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Abstract

Harmonic balance (HB) methods are frequency-domain algorithms used for high accuracy computation of the
periodic steady-state of circuits. Matrix-implicit Krylov-subspace techniques have made it possible for these methods
to simulate large circuits more efficiently. However, the harmonic balance methods are not so efficient in computing
steady-state solutions of strongly nonlinear circuits with rapid transitions. While the time-domain shooting-Newton
methods can handle these problems, the low-order integration methods typically used with shooting-Newton methods
are inefficient when high solution accuracy is required.

We first examine possible enhancements to the standard state-of-the-art preconditioned matrix-implicit Krylov-
subspace HB method. We formulate the BDF time-domain preconditioners and show that they can be quite effective
for strongly nonlinear circuits, speeding up the HB runtimes by several times compared to using the frequency-domain
block-diagonal preconditioner. Also, an approximate Galerkin HB formulation is derived, yielding a small improve-
ment in accuracy over the standard pseudospectral HB formulation, and about a factor of 1.5 runtime speedup in runs
reaching identical solution error.

Next, we introduce and develop the Time-Mapped Harmonic Balance method (TMHB) as a fast Krylov-subspace
spectral method that overcomes the inefficiency of standard harmonic balance for circuits with rapid transitions.
TMHB features a non-uniform grid and a time-map function to resolve the sharp features in the signals. At the core of
the TMHB method is the notion of pseudo Fourier approximations. The rapid transitions in the solution waveforms are
well approximated with pseudo Fourier interpolants, whose building blocks are complex exponential basis functions
with smoothly varying frequencies. The TMHB features a matrix-implicit Krylov-subspace solution approach of same
complexity as the standard harmonic balance method. As the TMHB solution is computed in a pseudo domain, we
give a procedure for computing the real Fourier coefficients of the solution, and we also detail the construction of the
time-map function. The convergence properties of TMHB are analyzed and demonstrated on analytic waveforms.

The success of TMHB is critically dependent on the selection of a non-uniform grid. Two grid selection strategies,
direct and iterative, are introduced and studied. Both strategies are a priori schemes, and are designed to obey accuracy
and stability requirements. Practical issues associated with their use are also addressed.

Results of applying the TMHB method on several circuit examples demonstrate that the TMHB method achieves
up to five orders of magnitude improvement in accuracy compared to the standard harmonic balance method. The
solution error in TMHB decays exponentially faster than the standard HB method when the size of the Fourier basis
increases linearly. The TMHB method is also up to six times faster than the standard harmonic balance method in
reaching identical solution accuracy, and uses up to five times less computer memory. The TMHB runtime speedup
factor and storage savings favorably increase for stricter accuracy requirements, making TMHB well suited for high
accuracy simulations of large strongly nonlinear circuits with rapid transitions.
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Chapter 1
Introduction

The exploding demand for high performance wireless products has increased the need for more ef-
ficient, accurate, and robust simulation technologies for communication and other nonlinear analog
circuits (e.g. RF amplifiers, mixers, power supplies, dc-dc converters). Designers of such circuits

need to compute many different quantities of interest. Some of these quantities can be obtained
from a small-signal analysis; however, many nonlinear effects, such as harmonic and intermodula-
tion distortion or compression points can only be computed by obtaining circuit’s steady-state.

The conventional time-domain transient circuit simulation technique [46, 47] involves form-
ing the system of nonlinear ordinary differential equations (ODE) that describes the dynamics of
the circuit, and solving them numerically as an initial-value problem. The system of ODEs are
discretized using an integration method, and the resulting nonlinear algebraic system solved using
the Newton’s method. The sequence of linear problems at each Newton’s iteration is solved by
Gaussian elimination or perhaps an iterative linear solution algorithm.

When used in computing steady-state solutions of circuits, the described transient circuit sim-
ulation approach carries a high computational cost and is thus considered impractical. For many
lightly damped circuits, it takes many periods of the excitation input signal in order for the simu-
lated circuit to reach a periodic steady-state. It is also difficult to determine when the circuit has
reached a steady state. In addition, most simulated circuits are described by stiff systems of ODEs.
Since the simulation must follow the fast-varying signals for accuracy, many small time-steps are
required, resulting in long simulation intervals and extraordinary run-times.

If the steady-state is periodic, the steady-state analysis can be formulated as a boundary value
problem for the system of nonlinear ODEs that describes the circuit. The boundary conditions are
given by the periodicity requirement. The simulation technologies for periodic steady-state anal-
ysis of nonlinear circuits belong to two broad classes: time-domain, and spectral (or frequency-
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domain) methods. While these methods can be far more efficient than conventional transient anal-
ysis, they have many problems of their own.

Time-domain methods include the finite differences [4], and shooting-Newton methods [1,
4]. In the finite differences method, a finite-difference approximation is used to discretize the
nonlinear system of ODESs on a finite set of time-points, transforming it into a system of nonlinear
algebraic equations. These equations are then solved simultaneously with the boundary constraints
via Newton’s method. In the shooting-Newton method, the boundary-value problem is converted
into a sequence of initial-value problems. The method begins with a guess of the solution at the
beginning of the shooting interval. This guess is iteratively improved via the outer Newton loop to
yield the special initial condition that results in a steady-state.

The non-equally spaced time-points in the time-domain methods are selected based on local
error estimation and can easily follow the rapid transitions in the circuit’s steady-state waveform,
so these methods work well for highly nonlinear circuits. However, these methods achieve inferior
polynomial convergence proportional to the order of the integration method used. The limited
order of these methods limits their accuracy. In addition, finite-difference methods yield a large ill-
conditioned linear system. While shooting-Newton methods yield a much smaller linear system,
they require much storage, and are unable to handle distributed devices, quasi-periodic problems,
and problems with large periods.

Spectral methods [38, 40, 42, 72] represent the periodic circuit response as weighted finite
sums of global basis functions. The best known spectral method is the harmonic balance (HB)
method [4, 5], which uses a truncated Fourier basis to approximate the solutions. The system of
nonlinear ODEs is transformed into a nonlinear algebraic system in the frequency domain. This
system is solved for the spectral coefficients of the solution via Newton’s method. Note that the
harmonic balance method is equivalent to a finite difference method on a uniform grid of order
eqgual to the size of the Fourier basis.

The harmonic balance method achieves a superior accuracy compared to time-domain meth-
ods due to its exponential convergence nature. Its major drawback, however, is its inability to
handle highly nonlinear problems and large circuits. These problems require many terms in the
Fourier representation of the signals (i.e. many time-points in the uniform grid to capture the sharp
features in the waveforms), and yield a large ill-conditioned linear system, both of which present
complexity and storage problems for the harmonic balance method.

Both time-domain and spectral methods for steady-state circuit analysis have recently benefited
from using preconditioned iterative linear solvers for solving the linear problem at each Newton
step[7, 10, 11, 12, 15, 16]. In particular, the current state-of-the-art preconditioned matrix-implicit
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Krylov-subspace realization of the harmonic balance method [7, 10, 11, 15] has made this method
into a winning simulation strategy for large mildly-nonlinear circuits. However, strongly nonlin-
ear circuits, and other circuits with solutions exhibiting rapid transitions, still present a serious
bottleneck for spectral steady-state analysis techniques.

Given the clear theoretical advantage of spectral methods over time-domain methods with re-
spect to achieved solution accuracy, a pertinent question is whether it is possible to enhance the
existing harmonic balance method in some way, or develop new spectral methods in order to elim-
inate the aforementioned simulation bottleneck for strongly nonlinear and other circuits with rapid
transitions.

In this dissertation we embark on a quest for better, more powerful spectral methods for circuit
analysis. We start this journey with an overview of the current state-of-the-art preconditioned
matrix-implicit Krylov-subspace harmonic balance method in Chapter 2. A study focusing on
enhancements to this harmonic balance method is given in Chapter 3. In particular, we examine
the impact of various preconditioners, and the choice of iterative linear solver. We also analyze the
relative advantages of different formulations of the harmonic balance method.

Our quest continues with the introduction of the Time-Mapped Harmonic Balance method
(TMHB) in Chapter 4. We build TMHB as a fast Krylov subspace spectral method utilizing a
non-uniform grid to resolve the sharp features in the signals and therefore suited to efficiently
obtain highly accurate steady-state solutions of strongly nonlinear and other circuits with rapid
transitions. At the core of this new method is the grid selection strategy, and in Chapter 5 we
present and study several such strategies. Results from applying the TMHB method and different
grid selection strategies on several circuits are given in Chapter 6. Finally, in Chapter 7 we draw
conclusions and suggest some avenues for future work.
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Chapter 2
Harmonic Balance Method

Consider a circuit described witlh nonlinear differential equations:
q(v(t)) +i(v(t))+u(t)=0 (2.2)

wherev(t) € R N is the vector of node voltages(v(t)) € R N the vector of node charges (or fluxes),
i(v(t)) € RN the vector of resistive node currents, arft) € R N the vector of input sources.

Let the circuit be driven by a single periodic excitation input source with pérideinding the
periodic steady-state solution of this circuit consists of computind\tiséeady-state waveforms
v(t) on the solution domain € [0, T]. The periodic steady-state solution of (2.1) satisfies the
two-point constraint:

v(T) = v(0). (2.2)

Time-domain methods [1, 4] (finite differences, shooting-Newton method) compute the steady-
state by first discretizing the solution doma&)T]. The time-derivatives are approximated with
finite order integration formulas. For example, for Meh order BDF formula, the time derivative
of the charge function is

1 M
q(v(t)) =~ - > aja(v(ti-j)). (2.3)
h ]Z) J J
A Backward-Euler discretization of the circuit equations (2.1) therefore yields
%[Q(V(ti)) —a(v(ti-1))] +i(v(t)) +u(t) = 0. (2.4)

The finite difference methods then solve for the discrete solution sanm(flgsvhile the shooting-
Newton method solves the problem

$(v(0),0,T) —v(0) =0 (2.5)
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where¢ () is the state transition functiaf(v(0),0,T) = v(T) computed from time integration of
the circuit over one period.

Since the time-derivatives in the time-domain methods are local properties of a function (i.e.
are computed using values of the function at a handful of nearby time points), these methods are
exact for polynomials of low ordei. In other words, the solution is represented by a sequence
of low-order polynomials connected at the discrete time-painfhese methods can therefore at
best achieve polynomial convergence with global er@(is\).

Spectral methods [38, 40, 42, 72] approximate the solution waveforms as weighted finite sums
of global, orthogonal, and smooth basis functigy:

M-1
~ t 2.6
k;) ap(t) (2.6)

and solve for the spectral coefficierdg. If the boundary conditions are periodic, a truncated
Fourier basis is the obvious choice, as it automatically satisfies the boundary conditions:

(t+T z VeJZT[kf(t-l-T z VeJZT[kft (27)
k=—K k=—K

where X +1=M, f = % is the periodic excitation input source frequency, ®pdre the Fourier
coefficients. Note that the time-derivative of this approximation can be computed exactly:

k=K )
av(t) ~ Y j 2T F\feel KT (2.8)

Due to the global nature of the spectral method&,-aso thek-th Fourier coefficienVy decays
faster than any negative powerloff the solution wavefornv(t) is infinitely smooth. This rapid
decay of the coefficients means that the truncated Fourier approximation of the solution expanded
by a few additional terms (by slightly increasikg represents an exceedingly good approximation
of the solution. As a result, spectral methods have errors that decay faster than any negative power
of M, a property known as spectral accuracy, exponential convergence, or infinite-order accuracy.

The spectral methods will not achieve spectral accuracy if a discontinuity is present in the so-
lution waveforms or one of their derivatives. In the context of circuit simulation, the smoothness
of the waveforms will depend on the smoothness of the device models used for the circuit ele-
ments. If the device models apetimes continuously differentiable functions and periodic in all
its derivativesyy = O(k~P), and the spectral method’s errors will M ~P).
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2.1 Formulation

In the standard harmonic balance (HB) method [4, 5], the solution waveforms are approximated
with truncated Fourier series:

k=K _

vt)= 5 e (2.9)

k=—K
with K the number of harmonics considered in the truncation. The method solves for the Fourier
coefficientsvk. The approximation (2.9), in conjunction with thicircuit equations (2.1), results
in the residual function:

K ) K )
fvy= S j2nka<e12”k“+i( )3 vkelzﬂkft> +u(t) (2.10)
k=—K k=—K

whereQy are the Fourier coefficients ofv(t)) with v(t) the truncated Fourier series approxima-
« QeiZkft

The residual function (2.10) is to be minimized on the solution dorf@if]. This minimiza-

tions of the solution waveforms, i.e.(35__ ie/Z*™) = 5K

tion is typically carried out by enforcin§(V,ty) = 0 on a uniform grid of collocation (interpola-
tion) pointsty, € {t,to, ...,tm} wherety, = % andM = 2K + 1. This harmonic balance method

is more accurately referred to as pseudospectral (or collocation) harmonic balance.

Equation (2.10) is now rewritten in the frequency domain yieldiid nonlinear algebraic
equations

F(V)=Qrqr V) +Ti(r V) +Tru=0 (2.11)

whereV is the node-voltage spectruxh= [V_K71,...,V_K,N,V_K+1,1,...,...,VK,N]T (a vector of
Fourier coefficients) an@ is the diagonal frequency-domain differentiation matrix

[ jom(—K) fin

j2r(—K + 1) fl
0 j2r( ‘f‘).N | (2.12)

j2rK fl

wherely is the identity matrix of siz&\.

The matrice$ andl" —1 are DFT matrices that perform the conversions from time to frequency
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and vice-versa

v=rtv=1| :
V(tm)
) i (2.13)
ej2T[(—K)ft1|N o ejZT[KftllN
1=
el2n(=K)ftwp - el2mKit)

where eachv(t) € RN is a vector of node voltages. Since the grid of time-potnfs.,ty is
uniform, the DFT can be carried out@NMlogM) operations using the FFT.

In harmonic balance, the nonlinear circuit devices are evaluated in the time-domain. As it can
be seen from (2.11), the node-voltage spectxuim transformed into the time-domain, the time-
domain response of the nonlinear device functigmsandq(v) is calculated, and these waveforms
are then converted back into the frequency domain.

Note that this time-domain evaluation of the nonlinear devices, and the subsequent conversion
of the sampled nonlinear device response to the frequency domain can be a source of errors in
harmonic balance due to aliasing effects.

2.1.1 Time-Domain Formulation

The harmonic balance method can also be written in the time-domain by converting the system of
equations (2.11) from frequency to time:

f(vy=rtQrqwv)+i(v)+u=0 (2.14)

wherev is the unknown vector of node voltage samples [v(ty),V(t2),...,v(ty)]" andD =
—1Qr is the spectral differential operator in the time-domain:

0 a1ln  O2ln a_1ln
a_1ln 0 a1lN a_olyN
D= o . . (2.15)
o C1 INB 0 1IN a_1lN 0

The time-domain differentiation matri® is a block-dense, real, antisymmetric circulant matrix
with a zero diagonal, compared to the complex diagonal differentiation n@trbhe coefficients
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Spectral differentiation operator weights a (K=15,f=1).
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Figure 2.1: Coefficientsy, of the time-domain spectral differentiation operdbofor K = 15 and
f=1.

a are the weights of the spectral time-domain difference operator, and are illustrated in Figure 2.1
for K =15 andf = 1.
The time-domain formulation of the harmonic balance method is therefore

0 oily a2y ... a-iln q(v(t1)) i(v(ty)) u(ta)
o_1ln 0 oailyn a_oln q(v(t2)) N i(v(t2)) n u(tz) _ 0
| iy o2ly .. a0 q(v(tm)) i(v(tm)) u(tm)

(2.16)
and can be compared to any time-domain finite difference method (for example, a finite difference
method using Backward-Euler in non-uniform discretization of the don@gin)):

Bl | T g (v(t) u(t)
EETNEIN avite) | | i) || ) | g o
_ EETRRT | K% (v(tw)) utw)

wheret; =0, hy =T —ty, andhy, =t — t—1 for all otherm. The harmonic balance method
can, therefore, be viewed as a finite-difference method of dvjehe size of the Fourier basis.
Note that the spectral time-domain difference operBtes much denser than the corresponding
Backward-Euler difference operator (or any other operator coming from a low-order integration
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scheme).

2.2 Solution Strategy

The system ofNM nonlinear algebraic equations (2.11) are solved by applying the Newton’s
method. The application results in the iteration

J0 (V(|+1) _V(|)> =—Fv) (2.18)

wherel is the Newton iteration index. This iteration is a linear problem. [FtleNewton iteration
Jacobian is
IV =qorcVr-tyraglr-1 (2.19)

and is aNM x NM block-dense matrix.
The matrice€ andG are

_ - - _ . -
c=| © Le=| & (2.20)
L CM A L GM A
where the block€ny, = [Cn(r, )] andGm, = [G (T, S)] consist of the elements
Cn(r,s) = %\gm)), (2.21)
Gm(r,s) %\(Lm)) (2.22)

wherer, sare the node indices,s=1,2,...,N. The block-diagonal structure & andC is due to

the fact that the relatiorgfv) andi(v) are algebraic. The constituent sparse bldcksindGy, are

simply the circuit capacitance and conductance matrices evaluated at the collocation time-points
tm € {t1,t2,...,tm}. Their sparsity depends on the topology of the circuit.

For linear circuits allCy,, and Gy, blocks are independent of the voltages and are the same,
resulting in a iteration-invariant block-diagonal Jacobian. Newton’s method then yields the exact
solution in one iteration, and harmonic balance becomes equivalent to an AC (phasor) analysis.
Note that if the time-domain formulation of harmonic balance is used, the Jacobian will be dense
even for linear circuits because of the density of the spectral time-domain difference ojerator
that multiplies the block-diagon& matrix. In other words, while in the frequency domain the
block-diagonal structure of the frequency-domain HB Jacobian for linear circuits indicates that
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Guess at a solutiony®.
Initialize the search directiop® =r® =b—AX .
Set k=1.
do {
Compute the new search directiopt = Ap<1.
Orthogonalize , p* = p— "Gk jp’.

Choose ag in
X< = X1 g pk
to minimize||r¥|| = ||b— AX||.
If i < tol, return\ as the solution.

[IrO]

else Setk=k+1.

Figure 2.2: GMRES algorithm for solvingx = b.

there is no coupling between different frequencies, the time-domain HB Jacobian is dense because
there is coupling (i.e. nonzero sensitivity) among the waveform samfiigsat the collocation
grid timesty,.

For mildly-nonlinear circuits, the Jacobian is no longer block-diagonal. The off-diagonal
blocks represent the inter-frequency coupling whose strength (measured with the ratio of the norms
of the off-diagonal blocks to the diagonal blocks) will depend on the amount of nonlinearity in the
circuit.

2.2.1 Matrix-Implicit Krylov-Subspace Approach

The explicit formation and direct factorization of the block-dense harmonic balance Jadabian
computationally very expensiv(NM?3). A preconditioned iterative linear solution algorithm,
such as the Generalized Minimum Residual algorithm (GMRES) [54] (summarized in Figure 2.2),
can be used to reduce the factorization complexit@tblM?). The tolerance of the linear solver

can be loose, since the linear solver only computes the iterative solution updates for the outer
Newton loop, and is not used for confirming convergence. Therefore, obtaining an approximate
solution update by loosening the linear solver’s tolerance only affects the outer Newton method'’s
convergence rate, and not the accuracy of the final solution. In harmonic balance the GMRES
tolerance default is typically 1G.
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GMRES is a robust iterative algorithm for solving the linear problem. It guarantees conver-
gence in maximunm steps (where is the size of the linear system). It is much faster than relax-
ation, and only uses matrix-vector products. Furthermore, GMRES allows implicit matrices (while
direct factorization requires explicit matrices). The implicit nature of GMRES also allows usage
of operators such as the FFT. However, good preconditioners are essential for GMRES as GMRES
is slower than direct factorization if it takes alkteps to solve the linear system.

The diagonal blocks of the Jacobian work well as a standard preconditioner in many circuit
examples, particularly for mildly nonlinear circuits with weak off-diagonal blocks in the Jaco-
bian [11, 15]. This frequency-domain block-diagonal preconditioner is

[ jon(—K)fCo+ Go

1 2m(—K+1)fCo+ G
P — j2m( )fCo+Go | (2.23)

j21K fCo + Go

where the block€g = [Co(r,s)] andGg = [Go(r, )] contain the elements

_ 1 M

CO(I', S) = M Cm(r7 5)7 (224)
m=1

_ 1 M

GO(r7 S) = M Gm(r7 S) (225)
m=1

withr,s=12,...,N the node indicesCo and G simply represent matrices made up from the
DC (k = 0) Fourier coefficients of the circuit's capacitance and conductance matrices, with the
averaging in (2.24) and (2.25) done on node by node basis.

To demonstrate the effectiveness of this block diagonal preconditioning consider the opera-
tional transconductance (OTA) amplifier circuit shown in Figure 2.3. Table 2.1 illustrates that the
number of GMRES iterations is greatly reduced by the block-diagonal preconditioning. In addi-
tion, Table 2.1 indicates that the number of GMRES iterations increases with number of harmonics
without preconditioning.

The GMRES linear solver requires forming the matrix-vector product

Jp = (Qrc+reG)r—1pk (2.26)

where p¥ is the search direction in theth GMRES iteration. This matrix-vector product can

be formed implicitly by a sequential evaluation using 3 FFTs, reducing the complexity of the har-
monic balance method to the complexity of the time-frequency conversions, wid¢N idlogM)

for the FFTs. To illustrate this again consider the operational transconductance (OTA) amplifier
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Figure 2.3: OTA Amplifier (56 MOSFETS).

K || IL (GMRES)| I. (PGMRES)
10 139 41
14 155 48
18 159 49
20 173 47
32 200 41

Table 2.1: Effectiveness of block-diagonal preconditioning in harmonic balance analysis of the
OTA amplifier. K is the number of harmonics, amdthe number of linear iterations in a typical
Newton iteration. PGMRES refers to a GMRES method with block-diagonal preconditioning.

circuit shown in Figure 2.3. The advantages of the matrix-implicit approaches are demonstrated
in Figure 2.4, which shows the computational cost vs. the number of harmonics for the different
factorization approaches in the harmonic balance method.

The extrapolated slopes (straight dashed lines) in Figure 2.4 correspond to the eiaribat
O(MP) observed computational complexity versus the number of harminiebereM = 2K + 1.
For the Gaussian factorization approfich 3.1, for the preconditioned GMRES schefie- 1.8,
and for the matrix-implicit preconditioned GMRES approfich 1.1, i.e. slightly faster than linear
as expected from akl logM dependence.

The FFT-based, matrix-implicit, GMRES preconditioned pseudospectral harmonic balance
method [7, 10, 11, 15] is the current state-of-the art steady-state circuit analysis technique. It
is commonly used to analyze circuits with hundreds of devices. A number of other less effective
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Figure 2.4: The superiority of the matrix-implicit preconditioned approach in harmonic balance
analysis of the OTA amplifier.

modifications to improve the accuracy [3], the convergence [8, 17] and the computational effi-
ciency [9] of the harmonic balance method have also been investigated. This method, however, is
still not universally successful when applied to different circuits [11, 15]. In particular, highly non-
linear circuits, as well as other circuits with rapid transitions still cause problems. These circuits
exhibit waveforms with sharp features which require many harmonics, and many linear (GMRES)
and nonlinear (Newton) iterations in order for the method to converge as well as to obtain a rea-

sonable accuracy. In the next Chapter, we study possible ways to enhance the harmonic balance
method in order to overcome these limitations.
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Chapter 3
Enhancements to Harmonic Balance

In this Chapter we study possible enhancements to the standard harmonic balance (HB) method
reviewed in Chapter 2. We will first examine the impact of the choice of different preconditioners
for the GMRES iterative linear solver in the matrix-implicit Krylov-subspace HB method. We will
also derive the approximate Galerkin formulation of the harmonic balance method and compare
its performance to the standard pseudospectral formulation. At the end, we add a few remarks
concerning the choice of an iterative linear solver in HB.

3.1 Time-Domain Preconditioners

If a linear system is solved by an iterative method such as GMRES, the convergence rate of the
solver depends on the spectral properties of the coefficient matrix. The idea of preconditioning
is to transform the original linear system into one that is equivalent (i.e. has the same solution),
but which has more favorable spectral properties. The preconditioner is a matrix that performs
this transformation. One way to design a preconditioner is to construct a matrix that somehow
approximates the coefficient matrix, and is easy to invert.
For example, in the frequency-domain harmonic balance formulatiotttheewton iteration

linear problem

JNav® = —Fv) (3.1)

whereAvV () = v+D _v() is transformed into
JPIPAV = —F (V) (3.2)

using a right-preconditioning approach. The Newton iteration indices were dropped for the sake
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of clarity. SettingPAV = U, we then first solve the system
JP U =-F(Vv) (3.3)

with GMRES. Since the preconditionBrwas chosen to be easily invertible, the GMRES matrix-
vector productdP~1pX can be computed efficiently. To further speed up the matrix-vector product,
we can invert the preconditioner once, and store it in its LU decomposed form. If the preconditioner
is well designed, the linear system (3.3) will have more favorable spectral properties than the
original linear system (3.1), and GMRES will be able to converge (or reach the desired solution
tolerance) in significantly fewer iterations. At the end, we obtain the actual soltdnom:

AV =P 1U. (3.4)

The advantages of the right style of preconditioning (versus left) is that right preconditioning
does not change the right hand sidE (V) of the system, and therefore the RHS of the original
linear problem, transformed linear problem, and the outer Newton loop stay the same. In contrast,
a left preconditioning GMRES will in essence solve the original linear problem to various degrees
of accuracy in each Newton iteration due to the scaling of the RHS of the original linear system by
P~1in the transformed linear problem. In practice, left preconditioning has shown to cause costly
increases in both the numbers of GMRES and Newton iterations.

In the frequency-domain formulation of harmonic balance, the diagonal blocks of the frequency-
domain Jacobian

[ jon(—K)fCo+ Go

i2m(—K + 1) fCy + G
Pr — j2n(—K +1)fCo + Go | (3.5)

j21K fCo + Go

are commonly used as a right preconditioner. This preconditioner can be easily and efficiently
formed and inverted due to its block-diagonal structure.

The block-diagonal preconditioner (3.5) works well for most circuits, but not as well for highly
nonlinear circuits [11, 15]. In Chapter 2 we mentioned that the off-diagonal blocks in the frequency
domain HB Jacobian represent the inter-frequency coupling; their strength depends on the degree
of nonlinearity of the circuit. The block-diagonal preconditioner does not include these blocks,
which is why this preconditioner is not as efficient for highly nonlinear circuits.

Time-domain steady-state methods, such as finite-differences, are well-suited for nonlinear
circuits. Since the harmonic balance method can be viewed as a time-domain method, we will use
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this point of view to design preconditioners that we hope to be more efficient in simulating highly
nonlinear circuits. Note that centered-difference preconditioning in spectral methods is considered
in [42], upwind finite-difference preconditioning in [80], and finite element preconditioning in
[69].

The time-domain formulation of the harmonic balance method given in Section 2.1 showed
that the harmonic balance method is essentially a time-domain method of\draenich is the
size of the Fourier basis used in the truncated series approximation of the solution waveforms. If
the time-domain harmonic balance formulation

f(v)=r-tQrqv)+i(v)+u=0 (3.6)
is solved by the Newton’s method, the linear problem solved adtthéNewton iteration is
I = — () (3.7)
whereAv() = v(I+1) _y(D),
The time-domain Jacobian at théh Newton iteration is
W= rarch +6M =pch +c0 (3.8)
and it is a real block-dense matrix whose structure is
[ Gr C a.Cs a_1Cw |
3= a_1C; ?2 a.1C3 a_>Cwu (3.9)
-G G o 1Cv-1 Gw |

where the coefficients are the weights of the spectral differentiation operator in the time-domain.

We would like to design a preconditioner that will in some way approximate the time-domain
Jacobiany, but will have an easily invertible block structure. Since the time-domain formulation of
the harmonic balance method is a finite-difference method in disguise, one idea is use the Jacobian
matrix from a lower-order finite difference scheme on a uniform grid as a preconditioner. For
example, the Backward-Euler (or BDF-1) finite difference Jacobian on a uniform grid is

C C
& e

JgE = (3.10)
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Similarly, the uniform grid BDF-2 finite-difference Jacobian is

M 3¢ Cv-1 _Cwm i
27 +G1 R _
2C1 3C2 Cwu
5 F TG h
c 2c, 3
o —F F+Gs
JBDF2 = . (3.11)
Cuv—2 2Cv-1  3Xm
L - ——h ntGCm |

and so on for the higher-order BDF integration schemes. In general, thenBDie-domain
preconditioner will haven+ 1 bands of blocks. For a more efficient factorization, the cluster of
blocks in the upper-right corner of the finite-difference Jacobians is ignored. For example, the
BDF-2 preconditioneP, ; is:

- i
TG
2C 3C
-F A tG2
C 2C, 3C3
G = X
2h h 2h
R2= . y N : (3.12)
Cm— 2Cu— 3G
i o~ h 2 TCOm

3.1.1 Complexity Analysis of Preconditioning Approaches

The complexity of the preconditioned matrix-implicit Krylov-subspace harmonic balance is limited
by the FFT toO(NMlogM). It is therefore crucial to investigate the number of required FFTs in
each GMRES iteration for different combinations of preconditioning approaches and harmonic
balance domain formulations.
For the time-domain HB formulation, a time-domain preconditidhdransforms the matrix-
vector product into
P 1= (rtarc+G)r 1pk (3.13)

where pX is the time-domain search direction in tkéh GMRES iteration. The above matrix-
vector product requires only 2 FFTs. On the other hand, the matrix-vector product in the frequency-
domain formulation using the frequency-domain block-diagonal preconditinisr

JP 1= (Qrc+rG)r—1tp;1p (3.14)
and requires 3 FFTs.
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If we now reverse the situation, namely, use the frequency-domain preconditioner in the time-
domain HB formulation, the matrix-vector product becomes

XMt irpk = (r-tarc+G)r-1p, rp (3.15)

and now requires 4 FFTs. In comparison, using a time-domain preconditioner in the frequency
domain HB formulation, results in the matrix-vector product

IR Ir1pk = (Qrec+re) rirpir1pf = (Qrec+re)pir1px (3.16)

which again requires 3 FFTs. While we can conclude that it is best to have both time and frequency
HB formulations implemented, if we have to choose one formulation, it would be the frequency-
domain one, particularly since the frequency-domain preconditioner works well for most circuits
and should therefore be the default choice of a preconditioner.

3.1.2 Time-Domain Preconditioning Results

In order to investigate the potential merits of the BDF preconditioners, we used the standard, right
preconditioned GMRES matrix-implicit HB method to simulate two highly nonlinear circuits: a
diode rectifier, and a DC-DC converter. Statistics for these two circuits are given in Table 6.1
(Chapter 6). The block-diagonal frequency domain preconditioner is not effective for these two
circuits.

The standard HB method was implemented in Mica, Motorola’s SPICE-like circuit simulator,
in the computer language C [55]. All computer runs were done on Sun Ultra-2 350MHz UNIX
workstations.

Three different preconditioners were used in the HB GMRES solver: the block-diagonal fre-
guency domain preconditioner (FREQ), and the BDF-1 and BDF-2 time-domain preconditioners.
The HB method was formulated in the frequency domain. The DC (equilibrdum0) solution
of the circuits was used as an initial Newton guess.

Figure 3.1 summarizes the influence of the three preconditioners on the Newton and GMRES
solvers in HB simulation of the diode rectifier circuit. On the left, plot (A) shows the total number
of Newton iterationdy for each HB run at increasing number of harmorics While FREQ
induces increases in the number of Newton iterations, the BDF preconditioners keep this number
independent oK. In plot (B), the average number of GMRES iterations per NewtonIstdR is
plotted against the number of harmonkKgwherel, is the total number of GMRES iterations).

The FREQ preconditioner is again visibly ineffective and causes an increase in the average number
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Diode Rectifier: preconditioning (A) B)
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Figure 3.1: Diode Rectifier: (A) Newton iterations; (B) average GMRES iterations for different
preconditioners.

of linear iterations, while the time-domain BDF preconditioners are quite effective and keep the
both the average and the total number of linear iterations independknt of

Figure 3.2 shows the total CPU time performance for the preconditioned HB approaches in
simulating the diode rectifier. The performance of BDF-1 and BDF-2 is almost identical, and
both perform increasingly better than FREQ when a growing number of harmonics are considered.
For example, aK = 1000, HB runs using BDF-1 and BDF-2 are twice faster than the FREQ
preconditioner.

The HB simulations of the second circuit, the DC-DC converter, are summarized in Figures 3.3
and 3.4. While the number of Newton iterations are similar, and increase for all preconditioners, the
BDF preconditioners once again maintain the average number of GMRES iterations per Newton
step independent of the number of harmor{csThis results in considerable total HB CPU time
speedups for largké: for example, ak = 1000, the HB run using the BDF-2 preconditioner is 3.7
times faster than the HB run using the FREQ preconditioner.

We can conclude that the BDF preconditioners can be quite effective for highly nonlinear cir-
cuits. They keep the average number of GMRES iterations bounded, and can have a similar effect
on the number of Newton iterations as well. Factoring the BDF preconditioners is more expensive
than factoring the block-diagonal FREQ preconditioner since they contain off-diagonal blocks.
However, due to the independence of the average number of GMRES iterations from the number
of harmonicsK in the case of BDF preconditioners, a performance speedup is present for larger
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Figure 3.2: Diode Rectifier: CPU time performance of different preconditioners.

K. The HB method using BDF preconditioners is shown to be several times faster than the HB
method using the FREQ preconditioner, particularly in the runs with large number of harmonics
K; in fact, the speedup factors increase with increasing number of harmonics
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Figure 3.3: DC-DC Converter: (A) Newton iterations; (B) average GMRES iterations for different
preconditioners.

DC-DC Converter: preconditioning

Figure 3.4: DC-DC Converter: CPU time performance of different preconditioners.
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3.2 Approximate Galerkin Harmonic Balance

In this section we introduce a different formulation of the harmonic balance method. Recall from
Chapter 2 that in the harmonic balance the solution waveforms are approximated with truncated
Fourier series

Z Vil 2kt (3.17)
k=—K

This approximation, in conjunction with th circuit equation
q(v(t)) +i(v(t))+u(t)=0 (3.18)

results in the residual function

f(V,1) = z jork f Qe It ( > vkelzﬂkft> +u(t) (3.19)
k=—K k="K
whereQy are the Fourier coefficients ofv(t)) with v(t) the truncated Fourier series approxima-
tions of the solution waveforms, i.e(3__ Vel ?t) = 5K, QeelZft,

The residual function (3.19) is to be minimized on the solution don@ifi|. In the collo-
cation or pseudospectral harmonic balance method, this minimization is carried out by enforc-
ing f(V,tm) = 0 on a uniform grid of collocation (interpolation) poirtts € {t1,t2,...,tm} where
tm= "I andM = 2K + 1.

Instead of using a collocation method, we can minimize the norm of the redigvidl using
a mean weighted residual method

%/OT F(V,t)e (t)dt = 0 (3.20)

using a set oM suitable test functions (t). For example, if the set of test functionsigt) = t',
the moment method is generated. oif(t) = &(t — t;) with t; the same time points forming the
collocation grid, the collocation (pseudospectral) method is generated.

When the sets of basis and test functions coincide, the mean weighted residual method becomes
the Galerkin (spectral) method. The Galerkin method is theoretically better than the collocation
(pseudospectral) method. Galerkin’s method reduces the global error across the continuum of the
solution domain0, T] by using an integral norm of the residual. In comparison, the collocation
method simply ensures that the residual vanishes at a discrete collocating set of points distributed
uniformly across the solution domain.

Both the Galerkin and the collocation method use a finite set of trigonometric polynomials (i.e.
the truncated Fourier basis) to approximate the solution waveforms. As it will be shown in the
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next section, the set of Fourier coefficients for the Galerkin method are the truncated set of the
exact Fourier coefficients of the infinite Fourier series of the solution. The computed Galerkin
approximations of the solutions are thus also known as Fourier truncations.

In comparison, the collocation method uses a different set of Fourier coefficients. The col-
location Fourier coefficients are such that the approximate collocation solution interpolates (i.e.
exactly passes through) the set of collocation points. The computed collocation approximations of
the solutions are thus known as Fourier interpolations.

The computation of the exact Fourier coefficients in the Galerkin method requires an exact
evaluation of integrals, while the DFT (or FFT) can be used to compute the Fourier coefficients
in the collocation method. This explains the popularity of the collocation method for complicated
nonlinear problems.

3.2.1 Derivation

Given the theoretical advantages of the Galerkin method over collocation, we now proceed to
derive the Galerkin harmonic balance method. We choose the set of test functions to be the same
set of M = 2K + 1 Fourier basis functions used in approximating the solution waveforms, i.e.
w (t) = e?twith | € [-K,—K 4 1,...,K]. The Fourier basis functions are periodic and mutually
orthogonal, which can results in simplified evaluation of the integral in (3.20).

Applying the Galerkin method to minimize the harmonic balance residual function (3.19)
yields a system oM nonlinear equations

1 rT .
A(V)== - f(V,t)e 12MMtdt =0 (3.21)
wherel € [-K,—K +1,...,K]. Expanding forf (V,t), the system becomes
T _ T _ T .
EV) =2 [ qu)ei@ftdir = [ iv))e @it L [ ute 2t gi—0  (3.22)
T Ji=o T Ji=o T Ji=o

wherev(t) is the truncated Fourier series approximation in (3.17).
The Galerkin system of equations (3.22) is solved by applying the Newton’s method. The

Jacobian for the Newton iteration is

o (V) oR(V
O

whereFy = [Fq K, Fg—Kk+1,---, Fqk]T andFi = [F _k,F —k 11, ..., Fix]" are the terms in the Galerkin
equations (3.22) corresponding to the integrals of the node charges time dewyatiead cur-

(3.23)

rentsi(v) respectively, i.e.
1 rT

Far(V) = |_ dvm)e " dt, (3.24)
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1 T

== [ i(v(t))e Mgy, (3.25)
T Ji=o

Fi(V)

For the sake of clarity, we will focus on the resistive part of the Jacakjahe derivation of the
capacitive parfy is similar.
Using the chain rule, the resistive part of the Jacoljas

_OR(V) _ 9R(V) av

A VAR VAN VA (3.26)
Substituting (3.25) into (3.26) we obtain
e 12n(—K)ft
T - o 12m(—K+1)ft
JiZE/ gt ) N R B ¥ 7)
T t=0 aV oV_g 0V_K+1 o0V
e 12n(K)ft

Sincev(t) is approximated by the truncated Fourier series (3.17), the tg)ﬁkms elZilft and we
arrive at

o i2mo)ft izt gj2aK)ft
1T ditvit o j2n-1)ft P20t g-j2mK-1)ft
Ji:—/ a2 (V1) (3.28)
TJi=o 0V : : : :
e i2M—2K)ft g-j2m(—2K4Dft . oj2mO)ft

The resistive part of the Jacobidnis therefore a matrix whose entries are Fourier transform
integrals. Each of these integrals picks out the exact Fourier coeﬁi@i@rﬁsw i.e.

Gy GI; -+ GIx
G G ... G
3= 1 0 72.K+1 (3.29)
| Gx Gx-1 - Go

In practice, the Fourier transform integrals will be evaluated by a numerical integration rule, and the
Gf; blocks will only be approximations to the exact Fourier coefficients. Itis particularly interesting

to see what happens if the trapezoidal rule is used for this evaluation. Since the integrands are
periodic, the trapezoidal rule is equivalent to Gaussian quadrature and is exponentially accurate. If
the grid used in the trapezoidal rule evaluation is the s&f ainiformly spaced time points, €

t1,to,...,tm With t, = (mgﬂl)T, the trapezoidal rule is equivalent to Bhpoint DFT. The resistive
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part of the Jacobian then becomes a circulant matrix

[ G G - Gy ]
0 ? | =rert (3.30)

G, G, -+ Gy
and is identical to the resistive part of the Jacohiam the pseudospectral harmonic balance
formulation. A similar result can be obtained for the capacitive fpof the Jacobian.

The Galerkin harmonic balance method is, therefore, equivalent to the pseudospectral harmonic
balance when the Galerkin integrals are evaluated using a trapezoidal rule on a uniform grid of
same sizéM as the size of the Fourier basis.

In order to achieve a better approximation to the resistive part of the actual Galerkin harmonic
balance Jacobian (3.29) (which contains exact Fourier coefficients), as well as to the capacitive
part, the number of uniformly spaced points in the trapezoidal rule can be increddge-to2K +
1 (whereo > 1). This approximate Galerkin Jacobian can be computed from the pseudospectral
harmonic balance Jacobian on the uniform collocation griMgfpoints : it is the centraNM x
NM part of this pseudospectral HB Jacobian. This approximate Galerkin Jacobian will converge
to the actual Galerkin Jacobian in the limgit— co.

When the pseudospectral harmonic balance uses the Megpoint uniform collocation grid
and the oversampled DFT transform matri€esndl ~ of sizeNMg, the method is an oversam-
pled pseudospectral HB (i.e. a pseudospectral HB with oversampling transforms).

In summary, the middi&lM x NM part of the oversampled pseudospectral Jacobian approxi-
mates the actual Galerkin Jacobian increasingly better for increasing transform lengths. In other
words, the oversampled pseudospectral HB represents an approximate Galerkin HB method (AGHB).

As an illustration, consider the cake= 1 (i.e. M = 3). Wheno = 1 (no oversampling), the
resistive part of the pseudospectral Jacobian is

éo G_1 él
‘Ji(C) =| G G G- (3.31)
Gi1 G G

We now introduce oversampling with= 2. The collocation grid is nowlg = 5, and the resistive
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part of the oversampled pseudospectral Jacobian is

G G.1 G, G &
G G G, 6, G
J=| G & & G 6,|. (3.32)
é_z éz él éo G_1
|G G, G G G

Its middle 3x 3 part represents the resistive part of the approximate Galerkin Jacobian:

~ ~

Gy G_1 G,
IO=1 & & 6.4 |. (3.33)
G G Go

Note the differences between the lower-Igift3) and upper-right3,1) corner terms in (3.33) and
(3.31).

Given the theoretical advantages of the Galerkin method over collocation, we may suspect
some sort of accuracy enhancements by using the oversampling transforms in the pseudospectral
HB method. Consider the computationfq*f with the Galerkin (spectral) method

Gf = % OT d('j—(vv)eim”dt (3.34)
with the uniformMg-point trapezoidal rule (or equivalently, with an oversampled pseudospectral
method with oversampling factar). Define

g°(t) = di(g\(,t ) (3.35)

and let its exact infinite Fourier representation be given by

gt =5 Ge™" (3.36)

k:—OO

Let the approximate pseudospectral representation with truncated Fourier series be given by

K .
gt =y G (3.37)
kK

Using the trigonometric interpolation theorem [43], it can be shown@hatiffers from C~5§ by
a perturbing aliasing sum:

G=Gi+ Y  Giim (3.38)
j=—, j#0
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whereMg = 02K + 1.

The presence of the aliasing term in the collocation Fourier coefficients indicates that the error
for the collocation method will always be greater that the error for the Galerkin method. On
the other hand, it can be shown that the aliasing term is asymptotically of the same order as the
truncation error [67, 39], which implies that the errors for the Galerkin and collocation methods
will decay at the same rate in the asymptotic limit [42].

To illustrate the perturbing aliasing terms in the approximate Fourier coeffidgnt®ok at
the casé&K = 1, and no oversampling (i.e.= 1). The approximate Fourier coefficieBp is

Go=G5+ (G 1 +GE+G 4, +Gp). (3.39)

Note the presence of thi?}zf*_1 coefficient in the aliasing sum which is particularly worrisome, since
typically |G* | > |G3|.
If the oversampling is set to = 2, the same approximate Fourier coefficient is

Go=Gh+ (G 3+ G+ G g+ Giyp). (3.40)

Note how all perturbing coefficients here now have indices with absolute values greater than 2. In
general the magnitudes of the perturbing coefficients will be smaller|€ﬁ§n

3.2.2 Approximate Galerkin Harmonic Balance Results

In this section we compare the performance of the oversampled pseudospectral HB (i.e. ap-
proximate Galerkin harmonic balance, or AGHB) with the pseudospectral HB formulation (i.e.
PSHB) on the two nonlinear circuits (the diode rectifier and the DC-DC converter) used in the
time-domain preconditioning experiments. A right preconditioned matrix-implicit GMRES linear
solver was used in both formulations, with BDF-2 as a preconditioner. The initial Newton guess
was a shooting-Newton solution computed with loose tolerance.

The HB methods were implemented in Mica, Motorola’s SPICE-like circuit simulator, in the
computer language C [55]. All computer runs were done on Sun Ultra-2 350MHz UNIX worksta-
tions.

Figures 3.5 and 3.6 show the norm of the frequency-domain pointwise erggrin a solution
waveform for the two circuits simulated with PSHB and AGHB with increasing oversamgling
The frequency-domain pointwise er@yis computed as:

ef(kf) = [Vii =W (3.41)

whereV, is thek-th Fourier coefficient of the exact solution, avidis thek-th Fourier coefficient
of the solution computed by PSHB or AGHB. Since no exact solution for these circuits exists, a
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Diode rectifier: approx Galerkin (A)
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Figure 3.5: Diode Rectifier, AGHR., norm of the frequency-domain pointwise erroriny
versus: (A) number of harmoni¢§, (B) oversampling factoo.

PSHB solution computed with a very large number of harmorkcs-(5000) was used for this
purpose. Note that the pointsat= 1 in the plots correspond to the PSHB solutions.

While the Galerkin formulation is theoretically better than the collocation (pseudospectral)
formulation, the plots in Figures 3.5 and 3.6 show only a small improvement in accuracy when
AGHB is used: up to 7.5dB for thig;y waveform in the diode rectifier, and up to 12dB for the
DC-DC converter'sicoiL. The reduction in the error initially increases with an increasing number
of harmonic¥K, but saturates after reaching its peak value. The plots show that only minor 10% to
20% oversampling is needed to reach the peak error reduction aKeddfis is a good outcome
since the computational cost of AGHB is limited by the length of the FFTs, i.e. its complexity
is O(NMglogMg). If a larger value ofo was required to get the error reduction, the benefits of
AGHB would not have been worth the extra cost.

Note that if a direct factorization is used for the linear problems in both AGHB and PSHB, the
oversampling in AGHB does not introduce an additional computational cost as the complexity is
entirely dominated by the expense of the factorization.

Since AGHB is more accurate than the PSHB, to ensure a fair comparison of the two formu-
lations we compare total CPU times needed for the two formulations to reach identical solution
accuracy. Figure 3.7 shows these times for the DC-DC Converter, with AGHB using 20% over-
sampling ¢ = 1.2). The plot indicates that AGHB is on average 1.5 times faster than the PSHB
in computing the solution to same accuracy. The efficiency savings come primarily from the fact
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DC—-DC Converter: approx Galerkin (A) (B8)
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Figure 3.6: DC-DC Converter, AGHB., norm of the frequency-domain pointwise erronvgo,.
versus: (A) number of harmoni¢§, (B) oversampling factoo.

that AGHB needs to use fewer harmonics than PSHB to reduce the error to the same amount. This
reduction in the size of the problem easily offsets the cost increase due to the use of oversampling
transforms in AGHB.

In order to examine the possible effects of the AGHB to the GMRES linear solver and the
Newton nonlinear solver, Figures 3.8 and 3.9 plot the average GMRES iterations per Newton step
(computed as the ratio of the total GMRES iteratidndo the number of Newton iterations),
as well as the Newton iterations as functions of the oversampling factdihe points ab = 1
correspond to PSHB. While the AGHB formulation does not seem to have any effect on the Newton
solver, ago is increased, the average number of GMRES iterations drops by a third. The Galerkin
formulation, therefore, generates a better conditioned linear system. Unfortunately, we are unable
to take advantage of this property of AGHB in practice since the increased cost of AGHB at larger
o completely overwhelms the savings generated by the reduction in the GMRES iterations.

We can conclude the approximate Galerkin formulation of the HB method does indeed bring
some improvements to the standard pseudospectral HB method. The achieved increase in accuracy
is small, and does not improve with increasing number of harmdhies predicted by the theory,
the Galerkin and collocation spectral methods have errors that will decay at the same rate in the
asymptotic limit [42]). Nevertheless, given that only a small 20% oversampling in AGHB yieds
the peak increases in accuracy, the approach is cost effective for matrix-implicit HB implementa-
tions. The simulated examples show that the maximal observed 12dB improvement in accuracy
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Figure 3.7: DC-DC Converter, total CPU times for PSHB and AGHB to reach a specific solution
accuracy iny).

is equivalent to a simulation run time speedup of 1.5 comparing AGHB and PSHB runs reaching
identical solution error.

47



Diode rectifier: approx Galerkin (A) [(3))
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Figure 3.8: Diode Rectifier, AGHB: (A) average GMRES iterations; (B) Newton iterations, both
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3.3 Selection of Iterative Linear Solver

There are many other iterative linear solver methods besides GMRES, and many more are being de-
veloped. It is therefore worthwhile to examine what are the relative advantages and disadvantages
of GMRES versus some other iterative methods that can be used in implementations of harmonic
balance. One such alternate method is the Quasi Minimum Residual (QMR) algorithm [54].

The GMRES method holds the theoretical advantage over QMR in achieving the largest resid-
ual reduction in each iteration. In addition, GMRES requires only one matrix-vector product
computation, versus two for the QMR. The Krylov subspace formed by the GMRES method is
orthogonal, while QMR uses a bi-orthogonal Krylov subspace. GMRES is easier to code and is
more robust in practice.

Unfortunately, GMRES requires storage of the entire Krylov subspace. This can become pro-
hibitive for large problems for which the preconditioning is not effective and GMRES takes many
iterations to reach the desired accuracy in solving the linear system. In addition, GMRES performs
full back-orthogonalization, and therefore the number of inner products grows with the iteration
number.

In comparison, QMR only requires storage of the last two vectors in the Krylov subspace since
it only back-orthogonalizes for two steps. Note however that if the matrix-vector product is compu-
tationally expensive (as it is in the harmonic balance case due to the FFTs and the preconditioner),
the lower back-orthogonalization cost of the QMR is irrelevant.

A transpose-free variant of QMR, TFQMR [54] requires only one matrix-vector multiplication,
and is therefore more efficient than QMR. Similarly, there are variants of the GMRES algorithm
that address the memory problems with this linear solver. The restarted GMRES algorithm restarts
the GMRES algorithm after some maximum number of iterations. The quasi GMRES variants
(QGMRES and DQGMRES) [54] use a truncated back-orthogonalization.

Nevertheless, given its proven reliability record in practice, we recommend GMRES as a de-
fault linear solver for harmonic balance. QMR, TFQMR, and the quasi variants of GMRES are not
as robust, and are therefore only prefered in situations when ineffective preconditioning in GMRES
in a large problem results in large number of iterations and memory storage issues. It is therefore
recommended to have at least one of the QMR methods (preferably TFQMR) as a second choice
in the implementation of harmonic balance.
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Chapter 4
Time-Mapped Harmonic Balance

One of the main advantages of the shooting-Newton method for steady-state analysis of circuits
is that it is a time-domain method which can select time-points based on local error estimation.
Shooting-Newton methods can, therefore, easily handle circuits whose solution waveforms un-
dergo rapid transitions, such as many highly nonlinear circuits, by increasing the time-point grid

resolution to resolve the sharp waveform features.

The main advantage of the harmonic balance (HB) method is its spectral accuracy. The solution
waveforms converge exponentially fast with increasing harmonics in the harmonic balance method,
in contrast to the limited order polynomial convergence for the shooting-Newton and other time-
domain methods. Unfortunately, the effective time-points used by the harmonic balance method
are uniformly spaced, and this forces the method to use a large number of harmonics when the
circuit solution contains very rapid transitions.

In this Chapter we introduce the Time-Mapped Harmonic Balance (TMHB) method. The main
idea behind this new method is to utilize a non-uniform time-point grid with increased resolution in
the fast varying regions of the solution waveforms, while retaining all of the advantages of the state-
of-the-art preconditioned matrix-implicit Krylov-subspace harmonic balance method (referred to
in the remaining text as the standard HB method). Since the non-uniform time-point grid is better
adapted to fast-varying solution waveforms than a uniform grid with same number of time-points,
one would hope and expect better accuracy in the computed solutions from the TMHB method
compared to the standard HB method.

A non-uniform collocation grid in HB is certainly possible if the time-frequency conversions
are done by the Almost Periodic Fourier Transform (APFT) [4]. Recall, however, that the compu-
tational complexity of the standard HB method is limited by the complexity of the time-frequency
conversion. By replacing the FFT with the APFT the run-times would increase@®logM)
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to O(NM?), which would definitely be an unacceptable outcome.

In the TMHB method, we keep the FFT and yet are able to use a non-uniform grid in the TMHB
by mapping (transforming) the circuit problem and solving it in a new, pseudo-time domain. In
this new domain, the sharp features in circuit's waveforms flatten out to certain extent, and the
rapid transitions are less rapid. We are thus able to compute the solutions to a higher accuracy
using a uniform time-point grid in this pseudo-time domain. As we know how this uniform grid
is related to the non-uniform grid in real time, the solution is then transformed back into the real
time domain.

At the core of the TMHB method is the non-uniform grid selection strategy. The success of the
TMHB transformation of the circuit problem is critically dependent on how well these non-uniform
time-points are placed. The grid selection strategy is a topic of Chapter 5.

In this Chapter we derive the Time-Mapped Harmonic Balance algorithm, give a Krylov-
subspace based solution technique and describe the post-processing procedure used to obtain the
actual Fourier coefficients from the TMHB solution. We also describe the procedure used to con-
struct the time-map function which relates the non-uniform grid to a uniform pseudo-time grid.
We study the error convergence properties of the TMHB method, and demonstrate these properties
on analytic waveforms.

In [68] the authors use coefficient smoothing techniques for fast varying solutions in fluid
dynamics. Spectral methods using mapping (also known as transformation, change-of-coordinate,
or pseudo) techniques have been applied to solving explicit scalar (or at best small systems of) first
or second order ODEs and PDEs in a number of references, mostly dealing with problems in fluid
dynamics [43, 70, 71, 76, 77, 81, 82, 83].

4.1 Formulation

As we did in formulating the standard HB method in Chapter 2, we start by considering a circuit
whose dynamics is described withnonlinear differential equations:

q(v(t)) +i(v(t))+u(t)=0 (4.1)

wherev(t) € R N is the vector of node voltagesgv(t)) € R N the vector of node charges (or fluxes),
i(v(t)) € RN the vector of resistive node currents, arfth € R N the vector of input sources.

Let the circuit be driven by a single periodic excitation input source with pérideinding the
periodic steady-state solution of this circuit consists of computind\tiséeady-state waveforms
v(t) on the solution domain € [0, T]. The periodic steady-state solution of (4.1) satisfies the
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two-point constraint:

v(T) =v(0). (4.2)
In the standard HB method, the solution waveforms are approximated with truncated Fourier
series:
k=K
vit)= 5 e (4.3)
k=—K

with f = % the periodic excitation input source frequency, &the number of harmonics consid-
ered in the truncation. The method solves for the Fourier coefficigntBhe approximation (4.3),
in conjunction with theN circuit equations (4.1), results in the residual function:

K K
fvy= S j2Td<fQ<e12”k“+i( )3 vkeizﬂkft> +u(t) (4.4)

k=—K

whereQy are the Fourier coefficients ofv(t)) with v(t) the truncated Fourier series approxima-
« QelZkft

tions of the solution waveforms, i.e.(35__ ie/Z*™) = 5K
The residual function (4.4) is to be minimized @nT].
In order to enhance the clarity of the presentation, we now introduce the following notation for
grids of time-points.
Definition 1 The set oM time-pointspM = {t,t5,....tm} is a grid if (1) Vty, € [0, T); and (2)
0=1t1 <ty <..<tm<T (strict monotonicity property). The grid spacihg, is hy = tmy1 —tm
with ty+1 = T, and the grid size iM.

Definition 2 The gridpM is uniform if all its spacings satisffiy, = const, i.e. ty = (m;,ll)T.

Uniform grids are denoteg,.

In the standard (pseudospectral) HB method, the minimization of (4.4) is carried out by en-
forcing f(V,tm) = 0 on the uniform gridty, € p) of collocation (interpolation) points where
M=2K+1.

In contrast, the Time-Mapped Harmonic Balance (TMHB) utilizes a non-uniform grid of time-
pointspM. The non-uniform grid has increased resolution in the regions of the solution waveforms
with rapid transitions. The non-uniform grid resolves the sharp waveform features in order to
increase the solution accuracy of the TMHB method.

We now introduce the notion of pseudo tifn@nd denote the grids of pseudo time-points with
p. The pseudo timécoordinate is related to real time via the time-map func@uch that

t=A(f) (4.5)

The time-map function maps the uniform grid of pseudo time-pgfftinto the non-uniform grid
of real time-pointp™ such tha : f, — tm wherefy, € pY | tm € pM, A(0) = 0, andA\(T) =T.
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The time-map functioi\(-) is constructed from the non-uniform grid of time-poip&which
is generated by the grid selection algorithm. This non-uniform grid is spectrally interpolated to
yield A(-). The details of this construction are given in Section 4.4.

To derive the Time-Mapped Harmonic Balance (TMHB) method, consider that

d 1 d
FTi NOd (4.6)
Replacing the time-derivative in (4.1) with (4.6) yields
d R
A,f £ gV D) +IVAD) +uA®) =0 (4.7)
and the two-point constraint (4.2) becomes
V(A(T)) = v(A(0)). (4.8)

The solution waveforms in TMHB are approximated with truncated pseudo Fourier series:

k=K
vt) =vA) = T VielZK" (4.9)
k=—K
whereV are the pseudo Fourier coefficients of the solution waveforms. Equations (4.7) and (4.9)
yield the residual function

f(\?,t)z z j2rk f O el 2 ft ( S Ve‘zﬂkft> +u(f) (4.10)

) =k k=—K
where Qy are the pseudo Fourier coefficients qffv(A(f))) with v(A(f)) the truncated pseudo
Fourier approximations of the solution waveforms, q(é.zk}KVkeJZ”"”) =K Oeizkft,

The residual function (4.10) is to be minimized [@)T]. The minimization is carried out by a
collocation method, enforcinﬁ(\?,f) = 0 on the uniform pseudo grid of collocation poifi.

The non-uniform grid in real time in effect “stretches” out those regions of the solution wave-
forms with sharp features. As a result, the TMHB solutigt) in real time is the smoother wave-
form v(A(f)) when viewed in pseudo time, as illustrated in Figure 4.1. Since the waveform is
smoother in pseudo time, its features are more easily resolved withjamint uniform pseudo
grid, compared to resolving the original fast varying waveform in real time witMapoint uni-
form real time grid in the HB method. Thus one expects better accuracy from the solution of the
TMHB method.

Another way of seeing why TMHB should be more accurate than standard HB is to think of
how the set of pseudo Fourier series basis functions interpolates the solution waveforms. The
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Figure 4.1: The smoothing effect of the non-uniform grid of TMHB: (&b, in real time (non-
uniform pM grid); (B) time-map functiont = A(f); (C) vcorL in pseudo time (uniformdM grid).

pseudo Fourier series basis in real time is the setfr oscillatory functions. These basis
functions smoothly increase their frequency in the regions where the non-uniform grid is dense.
The more rapidly changing pseudo basis function is thus able to capture the rapid transitions in the
solution waveform more easily. Two basis functions, one from standard, and one from a pseudo
Fourier series waveform approximation are given in Figure 4.2. The non-uniform grid was such
that it had a peak increase in density in the middle of the doméaia 40ms(the time map function
(4.43) was used) to accommodate rapid transitions occurring in the middle of the interval.

In addition, the magnitude of the pseudo series coefficient for the highest frequency (largest
k) pseudo basis functions need not be as large as the corresponding magnitudes in the standard
series basis Functions. The high frequency basis coefficient magnitudes in the standard series need
to be larger in order to increase the slope of the basis function and capture the rapid transitions.
This causes a pronounced Gibbs effect and a not-so-well approximating solution interpolant. In
contrast, due to smaller high frequency basis magnitudes, the pseudo basis functions cause much
smaller Gibbs oscillations and are better building blocks in interpolating the fast varying solution
waveform.

Equation (4.10) is now rewritten in the frequency domain yieldiid nonlinear algebraic
equations

F(V)=TArtQrq(r V) +ri(r v)+ru=o0 (4.11)

whereV is the pseudo node-voltage spectiuine= [V 1, ...,V KN,V K+ 1.1, ) ...,\A/K,N]T (a vec-
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Figure 4.2: Basis functionsk & 4), for the (A) standard, and (B) a pseudo Fourier series.

tor of pseudo Fourier coefficients), afis the diagonal frequency-domain differentiation matrix

BTSN

A is the diagonal matrix

>
Il

andly is the identity matrix of sizé\.

j2m(K — 1) fly

j2m(—K) fly

: (4.12)

(4.13)

The matriced” andl" 1 are DFT matrices that perform the conversions from pseudo time to
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frequency and vice-versa

(4.14)

ejZTr(—K)ffllN el 211Kff1|N
-1 =

ej2ﬂ(fK)ffM lN ejzﬂKffM lN

where eacv(A(f)) € RN is a vector of node voltages. Since the pseudo timefgjfids uniform,
the DFT can be carried out @(NMlogM) operations using the FFT just as in the standard HB.

4.2 Matrix-Implicit Krylov-Subspace Solution Technique

The system oM nonlinear algebraic equations (4.11) are solved for the pseudo Fourier coeffi-
cientsV by applying Newton's method. The application results in the iteration

Jm (\7('“) —\7(')) — M) (4.15)
wherel is the Newton iteration index. THeth Newton iteration Jacobian is
IO =rar-torcOr-t4rehr-1 (4.16)
and is aNM x NM block-dense matrix.
The block-diagonal matricgs andG are
_ - - _ . -
c— C2  G= G (4.17)
L CM A L GM A
where the block€ny, = [Cn(r,S)] andGm, = [G (T, S)] consist of the elements
Corg _ v éﬁfm))) _ 290t @.18)
Gm(r,s) = d'(Vrg:/itm))) - d'r((;'\(/zm)) (4.19)
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wherer, s are the node indices,s=1,2,...,N. The matricess andC remain block-diagonal as

in the standard HB ag(v) andi(v) remain algebraic. The constituent sparse bldgkandC, are

the circuit conductance and capacitance matrices evaluated in real time on the non-uniform grid of
real collocation time-points, € pM. The sparsity of these blocks depends on the circuit topology.

The grid selection algorithm will in general generate mildly non-uniform grids even for linear
circuits. This is caused by the grid selection scheme which distributes the time-points following
the rate of change in the solution waveforms, which is not constant for the pure sinusoidal signals
in a linear circuit. The multiplication by AT 1 in the formation of the Jacobian prevents the
decoupling of the Jacobian and the equations as in standard HB for linear circuits. The decoupling
is possible only i\ happens to be an identity matrix, meaning that\ (f) ={, i.e. that the pseudo
time non-uniform grid in TMHB is in fact uniform.

This should not be a cause for an alarm since TMHB is a method meant to be used on highly
nonlinear circuits whose solutions undergo rapid transitions. For linear and even mildly nonlinear
circuits driven by pure sinusoids, the uniform grid in the standard HB is effective enough, so that
introducing a non-uniform grid with TMHB would, at best, yield only minor improvements in
solution accuracy.

The Newton iteration (4.15) is a linear problem, and explicitly forming and factoring the block-
dense TMHB Jacobiahwould be very expensiv(NM3). As in standard HB, a preconditioned
iterative linear solver (GMRES) is used to reduce the complexi®(f8M?), with further reduc-
tions in complexity obtained by implicitly forming the GMRES matrix-vector product by sequen-
tial evaluation using FFTs, t@(NMlogM). Therefore the complexity of TMHB is the same as
the complexity of the state-of-the-art matrix-implicit Krylov-subspace standard HB.

The memory requirements for the TMHB method are also of the same complexity as the stan-
dard HB, growing linearly wittO(NM) due to the storage of the Krylov subspace vectors in the
GMRES algorithm.

4.2.1 Speeding Up the Matrix-Vector Product

The matrix-vector product
Jpt= (TAr—tQrc+raG)r-1p« (4.20)

where pK is the search direction in tHeth GMRES iteration, requires 5 FFTs. It is possible to
reduce this number of FFTs to 3 by a simple algebraic reformulation of the system of algebraic
equations (4.11). Multiplying (4.11) ByA~1r ~* results in the system:

Qrqr W)+ra tir-w)+ratu=o. (4.21)
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When Newton’s method is applied to (4.21), the Jacobian dtthéNewton iteration is:
IV =arcWr-tyratclr-t (4.22)

whereA~1is computed trivially a#\ is a diagonal matrix. Thieth GMRES iteration matrix-vector
product used to solve the linear subproblem at each Newton iteration is now

Jpt= (Qrc+ra—tG)r-1px (4.23)

and requires 3 FFTs. As the FFT limits the complexity of the TMHB, and the GMRES computation
time dominates the total TMHB runtime, a substantial speedup is achieved by this 40% reduction in
the number of FFTs in the matrix-vector product computation. Note that the matrix-vector product
in the standard HB also requires 3 FFTs. The only (minor) overhead in TMHB matrix-vector
product comes from the multiplication by the diagonal maftyix.

Note that we could choose to reformulate only the GMRES linear problem, and not the system
of equations (4.11), arriving at the same formulation for the matrix-vector product with 3 FFTs. In
this case the right hand sides (RHS) for the outer Newton loop and the inner GMRES iterations will
be different. This approach has shown to cause a drastic increase in both the number of Newton
and GMRES iterations in practice, and is not recommended.

4.2.2 Linear Device Treatment

Linear elements (such as linear resistors, capacitors, and controlled voltage sources) are character-
ized by linear device functiongv) andq(v). Therefore, in most circuit simulators these devices

can be evaluated only once, rather than at each collocation point. Consider such an implementation
of HB where the linear devices are treated separately. In effect, the steady-state circuit problem
(4.1) can now be expanded with an additional term and written as:

Q(v(t))+i(v(t))+/tmy(t—t)v(r)dr+u(t):O (4.24)

whereq(v(t)) € RN andi(v(t)) € R N are now, respectively, the vectors of node charges (or fluxes)
and resistive currents from the nonlinear circuit deviggs, € RN is the matrix-valued impulse
response of the circuit with all the nonlinear devices removeduéiid= R N the vector of input
sources. Ify(t) is causal and has finite energy, then

t
r / y(t—T)v(T)dT = YV. (4.25)
The TMHB system oNM nonlinear equations (4.11) is now expanded with this additional term

F(\V)=TArtQrq(r V) +ri(r V) +YV +Tu=0 (4.26)
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whereY =Yg + QYc is a block-diagonal matrix, withic andYc being its resistive and capacitive
parts which are also block diagonal. Note that due to the linearity of the devices descrilded by
all of the constituent sparse blocks,, andYcy, of Yg andYc respectively, are the same, whilés
diagonal blocks differ as a result of a multiplication Qy

The matrix-vector product (4.20) is now

Jpt= (TAr1Qrc+rG)r1psyp (4.27)

and still requires 5 FFTs. The matrix-vector product (4.23) corresponding to the reformulated
problem (4.21) is now

Jp = (QrC+rA~1G) r1p e rA—tr—1y g (4.28)

and requires 2 additional FFTs bringing the total to 5 FFTs.

There are several ways of getting around this problem. If the circuit contains very few linear
elements, we may skip the sequence of operatioks!l 1 in front of Y, removing the 2 costly
additional FFTs. In practice this has shown to work well with only minor increases in the number
of GMRES iterations if the only linear elements in the circuit are a few controlled sources.

A better approach is to treat all linear elements as nonlinear elements and retain the original
reformulation of the matrix-vector product (4.23) with 3 FFTs. The overhead of this approach is
the repeated evaluation of linear elements such as resistors and capacitors at each collocation point.
This overhead is minor, however, when one considers that: (1) the cumulative device evaluation
time in HB or TMHB is only a small fraction of the cumulative time spent in solving the linear
problem with the GMRES iterations; (2) the evaluation of a resistor, capacitor, or a controlled
source takes a fraction of a time needed to evaluate a modern model for a nonlinear device such
as a bipolar or MOS transistor; and (3) modern communication circuits consist of large number of
transistors comparable to the number of linear devices.

One final point is that the linear devices found on a chip such as resistors or capacitors, are in
fact nonlinear as they are nonlinear functions of temperature, which in turn is a nonlinear function
of the on-chip voltages and currents. It is therefore important to treat these devices as nonlinear
via an implementation of an appropriate device model for accurate circuit simulation.
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4.2.3 Preconditioning

For the reformulated TMHB, the diagonal blocks of the TMHB Jacobian (4.22)

[ j2r(—K) fCo+ Go),

i2m(—K + 1) fCo + G,
P — j2m( ) fCo+ Go)p | (4.29)

j21K fCo+ G,

where the block€g = [Co(r,s)] andGg = [Go(r, )] contain the elements

Gy = %icmms), (4.30)
607)\([',3) = %%)\’(fm)Gm(r,s) (431)
m=1

with r,s=1,2,...,N the node indices, are the standard preconditioner for the GMRES solver in
the TMHB method, just as the diagonal blocks of the HB Jacobian are the default preconditioner
in the standard HB method [11, 15]. The diagonal blocks of the TMHB Jacobian consist of the DC
Fourier coefficients of the matric€and/A 1G. These DC coefficients can be quickly computed

by averaging the entries @ and/A~1G corresponding to each circuit node. The diagonal block
structure of the preconditioner allow application of fast direct block factorization algorithms.

This standard frequency-domain preconditioner works well in most circuit examples. The grid
selection strategy in the TMHB requires a computation of a solution guess, which can be also used
as a good starting initial guess for the Newton iterations of the TMHB. The usage of this initial
guess drastically reduces the total number of Newton iterations, and also has a reduction effect on
the number of GMRES iterations as well. As a consequence, the standard preconditioner is quite
adequate in most circuit examples. For some strongly nonlinear circuits, the time-domain BDF
preconditioners from Chapter 3 are more effective than the standard preconditioner in TMHB as
they are in the HB method.

Right preconditioning is used in the TMHB method. With right preconditioning the linear
problemJAV = —F becomesP 1PAV = —F whereP is the preconditioner. By lettinBAV = U,
the GMRES algorithm first solves the linear probldf U = —F, and then computeaV =
P-10.

The right style of preconditioning does not change the RHS of the linear problem in GMRES,
and this RHS is the same as the RHS used in the outer Newton loop. As it was noted earlier in this
section, when these two RHS sides are different, costly increases in both the number of Newton
and GMRES iterations are noted in practice.
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4.3 Computing the Real Time Fourier Coefficients

The TMHB method solves for the pseudo Fourier coefficishts the solution waveforms. These
pseudo Fourier coefficients can be related to the real Fourier coeffiviefisst note that if time-
domain waveforms are desired, due to (4.9), an inverse FFT readily yields the voltage waveforms
at the non-uniform grigp™ of real time-points:

) =r"1. (4.32)

To compute the actual Fourier coefficiewtswe use the following “unmap” procedure. We first
introduce a non-uniform oversampled grid in pseudo tiMe. This grid is chosen such that the
time-map function\(-) maps it into a uniform oversampled grid in real tilp{\éc’, i.e. A=ty
wherefy, € pMo andty, € pl'\f"’. The number of collocation points in the oversampled grids are
Mg = oM whereo > 1 is the oversampling factor.

Since from (4.5 = A7L(t), (4.9) can be rewritten as

v(t) = kZK Vel 2K (D) (4.33)
k=—K
This summation is evaluated at real tintgse pi° to give the solution waveformg(ty,) at the
oversampled uniform grid in real time. Note that (4.33) cannot be carried out by an inverse FFT
since the pseudo time-poinks 1(ty) € pMo form a non-uniform grid. Due to this non-uniform
grid, the complex exponentials in the summation are not equally spaced along the unit circle in the
complex plane as required by the FFT.
Finally, since thev(t)’s values are now known on a (oversampled) uniform grid in real time,

we can use the FFT to compute the real Fourier coefficnts

V =Tv(t) (4.34)

wheret € pl'\f'c’.

Note that this procedure actually yieldg, = 2K + 1 Fourier coefficients, which is more than
the M Fourier coefficients expected. The additional Fourier coefficients represent the higher fre-
qguencies 2k f whereK < k < Kg captured by the non-uniform grid in TMHB. These coefficients
are shown to match the Fourier coefficients of the “exact” solution quite well (see Figure 4.3).
Without oversampling, these coefficients would be zero and the additional accuracy obtained by
the TMHB method would be lost.

In effect theM pseudo Fourier coefficient “pack” high frequency information content. In
order to “unpack” this content, we must carry the described “unmap” procedure utilizing the over-
sampling frequencies betwe&nandKg.
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Figure 4.3: TMHB matching of high-frequency coefficients.

The rate of oversampling is determined by the Nyquist frequégey1/(2hmin) corresponding
to the smallest spacifgnin = min(hy) for Vmin the non-uniform grid in real timpM, where from

Ko = [% = [ﬁlmfw (4.35)

ando = Kq/K.

The unmap procedure described above is in essence an oversampled pseudo Fourier interpola-
tion of the solution waveformgt). This interpolation uses the discrete waveform valuegfat
the non-uniform grid in real timpM to generate the discrete valugsy,) at the oversampled uni-
form grid in real timepl'\f"’ S tm. Itis crucial to use a spectrally accurate oversampled interpolation
in order to preserve the accuracy of the solution. Local interpolation schemes (linear or quadratic)
are not suitable for this task as they introduce errors that are larger than the errors from the Fourier
approximation of the solution.

4.3.1 Complexity of the Unmap Procedure

The complexity of the post-processing unmap procedu@ @vi?) per waveform since the sum-
mation (4.33) is a multiplication of by a dense matrix of sizeM x M. The unmap procedure is
typically applied on only those few waveforms whose Fourier coefficients are wanted. In compari-
son, the complexity of the TMHB method@ NMlogM), i.e. limited by the FFT. This means that

the worst cases when the computation time for the unmap procedure can be a significant portion of
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the computation time for the TMHB are if: (1) the circuit is extremely non-linear (requiring vast
variations in the grid resolution translating into lamand largeM); and either if (2a) the circuit is
small (N small) or (2b) the unmap procedure is carried oMNalvaveforms for a circuit of arbitrary
size.

In practice, however, the situation is not bad at all. Recall that the actual computation times
are roughly equal to some computation complexity constant times the order of complexity. The
constant for the TMHB method applied to highly nonlinear circuits is much larger than the con-
stant for the unmap procedure since it is proportional to the total number of GMRES iterations
performed. This number in turn is larger for very nonlinear circuits since for these circuits the
standard preconditioner made up from diagonal blocks of the Jacdlgarot terribly effective.

Furthermore, stability considerations in the grid selection algorithm limit the rate of change of
the TMHB grid resolution (i.e. the ratios of neighboring grid spacings should be kept bounded).
This in turn limits the oversampling factor. Finally, for large circuits, computer memory limits
set a bound oM.

4.4 Construction of the Time-Map Function

The time-map functiod maps the uniform grid in pseudo tind' to the non-uniform grigp™ in
real time. In addition, in the unmap procedure used to compute the real Fourier coefficients, the
time-map functiol\ maps the non-uniform oversampled grid in pseudo ffieinto the uniform
oversampled grighy in real time.

The first step in constructing the time-map functhois to determine a set &non-uniform real
time time-points. The success of the TMHB method is crucially dependent on this time-point se-
lection, and several different selection strategies are presented in Chapter 5. The strategies requires
an initial guess for the solution waveforms. In particular, an approximate solution is computed us-
ing a shooting-Newton method [4] with a low-order time integration scheme.San-uniform
time-points for the TMHB method are then selected based on balancing two criteria: using small
time-steps in the fast-varying regions of the approximate solution waveforms, and insuring that the
time-steps do not change too rapidly. Although using a shooting-Newton method to compute the
approximate solution is expensive, the cost is kept low by loosening the convergence tolerance. In
addition, this shooting-Newton solution is useful as an initial guess for the TMHB.

Given theS non-uniform real time time-points, we now describe the construction of the time-
map functiort = A(f). In order to preserve the spectral accuracy of the TMHB method, the time-
map function must be smooth (or more precisely, at least as many times continuously differentiable
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as the functions describing the circuit element’s device models). Also, we must be able to compute
its first derivative with spectral accuracy or better as it is used in the TMHB formulation (4.10).
Furthermore, to ensure the strict monotonicity of the non-uniform grid of real time-points, the
time-map function must be strictly monotonic, iX6(f) > 0 for all f € [0, T]. Finally, for unmap
purposes, we also need to be able to compuigt).

We first represenk(f) as a sum of a linear part andraperiodic part\y(f)

t = A(f) =+ Ag(D). (4.36)

This split of the time-map function is illustrated in Figure 4.4.

DC—-DC converter: (A) B) [(®]
T T 12 T T 4 T

pseudot [us]
0]
A (pseudot) [us]

L L L L L L
o] 5 10 is (o] 5 10 is (o] 5 10 15
pseudo t [us] pseudo t [us] pseudo t [us]

Figure 4.4: Split of the time-map function: (A) time-map functid(t); (B) linear partf; (C)

T-periodic parf\y(t)

The periodic parh(f) is chosen to be a Fourier polynomial interpolaxii) of orderS such
that the interpolatory condition

ts = fs+ @(fs) (4.37)
is exactly satisfied at the point, ts) wherets € pS are theS non-uniform real-time time-points,

andfs € pS areSuniform pseudo time-points. The interpolap(t) is the truncated Fourier series

J S
o) = 5 oe?™" (4.38)
k=—J
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where d+ 1= S The coefficientsby can be computed with an inverse FFT of size

d_; ty —
o=t (4.39)
®; ts—fs
Thus the time-map function is constructed as:
J e
A =t+ 5 ol (4.40)
k=—J

and this approximation exactly passes through the pdigts).

The first derivative of the time-map function is

J ) .
N =1+ 5 jerkfoe?™! (4.41)
k=—J

and is exact.

The A(+) function (4.40) and its first derivative (4.41) are now evaluated on the gri of
uniform pseudo time-point8" to yield the M-point non-uniform grid in real tim@" and the
matrix of time-map derivativeA.

Due to the Fourier nature of the representation (4.4@), may exhibit high frequency oscil-
lations and violate the monotonicity requirement. In practice, for the grids selected by the grid
selection algorithm, i§is sufficiently large, this violation rarely happens. If a violation does hap-
pen, it can be resolved by damping the time-map function with an exponentialfiltgielding a
filtered construction ]

Au(®) :f+kz L Dy el 2Kt (4.42)
=J
wherepy = e‘5(§)y andd andy are filter parameters [83]. Note that the filtered approximation no
longer passes through the poifists), as illustrated in Figure 4.5.

The filtered approximation can introduce an offsstich thaf (0) = tandA(T) =T +1. This
offset causes no problems to the TMHB method. Strong filtering, however, can deteriorate the
guality of the constructed time-map function by making its flat regions less flat. As the flat regions
in the time-map function correspond to the highest grid resolution density, the filtering can cause
a substantial resolution reduction in these regions, and this, in turn, can reduce the effectiveness of
the TMHB method.

The values ol ~1(t) at the oversampled uniform timasg < p{}"" are required in the unmap
procedure used to compute the real Fourier coefficients. This computation is accomplished by
applying Newton’s method to the nonlinear equati¢fy,) — tm = 0 and solving fofy, at each time
pointty,.
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Figure 4.5: Filtering of the time-map function: (A) a non-monotonic time-map funétiby (B)
the filtered monotonic time-map function(f) (S= 8,5 = 3.5, andy = 2).

4.4.1 Explicit Time-Map Functions

Almost all of the mapping references given in the introduction of this Chapter use parameterized
explicit mapping functions since the problems being solved are given by explicit equations, and
the solution behavior is well known. Similarly, an early implementation of the TMHB method
used an explicit functional form of the time-map function. In particular, for a diode rectifier circuit
whose waveforms had rapid transitions in the middle of the solution intg@ya], the time-map

function [43, 77]
Ae(f) = % (tan‘l{Ltan {n(;-%)}}—,—g) (4.43)

was used, with the parametecontrolling the increase of the grid resolution. A plot of this explicit
time-map function is shown in Figure 4.6.

This explicit time-map function is well-suited for this particular circuit problem. The function
is infinitely smooth, obeys the strict monotonicity requirement, and its exact first derivative and
inverse can be written down explicitly as well. However, automating the choice of an appropriate
explicit time-map function is at best very complicated when presented with an arbitrary circuit
problem whose many solution waveforms may undergo an unknown number of rapid transitions
throughout the solution domajf, T].
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Diode rectifier: explicit time—map function.
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Figure 4.6: The explicit time-map functiow (f)

4.5 Error Convergence Analysis of TMHB

In this section we will study the convergence properties of TMHB, and attempt to understand
more precisely why the TMHB method can achieve significant improvement in solution accuracy
when compared to the HB method. The basics of the analysis presented here are similar to the
convergence analysis for pseudo Chebyshev approximations for stiff problems in [71] and the
analyses in [73, 76].

Let the exact periodic steady-state solution of the system of circuit equations (4.1) have the
infinite Fourier series representation

V*(t): Z Vk*ejZT[kft (444)
k:—OO

in the real time coordinate and the infinite pseudo Fourier series representation
V) =vAD)=7D = T Ve (4.45)
k=—o0

in the pseudo time coordinaieThe Galerkin formulation of the HB method represents its approx-
imate solutionv(t) with the truncated Fourier series
k=K

vit)= 5 Vet (4.46)
k=—K
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while the Galerkin TMHB method uses a truncated pseudo Fourier series to represent its approxi-
mate solutiorv(t)

Z Vel 2kt (4.47)
k=—K

The Galerkin formulations of both HB and TMHB, in other words, use a truncation of the standard
and pseudo infinite Fourier series respectively in approximating the solution.

We now proceed to bound the global truncation errors for the HB and the TMHB methods. We
assume that the solution waveforms are infinitely smooth for clarity.

Recall that the Sobolev norm of integer ordgesf aT-periodic waveformu(t) is given by

lull2 = TZO/ Zdt_ |u|2 (4.48)

where|u|; is theL, norm of thej-th derivative ofu(t), i.e

0

U= / Dde= (2nf)? S KU (4.49)
k=—o0

with u(t) = S Ukel?™® the infinite Fourier series representatiorudt).
The principal approximation theory result for the Galerkin spectral methods [40, 42] states that
for any 0< g < p there exists a consta@tindependent oK such that

IV = Vllq < CKIPIv*] . (4.50)

The quantity||v* — V||q is the truncation error measured in tph Sobolev norm. The inequality
(4.50) states that the truncation error is bounded by the norm of the derivatives of the approximated
waveform.

The inequality (4.50) defines a family of error bounds. For a figethe truncation error is
bounded by the smallest of the right-hand sides of (4.50). If the right-hand sides of (4.47) decrease
aspis increased, anil is sufficiently large, the error bound tightens, and the method achieves
spectral accuracy.

If the waveform has rapid transitions, pss increased, the norms of the derivativeés, may
generate a sequence with a more rapid increase rate than the decay rat€kftResequence
whenK < Kg whereKg is fairly large. This in turn means that the bound of the truncation error, i.e.
the right-hand side of (4.50) will grow for increasipginstead of achieving spectral accuracy, the
bound of the truncation error will bB®(K~Pm) (i.e. the error will have polynomial convergence)
wherepn is the value ofp at which the error bound attains a minimum.

Spectral accuracy will eventually be retrieved for lakKye.e. whenK > Kg. In other words,
when the number of time-pointd = 2K + 1 is larger tharMg = 2K + 1, the sharp features in
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the waveform will be sufficiently well resolved, and the error of the spectral method will start its
spectral (infinite order) decay. However, the number of harmdfjashich defines the threshold
of the spectral convergence of the error can be very large for very fast varying waveforms.

The main mechanism through which the TMHB attains a faster rate of error convergence is
by working in the pseudo time domain, in which the wavefarins”smoother. WheiK < Kg
i.e. the number of harmonics is smaller than the spectral accuracy threshold, the segtgnce
does not increase as rapidly as the sequévitg for increasingp, and the TMHB error is thus
more tightly bound than the HB error. When the number of harmadiepproaches the spectral
accuracy threshollg, the HB error bound will quickly catch up with the TMHB error bound and
both methods will be converging at the same rate.

We will now proceed to derive the HB and TMHB truncation error bounds, and investigate
their values and decay rates using an explicit waveform and explicit time-map function. Setting
g=01in (4.50), the truncation error for the HB method should satisfy

[V = V]lo < CK™PV*p. (4.51)
More specifically,

IV =vii§ = V' —v?
= Y &P
k=K+1
= (2nf) 2P 5 k2P(2mf )PPV
|k|=K+1
< (2mf) TR KPP (2m) PP
lk|l=K+1

< (2nf) PRV, (4.52)
The truncation error for the HB method is therefore bounded by
IV —v] < (2rtf ) TPK TPV . (4.53)
Similarly, the truncation error for the TMHB method satisfies
[V — V] < (2mf) " PKPId* . (4.54)

The right-hand sides of (4.53) and (4.54) define families of error boungstalses different
integer valuesi.e. £ p < . The errors will be bounded by the minimums of these bound families.
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Let B(K, p) be the truncation error bound family for the HB method, i.e.
B(K, p) = (2rtf) "PKP|v*|, (4.55)
andB(K, p) the truncation error bound family for the TMHB method:
B(K, p) = (2rf) " PKPI*|,. (4.56)
The standard truncation error bouBgl(K) for the HB method is

Bm(K) = mpin B(K, p) (4.57)

and the pseudo truncation error bound for the TMHB method is

A

Bm(K) = mpiné(K, p). (4.58)

WhenK < Kp, as argued above, we expect the TMHB error bound to be tighter than the HB
error bound, i.e.By, < By, since the waveform in pseudo tinvé i5 smoother thawv* and thus
generates a more slowly increasing sequence of derivative érfpshan the sequende®|p.

We will now illustrate the error convergence mechanism of the TMHB method by using an
explicit analytic wavefornv* (t) and an explicit time-map functidn= A(f). The analytic waveform
is

V' (t) = (1+tanh(S(t —0.5))) (4.59)

ont € [0, 1] with the parameteB= 1000 determining the steepness of the rapid transitiba-&t 5.
The time-map function is

t=A({)= %[ (arctar(Ltan(T[(f— 0.5))) + g) (4.60)

with L = 0.01. The time-map function is in essence a change of coordinate, transforming the
waveformv*(t) into the smoother function(f) = v(A(f)) in the pseudo time coordinate. Figure 4.7
illustrates the analytic waveform in real time, the time-map function, and the smoothed waveform
in pseudo time.

While the waveformv*(t) is not periodic, it can be periodized with peridd= 2 by adding
to it its mirror (flip) imagev*(2—t) for t € [1,2]. To compute the standard error bound families
B(K, p) corresponding to*(t) and pseudo error bound famili&K, p) corresponding ta*7f),
we compute the waveform derivative norms, for the integer range £ p < 50 by numerically
evaluating the norm integrals with the trapezoidal rule. The derivative discontinuities htare
numerically ignored by integrating over only the first half of the period, i.e. b€, 1].
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Figure 4.7: The analytic waveforni(t): (A) plot of v* in real time; (B) time-map function; (C)
plot of V* in pseudo time.

As our primary interest is to see how tiieandVv* error bounds behave for increasikgwe
compute the minimumBn,(K) andBm(K) of the error bound families at eaéh Figure 4.8 shows
a plot of these error bounds in dB verdGsThe left plot is linear irK and demonstrates that the
error boundBm(K) of the pseudo approximation is much tighter than the error b&tH ) of the
standard approximation for small and moderate valud§. dfor example, aK = 300 the pseudo
error bound is 130dB tighter than the standard error bound. As a result, the truncation error of the
pseudo approximation will also be several orders of magnitude smaller than the truncation error of
the standard approximation for a range of valuesfor

The right plot in Figure 4.8 plots the error bounds versus a log scale for the number of harmon-
icsK. The operating range of the TMHB method is the rangK efhere the pseudo error bound
is smaller than the standard error bound. This range is clearly visible, and it can be seen that it
extends up t&K = Ko = 6300. For smalK, the standard error bound decreases at a rate of about
20 dB per decade, which indicates a polynomial order convergen@ékofl), while the pseudo
error bound decreases at rate of 80 dB per decade i.e Ofi{T*). As K approaches the spectral
accuracy threshollg = 6300, the decay rate of the standard error bound increases, and the value
of the standard error bound catches up with the value of the pseudo error bound at the threshold.
ForK above the threshold, both error bounds have spectral decay, although a limiting rate of 1000
dB per decade is observed which correspond3(#—°°) (explained below).

Note that when the standard error bound finally catches up with the pseudo error bound at
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Figure 4.8: Convergence of the standB() and pseud®(K) error bounds in dB versus: (A)
linear plot; (B) log plot.

K = Ko, both bounds have reached very small values of around -270 dB which is close to the
double precision accuracy (-300 dB) of most numerical computations.

The convergence exponents of the error bounds in Figure 4.8 can be explained by plotting
the family (set) of standard and pseudo error bounds for fikacersus the norm ordep (see
Figure 4.9). The values gb at which the families of error bounds attain the minimum are the
convergence exponents of the error bounds (taken with a negative signK £d00 (plot A)
the minimum of the standard error bound family igpat 1, while the pseudo error bound family
has a much smaller minimum @t= 4. At aroundK = Kg = 6300 (plot B) both error bound
families reverse the increasing trend for laggd-orK = 10000 (plot C) both error bound families
decay monotonically at the fastest possible rate over the gmtaiage, so their minimums are at
the largest considerealin our computation. The limiting convergence rate exponents of the error
bounds in Figure 4.8 are 50 because the bound families were numerically computed up to the value
of p=>50.

As it was explained earlier, the reason for the smaller pseudo error bound in the operating range
of the TMHB methoK < Ky is due to the more slowly increasing sequence of derivative norms
[V*(t)|p of the waveform in pseudo time coordinates. Figure 4.10 plots the sequences of standard
derivative normgv*(t)|, and pseudo derivative norm& (t)|p in dB versusp. As it can be seen,
the transformation into pseudo time coordinates via the time-map function yields a slower rate of
increase of the pseudo derivative norms wpesnsmall. The quality of the time-map function will
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Error bound families: (A) K = 100 (B) K=K,=6300 (C) K = 10000
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Figure 4.9: The standa(K, p) and pseudd(K, p) error bound families in dB versus. (A)
K =100; (B)K = Ko = 6300; (C)K = 10000.

determine how much slower will the pseudo derivative norms increase compared to the standard
derivative norms; it will also determine for how many valuepafill this rate slowing be in effect.

While our error convergence analysis used Galerkin (spectral) Fourier approximations, it can
be readily extended for the collocation (pseudospectral) Fourier approximations since the aliasing
term present in the collocation Fourier coefficients is of the same order as the truncation error of
the method [67, 39] (Chapter 3).

The analysis also holds if the solution waveforms are not infinitely differentiable. In that case
the family of error bounds on the right-hand side of (4.50) has a finite number of members.

4.6 Demonstration of the Error Convergence of Pseudo Fourier
Series

The greater accuracy of the TMHB method comes from the smaller global truncation error of the
pseudo Fourier series for the (smoother) solution waveform in pseudo time, compared to the global
truncation error of the standard HB Fourier series approximation of the solution waveform in real
time.

Furthermore, from the results of the analysis in Section 4.5, ihensmall or moderate, we
would expect the error in the TMHB method to decre@%& P) compared to the error conver-
gence ratéD(K~P) for the HB method, where the convergence rate exponents satisfp. “In
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Figure 4.10: The standarfi/{| ;) and pseudo|{*| ) derivative norms in dB versysof the analytic
waveformv*.

other words, the error in the TMHB method should decrease exponentially faster than the stan-
dard HB error with increasing number of harmorkcgor equivalently, with increasing number of
collocation time-point® = 2K + 1).

To demonstrate the superior error convergence of the pseudo Fourier series, consider approx-
imating an analytic waveform with both standard (uniform grid) Fourier series and (non-uniform
grid) pseudo Fourier series. The analytic waveform is

Va(t) = Z(1+tanh(10%(x— 0.4))) exp(— ((x— 0.4)/0.2)?) (4.61)

NI =

ontheinterval0, T] with T = 1.5. While this function is not periodic, the periodicity ersgy(T) —
v4(0) is of order 1613 (-260dB), and is sufficiently small for the demonstration. The funatjgt)
has a very rapid transition &= 0.4 as it can be seen from Figure 4.11. The iterative grid selection
algorithm (discussed in Chapter 5) resulted in a non-uniform grid which was used to construct
the time-map function also shown in Figure 4.11. When the time-map function is evaluated on a
uniform gridpY in pseudo-time, it generates the non-uniform gtlin real time. The smoothing
effect of this non-uniform grid on the functior(t) is also shown in Figure 4.11.

To compute the Fourier coefficients in the standard approximation, the funiioris evalu-
ated at a uniform set dfl pointsp!, and an inverse FFT is performed on this vector of values. To
compute the pseudo Fourier coefficients, the functipi) is evaluated on the set of non-uniform
pointspM, and again an inverse FFT is performed on this vector of values.
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Figure 4.11: The analytic wavefordi(t): (A) plot of v, in real time; (B) time-map function; (C)
plot of v, in pseudo time.

To compute the error in the standard and pseudo Fourier series approximations, two different
error measures were used. The first one is simply the magnitude Kftihéourier coefficient of
the series, i.ee1 = |Vk| for the standard ang} = |\7K| for the pseudo Fourier series approximation.
The magnitude of this highest-frequency Fourier coefficients is well known to be a measure of the
truncation error in the Fourier representation.

The second error measure is computed in the time domain, and it is the nornalizean of
the vector of time-domain errors in the Fourier interpolants atmeidpoints of the grids, i.eeo =
|[Va(tn) — Va(tn) ||, whereva(t) is the standard Fourier interpolant, aipd= (tm+tm;1)/2 where
tm € Pl (uniform grid); €, = ||9a(tn) — Vi(tn)||, Wherevi(t) is the pseudo Fourier interpolant, and
th = (tm+tmy1)/2 Wherety, € pM (non-uniform grid).

A plot of these two error measures in dB is given in Figure 4.12. The spectacular error conver-
gence of the pseudo Fourier series approximation in the operating range (small and nddisrate
clearly evident. While the standard Fourier series achieves a convergence rate exponent of about
p = 1.1, the convergence exponent for the pseudo Fourier series is pbo@0.” The plot also
shows that the two error measures are equivalent.

A plot of the standard and pseudo Fourier interpolantd at 12 is shown in Figure 4.13. Itis
clearly visible that even for a sma¥l the pseudo Fourier series approximation is much better than
the standard Fourier series approximation.

76



Analytic waveform, approximation errors: (A) (B)
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Figure 4.13: Fourier interpolants of the analytic wavefeijti), M = 12: (A) standard interpolant;
(B) pseudo interpolant.
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Chapter 5

Grid Selection Strategies for the
Time-Mapped Harmonic Balance

In Chapter 4 we introduced the Time-Mapped Harmonic Balance (TMHB) Method, a fast Krylov-
subspace spectral method for accurate steady-state simulation of circuits with rapid transitions.
The TMHB features a non-uniform grid which resolves the sharp features in the signals.

The success of the Time-Mapped Harmonic Balance method is critically dependent on the
selection of an appropriate non-uniform grid. In this Chapter, after a brief overview of the TMHB
method in the next section, we will present several different selection strategies, and discuss some
issues related to their use in practice as a part of the TMHB algorithm.

The relative merits of these strategies when used in TMHB simulation of several circuits are
given in Chapter 6.

5.1 TMHB Method Overview

Consider a circuit described witlh nonlinear differential equations:
q(v(t)) +i(v(t))+u(t)=0 (5.1)

wherev(t) € R N is the vector of node voltagesgv(t)) € R N the vector of node charges (or fluxes),
i(v(t)) € RN the vector of resistive node currents, arft) € RN the vector of input sources. The
periodic steady-state solution of (5.1) satisfies the two-point const@int= v(0).

The TMHB method utilizes a non-uniform grid oK2+ 1 = M time-points in contrast to the
uniform grid used in standard HB. This non-uniform grid in real tinerelated to a uniform grid
in pseudo-timé via the time-map functioA such that = A(f), A(0) = 0, and\(T) =T.
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The time-map function is constructed starting from a selected gr&hoin-uniform real time
time-points, and is a sum of a linear part and a T-periodic part:

A =+ i Dy el2k it (5.2)
k=—J
where 2+ 1 =S TheA(-) function (5.2) is then evaluated Bt uniform pseudo time-points to
yield theM-point non-uniform grid in real time. The construction guarantees the ability to compute
N (f) with spectral accuracy required by the TMHB method. The strict monotonicidy(tofcan
be ensured by applying an exponential filter to the time-map function.
In the TMHB the problem (5.1) is transformed into:

ot VM) +(VAD)) +UND) =0 59)

The solution waveforms in TMHB are approximated with truncated pseudo Fourier series:

v(t) = vA (D)) = kiK Vel 2kt (5.4)
k=—K

As in the state-of-the-art standard HB method [7, 10, 11, 15], the TMHB method uses a matrix-
implicit Krylov-subspace approach to compute the pseudo Fourier coeffidfeafghe solution
with O(NMlogM) complexity (which is the complexity of the FFTs used to compute the matrix-
vector product in the GMRES solver for the linear problem at each Newton iteration).

To compute the real time Fourier coefficients, the TMHB introduces a non-uniform oversam-
pled grid in pseudo time such thaf-) maps this oversampled grid in pseudo time to a uniform
oversampled grid in real time. Sinfe- A—1(t), (5.4) can be rewritten as

k=K 1
vt) = Y Vel P, (5.5)
k=—K

The summation in (5.4) is then evaluated to give the solution waveforms at the oversampled uni-
form grid in real time. Finally, since th&t)’s are now known on a uniform grid in real time, we
can use the FFT to compute the real Fourier coefficiénts

5.2 Grid Selection Strategy Requirements

Grid selection techniques for finite-difference methods are discussed in several mathematical ref-
erences [21, 22]. The techniques are typically classified as either a priori or adaptive. The grid se-
lection strategies considered in this section are a priori methods, in whi&ygbimt non-uniform
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grid used in the construction of the time-map function is selected beforehand, and remains fixed
during the iterative computation of the solution. In contrast, adaptive grid selection strategies re-
peatedly update both the grid and the approximate solution until a convergence criteria is met. In
the adaptive grid selection for a fixed-order finite-difference numerical method [22], the grid is ad-
justed to a measure of the local truncation error of the method in the approximate solution at each
iteration. However, the TMHB method is a spectral method, which can be viewed as a variable-
order finite-difference method (with the order equal to the Kiz the Fourier basis), and a local
truncation error estimate requires a costly summation of the solution’s truncated pseudo Fourier
series approximation. A further complication is the need for an expensive spectrally accurate in-
terpolation from the old grid to the new at each iteration of the adaptive method, for which the FFT
cannot be used due to the non-uniform spacings of the grids.

Adaptive grid selection techniques have been used in mapped spectral methods applied to prob-
lems in fluid dynamics [71, 76, 82]. However, in all of these references a fixed functional param-
eterized form of the mapping function is considered, with the mapping parameters determined by
minimizing a particular functional of the solution. The references deal with explicit small PDE
problems, and the adaption is performed iteratively at each time evolution step of the solution.

By nature, all a priori grid selection techniques require some knowledge of the solution behav-
ior (a solution guess). All selection strategies considered here obtain this information by solving
the problem (5.1) using a shooting-Newton method with a low-order integration scheme, whose
cost is kept low by a loose convergence tolerance.

The shooting-Newton method [4] reformulates the two-point constraint as

$(v(0),0,T)—v(0) =0 (5.6)

where¢ is the state-transition function for (5.1). Equation (5.6) is solved with a Newton method.

The cost of the solution guess computation is kept low by loosening the error tolerance of the
shooting method, as well as approximating the Jacolijaof the state-transition function using
a forward-difference formula. Note that the solution guess also serves as an initial guess for the
TMHB Newton iterations.

As the solution guess is given at the discrete times selected by the local time-step control
mechanism of the transient simulation over one period at the last iteration of the shooting-Newton
method, local quadratic interpolation is used to get the solution values at arbitrary time.

The S-point non-uniform grid used in the construction of the time-map function should be
selected based on two major considerations: reduction of the truncation error (accuracy consider-
ation) and preserving stability.
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One approach in satisfying the accuracy requirement is to concentrate the grid time-points in
the high-gradient regions of the solution waveforms. The solution wavef@mnn real time then
becomes the smoother wavefouti (f)) when viewed in pseudo-time, as illustrated in Fig. 5.1.
The greater solution accuracy of the TMHB stems from the reduction in the global truncation error
in the pseudo Fourier series approximation of this smoother waveform vs. the standard Fourier
series approximation of the original waveform on the uniform standard HB grid.

DC-DC converter: TMHB-D grid; time—map function; Vv(COIL) in pseudo t.
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Figure 5.1: DC-DC converter circuit: grid and time-map function for direct strategy (top row) and

iterative grid selection strategy (bottom row).

The stability requirement is in general difficult to handle quantitatively, but in practice, bound-
ing the ratio of the neighboring grid spacings is a known rule-of-thumb approach that works well:

a hmr  a+1
< < 5.7
o+1~ hn = «a (5.7)

wherea > 0 determines the grid “rigidity”, antly, = ty.1 — tm With t, andty, 1 two neighboring

grid points. Note that rigid grids (larger) can suffer from “point exhaustion” if the number of
grid pointsSis not large enough. Finally, note that both bounding the grid spacings and using
a large enough number of grid points greatly enhances the strict monotonicity of the time-map

construction (5.2) and virtually eliminates the need for filtering.
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5.3 Direct Grid Selection

The shooting-Newton solution guess generates a non-uniform grid in which the points are dis-
tributed such that the local truncation error of the integration method is kept under the specified
(loose) tolerance. In general this means smaller time-steps in the regions where the waveforms
undergo rapid transitions, smoother waveforms in the pseudo-time uniform grid, and a reduced
global truncation error in the TMHB pseudo Fourier series approximations. Unfortunately, in
most cases the grids generated by the shooting-Newton method are unusable since their time-steps
change too rapidly. This not only causes non-monotonicity in the constructed time-map function
and necessitates the use of filtering which renders a much less effective time-map function, but
more importantly, instability and convergence problems in the TMHB iterations.
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Figure 5.2: DC-DC converter circuit, direct strategy, before (dashed) and after (solid) the smooth-

ing: (A) time-steps; (B) ratios of neighboring time-steps; (C) time-map function.

This instability can be alleviated by bounding the time-steps to obey (5.7). We accomplish this
by “smoothing” theS-point shooting-Newton grid with a discrete exponential kernel:

. 1 S a li—ijl
T 5.8
I VjZl J(a+1) &8

whereh; are the time-steps in the shooting-Newton grid, hrtte time-steps from the “smoothed”
grid. Note that the kernel is defined fers < (i — j) < 5 and is periodic with perio&. The scaling
factoryis the sum of the kernel over one period.
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The direct selection strategy is illustrated in Figure 5.2, with 2. The dashed lines are the
guantities before the smoothing, i.e. straight out of the shooting-Newton initial solution guess run,
and the solid lines are the same quantities after the direct selection strategy (i.e. the “smoothing”
of the shooting-Newton grid with the periodic exponential kernel). The horizontal bounds in the
plot of the ratios of neighboring time-steps arga + 1) = 2/3 and(a +1)/a = 3/2.

The described direct grid selection strategy is simple and fast. Its disadvantages are the indirect
control over the number of grid poin&via the shooting-Newton tolerances, and the asymmetric
nature of the generated grids (somewhat alleviated by smoothing) due to the one-directionality of
the shooting-Newton time-step control.

5.4 lterative Grid Selection

The iterative grid selection was developed from ideas in [21], in which PDE IVPs are solved by
adaptively adjusting the spatial grid during the time evolution of the problem. In the iterative grid
selection, an initial uniform grig3 evolves into the final non-uniform gripf. During this process
the Stime pointsty, € p are re-distributed in such a way that the shooting-Newton solution guess
of (5.1) is uniformly resolved. The solution guess guides the iterations such that in the regions
where the solution has large gradients, the points should be concentrated, and in the regions where
the solution varies slowly, the points should be spread out.

We first introduce the grid resolutiamdefined as, = tm-)-l%tm For the grid resolutions to
yield an acceptable grid iterate we need

= =1. (5.9)

A monitor functionR specifies the desired resolution and should indicate increased resolution in
the regions where the shooting-Newton solution has rapid transitions. A choice for this function
that works well for a number of circuit examples is thenorm of the weighted rate of the change

in the solution guess:

Ry — Vj (tm1) — (tm)> (5.10)

tm1—tm mi ( Fj

wherev; is the shooting-Newton solution guess waveform of gkl circuit equation, ané; are

the waveform weights, set to the maximal peak-to-peak voltage (or current) amplitude among all
waveforms. Local quadratic interpolation is used to compute the solution guess values at arbitrary
time.
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For accuracy we require that the grid resolution is proportional to the monitor function
M _ M1
Rn  Rmy1
For stability we obey (5.7) by replacing, in (5.11) with a centered difference smoothimg—
a(a +1)(Nm1— 2nm+ Nm_1) resulting in

(5.11)

Nm—a(0 + 1) (Nm+1 — 2Nm+ Nm-1)
Rm
Nmt+1 — A (0 + 1) (Nm-2 — 2Nmt-1 + Nm)

R

Equation (5.9), and (5.12) written fon= 1,2, ..., (S— 1) form a system ofs nonlinear equations
that are solved fon using a damped Newton method.

(5.12)

The Jacobiardy can be easily written down

b1 cp dp a1
az bz Co d2

a by c3 d3
I = (5.13)

as 2 bs2 Cs2 ds2

ds 1 as-1 bs 1 Cs1
1 _1 _1
nion n
where
am = —o(a+1)Rny1, (5.14)
bn = (20?4 20+ 1)Rpy1+0(a+ 1)Rn, (5.15)
Cmn = —(20%+20+1)Rn—a(a+1)Ry1, (5.16)
dm = a(a+1)Rn (5.17)
and is computed exactly.
The I-th Newton iteration is the linear probled’ (an)(+ = —x(n()) which is efficiently

solved by Gaussian elimination since the Jacobjda banded an&chosen independently ™.

The initial guess for the Newton iterationsig = TS corresponding to aB-point uniform grid.
At the |-th newton iteration the resolution iteratd) = n(l—b + K(An)(') is used to compute a
potential grid iterate{tf),tg), ...,tg)} wheretr(T'])+1 = tr(,i) + % The damping factok is decreased
andn()) recomputed until the potential grid iterate satisn;‘ies the strict monotonicity property. The
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[-th iteration is then deemed successful, the monitor function recomputed on the new grid iterate,
and the iterations continued unfti\n|| and||x(n)|| are smaller than specified tolerances.

The iterative selection strategy is illustrated in Figure 5.3, with 2 andS= 50. The dashed
lines are the quantities corresponding to the initial unifpfharid, and the solid lines are the same
guantities after a converged iterative selection strategy. The horizontal bounds in the plot of the
ratios of neighboring time-steps amg(a+ 1) = 2/3 and(a + 1) /a = 3/2.

DC—-DC converter, iterative strategy: (A) B) ((®3)
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Figure 5.3: DC-DC converter circuit, iterative strategy, initial grid (dashed) and final grid (solid):
(A) time-steps; (B) ratios of neighboring time-steps; (C) time-map function.

The described iterative grid selection strategy has the advantage of ch&isthependently
of M and the number of grid points in the shooting-Newton grid. Its disadvantage is its higher
complexity when compared to the direct selection strategy. The complexity can also rise rapidly
for largeSdue to the Gaussian elimination step in Newton’s method.

5.5 Optimization-Based Grid Selection

Two different cost functions were used in setting up an optimization-based grid selection strategy.
The “design parameters” for both cost functions wereShygid pointsty,. The first cost function

was simply the magnitude of the last pseudo Fourier coefficient associated with the current grid
iterate and the shooting-Newton guess waveform with sharpest transitions. The magnitude of this
coefficient is a measure of the truncation error in the pseudo Fourier approximation.
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The second cost function was the time-domiajrerror between the shooting-Newton guess
waveform and the pseudo Fourier interpolant associated with the current grid iterate. Note that this
cost function computation required a computation of a time-map function and Newton solves to
compute its inverse at the points of comparison. Computation of its gradient by finite differences
requiredS+ 1 cost function evaluations.

The strategy was first set up as an unconstrained optimization using the Nelder-Mead non-
gradient optimization method [57, 56], and the BFGS Quasi-Newton gradient-based method with
mixed quadratic and cubic line searches [57, 58]. Penalty terms were added to the cost function in
order to ensure the monotonicity of the grid. A second setup used two versions of a constrained
SQP method [58] with grid monotonicity and stability constraints, one without, and one with user
supplied gradients of the cost function and the constraints.

The expected advantage of the optimization-based grid selection strategy is reaching an optimal
grid. The disadvantage is its complexity (highest among the considered strategies), and the lack of
robustness due to the possibility of falling into local minima traps.

Applying the optimization-based strategy on sample waveforms produced inconsistent results.
The runs that used the first cost function (magnitude of the last pseudo Fourier coefficient) re-
distributed the grid points such that there was a sharp “dip” in the pseudo spectrum at the last
frequency, and did not lead to a reduction in the truncation error, or clustering of the points in the
regions with sharp transitions. The runs using the second cost function typically ended up trapped
in a local minimum, and clustering of the grid points in regions that did not need it. The line
searches often generated infeasible intermediate grids causing a breakdown in the optimization.
Overall, the results were inconsistent, and the optimization-based strategy was not robust enough
to be integrated in TMHB and used for TMHB runs.

5.6 Practical Issues and Limitations of the Grid Selection Strate-
gies

Each of the presented grid selection strategies were developed and initially tested on single sample
circuit waveforms with sharp features. This testing phase eliminated the optimization-based strat-
egy due to inconsistent results. The direct and the iterative strategies proved robust and consistent
enough to be integrated with the TMHB algorithm and applied to actual circuits.

When either the direct or iterative grid selection strategy is integrated with the TMHB method,
the a priori nature of the strategy limits its effectiveness. The errors present in the computed
shooting-Newton solution guess with a loose tolerance cause errors in the clustering of time-points
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by the grid selection strategy. Recall that tightening the tolerance of the shooting-Newton run
would cause its run-time to become a significant part of the total run-time for the TMHB method.

In particular, the inexact shooting-Newton solution guess has been observed to cause: (1) an
unnecessary and an excessive increase in grid resolution leading to point exhaustion in the remain-
der of the grid domain; (2) an insufficient increase in grid resolution in certain regions; and (3) an
erroneous time-shift in the positioning of the grid resolution increase (when the rapid transitions
in the computed waveform are located at different times than in the actual steady-state waveform).
These errors were observed to be more noticeable in larger circuits. All of these effects lead to less
effective grids, and translate into a decreased ability of the TMHB method to achieve significantly
better solution accuracy than the standard HB method.

The observation of the stability requirement (5.7) for bounding the neighboring time-steps,
helps tremendously in producing a grid which is used to construct an effective smooth time-map
function which observes the strict monotonicity requirement without a need for filtering. This in
turn helps the Newton and GMRES iterations in the TMHB method to be efficient and to converge
to the correct solution. The smoothing nature of this time-step bounding also helps in alleviating
the aforementioned problems caused by the errors in the shooting-Newton guess, limiting the loss
of solution accuracy.

When the circuit is reasonably large, the multiple transitions problem can present a significant
setback to the grid selection strategies. In explanation, the many solution waveforms may have
rapid transitions that occur at many different times throughout the solution dd&a@inp The grid
selection strategy is then required to generate a grid which increases and decreases its resolution
many times throughout the solution domain. This is impossible to do with a limited number of
points. In addition, the stability requirement limits the peak resolution increases. As a result, the
strategies do not generate grids that lead to effective time-map functions.

In the case of direct grid selection strategy, decreasing the amount of smoothing by reducing
the grid rigidity (stability) parameten is one way to reduce this problem. In the course of our
research, we tested this approach on several circuits. The reduction of the stability pacameter
indeed in many cases lead to a more effective time-map function and increased TMHB accuracy.
However, it was impossible to determine a universal near-optimal value &aross all circuits.
Instead, a conservative and safe default value ef2 was selected.

In the iterative grid selection strategy, one may consider using a different monitor function
R. In particular, the waveform weights can be (1) all set to a constant value; (2) equal to one
constant for the voltage and another (much smaller) constant for the current waveforms; (3) set to
the maximal peak-to-peak amplitude among voltage and current waveforms separately, with the
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current peak-to-peak amplitude scaled by a constant factor. One can also use a different norm,
such as thé, norm.

These differing scaling and averaging schemes for the monitor function end up emphasizing
different waveforms in guiding the iterations of the iterative grid selection, and lead to different
final grids. Unfortunately, if the circuit is large, it is hard to evaluate whether the right waveforms
are emphasized. Sometimes the waveforms having the steepest features can in fact have a very
small peak-to-peak amplitude. This indicates that the waveform is perhaps simply a noisy DC
voltage, whose high frequency Fourier coefficients are so small that they can be of the order of
the accuracy of the computation. Such a waveform is not useful in the computation of the monitor
function and may cause less effective grid selection. These waveforms can be identified by setting a
threshold value for the peak-to-peak amplitude below which the waveform is ignored in computing
the monitor function. Choosing this threshold value is, unfortunately, circuit dependent.

In practice, all these hands-on monitor function schemes worked very well for a particular
circuit, but poorly for the remaining circuits. The selected default for a monitor function (5.10)
uses arL, norm and waveform weights set to the maximal peak-to-peak amplitude among all
voltage and current waveforms. It is a conservative choice that does not produce the best results in
individual circuits, but is universally good for all considered circuits.

Note that the interpolation of the solution guess waveforms to obtain in-between values in
the iterative grid selection strategy did not show to lessen the effectiveness of this strategy. In
particular, both linear and quadratic interpolation work equally well for this purpose.

The direct iterative strategy also sometimes showed some sensitivity to the integration method
used in the shooting-Newton run. In particular, a low second order (trapezoidal or BDF-2) scheme
sometimes can produce a large constant error in the TMHB solution. One way to eliminate this
error is to switch to using a higher order integration scheme.
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Chapter 6
Time-Mapped Harmonic Balance Results

In this Chapter we compare the performance of the TMHB method with standard state-of-the-art
matrix-implicit Krylov-subspace harmonic balance [7, 10, 11, 15] on several circuits.

The TMHB method is meant to be used on circuits whose solution waveforms undergo rapid
transitions. Most highly nonlinear circuits will exhibit such waveforms. If the circuit is linear
and driven by a sinusoidal source, all signals in the circuit will also be pure sinusoids. In such a
case, the standard HB algorithm gives the exact solution since the truncation errors for the standard
Fourier series approximations of all solution waveforms are all zerMfor 1 (see Chapter 2).

Note that the rate of change in the pure sinusoids in a linear circuit is not constant throughout
the solution domaifD, T|. As aresult, the TMHB grid selection algorithms will in general generate
mildly non-uniform grid for linear circuits, and the pseudo Fourier series representation of the
TMHB solution waveforms will have a non-zero truncation error. Similarly, we can deduce that
for mildly nonlinear circuits, i.e. circuits with smoothly varying waveforms, TMHB will not be in
general more advantageous than the standard HB method.

Four strongly nonlinear circuits were simulated with the HB and TMHB methods: a diode
rectifier, a DC-DC converter, a BICMOS switching mixer, and a BICMOS IF preamplifier circuit
driven into distortion. Equation and element statistics for these circuits are given in Table 6.1.

Both the standard HB and TMHB methods, as well as the direct and iterative grid selection
strategies were implemented in Mica, Motorola’s SPICE-like circuit simulator, in the computer
language C [55]. All computer runs were done on Sun Ultra-2 300MHz UNIX workstations.

Both the standard HB and the TMHB methods in all runs used the same shooting-Newton
solution guess (see Section 5.2) as an initial guess for the Newton iterations. Two variants of
the TMHB method were considered: TMHB-D, utilizing the direct grid selection strategy, and
TMHB-I, using the iterative grid selection strategy. The grid rigidity parameteén the grid
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Circuit L | VSRC | ISRC| VCVS | DIO | BJT | MOS | TOTAL
Diode Rectifier 2 1 1 1 8
DC-DC Converter|| 9 4 2 |1 2 1 1 11
Switching Mixer || 105 39 | 47 | 2 3 2 14 | 10 5 122
IF Preamplifier || 289 | 138 | 147 6 1 26 25 343

Table 6.1: Circuit statistics: N is the number of circuit equations; R, C, L numbers of resistors,
capacitors, and inductors; VSRC, ISRC, and VCVS numbers of voltage, current, and voltage-
controlled voltage sources; DIO number of diodes; BJT and MOS numbers of bipolar and MOS
transistors; TOTAL the total number of elements.

selection schemes was fixed at the default value 2, and the number of grid poin§8in the
iterative scheme waS= 50.

The “exact” solution for each of the circuits was computed using a standard HB method with a
very large number of harmonics (as permitted by the memory limits of the computer hardware). In
particular, the number of harmonics used in the exact HB runknass000 for the diode rectifier
and the DC-DC converter, al= 1000 for the switching mixer and IF preamplifier circuits.

6.1 Diode Rectifier

The first circuit is a simple but strongly nonlinear diode rectifier, shown in Figure 6.1. The circuit
is powered by a 50Hz sinusoidal voltage sourgét). The diode rectifier was first simulated with
both the standard HB and the TMHB-I method at same number of harmdhies]0. Plots of
two solution waveforms exhibiting rapid transitiongy (t) andvs(t), are given in Figures 6.2 and
6.3 respectively. It can be seen that the TMHB solution waveforms more closely match the exact
solution than the standard HB solution waveforms. In other words, even at this small number of
harmonics, the TMHB method computes a more accurate solution (about 10dB more accurate in
L. norm sense) than the standard HB method.

The pointwise errors in a computed solution wavefafin or in the computed Fourier coeffi-
cientsV of its approximation, in the time and frequency domains respectively, are also of interest.
The time-domain pointwise errgf is computed as:

&(t) = [V (t) = V()] (6.1)
wherev* (t) is the exact solution waveform, an¢t) is the waveform computed by the HB or the
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Figure 6.1: Diode rectifier circuit.
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Figure 6.2: Diode rectifier circuityy computed with: (A) standard HB; (B) TMHB-I, at same
number of harmonicK = 10.
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Figure 6.3: Diode rectifier circuitys computed with: (A) standard HB; (B) TMHB-I, at same
number of harmonick = 10.

TMHB method. The frequency-domain pointwise ergglis computed as:
er(kf) = Vi =W (6.2)

whereV, is thek-th Fourier coefficient of the exact solution, avidis thek-th Fourier coefficient
of the solution computed by HB or TMHB.

Figure 6.4 shows plots the pointwise errors in the compiytgdt) solution waveforms by the
HB and TMHB methods in the time and frequency domain, at same number of harrKoaid$.
In the first plot it is visible how the TMHB method diminishes the peaks in the time domain error
in the middle of the solution interval, which is where the waveforms exhibit the rapid transitions.
The second plot demonstrates that the TMHB computes each Fourier coefficient more accurately
than the standard HB.

The circuit was next repeatedly simulated with both the HB and the TMHB methods for an
increasing number of harmoni&s Figure 6.5 shows thie,, norm of the frequency-domain point-
wise errores, in dB, for the computed Fourier coefficients of ihgy waveform, versus the number
of harmonicK. The plot shows orders of magnitude improvement in the accuracy of the TMHB
solutions compared to the standard HB solution. For exampke,-a20 the TMHB solution is
about 60dB or 3 orders of magnitude more accurate than the standard HB solution.

Moreover, Figure 6.5 demonstrates the superior error convergence properties of the TMHB.
The vertical distance between the HB and TMHB convergence curves widens linearly in log space
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Figure 6.4: Diode rectifier circuit, pointwise errorsiyny: (A) time-domain errors; (B) frequency
domain errors. Both HB and TMHB-I runs us&d= 10 harmonics.
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Figure 6.5: Diode rectifier circuit, TMHB error convergendg; norm of the frequency-domain
pointwise error iry, in dB.

93



- i.e. exponentially fast in linear space with increasing number of harmahicghis is a con-
firmation of our expectations for the error convergence properties of the pseudo Fourier series
approximations and the TMHB method. The TMHB error decreases @(—P) versus the
O(M~P) error convergence of the standard HB method, \pith {.

The plot also indicates that the iterative grid selection strategy in TMHB-I produces a better
time-map function and helps the TMHB algorithm reduce the solution error more than TMHB-D
which uses the direct selection strategy.

Note that an even more superior convergence profile is obtained if a different monitor function
is used in the iterative grid selection. In particular, using.anorm in the monitor function

TN () vt \ 2\
Rm:(1+mz<1 mHF- j >) (6.3)

=1 J

and settingj = 1 for the voltage waveforms arfg = 103 for the current waveforms (effectively
scaling up the current waveforms), produces a better non-uniform grid and time-map function in
the iterative strategy. By scaling up the currents the fast-varyjipg waveform plays a much
greater role in the distribution of the time-points. The net result is that, for examp{e=a220,

the TMHB-I method using the new monitor function achieves an additional 2 orders of magnitude
gain over the previous result, effectively computing the solution 5 orders of magnitude (100dB)
more accurately than the standard HB method.
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Figure 6.6: DC-DC converter circuitco;. computed with: (A) standard HB; (B) TMHB-I, at
same number of harmoniés= 50.

6.2 DC-DC Converter

The second simulated circuit is a DC-DC converter, powered with an 85kHz input. This circuit
was first simulated with the standard HB and the TMHB-I method, both u§iagb0 harmonics.
Plots of the computed solution waveforgo,.(t) is given in Figure 6.6. The plots illustrate the
20dB improvement i, norm accuracy using the TMHB-I method at this number of harmonics.
The time and frequency domain pointwise erronvgn. as computed by HB and TMHB-I
methods at the same number of harmordcs 50, are shown in Figure 6.7. It can be seen from
the first plot how the TMHB method diminishes the error peaks at the times of the two sharp edges
in the waveform, i.e. lessens the prominence of the Gibbs effect due to its use of the pseudo Fourier
approximations. In the frequency domain (second plot), TMHB computes each individual Fourier
coefficient with a much smaller error than the standard HB method. The improvement in accuracy
is more pronounced for the Fourier coefficients corresponding to the higher frequencies - these are
the coefficients of the Fourier basis functions that are used to “build” the sharpest features in the
waveform, such as the two rapid transitions,.
The circuit was next repeatedly simulated for increasing numbers of harmonics with both HB
and TMHB methods to capture the asymptotic behavior of the error. Figure 6.8 pldts tltem
of the frequency domain error in the o waveform, versus the number of harmonis The
plot is another confirmation of the superior error convergence properties of the TMHB method. At
K = 600 the TMHB-I error is 100dB(5 orders of magnitude) smaller than the standard HB error.
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Figure 6.7: DC-DC Converter circuit, pointwise errorsufpoi.: (A) time-domain errors; (B)
frequency domain errors. Both HB and TMHB-I runs uged: 50 harmonics.

Note that thelL., norm error as well as the errors for each individual harmonic for each of the
remaining waveforms in the circuit again show similar superior convergence properties. Figure 6.8
also indicates that the TMHB-I method is more successful at simulating the DC-DC converter than
the TMHB-D method.
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DC-DC Converter: error convergence.
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Figure 6.8: DC-DC Converter circuit, TMHB error convergendg; norm of the frequency-
domain pointwise error ilcojL, in dB.
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Figure 6.9: Switching Mixer circuity31 computed with: (A) standard HB; (B) TMHB-I, at same
number of harmonick = 6.

6.3 Switching Mixer

The third considered circuit is a Gilbert cell switching mixer in BICMOS technology. Its LO (local
oscillator source) was a 1.8GHz square wave, with a rising edée atfalling edge at%, and

both rise and fall times for the edges equal to 5% of For the simulation experiments the RF
inputs were kept at zero. The idea was to obtain a transient steady state operating point with high
accuracy.

The mixer was first simulated with both the standard HB and TMHB methods at a very small
number of harmonicK = 6. Since the circuit is relatively large, larger numbers of harmonics not
only increase run times, but can also cause out of memory problems in computer systems with
insufficient RAM. It was therefore of particular interest to see whether the TMHB can compute a
significantly more accurate solution than the HB method when only a few harmonics are consid-
ered.

Plots comparing the standard HB and TMHB-I compuitgsi (t) waveforms with the exact
solution are given in Figure 6.9. The TMHB-I solution is dramatically better than the standard HB
solution despite the use of only= 6 harmonics (or equivalentiil = 2K + 1 = 13 time points).

TheL. norm of the error for the TMHB method was 18dB lower than the standard HB.

The mixer was next simulated with HB and TMHB method&at 50 harmonics. Figure 6.10
shows plots of the time and frequency domain pointwise errorgzfl The time domain error
plot shows the peaking of the errors around the times when the waveform has large gradients. The
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Figure 6.10: Switching Mixer circuit, pointwise errorsiigg1: (A) time-domain errors; (B) fre-
guency domain errors. Both HB and TMHB-I runs ugéd- 50 harmonics.

TMHB method is seen to reduce this maximal error, as well as reduce the error throughout the
rest of the solution domain. The second, frequency domain error plot shows again how the TMHB
computes each individual Fourier coefficients more accurately than the standard HB method. Note
that only the coefficients with everare plotted as the oddcoefficients are all zero (the waveform
has a frequency equal to twice the excitation frequency). It is interesting to note that the greatest
error reduction is now for the low frequency Fourier coefficients.

Our final simulation experiment for the switching mixer circuit consists of repeated HB and
TMHB runs for increasing numbers of harmoni€s Figure 6.11 summarizes the results. While
the TMHB error convergence is better than the standard HB, it is not as impressive as in the case
of the DC-DC converter circuit. As it was discussed in Section 5.6, larger circuits present several
special problems to the grid selection algorithms due to the large number of waveforms. In the
case of the switching mixer, the multiple transitions problem, as well as the erroneous time-shift
in the transitions in the computed shooting-Newton guess have been found to be the cause of the
somewhat limited success of TMHB in this circuit.
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Figure 6.12: IF Preamplifier circuiyjoytp computed with: (A) standard HB; (B) TMHB-I, at
same number of harmoni&s= 9.

6.4 IF Preamplifier

The fourth and final simulated circuitis a BICMOS IF (intermediate frequency) preamplifier, which
was driven into distortion with a 0.1V peak-to-peak 110MHz sinusoidal source. This circuit gener-
ated the largest number of equatidths= 289. The first simulation experiment was a standard HB
and a TMHB run both aK = 9 harmonics. As in the case of the switching mixer, due to the size
of the circuit, it was of particular interest to see if TMHB is a superior method for small number
of harmonics.

Plots comparing the distorted output solution wavefognT p for the standard HB method and
the TMHB-I method are shown in Figure 6.12. Tlhenorm of the error of the TMHB method was
19 dB lower than the standard HB, which these plots illustrate quite well qualitatively. Figure 6.13
shows plots of the time and frequency domain pointwise errorgifyp. A reduction of the
error in each computed Fourier coefficient using the TMHB method is evident from the frequency
domain plot.

The final set of simulation experiments was a repeated sequence of HB and TMHB runs for
increasing number of harmoni& A summary of the results is given in Figure 6.14. The plots
show that the TMHB-I method has the best error convergence profile. The size of the circuit, as
in the case of the switching mixer, caused some problems to the grid selection strategies, which
is why the TMHB convergence profiles are not quite as spectacular as in the case of the two
smaller circuits, the diode rectifier and DC-DC converter. In particular, the multiple transitions
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Figure 6.13: IF Preamplifier circuit, pointwise errorsvsuTp: (A) time-domain errors; (B) fre-
guency domain errors. Both HB and TMHB-I runs uséd- 9 harmonics.

problems was found to be a cause in the degraded performance of both TMHB-D and TMHB-I. In
addition, in the case of TMHB-D, using the a low second order (trapezoidal) integration method
in the shooting-Newton solution guess run caused a large constant error which is in evidence in
Figure 6.14. This problem was resolved when a higher order scheme (BDF-5) was used, as seen
from the plot.
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IF Preamplifier: error convergence.
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6.5 Runtime Efficiency and Storage Requirements of TMHB

A logical way to measure the runtime efficiency of the TMHB method is to compare standard
HB and TMHB runs achieving same accuracy in the solution. Tables 6.2 and 6.3 summarize
these findings. The accura&ywas thelL., norm of the frequency domain pointwise error in the
computed Fourier coefficients for the waveforms used for the error convergence profile plots in the
previous Sections.

The total CPU times include the time spent in the grid selection strategy, as well as a complete
unmap of all solution waveforms in the circuit. The simpler direct grid selection strategy is much
faster than the iterative grid selection strategy. On the other hand, the cost of the iterative grid
selection strategy is independent of the number of harmdnjand linearly depends only on the
selected size of the iterated g&qwhich was kept fixed & = 50 in our experiments) and the size
of the circuitN.

A complete unmap of all solution waveforms, as discussed in Subsection 4.3.1, is in general
unnecessary in practice as only a few waveforms are of interest. A partial unmap of only the few
needed waveforms can generate significant total CPU time savings for larger circuits with hundreds
of waveforms.

Standard HB TMHB-D
Circuit E K T T IL | In] K T T L | In
Diode Rectifier | -200| 650 | 43.2 | 33.0 | 273 | 16 | 330| 40.8 | 21.1 | 243 | 16
DC-DC Converter| -100 || 1000 | 1080 | 1053 | 2487 | 14 | 250 | 1740 | 1658 | 7160 | 12
Switching Mixer | -130 (| 150 | 67.3 | 21.8| 37 | 8 | 50 | 56.4 | 22.7| 88 | 9
IF Preamplifier | -155| 170 | 1065| 861 | 417 | 18 | 100 | 626 | 509 | 370 | 15

Table 6.2: Comparison of the standard HB and TMHB-D methods at same achieved solution
accuracyE is the achieved accuracy in dR.is number of harmonicg; is total CPU timeT, is

linear solve timel, is number of GMRES iterationgy is number of Newton iterations. All times

are in seconds.

Table 6.2 compares the runtime statistics for the standard HB runs and the TMHB-D runs
achieving identical solution accuracy. It can be seen that the TMHB-D is comparable in efficiency
to the standard HB method for the diode rectifier circuit, while it is less efficient for the DC-DC
converter. This is caused by the larger number of GMRES linear iterations associated with the
TMHB-D method.
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The cause of this increase in linear iterations was traced to the nature of the time-map functions
A(f) generated by the direct grid selection strategy. In particular, this time-map function increases
the grid density in the regions of rapid transitions to a much larger degree than in the case of the
time-map function generated by the iterative grid selection strategy. The very large increase in grid
density corresponds to the “flat” segments\¢f), i.e. to a very small first derivativ¥ (f) of the
time-map function. The large spread in these derivative values leads to a large condition number
of the diagonal matrix of these derivativAs which in turn causes condition number increase in
the Jacobian matrid for the linear problem in TMHB.

The situation improves for the larger circuits, the switching mixer and the IF preamplifier.
Due to the multiple transitions problem in larger circuits (see Section 5.6), the time-map function
constructed from the non-uniform grid generated by the direct strategy does not yield excessive grid
density increases as in the case of the two smaller circuits. For the IF preamplifier, the TMHB-
D method (using a BDF-5 integration method for the shooting-Newton solution guess run) is 1.7
times faster than standard HB.

Standard HB TMHB-I
Circuit E K T T I | In| K T T L | In
Diode Rectifier | -200 || 650 | 43.2 | 33.0 | 273 | 16| 240 | 27.2| 6.84| 187 | 14
DC-DC Converter| -100 || 1000 | 1080 | 1053 | 2487 | 14| 180 | 177 | 156 | 2112| 12
Switching Mixer | -130 || 150 | 67.3 | 21.8| 37 | 8 | 45 | 62.8|13.1| 73 | 9
IF Preamplifier | -155| 170 | 1065| 861 | 417 | 18| 90 | 662 | 514 | 441 | 17

Table 6.3: Comparison of the standard HB and TMHB-I methods at same achieved solution accu-
racy. E is the achieved accuracy in dR.is number of harmonicg; is total CPU time]_ is linear

solve time)l is number of GMRES iterationsy is number of Newton iterations. All times are in
seconds.

Table 6.3 compares the runtime statistics for the standard HB runs and the TMHB-I runs achiev-
ing identical solution accuracy. Significant runtime speedups are seen for three of the four simu-
lated circuits. For both the diode rectifier and the IF preamplifier, a speedup of 1.6 is achieved. For
the DC-DC converter the speedup is a factor of 6.

The total CPU timed for the HB and TMHB-I methods in reaching a specific accuracy in
vcoiL from the DC-DC converter circuit are shown in Figure 6.15. The accuracy measure was
again theL, norm of the frequency domain pointwise error in the computed Fourier coefficients.
For less stringent accuracies , the total CPU times for the TMHB method are comparable to the
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Figure 6.15: DC-DC Converter circuit: total CPU timiefor HB and TMHB-I to reach a specific
solution accuracy incoiL- (A) linear plot; (B) log plot.

HB CPU times due to the TMHB overhead in grid selection and waveform unmap. The situation is
drastically different for accuracies better than -50dB: the TMHB becomes up to several times faster
than the HB method. In addition the speedup factor grows with increases in required accuracies.

The TMHB is expected to retain th@NMlogM) complexity of standard HB, while reducing
the errorO((ﬁ)% versus theO((ﬁ)p> error convergence of the standard HB method, with
p > p. The roughly linear dependence of the CPU timen M, means that log") will roughly
behave as logvl). Therefore, whetog(T) is plotted against the error in dB which has dependence
log (ﬁp> = —plog(M), the plot is a straight line with a slope proportionaltoThe steeper slope
of thelog(T) line corresponding to TMHB in plot (B) of Figure 6.15 confirms the complexity and
convergence properties of TMHB.

The memory storage requirements for the TMHB method are the same as for the standard HB
method, growing linearly witt due to the storage of the Krylov subspace vectors in the GMRES
linear solver. Since the TMHB method can achieve same solution accuracy as the standard HB
method with a smaller number of harmonics, it follows that significant memory savings can be
achieved by using the TMHB method. In particular, from Table 6.3, we can measure the memory
savings roughly as the ratio of the needed numbers of harm#&nfos the standard HB and the
TMHB-I method respectively. For example, the memory savings range from a factor of 1.9 for the
IF preamplifier, to a factor of 5.5 for the DC-DC converter.

Figure 6.16 shows the required numbers of harmoKicseeded by the HB and the TMHB-I
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Figure 6.16: DC-DC Converter circuit: numbers of harmoricsequired of HB and TMHB-I to
reach a specific solution accuracymrp.. (A) linear plot; (B) log plot.

methods, versus the reached accuracy invthg, waveform for the DC-DC Converter circuit.
Since the storage requirements are proportionkl tike plot demonstrates that the TMHB method
storage requirements at same solution accuracy are not only smaller than those of the HB, but also
grow less rapidly for higher accuracy computations.

We can therefore conclude that TMHB is particularly well suited for high accuracy simulations
of large memory hungry circuits.
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Chapter 7
Conclusions

Harmonic balance (HB) methods are the frequency-domain algorithms of choice for high accuracy
computation of the periodic steady-state of circuits. Matrix-implicit Krylov-subspace techniques
have made it possible for these methods to simulate large circuits more efficiently. However,
the harmonic balance methods are not so efficient in computing steady-state solutions of strongly
nonlinear circuits with rapid transitions. While the time-domain shooting-Newton methods can
handle these problems, the low-order integration methods typically used with shooting-Newton
methods are inefficient when high solution accuracy is required.

In this dissertation, we embarked on the quest for better, more powerful spectral methods for
circuit analysis.

7.1 Contributions of Thesis

We first examined possible enhancements to the standard state-of-the-art preconditioned matrix-
implicit Krylov-subspace HB method. We formulated the BDF time-domain preconditioners and
showed that they can be quite effective for strongly nonlinear circuits, speeding up the HB runtimes
by several times compared to using the frequency-domain block-diagonal preconditioner. Also, an
approximate Galerkin HB formulation was derived, yielding a small improvement in accuracy
over the standard pseudospectral HB formulation, and about a factor of 1.5 runtime speedup in
runs reaching identical solution error.

Next, we introduced and developed the Time-Mapped Harmonic Balance method (TMHB)
as a fast Krylov-subspace spectral method that overcomes the inefficiency of standard harmonic
balance for circuits with rapid transitions. TMHB features a non-uniform grid and a time-map
function to resolve the sharp features in the signals. At the core of the TMHB method is the

109



notion of pseudo Fourier approximations. The rapid transitions in the solution waveforms are well
approximated with pseudo Fourier interpolants, whose building blocks are complex exponential
basis functions with smoothly varying frequencies.

The TMHB method features a matrix-implicit Krylov-subspace solution approach of same
complexity as the standard harmonic balance method. As the TMHB solution is computed in a
pseudo domain, we gave a procedure for computing the real Fourier coefficients of the solution,
and we also detailed the construction of the time-map function. The convergence properties of
TMHB were analyzed and demonstrated on analytic waveforms.

The success of TMHB is critically dependent on the selection of a non-uniform grid. Two grid
selection strategies, direct and iterative, were introduced and studied. Both strategies are a priori
schemes, and are designed to obey accuracy and stability requirements. Practical issues associated
with their use were also addressed.

Results of applying the TMHB method on several circuit examples demonstrated that the
TMHB method achieves up to five orders of magnitude improvement in accuracy compared to
the standard harmonic balance method. The solution error in TMHB decays exponentially faster
than the standard HB method when the size of the Fourier basis increases linearly. The TMHB
method is also up to six times faster than the standard HB method in reaching identical solution
accuracy, and uses up to five times less computer memory. The TMHB runtime speedup factor and
storage savings favorably increase for stricter accuracy requirements, making TMHB well suited
for high accuracy simulations of large strongly nonlinear circuits with rapid transitions.

7.2 Future Work

The grid selection strategies were shown to be the weak link in the TMHB method. More work in
this area (particularly in the case of multiple waveforms in larger circuits) may enhance the consis-
tency of the TMHB method and increase its practical value. In particular, more robust optimization
schemes minimizing different functionals of the solution [71, 73, 76] deserve additional attention.

The post-processing procedure used in computing the real Fourier coefficients from the pseudo
Fourier coefficients computed by the TMHB Hag&oM?) complexity, compared to tt@(NMIlogM)
complexity of the TMHB method. While we argued that in practice this does not cause runtime
efficiency problems (see Chapter 4), it may be possible to use a faster alternative algorithm for
this post-processing unmap step [78]. A less expensive procedure for computing the real Fourier
coefficients can have a major impact on an efficient implementation of an adaptive grid selection
TMHB algorithm.
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While time-domain steady-state methods, such as the shooting-Newton method, and the finite-
difference method, cannot be applied to analyze circuits driven by multi-tone signals, the harmonic
balance method can be readily extended to solve these circuits [6, 23, 24, 25, 26, 27, 28, 29].
When the excitation signals have widely-separated frequencies, new methods based on convert-
ing the circuit equations to multi-rate partial differential equations have been proposed [19, 20].
Two-dimensional mapping pseudospectral techniques applied to explicit scalar problems have been
considered in [74, 83]. However, it is not yet clear whether extending the TMHB method to multi-
tone problems is possible. A further study is needed to answer this question.

An efficient analysis of two-tone linear time-varying circuits (e.g. PLLs, mixers, narrow-band
amplifiers, switched capacitor filters) has recently been facilitated with Krylov-subspace based
time-varying time-domain methods [16], as well as with a Krylov-subspace time-varying extension
of the harmonic balance method [18]. Harmonic balance has also been applied to autonomous
circuits (e.g. oscillators) [14]. Whether the mapping techniques of the TMHB method can be
extended to these problems is an open question.

New spectral methods for special classes of circuits will continue to be developed. For example,
we also formulated the Mixed Fourier-Chebyshev (MFC) method, which is much like the Mixed
Frequency-Time (MFT) method [2, 4] and is meant to be used for clocked analog circuits. A
derivation and a simple example of this method are presented in the Appendix A. A complete
evaluation of the anticipated advantages of this new method requires further research.
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Appendix A

The Mixed Fourier-Chebyshev Method

The steady-state analysis of clocked analog circuits is extremely computationally expensive be-
cause the period of the clock is typically orders of magnitude smaller than the time period of inter-
est. The Mixed Frequency-Time method (MFT) [2, 4] exploits the property of these circuits that
their waveforms are similar over the clock cycle intervals. The method thus efficiently computes a
solution by integrating over only a few selected cycles.

We developed the Mixed Fourier-Chebyshev method (MFC) as a fully spectral method similar
to MFT. The cycle segments of the waveforms are no longer obtained by time integration, but by
approximation with truncated Chebyshev series.

To understand the MFC it is helpful to review the Mixed Frequency-Time method (MFT) [2, 4].
Given a quasiperiodic response sample8 pwints at ratelc, as shown in Figure A.1, the method
starts by picking) sample timeg; out of the sample set. The sampled wavefor(my) is then
approximated by d-term Fourier series.

The MFT method represents coupling of the Fourier delay relationship:

V(T+Te) = D(Te)v(T) (A1)

whereD(T,) = I (Te)I", with the time integration of thé cycles[t, T+ T:

V(T+Te) =&(V(1), T, T+ T¢) (A.2)

The coupled equations are then solvedvar ):

&E(V(1),T,T+Te) = D(Te)v(t) =0 (A.3)

The Mixed Fourier-Chebyshev method features the same Fourier delay relationship as in the
MFT method:
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Figure A.1: Sampled quasiperiodic response.
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V(T3 +Te) v(t3)

The cycle waveforms are no longer computed by time integration (transient simulation), but
with Chebyshev polynomials due to their non-periodicity. The method is thus fully spectral in
nature and achieves in theory exponential order convergence.

The approximation of thé cycle waveformwj(t) with Chebyshev series is:

M-1 1
V(1) = Z) CjxTk(x) = 5Ci 0 (A.5)
=

wherex = p;(t) (linear map oftj,1j + T¢] onto[—1, 1]).

The collocation grid is the standard “roots” interigvl — 1)-point Chebyshev grid:x, =
(1-3)
cos(" 2 )

M—1
Consider a simple example: an exponential resistor circuit shown in Figure A.2 and described
by the following equations

CV+iv—f(V—Vin) =0
f(v)=¢' (A.6)
Vin = &;Sin(2rtfit) 4 acsin(2mfct)
The Mixed Fourier-Chebyshev method for this problem generates a td#J efjuations; the
first (M — 1)J equations represent tlespectral problems:
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Figure A.2: Exponential resistor circuit.
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Figure A.3: MFC method results for the exponential resistor circuit.

c (T% Z{l":_ole,ka’(m» +3 (Zl’lﬂ:_olcj,ka(Xl) - %Cj,o> - A
f (SMGCiuTlx) — 1Cio) =0
while the last) equations represent the B.C.s via the Fourier delay relationship:
Sico CkTk(D) — 3C10

Yo CoTk(—1) — 3Cao
: = D(Te) | ¢
Yo CakT(1) — 3Ca0

(A.8)
koo CaxT(=1) = 5Ca0
This system of equations is then solved for the Chebyshev coeffigntsvith Newton’s
method. Note that the Chebyshev (upper) part of Jacobian is block-diagonal, while the Fourier
(lower) part is full.

Figure A.3 shows the resulting Fourier sample points and cycle waveforms from applying the
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Mixed Fourier-Chebyshev method to the exponential resistor circuit from Figure A.2. There were
J = 13 total cycles. Robust and fast Newton convergence was observed. The plot verifies the
validity of the MFC method by comparing the solution with the steady-state waveform computed

via SPICE’s transient analysis.
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