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Doctor of Philosophy

Abstract

Harmonic balance (HB) methods are frequency-domain algorithms used for high accuracy computation of the
periodic steady-state of circuits. Matrix-implicit Krylov-subspace techniques have made it possible for these methods
to simulate large circuits more efficiently. However, the harmonic balance methods are not so efficient in computing
steady-state solutions of strongly nonlinear circuits with rapid transitions. While the time-domain shooting-Newton
methods can handle these problems, the low-order integration methods typically used with shooting-Newton methods
are inefficient when high solution accuracy is required.

We first examine possible enhancements to the standard state-of-the-art preconditioned matrix-implicit Krylov-
subspace HB method. We formulate the BDF time-domain preconditioners and show that they can be quite effective
for strongly nonlinear circuits, speeding up the HB runtimes by several times compared to using the frequency-domain
block-diagonal preconditioner. Also, an approximate Galerkin HB formulation is derived, yielding a small improve-
ment in accuracy over the standard pseudospectral HB formulation, and about a factor of 1.5 runtime speedup in runs
reaching identical solution error.

Next, we introduce and develop the Time-Mapped Harmonic Balance method (TMHB) as a fast Krylov-subspace
spectral method that overcomes the inefficiency of standard harmonic balance for circuits with rapid transitions.
TMHB features a non-uniform grid and a time-map function to resolve the sharp features in the signals. At the core of
the TMHB method is the notion of pseudo Fourier approximations. The rapid transitions in the solution waveforms are
well approximated with pseudo Fourier interpolants, whose building blocks are complex exponential basis functions
with smoothly varying frequencies. The TMHB features a matrix-implicit Krylov-subspace solution approach of same
complexity as the standard harmonic balance method. As the TMHB solution is computed in a pseudo domain, we
give a procedure for computing the real Fourier coefficients of the solution, and we also detail the construction of the
time-map function. The convergence properties of TMHB are analyzed and demonstrated on analytic waveforms.

The success of TMHB is critically dependent on the selection of a non-uniform grid. Two grid selection strategies,
direct and iterative, are introduced and studied. Both strategies are a priori schemes, and are designed to obey accuracy
and stability requirements. Practical issues associated with their use are also addressed.

Results of applying the TMHB method on several circuit examples demonstrate that the TMHB method achieves
up to five orders of magnitude improvement in accuracy compared to the standard harmonic balance method. The
solution error in TMHB decays exponentially faster than the standard HB method when the size of the Fourier basis
increases linearly. The TMHB method is also up to six times faster than the standard harmonic balance method in
reaching identical solution accuracy, and uses up to five times less computer memory. The TMHB runtime speedup
factor and storage savings favorably increase for stricter accuracy requirements, making TMHB well suited for high
accuracy simulations of large strongly nonlinear circuits with rapid transitions.

Thesis Supervisor: Jacob K. White
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

The exploding demand for high performance wireless products has increased the need for more ef-

ficient, accurate, and robust simulation technologies for communication and other nonlinear analog

circuits (e.g. RF amplifiers, mixers, power supplies, dc-dc converters). Designers of such circuits

need to compute many different quantities of interest. Some of these quantities can be obtained

from a small-signal analysis; however, many nonlinear effects, such as harmonic and intermodula-

tion distortion or compression points can only be computed by obtaining circuit’s steady-state.

The conventional time-domain transient circuit simulation technique [46, 47] involves form-

ing the system of nonlinear ordinary differential equations (ODE) that describes the dynamics of

the circuit, and solving them numerically as an initial-value problem. The system of ODEs are

discretized using an integration method, and the resulting nonlinear algebraic system solved using

the Newton’s method. The sequence of linear problems at each Newton’s iteration is solved by

Gaussian elimination or perhaps an iterative linear solution algorithm.

When used in computing steady-state solutions of circuits, the described transient circuit sim-

ulation approach carries a high computational cost and is thus considered impractical. For many

lightly damped circuits, it takes many periods of the excitation input signal in order for the simu-

lated circuit to reach a periodic steady-state. It is also difficult to determine when the circuit has

reached a steady state. In addition, most simulated circuits are described by stiff systems of ODEs.

Since the simulation must follow the fast-varying signals for accuracy, many small time-steps are

required, resulting in long simulation intervals and extraordinary run-times.

If the steady-state is periodic, the steady-state analysis can be formulated as a boundary value

problem for the system of nonlinear ODEs that describes the circuit. The boundary conditions are

given by the periodicity requirement. The simulation technologies for periodic steady-state anal-

ysis of nonlinear circuits belong to two broad classes: time-domain, and spectral (or frequency-
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domain) methods. While these methods can be far more efficient than conventional transient anal-

ysis, they have many problems of their own.

Time-domain methods include the finite differences [4], and shooting-Newton methods [1,

4]. In the finite differences method, a finite-difference approximation is used to discretize the

nonlinear system of ODEs on a finite set of time-points, transforming it into a system of nonlinear

algebraic equations. These equations are then solved simultaneously with the boundary constraints

via Newton’s method. In the shooting-Newton method, the boundary-value problem is converted

into a sequence of initial-value problems. The method begins with a guess of the solution at the

beginning of the shooting interval. This guess is iteratively improved via the outer Newton loop to

yield the special initial condition that results in a steady-state.

The non-equally spaced time-points in the time-domain methods are selected based on local

error estimation and can easily follow the rapid transitions in the circuit’s steady-state waveform,

so these methods work well for highly nonlinear circuits. However, these methods achieve inferior

polynomial convergence proportional to the order of the integration method used. The limited

order of these methods limits their accuracy. In addition, finite-difference methods yield a large ill-

conditioned linear system. While shooting-Newton methods yield a much smaller linear system,

they require much storage, and are unable to handle distributed devices, quasi-periodic problems,

and problems with large periods.

Spectral methods [38, 40, 42, 72] represent the periodic circuit response as weighted finite

sums of global basis functions. The best known spectral method is the harmonic balance (HB)

method [4, 5], which uses a truncated Fourier basis to approximate the solutions. The system of

nonlinear ODEs is transformed into a nonlinear algebraic system in the frequency domain. This

system is solved for the spectral coefficients of the solution via Newton’s method. Note that the

harmonic balance method is equivalent to a finite difference method on a uniform grid of order

equal to the size of the Fourier basis.

The harmonic balance method achieves a superior accuracy compared to time-domain meth-

ods due to its exponential convergence nature. Its major drawback, however, is its inability to

handle highly nonlinear problems and large circuits. These problems require many terms in the

Fourier representation of the signals (i.e. many time-points in the uniform grid to capture the sharp

features in the waveforms), and yield a large ill-conditioned linear system, both of which present

complexity and storage problems for the harmonic balance method.

Both time-domain and spectral methods for steady-state circuit analysis have recently benefited

from using preconditioned iterative linear solvers for solving the linear problem at each Newton

step [7, 10, 11, 12, 15, 16]. In particular, the current state-of-the-art preconditioned matrix-implicit
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Krylov-subspace realization of the harmonic balance method [7, 10, 11, 15] has made this method

into a winning simulation strategy for large mildly-nonlinear circuits. However, strongly nonlin-

ear circuits, and other circuits with solutions exhibiting rapid transitions, still present a serious

bottleneck for spectral steady-state analysis techniques.

Given the clear theoretical advantage of spectral methods over time-domain methods with re-

spect to achieved solution accuracy, a pertinent question is whether it is possible to enhance the

existing harmonic balance method in some way, or develop new spectral methods in order to elim-

inate the aforementioned simulation bottleneck for strongly nonlinear and other circuits with rapid

transitions.

In this dissertation we embark on a quest for better, more powerful spectral methods for circuit

analysis. We start this journey with an overview of the current state-of-the-art preconditioned

matrix-implicit Krylov-subspace harmonic balance method in Chapter 2. A study focusing on

enhancements to this harmonic balance method is given in Chapter 3. In particular, we examine

the impact of various preconditioners, and the choice of iterative linear solver. We also analyze the

relative advantages of different formulations of the harmonic balance method.

Our quest continues with the introduction of the Time-Mapped Harmonic Balance method

(TMHB) in Chapter 4. We build TMHB as a fast Krylov subspace spectral method utilizing a

non-uniform grid to resolve the sharp features in the signals and therefore suited to efficiently

obtain highly accurate steady-state solutions of strongly nonlinear and other circuits with rapid

transitions. At the core of this new method is the grid selection strategy, and in Chapter 5 we

present and study several such strategies. Results from applying the TMHB method and different

grid selection strategies on several circuits are given in Chapter 6. Finally, in Chapter 7 we draw

conclusions and suggest some avenues for future work.
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Chapter 2

Harmonic Balance Method

Consider a circuit described withN nonlinear differential equations:

q̇(v(t))+ i(v(t))+u(t)= 0 (2.1)

wherev(t)2R N is the vector of node voltages,q(v(t))2R N the vector of node charges (or fluxes),

i(v(t)) 2 R N the vector of resistive node currents, andu(t) 2 R N the vector of input sources.

Let the circuit be driven by a single periodic excitation input source with periodT. Finding the

periodic steady-state solution of this circuit consists of computing theN steady-state waveforms

v(t) on the solution domaint 2 [0;T]. The periodic steady-state solution of (2.1) satisfies the

two-point constraint:

v(T) = v(0): (2.2)

Time-domain methods [1, 4] (finite differences, shooting-Newton method) compute the steady-

state by first discretizing the solution domain[0;T]. The time-derivatives are approximated with

finite order integration formulas. For example, for theM-th order BDF formula, the time derivative

of the charge function is

q̇(v(ti))�
1
h

M

∑
j=0

α jq(v(ti� j)): (2.3)

A Backward-Euler discretization of the circuit equations (2.1) therefore yields

1
hi
[q(v(ti))�q(v(ti�1))]+ i(v(ti))+u(ti) = 0: (2.4)

The finite difference methods then solve for the discrete solution samplesv(ti), while the shooting-

Newton method solves the problem

ϕ(v(0);0;T)�v(0) = 0 (2.5)
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whereϕ() is the state transition functionϕ(v(0);0;T) = v(T) computed from time integration of

the circuit over one period.

Since the time-derivatives in the time-domain methods are local properties of a function (i.e.

are computed using values of the function at a handful of nearby time points), these methods are

exact for polynomials of low orderM. In other words, the solution is represented by a sequence

of low-order polynomials connected at the discrete time-pointsti. These methods can therefore at

best achieve polynomial convergence with global errorsO(hM).

Spectral methods [38, 40, 42, 72] approximate the solution waveforms as weighted finite sums

of global, orthogonal, and smooth basis functionsφ(t):

v(t)�
M�1

∑
k=0

akφk(t) (2.6)

and solve for the spectral coefficientsak. If the boundary conditions are periodic, a truncated

Fourier basis is the obvious choice, as it automatically satisfies the boundary conditions:

v(t +T)�
k=K

∑
k=�K

Vke
j2πk f(t+T) =

k=K

∑
k=�K

Vke
j2πk f t (2.7)

where 2K+1= M, f = 1
T is the periodic excitation input source frequency, andVk are the Fourier

coefficients. Note that the time-derivative of this approximation can be computed exactly:

d
dt

v(t)�
k=K

∑
k=�K

j2πk fVke
j2πk f t: (2.8)

Due to the global nature of the spectral methods, ask 7!∞ thek-th Fourier coefficientVk decays

faster than any negative power ofk if the solution waveformv(t) is infinitely smooth. This rapid

decay of the coefficients means that the truncated Fourier approximation of the solution expanded

by a few additional terms (by slightly increasingK) represents an exceedingly good approximation

of the solution. As a result, spectral methods have errors that decay faster than any negative power

of M, a property known as spectral accuracy, exponential convergence, or infinite-order accuracy.

The spectral methods will not achieve spectral accuracy if a discontinuity is present in the so-

lution waveforms or one of their derivatives. In the context of circuit simulation, the smoothness

of the waveforms will depend on the smoothness of the device models used for the circuit ele-

ments. If the device models arep-times continuously differentiable functions and periodic in all

its derivatives,Vk = O(k�p), and the spectral method’s errors will beO(M�p).

22



2.1 Formulation

In the standard harmonic balance (HB) method [4, 5], the solution waveforms are approximated

with truncated Fourier series:

v(t) =
k=K

∑
k=�K

Vke
j2πk f t (2.9)

with K the number of harmonics considered in the truncation. The method solves for the Fourier

coefficientsVk. The approximation (2.9), in conjunction with theN circuit equations (2.1), results

in the residual function:

f (V; t)�
K

∑
k=�K

j2πk f Qke
j2πk f t + i

 
K

∑
k=�K

Vke
j2πk f t

!
+u(t) (2.10)

whereQk are the Fourier coefficients ofq(v(t)) with v(t) the truncated Fourier series approxima-

tions of the solution waveforms, i.e.q
�
∑K

k=�K Vkej2πk f t
�
= ∑K

k=�K Qkej2πk f t.

The residual function (2.10) is to be minimized on the solution domain[0;T]. This minimiza-

tion is typically carried out by enforcingf (V; tm) = 0 on a uniform grid of collocation (interpola-

tion) pointstm2 ft1; t2; :::; tMg wheretm= (m�1)T
M andM = 2K+1. This harmonic balance method

is more accurately referred to as pseudospectral (or collocation) harmonic balance.

Equation (2.10) is now rewritten in the frequency domain yieldingNM nonlinear algebraic

equations

F(V)� ΩΓq(Γ�1V)+Γi(Γ�1V)+Γu= 0 (2.11)

whereV is the node-voltage spectrumV = [V�K;1; :::;V�K;N;V�K+1;1; :::; :::;VK;N]
T (a vector of

Fourier coefficients) andΩ is the diagonal frequency-domain differentiation matrix

Ω =

2
666664

j2π(�K) f IN

j2π(�K +1) f IN
... ...

j2πK f IN

3
777775 (2.12)

whereIN is the identity matrix of sizeN.

The matricesΓ andΓ�1 are DFT matrices that perform the conversions from time to frequency
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and vice-versa

v= Γ�1V =

2
666664

v(t1)

v(t2)
...

v(tM)

3
777775 ;

Γ�1 =

2
664

ej2π(�K) f t1IN : : : ej2πK f t1IN
...

...

ej2π(�K) f tM IN : : : ej2πK f tM IN

3
775

(2.13)

where eachv(t) 2 R N is a vector of node voltages. Since the grid of time-pointst1; :::; tM is

uniform, the DFT can be carried out inO(NM logM) operations using the FFT.

In harmonic balance, the nonlinear circuit devices are evaluated in the time-domain. As it can

be seen from (2.11), the node-voltage spectrumV is transformed into the time-domain, the time-

domain response of the nonlinear device functionsi(v) andq(v) is calculated, and these waveforms

are then converted back into the frequency domain.

Note that this time-domain evaluation of the nonlinear devices, and the subsequent conversion

of the sampled nonlinear device response to the frequency domain can be a source of errors in

harmonic balance due to aliasing effects.

2.1.1 Time-Domain Formulation

The harmonic balance method can also be written in the time-domain by converting the system of

equations (2.11) from frequency to time:

f (v)� Γ�1ΩΓq(v)+ i(v)+u= 0 (2.14)

wherev is the unknown vector of node voltage samplesv = [v(t1);v(t2); : : : ;v(tM)]T and D =

Γ�1ΩΓ is the spectral differential operator in the time-domain:

D =

2
666664

0 α1IN α2IN : : : α�1IN

α�1IN 0 α1IN : : : α�2IN
... ... ...

α1IN α2IN : : : α�1IN 0

3
777775 : (2.15)

The time-domain differentiation matrixD is a block-dense, real, antisymmetric circulant matrix

with a zero diagonal, compared to the complex diagonal differentiation matrixΩ. The coefficients
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Figure 2.1: Coefficientsαm of the time-domain spectral differentiation operatorD for K = 15 and

f = 1.

α are the weights of the spectral time-domain difference operator, and are illustrated in Figure 2.1

for K = 15 andf = 1.

The time-domain formulation of the harmonic balance method is therefore2
666664

0 α1IN α2IN : : : α�1IN

α�1IN 0 α1IN : : : α�2IN
... ... ...

α1IN α2IN : : : α�1IN 0

3
777775

2
66664

q(v(t1))

q(v(t2))

: : :

q(v(tM))

3
77775 +

2
66664

i(v(t1))

i(v(t2))

: : :

i(v(tM))

3
77775 +

2
66664

u(t1)

u(t2)

: : :

u(tM)

3
77775 = 0

(2.16)

and can be compared to any time-domain finite difference method (for example, a finite difference

method using Backward-Euler in non-uniform discretization of the domain[0;T]):2
6666664

1
h1

IN � 1
h1

IN

� 1
h2

IN 1
h2

IN
... ...

� 1
hM

IN 1
hM

IN

3
7777775

2
66664

q(v(t1))

q(v(t2))

: : :

q(v(tM))

3
77775 +

2
66664

i(v(t1))

i(v(t2))

: : :

i(v(tM))

3
77775 +

2
66664

u(t1)

u(t2)

: : :

u(tM)

3
77775 = 0 (2.17)

wheret1 = 0, h1 = T � tM, andhm = tm� tm�1 for all otherm. The harmonic balance method

can, therefore, be viewed as a finite-difference method of orderM, the size of the Fourier basis.

Note that the spectral time-domain difference operatorD is much denser than the corresponding

Backward-Euler difference operator (or any other operator coming from a low-order integration
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scheme).

2.2 Solution Strategy

The system ofNM nonlinear algebraic equations (2.11) are solved by applying the Newton’s

method. The application results in the iteration

J(l)
�
V(l+1)�V(l)

�
=�F(V(l)) (2.18)

wherel is the Newton iteration index. This iteration is a linear problem. Thel -th Newton iteration

Jacobian is

J(l) = ΩΓC(l)Γ�1+ΓG(l)Γ�1 (2.19)

and is aNM�NM block-dense matrix.

The matricesC andG are

C�

2
666664

C1

C2
...

CM

3
777775 ; G�

2
666664

G1

G2
...

GM

3
777775 (2.20)

where the blocksCm = [Cm(r;s)] andGm = [Gm(r;s)] consist of the elements

Cm(r;s) =
dq(vr(tm))

dvs
; (2.21)

Gm(r;s) =
di(vr(tm))

dvs
(2.22)

wherer;sare the node indices,r;s= 1;2; : : : ;N. The block-diagonal structure ofG andC is due to

the fact that the relationsq(v) andi(v) are algebraic. The constituent sparse blocksCm andGm are

simply the circuit capacitance and conductance matrices evaluated at the collocation time-points

tm2 ft1; t2; :::; tMg. Their sparsity depends on the topology of the circuit.

For linear circuits allCm and Gm blocks are independent of the voltages and are the same,

resulting in a iteration-invariant block-diagonal Jacobian. Newton’s method then yields the exact

solution in one iteration, and harmonic balance becomes equivalent to an AC (phasor) analysis.

Note that if the time-domain formulation of harmonic balance is used, the Jacobian will be dense

even for linear circuits because of the density of the spectral time-domain difference operatorD

that multiplies the block-diagonalC matrix. In other words, while in the frequency domain the

block-diagonal structure of the frequency-domain HB Jacobian for linear circuits indicates that
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Guess at a solution,x0.

Initialize the search directionp0 = r0 = b�Ax0 .

Set k= 1.

do f

Compute the new search direction,pk = Apk�1.

Orthogonalize , pk = pk�∑k�1
j=0βk; j pj .

Choose αk in

xk = xk�1+αkpk

to minimizekrkk= kb�Axkk.

If krkk
kr0k

< tol, returnvk as the solution.

else Setk= k+1.

g

Figure 2.2: GMRES algorithm for solvingAx= b.

there is no coupling between different frequencies, the time-domain HB Jacobian is dense because

there is coupling (i.e. nonzero sensitivity) among the waveform samplesv(tm) at the collocation

grid timestm.

For mildly-nonlinear circuits, the Jacobian is no longer block-diagonal. The off-diagonal

blocks represent the inter-frequency coupling whose strength (measured with the ratio of the norms

of the off-diagonal blocks to the diagonal blocks) will depend on the amount of nonlinearity in the

circuit.

2.2.1 Matrix-Implicit Krylov-Subspace Approach

The explicit formation and direct factorization of the block-dense harmonic balance JacobianJ is

computationally very expensive,O(NM3). A preconditioned iterative linear solution algorithm,

such as the Generalized Minimum Residual algorithm (GMRES) [54] (summarized in Figure 2.2),

can be used to reduce the factorization complexity toO(NM2). The tolerance of the linear solver

can be loose, since the linear solver only computes the iterative solution updates for the outer

Newton loop, and is not used for confirming convergence. Therefore, obtaining an approximate

solution update by loosening the linear solver’s tolerance only affects the outer Newton method’s

convergence rate, and not the accuracy of the final solution. In harmonic balance the GMRES

tolerance default is typically 10�1.
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GMRES is a robust iterative algorithm for solving the linear problem. It guarantees conver-

gence in maximumn steps (wheren is the size of the linear system). It is much faster than relax-

ation, and only uses matrix-vector products. Furthermore, GMRES allows implicit matrices (while

direct factorization requires explicit matrices). The implicit nature of GMRES also allows usage

of operators such as the FFT. However, good preconditioners are essential for GMRES as GMRES

is slower than direct factorization if it takes alln steps to solve the linear system.

The diagonal blocks of the Jacobian work well as a standard preconditioner in many circuit

examples, particularly for mildly nonlinear circuits with weak off-diagonal blocks in the Jaco-

bian [11, 15]. This frequency-domain block-diagonal preconditioner is

Pf =

2
666664

j2π(�K) fC̄0+ Ḡ0

j2π(�K+1) fC̄0+ Ḡ0
...

j2πK fC̄0+ Ḡ0

3
777775 (2.23)

where the blocks̄C0 = [C̄0(r;s)] andḠ0 = [Ḡ0(r;s)] contain the elements

C̄0(r;s) =
1
M

M

∑
m=1

Cm(r;s); (2.24)

Ḡ0(r;s) =
1
M

M

∑
m=1

Gm(r;s) (2.25)

with r;s= 1;2; : : : ;N the node indices.C̄0 andḠ0 simply represent matrices made up from the

DC (k = 0) Fourier coefficients of the circuit’s capacitance and conductance matrices, with the

averaging in (2.24) and (2.25) done on node by node basis.

To demonstrate the effectiveness of this block diagonal preconditioning consider the opera-

tional transconductance (OTA) amplifier circuit shown in Figure 2.3. Table 2.1 illustrates that the

number of GMRES iterations is greatly reduced by the block-diagonal preconditioning. In addi-

tion, Table 2.1 indicates that the number of GMRES iterations increases with number of harmonics

without preconditioning.

The GMRES linear solver requires forming the matrix-vector product

Jpk = (ΩΓC+ΓG)Γ�1pk (2.26)

where pk is the search direction in thek-th GMRES iteration. This matrix-vector product can

be formed implicitly by a sequential evaluation using 3 FFTs, reducing the complexity of the har-

monic balance method to the complexity of the time-frequency conversions, which isO(NM logM)

for the FFTs. To illustrate this again consider the operational transconductance (OTA) amplifier
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Figure 2.3: OTA Amplifier (56 MOSFETs).

K IL (GMRES) IL (PGMRES)

10 139 41

14 155 48

18 159 49

20 173 47

32 200 41

Table 2.1: Effectiveness of block-diagonal preconditioning in harmonic balance analysis of the

OTA amplifier. K is the number of harmonics, andIL the number of linear iterations in a typical

Newton iteration. PGMRES refers to a GMRES method with block-diagonal preconditioning.

circuit shown in Figure 2.3. The advantages of the matrix-implicit approaches are demonstrated

in Figure 2.4, which shows the computational cost vs. the number of harmonics for the different

factorization approaches in the harmonic balance method.

The extrapolated slopes (straight dashed lines) in Figure 2.4 correspond to the exponentβ in the

O(Mβ) observed computational complexity versus the number of harmonicsK, whereM = 2K+1.

For the Gaussian factorization approachβ = 3:1, for the preconditioned GMRES schemeβ = 1:8,

and for the matrix-implicit preconditioned GMRES approachβ= 1:1, i.e. slightly faster than linear

as expected from anM logM dependence.

The FFT-based, matrix-implicit, GMRES preconditioned pseudospectral harmonic balance

method [7, 10, 11, 15] is the current state-of-the art steady-state circuit analysis technique. It

is commonly used to analyze circuits with hundreds of devices. A number of other less effective
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Figure 2.4: The superiority of the matrix-implicit preconditioned approach in harmonic balance

analysis of the OTA amplifier.

modifications to improve the accuracy [3], the convergence [8, 17] and the computational effi-

ciency [9] of the harmonic balance method have also been investigated. This method, however, is

still not universally successful when applied to different circuits [11, 15]. In particular, highly non-

linear circuits, as well as other circuits with rapid transitions still cause problems. These circuits

exhibit waveforms with sharp features which require many harmonics, and many linear (GMRES)

and nonlinear (Newton) iterations in order for the method to converge as well as to obtain a rea-

sonable accuracy. In the next Chapter, we study possible ways to enhance the harmonic balance

method in order to overcome these limitations.
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Chapter 3

Enhancements to Harmonic Balance

In this Chapter we study possible enhancements to the standard harmonic balance (HB) method

reviewed in Chapter 2. We will first examine the impact of the choice of different preconditioners

for the GMRES iterative linear solver in the matrix-implicit Krylov-subspace HB method. We will

also derive the approximate Galerkin formulation of the harmonic balance method and compare

its performance to the standard pseudospectral formulation. At the end, we add a few remarks

concerning the choice of an iterative linear solver in HB.

3.1 Time-Domain Preconditioners

If a linear system is solved by an iterative method such as GMRES, the convergence rate of the

solver depends on the spectral properties of the coefficient matrix. The idea of preconditioning

is to transform the original linear system into one that is equivalent (i.e. has the same solution),

but which has more favorable spectral properties. The preconditioner is a matrix that performs

this transformation. One way to design a preconditioner is to construct a matrix that somehow

approximates the coefficient matrix, and is easy to invert.

For example, in the frequency-domain harmonic balance formulation, thel -th Newton iteration

linear problem

J(l)∆V(l) =�F(V(l)) (3.1)

where∆V(l) =V(l+1)�V(l), is transformed into

JP�1P∆V =�F(V) (3.2)

using a right-preconditioning approach. The Newton iteration indices were dropped for the sake
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of clarity. SettingP∆V =U , we then first solve the system

JP�1U =�F(V) (3.3)

with GMRES. Since the preconditionerP was chosen to be easily invertible, the GMRES matrix-

vector productsJP�1pk can be computed efficiently. To further speed up the matrix-vector product,

we can invert the preconditioner once, and store it in its LU decomposed form. If the preconditioner

is well designed, the linear system (3.3) will have more favorable spectral properties than the

original linear system (3.1), and GMRES will be able to converge (or reach the desired solution

tolerance) in significantly fewer iterations. At the end, we obtain the actual solution∆V from:

∆V = P�1U: (3.4)

The advantages of the right style of preconditioning (versus left) is that right preconditioning

does not change the right hand side�F(V) of the system, and therefore the RHS of the original

linear problem, transformed linear problem, and the outer Newton loop stay the same. In contrast,

a left preconditioning GMRES will in essence solve the original linear problem to various degrees

of accuracy in each Newton iteration due to the scaling of the RHS of the original linear system by

P�1 in the transformed linear problem. In practice, left preconditioning has shown to cause costly

increases in both the numbers of GMRES and Newton iterations.

In the frequency-domain formulation of harmonic balance, the diagonal blocks of the frequency-

domain Jacobian

Pf =

2
666664

j2π(�K) fC̄0+ Ḡ0

j2π(�K+1) fC̄0+ Ḡ0
...

j2πK fC̄0+ Ḡ0

3
777775 (3.5)

are commonly used as a right preconditioner. This preconditioner can be easily and efficiently

formed and inverted due to its block-diagonal structure.

The block-diagonal preconditioner (3.5) works well for most circuits, but not as well for highly

nonlinear circuits [11, 15]. In Chapter 2 we mentioned that the off-diagonal blocks in the frequency

domain HB Jacobian represent the inter-frequency coupling; their strength depends on the degree

of nonlinearity of the circuit. The block-diagonal preconditioner does not include these blocks,

which is why this preconditioner is not as efficient for highly nonlinear circuits.

Time-domain steady-state methods, such as finite-differences, are well-suited for nonlinear

circuits. Since the harmonic balance method can be viewed as a time-domain method, we will use
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this point of view to design preconditioners that we hope to be more efficient in simulating highly

nonlinear circuits. Note that centered-difference preconditioning in spectral methods is considered

in [42], upwind finite-difference preconditioning in [80], and finite element preconditioning in

[69].

The time-domain formulation of the harmonic balance method given in Section 2.1 showed

that the harmonic balance method is essentially a time-domain method of orderM, which is the

size of the Fourier basis used in the truncated series approximation of the solution waveforms. If

the time-domain harmonic balance formulation

f (v)� Γ�1ΩΓq(v)+ i(v)+u= 0 (3.6)

is solved by the Newton’s method, the linear problem solved at thel -th Newton iteration is

J(l)t ∆v(l) =� f (v(l)) (3.7)

where∆v(l) = v(l+1)�v(l).

The time-domain Jacobian at thel -th Newton iteration is

J(l)t = (Γ�1ΩΓ)C(l)+G(l) = DC(l)+G(l) (3.8)

and it is a real block-dense matrix whose structure is

Jt =

2
666664

G1 α1C2 α2C3 : : : α�1CM

α�1C1 G2 α1C3 : : : α�2CM
... ... ...

α1C1 α2C2 : : : α�1CM�1 GM

3
777775 (3.9)

where the coefficientsα are the weights of the spectral differentiation operator in the time-domain.

We would like to design a preconditioner that will in some way approximate the time-domain

JacobianJt , but will have an easily invertible block structure. Since the time-domain formulation of

the harmonic balance method is a finite-difference method in disguise, one idea is use the Jacobian

matrix from a lower-order finite difference scheme on a uniform grid as a preconditioner. For

example, the Backward-Euler (or BDF-1) finite difference Jacobian on a uniform grid is

JBE =

2
666664

C1
h +G1 �CM

h

�C1
h

C2
h +G2

... ...

�CM�1
h

CM
h +GM

3
777775 : (3.10)
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Similarly, the uniform grid BDF-2 finite-difference Jacobian is

JBDF2 =

2
66666666664

3C1
2h +G1

CM�1
2h �CM

h

�2C1
h

3C2
2h +G2

CM
2h

C1
2h �2C2

h
3C3
2h +G3

... ... ...
... ... ...

CM�2
2h �2CM�1

h
3CM
2h +GM

3
77777777775

(3.11)

and so on for the higher-order BDF integration schemes. In general, the BDF-n time-domain

preconditioner will haven+1 bands of blocks. For a more efficient factorization, the cluster of

blocks in the upper-right corner of the finite-difference Jacobians is ignored. For example, the

BDF-2 preconditionerPt;2 is:

Pt;2 =

2
66666666664

3C1
2h +G1

�2C1
h

3C2
2h +G2

C1
2h �2C2

h
3C3
2h +G3

... ... ...
... ... ...

CM�2
2h �2CM�1

h
3CM
2h +GM

3
77777777775
: (3.12)

3.1.1 Complexity Analysis of Preconditioning Approaches

The complexity of the preconditioned matrix-implicit Krylov-subspace harmonic balance is limited

by the FFT toO(NM logM). It is therefore crucial to investigate the number of required FFTs in

each GMRES iteration for different combinations of preconditioning approaches and harmonic

balance domain formulations.

For the time-domain HB formulation, a time-domain preconditionerPt transforms the matrix-

vector product into

JtP
�1
t pk = (Γ�1ΩΓC+G)P�1

t pk (3.13)

wherepk is the time-domain search direction in thek-th GMRES iteration. The above matrix-

vector product requires only 2 FFTs. On the other hand, the matrix-vector product in the frequency-

domain formulation using the frequency-domain block-diagonal preconditionerPf is

JP�1
f pk = (ΩΓC+ΓG)Γ�1P�1

f pk (3.14)

and requires 3 FFTs.
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If we now reverse the situation, namely, use the frequency-domain preconditioner in the time-

domain HB formulation, the matrix-vector product becomes

JtΓ�1P�1
f Γpk = (Γ�1ΩΓC+G)Γ�1P�1

f Γpk (3.15)

and now requires 4 FFTs. In comparison, using a time-domain preconditioner in the frequency

domain HB formulation, results in the matrix-vector product

JΓP�1
t Γ�1pk = (ΩΓC+ΓG)Γ�1ΓP�1

t Γ�1pk = (ΩΓC+ΓG)P�1
t Γ�1pk (3.16)

which again requires 3 FFTs. While we can conclude that it is best to have both time and frequency

HB formulations implemented, if we have to choose one formulation, it would be the frequency-

domain one, particularly since the frequency-domain preconditioner works well for most circuits

and should therefore be the default choice of a preconditioner.

3.1.2 Time-Domain Preconditioning Results

In order to investigate the potential merits of the BDF preconditioners, we used the standard, right

preconditioned GMRES matrix-implicit HB method to simulate two highly nonlinear circuits: a

diode rectifier, and a DC-DC converter. Statistics for these two circuits are given in Table 6.1

(Chapter 6). The block-diagonal frequency domain preconditioner is not effective for these two

circuits.

The standard HB method was implemented in Mica, Motorola’s SPICE-like circuit simulator,

in the computer language C [55]. All computer runs were done on Sun Ultra-2 350MHz UNIX

workstations.

Three different preconditioners were used in the HB GMRES solver: the block-diagonal fre-

quency domain preconditioner (FREQ), and the BDF-1 and BDF-2 time-domain preconditioners.

The HB method was formulated in the frequency domain. The DC (equilibrium, ˙q= 0) solution

of the circuits was used as an initial Newton guess.

Figure 3.1 summarizes the influence of the three preconditioners on the Newton and GMRES

solvers in HB simulation of the diode rectifier circuit. On the left, plot (A) shows the total number

of Newton iterationsIN for each HB run at increasing number of harmonicsK. While FREQ

induces increases in the number of Newton iterations, the BDF preconditioners keep this number

independent ofK. In plot (B), the average number of GMRES iterations per Newton stepIL=IN is

plotted against the number of harmonicsK (whereIL is the total number of GMRES iterations).

The FREQ preconditioner is again visibly ineffective and causes an increase in the average number
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Figure 3.1: Diode Rectifier: (A) Newton iterations; (B) average GMRES iterations for different

preconditioners.

of linear iterations, while the time-domain BDF preconditioners are quite effective and keep the

both the average and the total number of linear iterations independent ofK.

Figure 3.2 shows the total CPU time performance for the preconditioned HB approaches in

simulating the diode rectifier. The performance of BDF-1 and BDF-2 is almost identical, and

both perform increasingly better than FREQ when a growing number of harmonics are considered.

For example, atK = 1000, HB runs using BDF-1 and BDF-2 are twice faster than the FREQ

preconditioner.

The HB simulations of the second circuit, the DC-DC converter, are summarized in Figures 3.3

and 3.4. While the number of Newton iterations are similar, and increase for all preconditioners, the

BDF preconditioners once again maintain the average number of GMRES iterations per Newton

step independent of the number of harmonicsK. This results in considerable total HB CPU time

speedups for largeK: for example, atK = 1000, the HB run using the BDF-2 preconditioner is 3.7

times faster than the HB run using the FREQ preconditioner.

We can conclude that the BDF preconditioners can be quite effective for highly nonlinear cir-

cuits. They keep the average number of GMRES iterations bounded, and can have a similar effect

on the number of Newton iterations as well. Factoring the BDF preconditioners is more expensive

than factoring the block-diagonal FREQ preconditioner since they contain off-diagonal blocks.

However, due to the independence of the average number of GMRES iterations from the number

of harmonicsK in the case of BDF preconditioners, a performance speedup is present for larger
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Figure 3.2: Diode Rectifier: CPU time performance of different preconditioners.

K. The HB method using BDF preconditioners is shown to be several times faster than the HB

method using the FREQ preconditioner, particularly in the runs with large number of harmonics

K; in fact, the speedup factors increase with increasing number of harmonicsK.
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preconditioners.
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3.2 Approximate Galerkin Harmonic Balance

In this section we introduce a different formulation of the harmonic balance method. Recall from

Chapter 2 that in the harmonic balance the solution waveforms are approximated with truncated

Fourier series

v(t) =
k=K

∑
k=�K

Vke
j2πk f t: (3.17)

This approximation, in conjunction with theN circuit equation

q̇(v(t))+ i(v(t))+u(t)= 0 (3.18)

results in the residual function

f (V; t)�
K

∑
k=�K

j2πk f Qke
j2πk f t + i

 
K

∑
k=�K

Vke
j2πk f t

!
+u(t) (3.19)

whereQk are the Fourier coefficients ofq(v(t)) with v(t) the truncated Fourier series approxima-

tions of the solution waveforms, i.e.q
�
∑K

k=�K Vkej2πk f t
�
= ∑K

k=�K Qkej2πk f t.

The residual function (3.19) is to be minimized on the solution domain[0;T]. In the collo-

cation or pseudospectral harmonic balance method, this minimization is carried out by enforc-

ing f (V; tm) = 0 on a uniform grid of collocation (interpolation) pointstm 2 ft1; t2; :::; tMg where

tm= (m�1)T
M andM = 2K+1.

Instead of using a collocation method, we can minimize the norm of the residualf (V; t) using

a mean weighted residual method

1
T

Z T

0
f (V; t)ωl(t)dt = 0 (3.20)

using a set ofM suitable test functionsωl (t). For example, if the set of test functions isωl (t) = t l ,

the moment method is generated. Ifωl (t) = δ(t � tl) with tl the same time points forming the

collocation grid, the collocation (pseudospectral) method is generated.

When the sets of basis and test functions coincide, the mean weighted residual method becomes

the Galerkin (spectral) method. The Galerkin method is theoretically better than the collocation

(pseudospectral) method. Galerkin’s method reduces the global error across the continuum of the

solution domain[0;T] by using an integral norm of the residual. In comparison, the collocation

method simply ensures that the residual vanishes at a discrete collocating set of points distributed

uniformly across the solution domain.

Both the Galerkin and the collocation method use a finite set of trigonometric polynomials (i.e.

the truncated Fourier basis) to approximate the solution waveforms. As it will be shown in the
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next section, the set of Fourier coefficients for the Galerkin method are the truncated set of the

exact Fourier coefficients of the infinite Fourier series of the solution. The computed Galerkin

approximations of the solutions are thus also known as Fourier truncations.

In comparison, the collocation method uses a different set of Fourier coefficients. The col-

location Fourier coefficients are such that the approximate collocation solution interpolates (i.e.

exactly passes through) the set of collocation points. The computed collocation approximations of

the solutions are thus known as Fourier interpolations.

The computation of the exact Fourier coefficients in the Galerkin method requires an exact

evaluation of integrals, while the DFT (or FFT) can be used to compute the Fourier coefficients

in the collocation method. This explains the popularity of the collocation method for complicated

nonlinear problems.

3.2.1 Derivation

Given the theoretical advantages of the Galerkin method over collocation, we now proceed to

derive the Galerkin harmonic balance method. We choose the set of test functions to be the same

set of M = 2K + 1 Fourier basis functions used in approximating the solution waveforms, i.e.

ωl (t) = ej2πl f t with l 2 [�K;�K+1; :::;K]. The Fourier basis functions are periodic and mutually

orthogonal, which can results in simplified evaluation of the integral in (3.20).

Applying the Galerkin method to minimize the harmonic balance residual function (3.19)

yields a system ofNM nonlinear equations

Fl (V)�
1
T

Z T

t=0
f (V; t)e� j2πl f t dt = 0 (3.21)

wherel 2 [�K;�K+1; :::;K]. Expanding forf (V; t), the system becomes

Fl (V)�
1
T

Z T

t=0
q̇(v(t))e� j2πl f t dt+

1
T

Z T

t=0
i(v(t))e� j2πl f tdt+

1
T

Z T

t=0
u(t)e� j2πl f t dt = 0 (3.22)

wherev(t) is the truncated Fourier series approximation in (3.17).

The Galerkin system of equations (3.22) is solved by applying the Newton’s method. The

Jacobian for the Newton iteration is

J = Jq+Ji =
∂Fq(V)

∂V
+

∂Fi(V)

∂V
(3.23)

whereFq= [Fq;�K;Fq;�K+1; :::;Fq;K]
T andFi = [Fi;�K;Fi;�K+1; :::;Fi;K]

T are the terms in the Galerkin

equations (3.22) corresponding to the integrals of the node charges time derivative ˙q(v) and cur-

rentsi(v) respectively, i.e.

Fq;l(V) =
1
T

Z T

t=0
q̇(v(t))e� j2πl f t dt; (3.24)
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Fi;l(V) =
1
T

Z T

t=0
i(v(t))e� j2πl f t dt: (3.25)

For the sake of clarity, we will focus on the resistive part of the JacobianJi ; the derivation of the

capacitive partJq is similar.

Using the chain rule, the resistive part of the JacobianJi is

Ji =
∂Fi(V)

∂V
=

∂Fi(V)

∂v
∂v
∂V

: (3.26)

Substituting (3.25) into (3.26) we obtain

Ji =
1
T

Z T

t=0
dt

∂i(v(t))
∂v

2
666664

e� j2π(�K) f t

e� j2π(�K+1) f t

...

e� j2π(K) f t

3
777775
h

∂v
∂V�K

∂v
∂V�K+1

� � � ∂v
∂VK

i
: (3.27)

Sincev(t) is approximated by the truncated Fourier series (3.17), the terms∂v
∂Vk

= ej2π(k) f t , and we

arrive at

Ji =
1
T

Z T

t=0
dt

∂i(v(t))
∂v

2
666664

e� j2π(0) f t e� j2π(1) f t � � � e� j2π(2K) f t

e� j2π(�1) f t e� j2π(0) f t � � � e� j2π(2K�1) f t

...
...

...
...

e� j2π(�2K) f t e� j2π(�2K+1) f t � � � e� j2π(0) f t

3
777775 : (3.28)

The resistive part of the JacobianJi is therefore a matrix whose entries are Fourier transform

integrals. Each of these integrals picks out the exact Fourier coefficientsG̃�
k of ∂i(v(t))

∂v i.e.

Ji =

2
666664

G̃�
0 G̃�

�1 � � � G̃�
�2K

G̃�
1 G̃�

0 � � � G̃�
�2K+1

...
... � � �

...

G̃�
2K G̃�

2K�1 � � � G̃�
0

3
777775 : (3.29)

In practice, the Fourier transform integrals will be evaluated by a numerical integration rule, and the

G̃�
k blocks will only be approximations to the exact Fourier coefficients. It is particularly interesting

to see what happens if the trapezoidal rule is used for this evaluation. Since the integrands are

periodic, the trapezoidal rule is equivalent to Gaussian quadrature and is exponentially accurate. If

the grid used in the trapezoidal rule evaluation is the set ofM uniformly spaced time pointstm2

t1; t2; :::; tM with tm = (m�1)T
M , the trapezoidal rule is equivalent to anM-point DFT. The resistive
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part of the Jacobian then becomes a circulant matrix

Ji =

2
666664

G̃0 G̃�1 � � � G̃1

G̃1 G̃0 � � � G̃2
...

... � � �
...

G̃�1 G̃�2 � � � G̃0

3
777775= ΓGΓ�1 (3.30)

and is identical to the resistive part of the JacobianJi in the pseudospectral harmonic balance

formulation. A similar result can be obtained for the capacitive partJq of the Jacobian.

The Galerkin harmonic balance method is, therefore, equivalent to the pseudospectral harmonic

balance when the Galerkin integrals are evaluated using a trapezoidal rule on a uniform grid of

same sizeM as the size of the Fourier basis.

In order to achieve a better approximation to the resistive part of the actual Galerkin harmonic

balance Jacobian (3.29) (which contains exact Fourier coefficients), as well as to the capacitive

part, the number of uniformly spaced points in the trapezoidal rule can be increased toMσ =σ2K+

1 (whereσ > 1). This approximate Galerkin Jacobian can be computed from the pseudospectral

harmonic balance Jacobian on the uniform collocation grid ofMσ points : it is the centralNM�

NM part of this pseudospectral HB Jacobian. This approximate Galerkin Jacobian will converge

to the actual Galerkin Jacobian in the limitσ 7! ∞.

When the pseudospectral harmonic balance uses the largerMσ point uniform collocation grid

and the oversampled DFT transform matricesΓ andΓ�1 of sizeNMσ, the method is an oversam-

pled pseudospectral HB (i.e. a pseudospectral HB with oversampling transforms).

In summary, the middleNM�NM part of the oversampled pseudospectral Jacobian approxi-

mates the actual Galerkin Jacobian increasingly better for increasing transform lengths. In other

words, the oversampled pseudospectral HB represents an approximate Galerkin HB method (AGHB).

As an illustration, consider the caseK = 1 (i.e. M = 3). Whenσ = 1 (no oversampling), the

resistive part of the pseudospectral Jacobian is

J(C)i =

2
664

G̃0 G̃�1 G̃1

G̃1 G̃0 G̃�1

G̃�1 G̃1 G̃0

3
775 : (3.31)

We now introduce oversampling withσ = 2. The collocation grid is nowMσ = 5, and the resistive
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part of the oversampled pseudospectral Jacobian is

Ji =

2
66666664

G̃0 G̃�1 G̃�2 G̃2 G̃1

G̃1 G̃0 G̃�1 G̃�2 G̃2

G̃2 G̃1 G̃0 G̃�1 G̃�2

G̃�2 G̃2 G̃1 G̃0 G̃�1

G̃�1 G̃�2 G̃2 G̃1 G̃0

3
77777775
: (3.32)

Its middle 3�3 part represents the resistive part of the approximate Galerkin Jacobian:

J(G)i =

2
664

G̃0 G̃�1 G̃�2

G̃1 G̃0 G̃�1

G̃2 G̃1 G̃0

3
775 : (3.33)

Note the differences between the lower-left(1;3) and upper-right(3;1) corner terms in (3.33) and

(3.31).

Given the theoretical advantages of the Galerkin method over collocation, we may suspect

some sort of accuracy enhancements by using the oversampling transforms in the pseudospectral

HB method. Consider the computation ofG̃�
l with the Galerkin (spectral) method

G̃�
l =

1
T

Z T

0

di(v)
dv

e� j2πl f t dt (3.34)

with the uniformMσ-point trapezoidal rule (or equivalently, with an oversampled pseudospectral

method with oversampling factorσ). Define

g�(t) =
di(v(t))

dv
(3.35)

and let its exact infinite Fourier representation be given by

g�(t) =
∞

∑
k=�∞

G�
kej2πk f t: (3.36)

Let the approximate pseudospectral representation with truncated Fourier series be given by

g(t) =
K

∑
k=�K

G̃ke
j2πk f t: (3.37)

Using the trigonometric interpolation theorem [43], it can be shown thatG̃k differs fromG̃�
k by

a perturbing aliasing sum:

G̃k = G̃�
k +

∞

∑
j=�∞ ; j 6=0

G̃�
k+ jMσ (3.38)
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whereMσ = σ2K +1.

The presence of the aliasing term in the collocation Fourier coefficients indicates that the error

for the collocation method will always be greater that the error for the Galerkin method. On

the other hand, it can be shown that the aliasing term is asymptotically of the same order as the

truncation error [67, 39], which implies that the errors for the Galerkin and collocation methods

will decay at the same rate in the asymptotic limit [42].

To illustrate the perturbing aliasing terms in the approximate Fourier coefficientsG̃k, look at

the caseK = 1, and no oversampling (i.e.σ = 1). The approximate Fourier coefficientG̃2 is

G̃2 = G̃�
2+(G̃�

�1+ G̃�
5+ G̃�

�4+ G̃�
8): (3.39)

Note the presence of thẽG�
�1 coefficient in the aliasing sum which is particularly worrisome, since

typically jG̃�
�1j> jG̃�

2j.

If the oversampling is set toσ = 2, the same approximate Fourier coefficient is

G̃2 = G̃�
2+(G̃�

�3+ G̃�
7+ G̃�

�8+ G̃�
12): (3.40)

Note how all perturbing coefficients here now have indices with absolute values greater than 2. In

general the magnitudes of the perturbing coefficients will be smaller thanjG̃�
2j.

3.2.2 Approximate Galerkin Harmonic Balance Results

In this section we compare the performance of the oversampled pseudospectral HB (i.e. ap-

proximate Galerkin harmonic balance, or AGHB) with the pseudospectral HB formulation (i.e.

PSHB) on the two nonlinear circuits (the diode rectifier and the DC-DC converter) used in the

time-domain preconditioning experiments. A right preconditioned matrix-implicit GMRES linear

solver was used in both formulations, with BDF-2 as a preconditioner. The initial Newton guess

was a shooting-Newton solution computed with loose tolerance.

The HB methods were implemented in Mica, Motorola’s SPICE-like circuit simulator, in the

computer language C [55]. All computer runs were done on Sun Ultra-2 350MHz UNIX worksta-

tions.

Figures 3.5 and 3.6 show theL∞ norm of the frequency-domain pointwise errorε f in a solution

waveform for the two circuits simulated with PSHB and AGHB with increasing oversamplingσ.

The frequency-domain pointwise errorε f is computed as:

ε f (k f) = jV�
k �Vkj (3.41)

whereV�
k is thek-th Fourier coefficient of the exact solution, andVk is thek-th Fourier coefficient

of the solution computed by PSHB or AGHB. Since no exact solution for these circuits exists, a
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Figure 3.5: Diode Rectifier, AGHBL∞ norm of the frequency-domain pointwise error iniV IN

versus: (A) number of harmonicsK; (B) oversampling factorσ.

PSHB solution computed with a very large number of harmonics (K = 5000) was used for this

purpose. Note that the points atσ = 1 in the plots correspond to the PSHB solutions.

While the Galerkin formulation is theoretically better than the collocation (pseudospectral)

formulation, the plots in Figures 3.5 and 3.6 show only a small improvement in accuracy when

AGHB is used: up to 7.5dB for theiV IN waveform in the diode rectifier, and up to 12dB for the

DC-DC converter’svCOIL. The reduction in the error initially increases with an increasing number

of harmonicsK, but saturates after reaching its peak value. The plots show that only minor 10% to

20% oversampling is needed to reach the peak error reduction at eachK. This is a good outcome

since the computational cost of AGHB is limited by the length of the FFTs, i.e. its complexity

is O(NMσ logMσ). If a larger value ofσ was required to get the error reduction, the benefits of

AGHB would not have been worth the extra cost.

Note that if a direct factorization is used for the linear problems in both AGHB and PSHB, the

oversampling in AGHB does not introduce an additional computational cost as the complexity is

entirely dominated by the expense of the factorization.

Since AGHB is more accurate than the PSHB, to ensure a fair comparison of the two formu-

lations we compare total CPU times needed for the two formulations to reach identical solution

accuracy. Figure 3.7 shows these times for the DC-DC Converter, with AGHB using 20% over-

sampling (σ = 1:2). The plot indicates that AGHB is on average 1.5 times faster than the PSHB

in computing the solution to same accuracy. The efficiency savings come primarily from the fact
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Figure 3.6: DC-DC Converter, AGHBL∞ norm of the frequency-domain pointwise error invCOIL

versus: (A) number of harmonicsK; (B) oversampling factorσ.

that AGHB needs to use fewer harmonics than PSHB to reduce the error to the same amount. This

reduction in the size of the problem easily offsets the cost increase due to the use of oversampling

transforms in AGHB.

In order to examine the possible effects of the AGHB to the GMRES linear solver and the

Newton nonlinear solver, Figures 3.8 and 3.9 plot the average GMRES iterations per Newton step

(computed as the ratio of the total GMRES iterationsIL to the number of Newton iterations),

as well as the Newton iterations as functions of the oversampling factorσ. The points atσ = 1

correspond to PSHB. While the AGHB formulation does not seem to have any effect on the Newton

solver, asσ is increased, the average number of GMRES iterations drops by a third. The Galerkin

formulation, therefore, generates a better conditioned linear system. Unfortunately, we are unable

to take advantage of this property of AGHB in practice since the increased cost of AGHB at larger

σ completely overwhelms the savings generated by the reduction in the GMRES iterations.

We can conclude the approximate Galerkin formulation of the HB method does indeed bring

some improvements to the standard pseudospectral HB method. The achieved increase in accuracy

is small, and does not improve with increasing number of harmonicsK (as predicted by the theory,

the Galerkin and collocation spectral methods have errors that will decay at the same rate in the

asymptotic limit [42]). Nevertheless, given that only a small 20% oversampling in AGHB yieds

the peak increases in accuracy, the approach is cost effective for matrix-implicit HB implementa-

tions. The simulated examples show that the maximal observed 12dB improvement in accuracy
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is equivalent to a simulation run time speedup of 1.5 comparing AGHB and PSHB runs reaching

identical solution error.
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Figure 3.8: Diode Rectifier, AGHB: (A) average GMRES iterations; (B) Newton iterations, both
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3.3 Selection of Iterative Linear Solver

There are many other iterative linear solver methods besides GMRES, and many more are being de-

veloped. It is therefore worthwhile to examine what are the relative advantages and disadvantages

of GMRES versus some other iterative methods that can be used in implementations of harmonic

balance. One such alternate method is the Quasi Minimum Residual (QMR) algorithm [54].

The GMRES method holds the theoretical advantage over QMR in achieving the largest resid-

ual reduction in each iteration. In addition, GMRES requires only one matrix-vector product

computation, versus two for the QMR. The Krylov subspace formed by the GMRES method is

orthogonal, while QMR uses a bi-orthogonal Krylov subspace. GMRES is easier to code and is

more robust in practice.

Unfortunately, GMRES requires storage of the entire Krylov subspace. This can become pro-

hibitive for large problems for which the preconditioning is not effective and GMRES takes many

iterations to reach the desired accuracy in solving the linear system. In addition, GMRES performs

full back-orthogonalization, and therefore the number of inner products grows with the iteration

number.

In comparison, QMR only requires storage of the last two vectors in the Krylov subspace since

it only back-orthogonalizes for two steps. Note however that if the matrix-vector product is compu-

tationally expensive (as it is in the harmonic balance case due to the FFTs and the preconditioner),

the lower back-orthogonalization cost of the QMR is irrelevant.

A transpose-free variant of QMR, TFQMR [54] requires only one matrix-vector multiplication,

and is therefore more efficient than QMR. Similarly, there are variants of the GMRES algorithm

that address the memory problems with this linear solver. The restarted GMRES algorithm restarts

the GMRES algorithm after some maximum number of iterations. The quasi GMRES variants

(QGMRES and DQGMRES) [54] use a truncated back-orthogonalization.

Nevertheless, given its proven reliability record in practice, we recommend GMRES as a de-

fault linear solver for harmonic balance. QMR, TFQMR, and the quasi variants of GMRES are not

as robust, and are therefore only prefered in situations when ineffective preconditioning in GMRES

in a large problem results in large number of iterations and memory storage issues. It is therefore

recommended to have at least one of the QMR methods (preferably TFQMR) as a second choice

in the implementation of harmonic balance.
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Chapter 4

Time-Mapped Harmonic Balance

One of the main advantages of the shooting-Newton method for steady-state analysis of circuits

is that it is a time-domain method which can select time-points based on local error estimation.

Shooting-Newton methods can, therefore, easily handle circuits whose solution waveforms un-

dergo rapid transitions, such as many highly nonlinear circuits, by increasing the time-point grid

resolution to resolve the sharp waveform features.

The main advantage of the harmonic balance (HB) method is its spectral accuracy. The solution

waveforms converge exponentially fast with increasing harmonics in the harmonic balance method,

in contrast to the limited order polynomial convergence for the shooting-Newton and other time-

domain methods. Unfortunately, the effective time-points used by the harmonic balance method

are uniformly spaced, and this forces the method to use a large number of harmonics when the

circuit solution contains very rapid transitions.

In this Chapter we introduce the Time-Mapped Harmonic Balance (TMHB) method. The main

idea behind this new method is to utilize a non-uniform time-point grid with increased resolution in

the fast varying regions of the solution waveforms, while retaining all of the advantages of the state-

of-the-art preconditioned matrix-implicit Krylov-subspace harmonic balance method (referred to

in the remaining text as the standard HB method). Since the non-uniform time-point grid is better

adapted to fast-varying solution waveforms than a uniform grid with same number of time-points,

one would hope and expect better accuracy in the computed solutions from the TMHB method

compared to the standard HB method.

A non-uniform collocation grid in HB is certainly possible if the time-frequency conversions

are done by the Almost Periodic Fourier Transform (APFT) [4]. Recall, however, that the compu-

tational complexity of the standard HB method is limited by the complexity of the time-frequency

conversion. By replacing the FFT with the APFT the run-times would increase fromO(NM logM)
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to O(NM2), which would definitely be an unacceptable outcome.

In the TMHB method, we keep the FFT and yet are able to use a non-uniform grid in the TMHB

by mapping (transforming) the circuit problem and solving it in a new, pseudo-time domain. In

this new domain, the sharp features in circuit’s waveforms flatten out to certain extent, and the

rapid transitions are less rapid. We are thus able to compute the solutions to a higher accuracy

using a uniform time-point grid in this pseudo-time domain. As we know how this uniform grid

is related to the non-uniform grid in real time, the solution is then transformed back into the real

time domain.

At the core of the TMHB method is the non-uniform grid selection strategy. The success of the

TMHB transformation of the circuit problem is critically dependent on how well these non-uniform

time-points are placed. The grid selection strategy is a topic of Chapter 5.

In this Chapter we derive the Time-Mapped Harmonic Balance algorithm, give a Krylov-

subspace based solution technique and describe the post-processing procedure used to obtain the

actual Fourier coefficients from the TMHB solution. We also describe the procedure used to con-

struct the time-map function which relates the non-uniform grid to a uniform pseudo-time grid.

We study the error convergence properties of the TMHB method, and demonstrate these properties

on analytic waveforms.

In [68] the authors use coefficient smoothing techniques for fast varying solutions in fluid

dynamics. Spectral methods using mapping (also known as transformation, change-of-coordinate,

or pseudo) techniques have been applied to solving explicit scalar (or at best small systems of) first

or second order ODEs and PDEs in a number of references, mostly dealing with problems in fluid

dynamics [43, 70, 71, 76, 77, 81, 82, 83].

4.1 Formulation

As we did in formulating the standard HB method in Chapter 2, we start by considering a circuit

whose dynamics is described withN nonlinear differential equations:

q̇(v(t))+ i(v(t))+u(t)= 0 (4.1)

wherev(t)2R N is the vector of node voltages,q(v(t))2R N the vector of node charges (or fluxes),

i(v(t)) 2 R N the vector of resistive node currents, andu(t) 2 R N the vector of input sources.

Let the circuit be driven by a single periodic excitation input source with periodT. Finding the

periodic steady-state solution of this circuit consists of computing theN steady-state waveforms

v(t) on the solution domaint 2 [0;T]. The periodic steady-state solution of (4.1) satisfies the
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two-point constraint:

v(T) = v(0): (4.2)

In the standard HB method, the solution waveforms are approximated with truncated Fourier

series:

v(t) =
k=K

∑
k=�K

Vke
j2πk f t (4.3)

with f = 1
T the periodic excitation input source frequency, andK the number of harmonics consid-

ered in the truncation. The method solves for the Fourier coefficientsVk. The approximation (4.3),

in conjunction with theN circuit equations (4.1), results in the residual function:

f (V; t)�
K

∑
k=�K

j2πk f Qke
j2πk f t + i

 
K

∑
k=�K

Vke
j2πk f t

!
+u(t) (4.4)

whereQk are the Fourier coefficients ofq(v(t)) with v(t) the truncated Fourier series approxima-

tions of the solution waveforms, i.e.q
�
∑K

k=�K Vkej2πk f t
�
= ∑K

k=�K Qkej2πk f t.

The residual function (4.4) is to be minimized on[0;T].

In order to enhance the clarity of the presentation, we now introduce the following notation for

grids of time-points.

Definition 1 The set ofM time-pointsρM = ft1; t2; :::; tMg is a grid if (1)8tm2 [0;T); and (2)

0 = t1 < t2 < ::: < tm < T (strict monotonicity property). The grid spacinghm is hm = tm+1� tm

with tM+1 = T, and the grid size isM.

Definition 2 The gridρM is uniform if all its spacings satisfyhm = const:, i.e. tm = (m�1)T
M .

Uniform grids are denotedρu.

In the standard (pseudospectral) HB method, the minimization of (4.4) is carried out by en-

forcing f (V; tm) = 0 on the uniform gridtm 2 ρM
u of collocation (interpolation) points where

M = 2K+1.

In contrast, the Time-Mapped Harmonic Balance (TMHB) utilizes a non-uniform grid of time-

pointsρM. The non-uniform grid has increased resolution in the regions of the solution waveforms

with rapid transitions. The non-uniform grid resolves the sharp waveform features in order to

increase the solution accuracy of the TMHB method.

We now introduce the notion of pseudo timet̂ and denote the grids of pseudo time-points with

ρ̂. The pseudo timêt coordinate is related to real time via the time-map functionλ such that

t = λ(t̂) (4.5)

The time-map function maps the uniform grid of pseudo time-pointsρ̂M
u into the non-uniform grid

of real time-pointsρM such thatλ : t̂m 7! tm wheret̂m2 ρ̂M
u , tm2 ρM, λ(0) = 0, andλ(T) = T.
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The time-map functionλ(�) is constructed from the non-uniform grid of time-pointsρS which

is generated by the grid selection algorithm. This non-uniform grid is spectrally interpolated to

yield λ(�). The details of this construction are given in Section 4.4.

To derive the Time-Mapped Harmonic Balance (TMHB) method, consider that

d
dt

=
1

λ0(t̂)
d
dt̂

: (4.6)

Replacing the time-derivative in (4.1) with (4.6) yields

1
λ0(t̂)

d
dt̂

q(v(λ(t̂))+ i(v(λ(t̂)))+u(λ(t̂)) = 0 (4.7)

and the two-point constraint (4.2) becomes

v(λ(T)) = v(λ(0)): (4.8)

The solution waveforms in TMHB are approximated with truncated pseudo Fourier series:

v(t) = v(λ(t̂)) =
k=K

∑
k=�K

V̂ke
j2πk ft̂ (4.9)

whereV̂k are the pseudo Fourier coefficients of the solution waveforms. Equations (4.7) and (4.9)

yield the residual function

f̂ (V̂; t̂)�
1

λ0(t̂)

K

∑
k=�K

j2πk fQ̂ke
j2πk ft̂ + i

 
K

∑
k=�K

V̂ke
j2πk ft̂

!
+u(t̂) (4.10)

where Q̂k are the pseudo Fourier coefficients ofq(v(λ(t̂))) with v(λ(t̂)) the truncated pseudo

Fourier approximations of the solution waveforms, i.e.q
�

∑K
k=�K V̂kej2πk ft̂

�
= ∑K

k=�K Q̂kej2πk ft̂ .

The residual function (4.10) is to be minimized on[0;T]. The minimization is carried out by a

collocation method, enforcinĝf (V̂; t̂) = 0 on the uniform pseudo grid of collocation pointsρ̂M
u .

The non-uniform grid in real time in effect “stretches” out those regions of the solution wave-

forms with sharp features. As a result, the TMHB solutionv(t) in real time is the smoother wave-

form v(λ(t̂)) when viewed in pseudo time, as illustrated in Figure 4.1. Since the waveform is

smoother in pseudo time, its features are more easily resolved with anM-point uniform pseudo

grid, compared to resolving the original fast varying waveform in real time with anM-point uni-

form real time grid in the HB method. Thus one expects better accuracy from the solution of the

TMHB method.

Another way of seeing why TMHB should be more accurate than standard HB is to think of

how the set of pseudo Fourier series basis functions interpolates the solution waveforms. The
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Figure 4.1: The smoothing effect of the non-uniform grid of TMHB: (A)vCOIL in real time (non-

uniformρM grid); (B) time-map functiont = λ(t̂); (C) vCOIL in pseudo time (uniform̂ρM
u grid).

pseudo Fourier series basis in real time is the set ofej2π f kλ�1(t) oscillatory functions. These basis

functions smoothly increase their frequency in the regions where the non-uniform grid is dense.

The more rapidly changing pseudo basis function is thus able to capture the rapid transitions in the

solution waveform more easily. Two basis functions, one from standard, and one from a pseudo

Fourier series waveform approximation are given in Figure 4.2. The non-uniform grid was such

that it had a peak increase in density in the middle of the domain att = 10ms(the time map function

(4.43) was used) to accommodate rapid transitions occurring in the middle of the interval.

In addition, the magnitude of the pseudo series coefficient for the highest frequency (largest

k) pseudo basis functions need not be as large as the corresponding magnitudes in the standard

series basis Functions. The high frequency basis coefficient magnitudes in the standard series need

to be larger in order to increase the slope of the basis function and capture the rapid transitions.

This causes a pronounced Gibbs effect and a not-so-well approximating solution interpolant. In

contrast, due to smaller high frequency basis magnitudes, the pseudo basis functions cause much

smaller Gibbs oscillations and are better building blocks in interpolating the fast varying solution

waveform.

Equation (4.10) is now rewritten in the frequency domain yieldingNM nonlinear algebraic

equations

F̂(V̂)� ΓΛΓ�1ΩΓq(Γ�1V̂)+Γi(Γ�1V̂)+Γu= 0 (4.11)

whereV̂ is the pseudo node-voltage spectrumV̂ = [V̂�K;1; :::;V̂�K;N;V̂�K+1;1; :::; :::;V̂K;N]
T

(a vec-
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Figure 4.2: Basis functions, (k= 4), for the (A) standard, and (B) a pseudo Fourier series.

tor of pseudo Fourier coefficients), andΩ is the diagonal frequency-domain differentiation matrix

Ω =

2
666664

j2πK f IN

j2π(K�1) f IN
... ...

j2π(�K) f IN

3
777775 ; (4.12)

Λ is the diagonal matrix

Λ �

2
666664

1
λ0(t̂1)

IN
1

λ0(t̂2)
IN

...
1

λ0(t̂M)
IN

3
777775 (4.13)

andIN is the identity matrix of sizeN.

The matricesΓ andΓ�1 are DFT matrices that perform the conversions from pseudo time to
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frequency and vice-versa

v= Γ�1V̂ =

2
666664

v(λ(t̂1))
v(λ(t̂2))

...

v(λ(t̂M))

3
777775 ;

Γ�1 =

2
664

ej2π(�K) f t̂1IN : : : ej2πK f t̂1IN
...

...

ej2π(�K) f t̂M IN : : : ej2πK f t̂M IN

3
775

(4.14)

where eachv(λ(t̂)) 2 R N is a vector of node voltages. Since the pseudo time gridρ̂M
u is uniform,

the DFT can be carried out inO(NM logM) operations using the FFT just as in the standard HB.

4.2 Matrix-Implicit Krylov-Subspace Solution Technique

The system ofNM nonlinear algebraic equations (4.11) are solved for the pseudo Fourier coeffi-

cientsV̂ by applying Newton’s method. The application results in the iteration

J(l)
�
V̂(l+1)�V̂(l)

�
=�F̂(V̂(l)) (4.15)

wherel is the Newton iteration index. Thel -th Newton iteration Jacobian is

J(l) = ΓΛΓ�1ΩΓC(l)Γ�1+ΓG(l)Γ�1 (4.16)

and is aNM�NM block-dense matrix.

The block-diagonal matricesC andG are

C�

2
666664

C1

C2
...

CM

3
777775 ; G�

2
666664

G1

G2
...

GM

3
777775 (4.17)

where the blocksCm = [Cm(r;s)] andGm = [Gm(r;s)] consist of the elements

Cm(r;s) =
dq(vr(λ(t̂m)))

dvs
=

dqr(v(tm))
dvs

; (4.18)

Gm(r;s) =
di(vr(λ(t̂m)))

dvs
=

dir(v(tm))
dvs

(4.19)
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wherer;s are the node indices,r;s= 1;2; : : : ;N. The matricesG andC remain block-diagonal as

in the standard HB asq(v) andi(v) remain algebraic. The constituent sparse blocksGm andCm are

the circuit conductance and capacitance matrices evaluated in real time on the non-uniform grid of

real collocation time-pointstm2 ρM. The sparsity of these blocks depends on the circuit topology.

The grid selection algorithm will in general generate mildly non-uniform grids even for linear

circuits. This is caused by the grid selection scheme which distributes the time-points following

the rate of change in the solution waveforms, which is not constant for the pure sinusoidal signals

in a linear circuit. The multiplication byΓΛΓ�1 in the formation of the Jacobian prevents the

decoupling of the Jacobian and the equations as in standard HB for linear circuits. The decoupling

is possible only ifΛ happens to be an identity matrix, meaning thatt = λ(t̂)� t̂, i.e. that the pseudo

time non-uniform grid in TMHB is in fact uniform.

This should not be a cause for an alarm since TMHB is a method meant to be used on highly

nonlinear circuits whose solutions undergo rapid transitions. For linear and even mildly nonlinear

circuits driven by pure sinusoids, the uniform grid in the standard HB is effective enough, so that

introducing a non-uniform grid with TMHB would, at best, yield only minor improvements in

solution accuracy.

The Newton iteration (4.15) is a linear problem, and explicitly forming and factoring the block-

dense TMHB JacobianJ would be very expensive,O(NM3). As in standard HB, a preconditioned

iterative linear solver (GMRES) is used to reduce the complexity toO(NM2), with further reduc-

tions in complexity obtained by implicitly forming the GMRES matrix-vector product by sequen-

tial evaluation using FFTs, toO(NM logM). Therefore the complexity of TMHB is the same as

the complexity of the state-of-the-art matrix-implicit Krylov-subspace standard HB.

The memory requirements for the TMHB method are also of the same complexity as the stan-

dard HB, growing linearly withO(NM) due to the storage of the Krylov subspace vectors in the

GMRES algorithm.

4.2.1 Speeding Up the Matrix-Vector Product

The matrix-vector product

Jpk =
�
ΓΛΓ�1ΩΓC+ΓG

�
Γ�1pk (4.20)

wherepk is the search direction in thek-th GMRES iteration, requires 5 FFTs. It is possible to

reduce this number of FFTs to 3 by a simple algebraic reformulation of the system of algebraic

equations (4.11). Multiplying (4.11) byΓΛ�1Γ�1 results in the system:

ΩΓq(Γ�1V̂)+ΓΛ�1i(Γ�1V̂)+ΓΛ�1u= 0: (4.21)
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When Newton’s method is applied to (4.21), the Jacobian at thel -th Newton iteration is:

J(l) = ΩΓC(l)Γ�1+ΓΛ�1G(l)Γ�1 (4.22)

whereΛ�1 is computed trivially asΛ is a diagonal matrix. Thek-th GMRES iteration matrix-vector

product used to solve the linear subproblem at each Newton iteration is now

Jpk =
�
ΩΓC+ΓΛ�1G

�
Γ�1pk (4.23)

and requires 3 FFTs. As the FFT limits the complexity of the TMHB, and the GMRES computation

time dominates the total TMHB runtime, a substantial speedup is achieved by this 40% reduction in

the number of FFTs in the matrix-vector product computation. Note that the matrix-vector product

in the standard HB also requires 3 FFTs. The only (minor) overhead in TMHB matrix-vector

product comes from the multiplication by the diagonal matrixΛ�1.

Note that we could choose to reformulate only the GMRES linear problem, and not the system

of equations (4.11), arriving at the same formulation for the matrix-vector product with 3 FFTs. In

this case the right hand sides (RHS) for the outer Newton loop and the inner GMRES iterations will

be different. This approach has shown to cause a drastic increase in both the number of Newton

and GMRES iterations in practice, and is not recommended.

4.2.2 Linear Device Treatment

Linear elements (such as linear resistors, capacitors, and controlled voltage sources) are character-

ized by linear device functionsi(v) andq(v). Therefore, in most circuit simulators these devices

can be evaluated only once, rather than at each collocation point. Consider such an implementation

of HB where the linear devices are treated separately. In effect, the steady-state circuit problem

(4.1) can now be expanded with an additional term and written as:

q̇(v(t))+ i(v(t))+
Z t

�∞
y(t� τ)v(τ)dτ+u(t) = 0 (4.24)

whereq(v(t))2R N andi(v(t))2R N are now, respectively, the vectors of node charges (or fluxes)

and resistive currents from the nonlinear circuit devices,y(t) 2 R N is the matrix-valued impulse

response of the circuit with all the nonlinear devices removed, andu(t) 2 R N the vector of input

sources. Ify(t) is causal and has finite energy, then

Γ
Z t

�∞
y(t� τ)v(τ)dτ =YV: (4.25)

The TMHB system ofNM nonlinear equations (4.11) is now expanded with this additional term

F̂(V̂)� ΓΛΓ�1ΩΓq(Γ�1V̂)+Γi(Γ�1V̂)+YV̂ +Γu= 0 (4.26)
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whereY = YG+ΩYC is a block-diagonal matrix, withYG andYC being its resistive and capacitive

parts which are also block diagonal. Note that due to the linearity of the devices described byY,

all of the constituent sparse blocksYGm andYCm of YG andYC respectively, are the same, whileY’s

diagonal blocks differ as a result of a multiplication byΩ.

The matrix-vector product (4.20) is now

Jpk =
�
ΓΛΓ�1ΩΓC+ΓG

�
Γ�1pk+Y pk (4.27)

and still requires 5 FFTs. The matrix-vector product (4.23) corresponding to the reformulated

problem (4.21) is now

Jpk =
�
ΩΓC+ΓΛ�1G

�
Γ�1pk+ΓΛ�1Γ�1Y pk (4.28)

and requires 2 additional FFTs bringing the total to 5 FFTs.

There are several ways of getting around this problem. If the circuit contains very few linear

elements, we may skip the sequence of operationsΓΛ�1Γ�1 in front of Y, removing the 2 costly

additional FFTs. In practice this has shown to work well with only minor increases in the number

of GMRES iterations if the only linear elements in the circuit are a few controlled sources.

A better approach is to treat all linear elements as nonlinear elements and retain the original

reformulation of the matrix-vector product (4.23) with 3 FFTs. The overhead of this approach is

the repeated evaluation of linear elements such as resistors and capacitors at each collocation point.

This overhead is minor, however, when one considers that: (1) the cumulative device evaluation

time in HB or TMHB is only a small fraction of the cumulative time spent in solving the linear

problem with the GMRES iterations; (2) the evaluation of a resistor, capacitor, or a controlled

source takes a fraction of a time needed to evaluate a modern model for a nonlinear device such

as a bipolar or MOS transistor; and (3) modern communication circuits consist of large number of

transistors comparable to the number of linear devices.

One final point is that the linear devices found on a chip such as resistors or capacitors, are in

fact nonlinear as they are nonlinear functions of temperature, which in turn is a nonlinear function

of the on-chip voltages and currents. It is therefore important to treat these devices as nonlinear

via an implementation of an appropriate device model for accurate circuit simulation.
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4.2.3 Preconditioning

For the reformulated TMHB, the diagonal blocks of the TMHB Jacobian (4.22)

Pf =

2
666664

j2π(�K) fC̄0+ Ḡ0;λ

j2π(�K+1) fC̄0+ Ḡ0;λ
...

j2πK fC̄0+ Ḡ0;λ

3
777775 (4.29)

where the blocks̄C0 = [C̄0(r;s)] andḠ0 = [Ḡ0(r;s)] contain the elements

C̄0(r;s) =
1
M

M

∑
m=1

Cm(r;s); (4.30)

Ḡ0;λ(r;s) =
1
M

M

∑
m=1

λ0(t̂m)Gm(r;s) (4.31)

with r;s= 1;2; : : : ;N the node indices, are the standard preconditioner for the GMRES solver in

the TMHB method, just as the diagonal blocks of the HB Jacobian are the default preconditioner

in the standard HB method [11, 15]. The diagonal blocks of the TMHB Jacobian consist of the DC

Fourier coefficients of the matricesC andΛ�1G. These DC coefficients can be quickly computed

by averaging the entries ofC andΛ�1G corresponding to each circuit node. The diagonal block

structure of the preconditioner allow application of fast direct block factorization algorithms.

This standard frequency-domain preconditioner works well in most circuit examples. The grid

selection strategy in the TMHB requires a computation of a solution guess, which can be also used

as a good starting initial guess for the Newton iterations of the TMHB. The usage of this initial

guess drastically reduces the total number of Newton iterations, and also has a reduction effect on

the number of GMRES iterations as well. As a consequence, the standard preconditioner is quite

adequate in most circuit examples. For some strongly nonlinear circuits, the time-domain BDF

preconditioners from Chapter 3 are more effective than the standard preconditioner in TMHB as

they are in the HB method.

Right preconditioning is used in the TMHB method. With right preconditioning the linear

problemJ∆V̂ =�F becomesJP�1P∆V̂ =�F whereP is the preconditioner. By lettingP∆V̂ = Û ,

the GMRES algorithm first solves the linear problemJP�1Û = �F , and then computes∆V̂ =

P�1Û .

The right style of preconditioning does not change the RHS of the linear problem in GMRES,

and this RHS is the same as the RHS used in the outer Newton loop. As it was noted earlier in this

section, when these two RHS sides are different, costly increases in both the number of Newton

and GMRES iterations are noted in practice.
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4.3 Computing the Real Time Fourier Coefficients

The TMHB method solves for the pseudo Fourier coefficientsV̂ of the solution waveforms. These

pseudo Fourier coefficients can be related to the real Fourier coefficientsV. First note that if time-

domain waveforms are desired, due to (4.9), an inverse FFT readily yields the voltage waveforms

at the non-uniform gridρM of real time-points:

v(t)� v(λ(t̂)) = Γ�1V̂: (4.32)

To compute the actual Fourier coefficientsV, we use the following “unmap” procedure. We first

introduce a non-uniform oversampled grid in pseudo timeρ̂Mσ . This grid is chosen such that the

time-map functionλ(�) maps it into a uniform oversampled grid in real timeρMσ
u , i.e. λ : t̂m 7! tm

where t̂m 2 ρ̂Mσ and tm 2 ρMσ
u . The number of collocation points in the oversampled grids are

Mσ = σM whereσ > 1 is the oversampling factor.

Since from (4.5)̂t = λ�1(t), (4.9) can be rewritten as

v(t) =
k=K

∑
k=�K

V̂ke
j2πk fλ�1(t): (4.33)

This summation is evaluated at real timestm 2 ρMσ
u to give the solution waveformsv(tm) at the

oversampled uniform grid in real time. Note that (4.33) cannot be carried out by an inverse FFT

since the pseudo time-pointsλ�1(tm) 2 ρ̂Mσ form a non-uniform grid. Due to this non-uniform

grid, the complex exponentials in the summation are not equally spaced along the unit circle in the

complex plane as required by the FFT.

Finally, since thev(t)’s values are now known on a (oversampled) uniform grid in real time,

we can use the FFT to compute the real Fourier coefficientsV

V = Γv(t) (4.34)

wheret 2 ρMσ
u .

Note that this procedure actually yieldsMσ = 2Kσ+1 Fourier coefficients, which is more than

theM Fourier coefficients expected. The additional Fourier coefficients represent the higher fre-

quencies 2πk f whereK < k� Kσ captured by the non-uniform grid in TMHB. These coefficients

are shown to match the Fourier coefficients of the “exact” solution quite well (see Figure 4.3).

Without oversampling, these coefficients would be zero and the additional accuracy obtained by

the TMHB method would be lost.

In effect theM pseudo Fourier coefficientŝV “pack” high frequency information content. In

order to “unpack” this content, we must carry the described “unmap” procedure utilizing the over-

sampling frequencies betweenK andKσ.
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The rate of oversampling is determined by the Nyquist frequencyfσ = 1=(2hmin) corresponding

to the smallest spacinghmin= min(hm) for 8m in the non-uniform grid in real timeρM, where from

Kσ =

�
fσ
f

�
=

�
1

2hmin f

�
(4.35)

andσ = Kσ=K.

The unmap procedure described above is in essence an oversampled pseudo Fourier interpola-

tion of the solution waveformsv(t). This interpolation uses the discrete waveform values ofv(t) at

the non-uniform grid in real timeρM to generate the discrete valuesv(tm) at the oversampled uni-

form grid in real timeρMσ
u 3 tm. It is crucial to use a spectrally accurate oversampled interpolation

in order to preserve the accuracy of the solution. Local interpolation schemes (linear or quadratic)

are not suitable for this task as they introduce errors that are larger than the errors from the Fourier

approximation of the solution.

4.3.1 Complexity of the Unmap Procedure

The complexity of the post-processing unmap procedure isO(σM2) per waveform since the sum-

mation (4.33) is a multiplication of̂V by a dense matrix of sizeσM�M. The unmap procedure is

typically applied on only those few waveforms whose Fourier coefficients are wanted. In compari-

son, the complexity of the TMHB method isO(NM logM), i.e. limited by the FFT. This means that

the worst cases when the computation time for the unmap procedure can be a significant portion of
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the computation time for the TMHB are if: (1) the circuit is extremely non-linear (requiring vast

variations in the grid resolution translating into largeσ and largeM); and either if (2a) the circuit is

small (N small) or (2b) the unmap procedure is carried on allN waveforms for a circuit of arbitrary

size.

In practice, however, the situation is not bad at all. Recall that the actual computation times

are roughly equal to some computation complexity constant times the order of complexity. The

constant for the TMHB method applied to highly nonlinear circuits is much larger than the con-

stant for the unmap procedure since it is proportional to the total number of GMRES iterations

performed. This number in turn is larger for very nonlinear circuits since for these circuits the

standard preconditioner made up from diagonal blocks of the JacobianJ is not terribly effective.

Furthermore, stability considerations in the grid selection algorithm limit the rate of change of

the TMHB grid resolution (i.e. the ratios of neighboring grid spacings should be kept bounded).

This in turn limits the oversampling factorσ. Finally, for large circuits, computer memory limits

set a bound onM.

4.4 Construction of the Time-Map Function

The time-map functionλ maps the uniform grid in pseudo timeρ̂M
u to the non-uniform gridρM in

real time. In addition, in the unmap procedure used to compute the real Fourier coefficients, the

time-map functionλ maps the non-uniform oversampled grid in pseudo timeρ̂Mσ into the uniform

oversampled gridρMσ
u in real time.

The first step in constructing the time-map functionλ is to determine a set ofSnon-uniform real

time time-points. The success of the TMHB method is crucially dependent on this time-point se-

lection, and several different selection strategies are presented in Chapter 5. The strategies requires

an initial guess for the solution waveforms. In particular, an approximate solution is computed us-

ing a shooting-Newton method [4] with a low-order time integration scheme. TheSnon-uniform

time-points for the TMHB method are then selected based on balancing two criteria: using small

time-steps in the fast-varying regions of the approximate solution waveforms, and insuring that the

time-steps do not change too rapidly. Although using a shooting-Newton method to compute the

approximate solution is expensive, the cost is kept low by loosening the convergence tolerance. In

addition, this shooting-Newton solution is useful as an initial guess for the TMHB.

Given theSnon-uniform real time time-points, we now describe the construction of the time-

map functiont = λ(t̂). In order to preserve the spectral accuracy of the TMHB method, the time-

map function must be smooth (or more precisely, at least as many times continuously differentiable
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as the functions describing the circuit element’s device models). Also, we must be able to compute

its first derivative with spectral accuracy or better as it is used in the TMHB formulation (4.10).

Furthermore, to ensure the strict monotonicity of the non-uniform grid of real time-points, the

time-map function must be strictly monotonic, i.e.λ0(t̂) > 0 for all t̂ 2 [0;T]. Finally, for unmap

purposes, we also need to be able to computeλ�1(t).

We first representλ(t̂) as a sum of a linear part and aT-periodic partλφ(t̂)

t = λ(t̂) = t̂ +λφ(t̂): (4.36)

This split of the time-map function is illustrated in Figure 4.4.

0 5 10 15
0

2

4

6

8

10

12

pseudo t [µs]

λ(p
se

ud
o t

) =
 ps

eu
do

 t +
 λ φ(ps

eu
do

 t) 
   [

µs]

DC−DC converter: (A)

0 5 10 15
0

2

4

6

8

10

12

pseudo t [µs]

ps
eu

do
 t  

  [µ
s]

(B)

0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

pseudo t [µs]

λ φ(ps
eu

do
 t) 

   [
µs]

(C)

Figure 4.4: Split of the time-map function: (A) time-map functionλ(t̂); (B) linear partt̂; (C)

T-periodic partλφ(t̂).

The periodic partλφ(t̂) is chosen to be a Fourier polynomial interpolantφ(t̂) of orderS such

that the interpolatory condition

ts = t̂s+φ(t̂s) (4.37)

is exactly satisfied at the points(t̂s; ts) wherets2 ρS are theSnon-uniform real-time time-points,

andt̂s2 ρ̂S
u areSuniform pseudo time-points. The interpolantφ(t̂) is the truncated Fourier series

φ(t̂) =
J

∑
k=�J

Φke
j2πk ft̂ (4.38)
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where 2J+1= S. The coefficientsΦk can be computed with an inverse FFT of sizeS2
664

Φ�J

: : :

ΦJ

3
775= Γ�1

2
664

t1� t̂1

: : :

tS� t̂S

3
775 : (4.39)

Thus the time-map function is constructed as:

λ(t̂) = t̂ +
J

∑
k=�J

Φke
j2πk ft̂ (4.40)

and this approximation exactly passes through the points(t̂s; ts).

The first derivative of the time-map function is

λ0(t̂) = 1+
J

∑
k=�J

j2πk fΦke
j2πk ft̂ (4.41)

and is exact.

The λ(�) function (4.40) and its first derivative (4.41) are now evaluated on the grid ofM

uniform pseudo time-pointŝρM
u to yield theM-point non-uniform grid in real timeρM and the

matrix of time-map derivativesΛ.

Due to the Fourier nature of the representation (4.40),λ(t̂) may exhibit high frequency oscil-

lations and violate the monotonicity requirement. In practice, for the grids selected by the grid

selection algorithm, ifS is sufficiently large, this violation rarely happens. If a violation does hap-

pen, it can be resolved by damping the time-map function with an exponential filterµk, yielding a

filtered construction

λµ(t̂) = t̂ +
J

∑
k=�J

µkΦke
j2πk ft̂ (4.42)

whereµk = e�δ( k
S)

γ
andδ andγ are filter parameters [83]. Note that the filtered approximation no

longer passes through the points(ts; t̂s), as illustrated in Figure 4.5.

The filtered approximation can introduce an offsetτ such thatλ(0) = τ andλ(T) = T +τ. This

offset causes no problems to the TMHB method. Strong filtering, however, can deteriorate the

quality of the constructed time-map function by making its flat regions less flat. As the flat regions

in the time-map function correspond to the highest grid resolution density, the filtering can cause

a substantial resolution reduction in these regions, and this, in turn, can reduce the effectiveness of

the TMHB method.

The values ofλ�1(t) at the oversampled uniform timestm 2 ρMσ
u are required in the unmap

procedure used to compute the real Fourier coefficients. This computation is accomplished by

applying Newton’s method to the nonlinear equationλ(t̂m)� tm= 0 and solving for̂tm at each time

point tm.
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Figure 4.5: Filtering of the time-map function: (A) a non-monotonic time-map functionλ(t̂); (B)

the filtered monotonic time-map functionλµ(t̂) (S= 8, δ = 3:5, andγ = 2).

4.4.1 Explicit Time-Map Functions

Almost all of the mapping references given in the introduction of this Chapter use parameterized

explicit mapping functions since the problems being solved are given by explicit equations, and

the solution behavior is well known. Similarly, an early implementation of the TMHB method

used an explicit functional form of the time-map function. In particular, for a diode rectifier circuit

whose waveforms had rapid transitions in the middle of the solution interval[0;T], the time-map

function [43, 77]

λE(t̂) =
T
π

�
tan�1

�
L tan

�
π
�

t̂
T
�

1
2

���
+

π
2

�
(4.43)

was used, with the parameterL controlling the increase of the grid resolution. A plot of this explicit

time-map function is shown in Figure 4.6.

This explicit time-map function is well-suited for this particular circuit problem. The function

is infinitely smooth, obeys the strict monotonicity requirement, and its exact first derivative and

inverse can be written down explicitly as well. However, automating the choice of an appropriate

explicit time-map function is at best very complicated when presented with an arbitrary circuit

problem whose many solution waveforms may undergo an unknown number of rapid transitions

throughout the solution domain[0;T].
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4.5 Error Convergence Analysis of TMHB

In this section we will study the convergence properties of TMHB, and attempt to understand

more precisely why the TMHB method can achieve significant improvement in solution accuracy

when compared to the HB method. The basics of the analysis presented here are similar to the

convergence analysis for pseudo Chebyshev approximations for stiff problems in [71] and the

analyses in [73, 76].

Let the exact periodic steady-state solution of the system of circuit equations (4.1) have the

infinite Fourier series representation

v�(t) =
∞

∑
k=�∞

V�
k ej2πk f t (4.44)

in the real time coordinatet, and the infinite pseudo Fourier series representation

v�(t) = v�(λ(t̂)) = v̂�(t̂) =
∞

∑
k=�∞

V̂�
k ej2πk ft̂ (4.45)

in the pseudo time coordinatet̂. The Galerkin formulation of the HB method represents its approx-

imate solutionv(t) with the truncated Fourier series

v(t) =
k=K

∑
k=�K

V�
k ej2πk f t (4.46)
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while the Galerkin TMHB method uses a truncated pseudo Fourier series to represent its approxi-

mate solution ˆv(t̂)

v̂(t̂) =
k=K

∑
k=�K

V̂�
k ej2πk ft̂ (4.47)

The Galerkin formulations of both HB and TMHB, in other words, use a truncation of the standard

and pseudo infinite Fourier series respectively in approximating the solution.

We now proceed to bound the global truncation errors for the HB and the TMHB methods. We

assume that the solution waveforms are infinitely smooth for clarity.

Recall that the Sobolev norm of integer orderq of aT-periodic waveformu(t) is given by

kuk2
q =

1
T

q

∑
j=0

Z T

t=0
ju( j)j2dt =

q

∑
j=0

juj2j (4.48)

wherejuj j is theL2 norm of thej-th derivative ofu(t), i.e.

juj2j =
1
T

Z T

t=0
ju( j)j2dt = (2π f )2 j

∞

∑
k=�∞

k2 j jUkj
2 (4.49)

with u(t) = ∑∞
k=�∞Ukej2πk f t the infinite Fourier series representation ofu(t).

The principal approximation theory result for the Galerkin spectral methods [40, 42] states that

for any 0� q� p there exists a constantC independent ofK such that

kv��vkq �CKq�pjv�jp: (4.50)

The quantitykv��vkq is the truncation error measured in theq-th Sobolev norm. The inequality

(4.50) states that the truncation error is bounded by the norm of the derivatives of the approximated

waveform.

The inequality (4.50) defines a family of error bounds. For a fixedq, the truncation error is

bounded by the smallest of the right-hand sides of (4.50). If the right-hand sides of (4.47) decrease

as p is increased, andK is sufficiently large, the error bound tightens, and the method achieves

spectral accuracy.

If the waveform has rapid transitions, asp is increased, the norms of the derivativesjv�jp may

generate a sequence with a more rapid increase rate than the decay rate of theCKq�p sequence

whenK �K0 whereK0 is fairly large. This in turn means that the bound of the truncation error, i.e.

the right-hand side of (4.50) will grow for increasingp. Instead of achieving spectral accuracy, the

bound of the truncation error will beO(K�pm) (i.e. the error will have polynomial convergence)

wherepm is the value ofp at which the error bound attains a minimum.

Spectral accuracy will eventually be retrieved for largeK, i.e. whenK > K0. In other words,

when the number of time-pointsM = 2K + 1 is larger thanM0 = 2K0+ 1, the sharp features in
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the waveform will be sufficiently well resolved, and the error of the spectral method will start its

spectral (infinite order) decay. However, the number of harmonicsK0 which defines the threshold

of the spectral convergence of the error can be very large for very fast varying waveforms.

The main mechanism through which the TMHB attains a faster rate of error convergence is

by working in the pseudo time domain, in which the waveform ˆv� is smoother. WhenK < K0

i.e. the number of harmonics is smaller than the spectral accuracy threshold, the sequencejv̂�jp

does not increase as rapidly as the sequencejv�jp for increasingp, and the TMHB error is thus

more tightly bound than the HB error. When the number of harmonicsK approaches the spectral

accuracy thresholdK0, the HB error bound will quickly catch up with the TMHB error bound and

both methods will be converging at the same rate.

We will now proceed to derive the HB and TMHB truncation error bounds, and investigate

their values and decay rates using an explicit waveform and explicit time-map function. Setting

q= 0 in (4.50), the truncation error for the HB method should satisfy

kv��vk0 �CK�pjv�jp: (4.51)

More specifically,

kv��vk2
0 = jv��vj2

=
∞

∑
jkj=K+1

jV�
k j

2

= (2π f )�2p
∞

∑
jkj=K+1

k�2p(2π f )2pk2pjV�
k j

2

� (2π f )�2pK�2p
∞

∑
jkj=K+1

k2p(2π f )2pjV�
k j

2

� (2π f )�2pK�2pjv�j2p: (4.52)

The truncation error for the HB method is therefore bounded by

jv��vj � (2π f )�pK�pjv�jp: (4.53)

Similarly, the truncation error for the TMHB method satisfies

jv̂�� v̂j � (2π f )�pK�pjv̂�jp: (4.54)

The right-hand sides of (4.53) and (4.54) define families of error bounds asp takes different

integer values i.e. 1� p�∞. The errors will be bounded by the minimums of these bound families.
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Let B(K; p) be the truncation error bound family for the HB method, i.e.

B(K; p) = (2π f )�pK�pjv�jp (4.55)

andB̂(K; p) the truncation error bound family for the TMHB method:

B̂(K; p) = (2π f )�pK�pjv̂�jp: (4.56)

The standard truncation error boundBm(K) for the HB method is

Bm(K) = min
p

B(K; p) (4.57)

and the pseudo truncation error bound for the TMHB method is

B̂m(K) = min
p

B̂(K; p): (4.58)

WhenK < K0, as argued above, we expect the TMHB error bound to be tighter than the HB

error bound, i.e.B̂m < Bm since the waveform in pseudo time ˆv� is smoother thanv� and thus

generates a more slowly increasing sequence of derivative normsjv̂�jp than the sequencejv�jp.

We will now illustrate the error convergence mechanism of the TMHB method by using an

explicit analytic waveformv�(t) and an explicit time-map functiont = λ(t̂). The analytic waveform

is

v�(t) = (1+ tanh(S(t�0:5))) (4.59)

ont 2 [0;1] with the parameterS= 1000 determining the steepness of the rapid transition att = 0:5.

The time-map function is

t = λ(t̂) =
1
π

�
arctan(L tan(π(t̂�0:5)))+

π
2

�
(4.60)

with L = 0:01. The time-map function is in essence a change of coordinate, transforming the

waveformv�(t) into the smoother function ˆv(t̂) = v(λ(t̂)) in the pseudo time coordinate. Figure 4.7

illustrates the analytic waveform in real time, the time-map function, and the smoothed waveform

in pseudo time.

While the waveformv�(t) is not periodic, it can be periodized with periodT = 2 by adding

to it its mirror (flip) imagev�(2� t) for t 2 [1;2]. To compute the standard error bound families

B(K; p) corresponding tov�(t) and pseudo error bound familieŝB(K; p) corresponding to ˆv�(t̂),

we compute the waveform derivative normsj � jp for the integer range 1� p� 50 by numerically

evaluating the norm integrals with the trapezoidal rule. The derivative discontinuities att = 1 are

numerically ignored by integrating over only the first half of the period, i.e. overt 2 [0;1].
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Figure 4.7: The analytic waveformv�(t): (A) plot of v� in real time; (B) time-map function; (C)

plot of v̂� in pseudo time.

As our primary interest is to see how thev� andv̂� error bounds behave for increasingK, we

compute the minimumsBm(K) andB̂m(K) of the error bound families at eachK. Figure 4.8 shows

a plot of these error bounds in dB versusK. The left plot is linear inK and demonstrates that the

error boundB̂m(K) of the pseudo approximation is much tighter than the error boundBm(K) of the

standard approximation for small and moderate values ofK. For example, atK = 300 the pseudo

error bound is 130dB tighter than the standard error bound. As a result, the truncation error of the

pseudo approximation will also be several orders of magnitude smaller than the truncation error of

the standard approximation for a range of values forK.

The right plot in Figure 4.8 plots the error bounds versus a log scale for the number of harmon-

ics K. The operating range of the TMHB method is the range ofK where the pseudo error bound

is smaller than the standard error bound. This range is clearly visible, and it can be seen that it

extends up toK = K0 = 6300. For smallK, the standard error bound decreases at a rate of about

20 dB per decade, which indicates a polynomial order convergence ofO(K�1), while the pseudo

error bound decreases at rate of 80 dB per decade i.e. withO(K�4). As K approaches the spectral

accuracy thresholdK0 = 6300, the decay rate of the standard error bound increases, and the value

of the standard error bound catches up with the value of the pseudo error bound at the threshold.

ForK above the threshold, both error bounds have spectral decay, although a limiting rate of 1000

dB per decade is observed which corresponds toO(K�50) (explained below).

Note that when the standard error bound finally catches up with the pseudo error bound at
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Figure 4.8: Convergence of the standardB(K) and pseudôB(K) error bounds in dB versusK: (A)

linear plot; (B) log plot.

K = K0, both bounds have reached very small values of around -270 dB which is close to the

double precision accuracy (-300 dB) of most numerical computations.

The convergence exponents of the error bounds in Figure 4.8 can be explained by plotting

the family (set) of standard and pseudo error bounds for fixedK versus the norm orderp (see

Figure 4.9). The values ofp at which the families of error bounds attain the minimum are the

convergence exponents of the error bounds (taken with a negative sign). ForK = 100 (plot A)

the minimum of the standard error bound family is atp= 1, while the pseudo error bound family

has a much smaller minimum atp = 4. At aroundK = K0 = 6300 (plot B) both error bound

families reverse the increasing trend for largep. ForK = 10000 (plot C) both error bound families

decay monotonically at the fastest possible rate over the entirep range, so their minimums are at

the largest consideredp in our computation. The limiting convergence rate exponents of the error

bounds in Figure 4.8 are 50 because the bound families were numerically computed up to the value

of p= 50.

As it was explained earlier, the reason for the smaller pseudo error bound in the operating range

of the TMHB methodK < K0 is due to the more slowly increasing sequence of derivative norms

jv̂�(t)jp of the waveform in pseudo time coordinates. Figure 4.10 plots the sequences of standard

derivative normsjv�(t)jp and pseudo derivative normsjv̂�(t)jp in dB versusp. As it can be seen,

the transformation into pseudo time coordinates via the time-map function yields a slower rate of

increase of the pseudo derivative norms whenp is small. The quality of the time-map function will
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Figure 4.9: The standardB(K; p) and pseudôB(K; p) error bound families in dB versusp: (A)

K = 100 ; (B)K = K0 = 6300; (C)K = 10000.

determine how much slower will the pseudo derivative norms increase compared to the standard

derivative norms; it will also determine for how many values ofp will this rate slowing be in effect.

While our error convergence analysis used Galerkin (spectral) Fourier approximations, it can

be readily extended for the collocation (pseudospectral) Fourier approximations since the aliasing

term present in the collocation Fourier coefficients is of the same order as the truncation error of

the method [67, 39] (Chapter 3).

The analysis also holds if the solution waveforms are not infinitely differentiable. In that case

the family of error bounds on the right-hand side of (4.50) has a finite number of members.

4.6 Demonstration of the Error Convergence of Pseudo Fourier

Series

The greater accuracy of the TMHB method comes from the smaller global truncation error of the

pseudo Fourier series for the (smoother) solution waveform in pseudo time, compared to the global

truncation error of the standard HB Fourier series approximation of the solution waveform in real

time.

Furthermore, from the results of the analysis in Section 4.5, whenK is small or moderate, we

would expect the error in the TMHB method to decreaseO(K�p̂) compared to the error conver-

gence rateO(K�p) for the HB method, where the convergence rate exponents satisfy ˆp > p. In
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Figure 4.10: The standard (jv�jp) and pseudo (jv̂�jp) derivative norms in dB versusp of the analytic

waveformv�.

other words, the error in the TMHB method should decrease exponentially faster than the stan-

dard HB error with increasing number of harmonicsK (or equivalently, with increasing number of

collocation time-pointsM = 2K +1).

To demonstrate the superior error convergence of the pseudo Fourier series, consider approx-

imating an analytic waveform with both standard (uniform grid) Fourier series and (non-uniform

grid) pseudo Fourier series. The analytic waveform is

v�A(t) =
1
2
(1+ tanh(103(x�0:4)))exp(�((x�0:4)=0:2)2) (4.61)

on the interval[0;T] with T = 1:5. While this function is not periodic, the periodicity errorv�A(T)�

v�A(0) is of order 10�13 (-260dB), and is sufficiently small for the demonstration. The functionv�A(t)

has a very rapid transition att = 0:4 as it can be seen from Figure 4.11. The iterative grid selection

algorithm (discussed in Chapter 5) resulted in a non-uniform grid which was used to construct

the time-map function also shown in Figure 4.11. When the time-map function is evaluated on a

uniform gridρ̂M
u in pseudo-time, it generates the non-uniform gridρM in real time. The smoothing

effect of this non-uniform grid on the functionv�A(t) is also shown in Figure 4.11.

To compute the Fourier coefficients in the standard approximation, the functionv�A(t) is evalu-

ated at a uniform set ofM pointsρM
u , and an inverse FFT is performed on this vector of values. To

compute the pseudo Fourier coefficients, the functionv�A(t) is evaluated on the set of non-uniform

pointsρM, and again an inverse FFT is performed on this vector of values.
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Figure 4.11: The analytic waveformv�A(t): (A) plot of v�A in real time; (B) time-map function; (C)

plot of v�A in pseudo time.

To compute the error in the standard and pseudo Fourier series approximations, two different

error measures were used. The first one is simply the magnitude of theK-th Fourier coefficient of

the series, i.e.ε1 = jVKj for the standard and̂ε1 = jV̂Kj for the pseudo Fourier series approximation.

The magnitude of this highest-frequency Fourier coefficients is well known to be a measure of the

truncation error in the Fourier representation.

The second error measure is computed in the time domain, and it is the normalizedL2 norm of

the vector of time-domain errors in the Fourier interpolants at theM midpoints of the grids, i.e.ε2=

kvA(tn)�v�A(tn)k2 wherevA(t) is the standard Fourier interpolant, andtn = (tm+ tm+1)=2 where

tm2 ρM
u (uniform grid); ε̂2 = kv̂A(tn)�v�A(tn)k2 wherev̂A(t) is the pseudo Fourier interpolant, and

tn = (tm+ tm+1)=2 wheretm2 ρM (non-uniform grid).

A plot of these two error measures in dB is given in Figure 4.12. The spectacular error conver-

gence of the pseudo Fourier series approximation in the operating range (small and moderateK) is

clearly evident. While the standard Fourier series achieves a convergence rate exponent of about

p = 1:1, the convergence exponent for the pseudo Fourier series is about ˆp = 20. The plot also

shows that the two error measures are equivalent.

A plot of the standard and pseudo Fourier interpolants atM = 12 is shown in Figure 4.13. It is

clearly visible that even for a smallM the pseudo Fourier series approximation is much better than

the standard Fourier series approximation.
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Chapter 5

Grid Selection Strategies for the

Time-Mapped Harmonic Balance

In Chapter 4 we introduced the Time-Mapped Harmonic Balance (TMHB) Method, a fast Krylov-

subspace spectral method for accurate steady-state simulation of circuits with rapid transitions.

The TMHB features a non-uniform grid which resolves the sharp features in the signals.

The success of the Time-Mapped Harmonic Balance method is critically dependent on the

selection of an appropriate non-uniform grid. In this Chapter, after a brief overview of the TMHB

method in the next section, we will present several different selection strategies, and discuss some

issues related to their use in practice as a part of the TMHB algorithm.

The relative merits of these strategies when used in TMHB simulation of several circuits are

given in Chapter 6.

5.1 TMHB Method Overview

Consider a circuit described withN nonlinear differential equations:

q̇(v(t))+ i(v(t))+u(t)= 0 (5.1)

wherev(t)2R N is the vector of node voltages,q(v(t))2R N the vector of node charges (or fluxes),

i(v(t)) 2 R N the vector of resistive node currents, andu(t) 2 R N the vector of input sources. The

periodic steady-state solution of (5.1) satisfies the two-point constraintv(T) = v(0).

The TMHB method utilizes a non-uniform grid of 2K +1 = M time-points in contrast to the

uniform grid used in standard HB. This non-uniform grid in real timet is related to a uniform grid

in pseudo-timêt via the time-map functionλ such thatt = λ(t̂), λ(0) = 0, andλ(T) = T.
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The time-map function is constructed starting from a selected grid ofSnon-uniform real time

time-points, and is a sum of a linear part and a T-periodic part:

λ(t̂) = t̂ +
J

∑
k=�J

Φke
j2πk ft̂ (5.2)

where 2J+1 = S. Theλ(�) function (5.2) is then evaluated atM uniform pseudo time-points to

yield theM-point non-uniform grid in real time. The construction guarantees the ability to compute

λ0(t̂) with spectral accuracy required by the TMHB method. The strict monotonicity ofλ(t̂) can

be ensured by applying an exponential filter to the time-map function.

In the TMHB the problem (5.1) is transformed into:

1
λ0(t̂)

d
dt̂

q(v(λ(t̂))+ i(v(λ(t̂)))+u(λ(t̂)) = 0 (5.3)

The solution waveforms in TMHB are approximated with truncated pseudo Fourier series:

v(t) = v(λ(t̂)) =
k=K

∑
k=�K

V̂ke
j2πk ft̂ (5.4)

As in the state-of-the-art standard HB method [7, 10, 11, 15], the TMHB method uses a matrix-

implicit Krylov-subspace approach to compute the pseudo Fourier coefficientsV̂ of the solution

with O(NM logM) complexity (which is the complexity of the FFTs used to compute the matrix-

vector product in the GMRES solver for the linear problem at each Newton iteration).

To compute the real time Fourier coefficients, the TMHB introduces a non-uniform oversam-

pled grid in pseudo time such thatλ(�) maps this oversampled grid in pseudo time to a uniform

oversampled grid in real time. Sincet̂ = λ�1(t), (5.4) can be rewritten as

v(t) =
k=K

∑
k=�K

V̂ke
j2πk fλ�1(t): (5.5)

The summation in (5.4) is then evaluated to give the solution waveforms at the oversampled uni-

form grid in real time. Finally, since thev(t)’s are now known on a uniform grid in real time, we

can use the FFT to compute the real Fourier coefficientsV.

5.2 Grid Selection Strategy Requirements

Grid selection techniques for finite-difference methods are discussed in several mathematical ref-

erences [21, 22]. The techniques are typically classified as either a priori or adaptive. The grid se-

lection strategies considered in this section are a priori methods, in which theS-point non-uniform
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grid used in the construction of the time-map function is selected beforehand, and remains fixed

during the iterative computation of the solution. In contrast, adaptive grid selection strategies re-

peatedly update both the grid and the approximate solution until a convergence criteria is met. In

the adaptive grid selection for a fixed-order finite-difference numerical method [22], the grid is ad-

justed to a measure of the local truncation error of the method in the approximate solution at each

iteration. However, the TMHB method is a spectral method, which can be viewed as a variable-

order finite-difference method (with the order equal to the sizeK of the Fourier basis), and a local

truncation error estimate requires a costly summation of the solution’s truncated pseudo Fourier

series approximation. A further complication is the need for an expensive spectrally accurate in-

terpolation from the old grid to the new at each iteration of the adaptive method, for which the FFT

cannot be used due to the non-uniform spacings of the grids.

Adaptive grid selection techniques have been used in mapped spectral methods applied to prob-

lems in fluid dynamics [71, 76, 82]. However, in all of these references a fixed functional param-

eterized form of the mapping function is considered, with the mapping parameters determined by

minimizing a particular functional of the solution. The references deal with explicit small PDE

problems, and the adaption is performed iteratively at each time evolution step of the solution.

By nature, all a priori grid selection techniques require some knowledge of the solution behav-

ior (a solution guess). All selection strategies considered here obtain this information by solving

the problem (5.1) using a shooting-Newton method with a low-order integration scheme, whose

cost is kept low by a loose convergence tolerance.

The shooting-Newton method [4] reformulates the two-point constraint as

ϕ(v(0);0;T)�v(0) = 0 (5.6)

whereϕ is the state-transition function for (5.1). Equation (5.6) is solved with a Newton method.

The cost of the solution guess computation is kept low by loosening the error tolerance of the

shooting method, as well as approximating the JacobianJϕ of the state-transition function using

a forward-difference formula. Note that the solution guess also serves as an initial guess for the

TMHB Newton iterations.

As the solution guess is given at the discrete times selected by the local time-step control

mechanism of the transient simulation over one period at the last iteration of the shooting-Newton

method, local quadratic interpolation is used to get the solution values at arbitrary time.

The S-point non-uniform grid used in the construction of the time-map function should be

selected based on two major considerations: reduction of the truncation error (accuracy consider-

ation) and preserving stability.
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One approach in satisfying the accuracy requirement is to concentrate the grid time-points in

the high-gradient regions of the solution waveforms. The solution waveformv(t) in real time then

becomes the smoother waveformv(λ(t̂)) when viewed in pseudo-time, as illustrated in Fig. 5.1.

The greater solution accuracy of the TMHB stems from the reduction in the global truncation error

in the pseudo Fourier series approximation of this smoother waveform vs. the standard Fourier

series approximation of the original waveform on the uniform standard HB grid.
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Figure 5.1: DC-DC converter circuit: grid and time-map function for direct strategy (top row) and

iterative grid selection strategy (bottom row).

The stability requirement is in general difficult to handle quantitatively, but in practice, bound-

ing the ratio of the neighboring grid spacings is a known rule-of-thumb approach that works well:

α
α+1

�
hm+1

hm
�

α+1
α

(5.7)

whereα > 0 determines the grid “rigidity”, andhm = tm+1� tm with tm andtm+1 two neighboring

grid points. Note that rigid grids (largerα) can suffer from “point exhaustion” if the number of

grid pointsS is not large enough. Finally, note that both bounding the grid spacings and using

a large enough number of grid points greatly enhances the strict monotonicity of the time-map

construction (5.2) and virtually eliminates the need for filtering.
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5.3 Direct Grid Selection

The shooting-Newton solution guess generates a non-uniform grid in which the points are dis-

tributed such that the local truncation error of the integration method is kept under the specified

(loose) tolerance. In general this means smaller time-steps in the regions where the waveforms

undergo rapid transitions, smoother waveforms in the pseudo-time uniform grid, and a reduced

global truncation error in the TMHB pseudo Fourier series approximations. Unfortunately, in

most cases the grids generated by the shooting-Newton method are unusable since their time-steps

change too rapidly. This not only causes non-monotonicity in the constructed time-map function

and necessitates the use of filtering which renders a much less effective time-map function, but

more importantly, instability and convergence problems in the TMHB iterations.
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Figure 5.2: DC-DC converter circuit, direct strategy, before (dashed) and after (solid) the smooth-

ing: (A) time-steps; (B) ratios of neighboring time-steps; (C) time-map function.

This instability can be alleviated by bounding the time-steps to obey (5.7). We accomplish this

by “smoothing” theS-point shooting-Newton grid with a discrete exponential kernel:

h̃i =
1
γ

S

∑
j=1

hj

�
α

α+1

�ji� j j

(5.8)

wherehj are the time-steps in the shooting-Newton grid, andh̃i the time-steps from the “smoothed”

grid. Note that the kernel is defined for�S
2 � (i� j)� S

2 and is periodic with periodS. The scaling

factorγ is the sum of the kernel over one period.
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The direct selection strategy is illustrated in Figure 5.2, withα = 2. The dashed lines are the

quantities before the smoothing, i.e. straight out of the shooting-Newton initial solution guess run,

and the solid lines are the same quantities after the direct selection strategy (i.e. the “smoothing”

of the shooting-Newton grid with the periodic exponential kernel). The horizontal bounds in the

plot of the ratios of neighboring time-steps areα=(α+1) = 2=3 and(α+1)=α = 3=2.

The described direct grid selection strategy is simple and fast. Its disadvantages are the indirect

control over the number of grid pointsSvia the shooting-Newton tolerances, and the asymmetric

nature of the generated grids (somewhat alleviated by smoothing) due to the one-directionality of

the shooting-Newton time-step control.

5.4 Iterative Grid Selection

The iterative grid selection was developed from ideas in [21], in which PDE IVPs are solved by

adaptively adjusting the spatial grid during the time evolution of the problem. In the iterative grid

selection, an initial uniform gridρS
u evolves into the final non-uniform gridρS. During this process

theS time pointstm2 ρS
u are re-distributed in such a way that the shooting-Newton solution guess

of (5.1) is uniformly resolved. The solution guess guides the iterations such that in the regions

where the solution has large gradients, the points should be concentrated, and in the regions where

the solution varies slowly, the points should be spread out.

We first introduce the grid resolutionn defined asnm = T
tm+1�tm

. For the grid resolutions to

yield an acceptable grid iterate we need

S

∑
m=1

1
nm

= 1 : (5.9)

A monitor functionR specifies the desired resolution and should indicate increased resolution in

the regions where the shooting-Newton solution has rapid transitions. A choice for this function

that works well for a number of circuit examples is theL∞ norm of the weighted rate of the change

in the solution guess:

Rm =
T

tm+1� tm
max

j

�
vj(tm+1)�vj(tm)

Fj

�
(5.10)

wherevj is the shooting-Newton solution guess waveform of thej-th circuit equation, andFj are

the waveform weights, set to the maximal peak-to-peak voltage (or current) amplitude among all

waveforms. Local quadratic interpolation is used to compute the solution guess values at arbitrary

time.

83



For accuracy we require that the grid resolution is proportional to the monitor function

nm

Rm
=

nm+1

Rm+1
: (5.11)

For stability we obey (5.7) by replacingnm in (5.11) with a centered difference smoothingnm�

α(α+1)(nm+1�2nm+nm�1) resulting in

nm�α(α+1)(nm+1�2nm+nm�1)

Rm
=

nm+1�α(α+1)(nm+2�2nm+1+nm)

Rm+1
: (5.12)

Equation (5.9), and (5.12) written form= 1;2; :::;(S�1) form a system ofSnonlinear equations

that are solved forn using a damped Newton method.

The JacobianJx can be easily written down

Jx =

2
66666666666664

b1 c1 d1 a1

a2 b2 c2 d2

a3 b3 c3 d3
... ... ... ...

aS�2 bS�2 cS�2 dS�2

dS�1 aS�1 bS�1 cS�1

� 1
n2

1
� 1

n2
2

: : : : : : : : : : : : � 1
n2

M

3
77777777777775

(5.13)

where

am = �α(α+1)Rm+1; (5.14)

bm = (2α2+2α+1)Rm+1+α(α+1)Rm; (5.15)

cm = �(2α2+2α+1)Rm�α(α+1)Rm+1; (5.16)

dm = α(α+1)Rm (5.17)

and is computed exactly.

The l -th Newton iteration is the linear problemJ(l)x (∆n)(l+1) = �x(n(l)) which is efficiently

solved by Gaussian elimination since the JacobianJx is banded andSchosen independently ofM.

The initial guess for the Newton iterations isnm= S
T corresponding to anS-point uniform grid.

At the l -th newton iteration the resolution iteraten(l) = n(l�1)+ κ(∆n)(l) is used to compute a

potential grid iterateft(l)1 ; t(l)2 ; :::; t(l)S g wheret(l)m+1 = t(l)m + T

n(l)m
. The damping factorκ is decreased

andn(l) recomputed until the potential grid iterate satisfies the strict monotonicity property. The
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l -th iteration is then deemed successful, the monitor function recomputed on the new grid iterate,

and the iterations continued untilk∆nk andkx(n)k are smaller than specified tolerances.

The iterative selection strategy is illustrated in Figure 5.3, withα = 2 andS= 50. The dashed

lines are the quantities corresponding to the initial uniformρS grid, and the solid lines are the same

quantities after a converged iterative selection strategy. The horizontal bounds in the plot of the

ratios of neighboring time-steps areα=(α+1) = 2=3 and(α+1)=α = 3=2.
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Figure 5.3: DC-DC converter circuit, iterative strategy, initial grid (dashed) and final grid (solid):

(A) time-steps; (B) ratios of neighboring time-steps; (C) time-map function.

The described iterative grid selection strategy has the advantage of choosingS independently

of M and the number of grid points in the shooting-Newton grid. Its disadvantage is its higher

complexity when compared to the direct selection strategy. The complexity can also rise rapidly

for largeSdue to the Gaussian elimination step in Newton’s method.

5.5 Optimization-Based Grid Selection

Two different cost functions were used in setting up an optimization-based grid selection strategy.

The “design parameters” for both cost functions were theSgrid pointstm. The first cost function

was simply the magnitude of the last pseudo Fourier coefficient associated with the current grid

iterate and the shooting-Newton guess waveform with sharpest transitions. The magnitude of this

coefficient is a measure of the truncation error in the pseudo Fourier approximation.
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The second cost function was the time-domainL2 error between the shooting-Newton guess

waveform and the pseudo Fourier interpolant associated with the current grid iterate. Note that this

cost function computation required a computation of a time-map function and Newton solves to

compute its inverse at the points of comparison. Computation of its gradient by finite differences

requiredS+1 cost function evaluations.

The strategy was first set up as an unconstrained optimization using the Nelder-Mead non-

gradient optimization method [57, 56], and the BFGS Quasi-Newton gradient-based method with

mixed quadratic and cubic line searches [57, 58]. Penalty terms were added to the cost function in

order to ensure the monotonicity of the grid. A second setup used two versions of a constrained

SQP method [58] with grid monotonicity and stability constraints, one without, and one with user

supplied gradients of the cost function and the constraints.

The expected advantage of the optimization-based grid selection strategy is reaching an optimal

grid. The disadvantage is its complexity (highest among the considered strategies), and the lack of

robustness due to the possibility of falling into local minima traps.

Applying the optimization-based strategy on sample waveforms produced inconsistent results.

The runs that used the first cost function (magnitude of the last pseudo Fourier coefficient) re-

distributed the grid points such that there was a sharp “dip” in the pseudo spectrum at the last

frequency, and did not lead to a reduction in the truncation error, or clustering of the points in the

regions with sharp transitions. The runs using the second cost function typically ended up trapped

in a local minimum, and clustering of the grid points in regions that did not need it. The line

searches often generated infeasible intermediate grids causing a breakdown in the optimization.

Overall, the results were inconsistent, and the optimization-based strategy was not robust enough

to be integrated in TMHB and used for TMHB runs.

5.6 Practical Issues and Limitations of the Grid Selection Strate-

gies

Each of the presented grid selection strategies were developed and initially tested on single sample

circuit waveforms with sharp features. This testing phase eliminated the optimization-based strat-

egy due to inconsistent results. The direct and the iterative strategies proved robust and consistent

enough to be integrated with the TMHB algorithm and applied to actual circuits.

When either the direct or iterative grid selection strategy is integrated with the TMHB method,

the a priori nature of the strategy limits its effectiveness. The errors present in the computed

shooting-Newton solution guess with a loose tolerance cause errors in the clustering of time-points
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by the grid selection strategy. Recall that tightening the tolerance of the shooting-Newton run

would cause its run-time to become a significant part of the total run-time for the TMHB method.

In particular, the inexact shooting-Newton solution guess has been observed to cause: (1) an

unnecessary and an excessive increase in grid resolution leading to point exhaustion in the remain-

der of the grid domain; (2) an insufficient increase in grid resolution in certain regions; and (3) an

erroneous time-shift in the positioning of the grid resolution increase (when the rapid transitions

in the computed waveform are located at different times than in the actual steady-state waveform).

These errors were observed to be more noticeable in larger circuits. All of these effects lead to less

effective grids, and translate into a decreased ability of the TMHB method to achieve significantly

better solution accuracy than the standard HB method.

The observation of the stability requirement (5.7) for bounding the neighboring time-steps,

helps tremendously in producing a grid which is used to construct an effective smooth time-map

function which observes the strict monotonicity requirement without a need for filtering. This in

turn helps the Newton and GMRES iterations in the TMHB method to be efficient and to converge

to the correct solution. The smoothing nature of this time-step bounding also helps in alleviating

the aforementioned problems caused by the errors in the shooting-Newton guess, limiting the loss

of solution accuracy.

When the circuit is reasonably large, the multiple transitions problem can present a significant

setback to the grid selection strategies. In explanation, the many solution waveforms may have

rapid transitions that occur at many different times throughout the solution domain[0;T]. The grid

selection strategy is then required to generate a grid which increases and decreases its resolution

many times throughout the solution domain. This is impossible to do with a limited number of

points. In addition, the stability requirement limits the peak resolution increases. As a result, the

strategies do not generate grids that lead to effective time-map functions.

In the case of direct grid selection strategy, decreasing the amount of smoothing by reducing

the grid rigidity (stability) parameterα is one way to reduce this problem. In the course of our

research, we tested this approach on several circuits. The reduction of the stability parameterα
indeed in many cases lead to a more effective time-map function and increased TMHB accuracy.

However, it was impossible to determine a universal near-optimal value forα across all circuits.

Instead, a conservative and safe default value ofα = 2 was selected.

In the iterative grid selection strategy, one may consider using a different monitor function

R. In particular, the waveform weightsFj can be (1) all set to a constant value; (2) equal to one

constant for the voltage and another (much smaller) constant for the current waveforms; (3) set to

the maximal peak-to-peak amplitude among voltage and current waveforms separately, with the
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current peak-to-peak amplitude scaled by a constant factor. One can also use a different norm,

such as theL2 norm.

These differing scaling and averaging schemes for the monitor function end up emphasizing

different waveforms in guiding the iterations of the iterative grid selection, and lead to different

final grids. Unfortunately, if the circuit is large, it is hard to evaluate whether the right waveforms

are emphasized. Sometimes the waveforms having the steepest features can in fact have a very

small peak-to-peak amplitude. This indicates that the waveform is perhaps simply a noisy DC

voltage, whose high frequency Fourier coefficients are so small that they can be of the order of

the accuracy of the computation. Such a waveform is not useful in the computation of the monitor

function and may cause less effective grid selection. These waveforms can be identified by setting a

threshold value for the peak-to-peak amplitude below which the waveform is ignored in computing

the monitor function. Choosing this threshold value is, unfortunately, circuit dependent.

In practice, all these hands-on monitor function schemes worked very well for a particular

circuit, but poorly for the remaining circuits. The selected default for a monitor function (5.10)

uses anL∞ norm and waveform weights set to the maximal peak-to-peak amplitude among all

voltage and current waveforms. It is a conservative choice that does not produce the best results in

individual circuits, but is universally good for all considered circuits.

Note that the interpolation of the solution guess waveforms to obtain in-between values in

the iterative grid selection strategy did not show to lessen the effectiveness of this strategy. In

particular, both linear and quadratic interpolation work equally well for this purpose.

The direct iterative strategy also sometimes showed some sensitivity to the integration method

used in the shooting-Newton run. In particular, a low second order (trapezoidal or BDF-2) scheme

sometimes can produce a large constant error in the TMHB solution. One way to eliminate this

error is to switch to using a higher order integration scheme.
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Chapter 6

Time-Mapped Harmonic Balance Results

In this Chapter we compare the performance of the TMHB method with standard state-of-the-art

matrix-implicit Krylov-subspace harmonic balance [7, 10, 11, 15] on several circuits.

The TMHB method is meant to be used on circuits whose solution waveforms undergo rapid

transitions. Most highly nonlinear circuits will exhibit such waveforms. If the circuit is linear

and driven by a sinusoidal source, all signals in the circuit will also be pure sinusoids. In such a

case, the standard HB algorithm gives the exact solution since the truncation errors for the standard

Fourier series approximations of all solution waveforms are all zero forM � 1 (see Chapter 2).

Note that the rate of change in the pure sinusoids in a linear circuit is not constant throughout

the solution domain[0;T]. As a result, the TMHB grid selection algorithms will in general generate

mildly non-uniform grid for linear circuits, and the pseudo Fourier series representation of the

TMHB solution waveforms will have a non-zero truncation error. Similarly, we can deduce that

for mildly nonlinear circuits, i.e. circuits with smoothly varying waveforms, TMHB will not be in

general more advantageous than the standard HB method.

Four strongly nonlinear circuits were simulated with the HB and TMHB methods: a diode

rectifier, a DC-DC converter, a BiCMOS switching mixer, and a BiCMOS IF preamplifier circuit

driven into distortion. Equation and element statistics for these circuits are given in Table 6.1.

Both the standard HB and TMHB methods, as well as the direct and iterative grid selection

strategies were implemented in Mica, Motorola’s SPICE-like circuit simulator, in the computer

language C [55]. All computer runs were done on Sun Ultra-2 300MHz UNIX workstations.

Both the standard HB and the TMHB methods in all runs used the same shooting-Newton

solution guess (see Section 5.2) as an initial guess for the Newton iterations. Two variants of

the TMHB method were considered: TMHB-D, utilizing the direct grid selection strategy, and

TMHB-I, using the iterative grid selection strategy. The grid rigidity parameterα in the grid
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Circuit N R C L VSRC ISRC VCVS DIO BJT MOS TOTAL

Diode Rectifier 6 2 3 1 1 1 8

DC-DC Converter 9 4 2 1 2 1 1 11

Switching Mixer 105 39 47 2 3 2 14 10 5 122

IF Preamplifier 289 138 147 6 1 26 25 343

Table 6.1: Circuit statistics: N is the number of circuit equations; R, C, L numbers of resistors,

capacitors, and inductors; VSRC, ISRC, and VCVS numbers of voltage, current, and voltage-

controlled voltage sources; DIO number of diodes; BJT and MOS numbers of bipolar and MOS

transistors; TOTAL the total number of elements.

selection schemes was fixed at the default valueα = 2, and the number of grid pointsS in the

iterative scheme wasS= 50.

The “exact” solution for each of the circuits was computed using a standard HB method with a

very large number of harmonics (as permitted by the memory limits of the computer hardware). In

particular, the number of harmonics used in the exact HB run wasK = 5000 for the diode rectifier

and the DC-DC converter, andK = 1000 for the switching mixer and IF preamplifier circuits.

6.1 Diode Rectifier

The first circuit is a simple but strongly nonlinear diode rectifier, shown in Figure 6.1. The circuit

is powered by a 50Hz sinusoidal voltage sourcevin(t). The diode rectifier was first simulated with

both the standard HB and the TMHB-I method at same number of harmonics,K = 10. Plots of

two solution waveforms exhibiting rapid transitions,iV IN(t) andv3(t), are given in Figures 6.2 and

6.3 respectively. It can be seen that the TMHB solution waveforms more closely match the exact

solution than the standard HB solution waveforms. In other words, even at this small number of

harmonics, the TMHB method computes a more accurate solution (about 10dB more accurate in

L∞ norm sense) than the standard HB method.

The pointwise errors in a computed solution waveformv(t) or in the computed Fourier coeffi-

cientsVk of its approximation, in the time and frequency domains respectively, are also of interest.

The time-domain pointwise errorεt is computed as:

εt(t) = jv�(t)�v(t)j (6.1)

wherev�(t) is the exact solution waveform, andv(t) is the waveform computed by the HB or the
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Figure 6.1: Diode rectifier circuit.
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Figure 6.2: Diode rectifier circuit,iV IN computed with: (A) standard HB; (B) TMHB-I, at same

number of harmonicsK = 10.
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Figure 6.3: Diode rectifier circuit,v3 computed with: (A) standard HB; (B) TMHB-I, at same

number of harmonicsK = 10.

TMHB method. The frequency-domain pointwise errorε f is computed as:

ε f (k f) = jV�
k �Vkj (6.2)

whereV�
k is thek-th Fourier coefficient of the exact solution, andVk is thek-th Fourier coefficient

of the solution computed by HB or TMHB.

Figure 6.4 shows plots the pointwise errors in the computediV IN(t) solution waveforms by the

HB and TMHB methods in the time and frequency domain, at same number of harmonicsK = 10.

In the first plot it is visible how the TMHB method diminishes the peaks in the time domain error

in the middle of the solution interval, which is where the waveforms exhibit the rapid transitions.

The second plot demonstrates that the TMHB computes each Fourier coefficient more accurately

than the standard HB.

The circuit was next repeatedly simulated with both the HB and the TMHB methods for an

increasing number of harmonicsK. Figure 6.5 shows theL∞ norm of the frequency-domain point-

wise errorε f , in dB, for the computed Fourier coefficients of theiV IN waveform, versus the number

of harmonicsK. The plot shows orders of magnitude improvement in the accuracy of the TMHB

solutions compared to the standard HB solution. For example, atK = 220 the TMHB solution is

about 60dB or 3 orders of magnitude more accurate than the standard HB solution.

Moreover, Figure 6.5 demonstrates the superior error convergence properties of the TMHB.

The vertical distance between the HB and TMHB convergence curves widens linearly in log space
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domain errors. Both HB and TMHB-I runs usedK = 10 harmonics.
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Figure 6.5: Diode rectifier circuit, TMHB error convergence:L∞ norm of the frequency-domain

pointwise error iniV IN, in dB.
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- i.e. exponentially fast in linear space with increasing number of harmonicsK. This is a con-

firmation of our expectations for the error convergence properties of the pseudo Fourier series

approximations and the TMHB method. The TMHB error decreases withO(M�p̂) versus the

O(M�p) error convergence of the standard HB method, with ˆp> p.

The plot also indicates that the iterative grid selection strategy in TMHB-I produces a better

time-map function and helps the TMHB algorithm reduce the solution error more than TMHB-D

which uses the direct selection strategy.

Note that an even more superior convergence profile is obtained if a different monitor function

is used in the iterative grid selection. In particular, using anL2 norm in the monitor function

Rm =

 
1+

T
tm+1� tm

N

∑
j=1

�
vj(tm+1)�vj(tm)

Fj

�2
!1

2

(6.3)

and settingFj = 1 for the voltage waveforms andFj = 10�3 for the current waveforms (effectively

scaling up the current waveforms), produces a better non-uniform grid and time-map function in

the iterative strategy. By scaling up the currents the fast-varyingiV IN waveform plays a much

greater role in the distribution of the time-points. The net result is that, for example, atK = 220,

the TMHB-I method using the new monitor function achieves an additional 2 orders of magnitude

gain over the previous result, effectively computing the solution 5 orders of magnitude (100dB)

more accurately than the standard HB method.
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Figure 6.6: DC-DC converter circuit,vCOIL computed with: (A) standard HB; (B) TMHB-I, at

same number of harmonicsK = 50.

6.2 DC-DC Converter

The second simulated circuit is a DC-DC converter, powered with an 85kHz input. This circuit

was first simulated with the standard HB and the TMHB-I method, both usingK = 50 harmonics.

Plots of the computed solution waveformvCOIL(t) is given in Figure 6.6. The plots illustrate the

20dB improvement inL∞ norm accuracy using the TMHB-I method at this number of harmonics.

The time and frequency domain pointwise error invCOIL as computed by HB and TMHB-I

methods at the same number of harmonicsK = 50, are shown in Figure 6.7. It can be seen from

the first plot how the TMHB method diminishes the error peaks at the times of the two sharp edges

in the waveform, i.e. lessens the prominence of the Gibbs effect due to its use of the pseudo Fourier

approximations. In the frequency domain (second plot), TMHB computes each individual Fourier

coefficient with a much smaller error than the standard HB method. The improvement in accuracy

is more pronounced for the Fourier coefficients corresponding to the higher frequencies - these are

the coefficients of the Fourier basis functions that are used to “build” the sharpest features in the

waveform, such as the two rapid transitions invCOIL.

The circuit was next repeatedly simulated for increasing numbers of harmonics with both HB

and TMHB methods to capture the asymptotic behavior of the error. Figure 6.8 plots theL∞ norm

of the frequency domain error in thevCOIL waveform, versus the number of harmonicsK. The

plot is another confirmation of the superior error convergence properties of the TMHB method. At

K = 600 the TMHB-I error is 100dB(5 orders of magnitude) smaller than the standard HB error.
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Figure 6.7: DC-DC Converter circuit, pointwise errors invCOIL: (A) time-domain errors; (B)

frequency domain errors. Both HB and TMHB-I runs usedK = 50 harmonics.

Note that theL∞ norm error as well as the errors for each individual harmonic for each of the

remaining waveforms in the circuit again show similar superior convergence properties. Figure 6.8

also indicates that the TMHB-I method is more successful at simulating the DC-DC converter than

the TMHB-D method.
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Figure 6.9: Switching Mixer circuit,iV31 computed with: (A) standard HB; (B) TMHB-I, at same

number of harmonicsK = 6.

6.3 Switching Mixer

The third considered circuit is a Gilbert cell switching mixer in BiCMOS technology. Its LO (local

oscillator source) was a 1.8GHz square wave, with a rising edge atT
4 , a falling edge at3T

4 , and

both rise and fall times for the edges equal to 5% ofT. For the simulation experiments the RF

inputs were kept at zero. The idea was to obtain a transient steady state operating point with high

accuracy.

The mixer was first simulated with both the standard HB and TMHB methods at a very small

number of harmonicsK = 6. Since the circuit is relatively large, larger numbers of harmonics not

only increase run times, but can also cause out of memory problems in computer systems with

insufficient RAM. It was therefore of particular interest to see whether the TMHB can compute a

significantly more accurate solution than the HB method when only a few harmonics are consid-

ered.

Plots comparing the standard HB and TMHB-I computediV31(t) waveforms with the exact

solution are given in Figure 6.9. The TMHB-I solution is dramatically better than the standard HB

solution despite the use of onlyK = 6 harmonics (or equivalently,M = 2K +1= 13 time points).

TheL∞ norm of the error for the TMHB method was 18dB lower than the standard HB.

The mixer was next simulated with HB and TMHB methods atK = 50 harmonics. Figure 6.10

shows plots of the time and frequency domain pointwise errors iniV31. The time domain error

plot shows the peaking of the errors around the times when the waveform has large gradients. The

98



0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

t    [ns]

ε t  o
f  I

V3
1    

[µA
]

Switching Mixer: (A)

HB    
TMHB−I

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

freq    [GHz]

ε f  o
f  I

V3
1    

[µA
]

(B)

HB    
TMHB−I

Figure 6.10: Switching Mixer circuit, pointwise errors iniV31: (A) time-domain errors; (B) fre-

quency domain errors. Both HB and TMHB-I runs usedK = 50 harmonics.

TMHB method is seen to reduce this maximal error, as well as reduce the error throughout the

rest of the solution domain. The second, frequency domain error plot shows again how the TMHB

computes each individual Fourier coefficients more accurately than the standard HB method. Note

that only the coefficients with evenk are plotted as the oddk coefficients are all zero (the waveform

has a frequency equal to twice the excitation frequency). It is interesting to note that the greatest

error reduction is now for the low frequency Fourier coefficients.

Our final simulation experiment for the switching mixer circuit consists of repeated HB and

TMHB runs for increasing numbers of harmonicsK. Figure 6.11 summarizes the results. While

the TMHB error convergence is better than the standard HB, it is not as impressive as in the case

of the DC-DC converter circuit. As it was discussed in Section 5.6, larger circuits present several

special problems to the grid selection algorithms due to the large number of waveforms. In the

case of the switching mixer, the multiple transitions problem, as well as the erroneous time-shift

in the transitions in the computed shooting-Newton guess have been found to be the cause of the

somewhat limited success of TMHB in this circuit.
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Figure 6.12: IF Preamplifier circuit,vOUTP computed with: (A) standard HB; (B) TMHB-I, at

same number of harmonicsK = 9.

6.4 IF Preamplifier

The fourth and final simulated circuit is a BiCMOS IF (intermediate frequency) preamplifier, which

was driven into distortion with a 0.1V peak-to-peak 110MHz sinusoidal source. This circuit gener-

ated the largest number of equationsN = 289. The first simulation experiment was a standard HB

and a TMHB run both atK = 9 harmonics. As in the case of the switching mixer, due to the size

of the circuit, it was of particular interest to see if TMHB is a superior method for small number

of harmonics.

Plots comparing the distorted output solution waveformvOUTP for the standard HB method and

the TMHB-I method are shown in Figure 6.12. TheL∞ norm of the error of the TMHB method was

19 dB lower than the standard HB, which these plots illustrate quite well qualitatively. Figure 6.13

shows plots of the time and frequency domain pointwise errors invOUTP. A reduction of the

error in each computed Fourier coefficient using the TMHB method is evident from the frequency

domain plot.

The final set of simulation experiments was a repeated sequence of HB and TMHB runs for

increasing number of harmonicsK. A summary of the results is given in Figure 6.14. The plots

show that the TMHB-I method has the best error convergence profile. The size of the circuit, as

in the case of the switching mixer, caused some problems to the grid selection strategies, which

is why the TMHB convergence profiles are not quite as spectacular as in the case of the two

smaller circuits, the diode rectifier and DC-DC converter. In particular, the multiple transitions
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Figure 6.13: IF Preamplifier circuit, pointwise errors invOUTP: (A) time-domain errors; (B) fre-

quency domain errors. Both HB and TMHB-I runs usedK = 9 harmonics.

problems was found to be a cause in the degraded performance of both TMHB-D and TMHB-I. In

addition, in the case of TMHB-D, using the a low second order (trapezoidal) integration method

in the shooting-Newton solution guess run caused a large constant error which is in evidence in

Figure 6.14. This problem was resolved when a higher order scheme (BDF-5) was used, as seen

from the plot.
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6.5 Runtime Efficiency and Storage Requirements of TMHB

A logical way to measure the runtime efficiency of the TMHB method is to compare standard

HB and TMHB runs achieving same accuracy in the solution. Tables 6.2 and 6.3 summarize

these findings. The accuracyE was theL∞ norm of the frequency domain pointwise error in the

computed Fourier coefficients for the waveforms used for the error convergence profile plots in the

previous Sections.

The total CPU times include the time spent in the grid selection strategy, as well as a complete

unmap of all solution waveforms in the circuit. The simpler direct grid selection strategy is much

faster than the iterative grid selection strategy. On the other hand, the cost of the iterative grid

selection strategy is independent of the number of harmonicsM, and linearly depends only on the

selected size of the iterated gridS(which was kept fixed atS= 50 in our experiments) and the size

of the circuitN.

A complete unmap of all solution waveforms, as discussed in Subsection 4.3.1, is in general

unnecessary in practice as only a few waveforms are of interest. A partial unmap of only the few

needed waveforms can generate significant total CPU time savings for larger circuits with hundreds

of waveforms.

Standard HB TMHB-D

Circuit E K T TL IL IN K T TL IL IN

Diode Rectifier -200 650 43.2 33.0 273 16 330 40.8 21.1 243 16

DC-DC Converter -100 1000 1080 1053 2487 14 250 1740 1658 7160 12

Switching Mixer -130 150 67.3 21.8 37 8 50 56.4 22.7 88 9

IF Preamplifier -155 170 1065 861 417 18 100 626 509 370 15

Table 6.2: Comparison of the standard HB and TMHB-D methods at same achieved solution

accuracy.E is the achieved accuracy in dB.K is number of harmonics,T is total CPU time,TL is

linear solve time,IL is number of GMRES iterations,IN is number of Newton iterations. All times

are in seconds.

Table 6.2 compares the runtime statistics for the standard HB runs and the TMHB-D runs

achieving identical solution accuracy. It can be seen that the TMHB-D is comparable in efficiency

to the standard HB method for the diode rectifier circuit, while it is less efficient for the DC-DC

converter. This is caused by the larger number of GMRES linear iterations associated with the

TMHB-D method.
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The cause of this increase in linear iterations was traced to the nature of the time-map functions

λ(t̂) generated by the direct grid selection strategy. In particular, this time-map function increases

the grid density in the regions of rapid transitions to a much larger degree than in the case of the

time-map function generated by the iterative grid selection strategy. The very large increase in grid

density corresponds to the “flat” segments ofλ(t̂), i.e. to a very small first derivativeλ0(t̂) of the

time-map function. The large spread in these derivative values leads to a large condition number

of the diagonal matrix of these derivativesΛ, which in turn causes condition number increase in

the Jacobian matrixJ for the linear problem in TMHB.

The situation improves for the larger circuits, the switching mixer and the IF preamplifier.

Due to the multiple transitions problem in larger circuits (see Section 5.6), the time-map function

constructed from the non-uniform grid generated by the direct strategy does not yield excessive grid

density increases as in the case of the two smaller circuits. For the IF preamplifier, the TMHB-

D method (using a BDF-5 integration method for the shooting-Newton solution guess run) is 1.7

times faster than standard HB.

Standard HB TMHB-I

Circuit E K T TL IL IN K T TL IL IN

Diode Rectifier -200 650 43.2 33.0 273 16 240 27.2 6.84 187 14

DC-DC Converter -100 1000 1080 1053 2487 14 180 177 156 2112 12

Switching Mixer -130 150 67.3 21.8 37 8 45 62.8 13.1 73 9

IF Preamplifier -155 170 1065 861 417 18 90 662 514 441 17

Table 6.3: Comparison of the standard HB and TMHB-I methods at same achieved solution accu-

racy.E is the achieved accuracy in dB.K is number of harmonics,T is total CPU time,TL is linear

solve time,IL is number of GMRES iterations,IN is number of Newton iterations. All times are in

seconds.

Table 6.3 compares the runtime statistics for the standard HB runs and the TMHB-I runs achiev-

ing identical solution accuracy. Significant runtime speedups are seen for three of the four simu-

lated circuits. For both the diode rectifier and the IF preamplifier, a speedup of 1.6 is achieved. For

the DC-DC converter the speedup is a factor of 6.

The total CPU timesT for the HB and TMHB-I methods in reaching a specific accuracy in

vCOIL from the DC-DC converter circuit are shown in Figure 6.15. The accuracy measure was

again theL∞ norm of the frequency domain pointwise error in the computed Fourier coefficients.

For less stringent accuracies , the total CPU times for the TMHB method are comparable to the
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Figure 6.15: DC-DC Converter circuit: total CPU timeT for HB and TMHB-I to reach a specific

solution accuracy invCOIL. (A) linear plot; (B) log plot.

HB CPU times due to the TMHB overhead in grid selection and waveform unmap. The situation is

drastically different for accuracies better than -50dB: the TMHB becomes up to several times faster

than the HB method. In addition the speedup factor grows with increases in required accuracies.

The TMHB is expected to retain theO(NM logM) complexity of standard HB, while reducing

the errorO
��

1
M

�p̂
�

versus theO
��

1
M

�p
�

error convergence of the standard HB method, with

p̂> p. The roughly linear dependence of the CPU timeT on M, means that log(T) will roughly

behave as log(M). Therefore, whenlog(T) is plotted against the error in dB which has dependence

log
�

1
M

p
�
=�plog(M), the plot is a straight line with a slope proportional top. The steeper slope

of thelog(T) line corresponding to TMHB in plot (B) of Figure 6.15 confirms the complexity and

convergence properties of TMHB.

The memory storage requirements for the TMHB method are the same as for the standard HB

method, growing linearly withM due to the storage of the Krylov subspace vectors in the GMRES

linear solver. Since the TMHB method can achieve same solution accuracy as the standard HB

method with a smaller number of harmonics, it follows that significant memory savings can be

achieved by using the TMHB method. In particular, from Table 6.3, we can measure the memory

savings roughly as the ratio of the needed numbers of harmonicsK for the standard HB and the

TMHB-I method respectively. For example, the memory savings range from a factor of 1.9 for the

IF preamplifier, to a factor of 5.5 for the DC-DC converter.

Figure 6.16 shows the required numbers of harmonicsK needed by the HB and the TMHB-I
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Figure 6.16: DC-DC Converter circuit: numbers of harmonicsK required of HB and TMHB-I to

reach a specific solution accuracy invCOIL. (A) linear plot; (B) log plot.

methods, versus the reached accuracy in thevCOIL waveform for the DC-DC Converter circuit.

Since the storage requirements are proportional toK the plot demonstrates that the TMHB method

storage requirements at same solution accuracy are not only smaller than those of the HB, but also

grow less rapidly for higher accuracy computations.

We can therefore conclude that TMHB is particularly well suited for high accuracy simulations

of large memory hungry circuits.
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Chapter 7

Conclusions

Harmonic balance (HB) methods are the frequency-domain algorithms of choice for high accuracy

computation of the periodic steady-state of circuits. Matrix-implicit Krylov-subspace techniques

have made it possible for these methods to simulate large circuits more efficiently. However,

the harmonic balance methods are not so efficient in computing steady-state solutions of strongly

nonlinear circuits with rapid transitions. While the time-domain shooting-Newton methods can

handle these problems, the low-order integration methods typically used with shooting-Newton

methods are inefficient when high solution accuracy is required.

In this dissertation, we embarked on the quest for better, more powerful spectral methods for

circuit analysis.

7.1 Contributions of Thesis

We first examined possible enhancements to the standard state-of-the-art preconditioned matrix-

implicit Krylov-subspace HB method. We formulated the BDF time-domain preconditioners and

showed that they can be quite effective for strongly nonlinear circuits, speeding up the HB runtimes

by several times compared to using the frequency-domain block-diagonal preconditioner. Also, an

approximate Galerkin HB formulation was derived, yielding a small improvement in accuracy

over the standard pseudospectral HB formulation, and about a factor of 1.5 runtime speedup in

runs reaching identical solution error.

Next, we introduced and developed the Time-Mapped Harmonic Balance method (TMHB)

as a fast Krylov-subspace spectral method that overcomes the inefficiency of standard harmonic

balance for circuits with rapid transitions. TMHB features a non-uniform grid and a time-map

function to resolve the sharp features in the signals. At the core of the TMHB method is the
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notion of pseudo Fourier approximations. The rapid transitions in the solution waveforms are well

approximated with pseudo Fourier interpolants, whose building blocks are complex exponential

basis functions with smoothly varying frequencies.

The TMHB method features a matrix-implicit Krylov-subspace solution approach of same

complexity as the standard harmonic balance method. As the TMHB solution is computed in a

pseudo domain, we gave a procedure for computing the real Fourier coefficients of the solution,

and we also detailed the construction of the time-map function. The convergence properties of

TMHB were analyzed and demonstrated on analytic waveforms.

The success of TMHB is critically dependent on the selection of a non-uniform grid. Two grid

selection strategies, direct and iterative, were introduced and studied. Both strategies are a priori

schemes, and are designed to obey accuracy and stability requirements. Practical issues associated

with their use were also addressed.

Results of applying the TMHB method on several circuit examples demonstrated that the

TMHB method achieves up to five orders of magnitude improvement in accuracy compared to

the standard harmonic balance method. The solution error in TMHB decays exponentially faster

than the standard HB method when the size of the Fourier basis increases linearly. The TMHB

method is also up to six times faster than the standard HB method in reaching identical solution

accuracy, and uses up to five times less computer memory. The TMHB runtime speedup factor and

storage savings favorably increase for stricter accuracy requirements, making TMHB well suited

for high accuracy simulations of large strongly nonlinear circuits with rapid transitions.

7.2 Future Work

The grid selection strategies were shown to be the weak link in the TMHB method. More work in

this area (particularly in the case of multiple waveforms in larger circuits) may enhance the consis-

tency of the TMHB method and increase its practical value. In particular, more robust optimization

schemes minimizing different functionals of the solution [71, 73, 76] deserve additional attention.

The post-processing procedure used in computing the real Fourier coefficients from the pseudo

Fourier coefficients computed by the TMHB hasO(σM2) complexity, compared to theO(NM logM)

complexity of the TMHB method. While we argued that in practice this does not cause runtime

efficiency problems (see Chapter 4), it may be possible to use a faster alternative algorithm for

this post-processing unmap step [78]. A less expensive procedure for computing the real Fourier

coefficients can have a major impact on an efficient implementation of an adaptive grid selection

TMHB algorithm.
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While time-domain steady-state methods, such as the shooting-Newton method, and the finite-

difference method, cannot be applied to analyze circuits driven by multi-tone signals, the harmonic

balance method can be readily extended to solve these circuits [6, 23, 24, 25, 26, 27, 28, 29].

When the excitation signals have widely-separated frequencies, new methods based on convert-

ing the circuit equations to multi-rate partial differential equations have been proposed [19, 20].

Two-dimensional mapping pseudospectral techniques applied to explicit scalar problems have been

considered in [74, 83]. However, it is not yet clear whether extending the TMHB method to multi-

tone problems is possible. A further study is needed to answer this question.

An efficient analysis of two-tone linear time-varying circuits (e.g. PLLs, mixers, narrow-band

amplifiers, switched capacitor filters) has recently been facilitated with Krylov-subspace based

time-varying time-domain methods [16], as well as with a Krylov-subspace time-varying extension

of the harmonic balance method [18]. Harmonic balance has also been applied to autonomous

circuits (e.g. oscillators) [14]. Whether the mapping techniques of the TMHB method can be

extended to these problems is an open question.

New spectral methods for special classes of circuits will continue to be developed. For example,

we also formulated the Mixed Fourier-Chebyshev (MFC) method, which is much like the Mixed

Frequency-Time (MFT) method [2, 4] and is meant to be used for clocked analog circuits. A

derivation and a simple example of this method are presented in the Appendix A. A complete

evaluation of the anticipated advantages of this new method requires further research.
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Appendix A

The Mixed Fourier-Chebyshev Method

The steady-state analysis of clocked analog circuits is extremely computationally expensive be-

cause the period of the clock is typically orders of magnitude smaller than the time period of inter-

est. The Mixed Frequency-Time method (MFT) [2, 4] exploits the property of these circuits that

their waveforms are similar over the clock cycle intervals. The method thus efficiently computes a

solution by integrating over only a few selected cycles.

We developed the Mixed Fourier-Chebyshev method (MFC) as a fully spectral method similar

to MFT. The cycle segments of the waveforms are no longer obtained by time integration, but by

approximation with truncated Chebyshev series.

To understand the MFC it is helpful to review the Mixed Frequency-Time method (MFT) [2, 4].

Given a quasiperiodic response sampled atSpoints at rateTc, as shown in Figure A.1, the method

starts by pickingJ sample timesτ j out of the sample set. The sampled waveformv(τ j) is then

approximated by aJ-term Fourier series.

The MFT method represents coupling of the Fourier delay relationship:

v(τ+Tc) = D(Tc)v(τ) (A.1)

whereD(Tc)� Γ�1(Tc)Γ, with the time integration of theJ cycles[τ;τ+Tc]:

v(τ+Tc) = ξ(v(τ);τ;τ+Tc) (A.2)

The coupled equations are then solved forv(τ j):

ξ(v(τ);τ;τ+Tc)�D(Tc)v(τ) = 0 (A.3)

The Mixed Fourier-Chebyshev method features the same Fourier delay relationship as in the

MFT method:
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The cycle waveforms are no longer computed by time integration (transient simulation), but

with Chebyshev polynomials due to their non-periodicity. The method is thus fully spectral in

nature and achieves in theory exponential order convergence.

The approximation of theJ cycle waveformsvj(t) with Chebyshev series is:

vj(t)�
M�1

∑
k=0

Cj ;kTk(x)�
1
2
Cj ;0 (A.5)

wherex= µj(t) (linear map of[τ j ;τ j +Tc] onto[�1;1]).

The collocation grid is the standard “roots” interior(M � 1)-point Chebyshev grid:xl =

cos

�
π(l� 1

2)
M�1

�
Consider a simple example: an exponential resistor circuit shown in Figure A.2 and described

by the following equations

Cv̇+ 1
Rv� f (v�vin) = 0

f (v) = ev

vin = aisin(2π fit)+acsin(2π fct)

(A.6)

The Mixed Fourier-Chebyshev method for this problem generates a total ofMJ equations; the

first (M�1)J equations represent theJ spectral problems:
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while the lastJ equations represent the B.C.s via the Fourier delay relationship:

2
664

∑M�1
k=0 C1;kTk(1)�

1
2C1;0

...

∑M�1
k=0 CJ;kTk(1)�

1
2CJ;0

3
775 = D(Tc)

2
664

∑M�1
k=0 C1;kTk(�1)� 1

2C1;0
...

∑M�1
k=0 CJ;kTk(�1)� 1

2CJ;0

3
775 (A.8)

This system of equations is then solved for the Chebyshev coefficientsCj ;k with Newton’s

method. Note that the Chebyshev (upper) part of Jacobian is block-diagonal, while the Fourier

(lower) part is full.

Figure A.3 shows the resulting Fourier sample points and cycle waveforms from applying the
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Mixed Fourier-Chebyshev method to the exponential resistor circuit from Figure A.2. There were

J = 13 total cycles. Robust and fast Newton convergence was observed. The plot verifies the

validity of the MFC method by comparing the solution with the steady-state waveform computed

via SPICE’s transient analysis.
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