the learner's hypothesis space that makes the di�erence

between the two tasks. In the healthy levels task, all of the 500,500 logically possible

ranges of healthy levels seem like candidates for the hypothesis space, but in the word

learning task, we used fewer than 40 clusters of objects as hypotheses. Intuitively, it

seems that it must be easier to lock into a single hypothesis after just three examples

when there are fewer hypotheses to choose from. This idea is on the right track,

but is still not su�cient. Suppose that the concept to be learned corresponds to

the width of a certain kind of machine part, and that you know that such parts are

always manufactured with a width between two adjacent millimeter values (e.g. 452

and 453 mm), but you have no idea what those values are for this particular part.

As in the healthy levels task, there is still a large number of possible hypotheses, but

a single example of this kind of part (e.g. 738.2 mm) is now enough to lock in all-

or-none generalization (738-739 mm). This case also eliminates another possibility,

that the use of stimuli with transparent one- or two-dimensional content is somehow

responsible for a default similarity-based mode.

One way in which both the word learning task and this part-size task di�er from

the original healthy levels task is in having no partially overlapping hypotheses. In the

word learning task, the candidate extensions are nested { either disjoint or one wholly

contained inside another { and in the part-size task they are completely disjoint,

while in the healthy levels task each hypothesis overlaps many others to di�erent

degrees. Could this ambiguity be the source of the di�erence in how fast generalization

converges to a rule? Not quite. Restricting the hypothesis space to a nested (rather

than partially) overlapping structure is not on its own su�cient to induce rapid

convergence to a rule. Recall the case of healthy levels of a poisonous substance (e.g.

lead) that we considered at the end of Chapter 3. There, the hypothesis space was

nested, in that each candidate extension for the range of healthy levels (from 0 up to

some maximum level m) either contained or was contained in every other hypothesis.
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However, a gradient of generalization was still the norm after three examples.

The crucial feature that distinguishes tasks with fast convergence to a rule from

those with much slower convergence is not the di�erence between nested and par-

tially overlapping hypothesis spaces, but between densely and sparsely overlapping

hypothesis spaces (Figure 20). That is, in all versions of the healthy levels task,

each hypothesis overlaps many other candidate extensions with very similar sizes and

boundaries, while in the word learning task, the extent of hypothesis overlap is much

sparser (and is nonexistent in the part-size task). To understand how the density of

hypothesis overlap impacts generalization behavior, we return to the Bayesian frame-

work. As we will see, the same principles which we have used to explain the transition

between similarity-like and rule-like generalization within individual tasks { hypothe-

sis averaging and the size principle { also explain the relative dominance of these two

modes of generalization across di�erent tasks, as a function of the sparse or densely

overlapping structure of the hypothesis space.

In the healthy levels task, the hypothesis space consists of all rectangular regions

in the two-dimensional feature space. For any one rectangle hypothesis, there are

many others which overlap with it almost completely. Some are a bit bigger, others a

bit smaller, others the same size but slightly o�set in position, and so on (Figure 20;

see also Chapter 3, Figure 2b). As a result, any set of positive examples will always

be consistent with many distinct hypotheses that di�er only in�nitessimally in size

and location. This is what we mean in calling the hypothesis space \densely overlap-

ping." Under the size principle for scoring the likelihood of each hypothesis, a densely

overlapping system of hypotheses implies that any set of examples can always be ex-

plained by many possible hypotheses that all have roughly equal probabilities of being

the true extension of the concept. Now, the probability of generalizing to new stimuli

is determined by averaging the predictions of all consistent hypotheses weighted by

their probabilties. The results of averaging many overlapping rectangle hypotheses

of approximately equal probability are the broad gradients of generalization observed

in Chapter 3, Figure 3. As more examples are observed, the posterior probability

becomes more sharply peaked and the generalization gradient consequently becomes
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steeper. But because of the continuum of densely overlapping hypotheses, it takes

many examples for the posterior to become so concentrated on the single smallest

hypothesis that generalization appears to be all-or-none.

In the word learning task, the structure of the learner's hypothesis space is a

very di�erent one, which gives rise to qualitatively di�erent patterns of generalization

under the inuence of hypothesis averaging and the size principle. Here, instead

of a densely overlapping continuum of hypotheses, the learner has a much sparser

hypothesis space in the form of a taxonomic hierarchy (Figure 20; see also Figures 6

and 7 of this chapter). It is still the case that any set of examples will be consistent

with more than one hypothesis, but the number of consistent possibilities is much

lower than in the rectangle hypothesis space. Moreover, each hypothesis is generally

appreciably smaller than its parent, which is appreciably smaller than its parent,

and so on. Thus the relative size di�erences between hypotheses, which turn into

di�erences in likelihood via the size principle, are greater to start with and become

compounded exponentially as we see just a few more examples. Observe that the

greatest structural di�erences are found for hypotheses corresponding to the natural

subordinate, basic, and superordinate classes in this domain, e.g. the set of all dogs

(node #29), or the set of all yellow trucks (node #13), or the set of vegetables (node

#9). These classes are very well separated from their parent classes in the tree, giving

them not only a huge advantage in likelihood over their competitors, but also a high

prior probability (which measures class distinctiveness, i.e. branch length). In sum,

after seeing one example of a new word, all the classes above that object in the tree

will be assigned some probability of being the word's true extension. Averaging over

the predictions of these hypotheses gives rise to a graded pattern of generalization, as

in Figure 5 (or Figure 17), row 1. But after just a few more examples are observed,

the smallest consistent hypothesis becomes signi�cantly more probable than any other

hypothesis in the taxonomy, and generalization approaches an all-or-none function on

that minimal rule.

Our explanation of the di�erent default modes of generalization in these two tasks

thus comes down to a di�erence in the structure of the relevant hypothesis spaces.
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In the word learning task, sparse tree-structured hypotheses ensure that only a few

examples will generally su�ce to make one hypothesis signi�cantly more probable

than the others, leading to a rule-like pattern of generalization. In the healthy levels

task, densely overlapping hypotheses ensure that even after a handful of examples,

there will be many consistent hypotheses of roughly equal probability, and a gradient

of similarity-like generalization will result.

The results of Feldman (1997) provide further support for this line of analysis.

Feldman studied how people acquire simple perceptual categories in which the hy-

pothesis space is even sparser than a taxonomic tree. These categories consisted of

con�gurations of a line-segment and a dot, or two line-segments, in a two-dimensional

display. Feldman argued that people's hypotheses in this domain formed a lattice (like

a tree, but with multiple parents for each node) with two important properites: (1)

each candidate extension was in�nitely smaller than (i.e. measure-zero in) all larger

extensions containing it; (2) there was always a unique smallest hypothesis containing

any set of examples. Under the size principle, these two assumptions imply that the

entire posterior probability should always be concentrated exclusively on the small-

est consistent hypothesis, and hence that generalization should always be rule-based,

even from a single example! That is more or less what Feldman (1997) found. Given

just a single example of a dot on a line-segment, or two line-segments meeting at

their endpoints, people restricted their generalizations to the most speci�c categories

in over 90% of the trials.

It might be argued that this Bayesian analysis doesn't really explain the di�er-

ence between these tasks so much as locate it in the structural features of the learner's

hypothesis space, i.e. his prior knowledge. The question of where the learner's hy-

pothesis space comes from is a much cloudier issue, which is hard to address without

a complete theory of knowledge. It is certainly beyond the scope of the Bayesian

framework for concept learning, or any other framework for concept learning, for that

matter. (I will come back to this point in the �nal chapter's discussion.) What the

Bayesian analysis does explain is how structural di�erences in prior knowledge { as

opposed to di�erences in content, i.e.what the knowledge is about { lead to signi�cant
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observable di�erences in concept learning and generalization behavior. Locating the

cause of the phenomenon in the form rather than the content of our knowledge is

an important contribution, because, while there are an in�nite number of di�erent

things we can think about, there are probably only a �nite (and rather small) num-

ber of ways in which we can think about them. Understanding this link also allows

us to predict the shape of generalization in some domain, given a hypothesis about

how people's prior knowledge in that domain is structured, or to infer from people's

generalization behavior the possible forms of their prior knowledge.

The third and �nal case study of this thesis will further explore the link between

the form of prior knowledge and the shape of generalization, in a more complex

domain where multiple kinds of prior knowledge are expected to give rise to multiple

kinds of generalization behavior within a single domain. This domain is the number

concept task, which served as our introduction to the challenges of concept learning

in Chapters 1 and 2, and to which we now return in Chapter 5.
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Chapter 5

Case Study #3: The Number

Game

5.1 Introduction

This chapter's case study is the most speculative and exploratory in nature. I focus

on a domain in which people have far more complex prior knowledge than we could

hope to model with complete rigor, and explore the extent to which the Bayesian

framework may nonetheless provide qualitative insights into the character of concept

learning and generalization. The particular task is the number concept game intro-

duced in Chapter 1. The learner's challenge here is to guess how a simple computer

program will behave { speci�cally, which numbers between 1 and 100 it will accept {

given one or more random examples of numbers that the program does accept. This

domain may not be as \natural" a domain for concept learning as the microworld

of objects in Chapter 4, but it is almost as rich { maybe more so { and far more

amenable to analysis. Historically, some of the most insightful work on human and

machine concept learning has focused on similar inductive inference tasks with num-

bers (Wason, 1960; Hofstadter, 1995), at least in part for similar reasons.

Recall that when we �rst analyzed this task in Chapter 2, we assumed a hypothesis

space of only 30 possible concepts: odd numbers, even numbers, square numbers,

all numbers (between 1 and 100), multiples of j for 3 � j � 10, numbers ending
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in the digit j for 1 � j � 9, and powers of j for 2 � j � 10. We made this

assumption purely for simplicity and convenience; the point there was to illustrate

the Bayesian framework for concept learning, not to understand how people actually

behave on this task. If we want to model real human behavior, the �rst step is

to get some idea of what a realistic hypothesis space might look like. In Section

2, I approach this problem via an analysis of similarity in number domains, and

outline the ingredients and predictions of a Bayesian concept learning framework in

this vastly more complex hypothesis space. The analysis identi�es two important

subspaces of hypotheses for number concepts: one with a sparse structure like the

taxonomic tree of Chapter 4, and the other with a densely overlapping structure like

the rectangles of Chapter 3. This suggests a natural experiment to test my claim

at the end of Chapter 4 about how the structure of prior knowledge inuences the

shape of generalization. If, as I argued, sparse hypothesis spaces lead to a default

mode of rule-based generalization while densely overlapping hypothesis spaces lead

to a default of similarity-based generalization, then we should be able to observe

both kinds of generalization behavior within the single domain of number concepts.

Section 3 presents an experiment designed to test this prediction. Section 4 considers

how the Bayesian model might actually be implemented in the mind/brain using a

combination of rule- and similarity-based heuristics, to avoid explicit computations

over a >5000-element hypothesis space.

5.2 A Bayesian model of number concept learning

5.2.1 Hypothesis space

In principle, there are 2100 logically possible concepts in this domain. While the great

majority of these subsets are probably not psychologically possible concepts, people's

formal and informal knowledge about numbers is vast and multifaceted. It is hard to

imagine even where to start looking for a hypothesis space of candidate extensions

for human number concepts.
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In the last chapter, we saw that a model of similarity judgment data was able to

expose a reasonable hypothesis space for word learning. Perhaps the same approach

might also allow us to uncover a natural hypothesis space for number concepts. In

the word learning domain, the choice of a hierarchical clustering model for similarity

was guided by important domain knowledge: the taxonomic constraint, and the idea

that words (at least for natural object kinds) name clusters of similar things. In

the number domain, it is less clear what the right model for similarity is. Some

aspects of numbers seem taxonomic: all numbers contains even numbers and odd

numbers; even numbers contains multiples of four, which contains multiples of twelve,

and so on. However, a tree-structured hypothesis space is clearly not appropriate in

general, because numbers frequently belong to two partially overlapping classes; e.g.

36 belongs to the square numbers and the even numbers. Other aspects of numbers

seem to �t a spatial model of similarity, in particular along the important dimension

of numerical magnitude. While that dimension would be naturally captured in a

multidimensional scaling (MDS) model, discrete hypotheses like square numbers or

prime numbers seem out of place in an MDS framework. We need a model that is

more exible than either hierarchical clustering or MDS, suitable for capturing the

diversity of people's knowledge about number.

Shepard & Arabie (1979) introduced the additive clustering model of similarity for

precisely these purposes, and convincingly demonstrated its application on a small

data set of number stimuli collected by Shepard, Kilpatrick & Cunningham (1975).

In earlier work (Tenenbaum, 1995), I translated the additive clustering model into a

probabilistic framework and obtained somewhat better results on the number data set;

I will review my results here. The additive clustering model is a version of Tversky's

(1977) feature-based model of similarity (and thus a cousin of the Bayesian framework

of this thesis { see Chapter 2), in which similarity is modeled as a weighted sum of the

features common to two objects. Mathematically, we identify features with clusters,

so that \having a feature" is equivalent to \belonging to the cluster of things with

that feature". We assume that each stimulus i is characterized by its membership

in one or more of a set of K clusters. We set the variable fik equal to 1 if object i
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Rank Weight Stimuli in class Interpretation

1 .444 2 4 8 powers of two

2 .345 0 1 2 small numbers

3 .331 3 6 9 multiples of three

4 .291 6 7 8 9 large numbers

5 .255 2 3 4 5 6 middle numbers

6 .216 1 3 5 7 9 odd numbers

7 .214 1 2 3 4 smallish numbers

8 .172 4 5 6 7 8 largish numbers

Variance accounted for = 90.9% with 8 clusters (additive constant =
.148).

Table 1

belongs to cluster k (i.e. has feature k), and to 0 otherwise. Each cluster also receives

a weight wk, representing how salient or important it is in the similarity computation.

We can then model the similarity sij of two objects i and j as

sij =
KX
k=1

wkfikfjk: (5.1)

Because fikfjk equals 1 if and only if both objects belong to cluster k (and otherwise

equals 0), sij is just the sum of the weights wk of features common to i and j.

Additive clustering algorithms search for a set of (real-valued) wk and (binary-valued)

fik parameters which make the predicted similarities from Equation 5.1 as close as

possible (in squared error) to the observed similarity judgment data from an empirical

study. The number of clusters K is a free parameter.

Shepard, Kilpatrick & Cunningham (1975) asked subjects to judge the similari-

ties of the \abstract concepts" of the numbers 0-9. Table 1 shows the results of

submitting their data to the probabilistic version of additive clustering in Tenenbaum

(1995). The output of the algorithm is just the weight and members of each cluster;

the linguistic labels were added afterwards for convenient reference. As Shepard &

208



Arabie (1979) �rst pointed out, essentially two kinds of clusters occur in models of

these data: those which seem to capture mathematical properties of numbers, such

as power of two (f2; 4; 8g) or multiple of three (f3; 6; 9g), and those which refer to

their numerical magnitude, such as large numbers (f6; 7; 8; 9g) or smallish numbers

(f1; 2; 3; 4g). We can make several other observations as well: the clusters based on

numerical magnitude always correspond to a connected interval of numbers, i.e. all

numbers between some minimum and some maximum; the mathematical properties

tend to have higher weight than the numerical magnitude features; and for both kinds

of properties, the weight of a cluster seems to be inversely related to the number of

stimuli it contains.

This division of number features into two families is supported by the develop-

mental study of Miller & Gelman (1983). Miller & Gelman gave similarity judgment

tasks to subjects in four di�erent age groups, ranging from kindergartners to adults.

They analyzed their data using INDCLUS, a variant of additive clustering in which

subjects of all age groups were assumed to use the same features but the weights of

the features were allowed to vary between age groups. As with the Shepard et al.

(1975) data, clusters were found that corresponded to both mathematical properties

and numerical magnitude properties. Moreover, the weights on these clusters varied

as a function of subject age in one of two systematic ways, depending on whether the

cluster expressed a mathematical property or a magnitude property. Speci�cally, the

youngest children focused on magnitude properties almost exclusively. As subject age

increased, the weights placed on magnitude properties diminished while the weights

placed on mathematical properties increased, to the point where the mathematical

properties tended to be weighted higher than magnitude properties by adult subjects.

How do these results help us in constructing a hypothesis space for number con-

cept learning? A natural assumption is that each feature recovered by clustering

the number similarity data corresponds to a candidate extension for the computer

program in the number concept task. Note that this is the direct analog of how we

constructed a hypothesis space in the word learning domain, only with a more ex-

pressive model of similarity that allows for partially overlapping clusters. Moreover,
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I propose to identify the weight of each cluster with the prior probability of the cor-

responding hypothesis. Assigning likelihoods is much easier here in than in the word

learning domain, because we have a clear and concrete measure of the size of each

hypothesis, i.e. how many numbers it contains, and the likelihood given n consistent

examples is just [1=size(h)]n. Thus we have all the ingredients needed for a Bayesian

model of number concept learning: hypothesis space, priors, and likelihoods.

There's just one problem here, and it's a big problem. This analysis only gives

us a hypothesis space for the numbers 0-9, and we want a hypothesis space for the

numbers 1-100. Most of the relevant hypotheses over the domain 1-100 have only one

{ or zero! { instances in the domain 0-9. In a concrete sense, then, these additive

clustering models are practically useless for the task we want to model. Directly

generalizing this approach to cover the whole domain 1-100, e.g. by having subjects

judge the similarities of all pairs of numbers less than 100 and submitting those data

to additive clustering, would be impossible; the time requirements for both human

subjects and the computer algorithm are prohibitive.

However, relaxing our standards of rigor somewhat, there is still a way to use these

results to guide us in constructing a reasonable hypothesis space for the domain 1-

100. In the above analysis, I identi�ed several characteristics of the simple hypothesis

space generated by additive clustering on the domain 0-9. We can try to specify,

by hand, an analogous set of hypotheses over the domain 1-100 that displays these

same characteristics. The relevant speci�cations are: one set of hypotheses captures

the salient mathematical relationships between numbers; another set of hypotheses

captures the dimension of numerical magnitude in the form of overlapping intervals of

numbers; the mathematical properties tend to have higher weight than the numerical

properties; smaller hypotheses tend to have higher weight. These characteristics of

the hypothesis space for 0-9 are not just an arbitrary list or an accidental outcome

of the Shepard et al. (1975) study, but were replicated in even stronger form in the

Miller & Gelman (1983) result.

Table 2 shows the speci�c hypothesis space H used to construct a Bayesian model

of learning on the number concept task. The particular choices made were obviously
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Hypothesis space for number game

Mathematical properites:

� Odd numbers

� Even numbers

� Square numbers

� Cube numbers

� Primes

� Multiples of n: 3 � n � 12

� Powers of n: 2 � n � 10

� Numbers ending in n: 0 � n � 9

Magnitude properties:

� Intervals between n and m: 1 � n � 100; n � m � 100

Table 2

arbitrary, but they follow the general patterns observed in the additive clustering

studies. As suggested by those studies, the hypotheses in H fall into two groups.

Mathematical properties are represented by hypotheses for odd numbers, even num-

bers, square numbers, cube numbers, and prime numbers, along with multiples and

powers of small numbers, and numbers ending in the same digit. Numerical mag-

nitude is represented, as it was in the domain 0-9, by hypotheses corresponding to

all intervals of numbers contained within the domain 1-100. The total number of

hypotheses is 5090.
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5.2.2 Priors and likelihoods

As we have done throughout the thesis, we take the likelihood of hypothesis h given

n examples X = fx1 : : : xng to be

p(Xjh) = 1=jhjn;

or 0 if h does not include all of X. This is just the usual strong sampling generative

model, embodying the assumption that the examples are a random sample from the

concept's true extension, and gives rise to the size principle for scoring hypotheses.

The basic intuition for the size principle in the number concept domain was developed

at length in Chapter 2, so I do not recap it here.

The Bayesian model also requires a prior probability distribution over the hypoth-

esis space. Rather than trying to assign prior probabilities to each of 5090 hypotheses

individually, a hierarchical approach was adopted. First, the hypotheses were divided

into two groups corresponding to mathematical and magnitude properites. A certain

fraction � < 1 of the probability was allocated to the mathematical properties as a

group, leaving 1�� for the magnitude properties. Within the group of mathematical

properties, that � probability mass was distributed uniformly (i.e. giving a constant

probability to each hypothesis in this group). Within the group of intervals represent-

ing numerical magnitude, the 1� � probability mass was distributed as a function of

interval size, just as for the rectangle hypotheses in Chapter 3. The speci�c size prior

used was an Erlang distribution with expected size parameter � (Equation 3.10). The

Erlang distribution was chosen to capture the intuition that the computer program

is more likely to pick out an interval of some intermediate size (determined by �),

rather than of very small or very large size. The values of � and � are treated as free

parameters of the model.

The idea of allocating prior probability at a top level to the two groups of hy-

potheses and only then subdividing it within groups was suggested in part by the

intution that this was how subjects would cognize this task, and also by the way the

weights of features in the Miller & Gelman (1983) developmental study covaried as if
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they belonged to these two independent groups. This way of assigning prior proba-

bility also instantiates an automatic bias in favor of the mathematical rules over the

magnitude-based hypotheses, because there are many more magnitude hypotheses

than mathematical hypotheses. That is, there are only 40 mathematical hypotheses,

so each one receives a prior probability of �=40, but there are 5050 interval hypothe-

ses, which each receive an average of (1 � �)=5050 in prior probability, or roughly

1/100 of what the mathematical hypotheses each receive assuming � is near 0.5. This

preference can be seen as a version of the size principle, now applied to the prior

instead of the likelihood. The entire model can be seen as a hierarchical three-stage

generative process for the examples: in the �rst stage, a choice is made between math-

ematical rules or magnitude intervals as the basis for the concept; in the second stage,

a speci�c rule or interval is chosen as the concept's extension; in the third stage, a

speci�c set of examples is chosen from the extension. The parameters � and � enter

at di�erent stages of this process, stage 1 and stage 2 respectively, both of which are

considered to be part of the \prior". The size principle operates at all three stages,

giving a preference to outcomes which are sampled from smaller sets over outcomes

which are sampled from larger sets. Appendix C considers several other hierarchical

generative models for concept learning and their impact on generalization behavior in

a Bayesian framework. Constructing hierarchical hypothesis spaces such as these one

may be a general strategy for making the Bayesian framework applicable to richly

structured real-world domains.

Finally, we compute the probability of generalization to a new object y { the

probability that the program will accept y, given the random examples X of numbers

it does accept { by averaging the predictions of all our hypotheses about the program's

extension, weighted by their posterior probabilities p(hjX):

p(y 2 CjX) =
X
h2H

p(y 2 Cjh)p(hjX): (5.2)

Figure 1 shows this model's generalization behavior for three di�erent sets of

examples: f16g, f16; 8; 2; 64g, and f16; 23; 19; 20g. (The values of the two free pa-
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rameters � = 2=3 and � = 10 were set by eye.) The �rst two example sets, and the

Bayesian learner's behavior, are familiar from Chapters 1 and 2. Generalization from

16 alone is very fuzzy and uncertain; after 8, 2, and 64 are also observed, general-

ization converges to an all-or-none function on the most speci�c rule, powers of two.

The behavior on the third set is quite di�erent from either of these. Given 16, 23,

19, and 20, the model now predicts a broad gradient of generalization to numbers

of similar magnitude, rather than convergence to any one rule. Figures 2, 3, and 4

show how these patterns emerge from averaging over all consistent hypotheses, as a

function of how peaked the posterior probability is.
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5.2.3 Patterns of generalization: rules and similarity

In each version of the Bayesian framework until now, the transition from initial

similarity-like generalization to subsequent rule-like generalization always seemed to

follow a single, stereotyped course. In the word learning task, three examples were

typically su�cient to induce all-or-none generalization; in contrast, in the healthy

levels task, generalization was still quite graded after only three examples, and some-

where between 10 to 50 examples were required before those gradients tightened up

to the minimal consistent rule. This model, for the �rst time, contains both modes

of generalization as potential defaults. Which one is activated depends on the par-

ticular examples observed. Given a few examples consistent with one or more known

mathematical rules, the model locks into the most speci�c rule with all-or-none be-

havior (Figure 1, row 2). Otherwise, the model generates a gradient of generalization

based on similarity in numerical magnitude to the examples (row 3), which sharpens

up only gradually as successive examples are observed. Given only one example, the

model has committed to neither of these modes; in expression of its ambivalence, it

assigns roughly uniform and rather low generalization probabilities to many numbers

(row 1).

The source of this model's more exible behavior can be traced to the more com-

plex structure of its hypothesis space. At the end of Chapter 4, I attributed the emer-

gence of rule-based or similarity-based default modes of generalization in Bayesian

inference to the distinction between sparse and densely overlapping hypothesis spaces.

In a sparse hypothesis space (as in the word learning task or Feldman's (1997) per-

ceptual categorization task), the smallest consistent hypothesis is appreciably smaller

than all other consistent hypotheses; under the inuence of the size principle, it

rapidly becomes the only probable way to generalize after just a few examples have

been seen. In contrast, with a continuum of densely overlapping hypotheses (as in the

healthy levels task), the smallest consistent hypothesis is surrounded by many others

of quite similar size and hence similar likelihood; only after a relatively large number

of examples have been observed does the posterior probability become su�ciently
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concentrated to produce rule-like generalization.

The case of number concepts is more complex because people's a priori candidate

extensions include both sparsely structured mathematical classes { even numbers,

multiples of four, powers of two, etc. { as well as densely overlapping intervals based

on numerical magnitude { numbers between 15 and 25, numbers between 15 and 30,

numbers betwen 14 and 28, and so on. Each of these hypothesis space structures is

capable of giving rise to its stereotypic generalization pattern { rules or similarity

{ depending upon whether it is engaged by the observed examples. Moreover, the

sparse mathematical hypotheses will tend to take precedence over the dense inter-

val hypotheses, because of how the they include numbers which are quite far apart

in magnitude. For instance, the set of examples 16, 8, 2, and 64 is consistent with

both mathematical hypotheses (even numbers, powers of two) and interval hypotheses

(numbers between 1 and 65, numbers between 1 and 80, etc.), but the smallest math-

ematical hypothesis, powers of two, contains only 6 numbers (between 1 and 100),

which is much smaller than the smallest interval hypothesis, numbers between 1 and

65. Under the inuence of the size principle, this leads to a di�erence in probability

that is compounded exponentially with each new example, with the result of rapid

convergence to the rule powers of two.

The precise predictions of the Bayesian model will obviously vary depending upon

exactly which hypotheses are included and how the prior probability assignment is

made. However, the qualitative pattern illustrated in Figure 1 { that either rule-like

or similarity-like generalization may emerge after several examples have been seen

{ is always predicted, as long as the learner's hypothesis space has the dual struc-

ture uncovered in the additive clustering studies, of sparse mathematical hypotheses

combined with densely overlapping intervals representing numerical magnitude. The

experiment in the following section was designed to test this qualitative prediction

with human learners.
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5.3 An experimental test

5.3.1 Methods

Eight people participated in the study. Participants were members of the broad MIT

community. All gave informed consent and were compensated for their participation.

Participants were given a description of the number concept task very much like

that at the beginning of Chapter 1. Just as in Chapter 1, they were �rst given a

few examples of the kinds of concepts that the computer might be programmed to

implement: \X is even", \X is between 30 and 45", \X is a power of 3", \X is less

than 10". To minimize the possibility of bias, only these four sample concepts were

mentioned and they were split two and two between mathematical properties and

magnitude properties.

The example sets were designed to test the Bayesian model's prediction that

either rapid convergence to a rule or a slowly sharpening gradient of similarity can

emerge after a few examples are observed, depending on the nature of the examples.

Speci�cally, we designed three pairs of four-example sets, with the two sets in each pair

based on the same \seed" number but designed to evoke either rule-based or similarity-

based generalization. One pair was the same as in Figure 1, based on the seed 16:

f16; 8; 2; 64g and f16; 23; 19; 20g. The other two were based on 60, f60; 80; 10; 30g and

f60; 52; 57; 55g, and 81, f81; 25; 4; 36g and f81; 98; 86; 93g To these 6 trials, we added

two trials with just a single example each, 16 or 60. These eight trials occured in one

of four pseudo-random orders, subject to the constraint that the two single-example

trials always occured before the six four-example trials.

On each trial, participants were shown one of these sets of examples as \random

examples of numbers that program A [or B or C or : : :] accepts". They were then

given a list of 30 probe numbers between 1 and 100, and asked to rate each one on

a scale of 1 to 7 according to how probable it was to be accepted by the program.

Subjects were instructed to use the scale consistently across trials to represent their

degree of con�dence. To encourage consistent use of the scale, it was reprinted on

each page of the experimental booklet along with suggested probability-of-acceptance
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interpretations for each level: 1, \less than 5%"; 2, \10%"; 3, \30%"; 4, \50%"; 5,

\70%"; 6, \90%; 7, \greater than 95%". The particular choice of 30 probe numbers

was somewhat subjective, but was guided by the model predictions to try to include

all the numbers with a reasonably high predicted probability of acceptance, along

with several numbers with low probabilities to anchor the scale. The same 30 probe

numbers were used on each trial with the same seed example, i.e. trials using the

example sets f16g, f16; 8; 2; 64g, and f16; 23; 19; 20g all used one set of probes, trials

using the example sets f60g, f60; 80; 10; 30g and f60; 52; 57; 55g used a second set of

probes, and so on. Each trial took up one page of an experimental booklet, and probe

numbers appeared in a random order on that page. Participants were told they could

rate the probe numbers in any order they wanted to.

At the conclusion of the experiment, participants were asked to describe in words

the set of numbers which they thought each program accepts.

5.3.2 Results

Figure 5 shows the average data from the eight participants. Individual participants'

data, in most cases, looks similar but noisier. The height of each bar represents

people's average judgments of how likely the corresponding number is to be accepted

by the computer program, given the one or four random examples listed on the left of

the plot. The data were scaled linearly from the 1-7 rating scale to the interval [0; 1],

for comparison with the predicted probabilities. Note that there are only 30 bars

on each plot, representing the 30 probe numbers that participants judged. Thus a

missing bar does not mean a judgment of zero probability; it means that no judgment

was collected. (A few of the data bars are also \made up", because not all numbers

that were included in a trial's example set were also included in the probe set for

that trial. However, people always gave ratings of 7 to probe numbers that were also

examples (with the exception of only a single judgment on one trial), so it seems

reasonable to extrapolate a mean judgment of 7 for the few probe numbers that were

all also examples but were not actually rated by subjects.)

Figure 6 shows the predictions of the Bayesian model for the same example sets.
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The model parameters � and �, the same as those used in Figure 1, were chosen

based on intuition before the experiment was conducted. (These values could almost

certainly be adjusted to improve the a posteriori �t of the model, although I have not

done that yet.)

5.3.3 Discussion

The results are in qualitative agreement with the model predictions and, in some

cases, quite close quantitative agreement as well. Given only one example (Figure 6,

rows 1,2), people gave the probe numbers fairly uniform probabilities of acceptance,

typically lower than 0.5 but signi�cantly greater than zero. The model did likewise,

although with a lower baseline acceptance rate. Given four examples, people's gener-

alization judgments followed one of two basic patterns just as predicted. For exam-

ple sets consistent with one or more simple mathematical properties, (f16; 8; 2; 64g,

f60; 80; 10; 30g, and f81; 25; 4; 36g, people gave essentially all-or-none generalizations

based on one of these properties (rows 3, 5, and 7). For example sets not con-

sistent with any simple mathematical property, f16; 23; 19; 20g, f60; 52; 57; 55g, and

f81; 98; 86; 93g, people generalized according to a gradient of similarity based on nu-

merical magnitude (rows 4, 6, and 8).

More speci�c predictions were borne out as well. In two of the three rule-based

cases, the examples were consistent with more than one simple mathematical rule

(i.e. f16; 8; 2; 64g is consistent with \even numbers" as well as \powers of two",

f60; 80; 10; 30g is consistent with \multiples of �ve" and \even numbers" as well

as \multiples of ten"), but people generalized almost exclusively in accordance with

the most speci�c rule, as predicted by the theory. On trials with broad gradients of

generlization, the theory predicted montonically decaying gradients of generalization

with approximately the correct rate of decay. Like the prediction that rule-based

generalization converges to the minimal rule, the predicted rates of decay of these

gradients are a consequence of the size principle (as opposed to the value of � in the

prior on interval size, which counts for rather little after four examples are observed).

The several ways that model and data di�er are also quite interesting. In particu-
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lar, the model assigns 100% probability-of-acceptance to any probe number consistent

with all of the same hypotheses that the observed examples are consistent with. In

contrast, people always assigned a rating of 7 to probe numbers which were also given

as examples on the same trial, but very rarely assigned a 7 to any other probe number.

One way to interpret this behavior is that people are just using the di�erence between

6 and 7 to show the di�erence between very high and perfect certainty. Another in-

terpretation is that people are actually allowing for other possible explanations of the

examples which may be less natural mathematically, but still logically possible. This

second interpretation is quite sensible; after all, there are 296 subsets consistent with

any four examples, and there is a reasonable expectation that the experimenter might

be trying to trick them! It could also be incorporated into the Bayesian model, e.g.

by allowing for a small portion of the prior probability to be distributed over all 2100

logically possible hypotheses.

Another interesting point of di�erence shows up in two trials with broad gradients

of generalization, f60; 52; 57; 55g (row 6) and f81; 98; 86; 93g (row 8). People's judg-

ments, rather than decaying with a smoothly changing, always-concave slope as the

model predicts, show several inhomogeneities, where the slope of the gradient appears

to change suddenly. These sudden changes occur at suspicious numbers: 60 and 50 in

row 6, and 70 in row 8. It appears that people did not consider all numerical intervals

equally, but gave special attention to those with minimum and/or maximum values

at a multiple of ten. Looking at how participants described their judgments verbally

con�rms this interpretation. It does seem quite intuitive that the multiples of ten

could serve as the \cognitive reference points" (Rosch, 1975) for judging similarity

of magnitude in the domain 1-100, and thus cause categorical distortions in the un-

derlying similarity metric. As retailers have long known, $3.99 is much more similar

to $3.00 than is $4.01. This sort of e�ect could be incorporated into the Bayesian

model by placing signi�cantly higher prior probability on interval hypotheses that are

bounded by multiples of 10.
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5.4 Heuristics for Bayesian concept learning

The key �nding of the experiment is conclusive. Within the context of a single concept

learning task and a single domain of stimuli, people will adopt either rule-like or

similarity-like strategies for generalization depending on the particular examples that

they observe. I presented a model that explains these two modes of behavior { and

why they occur when they do { as special cases of a single underlying computation:

Bayesian inference over a hypothesis space of candidate extensions of the concept.

As in our previous case studies, the size principle was the major force driving the

dynamics of both rule-like and similarity-like generalization, as well as the transition

between them. The new feature of this case study was the presence of both sparse

and densely overlapping subspaces of hypotheses, which gave rise, under the inuence

of the size principle and hypothesis averaging, to the possibility of either rules or

similarity as default modes of generalization.

Participants in our experiment were not prompted to use rule-based, similarity-

based, Bayesian, or any other strategies for generalization. They were told nothing

about hypothesis spaces with thousands of candidate extensions, sparse versus densely

overlapping hypotheses, hypothesis averaging, or the size principle. The only instruc-

tions they were given were that the computer accepts some numbers and not others,

that they should judge the probability of new numbers being acceptable under the

assumption that the given examples were random samples from the acceptable set,

and that the computer was programmed to pick out sets like even numbers, numbers

between 30 and 45, powers of 3, or numbers less than 10. Everything else came from

inside their heads, and came out more or less in accord with the predictions of the

rational Bayesian model.

Despite this success, it is not at all clear that the actual processing going on inside

people's minds during this task looks very much like the speci�cs of the Bayesian

model. At the level of conscious processing, it is almost certainly impossible for people

to keep thousands of candidate hypotheses in mind and update the probability of each

one in accordance with Bayes' theorem, as each new example is observed. At the level
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of unconscious processing, it is much harder to say what people can and cannot do,

yet it still seems unlikely that people are explicitly evaluating the relative probability

of two hypotheses as di�erent as all powers of two and all numbers between 13 and

29. When debriefed after the experiment, people typically reported following a much

more heuristic approach. Given one example, they generalized to probe numbers

on the basis of how many mathematical properties they had in common with the

example, and, to a lesser degree, their similarity in magnitude. Given four examples,

people went with a single mathematical rule if it \popped out" at them, otherwise

they went with a graded sense of similarity based on numerical magnitude.

In light of this, the Bayesian framework will only be complete as a psychological

theory if it makes contact with { and ideally, justi�es { the heuristics people naturally

use to learn concepts from examples. In the rest of this section, I will show how the

three major components of people's heuristic strategy on this task each embody a

justi�able approximation the full Bayesian model, in the situations where people

apply them. More deeply, the knowledge that people have about when to apply these

di�erent heuristics { at least as important as the individual heuristics themselves {

is itself rationally justi�ed by the Bayesian framework.

5.4.1 The MIN heuristic and the hazaka principle

First consider people's rule-based behavior. After seeing a few examples consistent

with a simple rule, people chose that rule as the basis for all-or-none generalization.

When the examples were consistent with multiple rules, as in two of the three cases

here, people overwhelmingly went with the most speci�c one. This can be seen as

instance of the MIN algorithm for learning rule-based concepts from only positive

examples. I reviewed the history of this algorithm in Chapter 2, so let me just recall

the two most important points here. First, MIN is not only a proposal for human

concept learning, but is also one of the classic algorithms for inductive inference and

reasoning more generally. Accounts of language acquisition (Pinker, 1995; Wexler &

Manzini, 1987), scienti�c inference (Popper, 1959), and folk inference (Osherson et

al., 1990), as well as theories of machine learning (Valiant, 1984; Haussler, 1988),
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have all drawn on MIN as a crucial ingredient. Second, the classical justi�cations

of MIN as a rational inference procedure are only valid asymptotically: i.e. in the

limit of in�nite (or su�ciently many) data, it allows the learner to converge (or get

arbitrarily close) to the true concept from only positive evidence.

An intriguing �nding of this experiment is that people are intuitively prone to

using the MIN algorithm given just a few examples. After four examples of the

program's acceptable numbers, f16; 8; 2; 64g, people generalized only to the other

powers of two, even though the perfectly natural class of all even numbers was still

consistent with these observations. We found essentially the same result in Chapter 4;

given three green peppers as examples of \blickets", people generalized only to other

green peppers and no further. In both tasks, people seem to consistently apply an

inference procedure that is justi�ed only for asymptotically large samples when they

have seen just three or four data points. From the classical point of view, it looks

like we have uncovered a new version of the \law of small numbers" (Tversky and

Kahneman, 1971) { the mistaken belief that the law of large numbers applies equally

well to samples with small numbers of data points.

The Bayesian framework of this thesis, however, shows that the law of small

numbers actually applies in many concept learning tasks, including these! Under the

assumptions that 16, 8, 2, and 64 are all randomly sampled from the concept, and

that one of our hypotheses is in fact the true extension, generalizing strictly according

to the minimal rule powers of two is the rational way to behave. Similarly, under the

assumptions that three green peppers are a random sample from the extension of

the word \blicket", and that \blicket" maps onto one of the candidate extensions in

our hypothesis space, then restricting the meaning of \blicket" to just green peppers

is the rational thing to do. Of course, either of these applications of MIN could be

called irrational if the learner has reason to doubt his hypothesis space, or to doubt

that the examples are in fact random samples. But whether those assumptions are

justi�ed is a separate issue from whether the learner's inference algorithm is justi�ed.

A crucial aspect of any good heuristic is the knowledge of when to apply it.

The Bayesian framework justi�es the application of MIN for some cases of small
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samples, but by no means all. Remarkably, people seem to know intuitively when

MIN is justi�ed and when it is not. In general, neither people nor Bayes think MIN

is valid given just a single example, otherwise we would see all-or-none rule-based

generalization from just 16, or just a single green pepper. But people do realize {

correctly! { when the observation of just three or four examples consistent with a

restrictive rule provides strong support for the rule's general applicability.

Many bits of folk wisdom embody the same realization, with a particular focus

on the number three. When we say, \the third time's the charm!", we mean that

if something is not working, it's worth trying it three times before giving up on

it for good. The Talmud considers it reasonable to assume that a practice which

has been carried out in the same way three times will always be carried out that

way. The three consistent examples are said to establish a hazaka, or \propensity",

that is legally binding. States which passed \three strikes and you're out" laws in the

1990's, putting away people for life after three felony convictions, were convinced that

three examples were enough to establish someone as a habitual felon. The \Hazaka

Principle" and its variants seem to be a ubiquotous means of generalization in many

everyday reasoning situations, not just in concept learning.

All of these \hazaka"-type principles can be seen as having the same underlying

probabilistic basis as the MIN heuristic in concept learning. Any one outcome of a

process has many possible explanations, with some being simpler, i.e. more probable,

than others. Let's say that the simplest explanation of an outcome is that such an

outcome will always occur, and that this explanation has a higher probability (likeli-

hood) than any other explanation by a factor of K. After three identical outcomes,

more than one explanation is still possible, but if the events are independent, then

the simplest explanation { that the observed outcome always occurs { becomes much

more likely than the alternatives. Mathematically, this is because the probabilities

of independent events multiply; the simplest hypothesis is now K3 times more likely

than its nearest competitor. If on one example, the simpler explanation is twice as

likely as the next best alternative to be true, then it is eight times more likely after

three. If it was originally three times more likely, then it is now 27 times more likely!
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There are also the exceptions that prove the rule. These are cases where Bayes

justi�es faster or slower acceptance of the minimal rule than after three examples, and

people intuitively follow the same principles. In the healthy levels task of Chapter 3,

both the Bayesian model and the participants in our study knew that the minimal

consistent rectangle was not a good generalization after only three or four examples.

On the contrary, 10 to 50 examples were needed for convergence to the minimal

rule. In the language of the previous paragraph, the densely overlapping hypothesis

space means that K { the likelihood advantage of the smallest consistent rectangle

{ is only in�nitessimally greater than 1. Thus it takes many examples for Kn to

become signi�cantly greater than 1. In Feldman's (1997) perceptual categorization

experiments (discussed at the end of Chapter 4), we have the opposite situation:

K is in�nite, because the smallest consistent hypothesis is in�nitely smaller than

(technically, measure zero in) any others. Bayes then predicts that just a single

example is enough to validate the minimal consistent rule, and people agreed in

over 90% of the trials. Together, these cases are quite reminiscent of Nisbett and

colleague's response to the \law of small numbers" phenomenon (Nisbett, Krantz,

Jepson & Kunda, 1983). They argued that people in fact had an appreciation for

the e�ect of sample size on the validity of universal generalizations, by showing that

people's intuitions about necessary sample sizes varied in systematic and normatively

sensible ways across di�erent domains of knowledge.

In sum, people routinely generalize by accepting the minimal rule consistent with

their observations. But they also have strong intuitions about how many observations

are necessary before accepting the minimal rule. The required number of observations

varies from context to context as a function of the structure { sparse or densely

overlapping { of the hypothesis space of candidate explanations. And at least in every

case investigated in this thesis, people's judgments of when to apply the MIN heuristic

have been more or less in line with the rational standards of Bayesian inference.
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5.4.2 Similarity heuristics

Generalizing in an all-or-none fashion via the most speci�c consistent rule is only one

component of people's strategy on the number concept task. The two other compo-

nents can both be described as similarity heuristics. Given just one example, people

generalize in a graded fashion based on how much a probe number overlaps with

the example on a combination of mathematical and magnitude features. Given four

examples not consistent with a simple mathematical rule, people generalize based on

how similar a probe number is to the examples along the dimension of magnitude

only. These two similarity heuristics correspond to the two classic ways of thinking

about and modeling similarity in the literature, as a contrast of common and dis-

tinctive features (Tversky, 1977) or as distance in a single or multidimensional space

(Shepard, 1980). Throughout the thesis, I have tried to make the point that both

featural and spatial notions of similarity can be seen as special cases of the Bayesian

framework for generalization. But now we are starting to see why this uni�cation is

signi�cant. We found in this study that both featural and spatial intuitions of simi-

larity may occur to people within the context of a single task. The Bayesian analysis

predicts when { and explains in rational terms why { a featural or spatial model of

similarity should be most appropriate to describe people's generalization behavior.

Viewing both senses of similarity in Bayesian terms also gives us insight into

the exibility and dynamics of similarity computations. Tversky (1977) �rst focused

researchers' attention on these questions, by providing a model of similarity that could

accomodate many of the subtle ways that similarity can vary from context to context.

However, Tversky's model does not predict these exibilities of similarity, it merely

accomodates them with the proper settings of certain free parameters. The topic of

exible similarity is the center of much of contemporary research as well (Medin,

Goldstone & Gentner, 1993; Goldstone, 1994, Medin & Florian, 1995), but it is still

the case that formal models (e.g. Nosofsky, 1986; Ashby, 1992) focus on accomodating

the phenomena of exible similarity rather than predict them. Models of classi�cation

learning (Kruschke, 1992; Aha & Goldstone, 1992) are a notable exception, but as I
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pointed out in Chapter 4 and in Appendix A, these models require both positive and

negative examples of a concept to learn. The Bayesian framework, for the �rst time,

gives us a way to understand and predict some aspects of exible similarity to one or

more positive examples of a concept.

In the case of spatial similarity, which (inspired by Shepard, 1987) we model using

densely overlapping regions in a continuous space, the Bayesian framework predicts

how gradients of similarity will shrink or stretch depending on the number and distri-

bution of the observed examples. We were able to understand these deformations of

the generalization gradients in terms of a rational inference process, rather than (or

really, as a complement to) the conventional explanation in terms of \increasing stim-

ulus discriminability" and \selective attention". This topic was discussed extensively

in Chapter 3, so I will say no more about it here.

In the case of featural similarity, we now have an objective explanatory account

of several phenomena which were only accomodated in Tversky's (1977) model by

adjusting free parameters. 1 Recall the form of Tversky's contrast model:

SIM(y!x) = f(X \ Y )� �f(X � Y )� �f(Y �X): (5.3)

Here objects x and y are represented by sets of binary features. (In the context of

number concepts, these features might be things like multiple of two, less than 10,

and so on.) X \ Y denotes the common features of both x and y; X � Y denotes the

distinctive features of x not shared by y. Ameasure f(S) is assigned to each feature set

S; generally f is an additive measure, so that each feature hk in S receives some weight

wk and then f(S) =
P

hk2S wk. Thus the similarity of y to x is given by a contrast

between their common and distinctive features, weighted by the parameters � and �.

To accomodate the fact that the salience of features changes depending on the stimuli

under comparison, Tversky allows f(S) to be a free parameter (perhaps indirectly via

the wk terms). To accomodate the fact that similarity may be asymmetric, Tversky

1The Bayesian model also has free parameters. The di�erence is that these parameters are
assumed to be set once for each task and not to vary from judgment to judgment depending on the
particular examples observed.

232



allows � and � to be di�erent and to change depending on the judgment context.

But the model has no formal account of how these parameters are set.

The Bayesian framework for concept learning is not a model of similarity per se,

but it does capture, in a more rigorous form, some of these phenomena as they occur

when generalizing concepts based on similarity. Recall the �nal form of the Bayesian

generalization function derived in Chapter 2 (Equation 2.5):

p(y 2 CjX) =

P
h2HX;y

p(h)=jhjnP
h2HX

p(h)=jhjn
: (5.4)

Here HX denotes the set of hypotheses consistent with all the examples in X, and

HX;y denotes the set of hypotheses consistent with X and also the new object y.

Another way to write this is

p(y 2 CjX) =
1

1 +

P
h2HX;�y

p(h)=jhjnP
h2HX;y

p(h)=jhjn

; (5.5)

where HX;�y denotes the set of hypotheses consistent with X but not consistent with

y. If we identify hypotheses with features, then Equation 5.5 has an intuitive inter-

pretation very similar to Tversky's model.2 Each feature h is assigned a weight that

is a product of two terms: p(h) and 1=jhjn. The expression
P

h2HX;y
p(h)=jhjn is just

the sum of the weights of all features common to the examples X and the new object

y. The expression
P

h2HX;�y
p(h)=jhjn is the sum of the weights of all features common

to the examples but not shared with the new object, i.e. the distinctive features of

the examples. Finally, the ratio of these two sums in the denominator means that

similarity will increase with the weighted sum of features common to both X and y

and will decrease with the distinctive features of X.

The most obvious di�erence between Equation 5.5 and the contrast model is that

the contrast model is only de�ned for similarity to a single example, whereas the

Bayesian model works for any number of examples.3 But even for just a single example

2In fact, Equation 5.5 also satis�es all of Tversky's qualitative axioms for a matching function,
the most general form of his model (Tversky, 1977).

3Heit (1997) extends the contrast model to multiple examples on non-Bayesian heuristic grounds
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X = x, the Bayesian formulation make strong predictions where Tversky's model has

only free parameters. Where the contrast model assigns each feature h a single exible

weight wk, we now have a product of the two terms p(h) and 1=jhjn. The �rst term

measures the a priori naturalness of a feature, and this is just as unconstrained as wk

in the contrast model. But the second term implies that all other things being equal,

features with smaller extensions will have larger weight. Tversky (1977) discusses this

phenomenon { which he calls the extension e�ect { but gives no formal explanation for

its occurence. The second term also implies that features with smaller extensions will

become increasingly more salient as more examples are observed, as in the increasing

importance of power of two relative to even number for guiding generalization after 8,

2, and 64 have been added to the one example 16. The contrast model has nothing

to say about this.

The Bayesian framework also predicts an asymmetry of generalization without

having to change any parameters like � or �. If one object x has more distinctive

features than a second object y, then Equation 5.5 predicts that generalization from

x to y will be lower than generalization from y to x. To test this prediction, we gave

subjects in the number concept experiment a short post-test which asked them for

direct judgments of the asymmetry, inspired by Tversky's (1977) famous question to

subjects, \Which would you prefer to say, 'Red China is similar to North Korea' or

'North Korea is similar to Red China'?" In our case, subjects were given a random

number x that program A accepts and a random number y that program B accepts.

They were then asked whether they thought it more likely that program A also accepts

y or that program B also accepts x, and to rate the strength of their preference on a

scale of 1 to 4. The Bayesian model predicts strong asymmetries for pairs of numbers

x and y when x has distinctive mathematical features that y lacks, e.g. 24 vs. 26, or

81 vs. 89. Each subject saw 12 trials, on 6 of which the Bayesian model predicted

an asymmetry and on on 6 of which it predicted no asymmetry (e.g. 74 vs. 76, or

and arrives at a similar formulation to this one. He also notes a possible connection to Bayesian
inference, although he does not pursue the implications we discuss here. Heit (1998), however, does
give a Bayesian rationale for asymmetry phenomena like the one discussed below.
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53 vs. 57). 4 The results overwhelmingly con�rmed the predictions, both in terms

of which trials produced an asymmetry and the direction in which the asymmetry

went. Participants showed a signi�cantly stronger preference for one direction of

generalization on those trials for which an asymmetry was predicted than on those

trials for which no asymmetry was predicted, and they also showed the predicted

direction of asymmetry on all six of the asymmetric trials. More details about this

experiment will appear in a forthcoming paper.

I do not mean to imply that all, or even most, phenomena of exible and dynamic

similarity can be captured in this Bayesian model. This is a model of learning and

generalization, not similarity, and it only bears on people's intuitions of similarity to

the extent that they �gure into concept learning. Outside of that task, the rational

analysis that motivated the model does not necessarily apply. But within the context

of learning concepts from one or more examples, the Bayesian model makes strong

predictions about the context dependence of similarity that previous models have

been able only to accomodate.

5.4.3 Putting rules and similarity together

For all the insight that a Bayesian framework gives us into individual heuristics based

on rules or similarity, the most important thing it explains is how those heuristics

work together to guide concept learning and generalization from very few positive

examples, and why they work the way they do. Previous models of concept learning

have postulated hybrid combinations of rule- and similarity-based components on

intuitive grounds (Nosofsky & Palmeri, 1998; Erickson & Kruschke, 1998; Osherson

et al., 1990) or neuroanatomical considerations (Ashby et al., 1998). Each of these

models assumes di�erent mechanisms for rule and similarity modules, and di�erent

4The 6 trials on which an asymmetry was predicted were: 24 vs. 26, 36 vs. 34, 25 vs. 29, 72 vs.
68, 64 vs. 58, and 81 vs. 89. In each case, the �rst stimulus was more mathematically distinctive
than the second stimulus, and thus generalization was predicted to be greater from the second to
the �rst stimulus than from the �rst to the second stimulus. The 6 trials on which no asymmetry
was predicted were: 74 vs. 76, 93 vs. 91, 53 vs. 57, 82 vs. 78, 52 vs. 46, and 11 vs. 19. In the actual
experiment, the orders of the trials and of the two stimuli within each trial were pseudo-randomly
varied.
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means by which they interact. From a computational point of view, all of these

proposals are somewhat ad hoc and it is di�cult to see why an organism would be

built along the lines of one proposal rather than another. The Bayesian framework of

this thesis allows us to understand rules and similarity as complementary adaptations

to a single computational challenge faced by human learners, to see when and why

one mode or the other will dominate, and how each mode works to solve its part of the

computational problem. Whether or not rule- and similarity-based mechanisms for

concept learning are implemented in separate brain modules is a fascinating empirical

question, for which evidence is just beginning to come in (Smith et al., 1998). But

regardless of which way the brain story unfolds, we will only be able to make sense

of it in the context of a uni�ed computational framework for concept learning.
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Chapter 6

Summary and conclusions

6.1 Overview of the Bayesian framework

I began this thesis by posing the fundamental computational problem of concept

learning: how can people acquire such a rich range of possible concepts from the very

limited evidence { one or a few positive examples { that they normally encounter? I

then proposed a solution based on the principles of Bayesian inference. The Bayesian

framework has four major ingredients, which we saw illustrated on three di�erent

kinds of concept learning tasks: continuous separable feature spaces (the \healthy

levels" task), word learning, and the number game.

The �rst ingredient, in common with many classical approaches to induction, is

to assume a hypothesis space of candidate extensions for the concept to be learned.

Without some kind of restriction on the hypotheses we consider, generalization from

any �nite evidence { not to mention only a few positive examples! { is impossi-

ble. In a continuous separable feature space of stimuli, such as the healthy levels

domain, a natural hypothesis space consisted of all rectangular regions in that space.

In learning words for objects, the hypotheses corresponded to taxonomic classes in a

hierarchy of object kinds. In learning number concepts, the hypotheses included both

mathematically special classes, such as all powers of two, and sets of numbers with

similar magnitudes, such as all numbers between 10 and 20. Each of these hypotheses

can be thought of as a possible \micro-rule" for generalizing the concept, or alterna-
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tively, as a candidate \feature" that could distinguish instances of the concept from

noninstances.

The second step in the Bayesian framework is to assign a prior probability to each

element of the hypothesis space. The prior embodies our beliefs about which hy-

potheses are the most likely candidates for new concepts in general, independent of

any examples we have seen. In some sense, the hypothesis space itself is an exten-

sion of the prior; excluding logically possible hypotheses from our hypothesis space is

equivalent to including them but assigning them a prior probability of zero. However,

the prior allows us to encode �ner degrees of preference. Over a hypothesis space of

rectangular regions in feature space, our prior distribution might embody the knowl-

edge that concepts tend to have a known typical size, and thus give preference to

hypotheses with approximately that size. Over a hierarchy of taxonomic classes for

word learning, our prior assumed that words map onto highly distinctive classes of

objects (as de�ned by high within-class similarity), and also, perhaps, classes at the

psychologically "basic" level. In the number game, our prior assigned higher weight

to mathematically special sets of numbers, like square numbers or even numbers, rel-

ative to more psychologically generic interval-based hypotheses, like numbers between

12 and 32.

The third ingredient is a generative model of the examples, which allows us to score

hypotheses based on their likelihood of having produced the data that we observed.

Throughout, we made the assumption of strong sampling: the examples are a random

sample from the concept's true extension. Strong sampling leads to the size principle

for scoring hypotheses, which is how we were able to decide between two (or more)

possible generalizations, each natural a priori and each consistent with the data. The

size principle says that smaller hypotheses are more likely to be the true concept

than larger hypotheses, and they become exponentially more likely as the number of

consistent examples increases. We saw the dramatic e�ect of the size principle in each

of the three case studies. Given any one example { a particular healthy level, a green

pepper, the number 16 { there was little reason to prefer more speci�c hypotheses { a

small rectangle, green peppers, powers of two, { over more general hypotheses { a large
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rectangle, peppers, even numbers. But after we observe more examples consistent with

both general and speci�c hypotheses { a tight cluster of healthy levels, three green

peppers, the numbers 16, 8, 2, and 64 { the more speci�c hypothesis in each case

appears to be the better explanation. The intuition is a statistical one: just as we

would be much less likely to encounter a tight cluster of points if we were sampling

from a large region than if were sampling from a smaller region, so would we be much

less likely to encouter three green peppers sampling from all peppers as opposed to

all green peppers, or 16, 8, 2, 64 sampling from all even numbers as opposed to all

powers of two.

Finally, our actual generalization behavior in the Bayesian framework is deter-

mined by the posterior probability and the principle of hypothesis averaging. The

posterior probability of each hypothesis is equal to the product of its prior probabil-

ity and size-based likelihood. This gives the rational degree of belief in each hypothesis

as a function of both our prior knowledge about more or less natural candidate ex-

tensions and the statistical information carried by the examples. Then, in order to

decide the probability that any new object belongs to the concept, we average the pre-

dictions of all our hypotheses, weighted by their posterior probabilities. Intuitively,

this means that we add up the weights (i.e. posterior probabilities) of all hypotheses

consistent with both the examples and the new object, and compare this sum to the

total weight of all hypotheses consistent with the examples regardless of whether or

not they include the new object. The ratio of these two sums (which is always less

than or equal to unity, because the second sum necessarily includes every term in

the �rst sum although the converse usually does not hold) gives the probability of

generalizing from the examples to the new object. Depending on how many di�erent

hypotheses receive signi�cantly high posterior probability, our generalizations will be

more or less graded. When the posterior is spread out broadly over many hypotheses,

our generalization behavior will really be an average of all of these possible \rules",

and thus will follow a gradient of similarity de�ned in terms of the number of hypothe-

ses/rules/features that a new object shares with the examples. When the posterior

is concentrated on a single hypothesis, on the other hand, the weighted average over
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all hypotheses only pays attention to the extension of that one best hypothesis, and

generalization becomes an all-or-none matter of consistency with this rule.

These are the four basic components of Bayesian concept learning, but to really

understand the theory and its implications, it is necessary to see how these compo-

nents interact as a function of the kinds of prior knowledge learners bring to their

task and the kinds of data they observe. I explored these issues over the course of

three case studies and reached several conclusions, recapped in the next section.

6.2 Summary of major contributions

6.2.1 How is concept learning even possible?

First and foremost, the Bayesian framework o�ers a solution to the problem of in-

duction in concept learning that has eluded the classical approaches to generalization

via abstract rules or similarity to exemplars. Both strict rule- and similarity-based

approaches run into di�culty with the exibility of generalization. Rule-based ap-

proaches need some way to explain how and why rules change their rankings in light

of the observed examples; similarity-based approaches need to explain how and why

the features or dimensions of similarity rise or fall in importance depending on the

data. This was the focus of our discussion in Chapter 1. The Bayesian framework

asserts that these are just two ways of looking at a single underlying problem with

a single solution: statistical inference. To the extent that this is a solution to the

problem of induction, it is a solution not in the sense that the inferences reached are

guaranteed to be right { Hume's problem of induction { but in the sense that it o�ers

a principled characterization of how people can learn the kinds of concepts that they

actually do from the kinds of evidence that they actually observe { (one aspect of)

Goodman's \new" problem of induction. The Bayesian framework thus takes us a

step closer to the integration of the theory and practice of concept learning, which so

many psychologists and computer scientists are working to achieve.
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6.2.2 Quantitative modeling of generalization data in diverse

domains

The case studies in Chapters 3-5 presented quantitatve data on how people generalize

concepts from one or a few positive examples in three diverse task domains. For each

task { drawing rectangles, learning words, guessing number concepts { we developed

a model within the Bayesian framework that gave very accurate �ts to the behavior

of human learners. The major assumptions of the Bayesian model (the hypothesis

space, the prior, and the measure of hypothesis size) were as independently motivated

as possible, with a minimum of free parameters. To my knowledge, this is the �rst

such attempt to model quantitatively the course of human concept learning and gen-

eralization from one or a few positive examples, using a single framework that applies

across quite di�erent task domains.

6.2.3 The appearance of rule-like or similarity-like general-

ization

A theme running throughout the three case studies was the relation between two kinds

of generalization behavior, all-or-none, rule-like generalization and graded, similarity-

like generalization. Both patterns occurred in each task domain, depending on the

number (and sometimes the distribution) of examples observed. The Bayesian frame-

work was capable of predicting when { and explaining why { generalization appears

to follow a rule in some situations and a gradient of similarity in others. We looked

at this question both within individual learning tasks and across di�erent tasks.

Within particular learning tasks, we found the number of examples observed to be

the crucial variable in determining the rule- or similarity-like character of generaliza-

tion. In the earliest stages of learning { after we have seen just a few healthy levels,

or a single labeled object in the case of word learning { the probability of generaliza-

tion decayed gradually as a function of the appropriate measure of similarity to the

observed example(s). In later stages { after 10 to 50 examples in the healthy levels

task, but only 3 in the word learning task { generalization approached an all-or-none
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function of the most speci�c rule consistent with the examples. The Bayesian frame-

work explained this transition in terms of hypothesis averaging and the size principle,

ingredients three and four above. Hypothesis averaging leads to sharp or fuzzy gen-

eralization behavior depending on whether the posterior probability distribution is

peaked or at; the size principle dictates that the posterior becomes concentrated on

the single smallest consistent hypothesis, as the number of examples increases.

Not only within individual learning tasks, but across di�erent task domains, we

also found a di�erence in the relative dominance of rule- or similarity-based modes of

generalization. Similarity-based generalization seemed to be the norm in the healthy

levels tasks of Chapter 3, with convergence to the minimal rule occuring relatively

slowly, after around 10 - 50 examples. In the word learning task of Chapter 4, in

contrast, generalization was only graded given a single labeled example; as soon as

only three examples were observed, rule-based generalization emerged clearly as the

norm. The Bayesian framework explains this di�erence across domains in terms of

structural features of the learner's hypothesis space. The space of rectangular regions

in a continuous feature space { our hypothesis space in the healthy levels task { is

a densely overlapping structure, with many hypotheses of similar sizes and bound-

aries consistent with any set of examples. In contrast, the hierarchy of taxonomic

classes in the word learning task, particularly for those classes corresponding to nat-

ural subordinate, basic, or superordinate categories, is a sparse structure, with the

most speci�c consistent hypothesis typically being sign�cantly smaller than any other

consistent hypotheses. Because the likelihood of a hypothesis is a function of its size,

dense hypothesis spaces will tend to give rise to broader posterior probability distri-

butions, while sparse hypothesis spaces will lead to posterior probability being more

concentrated on the single smallest hypothesis. Through the mechanism of hypoth-

esis averaging, this in turn means that graded generalization will be more typical of

dense hypothesis spaces while all-or-none, rule-based generalization will be more the

norm in sparse spaces. Exactly in the same way that a small hypothesis becomes

exponentially more probable than a large hypothesis as we see more examples, the

relative advantage of the smallest hypothesis in a sparse space becomes exponentially
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greater than the relative advantage of the smallest hypothesis in a dense space, as we

see more examples. This explains why it can take as many as 50 examples to approach

rule-like behavior in the dense space of rectangular regions in the plane, while just

3 examples were su�cient to achieve all-or-none generalization in word learning. Fi-

nally, we made the prediction that a more complex hypothesis space with both dense

and sparse components should be able to give rise to either rule- or similarity-based

generalization from the same number of examples, depending on the particular values

of the examples observed. This prediction was borne out by our third case study, on

the number game.

In sum, hypothesis averaging and the size principle together bring enormous ex-

planatory power to the questions of when and why generalization of a concept appears

governed by rules or similarity. Hypothesis averaging allows the Bayesian framework

to contain both rules and similarity depending on the width of the posterior proba-

bility distribution; the size principle (modulated by the sparseness of the hypothesis

space) determines when generalization will be based on rules or similarity by control-

ling the width of the posterior. Previous Bayesian approaches to concept learning

have contained one or the other of these ingredients, but not both together. Putting

them together has allowed us to see how rules and similarity complement each other

as the two natural poles of rational concept learning.

6.2.4 Formulating rule-based and similarity-based heuristics

in Bayesian terms

In parallel with showing that the Bayesian framework can explain both rule-like and

similarity-like generalization behavior, we also showed how classic theories of concept

learning based on rules or similarity can be viewed as special cases of Bayesian models,

exactly valid in certain limiting cases and approximately valid as heuristics outside

of those limits. By formulating strictly rule-based or similarity-based algorithms in

terms of the Bayesian framework, we gained insight into their rational basis and their

domain of justi�ed validity, as well as how to make them more exible or applicable
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in new contexts.

The classic rule-based algorithm MIN { which generalizes according to the most

speci�c rule consistent with the examples { is conventionally justi�ed only asymptot-

ically, in the limit of in�nite data. We showed that given the right kind of hypothesis

space { i.e. a sparse structure { and the proper generative model { i.e. strong sam-

pling { MIN is justi�ed as a good approximation to the Strong Bayes algorithm after

only three or four examples have been observed. We found that people have an intu-

itive (if often unconscious) awareness of the importance of these requirements and a

subtle sensitivity to whether or not they are satis�ed in any given situation. When

MIN does quickly become a good approximation to Strong Bayes, as in the word

learning and number concept tasks, people do in fact stick to the minimal consistent

hypothesis after three or four examples. In more extreme cases, such as when MIN is

theoretically justi�ed only after a larger number of examples (as in the healthy levels

task), or, at the other extreme, after only a single example (as in Feldman's (1997)

perceptual categorization experiments), people generalize accordingly. Finally, we

noted that people's intuition that the most speci�c candidate generalization consis-

tent with the data becomes valid after approximately three con�rming instances are

observed appears not only in concept learning, but also in many informal heuristics

for social inference { such as the \hazaka" principle from the Talmud or the \three

strikes and you're out" laws of many U. S. states.

The notion that similarity { if allowed to be exible in the proper ways { could

form the foundation of our concepts has been a popular position in psychology, but

lacks substance without a rigorous model of how exactly the similarity computation

is supposed to ex as a function of the observed examples. In each of the three case

studies of this thesis, I presented a Bayesian model that could be interpreted as the

principled mechanism behind a exible similarity-based approach to concept learning.

In the healthy levels task, the Bayesian model's predictions of how generalization

gradients in feature space deform as a function of the examples observed provides

a rational explanation for what was previously explained only in informal, process-

oriented terms, such as \increasing stimulus distinctiveness" and \selective attention".
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In the second case study, the Bayesian model represents a proposal for extending

learning models based on exible similarity to apply to domains with real objects

as stimuli (represented in terms of a taxonomic hierarchy), a real task (learning the

meaning of a word) as the goal, and the real demand of having to learn from only one

or a few positive examples. In the number game, the Bayesian model explained how

the relative weights of mathematical versus magnitude properties (or what we might

think of as deep versus superi�cal causes of similarity between two numbers) varied

as a function of the examples observed. It also predicted the presence and direction of

asymmetries of generalization for pairs of numbers. Tversky's (1997) classic contrast

model of exible similarity can accomodate the phenomena of variable feature salience

and generalization asymmetry, but does not predict them as the Bayesian model does.

Understanding how the Bayesian framework relates to traditional models based

strictly on rules or similarity may also be relevant to mapping out the psychological

and physiological processes responsible for concept learning. Our Bayesian models

frequently employed very large hypothesis spaces, for which the necessary compu-

tations of scoring each alternative hypothesis and integrating the predictions of all

hypotheses might not { for reasons of computational e�ciency { be implemented in

either minds or brains in a direct, straightforward fashion. One possibility is that

human learners could approximate the computations of Bayesian inference through

the judicious application of a MIN rule-based heuristic and a exible similarity-based

heuristic (which is sensitive to the number and distribution of examples in the way

that Bayesian inference requires). Because they would be specialized for di�erent

regimes of concept learning, such rule-based and similarity-based heuristics might

be implemented in di�erent brain modules (as some preliminary evidence suggests

(Smith et al., 1998)). Also, as we saw in the number game, a simple rule found

to be consistent with a small number of examples takes precedence over similarity-

based generalization { both in the Bayesian analysis and in people's behavior. Hence,

if rule-based and similarity-based generalization are the responsibilities of separate

brain modules, we might expect to see the rule module exerting an inhibitory inu-

ence over the similarity module, in order to implement this computational preference.
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Obviously, I am only speculating about the possibilities of neural architecture here.

The key point is that the Bayesian framework, while it is an account at the level of

competence (Chomsky, 1986) or computational theory (Marr, 1980), does give some

insight into questions of how the ability to learn concepts from examples might be

implemented in the mind/brain: why concept learning processes might need to be

modular (to achieve computational tractability); why there might be two modules,

one best described as rule-based and the other best described as similarity-based (to

capture the two extremes of graded and all-or-none generalization behavior); how

each individual module should respond to a set of examples (weighting candidate

rules or features of similarity according to the size principle); and how the modules

should interact to accomplish a uni�ed computational goal (with the similarity mod-

ule dominating initially and the rule module coming to dominate as more examples

are observed, at a rate that depends on the density of hypothesis overlap.)

6.2.5 The interaction of prior knowledge and observed ex-

amples in concept learning

The importance of prior knowledge and intuitive domain theories in guiding the ac-

quisition of natural concepts has been a central theme in the cognitive literature for

the last 15 years (Murphy & Medin, 1985; Carey, 1985). However, the formal models

of concept learning currently popular among mathematical psychologists { exem-

plar models and connectionist models { are for the most part unable to incorporate

structured domain knowledge in a natural way and focus instead on the statistical in-

formation provided by the observed examples. In particular, formal models of concept

learning are applied almost exclusively to tasks that use arti�cal stimuli and that pro-

vide both positive and negative examples provided to the learner, two factors which

signi�cantly reduce the demand for strong a priori constraints on generalization.

Partially as a result of the divide between formal modelers and other psychologists

studying concepts, much e�ort has been spent in debating whether prior knowledge

or observed examples provide the more important force behind the acquisition of con-
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cepts (Jones & Smith, 1993 ). This version of the \nature versus nurture" debate

threatens to miss what makes human concept learning so remarkable: the interaction

of these two forces, which accomplishes what neither one could on its own.

The essence of the Bayesian framework of this thesis lies in capturing this inter-

action. The mathematics here could not be simpler. The posterior probability of a

hypothesis is proportional to the product of its prior probability and its likelihood

given the examples:

p(hjX) / p(Xjh)p(h):

The likelihood captures the force of the data, giving preference to hypotheses under

which the examples are more likely to be observed. The prior captures our beliefs

about the relative naturalness of di�erent candidate extensions for a concept { inde-

pendent of the particular examples observed. Combining these terms via a product

is sign�cant when we are dealing with probabilities. It means that (1) Bayes thinks

these two sources of knowledge should be combined conjunctively, as in an and oper-

ation, and (2) Bayes treats them as if they are independent variables. At an abstract

level, both of these features seem like they have to be correct. Whether a candidate

extension for a concept is plausible a priori is independent of its statistical support in

the observed examples. And for a hypothesis to be accepted, it must be conceptually

natural and be supported by the examples observed. Whether this structure describes

what actually goes on inside people's heads is an empirical matter, which the three

case studies were meant to address.

In all of the case studies, we saw that neither prior knowledge nor the observed data

could alone claim any responsibility for how people learned and generalized from only

one or a few examples. The Bayesian models we developed were able to incorporate

the relevant domain knowledge that participants in these studies might reasonably be

assumed to have, in the form of a hypothesis space of candidate extensions and a prior

distribution over that space, and to show exactly how that knowledge served to guide

generalization from the examples provided. In the healthy levels domain of Chapter

3, the prior knowledge that the substance in question was an environmental pollutant
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(e.g. lead), as opposed to a naturally produced bodily chemical (e.g. cholesterol or

insulin), had a dramatic on how people generalize from just one example, which the

Bayesian framework was able to capture by restricting the hypothesis space to include

only intervals of healthy levels with their minimum at 0. In the word learning domain

of Chapter 4, the hypothesis space was given a nested tree structure inspired by the

taxonomic bias for learning nouns (Markman, 1989). The model's predictions were

also made signi�cantly more accurate when the prior probability included a bias for

mapping words onto basic-level classes (Markman, 1989; Mervis & Crisa�, 1982). In

the number game of Chapter 5, the hypothesis space incorporated multiple kinds of

prior knowledge, including both formal knowledge about mathematically priveleged

classes (powers of two, even numbers) as well as less formal knowledge about numerical

magnitude.

In none of these cases was prior knowledge about the possible extensions of con-

cepts alone su�cient to explain the course of concept learning. The examples exerted

great statistical power through the size principle embodied in the likelihood term:

p(Xjh) =

"
1

size(h)

#n

if X 2 h, and 0 otherwise. In each case study, the size principle determined how

far people generalized as a function of the number of examples observed. Increasing

numbers of examples led to increasingly conservative bounds of generalization, always

converging to the smallest hypothesis consistent with the observed examples. The size

principle also determined in what ways people generalized, causing the gradients of

generalization in the continuous feature space of the healthy levels task to shrink along

dimensions with tighter clustering of examples, or, in the number game, causing a

speci�c mathematical rule, e.g. powers of two, to take precendence over hypotheses

based on numerical magnitude, e.g. numbers less than 80".

Most intriguingly, both the structure of the hypothesis space and the size prin-

ciple were essential in characterizing the di�erence between domains that give rise

to similarity-based versus rule-based generalization as the default mode, and for un-
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derstanding domains like the number game in which both modes coexist. Whether

people's hypothesis space has a sparse or densely overlapping structure is determined

by their prior beliefs about the possible concepts in a particular domain, but the

reason why this structural di�erence leads to a di�erence in generalization behavior

after just a few examples lies in the statistical force of the examples, as expressed

through the size principle.

In sum, I hope that by providing a framework for understanding the interac-

tion of domain-speci�c prior knowledge and general-purpose statistical principles,

the Bayesian approach will help to bring formal models of human concept learning

back from their long-standing focus on arti�cial, knowledge-poor tasks and into closer

touch with the more natural, knowledge-intensive learning settings that pose the real

challenges for cognitive science.

6.3 Other directions

A number of extensions, challenges, and broader applications of the Bayesian frame-

work are beyond the scope of this thesis to cover in detail, but I will try to sketch

some of the important points of ongoing and future work in this section.

6.3.1 The complexities of learning in the real world

Real-world learning situations present a number of complexities which I have not ad-

dressed here, but which the Bayesian framework can be extended to handle. Some of

these issues include noisy example values, noisy example labels, disjunctive concepts

(with two or more possible extensions) and weak prior knowledge. The Bayesian

framework deals with these added complexities by supplementing the generative

model with extra hidden variables in addition to the hypothesis space of candidate

extensions for the concept. These hidden variables can denote, for instance, which

examples are labeled correctly, which examples are drawn from the same (of two or

more) extensions, or which features from a large basis set are relevant for de�ning

the concept. The learner can assign probabilities to these hidden variables just as
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he does to the candidate extensions, using a prior probability combined with a size-

based likelihood. The results are automatic procedures for assigning error margins to

example values, rejecting potential outliers, controlling the complexity of the inferred

extensions, and selecting the relevant features. Appendix C explains the ideas behind

these more subtle Bayesian inferences in more detail and illustrates the generaliza-

tion gradients they give rise to, using the rectangular regions hypothesis space from

Chapter 3 as a base.

6.3.2 Challenges for Bayesian inference

An important theme of this thesis has been to draw connections between certain

qualitative properties of the Bayesian formalism and important qualitative aspects

of human generalization behavior. However, there are other aspects of Bayesian

inference which we did not dwell upon and which do not seem to map so well onto

human behavior. One major point of di�erence is that the behavior of most Bayesian

models, including all models in this thesis, is independent of the order in which

examples are encountered, while it seems unlikely that this will be true in general for

human learners (e.g. Elio & Anderson, 1984; Goldman, 1986). However, issues like

this one are not refutations of the Bayesian framework, but challenges to it. Bayesian

inference is only insensitive to the order of experience under the assumptions that each

example is an independent sample from the concept, and that the relevant sampling

probabilities are not changing over time. Neither of these assumptions is strictly

true in many situations, but they make the theory much simpler to work with. In

future work, it will be important to develop Bayesian models which do not make

these independence and stationarity assumptions and to see how well they describe

the e�ects of example order on human generalization behavior.

Another important challenge for Bayesian models is the problem of learning when

the true concept is not in the learner's hypothesis space. All guarantees of optimality

or rationality are o� in these circumstances, which may arise frequently for real-world

learners. In future work, I would like to understand how Bayesian models of concept

learning generalize in these situations, in particular, relative to human learners. Peo-
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ple have a remarkable ability to enlarge their hypothesis space in apt ways when

the observed data are not consistent with any hypothesis that they are currently en-

tertaining { \necessity is the mother of invention" { and trying to understand these

\invention"-like processes within a Bayesian framework, perhaps using the techniques

discussed in the previous subsection and in Appendix C, is another goal for future

work.

6.3.3 Implications for machine learning

All along, I have taken the position that the capacities of human concept learning

far outstrip those of any arti�cial system, and thus that we can only make progress

on understanding human learning by developing more sophisticated computational

models than are currently available in the machine learning literature. Having made

at least some progress on understanding how people can generalize from just a few

positive examples, it now makes sense to turn back to machine learning and explore

the implications of this work for building better arti�cial concept learners. This is

mostly a topic for future research, but we can identify a few important principles

based on the results of this thesis.

First, when designing statistical algorithms for concept learning, it is crucial to

have the right probabilistic model for how the examples are generated. Many machine

concept learning systems assume what I called \weak sampling" in Chapter 2, where

the examples are sampled independently from the concept to be learned. This is an

appropriate assumption for many discrimination learning tasks, e.g. when the com-

puter has to learn to classify manufactured parts into one of two mutually exclusive

classes. But it is not appropriate for learning concepts from positive examples that a

human user provides, and it does not lead to the size principle that was responsible

for rapid convergence to the true concept. The size principle requires something like

the \strong sampling" model, in which the (positive) examples are assumed to be

sampled from the concept to be learned. An immediate goal for future work is to

build a computer system that learns concepts from positive examples provided by a

human user (and perhaps also from negative examples provided as feedback on the
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system's mistaken generalizations), and to explore the impact of using an appropriate

generative model (strong sampling, as opposed to weak sampling) on how natural and

easy to use human users �nd the system.

Second, in designing machine concept learning systems a great deal of attention

should be paid to the structure of the hypothesis space. In this thesis, we saw how

certain structural features of the hypothesis space determined important features of

learning behavior, e.g. how the density of hypothesis overlap determined how fast

human learners (and Bayesian models) converged on the true concept. If very rapid

learning is goal for a machine learner, then it is essential to have a hypothesis space

with sparse overlap structure. Engineering hypothesis spaces with theoretical desir-

able properties thus turns out to be one of the most important problems in designing

an arti�cial concept learning system.

The �nal message of this work for machine learning is that we shouldn't be so

afraid of jumping to conclusions. As we saw in Chapters 4 and 5, human concept

learners frequently jump to conclusions with no logically sound basis after very few

examples. The Strong Bayes concept learning framework also shows this kind of

behavior, in contrast to traditional machine learning theories (Valiant, 1984; Haussler,

1988; Kearns & Vazirani, 1994; Vapnik, 1995) which aim for asymptotic performance

guarantees at the cost of learning curves that are, by human standards, hopelessly

slow. As I wrote in Chapter 3, if we want our learning algorithms to be able to learn

concepts from just a few examples, the way that people do, then we have to be willing

to accept that sometimes they will leap to incorrect generalizations, just as people

do. Bayes takes the bad aspects of human learning along with the good; conventional

theories of machine learning take neither.

6.3.4 Where do the priors come from?

The Bayesian framework of this thesis gains much of its explanatory power from

assumptions about the learner's hypothesis space and prior probability distribution

over that space. This naturally raises the question of where these priors come from,

both for the learner who must use them to generalize and for the experimenter who
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must use them to model the learner's generalization behavior. I am not ashamed to

admit that I have no simple answer to this question. In fact, I think that this is a

strength of the theory, not a aw. People bring many di�erent kinds of knowledge to

bear on concept learning tasks, which may vary dramatically from domain to domain.

In order to describe human learning behavior in a wide range of situations, a theory

must be able to accomodate many di�erent kinds of prior knowledge. Explaining the

origin of this prior knowledge is an important part of explaining the origin of our con-

cepts, but it is in an important sense not the proper subject for a theory of concept

learning. A theory of concept learning, such as the Bayesian framework of this thesis,

is properly about the mapping from prior knowledge to generalization behavior. This

does not mean that the Bayesian framework is of no help in understanding the nature

of people's prior knowledge. Quite the contrary, one way to view the Bayesian frame-

work is as a tool for studying prior knowledge, in particular, for making \forward"

predictions about the e�ects of certain structural features of prior knowledge (e.g.

density of hypothesis overlap) on behavior, as well as for making \backwards" infer-

ences about the structure of people's prior knowledge from the kinds of generalization

behavior they produce.

Even though there is no simple answer to the question of where the concept

learner's prior knowledge comes from, two possible sources seem like good candidates:

unsupervised learning and domain theories. The hypothesis spaces used in this thesis

either consisted of low-dimensional feature spaces (Chapter 3), clusters of objects

(Chapter 4), or a mixture of the two (Chapter 5). These are exactly the sort of

structures that many unsupervised learning algorithms are designed to discover in

raw data (Duda & Hart, 1973; Shepard & Arabie, 1979; Tenenbaum, 1995, 1998).

The idea of using unsupervised learning to provide the raw material for supervised

learning is a standard one in the machine learning tradition (Bishop, 1995). In fact,

the clustering algorithms I used in Chapters 4 and 5 to construct the hypothesis

spaces are essentially unsupervised learning algorithms, which operated on subjects'

similarity data as their measurements of objects. Exactly the same algorithms could

be used on raw images or other perceptual signals, given an appropriate similarity
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measure (which again will depend on the domain and the learner's goals).

Domain theories are another important source of a priori constraint on concept

learning. In some cases, a domain theory will generate the hypothesis space directly,

by suggesting particular subsets of objects as important candidates for the extensions

of new concepts. In other cases, a domain theory a�ects the hypothesis space indi-

rectly, e.g. by dictating a particular kind of structure which can then be detected by

an unsupervised learning algorithm. The full hypothesis space would then arise from

the interaction of the domain theory with the unsupervised learning algorithm. This

was the case in the word learning studies of Chapter 4, where the intuitive notion

of a tree-like taxonomy of object kinds, combined with the taxonomic bias of word

learners, suggested a hierarchical clustering algorithm for generating the learner's

hypothesis space.

The Bayesian framework for concept learning also gives us a set of criteria for

evaluating new proposals for unsupervised learning algorithms or domain theories,

in terms of how well they mesh with the framework's needs and constraints, and in

terms of what kind of learning behavior they lead to under Bayesian inference. For

example, the fact that only sparse hypothesis structures lead to very rapid concept

learning in the Bayesian framework may imply that, in a given domain where people

typically learn all-or-none concepts from just a few examples, we should focus our

attention on those domain theories or clustering algorithms which lead to sparsely

structured hypothesis spaces for learning.

6.3.5 What makes good examples of a concept?

Phenomena of \typicality", \representativeness" or \exemplar goodness" are some of

the most robust in the cognitive literature, but also some of the most poorly de�ned

(Kahneman & Tversky, 1972; Rosch & Mervis, 1975; Barsalou, 1985; Gigerenzer,

1996). The framework of this thesis suggests a precise de�nition of one sense of rep-

resentativeness, in the context of Bayesian concept learning. That is: a good example

of a concept is one which leads a Bayesian learner to generalize to all (or most) of

the other entities in that concept, and only those entities. This is closely related to
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Feldman's (1997) idea of a logically generic example, although more general because

of its probabilistic formulation. Most importantly, the probabilistic formulation al-

lows us to de�ne representativeness for a set of examples { what makes x1; : : : ; xn a

good sample of a concept { which is important if we want to understand how multiple

examples interact to aid concept learning. This Bayesian de�nition of representative-

ness can be used to resolve a number of puzzles about typicality. This will be the

subject of a forthcoming paper, but the basic idea is summed up in the following

sketch (adapted from Tenenbaum, 1997a).

Genericity: a Bayesian de�nition of representativeness. LetH = fH1; : : : ; Hng

denote a set of mutually exclusive hypotheses that might account for an observation

D. Then Bayes' rule asserts that D supports Hi (maximizes p(HijD)=p(Hi)) to the

extent that the occurence of D is better explained (more probable) under Hi then

under any of the other alternative hypotheses Hj 6=i, weighted by their priors. An

observation D that provides strong support for Hi under this measure will be called

a generic example of Hi. Of the many ways in which an outcome or object may be

typical of a process or category, being a good example for the purposes of inductive

generalization is surely one of the most natural. In contrast to many previous propos-

als, this sense of typicality as genericity is quite precise and follows from normative

principles of inductive inference. It also clari�es a number of otherwise puzzling

phenomena:

1. Typicality may not imply typical features. Under the standard view,

people judge a robin to be a typical bird because it shares many salient features

with the bird prototype, or with other birds. But people judge S1 = HHTHTTTH to

be a typical sequence of fair coin ips not because it has certain salient features, but

because it does not have the features (patterns or biased tendencies) that less typical

sequences like S2 = HTHTHTHT or S3 = HHTHTHHH do. On a Bayesian analysis, those

salient features make S2 and S3 less generic, and thus the \featureless" S1 is correctly

identi�ed as the most typical.

2. Typical individuals may not belong to typical subclasses. Robbie

the robin would be judged to be a typical or representative bird, and robins are
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also considered to be a typical kind of bird. But consider the two quadrilaterals in

Fig. 1A and Fig. 1B. Most people consider 1A to be more typical or representative

of quadrilaterals. Yet 1B, as a rectangle, belongs to a typical kind of quadrilateral,

while 1A does not. In fact, stimuli belonging to salient subclasses of a category are

less generic, and thus less likely to be seen as representative members of the category.

C

D

A

B

Figure 1

3. Typicality may be compatible with de�nitional categories. It is well

known that even apparently de�nitional categories such as \odd number" exhibit

reliable typicality gradients (Armstrong et al., 1983). These results suggest that

there is no simple relation between typicality e�ects and category structure. But

de�nitional categories and typicality phenomena may coexist peacefully: Fig. 1B

clearly satis�es the de�nition of a quadrilateral, but as a rectangle, it is not a generic

quadrilateral like Fig. 1A. Typicality gradients determined by genericity may tell us

nothing about the structure of any one category on its own, but a great deal about

the structure of the set of categories that comprise the hypothesis space for inductive

inference.

4. \A set of typical X's" may not equal \a typical set of X's". In general,

categories are best learned from experience with typical members (Mervis & Rosch,

1981). Since category learning usually involves experience with more than one exam-

ple, the concept of \a typical X" should be naturally extendable to \a typical sample

of X's". But this is not trivial: Fig. 1A is a representative quadrilateral, while a

sequence of similar shapes (Fig. 1C) is not a representative sample of quadrilaterals.

However, under the assumption of independent sampling, the same notion of gener-

icity that picks out typical quadrilaterals (Fig. 1A) and typical sequences (S1) also
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distinguishes typical sequences of quadrilaterals (Fig. 1D).

6.3.6 Reasoning with categories

Some of the most famous fallacies of \irrational" reasoning depend on categorization

and concept learning. These include the conjunction fallacy, or \Linda e�ect" (Tver-

sky & Kahneman, 1983), and Wason's \2-4-6" task (Wason, 1960). However, while

the typical person's behavior in these tasks is unquestionably far from the experi-

menter's de�nition of the rational or normative response, it is not without its rational

behavior. In fact, if these tasks are viewed as tasks of learning concepts from limited

positive evidence, then people's behavior makes a great deal of sense in light of the

Bayesian theory of this thesis. This will be the subject of a future paper, but the basic

idea can be summed up in a sentence by reference to the size principle. In both the

\Linda" and \2-4-6" tasks, subjects choose a category that \too small" (according

to the experimenter's de�ntion) { \feminist bankteller" as opposed to \bankteller";

\three numbers increasing in steps of two" as opposed to \any three increasing num-

bers" { but this is exactly what we should expect if people are reasoning in accordance

with the size principle.

Not only intuitive reasoning, but scienti�c reasoning as well, shows the stamp of

Bayesian concept learning. Popper's (1959) argument that con�rmation in scienti�c

inference does not follow the laws of probability is directly analogous to Tversky and

Kahneman's (1983) argument that people are not Bayesian in the Linda task. Just

as subjects' performance in the Linda task may be described as Bayesian under the

appropriate model of concept learning, so can scienti�c inference can be described in

Bayesian terms under the appropriate formulation of the inference problem. The idea

that scientists choose the \most powerful" or \strongest" theory (what Popper (1959)

calls the theory with highest \corroboration") is simply the same as saying that they

choose the most probable theory under the size principle. Also, the Bayesian theory's

account of \what makes a good sample of a concept?" (discussed above) is directly

related to Bayesian justi�cations of the preference for diverse evidence in scienti�c

inference (Horwich, 1982). In future work, I hope to further explore the parallels
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between mechanisms of generalization in scienti�c reasoning versus those underlying

everyday cognition.

6.4 Are people \really" Bayesian?

One of the most vigorous debates in cognitive psychology centers on the question of

whether or not it is generally true that people reason in accordance with the normative

prescriptions of Bayesian inference. The classic work of Tversky and Kahneman is well

known for its �ndings of broad and blatant violations of probability theory in human

reasoning (Tversky & Kahneman, 1983; Kahneman & Tversky, 1972). More recently,

psychologists inspired by evolutionary and computational considerations have argued

that human reasoning does in fact embody Bayes' theorem at its core; however,

we may only be able to observe this experimentally when subjects are placed in

evolutionarily realistic scenarios with stimuli represented in computationally felicitous

ways (Gigerenzer & Ho�rage, 1995; Cosmides & Tooby, 1996; Brase, Cosmides &

Tooby, 1998).

Because I have suggested that concept learning, and perhaps other phenomena

of human reasoning as well, may be understood in terms of Bayesian inference, I

have some obligation to comment on how my work �ts into this debate. I have

two comments to make. First, the classic debate about whether or not \people

are Bayesian" focuses primarily on whether or not Bayes provides a quantitatively

accurate model of human judgment. Speci�cally, when people give judgments of

probability, do they obey the normative prescriptions of probability theory or not?

In contrast, my interest in Bayesian models is primarily for their qualitative properties.

To quote Glenn Shafer (via Judea Pearl), \Probability is not really about numbers;

it is about the structure of reasoning." The Bayesian framework of this thesis is a

model of what the core computational structure of human concept learning must be

like: what the several essential components are, how they interact, and what are the

consequences of ignoring one of them. Of course, I would like to make quantitative

predictions of human behavior as much as the next psychologist. But that is a
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relatively minor goal compared to answering questions like the following. How can

concepts be learned from only one or a few positive examples? What kind of prior

knowledge do we bring to bear on a concept learning task? How does that knowledge

interact with the examples we observe to guide our generalizations? When and why

is generalization based on rules versus similarity, or some combination of both?

My second comment is this. The heuristics and biases debate is primarily about

whether or not \people are Bayesian" in some general-purpose sense. In contrast, I

have argued for a Bayesian theory to explain a particular human ability, the ability

to learn and generalize object concepts from just a few positive examples. I have in

this �nal chapter suggested that other phenomena of reasoning may be understood

in this framework, but only to the extent that they draw on our natural and distinct

capacity for concept learning. I have speci�cally not argued that Bayesian inference

provides the best way to describe human thinking or reasoning in general. I would

not argue against the general-purpose claim either; rather, I think we must for the

moment remain agnostic, and for good evolutionary reasons.

The brain has evolved mechanisms for solving particular computational problems,

and the problem of learning and generalizing concepts from very limited evidence

is almost certainly one of those. Other such problems occur in visual perception,

motor control, sentence processing, and language acquisition, to name only a few. I

do not mean to suggest that concept learning is as modular as some of those other

abilities appear to be, only that these are all more or less well-speci�ed computational

problems for which we can begin to formulate and test the necessary ingredients of a

Bayesian theory: the hypothesis space, the data, the prior and the likelihood. Indeed,

Bayesian models are now the state-of-the-art for many of these problems, in both the

psychological and computational literature (Weiss, 1998; Todorov, 1998; Narayanan &

Jurafsky, 1998; Brent & Cartwright, 1996). But none of these theories about vision or

motor control or sentence processing makes any claims about whether or not \people

are Bayesian" in general! None of them could make such claims; they are not theories

about people in general, but about speci�c computational problems that people solve.

My Bayesian framework for concept learning falls into the same class. While clearly
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closer to central, domain-general cognitive processes than is vision or motor control,

learning concepts from examples is nonethless a distinct ability focused on solving

a particular set of computational problems. A theory of concept learning, to the

extent that it addresses those particular problems, says nothing about the question

of whether or not \people are Bayesian" in some general-purpose sense. There, we

must remain agnostic until we have a better understanding of the computational

problems involved in common-sense reasoning under uncertainty, until we have some

idea of what a serious general-purpose theory of cognition { Bayesian or otherwise {

would even look like.

Of course, for those who doubt that there is such a thing as a \general-purpose

theory of cognition" in any form (Fodor, 1983), the question of whether or not \people

are Bayesians" doesn't even make sense. But to those skeptics, I say: wait and see.

Fodor (1983) arrived at his skepticism of general-purpose cognitive theories by analogy

with the impossibility of a general-purpose theory of con�rmation in philosophy of

science. However, increasing numbers of philosophers are now coming to believe that

the Bayesian view o�ers deep general insights into the nature of inductive con�rmation

in science (Earman, 1992; Howson & Urbach, 1989; Forster, in press), and truly

clari�es many long-standing puzzles (Watanabe, 1960; Horwich, 1982, 1993). Bayes

is not (yet) in any sense a \general-purpose theory of con�rmation", but how far

it will take philosophy of science is still an open question that many approach with

guarded optimism (Earman, 1992).

To update Fodor's analogy, I think we can say much the same for the role of

Bayesian theories in cognitive science. I have tried to show here how the framework

of Bayesian inference illuminates the core computational structure of one particular

human cognitive ability, that of learning concepts from examples. Many heated con-

temporary debates about the nature of concepts { is conceptual knowledge primarily

based on rules or similarity? is generalization driven primarily by prior knowledge or

observed data? { either dissolve or yield real ground on a Bayesian analysis. Other

phenomena of reasoning which are not usually thought of in terms of concept learning

also seem to make more sense in light of the Bayesian theory. Whether these results
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will ultimately lead to progress on a \general-purpose theory of cognition" { whether

that even makes sense as a goal { is yet to be determined. Regardless, I think we are

far from seeing the full impact of Bayes on the study of the mind.
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Appendix A

Why standard models of

discrimination learning are not

appropriate as general models of

human concept learning

The theoretical study of concept learning has been at the center of both cognitive

psychology and machine learning since these �elds' inceptions (Bruner, Goodnow &

Austin, 1956; Shepard, Hovland & Jenkins, 1961; Hunt, 1962; Mitchell, 1979). Yet

despite the long tradition of formal learning models in both �elds, previous work has

not, for the most part, addressed the questions I consider in this thesis of how far and

in what ways to generalize a concept from only a few positive examples. Mathematical

modeling in both cognitive psychology and machine learning has focused extensively

on discrimination learning tasks, which look similar to the concept learning tasks

considered in this thesis but di�er from them crucially in giving positive and nega-

tive examples equal and essential roles in guiding generalization. As a consequence,

models developed to account for discrimination learning require negative examples of

a concept in order to generalize in any meaningful way. This is quite unlike people

(or the Bayesian models developed in this thesis) who, in all of our experiments and
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in their daily lives, are capable of generalizing meaningfully { if not always accurately

{ from strictly positive evidence. This appendix reviews in some detail the armory of

models developed for discrimination learning and illustrates why they cannot account

for how people learn concepts from just a few examples.

In discrimination learning tasks, the learner is given examples of both positive and

negative instances of a concept and is required to learn some procedure for discrim-

inating the positives from the negatives. Here's an example in the number concept

domain: four numbers the program accepts are 16, 8, 2, and 64; four numbers the pro-

gram does not accept are 41, 10, 13 and 98. Now which other numbers do you think

the program will accept? Some discrimination learning tasks are posed as classi�ca-

tion tasks; instead of seeing positive and negative examples of a single concept, the

learner receives positive examples of two or more classes that are assumed to be mu-

tually exclusive. For instance, I could describe the physical traits of a set of martian

animals and teach you to classify these animals into one of several di�erent species

by giving you several examples of each species. Because the species are assumed to

be mutually exclusive, the positive examples of one class are implicit negative exam-

ples for all the other classes. Thus classi�cation tasks like this one are also instances

of discrimination learning; the learner's job is to �gure out how to discriminate the

positive instances of each class from all of the other objects.

There have been many empirical studies of human discrimination and classi�cation

learning (Bower & Trabasso, 1964; Fried & Holyoak, 1984; Gluck & Bower, 1988),

and the pattern recognition and machine learning literatures are full of well-known

techniques for solving these learning problems (Duda & Hart, 1973; Mitchell, 1997;

see also Nosofsky (1992), Ashby (1992), and Ashby & Leola-Reese (1995) for versions

of these models in the psychology literature). All of these tecniques require some input

representation, some way of representing the objects to be classi�ed in terms of the

properties that will be relevant for the classi�cation procedure. The right choice of

properties to represent will obviously vary from domain to domain and task to task.

In the number concept game, we might want to represent both the mathematical

features of numbers { even, prime, or power of 3 { as well as their magnitude features
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{ between 30 and 45, less than 10, etc. In many standard discrimination settings,

objects are represented as points in a continuous multidimensional space, where the

axes of the space correspond to the relevant continuous-valued features. For example,

if we wanted to learn to tell the di�erence between healthy people and unhealthy

people based on their blood samples, we might measure the levels of cholesterol,

insulin, and other substances in their blood, and then represent each person as a point

in cholesterol-insulin space (Figure 1). We'll stick with this simple two-dimensional

feature space example for this section, because it is the most common setting in which

discrimination and classi�cation tasks have been studied.

There are two main paradigms for modeling discrimination learning. Direct ap-

proaches learn a direct mapping f : v! l, from input features v (i.e. v1 = cholesterol

level, v2 = insulin level) to output labels l (i.e. l = f healthy / unhealthy g). The

discriminant function f is optimized over the training set of positive and negative

examples to map, as closely as possible, each example's input features to the ap-
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propriate output label. Standard direct approaches include many neural network

architectures (single- and multi-layer perceptrons (Gluck & Bower, 1988; Shanks,

1988; Estes, 1994); radial basis function (RBF) networks (Sung & Poggio, 1994; Pog-

gio & Girosi, 1990); and hybrid exemplar-based networks Kruschke, 1992; Aha &

Goldstone, 1992) and many statistical pattern recognition algorithms (linear discrim-

inant analysis; general recognition theory (Ashby, 1992); support vector machines

(Vapnik, 1995)).1 Figure 2a (from Duda & Hart, 1973) illustrates a direct model

that uses linear discriminant functions to solve a two-class classi�cation problem in a

two-dimensional feature space like the healthy levelsspace.

Direct approaches learn no model of a concept, but only a way to discriminate

positive from negative instances. Indirect or model-based approaches learn a model of

the positive examples and another model of the negative examples; they subsequently

classify instances as positive or negative according to which model �ts better.

The most common (and most principled) indirect methods are distributional ap-

proaches, which model a concept as a probability distribution over some space of

features v (or probability density, in a continuous feature space) and classify new

instances x as members of C according to their estimated probability p(v(x)jC).

The simplest form for the density p(vjC) might be a gaussian distribution (Fried &

Holyoak, 1984; Duda & Hart, 1973), but in general p(vjC) may be represented in

many di�erent forms: mixtures of gaussians (Bishop, 1995); nonparametric density

models, both kernel-based (Ashby & Leola-Reese, 1995) and network-based (Hinton

et al., 1994; Jaakola et al., 1997); and loosely speaking, \autoencoder" neural net-

works (Gluck & Myers, 1993; Japkowicz, Myers & Gluck, 1995; Petsche et al., 1997).

In order to classify new objects as positive or negative instances of C, we also need to

learn a distributional model of the negative examples, p(vj � C), and the base rate

of positive examples, p(C).

The function used to classify new objects is the class posterior probability p(Cjv),

1The \nearest neighbor" family of classi�cation techniques (Cover & Hart, 1967) may also be
placed in this category, although they implicitly embody a density model (with asymptotic error
rate no worse than twice the optimal density model) that places them close to nonparametric dis-
tributional approaches (see below).
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A distributional approach to classification

A discriminative approach to classification
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the probability of belonging to C given the observed feature values v, which we

compute from p(vjC), p(vj � C), and p(C) via Bayes' theorem: 2

p(Cjv) =
p(vjC)p(C)

p(vjC)p(C) + p(vj � C)(1� p(C)
: (A.1)

Figure 2b (also from Duda & Hart, 1973) depicts a Bayes classi�er over a two-

dimensional feature space.

Direct and distributional approaches to discrimination share a common handicap,

which rules them out for the purposes of this thesis: they cannot generalize in a

principled way from only positive examples. For direct approaches, this point is

obvious. We cannot directly optimize a function that discriminates positive and

negative instances if we have seen only examples of the positives! For distributional

approaches the point is more subtle. Couldn't we just assume some reasonable default

density for the negative examples, and some reasonable default base rate p(C), and

plug this into the Bayes' classi�er to obtain an estimate of the posterior p(Cjv)?

Figure 3 shows the dangers behind this assumption, for the simple case when the

examples of a category are distributed with a Gaussian density. Each row in Figure

3 depicts the same three positive examples, along with a di�erent set of negative

examples. The left column shows the Gaussian densities p(vjC) and p(vj � C) for

the positive and negative examples respectively. The right column shows the resulting

posteriors p(Cjv) computed from Equation A.1, which determine how the algorithm

generalizes the concept. Observe that a single set of positive examples can give rise to

very di�erent looking patterns of generalization depending on the negative examples

observed. In some cases, the posterior p(Cjv) has the same qualitative form as the

distribution of positive examples p(vjC) (Figure 3, last two rows), but in other cases

it looks quite di�erent. Clearly, there is no single default assumption for p(vj � C)

that will serve even moderately well for all possible sets of negative examples that

could be observed.

2Don't confuse this with Bayesian concept learning. Both use Bayes' theorem, but that's where
the similarity ends. The real di�erence is in how they represent a concept....
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At this point, we might wonder whether we really need negative examples at

all in a distributional approach. Why don't we just use p(vjC) directly to classify

new objects? This is the idea behind an alternative distributional technique known

as \novelty detection". We choose some threshold � on p(vjC), and then classify

only those observations v with p(vjC) > � as positive instances of C; all others are

rejected as \novel" (i.e. negative instances). The problem here is how to choose �.

As Figure 4 illustrates, any particular value of � (equal to 0.1 in this �gure) will lead

to reasonably intuitive generalization behavior for some distributions (column two),

but not for distributions with much larger or smaller ranges of variation (columns

one, three, or four).

We could try to solve this problem by setting � to classify the top 95% (or some

other reasonable percentage) of the probability mass in p(vjC) as positive. For a

gaussian distribution in one dimension, with variance �2, this criterion includes all

values within 1:96� of the mean. Such a criterion is a standard choice for setting

con�dence intervals on estimates of population parameters, such as the mean of a

distribution. However, our primary interest here is not to estimate the mean class

member, but rather to identify positive instances of the concept! As a concept learning

algorithm, thresholding on the top 95% of the density p(vjC) fails to meet a basic

desideratum of asymptotic consistency. That is, we would hope that as the number of

examples observed approaches in�nity, our concept should approach the true concept

and the number of classi�cation mistakes should approach zero. But if we set � to

classify exactly 95% of the positive instances as positive, we will always mistakenly

reject 5% of the true instances of this concept, including 5% of the labeled examples

known to be positive! At the same time that we reject explicitly labeled positive

examples, we will also accept as positives some novel objects which we have never

seen labeled as such. This sort of behavior might be appropriate if we expect that

our observations are noisy (either in their observed feature values or in their labels),

but it is clearly unreasonable when observation noise is negligible or nonexistent.

When we are 100% con�dent that the positive examples provided really do belong

to the concept, as in the number concepttask, stimuli identical to those examples
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should always be judged the most certain instances of the concept, more certain than

any novel stimulus. (Participants' judgments in all the experiments of Chapters 3-5

con�rm this.) This may change if we expect that some of our observations could be

mislabeled, but human learners naturally distinguish uncertainty in the observations

from uncertainty about the extension of the concept, and we would like our theory to

do the same. The Bayesian framework of this thesis does separate these two sources

of ambiguity { the presentation up through Chapter 5 covers the noiseless case, while

observation noise is considered in Appendix C. The novelty detection approach does

not.

All distributional approaches have several other serious defects, resulting from

their treatment of concepts as probability distributions. They have no way to account

for dissociations between the frequency with which category members occur and their

degree of membership in the category, observed by Rosch, Simpson & Miller (1976).

They have no way to incorporate examples { either positive or negative { that are not

randomly sampled from the concept. This kind of information occurs all the time:

after you show me a few examples of healthy levels, I might then ask, \OK, how

about this guy, are his levels healthy?", and I would like to be able to learn from your

answer, even though it was not a random sample from either the healthy or unhealthy

samples.

In summary, virtually all of the well-known similarity-based models of classi�ca-

tion learning in the psychological literature can be interpreted either as direct dis-

crimination learning algorithms or as distributional approaches implementing some

version of Equation A.1 (Ashby & Leola-Reese, 1995). The direct approaches in-

clude all neural networks trained with supervised learning methods (Gluck & Bower,

1988; Shanks, 1988; Kruschke, 1992; Shanks & Gluck, 1994). The distributional

approaches include prototype models (e.g. Fried & Holyoak, 1984), exemplar mod-

els (e.g. Nosofsky, 1986), and neural networks trained with unsupervised methods

(e.g. Gluck & Myers, 1993). Anderson's (1991) \rational model" of categorization

represents the same distributional information in a slightly di�erent form, the joint

statistics p(v; C) of features v and class labels C (from which p(vjC), p(vj � C), and
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p(C) can be computed easily). All of these models, while often very successful for

modeling classi�cation learning tasks, are not capable of explaining how people can

generalize concepts from just positive examples, for the reasons outlined in this ap-

pendix. Of course, this is not to say that these models couldn't be adapted somehow

to our purposes, only that the adaptation would have to be fairly substantial.

It is instructive to compare these two standard approaches to classi�cation and

discrimination learning with the Bayesian framework of this thesis. In its basic rep-

resentation of conceptual knowledge, the Bayesian framework is similar to direct

discriminative approaches. That is, the Bayesian learner's basic hypotheses are rules

for picking out the members of a concept, very much like the hard or soft classi-

�cation rules that most direct discriminative approaches extract. The di�erence is

that only the Bayesian concept learner is capable of scoring rules based on strictly

positive evidence. Here, in its use of probabilistic assumptions to score hypotheses,

the Bayesian framework is more similar to distributional approaches to classi�cation.

Both are capable of learning a model of a concept from only positive examples, based

on maximizing the likelihood of the data given the model. The di�erence is that

distributional approaches { because their model is a probability distribution for the

positive instances { also require an analogous model of the negative examples in order

to classify new objects via Equation A.1. In contrast, the Bayesian framework { be-

cause its model consists of rules that pick out the concept's instances { is capable of

directly generalizing from only positive examples. Thus, it is the combination of rule-

based hypotheses with a probabilistic generative model for scoring those hypotheses

that distinguishes the Bayesian approach from standard models of discrimination and

classi�cation learning, and makes it appropriate for modeling concept learning from

positive evidence only.
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Appendix B

Derivation of generalization

functions for continuous feature

spaces

This appendix presents the detailed derivation of the generalization functions for

continuous feature spaces, assuming a hypothesis space of all possible rectangular

regions. All symbols not de�ned here are de�ned just as in Chapter 3. Recall that

the generalization function p(y 2 CjX) is determined by integrating the predictions

of all hypotheses, weighted by their posterior probabilities p(hjX):

p(y 2 CjX) =
Z
h2H

p(y 2 Cjh) p(hjX) dh; (B.1)

where from Bayes' theorem p(hjX) / p(Xjh)p(h) (normalized such that
R
h2H p(hjX)dh =

1), and p(y 2 Cjh) = 1 if y 2 h and 0 otherwise. In order to compute the probability

of generalization, we will use the equivalent form (equivalent to Equation 2.5 with

sums replaced by integrals)

p(y 2 CjX) =

R
h2HX;y

p(h)=jhjndhR
h2HX

p(h)=jhjndh
: (B.2)
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Recall the notation HX and HX;y for the subsets of hypotheses in H that contain

X and X [ fyg respectively. Each hypothesis h in H can be indexed by four num-

bers h(l1; l2; s1; s2), with (l1; l2) denoting the location of its maximal value on each

dimension (i.e. its upper-righthand corner) and (s1; s2) denoting its size along each

dimension.

B.1 Uninformative prior

Under the uninformative prior (Equation 3.8), the generalization function has a simple

closed-form expression valid for all n � 2. To see this, we �rst consider how to

compute the denominator of Equation B.2, p(X) =
R
h2HX

p(h)=jhjndh. Once we have

done this, the numerator p(y 2 C;X) is practically identical.

Because both p(h) and jhj are separable in the two dimensions of our feature space,

we can just treat the one-dimensional version of this integral and then multiply the

two one-dimensional integrals together to get the two-dimensional integral we want.

(By the same argument, we could compute the generalization function for rectangle

hypotheses in a space of any dimension m by multiplying m one-dimensional terms

together.) In one dimension, we index each hypothesis by two numbers l and s de�ned

as above. Because the problem as formulated is translation invariant, we can assume

an arbitrary maximal value for the examples without loss of generality. We choose

this maximum to be 0; thus all the examples have values less than or equal to 0 and

all consistent hypotheses have l � 0. Finally we de�ne r to be the range spanned

by the examples, i.e. the di�erence between the maximal example value (0) and the

minimal example value. Then we have

p(X) =
Z
h2HX

p(h)

jhjn
dh (B.3)

=
Z
1

r

Z s�r

0

p(s)

sn
dlds (B.4)

=
Z
1

r

Z s�r

0

1

sn+1
dlds (B.5)

=
Z
1

r

s� r

sn+1
ds (B.6)
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=
�1

(n� 1)sn�1

�����
1

r

+
r

nsn

����1
r

(B.7)

=
1

(n� 1)rn�1
�

1

nrn�1
(B.8)

=
1

n(n� 1)rn�1
: (B.9)

Let d denote the distance from the new stimulus y to the closest observed example.

We can assume that y is outside the range spanned by the examples (otherwise the

probability of generalization is simply 1), and without loss of generality, we can assume

that y has a positive value. Then to compute the numerator of Equation B.2, we can

simply replace r with r + d in the limits of integration in the previous sequence of

equations, yielding

p(y 2 C;X) =
Z
h2HX;y

p(h)

jhjn
dh (B.10)

=
Z
1

r+d

Z s�(r+d)

0

p(s)

sn
dlds (B.11)

=
1

n(n� 1)(r + d)n�1
: (B.12)

Putting numerator and denominator together, we obtain

p(y 2 CjX) =

R
h2HX;y

p(h)=jhjndhR
h2HX

p(h)=jhjndh
(B.13)

=
n(n� 1)rn�1

n(n� 1)(r + d)n�1
(B.14)

=
rn�1

(r + d)n�1
(B.15)

=
1

(1 + d=r)n�1
: (B.16)

(B.17)

Then combining the probability of generalization for each of the two dimensions of

feature space yields the �nal answer reported in Chapter 3:

p0(y 2 CjX) =

"
1

(1 + ~d1=r1)(1 + ~d2=r2)

#n�1
: (B.18)
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Recall that the subscript \0" denotes the fact that using the uninformative prior

corresponds to a gamma prior with � = 0, and that ~di is de�ned to be 0 if y falls

inside the range of values spanned by X along dimension i, and otherwise is just d as

de�ned above, i.e. the distance from y to the nearest example in X along dimension

i.

B.2 Informative priors

Under the exponential prior (Equation 3.9), p(y 2 CjX) has no simple closed-form

expression valid for all n. The same is true for the Erlang prior (Equation 3.10).

However, we can derive an exact upper bound and an approximate lower bound on

the generalization function using these priors, or any prior from the gamma family of

densities (Equation 3.11),

p(s) / s��1 expf�s=�g:

Adopting the same conventions and following the same reasoning as in the previous

section, we can write the one-dimensional generalization function for any gamma prior

as

p(y 2 CjX) =

R
h2HX;y

p(h)=jhjndhR
h2HX

p(h)=jhjndh
(B.19)

=

R
1

r+d

R s�(r+d)
0

p(s)

sn
dldsR

1

r

R s�r
0

p(s)

sn
dlds

(B.20)

=

R
1

r+d

R s�(r+d)
0

1

sn+1��
expf�s=�gdldsR

1

r

R s�r
0

1

sn+1��
expf�s=�gdlds

(B.21)

=

R
1

r+d
s�(r+d)

sn+1��
expf�s=�gdsR

1

r
s�r

sn+1��
expf�s=�gds

: (B.22)

We then make the �rst of two changes of variables, substituting t = s� (r+ d) in the

numerator and t = s� r in the denominator. This gives

p(y 2 CjX) =

R
1

0
t

(r+d)n+1��(1+t=(r+d))n+1��
expf�(t + (r + d))=�gdtR

1

0
t

rn+1��(1+t=r)n+1��
expf�(t+ r)=�gdt

(B.23)
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=
expf�d=�g

(1 + d
r
)n+1��

R
1

0
t

(1+t=(r+d))n+1��
expf�t=�gdtR

1

0
t

(1+t=r)n+1��
expf�t=�gdt

: (B.24)

A second change of variables, u = t=(r + d) in the numerator and u = t=r in the

denominator, yields

p(y 2 CjX) =
expf�d=�g

(1 + d
r
)n+1��

 
1 +

d

r

!2
R
1

0
u

(1+u)n+1��
expf�u(r + d)=�gduR

1

0
u

(1+u)n+1��
expf�ur=�gdu

(B.25)

=
expf�d=�g

(1 + d
r
)n�1��

2
4
R
1

0
u

(1+u)n+1��
expf�u(r + d)=�gduR

1

0
u

(1+u)n+1��
expf�ur=�gdu

3
5 : (B.26)

Now, the bracketed term in Equation B.26 is always less than 1 (because the inte-

grands of both numerator and denominator are always positive and the integrand of

the numerator is strictly less than the integrand of the denominator). Thus we obtain

the upper bound on generalization,

p(y 2 CjX) �
expf�d=�g

(1 + d
r
)n�1��

: (B.27)

We can obtain an approximate lower bound by treating u=(1 + u)n+1�� as a win-

dowing function on expf�ur=�g (in the denominator) or expf�u(r + d)=�g (in the

numerator), and approximating it by a step function with value c for 0 � u < � and

value 0 for � � u � 1, for some c and � that depend on n and �. The resulting

approximation of the denominator,

Z
1

0

u

(1 + u)n+1��
expf�ur=�gdu � c

Z �

0
expf�ur=�gdu (B.28)

=
c�

r
[1� expf��r=�g] (B.29)

isn't a particularly good one, but the ratio of the corresponding approximation in the

numerator to the above expression is, except for small n, a fairly good approximation

to the quotient:

R
1

0
u

(1+u)n+1��
expf�u(r + d)=�gduR

1

0
u

(1+u)n+1��
expf�ur=�gdu

�
1

1 + d=r

"
1� expf��(r + d)=�g

1� expf��r=�g

#
: (B.30)
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Plugging the approximation in Equation B.30 into Equation B.26, we obtain another

approximation for the generalization function:

p(y 2 CjX) �
expf�d=�g

(1 + d
r
)n��

"
1� expf��(r + d)=�g

1� expf��r=�g

#
: (B.31)

The bracketed term in Equation B.31 is always greater than 1. Hence this gives us

an approximate lower bound for the generalization function,

p(y 2 CjX)
>
�

expf�d=�g

(1 + d
r
)n��

; (B.32)

which is valid to the extent that the approximation in Equation B.30 is valid.

Conveniently, the two bounds in Equations B.27 and B.32 have the same func-

tional form and di�er only by one power of the denominator. Putting these bounds

together and returing to two dimensions yields the expression cited in Chapter 3,

(Equation 3.17)

p(y 2 CjX) �
expf�( ~d1=�1 + ~d2=�2)gh
(1 + ~d1=r1)(1 + ~d2=r2)

in�� ; (B.33)

which yields an upper bound for � = ��1 and an approximate lower bound for � = �.

In practice, I have found that the approximate lower bound (with � = �) provides a

good approximation to the probability of generalization over a wide range of values

for n and ri. For example, under the exponential prior (� = 1), this approximation

holds to within � 10% error, and usually much less, except for very small values of n

(e.g. < 3) and ri (e.g. < �i=10).
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Appendix C

More complex inferences in

concept learning (or, inferences

based on hidden variables)

There are many complex inferences involved in real concept learning that I do not

touch on in the body of this thesis. Examples include decisions about whether a par-

ticular example might be an outlier { an improperly labled example { and should be

ignored in deciding how to generalize (Figure 1); decisions about whether two clusters

of examples might correspond to two distinct extensions of a single concept label (as

is the case with polysemy or homophony in language) (Figure 2); and decisions about

which features from a large basis set might be relevant in de�ning the concept, when

prior knowledge does not uniquely determine the relevant features (Figure 3). The

outcomes of these decisions will have a signi�cant impact on how we generalize a

concept, particularly when we are learning from only a few positive examples. In this

appendix, I sketch out how the Bayesian framework can be extended to handle these

more subtle inferences in concept learning. For simplicity, I will focus on hypothesis

spaces corresponding to rectangular regions in a continuous feature space (a la Chap-

ter 3), although a similar analysis can be developed for other kinds of hypothesis

spaces.

Inspiration for extending the Bayesian framework comes from, of all places, be-
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Figure 1

haviorist theories of concept leaning. Behaviorists thought of concept learning as a

process of \mediated generalization" (Wasserman, 1995). That is, a concept is some

kind of hidden variable in the organism's internal state that mediates between stimuli

and responses. This idea has largely fallen by the wayside with the rise of cognitive

science, but like many behaviorist notions, it contains an important grain of insight.

\Hidden variables" are one of the main features of modern Bayesian and connectionist

(e.g. Hinton et al., 1995; MacKay, 1992) models, which inspired this thesis' approach

to concept learning. Hidden variables are often introduced to simply an otherwise

intractable computation and then integrated out to yield the desired result. Here is

an example of the hidden variable approach in probabilistic modeling. Suppose that

we want to know the conditional probability of one variable A given a second variable

B, p(AjB), but that for some reason, computing p(AjB) directly is impossible or

impractical. If we can �nd a third variable H, such that A and B are conditionally

independent given H, and such that we can easily compute p(AjH) and p(HjB), then

we now have a way to compute p(AjB) by introducing H as a hidden variable and

integrating it out:

p(AjB) =
X
H

p(A;HjB) (C.1)

=
X
H

p(AjH;B)p(HjB) (C.2)
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Figure 2

=
X
H

p(AjH)p(HjB) (C.3)

Here the sum is taken over all possible values for H. The third equation follows from

the second by the assumption that A and B are conditionally independent given H.

It turns out that the Bayesian analysis of concept learning conforms precisely to

this abstract mathematical form. We replace B by \X = fx1; : : : ; xng", the event

that we have observed these n examples of a concept C, and we replace A by \y 2 C",

the event that a new entity y belongs to C. The hidden variable H corresponds to the

unknown extension of the concept. If the extension were known (i.e. given H), the

examples X and the event y 2 C become independent (because y either belongs to

the hypothetical extension H or it doesn't, independently of any other observations).

Thus p(AjH;B) = p(AjH) becomes 1 if y 2 H and 0 otherwise. The probability

p(HjB) becomes the posterior probability of the hypothesis given the examples, which

we saw how to calculate in Chapter 2. Making these substitutions into Equation C.3

produces exactly Equation 3 of Chapter 2, the fundamental equation of Bayesian

generalization.

Once we have made the connection between Bayesian generalization and hidden

variable modeling, there is nothing to stop us from introducing other hidden variables

to compute more elaborate inferences. By introducing hidden variables denoting the

possibility of outliers, disjunctive (i.e. polysemic or homophonic) concepts, and the
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Figure 3

relevant feature axes, we can model these more sophisticated inferences that must

be a part of concept learning in the real world. Figures 4 and 5 show the e�ects of

hidden variables for outliers and disjunctive concepts on generalization gradients in

a 1-dimensional version of the healthy levels task of Chapter 3, i.e. where the stimuli

correspond to points along a line and the hypotheses correspond to intervals of that

line. The outlier hidden variable ranges over all proper subsets of the examples, while

the disjunction hidden variables ranges over all ways of partitioning the examples into

two distinct subsets (drawn independently from two independent extensions). The

left-hand column shows the resulting generalization gradients; the right-hand column

shows the most likely states of the hidden variables, along with their probabilities.

Figure 6 shows the e�ect of a hidden variable for relevant feature axes, which ranges

over all possible orientations in a two-dimensional continuous feature space with rect-

angle hypotheses. 1 All three of these inferences depend on the same foundation that

guided generalization throughout this thesis: the size principle and hypothesis aver-

aging. In the rest of this appendix, I give a sketch of the mathematics behind these

inferences. A full treatment will be the subject of a future paper.

1This is one possible way of modeling generalization in psychological spaces with \integral"
dimensions. See Shepard (1987) for another proposal.

284



C.1 Outlier rejection for imperfect input

Assume the examples X are partitioned into two subsets, a set of inliers Xin and a

set of outliers Xout = X Xin . The inliers are actual random samples from the concept

C to be learned, while the outliers are produced by some other unknown process

which has nothing to do with the concept to be learned. Thus, our generalization

behavior should be based solely on the inferences we draw from the inliers; the outliers

should be ignored. The problem is that we do not know which, if any, examples are

actually outliers. All we have are the raw labeled examples, although intuitively,

some examples seem more likely to be outliers than others. For instance, in Figure,

the lone example in the upper-right corner seems much more likely than any of the

other four examples to be an outlier. This section shows how a Bayesian learner can

infer the likely outliers and then, based on this inference, decide the correct way to

generalize the concept. For simplicity, I will work with a one-dimensional version

of the axis-parallel rectangles task. The generalization to other hypothesis spaces is

straightforward.

Let w denote a particular partition of X into fXin ; Xoutg. If there are a total of

n examples observed, then w can take on one of 2n � 1 possible states (assuming we

are not going to reject every example as an outlier). If we knew the true value of w

{ the actual identities of the inliers and outliers in our example set { then we would

know how to calculate the generalization function:

p(y 2 Cjw;X) = p(y 2 CjXin): (C.4)

That is, the generalization function given knowledge of w is just the standard gener-

alization function p(y 2 CjX) (derived for axis-parallel rectangles in Chapter 3 and

Appendix B, Equation B.17), with X replaced by Xin. However, because we don't

know the true value of w, we introduce it as a hidden variable and then integrate it
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out:

p(y 2 CjX) =
X
w

p(y 2 C;wjX) (C.5)

=
X
w

p(y 2 Cjw;X) p(wjX) (C.6)

=
X
w

p(y 2 CjXin) p(wjX): (C.7)

Equation C.7 tells us that the optimal way to generalize in the presence of unknown

outliers is to average the simple generalization functions computed for each possible

set of inliers w weighted by p(wjX), the posterior probability that w is in fact the set

of outliers given the observations X. We calculate p(wjX) using Bayes' rule under

the assumption of independently sampled examples:

p(wjX) / p(Xjw)p(w) (C.8)

/ p(Xin jw)p(Xout jw)p(w): (C.9)

Assuming an uninformative (scale-invariant) prior and inliers randomly sampled from

a uniform distribution over the concept,

p(Xin jw) =
1

nin(nin � 1)rnin�1
in

; (C.10)

where nin denotes the number of inliers indexed by w and rin denotes the range

spanned by the inliers (i.e. the size of the smallest interval containing all inliers).2

Equation C.10 follows from the derivation in Appendix B and is essentially the same

2This treatment brushes over one complication, namely that Equation C.10 is not de�ned for
inlier sets containing only one example. One solution is to compute the generalization function
using an informative prior, which would then be de�ned for the n = 1 case. An alternative approach
was adopted in the computations behind Figures 4 and 5, in order to ensure an answer in the same
algebraic form as the generalization functions obtained under an informative prior. We �rst assume
a prior density on the size s of the form p(s) / 1=s1+� for some small � (which reduces to the
uninformative prior in the limit � ! 0). We also assume that there is a \just noticeable di�erence"
� within which stimuli are indistinguishable. This requires adding � to every range; r becomes r+�,
rin becomes rin +�, and so on. The generalization function then becomes, instead of Equation B.17,

p(y 2 CjX) =
1

[1 + d=(r + �)]n+��1
: (C.11)
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as Equation B.9 with r replaced by rin. If we assume that there is some small

probability � of seeing an outlier on any particular learning trial and that outliers

are drawn independently from a uniform density over a region of size L, then we can

combine the last two terms of Equation C.9 into one,

p(Xout jw)p(w) / (�=L)nout ; (C.13)

in which nout = n� nin is the number of outliers indexed by w. The ratio �=L a�ects

the precise predictions of the model but not the qualitative behavior. The posterior

probability of any particular division into inliers and outliers then becomes

p(wjX) /
�
1

rin

�nin�1 � �
L

�nout

: (C.14)

Notice how p(wjX) balances two intuitively relevant opposing constraints to �nd

the optimal size and composition of the inlier set. As the number of outliers nout

increases (and the number of inliers nin decreases), the inlier range rin necessarily

decreases or stays the same. Increasing nout acts to decrease p(wjX) at the same time

as decreasing rin tends to increase p(wjX). In other words, the decision to reject any

particular example as an outlier is always penalized by a constant factor, but it may

lead to a net increase in probability if it dramatically reduces the size rin of the inlier

set. This explains why the example in the upper-right corner of Figure 1 seems more

likely to be an outlier than any of the other examples, because rejecting it would lead

to a huge decrease in the size of the inlier set (Figure 1b), while rejecting, say, two of

the others would lead to only a small decrease in the size of the inlier set (Figure 1c).

This procedure for rational outlier rejection is yet another case of the size principle

emerging from Bayesian inference to provide a principled form of Ockham's razor.

Equation C.10 becomes

p(Xin jw) =
1

(nin + �)(nin + � � 1)(rin + �)nin+��1
: (C.12)

Figure 4 was generated by setting � to roughly 1% of the visible range, and � to 0.2. Qualitatively
similar results are obtained for other values of � and �, as long as they are kept reasonably small
but bounded away from zero.
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Figure 4 shows the generalization functions for four di�erent distributions of ex-

amples in a one-dimensional space with rectangle hypotheses. Observe that gener-

alization is no longer constant across the entire range of examples but reects the

density of examples in an intuitively reasonable way. The extent to which one obser-

vation is separated from the main cluster, and the density of the cluster, determine

the probability with which that observation will be classi�ed as an outlier and hence

receive less than a 100% probability of generalization. Also depicted in Figure 4

are the 15 most probable inlier sets (i.e. values of w), along with their probabilities.

Note that in each case, p(wjX) essentially goes to zero beyond the four or �ve most

probable values of w, and that the most probable inlier sets are all quite similar to

each other. Thus the average over all possible states of w could probably be well

approximated by rapid Gibbs sampling (Geman & Geman, 1984), avoiding the need

for any intractable sums in the generalization procedure.

C.2 Model selection for disjunctive concepts

Assume the examples X are partitioned into two subsets, a set X1 drawn from one

extension in the hypothesis space and a second set X2 = X X1 drawn from an

independently chosen extension in the same hypothesis space. Both X1 and X2 are

assumed to be random samples from their respective extensions. This situation might

occur when a learning a word with two distinct senses (polysemy), or when learning

two di�erent words that are phonologically identical (homophony), and hence might

seem like a single word with two distinct extensions until the homophony is recognized.

As in the previous section, we would like to infer whether and how the examples

were drawn from two distinct and independent extensions, in order to generalize

appropriately. Intuitively, some splits seem more reasonable than others { compare

Figure 2b with 2c { and, as before, the relative ranges spanned by the resulting groups

seems to be an important factor in determining this preference. Again, for simplicity

I will work with a one-dimensional version of the axis-parallel rectangles task, but

the generalization to other hypothesis spaces is straightforward.
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Let z denote a particular partition of X into fX1; X2g. If there are a total of n

examples observed, then z can take on one of 2n � 1 possible states. 3 If we knew

the true value of z { how the examples were actually grouped into X1 and X2 {

then we would know how to calculate the generalization function. Assuming that the

two extensions are independent (i.e. independent samples from p(h)) and that the

examples drawn from each extension are also drawn independently, it can be shown

that

p(y 2 Cjz;X) = p(y 2 CjX1) + p(y 2 CjX2) � p(y 2 CjX1) p(y 2 CjX2): (C.15)

That is, the generalization function given knowledge of z is just the disjunctive combi-

nation of the two standard generalization functions p(y 2 CjX1) and p(y 2 CjX2) for

each group separately (derived for axis-parallel rectangles in Chapter 3 and Appendix

B). However, because we don't know the true value of z, we introduce it as a hidden

variable and then integrate it out:

p(y 2 CjX) =
X
z

p(y 2 C; zjX) (C.16)

=
X
z

p(y 2 Cjz;X) p(zjX) (C.17)

=
X
z

[p(�jX1) + p(�jX2)� p(�jX1)p(�jX2)] p(zjX); (C.18)

where � stands for \y 2 C". This amounts to averaging the disjunctive combinations

of generalization functions resulting from all possible splits of the examples in X,

weighted by the posterior probability p(zjX) of each split z. We calculate p(zjX) from

Bayes' rule (continuing under the assumption of independently sampled examples):

p(zjX) / p(Xjz)p(z) (C.19)

/ p(X1jz)p(X2jz)p(z): (C.20)

3Because there is no di�erence between X1 being empty and X2 being empty, we assume without
loss of generality that n2 > 0.
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Assuming an uninformative (scale-invariant) prior and examples randomly sampled

from a uniform distribution over the appropriate extension,

p(X1jz) =
1

n1(n1 � 1)rn1�11

; (C.21)

where n1 denotes the number of examples in X1 as indexed by z, and r1 denotes

the range spanned by those examples (i.e. the size of the smallest interval containing

them).4 The analogous expression gives p(X2jz):

p(X2jz) =
1

n2(n2 � 1)rn2�12

; (C.22)

with n2 = n � n1 and r2 de�ned accordingly. Finally, we set p(z) by assuming that

with probability � the examples are drawn from a single extension (i.e. p(z) = �, for

n1 = 0), while with probability 1� � they are drawn from two distinct extensions in

some arbitrary manner (i.e. p(z) = (1� �), for n1 > 0).

The result of combining these three terms into the posterior p(zjX) is again to

balance several opposing forces. Switching the assignment of examples from X1 to

X2 decreases (or leaves unchanged) the range r1 but increases (or leaves unchanged)

the range r2. The optimal decision about which group to assign a particular example

to is thus determined by which group's range it will have a greater e�ect on. This

accounts for why the split in Figure 2b appears more natural than the split in Figure

2c. In addition, while the special case of assigning all the examples to one group is the

least favored on relative size grounds, it is favored on other grounds (dependent on

� and L). This accounts for why a set of examples must be highly clustered { giving

a strong relative size bene�t as in Figure 2 { in order to be a plausible candidate for

4As in the previous section, this treatment ignores the fact that Equation C.21 is not de�ned
when X1 contains only one example. We deal with this complication using the same procedure that
was described at the analogous point of the previous section, with analogous results that depend on
� and � parameters. Figure 5 uses exactly the same values for these parameters as does Figure 4, and
again the results do not depend critically on these choices. A more serious problem is the case n1 = 0,
i.e. when all the examples are drawn from a single extension. A rigorous analysis should take into
account the volume of the hypothesis space, which is impossible under the improper uninformative
prior. A heuristic approximation used to generate Figure 5 is to set p(X1jz) = L for the case of
n1 = 0, where L is the range of possible stimulus values visible in the �gure.
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having arisen from two independent extensions.

Figure 5 shows the generalization functions for four di�erent distributions of ex-

amples in a one-dimensional space with rectangle hypotheses. As in Figure 4, gen-

eralization is no longer constant across the entire range of examples but reects the

density of examples in intuitively reasonable ways. The degree of bimodality in the

generalization function reects the degree to which the data provide support for the

existence of two independent extensions, which in turn depends on several factors: the

relative ranges spanned by the two clusters of data, the separation between clusters,

and total number of data points observed. Also depicted are the 8 most probable

splits into two independent sets of examples (i.e. the 8 most probable values of z),

along with their probabilities. Again, the distributions of p(zjX) are for the most

part sharply peaked about their maximum values, making them candidates for e�-

cient computation by stochastic simulation.

C.3 Feature selection under weak prior knowledge

Suppose that our prior knowledge is weaker than we have previously assumed. We

know that the concept to be learned corresponds to some rectangular region in a two-

dimensional feature space, but we do not know the correct set of axes for this space,

i.e. the correct orientation of the concept in feature space. Another case of weak

prior knowledge might occur if we have a very high-dimensional space of potentially

relevant features, and we know that the concept corresponds to a rectangle in some

2-dimensional (or k-dimensional) subspace of this high-dimensional feature space, but

we don't know which subspace. Bayesian inference again comes to our aid, telling us

which of these di�erent hypothesis spaces are most likely to be the true hypothesis

space that the observed examples were drawn from. Here I just the consider the

case of a concept corresponding to a rectangular region of unknown orientation in a

two-dimensional feature space (Figure 3).

Let � 2 [0; �=2] denote a particular orientation of the axes in feature space. If

we knew the true value of � then we would know how to calculate the generalization
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function p(y 2 Cj�;X), using the standard machinery of Chapter 3 and Appendix B

applied to the space of all rectangles parallel to the axes at orientation �. However,

because we don't know the true value of w, we introduce it as a hidden variable and

then integrate it out:

p(y 2 CjX) =
X
�

p(y 2 C; �jX) (C.23)

=
X
�

p(y 2 Cj�;X) p(�jX): (C.24)

As before, we simply average the generalization functions at each setting of the hidden

variable � weighted by the posterior probability p(�jX). From Bayes' rule,

p(�jX) / p(Xj�)p(�): (C.25)

The prior on orientation p(�) can embody any a priori knowledge we do have favoring

some particular axes for feature space. Here we assume no such knowledge, i.e.

p(�) = 2=� for � 2 [0; �=2]. Assuming an uninformative (scale-invariant) prior on

rectangle size and location, and given n examples randomly sampled from a uniform

distribution over the concept, the likelihood function for orientation � is given by:

p(Xj�) /
1

(r�r�+�=2)n�1
; (C.26)

where r� denotes the range spanned by the examples when projected onto a line at

orientation �. 5 This likelihood favors orientations onto which the data project as

small a range as possible, which accounts for the preference of some axes (e.g. Figure

3b) over others (e.g. Figure 3a).

Figure 6 shows the generalization functions for four di�erent distributions of ex-

amples in a two-dimensional space. Observe that the blocky and sharp-cornered

generalization contours of Chapter 3 have been replaced by smoother contours, as a

consequence of averaging over all possible rectangle orientations. Also depicted is the

5We must be careful in that unless we have observed more examples than there are dimensions
in the feature space, there will always be some value of � that makes p(X j�) in�nite.
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posterior probability p(�jX) of each axis orientation. Notice how the orientation at

which the data are most tightly clustered receives the highest probability assignment,

and that the resulting gradients of generalization are correspondingly elongated or

compressed along the data's principal axes. The extent to which the generalization

gradients deviate from circularity is a function of how much evidence the data provide

for a preferred set of axes, i.e. how tightly the examples are along any one direction

as well as how many examples have been observed.
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