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Chapter 1

Introduction

Micromachined tuning fork gyroscopes are used to measure rotational rate in various
sensing applications. This is accomplished by making use of the Coriolis effects caused
by rotation of the gyro with respect to inertial space. In order to exploit the physics,
a micromechanical structure consisting of two proof masses constrained by beam flex-
ures is utilized. The dynamics of this mechanical structure, along with the associated
control and signal conditioning electronics, constitute the electromechanical system
which this thesis examines.

Draper Laboratory’s tuning fork gyroscope will be used in environments where
it will experience mechanical vibration and impact. One of the aims of gyro design
is to ensure that the instrument will survive in these environments, and continue to
give accurate readings of rotational rate. The intent of this thesis is to examine the
sensitivity of the gyro to mechanical vibration and impact.

Theoretical work presented in section 2.2.1 develops a linear model of gyroscope
operation. Testing indicates that the model captures the essential dynamics of the
mechanical model, although some nonlinear effects are seen. Measurement of Duffing
spring effects in the gyro are undertaken as part of the model development. Although
cubic spring terms are seen, they modify flexure stiffness by only approximately 0.14
% at nominal displacement amplitudes, and so can usually be neglected. (section 4.3)
The only exception to this is during high amplitude vibration at the motor axis res-

onant frequencies, where nonlinearities will shift the resonant frequency appreciably.
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In addition to spring nonlinearities, Coriolis forces are inherently nonlinear, and must
be considered as such. (see section 2.2.3)

In addition to the theoretical work, significant work has gone into the development
of experimental systems for vibration and impact testing, as described in chapter 3.
Two mechanical shakers were purchased, one low frequency electromagnetic shaker,
and one high frequency piezoelectric shaker. Using these systems, it was possible to
deliver sinusoidal vibrations from 1 kHz levels throughout the bandwidth of the gyro
(as high as 30 kHz). Random vibration excitations were also used for testing. For
impact testing, a calibrated hammer was utilized. The hammer includes an internal
force sensor and various tips which can be used to deliver different types of impacts.

Construction of the experimental apparatus involved substantial design work. In
particular, a major effort was made to create stiff mounting fixtures which would not
confuse test results by the addition of unmodeled dynamics. Section 3.3 discusses
fixture design.

Two main types of testing were conducted. During open loop testing, the gyro was
driven only by applied mechanical excitations. This type of testing allowed verification
of the model and measurement of critical model parameters. Each unit used in testing
underwent () tests to determine damping, and vibration tests to determine modal
frequencies. Spring nonlinearities were computed by measuring the shift in modal
frequency with amplitude. Mismatch in flexure springs was determined, showing
a 1 or 2 % mismatch, varying from unit to unit. (section 5.3) Finally, response to
random vibration at modal frequencies was determined, as well as response to random
vibration in particular bandwidths. This data is used to recommend the maximum
allowable vibration which the gyro can safely experience without causing any damage
to the structure. See chapter 5 for the results of open loop testing.

Closed loop testing was conducted to determine operational errors caused by im-
pact and vibration. In particular, erroneous signals seen at the gyro rate output were
measured, as well as shifts in the rate output mean. Rate output is the signal gener-
ated by the gyro which gives an estimate of the rotational rate being experienced.

The gyro was most sensitive to low frequency angular vibration at the difference
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between the two antiparallel modal frequencies, which generated substantial motion
out of the plane due to Coriolis forcing of the antiparallel mode. Vibration at this
frequency will quickly saturate the gyro electronics, and produces some errors on rate
out. The gyro was also very sensitive to vibration at the in-plane parallel modal fre-
quency, called the hula frequency (see section 2.2.2), which caused AC-out to clip and
produced errors on rate out. Sufficiently high vibration levels at the hula frequency
cause the gyro to shut down completely. Random vibration also produces erroneous
measurements on the gyro rate output, most notably at the differences between the
various modal frequencies. (See Chapters 6 and 7).

Impact, similarly, can easily saturate the electronics, and produces errors on rate
out at the difference between certain natural frequencies. Impact testing indicates
strong dependence of gyro response on the duration of the impact pulse. Impact pulses
with durations more than 3 times the natural period of the gyro modes will cause
little response. Design of gyro mounting structures will be important in reducing
impact response, since structure resonances couple strongly into gyro output. Impact
testing is discussed in chapter 8.

This work develops a good understanding of the various errors produced by dif-
ferent types of mechanical vibration and impact. Particularly, levels of vibration and
impact which will cause saturation of the electronics, loss of gyro operation, and per-
manent damage to the device are determined. The dependence of the errors on certain
system parameters such as spring mismatch and impulse duration are considered.

Chapter 2 presents background information on the gyro, including mechanical
modeling and a description of the gyro electronics. Experimental systems are de-
scribed in Chapter 3. In Chapter 4, a discussion of characterization testing is pursued,
including Q) testing and measurement of spring nonlinearities. Chapter 5 discusses
open loop vibration testing, and compares results with theory. The maximum safe
vibration levels are determined. Chapter 6 enters into a discussion of low frequency
closed loop vibration, which is most critical to gyro performance under real environ-
mental conditions. Various error signals are discussed and their sources determined.

High frequency vibration effects are considered in Chapter 7, focusing on the effects

17



of sinusoidal vibration at the hula frequency, which causes the most errors. Chap-
ter 8 discusses impact modeling and test results, showing sensitivity to impact and
determining various important factors relating to impact response. Particular detail
is given regarding the effects of impact pulse duration. In Chapter 9, a summary
of all pertinent results is presented, including important estimates of the levels of

mechanical excitation that can be safely sustained.
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Chapter 2

Background

This chapter covers the background needed to understand the functioning and testing
of the tuning fork gyroscope. The physical layout of the microgyro and its associ-
ated systems are described. From this physical description, a mechanical model is
developed. This model includes fundamental linear dynamics of the gyro. Coriolis
effects, vibration inputs, and nonlinear spring elements are also discussed. In addi-
tion to the description of the mechanical subsystems, the electrical subsystems are
described. These include the micromachined capacitors used for sensing and driving
motion, and the control and signal conditioning electronics. The rest of the thesis

will draw heavily on the models and terminology defined in this chapter.

2.1 Physical Description

2.1.1 Microlevel Description

The TFG14 is micromachined from single crystal silicon using standard semiconductor
fabrication processes and other micromachining techniques. [1, 4] Figure 2-1 is a
microscope picture of the physical device.

The mechanical gyro consists of a few functional parts: the two proof masses,
the flexures, the basebeam, the inner and outer motor combs, and the sense plates.

Section 2.1.1 describes these different subunits and their various roles. All of the
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Figure 2-1: Microscope Picture of the Tuning Fork Gyro

structures lie in a single plane, which will be referred to as the plane of the device.
Motion is possible both in the plane, and perpendicular to the plane of the device.
Any such perpendicular motion will be referred to as motion out of the plane.

Figures 2-2 and 2-3 give diagrams illustrating the major functional parts of the
gyro. The figures also label the three orthogonal directions as input, motor, and
sense. These labels will be used throughout this thesis. The names motor azis and
drive azis are used interchangeably.

The two proof masses are plates of silicon through which many square holes have
been machined. The masses are physically driven by the gyro system, and create
the physics needed to sense rate. The holes exist to allow fluid (usually air) to flow
through the proof masses, helping to reduce thin film damping effects. Each proof
mass has a mass of approximately 3.6 - 1078 kg.

Both proof masses are constrained by flexures, which are beams machined from
the silicon wafer. The beams act as springs, bending to allow the proof mass to move
both in the plane of the device, and also out of the plane. The beam dimensions

determine their stiffness.
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Cuter Motor
Combs

Outer Motor
Combs

Inner Motor
Combs

Figure 2-2: Functional Units in the Tuning Fork gyro. Looking down on the plane of
the device

Sense
. Inner Motor
Outer Motor Motor,  Combs Outer Motor
Combs Tnput Drive Combs

Proof Mass Proof Mass

Sense Plate Sense Plate

Figure 2-3: Functional Units in the Tuning Fork gyro. View in the plane of the device
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Instead of connecting directly to anchors, the flexures connect to a much larger,
and thus stiffer, basebeam. The basebeam connects to the substrate at an anchor
point, and provides the main support for the gyro structure.

For driving and sensing motion in the plane of the device, the inner and outer
motor comb structures are utilized. These structures are anchored directly to the
substrate. They consist of a number of long slender fingers which mesh with identical
fingers connected to the proof mass. Each side of the proof mass has a set of fingers.
Thus, there are 4 sets of interdigitated fingers, two between the masses, and two on
the outsides. The interdigitated fingers form capacitors, which allow the gyro to sense
and drive motion in the plane.

Below the proof masses there are large, fixed conducting plates, which form a
parallel plate capacitor with the proof masses themselves (two capacitors, one for

each proof mass). These capacitors are used to sense motion out of the plane.[3]

2.1.2 Packaging and Electronics

The MEMS structure described above is mounted in a lead-less ceramic chip carrier
(LCCC). Some LCCC packages are sealed with a vacuum inside, some are left open.
When working with an open LCCC, a vacuum pump is used to bring the pressure
inside the LCCC down to operating levels.

The LCCC is mounted in a “Kyocera” package, which is approximately 3 cm
square. This Kyocera package includes two pre-amplifiers used in sensing in-plane
and out-of-plane motion.

The majority of the electronics used in testing gyro operation are housed on the
EDMS3 board. This board contains the electronics used for readout, driving the gyro,
and compensation. The Kyocera package clamps into a “guillotine” connector on the
EDM3 board.

The EDMS3 board connects via a 21-pin connector and cable to a breakout box.
This box receives DC power from a power supply, and has BNC connectors deliv-
ering various signals relevant to gyro operation. See figure 3-1 in section 3.1 for a

photograph of the EDM3 board and breakout box.
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2.2 Mechanical SubSystem

In order to understand gyro operation, a linear mechanical model has been developed.
This section describes the derivation of the mechanical model and gives the system
matrices in symbolic terms. From the model, the major linear mechanical modes are
predicted and defined. A discussion of Coriolis forcing follows, with an accompanying
explanation of the mechanism by which the gyro senses rotational rate. After the
discussion of the inherently nonlinear Coriolis effects, cubic spring nonlinearities are

considered symbolically.

2.2.1 Lumped Element Mechanical Model

Refer to section 2.1.1 for a physical description of the mechanical gyro device, and
for definitions of the various terms used here. For theory relating to linear system
modeling, consult [5, pp. 13-207] and [7, pp. 439-541]. For a detailed discussion of
microgyro modeling, see [3] and [6].

From the physical description, a lumped element mechanical model can be de-
rived. This model deals only with the mechanical properties of the structure; the
electrical effects introduced by the capacitors are considered in section 2.3. A num-
ber of assumptions are made, drastically reducing the order of the model but still
maintaining all essential features of gyro response.

Simplifying assumptions:
1. The proof masses are stiff, and can be considered rigid bodies.

2. The flexures are much stiffer in the input direction than in sense and drive, thus

we will assume no motion of the proof masses in the input direction.

3. Due to the translational nature of the excitations experienced by the proof
masses, we will assume only translational motion, and not consider rigid body

rotation of the proof mass.

4. Electrostatic forces due to DC biasing on the comb drives and the flexure stiff-

ness are together lumped into single linear springs.
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5. The basebeam is infinitely stiff. (This assumption is only valid for the low
order modes under examination here, for higher order modes compliance of the

basebeam is significant.)

6. For motor motion, the basebeam connection to the substrate is assumed to be

stiff to rotation, but is given translational compliance.

7. For sense motion, the basebeam connection to the substrate anchor beam is as-
sumed to be infinitely stiff to translation, but to have some torsional compliance,

allowing the basebeam to rotate in a rigid fashion about the input axis.

8. Linear damping is assumed. I will assume damping comes from the velocity of

the proof mass with respect to the gyro substrate.

Taking these assumptions, there are two directions in which each proof mass can
move, giving a total of 4 degrees of freedom, and thus 8 states, for the model. The
state variables, therefore, are the position and velocity of each mass in both motor
and sense directions. To construct the model, we can consider each axis of motion
separately, and then combine the two together, adding appropriate crosscoupling
terms.

Figure 2-4 gives a lumped element model for the motor axis alone. Each proof
mass is modeled as a mass element, constrained with linear springs and dampers.
The flexure spring elements do not connect directly to ground, but rather to the
rigid basebeam, which itself connects to ground via the basebeam spring. This spring
models the compliance of the basebeam and its anchor structure.

From this lumped element model, the linear motor-axis model can be constructed,
which describes motion of the two proof masses in the plane of the device. The
following state space representation of the isolated motor axis system is produced.
Forcing terms will be considered in section 2.2.3 and 2.2.4. The derivation is carried

out in more detail in appendix A.
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T 0 0 1 0 T
Where:
J— kwlkw+kw2kwl
Kon = kotko1+hse
_ — kz1kzo
Kw12 - Kw21 - kw1+kw2+kw

— kpoketkioks
Kw22 - k:c+k:c1+k:c2

The situation for the sense axis is more complex. Again, we will model the proof
masses as mass elements, constrained by linear springs. These springs attach to the
rigid basebeam, which connects to ground via a torsional spring. The lumped element
model is diagrammed in figure 2-5.

From this lumped element model, the state space representation of the sense axis
system is derived. The torsional spring stiffness, kg is in units of [N - m/radian).

The system equations are given by equation 2.2. Again, forcing terms are not in-
cluded, they will be considered later in sections 2.2.3 and 2.2.4. The model derivation

is carried out in detail in appendix A.
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Figure 2-5: Sense Axis Lumped Element Model
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dt Yo 0 Kya1 by —Kya Ui
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Yo 0 0 1 0 Yo
Where:
_ ky1kg+L2ky1ky2
Kyll - kg+L2(ky1+ky2)
— — —L2ky1ky2
Koo = Koo = o, i+ 1om,,
K — k12k9+L2k12k11
Y22 T Rt L2(ky1+hy2)

Equations 2.1 and 2.2 can be combined to produce a dual axis linear gyro model.
This model also includes crosscoupling terms which link motion from one axis to

motion of the other axis. Equation 2.3 gives the full system matrix:

. 1 0o o0 o |l0 0o 0 o0 .
d | o o 1 0 |0 0 0 0 .
dt - z kg —-K, K. ) .
“ cllE 0 |- S0 G 4i
o o o0 o0 0 |1 0 0 0 w
: by ks K. -K .
Y2 0 0 Gmr Gwm) 0 am ol ¥o
Yo o o0 0o 0 |0 0 1 0 Y

) (2.3)

Where all the spring constants are as defined above for equations 2.1 and 2.2.
The linear model presented in equation 2.3 will be used throughout this document.
Most of my predictions are based on it. Sections 2.2.3 and 2.2.4 outline the various

types of inputs to the mechanical model.
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2.2.2 Gyro Normal Modes

From the linear model presented in equation 2.3, the system modes can be computed.

Again, simplifying assumptions are made:

1. The two proof masses are the same mass. This is the aim of the fabrication

process, and although there is some mismatch in the masses, it should be small.

2. The flexures are symmetrical; thus the linear spring constants k,; = k2 and
kyi = ky. Again, this is the aim of the fabrication process, and there will

always be some small spring mismatch.

3. Crosscoupling terms (b, k,,) between the motor and sense axes are small, and

will be neglected in the computation of normal modes.

4. Damping is small (b,, b,) and will not affect the mode shapes or model frequen-

cies appreciably. (For these devices Q=10,000-200,000)

Assumption # 3 decouples the two axes, so again we can consider the motor
axis modes and the sense axis modes separately. Neglecting damping and assuming
perfectly balanced springs and masses produces the following simplified motor model

(where ks = k;1 = kyo is the flexure stiffness, and m = m; = my):

T [ —kZ;—kakas\ 1 k2 T B .
Al 0 ( kot 2kyf ) ‘m 0 (2kwf+kw) m T
d| x 1 0 0 0 T
dt .1 = K2 L —k2—kakos) 1 | .1 (2.4)
Z2 0 (2kwf+kw) m 0 ( ko2 ) “m Z2
| T2 | 0 0 1 0 | T2 |

From this, we can compute the four eigenvalues of the system matrix:
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As expected, the eigenvalues are pure imaginary (no damping), and come in con-
jugate pairs. Thus, there are two eigenfrequencies for the motor axis. Each of these
corresponds to an eigenmode. Computing the eigenvectors of the system matrix in

equation 2.4, we get, for eigenvalues 1 and 2, the repeated eigenvector:

For eigenvalues 3 and 4, the repeated eigenvector is:

1

o = O

For the tuning fork gyro, the modes are given names: tuning fork mode refers to
the antiparallel eigenmode described by the first eigenvalue/eigenvector pair. Hula
mode refers to the parallel eigenmode described by the second eigenvalue/eigenvector
pair.

An identical derivation produces the sense axis modes, which also have names.
The antiparallel mode is called the sense mode, and the parallel mode is called the
out of plane mode. Again, let

ky = ky1 = kyp and m = m; = my

Then the eigenvalues of the sense axis system matrix (defining the modal frequen-

cies) are:
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Figure 2-6 depicts the motion of each of the four major gyro modes.

During testing, the gyro modal frequencies can be measured. Using this infor-
mation, it is possible to compute values for kg, k¢, ky, and ky. Note that any
compliance in the basebeam, which was assumed to be infinitely stiff in assumption
# 5 above, is lumped in with the various spring constants. Now, with the matched
springs and masses assumption used above in equations 2.6 and 2.5, we can set the

eigenfrequencies equal to the modal frequencies, producing the relationships relating
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mass and spring values to modal frequencies. These relationships, which are used for
computing model parameters for each unit, are are given in equations 2.7 through

2.10,

87 fruta™
ky = L 2.8
- 47T2fl%ula% ( )
ky=4-f2 m°m (2.9)

87T2L2’I’7L 2 2

_ oopJ sense
kp = — (2.10)
oop sense

It is difficult to determine how much the springs are mismatched, so I will use the
above relationships to determine parameter values. When it does become necessary
to examine spring or mass mismatch (the springs tend to be more mismatched than
the masses), I will assume some percentage mismatch and move the two springs
apart from the average value computed above. This is done using the relationship in

equation 2.11,

ATK = mismatch
K, =K+ AK (2.11)
K2 = K - AK

Except where explicitly mentioned, I will assume perfectly matched springs and

masses.

2.2.3 Coriolis Acceleration and Rate Sensing

In order to sense rotational rate, the gyroscope makes use of the Coriolis effect. This is
an acceleration in the frame of the device, created by rotation of the entire gyroscope

with respect to inertial space. The expression for Coriolis acceleration is,
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gCoriolis = 26 X ¥ (212)

Where:

¥ is the velocity of some object with respect to the frame of the gyroscope.
() is the rate of rotation of the frame of the gyroscope with respect to inertial space.

gCoriolis is the acceleration of the object with respect to the frame of the gyroscope

See [7, pp. 90-107] for a thorough discussion on coriolis acceleration terms.

The aim of the gyroscope is to accurately determine the rotational rate 2. During
operation, the gyro is driven, using the electrostatic forces generated by the outer
motor combs, at the tuning fork frequency. This excites the tuning fork mode. (see
figure 2-7). Now, if the gyro experiences a rotation Q, a Coriolis acceleration is
produced on the two proof masses, as described by equation 2.12. This acceleration
is perpendicular to both the rate vector and the velocity vector. The gyro is most
sensitive, in this mode of operation, to rate about the input azis (see figures 2-2
and 2-3). Since the tuning fork mode has a velocity in the motor azis direction, the
Coriolis acceleration is produce in the sense direction, which is out of the plane of the
device. (see figures 2-2 and 2-3) See [3] for a description of gyro Coriolis physics.

This Coriolis acceleration causes the proof masses to move out of the plane. By
sensing out-of-plane motion, it is possible to compute the input rate, 2. Figure 2-7
depicts the situation during normal gyro operation.

The velocities #; and %3 are sinusoidal at the tuning fork frequency. They are
also 180 degrees out of phase with each other. Thus, for a time invariant rate, €2, the
Coriolis accelerations will also be oscillatory at the tuning fork frequency, and out of
phase with each other. So, while one proof mass is accelerating downwards towards
the substrate, the other is accelerating away, and vice versa. This oscillatory motion

has the same shape as the sense mode depicted in figure 2-6. However, since we are
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Figure 2-7: Coriolis Acceleration During Normal Gyro Operation

exciting it with an acceleration at the tuning fork frequency, the sense motion will be
at the tuning fork frequency, not at the sense frequency.

Now, if the input rate also varies, the situation becomes more complex. However,
equation 2.12 always holds. We know that multiplication of two sinusoids produces

power at sum and difference frequencies (called sidebands):

sin(w,) sin(wst) = %cos((wl +un)t) — %cos((wl —w)) (2.13)

Thus, an oscillatory input rate, Q(t), will produce oscillatory accelerations A, (¢)
and A,(t) with power in the two sidebands. One component will be at the difference
frequency, Wiynefork — Wrate, and one at the sum wyynefork + Wraze- This results will
become important later on. The situation is described fully in equation 2.14, where
we take Q(t) as the component of rotation perpendicular to the oscillatory tuning

fork velocity ¥(t).

Q(t) = Asin(Wratet)

fszoriolis = 26 X ﬁ(t)

= 2Asin (wmtet) X B sin (wtunefwk t)
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ACoriolis = AB COS((wtunefork + wrate)t) — AB COS((wtunefork - wrate)t) (214)

2.2.4 Vibration as an Input to the Linear Model

The intent of this thesis is to determine the sensitivity of the gyro to applied vibration
and impact. This section adds vibration of the substrate as an input to the linear
model. Taking the state space representation of equation 2.3, we can allow the sub-
strate to translate. Note that all translations (z1, Z2, y1, y2) and their derivatives, as
defined in equation 2.1 and 2.2 are defined relative to inertial space. Gyro outputs,
however, give the displacement relative to the gyro substrate. Since the substrate is
now allowed to translate with respect to inertial space, we need to define a new set

of relative displacements:

Tipel = T1 — Tss
Torel = X2 — Tss
Yirel = Y1 — Yss

Yorel = Y2 — Yss (215)

In addition to the transformation of variables, inputs will be added to the model.
Most significantly, acceleration of the substrate in both motor and sense directions
will be allowed as an input. These are the first two inputs. Then, additional forces
will be allowed on each proof mass, in both the sense and motor directions. Finally, a
Coriolis acceleration input (see section 2.2.3) will be added. The Coriolis acceleration
is an acceleration input that acts to move both masses in the sense direction in
opposite directions. This gives a total of 7 inputs: acceleration of the substrate in
both sense and motor directions, 2 additional forces (one sense directed, one motor
directed)on each mass, and Coriolis acceleration due to rotation. With these inputs,
the state space representation can be formed. Equation 2.16 gives the full system

model.
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(2.16)

Where A is the system matrix, given in equation 2.17, and B is the input matrix,

given in equation 2.18. Defining the symbols used:

a4, = acceleration of substrate in the motor direction

ays = acceleration of substrate in the sense direction

Fy1, Fyo, Fy1, and F are additional forces on proof masses 1 and 2 in the sense (y)

and motor (z) directions.

Acorioiis 18 the Coriolis acceleration produced in the sense direction by input rate,

as described in section 2.2.3.

All spring constants, K,, are as defined above for equations 2.1 and 2.2.

Then the state matrix is,

—b =Kzu Ko1z | beyt  Kay1 0 0
mi1 mi1 mi1 mi1 mi
1 0 0 0 0 0 0 0
0 Kyo1 _ by —Kyo0 0 0 bay2 kzy2
mso mso mso ma ma
0 0 1 0 0 0 0 0
A= (2.17)
boyr Koyl 0 0 _b  —Kyu 0 Ky
mi1 mi1 mi1 mi1 mi
0 0 0 0 1 0 0 0
0 0 bay2  kay2 0 Kya1 by —Kyz
mo mo ma m2 m2
0 0 0 0 0 0 1 0
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And the input matrix is,

1 0 — 0 0 0 0 |

o 0 0 0 0 0 0

-1 0 0 - 0 0 0

B o 0 0 0 0 0 0 (2.18)

0 -1 0 0 X 0 1

o 0 0 0 0 0 0

0 -1 0 0 0 .~ -1

o 0 0 0 0 0 0

From the state space representation of equation 2.16, transfer functions relating
the relative motion of one proof mass to the substrate can be derived. One particularly
useful result is the transfer function from substrate vibration to displacement of one
mass. Assuming that the two masses are matched, m; = mqy = m, then the following

transfer functions can be derived.

X1 _ —m232 —_ bme + m(—KwQQ —_ leg)

Ay m28t +2b,ms3 + (b2 + mK 11 + MK y22)s% + by (Kpi1 + Kpan)s — K219 + K11 Kyoo
(2.19)

Where:

X, is the Laplace transform of the displacement of the left proof mass in the motor

direction relative to the gyro substrate

A, is the Laplace transform of the acceleration of the substrate in the motor direc-

tion relative to inertial space

s is the Laplace transform of 4

In the case of no spring mismatch, k1 = kzo = k¢, and equation 2.19 reduces to

X _
L= LR (2.20)
Asw ms? + wa + kw—j_f%%f
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For the sense axis,

i —m?s? — byms + m(—Kyae — Ky12)

Asy - m2s4 + 2byms3 + (bz + mell + me22)82 + by(Kyll + KyQQ)S — K;IQ + Kylle22
(2.21)

Where:

Y] is the Laplace transform of the position of the left proof mass in the sense direction

relative to the gyro substrate

A,y is the Laplace transform of the acceleration of the substrate in the sense direction

with respect to inertial space

In the case of no spring mismatch, k, = k,; = k9, and equation 2.21 reduces to

(2.22)

2.2.5 Nonlinear Springs

So far, the model has only considered the Coriolis nonlinearity. Another nonlinearity
seen in gyro operation is cubic spring terms. Cubic springs describe spring stiffening
or softening effects caused by high amplitudes of motion. Spring softening is caused
by the electrostatic capacitor forces, while stiffening is caused by large deflection
mechanical beam effects.

The basic cubic spring expression is:

F = —kx — ksz® (2.23)

Now, if we have a mass-spring system undergoing some sinusoidal motion,

z = Xsin(t)

then

37



F = —kx— ks
= —kXsin(t) — k3 X3sin’(t)
1
_ —%XQMQ—@(%WQMQ—ZWQM&D

3ks X3 k3 X3

= —(kX+ ) sin(t) +

sin(3¢) (2.24)

Assuming that we are moving near resonance, we can neglect the higher harmonic
at 37, which means that the effective linearized stiffness at this amplitude of motion

1s

klin = i
-z
(kX + 22X2) sin(t)
X sin(t)
3ks X?
4

(2.25)

Thus, the nonlinear term moves the resonant frequency by changing ky;,:

ks k 3k3 X2
w =1/ e _ (%) (2.26)

where kj;, is the linearized stiffness about the amplitude of motion X. If we

expand this as a series in X2, neglecting higher order terms in X?,

awn 9 1 8260”
Wn = Wplyx2—g T 37oov — X% ...
AR To 0| U To crd
1
[k 1 (k+3kX?\ 2 3
Y B ALY L h ks X2+
m 2 ™m 4m
X2=0
k 3
= =t /%k3X2+... (2.27)

So, we should see a linear relationship between the natural frequency w, in

radians/s and the amplitude squared, X2, in m?. Tests of frequency dependence
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on amplitude have been conducted. The results, summarized in section 4.3, indi-
cate that the nonlinear spring terms are small, but can be important when trying
to drive at the resonant frequency. The high Q of the gyro produces very narrow
resonant peaks in the frequency response. Thus, even a small nonlinearity can shift

the sensitive frequency band for the device noticeably.

2.3 Electrical SubSystem

The electrical subsystem of the tuning fork gyro can be divided into three main sec-
tions: the intrinsic capacitance built into the microstructure, the preamplifiers con-
tained with the gyro in the Kyocera package, and the control and readout electronics

housed on the EDM3 board. (see section 2.1.2)

2.3.1 Micromachined Capacitors

There are two types of micromachined capacitors in the tuning fork gyro: interdig-
itated combs, and parallel plates. Interdigitated comb drives are used to drive and
sense motion of the proof mass in the plane of the device (see figure 2-2). Figure
2-8 gives a magnified picture of a section of the comb drive. For a discussion of the
electrostatics of parallel plate capacitors, see [2, p. 679].
The capacitance between the two sides is given in equation 2.28,
c =Nl _ gyl (2.28)
g g

Where:

N = number of fingers extending from one side of a single proof mass (Note that
each comb drive capacitor can therefore be considered as consisting, neglecting
fringing effects, of 2N parallel plate capacitors, one for each side of every given

proof mass finger)

€p = permittivity of free space
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Figure 2-8: Interdigitated Comb Drive Capacitor

A = area of finger overlap
g = gap between fingers
[ = length of finger overlap

h = height of finger overlap (thickness out of the plane)

The comb drive capacitors are used to both sense and drive motion in the plane,
as discussed in sections 2.3.2 and 2.3.3. For motion out of the plane, the sense parallel
plate capacitor is used. Here, the capacitance is between the proof mass, acting as
one parallel plate, and a conducting area in the substrate below the proof mass. A

parallel plate capacitor has capacitance:

Cc === (2.29)

Where:
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€p = permittivity of free space
A = area of parallel plates

g = gap between plates

As discussed in section 2.1.1, the micromechanical structure itself includes 6 ca-
pacitors, 3 on each proof mass. Two of these three are comb drives (inner and outer

motor combs), and the other is the sense parallel plate capacitor.

2.3.2 Capacitive Sensing

The inner motor combs and the sense plates are used for sensing motion of the proof
mass. From figure 2-8 it can be seen that pushing the combs together or pulling them
apart will change the finger overlap, [, and thereby change the capacitance. (equation
2.28) Similarly, changing the sense gap (the gap between the parallel plates of the
sense capacitor) will change the sense capacitance according to equation 2.29.

These changes in capacitance can be used to sense motion of the proof mass. The
constitutive equation for a capacitor is:

oV oC

d
I==(CV)= (cﬁ + v5> (2.30)

For sensing applications, the voltage across the capacitor, V, is held at some DC

level, Viigs- Thus,%—‘: =0, and so I = %ias%—f. This current flows into a preamp

configured as an integrator, as shown in figure 2-9, which produces an output voltage
proportional to the integral of the current. Thus, the preamp output voltage depends

on the motion of the proof mass, according to equation 2.31,

1
Vo = ——/Iﬁ

1 oC dy
= C—f_b/%ias% ) % dt
%ias aC
= —d 2.31
Cn | oy ¥ (2.31)
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Figure 2-9: Sense Axis Preamp Configuration for Capacitive Sensing

Figure 2-10 presents a capacitive model of the gyro electrostatics. Each proof
mass is an electrical node, with three capacitors connecting to it: the outer motor
comb, the parallel plate sense capacitor, and the inner motor comb. The outer motor
combs are used for creating an electrostatic drive force on the proof masses, and will
be considered in section 2.3.3.

The sense capacitors, as described above, change capacitance due to proof mass
motion out of the plane. Due to the DC bias on the sense plates, this motion will
create a current I according to equation 2.30. The two proof masses are electrically
connected, as shown in figure 2-10, so the current flowing into the sense preamp is
the sum of the currents from each mass. During normal gyro operation, the sense
plates are biased opposite each other, one at Viepsepigsierr = +5 V, and the other at
Vsensebiasright = —9 V. The result of this biasing scheme is rejection of common mode
motion in the sense direction. (i.e. if both masses are identical, and both move in
the same direction by the same amount, the currents created will exactly cancel each
other, and no output will be seen at the sense preamp output terminal). However,
during testing I sometimes biased only one of the sense plates, to allow measurement
of the motion of a single mass.

ac

From equation 2.31, we only need to know 3 to determine the relationship be-

tween V,,; and sense motion. For one side, from equation 2.29,
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Figure 2-10: Capacitor Gyro Model with Sense and Drive Preamps
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_ 4 _ a4

C = (2.32)
g Yoty
So, taking the partial derivative of equation 2.32,
oC —€pA
— = 6702 (2.33)
Oy (yo+y)

Now, we will assume that the motion of the mass, y, is much less than the total

gap, Yo, s0 this reduces to,

0C —¢)A
==l (2.34)
Oy Yo
Plugging this back into equation 2.31,
%ias aC
‘/senseou = — d
t Cfb By Y
%ias / _60A
= dy
Cpp o
%ias / _60A
= d
Cry y§ Y
Vs —ed Vb —€A
= ——Yy1+ =" —Y 2.35
Con w ° Cpm w7 (2.35)

Where
V5 = DC bias on the right sense plate
Vs = DC bias on the left sense plate
Cy, = sense preamp feedback capacitor
€p = permittivity of freespace
A = area of a sense plate
Yo = nominal sense gap

y1 = displacement of the left proof mass out of the plane with respect to the substrate
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yo = displacement of the right proof mass out of the plane with respect to the

substrate

From 2.35, we see that if Vj, = —V},, then V,,; = 0 for y; = ys, rejecting common
mode motion. It is important to keep this result in mind when looking at the output
from sense-out, as any common mode motion of the proof masses out of the plane
will be greatly attenuated. Equation 2.35 also gives us the sense scalefactor, ig%ﬁg—“
which is the voltage produced at the preamp output for a given differential motion
of the proof masses out of the plane.

Another important effect that occurs on the sense capacitive readout is charge
injection. Figure 2-10 shows that the sense preamp is connected to both proof masses,
each of which connects to two sets of combs. Thus, any motion of the proof masses in
the plane will produce a current into the sense preamp due to the changing capacitance
of the motor combs. This current will depend on the motion of the mass in the plane,
and also on the voltage across the motor combs. So, in addition to the integration of
the charge injected by motion out of the plane, the sense preamps will also integrate
charge injected by motion in the plane. During normal gyro operation, the two masses
move in the plane 180 degrees out of phase with each other. Thus, the charges injected
due to their motion will exactly cancel. However, any time the proof masses do not
move exactly opposite one another in the plane, charge injection into the sense preamp
will occur, producing a signal at Vienseous- One particularly important case where this
occurs is during hula motion. If any hula motion is excited, the charge injected from
the two inner motor combs will not cancel, but sum. Thus, hula motion produces a
large signal at the sense preamp output.

Capacitive sensing of motion in the plane of the device occurs at the left inner
motor comb, as shown in figure 2-10. An identical derivation to that shown above,
plugging the inner motor capacitance from equation 2.28 into equation 2.31, produces

Vimb €0h

Vinotorout = 2N ——— 2.36
t t Cfb g I ( )

Where
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N = number of tines extending from one side of the proof mass
Vimp = DC bias on the left inner motor comb

C¢, = motor preamp feedback capacitor

€p = permittivity of freespace

h = height of the motor tines

g = gap between the tines

21 = motion of the left proof mass in the plane

With the motor sensing system, it is important to note that only the motion of
the left proof mass is measured. In addition, there are no charge injection effects in

the motor readout.

2.3.3 Capacitive Drive

In addition to their application for sensing motion, the micromachined capacitors in
the gyro are used for creating electrostatic forces on the masses. For a capacitor, the

electrostatic force attracting the two sides of the cap together is

1,00,
F= Vo =KV (2.37)

Where:

V = voltage across the capacitor

%—S = partial derivative of the capacitance with respect to motion of the proof mass

in the direction of the force

a_g = Torquer Constant, the force produced per volt squared

Kt:

N[

For the comb drive,
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oC h
S (2.38)
ox g

One very significant result of 2.37 is that force depends on the voltage squared.
Thus, to produce a sinusoidal force at some frequency, the applied voltage across the

capacitor must be a sinusoidal term plus a DC bias,

V =Vpe + Vac sin(wt) (239)

Which will produce a force,

F = K{Vjc+2VpcVacsin(wt) + Vi sin®(wt))

1 1
= Ki(Vic + 2VpcVac sin(wt) + 5Vjc — 5Vac cos(2wt)) (2.40)

Note that this method produces a force with power not only at the fundamental
frequency of the input voltage, but also at the first harmonic.

By choosing the correct frequency w and amplitudes V¢ and Vpe, we can drive
a particular mode at a defined amplitude. In normal operation, the tuning fork
mode is excited, in order to produce the desired Coriolis acceleration as described in
section 2.2.3. During testing, modes other than the tuning fork mode were excited
by driving a sinusoid at a different modal frequency as an excitation signal to one of
the capacitors.

An identical electrostatic forcing effect is seen on the sense parallel plate capac-
itors, which also must obey equation 2.37. However, the capacitor relationship is
different here (see 2.29), producing a different %—2. Therefore, for the sense caps, the

electrostatic force is

F=2Vv%.

2 (Yo +y)? (241)

Where:
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V = voltage across the capacitor
€p = permittivity of free space
Yo = nominal sense gap

y = motion of the proof mass out of the plane

Again, as in the comb drive, the force goes as the voltage squared. However, here
the force changes with the gap, g = yo + y. As this gap goes to zero (i.e. the proof
mass moves down towards the sense plate), the force goes to infinity. The result
of this is an effect known as snapdown. If the proof mass moves too close to the
sense plate, the electrostatic force will be greater than the spring restoring force, and
the proof mass will be pulled down into contact with the sense plate, where it will
stick due to the electrostatics. This could, potentially, destroy the gyroscope. One of
the important results addressed in later sections is the maximum vibration allowable
before snapdown occurs.

During normal gyro operation, the sense plates have a DC bias on them, which
produces a small constant force. Dynamically, this force is not very important unless
large enough motions are observed out of the plane to bring the nonlinear effects of
2.41 into play. Thus, for the most part, we will neglect this force. However, sometimes
during testing I drive a DC bias plus a sinusoid onto the sense plates to excite motion
out of the plane. Although this will not occur during normal gyro operation, it is

useful for testing purposes.

2.3.4 Control Loops

There are two separate control chains used during closed loop gyro operation: the
motor loop and the sense chain. The sense chain conditions the output from the sense
preamp, and generates a rate-out signal, which estimates the rotational rate that the
gyro is experiencing. The motor loop deals with signal conditioning of the motor

preamp out signal, and creates the drive signal on the outer motor combs.
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Figure 2-11: Block Diagram of Sense Chain Conditioning Electronics

Figure 2-11 is a block diagram of the sense chain. The differential motion of
the proof masses is the input to the first block. The first block represents the sense
capacitors. The caps produce a current, which is integrated by the preamp and gained
up by a factor K. The signal at this point is the raw signal coming from the sense
preamp, called AC-out. This signal is used extensively in testing.

AC-out is multiplied by the motor velocity clock, which is a square wave at the
frequency of the motor motion, and in phase with motor velocity. The product is
low pass filtered. (i.e. AC-out is demodulated by the motor velocity clock). The
acceleration of the sense axis due to the Coriolis term, as described in section 2.2.3,

1s

szCoriolis = 26 X U (242)

Thus, since the acceleration of the sense axis is in phase with this Coriolis acceler-
ation, the sense acceleration is in phase with the motor velocity, v, for a DC rate, €.
Acceleration is integrated twice to produce position, so sense position is also in phase

with motor velocity. Since the sense preamp gives a voltage proportional to position,
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the preamp output voltage will contain energy at the motor frequency (that is, the
tuning fork frequency; we always drive the gyro in the tuning fork mode). Thus,
demodulating by the motor velocity clock will produce a DC voltage proportional to
the sense motion of the proof masses near the tuning fork frequency. It is assumed
that any energy at this frequency is due to Coriolis accelerations, and thus the output
of the demodulator should be proportional to the input rate, 2. This is the output of
the gyro, rate-out. Equation 2.2 in section 2.2.1 gives the full linear dynamic model
of the sense axis.

For the current gyro design, the break frequency of the low pass filter is 100 H z,
so the gyro can sense rate inputs at frequencies lower than 100 Hz. Since the major
gyro modal frequencies are in the 10-20 kH z range, the 100 Hz bandwidth avoids
many errors that might come from other modal responses.

The motor loop produces the velocity clock used to demodulate AC-out, and
the drive signal used to keep the motor axis oscillating at the tuning fork frequency.
Figure 2-12 is a block diagram of the motor loop. w refers to the tuning fork frequency,
which is the frequency we are trying to drive the gyro at.

There are two fundamental in-plane modes for the gyro, as discussed in section
2.2.2. The hula mode is parallel motion of the masses in the plane, while the tuning
fork mode is antiparallel. In order to produce the correct Coriolis accelerations, we
drive the gyro in the tuning fork mode. This is accomplished by closing the loop
around the motor axis: reading a position signal off of the left inner motor combs,
and then driving the outer motor combs with the appropriate motor excitation signal,
V = A sq(wt) + B. (A square wave is used rather than a sine wave as it is easier to
produce in the electronics.) This signal produces an electrostatic force as described in
section 2.3.3. Since the forces generated by the outer combs are attractive, we always
drive the tuning fork mode rather than the hula mode, since we pull both masses
toward the outside at the same time. (i.e. we drive the outer motor voltages in phase
with each other)

Since the device has such a high Q, random noise in the system will excite the

modes to some degree. This small motion will be picked up by the inner motor combs,
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Figure 2-12: Block Diagram of Motor Loop Electronics
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and amplified by the motor loop, allowing the gyro to start with no external reference.

Figure 2-12 shows how the position signal (labeled PSig) is hard limited to produce
the sq(wt) term used in the motor excitation signal, and also shows the controller C(s)
which compares actual motion with the setpoint, V,.¢, to drive the gyro at a defined
amplitude. V;. is chosen to reflect the desired drive amplitude.

Other signals of interest are labeled in figure 2-12: AGC, automatic gain control,
gives a measure of how much force is being used to keep the motion at the setpoint.
PSig is the raw inner motor preamp voltage, multiplied by a constant. This signal
indicates the motion of the left proof mass in the plane. The velocity clock is used to

demodulate AC-out, as described above in the discussion of the sense chain.

2.4 Maximum Allowable Response

Throughout the remaining chapters, the response of the gyro to various vibrations and
impacts will be considered. In order to determine the maximum allowable excitations,
we must determine the highest level of gyro response that can be safely sustained.

There are three main dangers during gyro operation.

2.4.1 Clipping of AC-out

The first danger to the gyro is clipping of AC-out. If signal levels get too high,
the electronics will saturate at the level of the positive or negative supply voltage,
generating unpredicted results at gyro outputs. (This effect is referred to as clipping
of the signal.) The supply voltage has a level of 15 V, so AC-out must not exceed 15
V. There is a gain of 50 between the preamp output and AC-out, so sense preamp
output must not exceed 300 mVy;. Equation 2.35 in section 2.3.2 showed that the

sense preamp output was related to sense motion by

V _Cs V;" _Csr
b l + b

Vour = =— Y :
T Ch W Cp Yo

Yo

Where
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Vs = DC bias on the right sense plate = +5 V

Viy = DC bias on the left sense plate = -5V

Cy, = sense preamp feedback capacitor = 2.2 pF

Cy = zero displacement left sense capacitance = 3.8 pF

C,r = zero displacement right sense capacitance = 3.8 pF

Yo = nominal sense gap =2.8 um

y, = displacement of the left proof mass out of the plane with respect to the substrate

yo = displacement of the right proof mass out of the plane with respect to the

substrate

Where values are given for a standard TFG14, LCCC575. From the equation,
then, to produce V,; = 300mV, requires differential sense motion y, — yo of approx-
imately 0.1 pm. Thus, differential sense motion of 0.1 um will begin to clip AC-out.

Another common cause of AC-out clipping is large motions of the hula mode.
Hula motion causes charge injection into the sense preamp as described in section
2.3.2. The charge injection into the proof mass is caused by changes in the inner
motor capacitance (see equations 2.30 and 2.28)

_ VibiasCimi A1 | VibiasCimr d2

I=—— —_— 24

This current is integrated by the sense preamp to produce

‘/;ut — 1 (Vvlbiascvimlz1 + V;"biascimr x2)

— 2.44
Cp Zo Zo (2.44)

Vivias = DC bias on the right inner motor = +5 V

Visies = DC bias on the left inner motor = -5 V
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C'¢y = sense preamp feedback capacitor = 2.2 pF

Cimu = zero displacement left inner motor capacitance = 0.45 pF

Cimr = zero displacement right inner motor capacitance = 0.45 pF

2o = nominal motor comb overlap = 25 um

x1 = displacement of the left proof mass in the plane with respect to the substrate

2o = displacement of the right proof mass in the plane with respect to the substrate

During hula motion, z; and x, are opposite one another in phase, so their ef-
fects sum. Thus, a hula amplitude (amplitude of one mass, both assumed to have
approximately the same amplitude) of 3.75 ym will begin to clip AC-out.

So, to avoid clipping AC-out, we must avoid

e Hula mode motion in excess of 3.75 pum.

e Sense mode motion in excess of 0.1 um of differential motion.

2.4.2 Physical Contact and Snapdown

Physical contact in the combs can damage the gyro. The maximum allowable dis-
placement of the motor before contact occurs is 25 ym. In the sense direction, the
gap is 2.8 um.

However, prior to contact between the proof mass and the sense plate, snapdown
will occur. This occurs when the electrostatic attraction between the sense plate and
the proof mass overcomes the restoring force of the mechanical sense flexure. Equation
2.41 gave the force generated by the electrostatics in a parallel plate capacitor as

F= 1V2 . —Ustlo

2 (yo + y)?
Where:

V = voltage across the capacitor =5V
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Cy = zero displacement sense capacitance = 3.8 pF
Yo = nominal sense gap = 2.8 um
y = motion of the proof mass out of the plane

Equating this with the spring force to determine the point at which snapdown

occurs produces

1 —Cayo
~V?. =—k 2.45
R O (249

Where k, is the sense flexure stiffness, which is typically (data taken for LCCC574)
approximately 350 N/m. Solving equation 2.45 gives two solutions, one is stable and
one unstable. The unstable solution corresponds to snapdown, and lies at y = 2.5 um.
So, displacements of this size will cause snapdown. I will consider displacements of
more than 2um as unacceptable.

One final danger is that the motor loop will lose lock on the tuning fork mode.
The design of the motor loop assumes that the majority of the position signal is
coming from the tuning fork mode, and feeds back on this signal to drive the tuning
fork mode at the desired amplitude of 10 um. If the hula amplitude is on the same
order as the tuning fork amplitude, 10 um, then the motor loop will begin driving
hula mode, or possibly lock up completely. . Section 7.3.4 presents experimental
data showing that 10 um of hula motion causes gyro operation to shut down due to
a complete loss of tuning fork motion. This process is reversible, but the gyro power
may need to be removed and all mechanical motion given time to damp out before
operation is resumed.

Thus, to ensure safe gyro operation, we require that

e Tuning fork motion is less than 25 ym in amplitude.

e Hula motion is less than 10 um in amplitude.

e Any sense direction motion (sense mode or out-of-plane mode) is less than 2

pm in amplitude.
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Chapter 3

Experimental Setup

Vibration and impact testing of the gyro required design and acquisition of a number
of experimental systems. This chapter describes the various parts of the test setup,
and explains how they were used during my experiments. The chapter is organized
into sections describing the test electronics, the two shaker systems, fixturing, and

measurement equipment (including reference accelerometers).

3.1 Electronics

Figure 3-1 is a photograph of the EDMS3 test electronics, on the right, with the
breakout box (center) and Labworks shaker (left). The Wilcoxon power amp is in
the background, and the kyocera socket with guillotine connectors is shown on the
bottom right.

In addition to the EDM3 electronics described in section 2.3.4, much testing was
conducted open loop using the belljar electronics. The belljar electronics do very little
as far as signal conditioning; they simply give access to various gyro signals. Both
the sense-preamp-out and motor-preamp-out signals, are available. In addition, the
belljar electronics allow an arbitrary voltage to be driven onto the outer motor combs
or the sense plates. All testing done using the belljar electronics is open loop; the gyro
is excited in some way, and the various outputs are measured. No feedback occurs.

This is most useful for examining the mechanical response of the gyro without the
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Figure 3-1: Photograph of EDM3 Board with Breakout Box and Cabling
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additional complexities created by the closed loop controllers.

Closed loop testing made use of the control loops described in section 2.3.4, with all
of the accompanying complexity in signal conditioning and feedback control. Closed
loop operation using the test electronics more closely approximates the operation of
the gyro in the field.

For all vibration and impact testing, the gyro itself is isolated from the electronics.
This reduces the number of variables involved, so that we can be sure that the observed
effects are an artifact of gyro response, and not the electronics responding to vibration.
To accomplish isolation, a cable was created which plugs into the test structure where
the gyro is mounted and carries each gyro signal out to a dummy kyocera package.
This dummy package is identical to the gyro package, and so easily mates with any
system that the gyro would normally plug into. Using this method, the gyro can be
held in the test structure and undergo vibration or impact while the electronics are

off to the side.

3.2 Shakers

Two shaker systems have been purchased and utilized in this project. The two shakers
differ most dramatically in their operational frequency range. The Labworks ET-126
is an electromagnetic shaker, and operates best in the low frequency range. The
Wilcoxon D60H is a piezoelectric shaker, and thus operates best at high frequencies.

Summarizing their capabilities:

Electromagnetic Shaker:

nominal operating range = DC-10 kHz
best operating range =1 kHz -5 kHz

maximum acceleration =20 gpeak—to—pear above 20 Hz
Piezoelectric Shaker:

nominal operating range = 3-50 kHz
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Figure 3-2: Photograph of Labworks Shaker with Fixturing

best operating range = 3-35 kHz
maximum acceleration = 1300 gpeak—to—peqr 2t resonance,

about 60-100 gpeqk—to—pear €lsewhere

3.2.1 Labworks ET-126 Electromagnetic Shaker

The Labworks ET-126, pictured in figure 3-2 with test fixturing mounted, consists of
a table (to which the test specimen is bolted) attached to a coil. This coil is mounted
on a flexible structure, which allows the table and coil to translate. Inside the coil is
a ferromagnetic core, which attaches to the base of the shaker. By driving a current
through the coil at a particular frequency, a magnetic force is generated between the
coil and the core, moving the table back and forth on the flexures. We can model the

mechanical structure as a mass-spring-damper system, coupled to an electrical system
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Figure 3-3: Lumped Element Model of the Labworks Electromagnetic Shaker

via a transformer. The result of this model is a second order system, diagrammed in
figure 3-3.

Below the shaker resonant frequency of 20.6 Hz, a large displacement is needed for
a given acceleration. Thus, below resonance, the shaker is limited by the maximum
displacement it can undergo. Below resonance the maximum deliverable acceleration

1s:

Omaz = Xmaz * w> = (0.019mp5_p) - w? (3.1)

Where the maximum allowable shaker displacement, taken from the manufacturers
specifications, is 0.019 m.

At and above resonance, the maximum achievable acceleration is limited by the
shaker’s maximum output force, and so will depend on the mass loaded on the table.
The intrinsic mass of the shaker table is 90 g, and it’s maximum output force is
111 Npg—pk- In my case, I have an additional mass of approximately 400 g loaded
onto the table. With these limitations, the maximum allowable acceleration is 22.7

Ipk—pk- Taking both maximum displacement and maximum force into account, we
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Maximum Deliverable Acceleration for ET-126 Electromagnetic Shaker
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Figure 3-4: Maximum Acceleration Deliverable by ET-126

can summarize the maximum deliverable acceleration as a function of frequency, as

is done in figure 3-4.

3.2.2 Wilcoxon D60H Piezoelectric Shaker

The Wilcoxon piezoelectric shaker, pictured in figure 3-5 with fixturing mounted, was
used for all high frequency testing during my project. With its large bandwidth,
high peak force output, and good frequency response, the D60H is ideal for vibration
testing of small structures. Here, again, the same issues are encountered in determin-
ing maximum deliverable acceleration. Below resonance, the shaker is displacement
limited. Above resonance the shaker is limited by maximum allowable force.

However, the maximum force obtainable from piezoelectric materials is very high
(for this stack, 4000 Npeqr). Thus, within the operating range described, it is unlikely
that this limit will be reached before the power amp gives up. Indeed, that is what
happens for much of the operating range.

The D60H can be modeled using lumped parameters. Mechanically, there is a

mass-spring-damper system corresponding to the intrinsic mass, damping, and com-
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Figure 3-5: Photograph of Wilcoxon Shaker with Fixturing
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Figure 3-6: Lumped Element Model of the Wilcoxon Piezoelectric Shaker

pliance of the piezoelectric stack and accompanying mounting table. Electrically, the
piezoelectric material acts like a capacitor in parallel with a transformer which trans-
forms voltage across the capacitor into force on the table mass. This is diagrammed
in figure 3-6. Note that since the power amplifier is modeled as an ideal voltage
source, the degree of freedom contributed by the capacitor is removed. As long as
we do not tax the power amplifier too heavily, we can make the assumption that it
does act as a voltage source, which reduces the complexity of the shaker model. Since
this model is to be used only for determining appropriate operating ranges, it is not
terribly critical and so the assumption will be made.

Using this model, and the parameters determined from testing, it is possible to
produce a transfer function relating acceleration of the table to the input voltage.

Using these parameter values:

m=0.090+0.400 Mass of the table and a 400 g load. [kg]

k=2.28-10° Deduced from fundamental resonance. [N/m]

b=500 Computed damping ratio by measuring width of resonance. [N/(m/s)]
G=20.4 Measured. Gain of the power amp.

C=0.011 Given in specs [pF]

k2=1.1 Given in specs. Force per volt in transducer. [N/V]

A theoretical prediction of the frequency response can be generated, as shown in
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Frequency Response for D60H with 400g load, acceleration (m/sz) vs Vin
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Figure 3-7: Theoretical Frequency Response of D60H, 400 g load on table

figure 3-7.

The maximum deliverable acceleration is limited by two parameters. The power
amp must not be overtaxed, and the maximum force in the spring (i.e. the piezo stack)
must not exceed 4000 Npe,x, (according to shaker specs). Unfortunately, Wilcoxon has
not been able to supply good information about the PA8C power amplifier; they have
not tested the maximum output power, current, and voltage measurements when
driving a capacitive load such as the piezo shaker. However, my testing indicates
that the PA8C can be safely run to 130V ., over the 10-22 kHz range. Assuming
that this voltage will be available throughout the frequency range, and making sure
that we avoid overforcing the shaker (again, we must not exceed 4000 N), then the
maximum output acceleration curve can be generated. This curve is presented in
figure 3-8.

The curve in figure 3-8 assumes a 400 g mass attached to the table (this is the
mass of my test fixturing). A maximum acceleration of 2340 gpeqk—peqr is achievable

at resonance.
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Maximum Deliverable Acceleration by D60H PiezoShaker
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Figure 3-8: Theoretical Maximum Deliverable Acceleration, D60h with 400 ¢g load

3.3 Fixturing Issues and Designs

The tuning fork gyro, as discussed in section 2.1.2, is mounted in a kyocera package,
along with the preamps. For vibration testing, only hardmounted gyros are used.
These gyros are hardmounted into a flatpack. However, the flatpack has no means of
mechanical connection to a shaker; it simple has the pins for the electrical connection.
Thus, is was necessary to build test fixtures to clamp the flatpack down to the shaker
table, with electrical connectors to bring out all of the signals to the test electronics.

Much effort has gone into designing and testing the fixturing. It is crucial that the
gyro flatpack mount stiffly to the shaker table, providing a clean acceleration signal

to the gyro. There are a number of issues associated with this:

1. There must be no major fixture modes in the frequency bands of interest.
2. The fixture must minimize any transverse motion of the gyro.
3. The fixture must allow high acceleration of the table.

4. The fixture should allow the gyro to be mounted in at least two (sense and
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drive) axes.

5. The fixture must allow easy electrical connection to the gyro electronics.
To accomplish these goals, a number of design criteria must be met:

1. High stiffness of structure. (Most importantly, we need to avoid bending modes)
2. Solid mount to the gyro flatpack.

3. Highly symmetrical structure minimizes transverse motion.

4. Low moment of inertia reduces transverse motion and fixture modes.

5. Low mass allows high acceleration.

6. Either separate fixtures or a reconfigurable fixture must be used to allow 2 axis

mounting.

7. Cabling should allow mating with all existing gyro electronics.

Three iterations of fixturing moved from simple, bolted together fixtures to solid
aluminum fixturing. The final two fixtures bolt onto the shaker tables using the
shaker bolt pattern. These two fixtures will be referred to as the overhung fizture
and the sense azis fizture. Figure 3-5 is a photograph of the Wilcoxon piezoshaker
with the overhung fixture mounted. Figure 3-2 shows the Labworks shaker with the
sense axis fixture mounted on brackets. The overhung fixture orients the gyro such
that the motor axis experiences the primary shaker vibration; it is only used on the
Wilcoxon piezoshaker. The sense axis fixture orients the gyro so that the sense axis
experiences the primary vibration, and can also be used on the Labworks shaker with
mounting brackets to deliver vibration in the motor direction.

Electrical connection is made to the gyro using the guillotine connectors, which
lead to a 21pin miniature connector which the dummy cable plugs into (section 3.1),
allowing mating with all existing gyro test electronics. Solid mechanical connection

to the gyro is accomplished by screwing down from above the flatpack, pressing it
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Primary and Transverse Acceleration of Overhung Fixture During Sine Sweep
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Figure 3-9: Measured Primary and Transverse Acceleration of the Overhung Fixture

tightly against the fixture base. Both fixtures are very symmetrical about the center
of the shaker table, and both lie low, giving a low center of mass. With an adapter
plate, the fixtures can be used on either shaker. Mechanical drawings of the fixtures

appear in appendix B.

3.3.1 Transverse Acceleration

One of the initial aims of the fixturing was to reduce transverse acceleration. Ideally,
we would want to shake the gyro in a single direction at a time in order to isolate
particular effects. However, it became apparent throughout the fixturing design that
this would not be possible. Thus, in any test there is always substantial transverse
acceleration in addition to the primary vibration. Figure 3-9 shows the acceleration
in the primary and transverse accelerations for the overhung fixture during a single
constant voltage frequency sweep of the piezoshaker.

As can be seen in the figure, the transverse acceleration is the same order of
magnitude as the primary acceleration. At times, it even exceeds the primary. Thus,

we cannot generate vibration in a single direction at a time.
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Overhung Fixture Acceleration in Motor Direction After Hammer Impact
T T T T T T T T

50 |

40| 2

30 -

20 -

10 -

o
T
1

Acceleration (g)

I
i
(=]

T

1

I
N
o

T

1

|
w
o
T
1

|

I

o
T

I
a
o

T

-2 0 2 4 6 8 10 12 14 16
Time (s) x 1072

Figure 3-10: Time Data for Acceleration of Overhung Fixture after a Hammer Impact

3.3.2 Fixture Modes

A number of fixture modes have been observed, despite all attempts to limit low fre-
quency modes in the fixture design. These are not necessarily problematic to testing,
but it is important to know where they lie so that we can identify the source of these
frequencies if they are seen in the gyro outputs. In order to avoid problems due to
distortion in shaker vibration, modes were measured by recording fixture accelera-
tion data with the reference accelerometer after the fixture modes were excited by a
hammer impact (see section 3.5.3).

Figures 3-10 and 3-11 show typical time acceleration data and a PSD of that data
for a hammer impact to the overhung fixture. The figure shows the fixture ringing
down. For the PSD, only frequencies from DC to 12 kHz are shown, since no large
spikes are seen above this frequency.

From similar data taken for both fixtures major fixture modes can be determined.
Table 3.1 summarizes the fixture modes for the overhung fixture. Sense fixture modes
are summarized in table 3.2. Each modal frequency is listed, along with a description

of the type of impact needed to excite the mode, and the types of acceleration pro-
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PSD of Fixture Acceleration in Motor Direction after Hammer Impact
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Figure 3-11: PSD of Overhung Fixture Impact Acceleration Data

duced. The nomenclature I have used refers to one fixture axis as sense and one as
motor. These names are taken from the mounted gyro; the sense and motor directions
are defined for the gyro, and so can be used to refer to fixture orientation in reference
to the orientation of the mounted gyro package.

It will be important to refer to tables 3.1 and 3.2 later on when looking at gyro
response. We will see some of the frequencies listed appearing in gyro output. An
impact to the fixture will cause the fixture to ring at the above frequencies, and so
the gyro will be excited by an acceleration signal containing most of its power at the

fixture modal frequencies.

3.4 Signal Distortion

Another test issue to be considered is distortion in the acceleration signal. This seems
to be inherent to the shaker, and there is really no way to reduce distortion. Accord-
ing to Wilcoxon, piezoelectric shakers can significantly distort input signals due to

their nonlinear transfer functions, hysteresis, and sharp resonances. Indeed, major
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3160 Hz

Fundamental mode, excited by impacts to either
the sense or motor axis. Acceleration at this frequency
is strong in the readings of both accelerometers.

4240 Hz Another powerful mode excited by both types of
impact and seen on both accelerometers.
5380 Hz Acceleration of this mode is higher in the sense

axis direction, but is more powerfully excited by an
impact in the motor axis direction.

11.240 kHz+ 100 Hz

Excited by sense impact; visible
exclusively in the sense acceleration.

12.96 kHz

Excited by either motor or sense impacts, but
acceleration seems to be entirely in the sense axis
direction.

22.2 kHz + 100 Hz

Small spike seen only in sense
acceleration, but excited by both types of impact

26-28 kHz

“Messy” peak spread over these frequencies.
Excited only by motor axis impact, but visible in both
acceleration signals.

Table 3.1: Overhung Fixture Modes Determined from Impact Tests

9150 Hz £ 20 Hz

Second largest peak, fairly clean

10.7 kHz + 50 Hz

Smaller peak, but still clearly a mode

13.8 kHz £ 50 Hz

Much smaller peak, but still visible

15.8 kHz £ 50 Hz

Much smaller peak, but still visible

20.17 kHz £ 10 Hz

Strongest mode, clean and narrow peak

26.4 kHz 4+ 50 Hz

Smaller peak, but still clearly a mode

Table 3.2: Sense Fixture Modes Determined from Impact Tests
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PSD of Accelerometer Signal, driving PiezoShaker at 14.6 kHz
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Figure 3-12: PSD of Shaker Acceleration while driving D60H with 14.596 kH z sinu-
soid

distortion of the signal generator signal is seen at some frequencies. This is unfor-
tunate, since distortion adds energy to the acceleration signal at frequencies other
than the one being driven. For this reason, it is important to use the accelerometer
signal as a reference, rather than the shaker input. Figure 3-12 gives an example of
the power spectrum of a distorted acceleration signal, as measured by the reference
accelerometer. The driving signal into the power amp was a clean 14.6 kHz sine wave.
Tests indicate that the power amp output is also clean, so distortion is being created
either by the shaker or the accelerometer. Endevco is confident that their accelerome-
ter would not produce this much distortion. Since piezoshakers are known to produce
distortion, it seems reasonable to assume that the source of the problem is, indeed,
the shaker. Distortion increases with higher peak acceleration, as one would expect.

While it is important to be aware that distortion of the acceleration signal is
occurring, this is not fatal to testing. At many frequencies, distortion is not high,
especially at low vibration amplitudes. Also, many gyro effects are limited to very

narrow frequency bands, so distortion at higher harmonics of the fundamental vi-
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bration will not interfere with testing. Still, it is important to recognize that some
distortion is occurring, and to think about how this will affect tests on a case by case

basis.

3.5 Measurement Equipment

A number of pieces of equipment were used for measuring gyro and fixture response

during testing. This section describes the major pieces of test equipment.

3.5.1 Standard Test Equipment

Two pieces of standard test equipment were used for measuring and recording data.
The Tektronix digitizing oscilloscope, TDS510A, was used for recording time domain
data. It has a maximum sampling frequency of 500 MHz, well above the gyro frequen-
cies. The scope has an internal floppy drive for recording the trace data, which can
then be processes as needed. The major limitations of the scope are its resolution,
which will sometimes cause recorded data to appear quantized, and the size of the
memory, which limits the length of data that can be recorded.

In addition to the scope, the HP Dynamic Signal Analyzer, 35665A, was used for
frequency domain data acquisition. The signal analyzer can be used as a function
generator, and so can be used for swept sine frequency response measurements. It can
also be used to take PSDs of an incoming signal. Again, the 35665A is equipped with
an internal floppy drive, which was used for recording PSD and frequency response

plots.

3.5.2 Endevco and Wilcoxon Accelerometers

Since there are many fixtures modes and some distortion in the acceleration signals,
if is important to have a reference accelerometer mounted on the test structure. Two
reference accelerometers have been used during testing: the Wilcoxon 736, and the

Endevco 2250A-10.
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Wilcoxon 736 | Endevco 2250A-10
Scale Factor (mV/g) 100 10
Sensor Bandwidth (kHz) 17 15
Mass (g) 21 0.4
Mounting Scheme Screw Stud Adhesive
Mounting Stiffness (N/m) 3.5-10% High (cyanoacrylate)
Mounting Bandwidth (kHz) 20 > 200
Maximum Acceleration (g) 500 1000

Table 3.3: Comparison of Wilcoxon and Endevco reference accelerometers

Wilcoxon’s accelerometer was packaged with the piezoshaker. It is a stud-mounted
accelerometer, with a sensitivity of 100 mV /g, and a nominal 17 kHz bandwidth. The
Endevco accelerometers are much smaller, adhesive mounted, and have a nominal 15
kHz bandwidth. Table 3.3 compares the two accelerometers.

The most significant difference between the accelerometers is their size and mount-
ing scheme. Mounting the Wilcoxon accelerometer on a stud essentially creates a
mass-spring system, which functions as a mechanical low pass filter. The high mass
and relatively low stiffness of the mounting stud create a break frequency in the
neighborhood of 20 kHz, for accelerometer motion parallel to the stud. Figure 3-13
illustrates the situation.

Perhaps even more significant than parallel motion is cantilever motion of the
Wilcoxon accelerometer. If the accelerometer is mounted on a surface which moves
perpendicular to the stud, the mounting stud acts as a cantilever beam, bending
with a much lower stiffness than it did longitudinally. Bending adds a number of
additional dynamics to the accelerometer motion, which will be coupled into the
measured acceleration signal. Figure 3-14 shows how motion of the structure can
induce a rocking motion of the accelerometer. The spring represents the flexible
mounting stud, the mass represents the bulk of the accelerometer.

Most notably, bending of the mounting stud will cause the accelerometer not only
to translate, but also to rotate. This rotation could cause the accelerometer to sense
acceleration perpendicular to the actual direction of fixture motion.

For this reason, the Endevco accelerometers were preferable for use as reference
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Figure 3-14: Cantilever Situation for Stud-mounted Accelerometer
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accelerometers. Their small size and mounting scheme also allow them to be mounted
very close to the gyro package. This should allow more accurate measurement of the

excitation experience by the gyro itself.

3.5.3 Modally Tuned Impulse Hammer

PCB’s GK291B is used for delivering a mechanical impulse to a structure. The
hammer consists of 3 parts. Its body is similar to that of a small conventional hammer.
Just before the “head” of the hammer, there is a force sensor which gives a voltage out
proportional to the force experienced during impact (2.33 mV/N). Screwed into the
sensor is the impact tip. A number of different tips are available. They range from a
hard tip that is simply a disc of steel, to soft tips capped with a rubber dome. Different
tips will give different types of impulse. A softer tip delivers a lower amplitude, longer
duration impulse, which will have more low frequency content. Hard tips deliver a
higher amplitude, shorter impulse with more power at high frequencies.

The force sensor in the hammer has a break frequency of 8 kHz. It cannot,
therefore, be used to measure frequency content above this level. Since the main gyro
modes lie in the 10-20 kHz band, the hammer sensor will not be used to measure
the power delivered at these frequencies. Instead, measurements of the input will be
taken from the Endevco reference accelerometers. The force sensor itself has been
used only to estimate the overall power of a particular impact, and as a trigger for
capturing time domain data on a digital scope. Figure 3-15 shows typical force sensor

output for a single impact.

3.6 Complete Experimental System

For mechanical tests the shakers and the impact hammer are used to generate a
mechanical excitation to the test fixture, which transmits it to the gyro. The shakers
and the fixture have their own dynamics, which contribute to the final excitation
seen by the gyro. Using the reference accelerometers, the mechanical excitation is

measured as accurately as possible. Gyro response is observed during the test.
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Typical Hammer Force Sensor Output During Impact
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Figure 3-15: Typical Hammer Force Sensor Output

During electrical tests, electronics such as the belljar electronics are used to deliver
an electrical excitation to the gyro. Again, gyro response is observed. Through these
tests we can explore the dynamics of the mechanical gyro coupled with the system
electronics.

Figure 3-17 shows a block diagram of the entire experimental setup. A photograph
of the test bench, showing the digital scope, shakers, power amps, electronics, and
power supplies appear in figure 3-16.The configuration will be modified for various
tests; I may use one or the other shaker, or different data acquisition systems. Notice
that tests can be run closed loop using the reference accelerometer; it is possible to
have the signal analyzer drive the shaker to a particular acceleration amplitude by
feeding back the accelerometer signal. This technique was used for some tests where

we wanted to maintain a particular vibration amplitude.
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Figure 3-16: Photograph of Test Area
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Figure 3-17: Block Diagram of One Configuration of the Experimental Setup
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Chapter 4

Characterization Testing

A number of different tests have been conducted to characterize the test units prior to
vibration and impact testing. This chapter will describe the different characterization

tests, their aims, and the theory behind their interpretation.

4.1 Baseline Testing

For each gyro, baseline testing is conducted to determine central parameters. These
tests are conducted with the gyro running closed loop and undergoing no vibration.
The parameters measured here allow computation of most of the lumped element
values used in the mechanical models of section 2.2.1, determination of the scale
factors for the various capacitive sensors and drives, (sections 2.3.1, 2.3.2, 2.3.3), and

measurement of overall gyro performance.

1. Modal frequencies allow computation of many mechanical model parameters

2. Scale factor testing gives a measure of sensitivity to rate, which lumps many

model parameters together.

3. Bias measurements give a normal operation level of various gyro outputs, thus

indicating whether the gyro is functional.

The modal frequencies of the gyro can be determined by looking at a PSD of

AC-out and the motor position signal. The motor position signal gives the motion of
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PSD of Position Signal for LCCC575 Closed Loop, no vibration
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Figure 4-1: PSD of Position Signal for LCCC575 showing Tuning Fork Frequency

the left proof mass in the plane, and so is almost a perfect sine wave at the tuning
fork frequency. Figure 4-1 gives a PSD showing the predominance of tuning fork
frequency in the position signal.

Since AC-out is the sense preamp output multiplied by a constant gain, it contains
information not only about sense modes but also about in-plane modes due to charge
injection effects. (section 2.3.2) Thus, all four major modes are sometimes visible in
AC-out. A typical example of a PSD of AC-out is given in figure 4-2

The two large peaks in the PSD at roughly 6.5 kHz and 19.5 kHz are artifacts of
the electronics. The two smaller peaks, at 12.930 kHz and 14.670 kHz, are the tuning
fork and sense modal frequencies, respectively. The tuning fork mode is intentionally
excited by the motor loop, and, due to mismatches in the two sides of the gyro, injects
some charge into the sense preamp, producing a small signal on AC-out. The sense
frequency is preferentially sensed by the sense chain, so any small motion caused by
crosscoupling is seen at AC-out. Depending on the unit, hula and out-of-plane can
also be excited. Since out-of-plane is rejected by the sense chain, it is usually not

visibile on AC-out. Hula motion is not intentionally excited, but sometimes can be
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PSD of AC-out Signal for LCCC575 Closed Loop, no vibration
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Figure 4-2: PSD of AC-out for LCCC575 showing modal frequencies and excitation
signal

excited by spring mismatch. In this particular unit, no hula spike is seen in AC-out.

From these two PSDs, and, as needed, narrowband power spectra of AC-out and
the motor position signal, all of the closed loop modal frequencies can be determined.
From the modal frequencies, many of the mechanical model parameters are computed.
Section 2.2.2 gives the relevant relationships.

In addition to modal frequencies, scale factor is measured during baseline testing.
The gyro and EDM3 board are mounted on a servo controlled rate table. The gyro
is set up for normal operation, and the rate-out signal is measured while the gyro is
undergoing +1 rad/s and -1 rad/s rotation. Scale factor is therefore directly computed

as

V;"ateoutl + V;"ateout2
SF = 4.1
2rad/s (4.1)

Where V,gteout1 is for a rotation of 4+1 rad/s, and Vygteous2 is for a rotation of -1 rad/s.
Every unit used in vibration and impact tests has undergone baseline testing.

This gives much of the information needed for modeling and prediction of response,
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and also ensures that the unit is fully functional.

4.2 (Q Tests

In addition to the spring values determined from modal frequency measurements, the
gyro models developed in section 2.2.1 necessarily include damping. Damping is very
important to accurately measure, as it determines how quickly transients will damp
out, and also the final steady state response for an input near resonance.

QQ measurements were conducted by exciting a particular gyro mode, such as the
hula or sense mode, and then abruptly setting the input to zero. At this point,
we start recording the gyro motion, and watch the amplitude ring down. The time
constant associated with the ring-down allows computation of Q. Q tests are done
open loop; the damping value we are looking for is a mechanical property of the gyro.

There are two Qs for each unit, one associated with the motor axis damping term
b, (see section 2.2.1), and one associated with sense axis damping, b,. From Q,

damping is computed,

kym
b, = 4.2
Q. (42)
and, likewise,
b kym (4.3)
The envelope of ringdown, from the models in section 2.2.1, is
-f P
X(t) = Xge 8 (4.4)

Where:

X (t) = envelope of the ringdown

Xy = initial amplitude of the excited mode
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LCCC575 Motor Q Ringdown Test
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Figure 4-3: Position Signal during Ringdown Motor Q Test, LCCC575

fmode = cyclic frequency of the excited mode, detrmined from baseline tests

@ = Q for either the sense or motor axis, depending on which mode is being driven

The particular mode being used for the Q test can be excited either with vibration
at the modal frequency (vibration is best at exciting the parallel modes: hula and out-
of-plane), or with an electrostatic force delivered using the outer combs for in-plane
modes or the sense plates for out-of-plane modes.

Electrostatics were used to excite the tuning fork mode for motor Q tests because
they give a cleaner excitation and are more similar to real gyro operation. However,
it is difficult to sense and drive on sense at the same time since there is only one set
of sense caps; therefore I use a mechanical vibration excitation for sense () tests.

Typical data is shown in figure 4-3. Excitation is turned off at t=0 s. Figure
4-4 shows the envelope and the bestfit exponential. The exponent of the exponential
determines () according to equation 4.4. For this particular case, the motor Q comes
out to be 217,700.

Similar data has been taken for every test unit, summarized in table 4.1.
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LCCC575 Motor Q Ringdown Test, Envelope and Exponential Fit
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Figure 4-4: Envelope and Exponential Fit for Ringdown Motor Q Test, LCCC575

Unit Motor Q | Sense Q
LCCC560 11.500
LCCC5H61 | 162,200 | 12,000
LCCCh74 | 173,000 | 12,100
LCCC575 | 217,700 | 15,600
LCCC576 | 188,230 | 14,100
LCCCh77 | 198130 | 22,300

Table 4.1: Summary of all RingDown Q Tests
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4.3 Nonlinear Spring Testing

As discussed in section 2.2.5, cubic spring nonlinearities exist in the mechanical gyro-
scope. These are most obviously manifested as a shift in resonant frequency due to a
change in amplitude of motion. The computations in section 2.2.5 indicate that there
should be a linear relationship between the resonant frequency (that is, the driv-
ing frequency corresponding to maximum response), and the amplitude of motion

squared. Equation 4.5 gave the relationship for small amplitudes X,

k 3 m, _,
Y KA (L 4.
wn \/;—i-Sm\/;k?,X + (4.5)

As mentioned in section 2.2.5, beam effects cause spring stiffening with increasing
amplitude of motion. Electrostatic forces in the capacitors, on the other hand, cause
softening due to the inherently nonlinear nature of the forces in a parallel plate
capacitor (see equation 2.41 ). Although the comb drive caps are not as inherently
nonlinear, experimental results indicate that spring softening occurs on the motor
axis as well.

Due to electrostatic spring softening, the resonant frequency will decrease with the
amplitude of motion. This effect produces a characteristic shark fin structure in the
frequency response curve, as frequency is swept downward while driving at a constant
force amplitude. As frequency is decreased, we approach the mechanical resonance
and the amplitude of the response increases. Larger amplitudes cause a downward
shift in effective resonant frequency, so that, instead of dropping back down to a
lower amplitude, we stay at the high magnitude. At some point the frequency gets
too low and the driving frequency drops below the nonlinear resonance, causing the
amplitude of the response to fall sharply.

A typical example of cubic spring softening can be seen in a test conducted on
LCCC561 motor axis. In this test, we do a narrowband vibration sweep near the
hula frequency. At low drive amplitudes, a clean resonance is seen at 13.035 kHz.
However, for vibration amplitudes resulting in large enough motion, nonlinear spring

softening is evident. Figure 4-5 shows the frequency response from vibration input
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Frequency Response for Downward Sweep,LCCC561, Microns per g
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Figure 4-5: Frequency Response for LCCC561 Showing Spring Softening Shark Fin

in [g] to motion of the proof mass in the plane [um]. The phase looks terrible away
from resonance because the signal was too small and lost in noise.

If the drive frequency is swept up instead of down, no shark fin is observed.
During a upward sweep, significant amplitude is not built up until we reach the linear
resonant frequency. The amplitude of motion created at this point softens the spring,
thus decreasing the effective resonant frequency. However, since we are sweeping up,
the next frequency step brings us to a higher frequency, so the nonlinearity does not
increase response.

Figure 4-6 shows the linear fit of amplitude of motion squared vs. resonant fre-
quency. Equation 4.5 predicts this linear relationship, and gives the relationship
needed to determine the cubic spring constant. With the linear fit given in the figure,

Y = AX + B, the cubic spring constant, from equation 4.5, is

The mass of the gyro proof mass, m, is 3.6-10~% kg. Taking into account the units
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Amplitude Squared vs Frequency for LCCC561 Showing Spring Softening
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Figure 4-6: Linear Fit for Determination of LCCC561 Spring Softening

Unit Motor Flexure | Cubic Spring Percent Change
Linear Stiffness Term in Stiffness
~ — at 10 pm amplitude
LCCC561 288.8 -4.4-10° 0.15%
LCCC574 220.2 -3.1-10° 0.14%
LCCC575 237.7 -3.4-10° 0.14%

Table 4.2: Summary of all Motor Cubic Spring Softening Tests

as appropriate, k3 is computed. For LCCC561 motor axis, the spring softening cubic

spring constant is k3 = —4.4 - 109%, resulting in a total change in spring stiffness of

—0.44% when the gyro is running at the nominal amplitude of 10 ym. This represents

a change in spring stiffness of only 0.15% (recall that the linear motor flexure spring

stiffness can be computed from tuning fork frequency as described in section 4.1, for

this unit it comes out to be 288.8 N/m). In general, all the cubic spring nonlinearities

are quite small, and can usually be neglected in the model. Table 4.2 gives the results

for identical tests conducted on three test units.

In all cases, the cubic spring softening causes only about 0.14 % change in spring
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stiffness when the gyro is running at nominal amplitudes of 10 wm. Thus, it is safe
to neglect the cubic spring effects in the models, although remembering that this can

cause a shift in resonant frequency of a few hundredths of a percent.
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Chapter 5

Open Loop Vibration Testing

Open loop vibration testing of the tuning fork gyro helped to verify the linear model
developed in section 2.2.1, and to explore the mechanical response of the gyro plant
to vibration. This section goes through some computations of the expected response
to both sinusoidal and random vibration. Theoretical results are compared to exper-
iment.

For open loop testing the gyro was plugged into the belljar electronics, which
allow arbitrary signals to be placed on the motor drive combs, inner motor combs,
and sense plates. Output signals such as motor position and sense preamp-out are
examined under different conditions. (see section 3.1) Open loop operation is simpler

to understand, since there is no feedback and no signal conditioning.

5.1 Summary

There are a few essential conclusions drawn from the results outlined in this chapter:

e The mechanical models of section 2.2.1 predict the correct order of magnitude
for gyro open loop response to both sinusoidal and random open loop vibra-
tion. However, substantial differences are seen between expected and observed

response, at worst on the order of a factor of 3.

e Response of anti-parallel modes gives an estimate of motor and sense spring
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mismatch. Spring mismatch is between 0 and 2%.

e Estimates for the maximum safe levels for both random and sinusoidal vibra-

tions near each modal frequency are presented.

e It is important to consider not only gyro resonant modes, but also modal re-
sponse of the mounting structure. In addition to gyro modal frequencies, fixture
modal frequencies are seen in gyro response. This will be true not only for this

test fixture, but for any mounting system used during normal gyro operation.

e The time constant for the growth of gyro response to vibration is on the order

of 1 s for the motor axis, and 0.1 s for the sense axis.

5.2 Open Loop Modeling

In order to compute the expected response of the gyro to vibration, transfer functions
are derived. Taking the model of section 2.2.1, the frequency response for the motion
of the left proof mass due to vibration of the substrate can be computed.

For these computations, assumptions have to be made about axis cross-coupling
and spring and mass mismatch. I will assume that cross coupling between the two
axes can be neglected, and that mismatch in the masses is also negligible.

To simplify the equations, the following substitutions are made for the motor axis
(refer to section 2.2.1 and 2.2.2 for the definition of the lumped element values and

the equations deriving them from modal frequencies):

— kpiketkyok
lel 1kg 2kg1

k:c+k:c1+k:c2
— — krikeo 1
Kw12 - Kw21 T kpitkgotks (5 )
__ kaoketkeoks
Kw22 - k:c+k:c1+k:c2

Similarly, for the sense axis model:
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Kooy = kuiketL2kyikys
YU = Fgt L2(ky1+hy2)

_ _ —L2ky1ky2 92
Ky12 - Ky21 T kgt L2ky1+L2kyo (5 )
Koo = kuzkotL2kyaky1

Y22 7 kg +L2(ky1+ky2)
With these substitutions and assumptions, the transfer function becomes, as de-

scribed in section 2.2.1 and appendix A,

X, —m?s? — byms — m(Kyae + Ky12)

A ~ om2st + 2b,ms® + (b2 + mK 11 + mKy92)s? + by (Kp1 + Kyoo)s — K25+ K11 Koo
(5.3)

Where:

X, is the Laplace transform of the displacement of the left proof mass in the motor

direction relative to the gyro substrate

A, is the Laplace transform of the acceleration of the substrate in the motor direc-

tion relative to inertial space

s is the Laplace transform of 4

In the case of no spring mismatch, k1 = kzo = k¢, and equation 2.19 reduces to

X —-m
L = — (5.4)
Asw ms2 + wa + _f—kwiWCZf
For the sense axis,
i —m?s? — byms — m(Kyeo + Ky12)
Asy - m2s4 + 2byms3 -+ (bl21 -+ mell -+ me22)82 + by(Kyll + Ky22)3 - K§12 + KyHKyQQ
(5.5)

Where:

Y] is the Laplace transform of the position of the left proof mass in the sense direction

relative to the gyro substrate
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LCCC574 Predicted Freq Resp, No Spring Mismatch, Motor Motion vs. Vibe
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Figure 5-1: Predicted Frequency Response for Motor Vibration, no spring mismatch

A,y is the Laplace transform of the acceleration of the substrate in the sense direction

with respect to inertial space
In the case of no spring mismatch, &, = k,1 = ky2, and equation 2.21 reduces to

Y1 _ —-m
Ay  ms2+bys+ky

(5.6)

However, spring mismatch cannot be neglected, especially since a small mismatch
can have a dramatic effect on the frequency response. With no mismatch, the an-
tiparallel modes are not excited by vibration. Addition of any small mismatch allows
them to be excited. Thus, the level of steady state response for the antiparallel modes
gives an indication of spring mismatch.

Figure 5-1 gives the frequency response for the motion of the left proof mass in the
plane due to motor axis vibration in the plane, for the case of no spring mismatch.
Figure 5-2 is the same transfer function, but with 2% spring mismatch in the motor
flexures. The model parameters were determined from the QQ and frequency data for

LCCC574. In both cases, the magnitude units are dB um/g.
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LCCC574 Predicted Freq Resp, 2% Spring Mismatch, Motor Motion vs. Vibe
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Figure 5-2: Predicted Frequency Response for Motor Vibration, 2% spring mismatch

Similarly, figure 5-3 gives the frequency response for the motion of the left proof
mass out of the plane due to sense axis vibration. This is for the case of no spring
mismatch. Figure 5-4 shows the frequency response with a 2% spring mismatch in
the sense flexures. In both cases, the magnitude units are dB um/g.

The frequency response functions shown in figure 5-1 through 5-4 are used for

predicting the steady state response to vibration throughout the rest of this chapter.

5.3 Sinusoidal Vibration

Sinusoidal vibration testing of open loop gyro operation shows high sensitivity to
mechanical vibration at the hula and out of plane frequencies. The gyros have a
much lower, but still measurable, sensitivity to vibration at tuning fork and sense
frequencies. The gyro is insensitive to vibration at every other frequency in my test
range.

Gyros LCCC561, LCCC574, and LCCCH75 were subjected to sinusoidal vibration

throughout the range of shaker operation. Response was seen only at the modal
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LCCC574 Predicted Freq Resp, No Spring Mismatch, Sense Motion vs. Vibe
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Figure 5-3: Predicted Frequency Response for Sense Vibration, no spring mismatch

LCCC574 Predicted Freq Resp, 2% Spring Mismatch, Sense Motion vs. Vibe
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Figure 5-4: Predicted Frequency Response for Sense Vibration, 2% spring mismatch
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Unit HulaMode | Tuning Fork Sense Mode Out-of-Plane | Deduced Flexure
(pm/g) Mode (um/g) (pm/g) Mode (um/g) | Spring Mismatch

LCCC561, 214 2%:9.21 9.87
predicted
LCCCS61, 63 0.63
measured
LCCC574, 300 1%: 8.62 1%: 0.41 12.03
predicted 2%: 16,5 2%: 0.84
LCCC574, 826 7.54 0.30 4.36 | motor: ~0.9%
measured sense: ~0.72%
LCCCS75, 331 1%: 8.85 1%: 0.35 14.00
predicted 2%: 16.87 2%: 0.72
LCCC575, 501 0.44 0.69 10.83 | motor: ~0.05%
measured sense: ~1.95%

Table 5.1: Summary of Steady State Open Loop Sinusoidal Vibration

frequencies. The measured steady state response, along with the predicted response
level, is recorded in table 5.1. Recall from section 4.3 that cubic spring nonlinearities
cause the resonant frequency to decrease with amplitude, as seen in the sharkfin
plots shown in that section. In the table, the steady state response is recorded at
the nonlinear resonance; this is the frequency where the largest gyro response is seen.
Measurements were taken at a number of different vibration levels, and averaged to
get the results shown in table 5.1. All predicted responses come from the transfer
functions given in equations 5.3 and 5.5. The gain is computed at the resonant
frequency. Predictions given in the table for anti-parallel frequency response are
given for a spring mismatch of 1% and 2% as noted.

Qualitatively, these results agree well with my mechanical model of the gyro. (see
section 5.2) With perfectly matched springs and masses, it should be impossible to
excite the antiparallel (tuning fork and sense) modes with mechanical vibration of the
substrate. However, since the gyros are not perfectly balanced, there will be some
response at the antiparallel resonances, but this response is much smaller than the
response seen at the parallel resonances. From the measured response of the anti-
parallel modes, we can deduce the spring mismatches for both units along both axes,
as noted in the table.

The steady state vibration levels seen are on the correct order of magnitude pre-
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dicted by the models, but do not agree as well as might be hoped. The worst errors
are seen in sinusoidal vibration of the parallel modes for LCCC574 and LCCC561. In
the case of LCCC574, the model underestimates response. For LCCC561, response is
lower than predicted. These results indicate that response levels predicted from the
linear models should be taken as approximate. In determining safe levels of gyro oper-
ation, we should take the highest response level seen between predicted and measured
values.

From these results it is evident that a sinusoidal vibration at a resonant frequency
could quickly destroy the gyro. As described in section 2.4, displacement amplitudes
of greater than 25 pum in the motor direction will cause the combs to contact. Hula
motion of amplitudes greater than 10 pm can cause the motor loop to lose lock (see
section 7.3.4).In the sense direction, displacements of greater than 2 pm can cause
snapdown. According to the data in table 5.1, the largest marginally safe vibration

at the resonant frequencies is on the order of

e Hula Frequency : 0.012 [g]
e Tuning Fork Frequency :2.5 [g]
e Sense Frequency : 2.9 [¢]

e OOP Frequency : 0.1 [g]

5.4 Random Vibration

Random vibration of the fixture and gyro causes the structure to resonate, and thus
drives gyro proof-mass motion. Although the input to the shaker system is white
noise, shaker and fixture frequency response shapes the input into a more complex
spectrum. This acceleration signal is what ends up driving the mechanical gyro plant.
The sharp gyro resonances can again be seen to shape the signal, and so the resulting
output clearly shows the gyro fundamental modes. In addition, any fixture resonances

in the band are excited, and drive the gyro. Thus, strong fixture resonances can also
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PSD of Sense—out for LCCC560 During Random Sense Vibe
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Figure 5-5: PSD of Sense Preamp Out for LCCC560 during Random Vibration in
Sense Fixture

be seen in gyro response. Figure 5-5 is a PSD of the sense preamp-out signal for gyro
LCCC560 during a random vibration test. The gyro was mounted in the sense axis
fixture which experienced 7.64-1073 g/ v/ Hz white noise delivered by the Wilcoxon
piezoshaker.

The two high frequency spikes in the PSD, at 16.729 kHz and 15.061 kHz, are
the out-of-plane and sense frequencies, respectively. Both of these modes are excited
by random vibration, although the response at out-of-plane is much greater than the
response at sense, as predicted by the mechanical model. (See section 5.2)

The lower frequency spikes, which are wider and less cleanly defined, come from
two of the strong fixture modes. Recall from section 3.3.2 that there are two strong
sense fixture modes at 9.179 and 10.730 kHz. These are the two strongest fixture
modes in the lower frequency band (below gyro resonances). This is an important
result to be aware of; any gyro operating under real environmental conditions will
respond not only at its own resonances, but also any resonances of the structure on

which it is mounted.
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In addition to examining the frequency spectrum of gyro motion, steady state
response to random vibration (modeled as white noise) was measured. Again, the
models of section 5.2 are used to predict gyro response. We take the frequency
response curves from section 5.2, multiply them by the white noise spectrum, and
integrate across the resonant peaks to determine the total power output expected at

a given frequency. Equation 5.7 gives the relationship:

rms

X2 = / I H(jw)[2S (w) dw (5.7)
Where:

X,ms = Root Mean Square value of the response in the frequency band [7s]

w1, wy = Frequency band of interest, such as the band around a particular modal

frequency. [rad/s]

H (jw) = Transfer function from substrate acceleration to proof mass motion derived

from the mechanical model [m/g]

S(w) = single sided PSD of the input acceleration spectrum in units of [g?/H 2]

Measurements of the gyro response at a particular modal frequency due to random
vibration were taken using the spectrum analyzer described in section 3.5.1. The
reference accelerometer measured the delivered acceleration level. Modal spikes in
the PSD of sense and motor preamp outputs were integrated to get the total RMS
level of motion at the various frequencies.

Table 5.2 summarizes the results, and compares them with predicted response
levels. For the antiparallel modes, the spring mismatches computed in section 5.3
from sinusoidal steady state response were used. Again, the measured results are on
the right order of magnitude, but errors are considerable.

Using the data in table 5.2, the maximum safe random vibration level sustainable
at the gyro resonant frequencies can be determined. Just as above in section 5.3,

displacement amplitudes of greater than 25 pm in the motor direction will cause the
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Unit Hula Mode Tuning Fork Mode Sense Mode Out-of-Planec Mode
(Wn/(gNHz) | (um/(g/NHz)) (um/(gNHz)) (w/(gHz))

LCCC561, 82.99 3.47 0.68 14.69
predicted
LCCCse61, 56.39 2.65 0.75 2.86
measured
LCCC574, 99.93 2.52 0.48 17.01
predicted
LCCC574, 234.49 2.52 2.04 10.48
measured
LCCC575, 106.05 0.14 0.88 18.03
predicted
LCCC575, 195.38 0.27 7.82 21.56
measured

Table 5.2: Summary of Steady State Open Loop Random Vibration

combs to contact. Hula amplitudes of greater than 10 yum can cause motor loop to
lose lock (see section 7.3.4). In the sense direction, displacements of greater than 2 pm
can cause snapdown. (see section 2.4) Thus, the largest allowable random vibration

level in a particular resonant frequency band is on the order of

e Hula Frequency : 0.04 [g/ vH z]
e Tuning Fork Frequency :7 [g/ vH z]
e Sense Frequency : 0.2 [g/ vVH z]

e OOP Frequency : 0.1 [g/\/Hz]

5.5 Ring Up Tests

Vibration can cause substantial gyro steady state response, to a level which is po-
tentially damaging to the gyro structure. However, the gyro does not build up to its
steady state response level immediately. The time constant associated with growth
of the steady state response depends on gyro damping. From the linear model, the

response should grow according to equation 5.8,

z(t) =A(1-e") (5.8)
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Ring Up Time History, OOP Mode LCCC575
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Figure 5-6: OOP Ring Up Time History of LCCC575

Where the time constant, 7 is related to Q by

Where:
fn = natural frequency for the mode under consideration.
@ = Q for the axis under question

Q and modal frequencies are known for each test unit, so time constants for the
growth of gyro response to vibration can be directly computed. Open loop transient
ring-up testing of the gyros was conducted to verify these predictions. To test ring
up time, the gyro was run open loop. The gyro starts at rest. At t=0 a sinusoidal
vibration at either the hula or out-of-plane frequency was initiated, and a time history
of gyro response recorded. Figure 5-6 is a typical response curve. Note that although
the graph looks filled in, it is really just many cycles of a growing sinusoid.

From this sort of data, the envelope of the growing response can be found. The

envelope should have the form of equation 5.8. Finding the best values for the pa-
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Ring Up Envelope and Exponential Fit, OOP Mode LCCC575
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Figure 5-7: LCCC575 OOP Ring Up Envelope and Best Exponential Fit

rameters A and 7 is non-trivial, but can be done iteratively by guessing a value for

A, then taking natural logs to produce:

In(A—z)=—-(1/7)t (5.10)

With an initial guess for A, a least squares linear fit will produce the best choice
for 7. At this point, we update the value of A, and recompute the least squares. If the
fit improves, we keep moving A in the same direction. If the error increases, we move
A in the other direction by a smaller amount. This procedure is repeated, converging
on the best value for A and 7. By using this algorithm, ring-up time constants for
various units have been measured. Figure 5-7 shows the envelope for the data in figure
5-6, as well as an exponential fit. Table 5.3 summarizes the predicted and actual time
constants for various ringup tests.

The data in table 5.3 is important because it gives an idea of how long a gyro can
survive high vibration levels; if the duration is much shorter than the time constant,
the response will not have time to build up to dangerously high steady state levels.

Agreement between measured and predicted values is decent, but there are some
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Unit Motor Q | Predicted Hula Measured Hula | Sense Q Predicted OOP Measured OOP
Ringup Time Ringup Time Ringup Time Ringup Time
Constant Constant Constant Constant
(seconds) (seconds) (seconds) (seconds)
LCCCS61 | 162,000 3.48 3.1 12,000 0.21 0.34
LCCC574 | 173,000 4.80 1.31 12,100 0.25
LCCC575 | 217,700 5.80 15,600 0.30 0.10

errors, particularly for the hula test of LCCC574. Still, the ringup time for motor

response is on the order of 1 s. For the sense axis, the time constant is on the order

of 0.1 s.

Table 5.3: Summary of Ring Up Tests
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Chapter 6

Low Frequency Closed Loop
Vibration Testing

During normal gyro operation, the gyro runs closed loop, feeding back the motor
position signal via the motor loop. Both the motor loop and sense chain systems
were described in section 2.3.4. While running closed loop, the mechanical plant of
the gyro is the same as before, thus the results of chapter 5 still apply. Now, however,
feedback is used to drive certain types of motion.

In particular, the motor feedback loop works to keep the motor axis oscillating
in tuning fork mode at an amplitude of 10 ym. This motion is necessary for correct
operation of the sense chain, which assumes a particular level of Coriolis acceleration.
As described in section 2.2.3, Coriolis acceleration depends on the motion of the
masses in the plane. A large amplitude of in-plane motion will create higher Coriolis
accelerations for a given rate. (see equation 2.12) Thus, constant amplitude motor
motion is a requirement for the gyro to accurately sense rate.

Secondly, the signals available for measurement during closed loop operation are
different than during open loop. The most significant closed loop gyro output is
the rate-out signal, which is the estimate of rotational rate experienced by the gyro.
Achieving a good estimate of rate is the final goal of gyro operation. Rate-out is
generated, as described in section 2.3.4, by multiplying the sense-preamp output by

the motor velocity clock, and low pass filtering the product. The low pass filter has
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a break frequency of 100 H z.

In addition to rate-out, both the motor and sense preamp outputs are available,
gained up by some amount. The motor preamp-out gives a direct measure of in-plane
motion of the left proof mass. We call this the position signal or psig. The sense
preamp-out gives a measure of the differential motion of the two masses out of the
plane, and also includes charge injection effects (see section 2.3.2). The gained up
sense-preamp output is available, and will be referred to as AC-out.

All of these effects must be considered to understand closed loop vibration testing,
and will contribute to the results described in this chapter and in chapters 7 and 8.

Particular concerns were raised about the sensitivity of the TFG14 to low fre-
quency random and sinusoidal vibration. Low frequency vibration is more prevalent
in the gyro operating environment. To investigate low frequency effects, four hard-
mounted unbalanced TFG14-14s underwent sinusoidal vibration testing in the 1-3
kH z range using the Labworks electromagnetic shaker. Two of these units were sub-
jected to random vibration in the 0-6 kHz range, using the same shaker. Results
indicate substantial sensitivity to sinusoidal angular vibration at the difference be-
tween the sense and drive frequencies, but very low sensitivity to vibration at any
other frequency in the range. No response was seen to the levels of vibration delivered
at other frequencies (5 gpx_pr sinusoidal).

Vibration at the difference frequency, probably resulting in structure rotation at
the same frequency, can quickly saturate the sense preamp output (at levels between
5 gpk—pk and 10 gpr_pr depending on the unit). However, little response is seen on
rate-out, since the difference frequency is on the order of 1 kHz, a full decade above
the 100 Hz bandwidth of the gyro.

Random vibration testing indicates that some false rate measurements are gen-
erated on rate-out at the difference between the hula and drive frequencies, and the
difference between sense and drive. However, most of the rate measured by the gyros
during random vibration seems to be real rotation of the test structure. For the most
part, the gyros are insensitive to the levels (0.1-0.01 gms/v/Hz, which is about 1-10

grms in a 6 kHz bandwidth) of random vibration we are able to deliver using the
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LabWorks shaker. This is discussed in section 6.3.

6.1 Summary
There are a few essential conclusions drawn from the results outlined in this chapter:

e Vibration at the difference between the sense and drive frequencies, creating
rocking of the structure at this frequency, excites sense mode motion due to
Coriolis effects. This can quickly saturate the AC-out electronics. (see section

2.4.1)

e Vibration at this difference frequency (wsense —Wrunefork)causes some small errors

on rate-out at the difference frequency and the sense frequency.

e Vibration at this frequency also has a small, but measurable, effect on the mean

of rate-out.

e Much of the signal on rate-out seen during low frequency random vibration

comes from real rotation of the test structure at structure resonances.

e Random vibration excites the hula and sense modes (particularly hula), due
to high frequency components in the applied random vibration. These couple
through into rate out and are demodulated, creating errors on rate-out at the

difference between tuning fork and hula, and tuning fork and sense.

e No sensitivity was seen to low frequency components of random vibration.

6.2 Sinusoidal Vibration at the Difference Between
Sense and Drive

Low frequency (0-3 kHz) sinusoidal vibration testing of 4 TFG-14 units has been
conducted. Results indicate that the units are sensitive to vibration at the difference

between the sense and drive frequencies. This sensitivity is only seen in a band of
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Figure 6-1: PSD of AC-Out for LCCC575 running Closed Loop, with No Vibration

about 2-3 Hz around the difference frequency. Sinusoidal vibration at this frequency
causes significant motion of the proof masses in the sense mode, even at fairly low
accelerations. Some units were more sensitive than others. As much as 3.6-1072
WMy differential motion was seen (LCCC575 with a 6.2 gpy_ps, drive).

Figure 6-1 shows a PSD of AC-out for LCCC575 while running with no vibration.
Figure 6-2 shows the PSD when the unit is experiencing a 6.2 gy, sinusoidal vibra-
tion at the difference between the sense and drive frequencies (1.740 kHz). Note that
there is a lot more energy at the sense frequency, 14.932 kHz, during vibration. The
total size of the spike is 0.037 pumyms. The PSD units, as noted, are ym/+/Hz, where
the voltage read off of AC-out has been multiplied by the appropriate scale factors
(see section 2.3.2) to produce a measure of differential motion of the proof masses in
wm.

The high sensitivity to vibration at wsense — Wimotor Was seen on all 4 gyros tested.
Table 6.1 summarizes the results for sinusoidal vibration of the four test units at the
difference frequency. For each unit, I give the sensitive frequency (which matches

perfectly with fsense — fmotor ), the level of vibration delivered during the test, the size
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Figure 6-2: PSD of AC-out for LCCC575 during Sinusoidal Vibration at 1742 Hz

of the sense mode spike in AC-out with no vibration, and the sense mode response
during vibration.

It seems likely that sinusoidal vibration at the difference frequency is causing
an oscillating rotation of the shaker at the vibe frequency. That is, it seems that
the entire structure is rocking back and forth at the vibe frequency. This rotation
will create a Coriolis acceleration in the frame of the device equal to the product of

the angular rate of the structure with respect to inertial space and the velocity of

UNIT Frequency Level of Power at Sense | Power at Sense | Power at Sense
(Hz) Vibration Frequency in Frequency in Frequency in
(o) AC-out withno | AC-out with vibe |  AC-out during
vibe at diff. vibe per input g
(umrms) (umrms) (umrms/ gpk—pk)
LCCC574 1965 10.0 4.010° 5.9010° 5.9210"
LCCCST5 1742 3.7 6.010° 3.7010° 9.9910°
LCCC576 1660 20 1.010° 1.8010° 8.9710°
LCCCS77 1858 5.0 2.010° 1.60-10° 3.2310°

Table 6.1: Summary of Sense Mode Response to Vibe at Difference Frequency
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the proof mass in the frame(mostly at the drive frequency). See section 2.2.3 for a
description of Coriolis effects. Thus, if the vibration is at the difference between drive
and sense, the sideband created by the multiplication will be exactly at the sense
modal frequency. Due to the large mechanical gain at this frequency, we will create
substantial motion in the sense mode, which is the response we are seeing in AC-
out. This is the simplest available mechanism for generating substantial excitation
at the sense frequency due to a signal at the difference frequency. The hypothesis is

supported by the computations of sections 6.2.1 and 6.2.2.

Acoriatis(t) = mQ(t) x v(t)
where
Q) = Qosin((Wsense — Weunefork)t)
v(t) = Vpsin(Wuneforkt)
SO
Acoriatis(t) = 2QVp(0.5 cos((Wsense — Wiunefork + Wrunefork)t) = * -
— 0.5 co8((Wsense — Weunefork — Wrunefork)t)) (6.1)

The Coriolis acceleration from equation 6.1 has a component exactly at the sense

resonant frequency,

ACoriolis (t) = QO% cos (wsenset) (62)

The hypothesis that the sense mode is being excited by Coriolis effects is supported
by the fact that no response to vibration at the difference frequency is seen during
open loop operation. In open loop operation, there is no velocity of the proof masses
in the frame and so no Coriolis accelerations develop.

In addition, the accelerometer measuring acceleration in the sense direction (or-
thogonal to the main acceleration direction) measures acceleration levels as high as

50% of the primary acceleration. If the structure is rocking, substantial transverse
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Figure 6-3: Experimental Setup for Determining Rocking of Motor Axis Fixture on
Labworks Shaker

accelerations such as this should be seen.

6.2.1 Measurement of Fixture Rocking

To measure the table rocking, sideways accelerations of the fixture were measured at
two different points. By assuming that all sideways motion of the table comes from
rocking (i.e. the bearings are too stiff to allow substantial sideways translational
motion), the magnitude of the rocking motion can be computed. Figure 6-3 shows
the setup with the locations of the accelerometers, and defines the various variables.

In figure 6-3, these variables are diagrammed:

R = vertical distance between the two accelerometers
a1 = horizontal acceleration measured by the top accelerometer
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ae = horizontal acceleration measured by the bottom accelerometer
(2 = angular rotational rate of the structure

R is known, a; and ay are measured. The two unknowns are the location of the
center of rotation and the angular rate. However, if we assume all sideways motion
comes from the rotation of the fixture, and that the rotation is sinusoidal at the same
frequency as the input, we can compute the angular rotation of the structure and the
position of the center.

Although the position of the center of rotation does not affect computations of
the rotation levels (only the distance between the accelerometers, R, comes into the
expression for ), the center of rotation can still be computed. If this model of
rigid body rotation is correct, the center should be in the same place for different
acceleration levels. Thus, I will compute not only the level of rocking, but also the
position of the center of rotation.

In doing this, there is one ambiguity: the center of rotation could be between,
above or below the positions of the accelerometers. The center should not be above
the accelerometers, as is clear from the distribution of mass. Computations were
carried out assuming locations between and below the accelerometers. If we assume
the center of rotation is between the two, we get better agreement for tests at different
frequencies. Also, there is one test where there is no solution for the center of rotation
below the accelerometers. Thus, concluding that the center of rotation is somewhere

between the two accelerometers, equation 6.3 below gives the solution:

q = a1 + ag
aRw
. 1
By = Qw
)
= = 6.3
Ry 0 (6.3)

Where:

w = frequency of the input to the shaker
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Vibe Frequency | Vibe Level (g ar (Zpkpk) a(Zokpr) Q R,
(kHz) ((rad/sec) ) (cm)
1.97 9.99 3.31 3.31 0.239 1.10
1.74 3.69 1.44 0.700 0.0871 1.50
1.66 2.01 0.781 0.379 0.0495 1.50
1.86 5.00 1.86 1.35 0.122 1.30

Table 6.2: Data and Computation of Table Rocking for Various Conditions

R; and R; are the vertical distance from accelerometer 1 and accelerometer 2 (re-

spectively) to the center of rotation

Four gyros were tested with vibration at their difference frequency, as described
in section 6.2. For each of the four test situations, the accelerations a; and a, were
recorded. Since there was often distortion in the sideways acceleration signal, accel-
eration at the input vibration frequency was determined by integrating the spike in
the PSD. Using equation 6.3, the rotation and position of the center of rotation has

been computed for each case. Table 6.2 describes the results.

R=22ecm

Note that to a very good degree of accuracy, the rotation of the table, €2, is linearly
related to the magnitude of the input vibration, regardless of frequency. The linear fit
is shown in figure 6-4, giving rotation of 0.024 (rad/s)/g. Also, note that the position
for the center of rotation from run to run is fairly constant, which makes sense.
Both of these facts strongly support the idea that all of the sideways acceleration
is, indeed, coming from rotation of the fixture. A comparison of the level of fixture
rocking computed from this method with the level needed to excite the observed gyro

sense mode motion is given in section 6.2.2.
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Figure 6-4: Computed Fixture Rotation vs. Primary Acceleration

6.2.2 Expected Sense Mode Response due to Rocking

With this estimate of the fixture angular vibration, we can compute the expected
response of the sense mode due to Coriolis forcing. Assuming matched masses and
springs, we can derive the transfer function relating the Coriolis acceleration input
to the differential motion of the two proof masses out of the plane. (recall that this
differential motion is what we see on AC-out). From the full linear model of equation

2.16, the transfer function given in equation 6.4 is derived,

YA 2m

ACoriolis ms2 -+ byS +

T (6.4)

ko+2ky L2

A plot of the frequency response from Coriolis acceleration to differential sense
motion is given in figure 6-5. A Coriolis acceleration delivered at the sense resonance
produces a 9.40 dB gain, that is, 2.95 um/(m/s?) of differential motion, using the
parameter values for LCCC575. This magnitude will vary slightly from unit to unit
depending on damping.

Equation 6.5 gives the magnitude of Coriolis acceleration produced at the sense
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Tranfer Func for LCCC575 From Coriolis Accel (m/§) to Sense Diff Motion (um)
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Figure 6-5: Transfer Function relating Sense Differential Motion to Coriolis Acceler-
ation

frequency. From table 6.2, the rotation of the table is 0.024 (rad/s)/g, and during
closed loop operation the motor displacement amplitude is 10 um, giving a velocity

amplitude of

Vo = Xowtunefork = (10pum)(12.450kHz) - (2r) = 0.78 m/s

The mass of the proof mass, m, is 3.6-10~% kg. From this we can compute the
expected motion of the sense mode due to Coriolis accelerations generated by fixture
rocking. The predicted results are compared with measured results in table 6.3.
Equation 6.5 gives the magnitude of the component of Coriolis acceleration at the

sense frequency.

ACoriolis (t) = QyVj cos (wsenset) (65)

In all cases, the measured response was lower than the predicted. However, the

predictions assume that the Coriolis acceleration is being delivered precisely at peak
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Unit Primary Rocking Produces Predicted Observed Necessary

Acceleration Motion Coriolis Sense Sense Frequency
(o) ((rad/sec)p0) Acceleration Motion Motion Deviation to

(/5% (g (mg) Produce
Error

LCCC574 5.00 0.120 0.0939 0.254 0.00834 0.14%
LCCCS75 1.86 0.0443 0.0347 0.102 0.0523 0.0067%
LCCC576 1.00 0.0240 0.0189 0.0574 0.0255 0.0079%
LCCC577 2.51 0.05.99 0.0467 0.215 0.0226 0.024%

Table 6.3: Comparison of Predicted and Measured Sense Mode Response Assuming
Coriolis Drive from Rocking

resonance. Since the Q of the gyro is so high, the resonant peak is very narrow, and
any small deviation from the exact resonant frequency vastly reduces the response.
The last column of table 6.3 gives the percentage deviation from the sense fre-
quency needed to produce the measured response. The frequency deviations required
range from 1 Hz for LCCC575 and LCCC576, to 18 Hz for LCCC574. These are well
within the resolution of the frequency generator; vibrations were within 1 Hz at worst
of the true resonance. The errors may come from the inaccurate measurements of
table rocking taken from accelerometer readings. More work should be done to de-
termine whether all of the observed sense motion is truly coming from table rocking.
However, it does seem plausible that a substantial part of the response is generated

by Coriolis effects.

6.2.3 Rate-out Due to Vibe at Difference Frequency

Excitation of the sense mode has an effect on rate-out measurements. Vibration at
the difference frequency creates two new components of rate-out: one component at
the vibe frequency, and a smaller one at the sense frequency. A PSD of rate out with
no vibration for LCCC575 is shown in figure 6-6. Figure 6-7 shows the PSD during
the 3.7 gpr—pr vibe at the difference frequency (1.742 kHz).

To determine whether the 0.16 (deg/s)rms spike seen in rate-out at the difference
between sense and tuning fork in figure 6-7 comes from real motion of the sense axis,
we must compute the expected motion of the sense axis due to rocking. From this,

we can compute the expected output on rate-out.
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PSD of Rate—out for LCCC575 during normal closed loop operation, no vibe
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Figure 6-6: PSD of Rate-out for LCCC575 with no Vibe

PSD of Rate—out for LCCC575 during Vibe at Difference Freq
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Figure 6-7: PSD of Rate-out for LCCC575 with 3.7 gpx—pr Vibe at Difference Fre-
quency
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A 3.7 gpk_pr vibration, such as that experienced by LCCC575 during the test,

corresponds to €y = 0.089rad/s of rotation.

Qo = (0.024(rad/s)/9)(3.79pk—pr) = 0.089(rad/s)pk—pk

This produces a Coriolis acceleration with magnitude of 6.94-1072 (m/s?),—pk

according to equation 6.5.

Acorionis(t) = Qo Vo co8(wWsenset) = (0.089rad/s)(0.78m/s) = 6.94 - 107%(m/s*)pk_pk

For LCCC575, we saw that the gain at resonance for the sense mode is 2.95
pmpr—pr of differential motion for 1 (m/s?)y,—pr applied Coriolis acceleration. Thus,
the vibration creates 0.2 pmyp_p, of differential sense motion at the sense resonant
frequency.

At low frequencies, the transfer function gives a gain of 2.34:10~* um of differential
sense motion per (m/s?) applied Coriolis acceleration. A rotation of 1 deg/s produces
a Coriolis acceleration of magnitude 3-102 (m/s®),; resulting in 3.2-107% pmyy of

sense motion.
Xo = (1(deg/s),1) (/180 rad/deg)(0.78m/s)x (2.34-10"* um/(m/s?)) = 3.2:10 8 umyy,

Now, the difference frequency for LCCC575 is 1.742 kHz, which is 17.4 times the
gyro bandwidth of 100 Hz, or 1.74 decades. Thus, since the low-pass demodulator
filter is a four pole filter, we expect an attenuation of -111 dB between the output
generated by a low frequency rotation and that generated by rotation at the difference

frequency, as shown in figure 6-8. The low frequency scale factor for LCCC575 is

13.9mV/(deg/s) = 13.9mV /3.2 - 10~ umy, = 4340V/ iy

so the scale factor at 1.742 kHz should be
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Four Pole, 100 Hz Break Demod Filter
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Figure 6-8: Four Pole Low Pass Filter on Sense Demod

(4340V/ pmpy) x (—111dB) = 12.2mV/ pumyy,

Above we computed that the Coriolis forces were exciting 0.2 pmyp;_p, of sense
mode motion during vibration. From above, this should result in 1.2 mVj;, at rate-out.
The actual spike in rate-out measured from the PSD in figure 6-7 is 3.2 mVp;.

Given the approximations made in the ideal four pole filter and the magnitude of
both rocking and transfer function gain at resonance, this constitutes good agreement.
It is reasonable to conclude that the erroneous signal in rate out is coming from
normal functioning of the sense chain demodulator operating on sense mode response

to rocking.

0.1pmypy, X 5.6 mV/umy, x (1/13.9) (deg/s)/mV = 0.043deg/s
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Shift of Rate—out Mean due to Vibe at Difference Freq
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Figure 6-9: Rate-out Mean for LCCC574 and LCCC575 During Difference Frequency
Sinusoidal Vibe

6.2.4 Shifts in the Mean of Rate-out

Sinusoidal vibration at the difference frequency has very little effect on the mean of
rate out. Rate out mean will only change if the energy at the tuning-fork frequency
in AC-out changes. There is no particular reason why vibration at the difference
frequency should strongly influence the tuning-fork amplitude, although substantial
sense motion could cause some changes due to cross-axis coupling in the mechanical
model. However, cross-axis coupling effects are small, and so there should be very
little shift in the mean of rate-out. Figure 6-9 shows how rate-out mean changes with
the amplitude of vibration at the difference frequency for two units.

The rate-out mean trends fairly linearly with applied vibration at the difference,
but does not shift very much even with the relatively large sinusoidal vibrations

applied.
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LCCC575 Rate—out with No Vibration
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Figure 6-10: Rate-out for LCCC575 with No Vibration

6.3 Low Frequency Random Vibration

Random vibration in the 0-6 kHz low frequency band causes significant output on
rate-out. However, it is likely that much of the low frequency rate measured during low
frequency random vibration is caused by real rotation of the test structure. Erroneous

rate measurements are seen at the difference between drive and hula.

6.3.1 Examples of Time Domain Rate-out Signal

Figure 6-10 shows rate-out for LCCC575 with no vibration. Figure 6-11 shows rate-
out with random vibration in a 0-6.4 kHz band at 1.25 ¢ps.

Similar results are obtained for LCCC574, showing a tenfold increase in the mean
square value of rate-out with a 1.25 g¢,.,,s; vibration in the 0-6.4 kHz band. Most of
this is due to low frequency components which are almost certainly real rotation of

the structure. (see section 6.3.3)
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LCCC575 Rate—out during 6.4 kHz band 1.25 9ims random vibe
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Figure 6-11: Rate-out for LCCC575 during 6.4 kHz band, 1.25 g, random vibration

6.3.2 Major Frequency Components of Rate-out

There are a few major frequency components seen in the PSD of the rate-out signal
during random vibration. Figure 6-12 is a PSD of rate-out during random vibration
for LCCC575.

The major frequency components, and the power at each (integral of the spike
with respect to frequency), are listed below (taken from PSDs such as that in figure
6-12):

LCCC574, during 1.4 gpy,s 0-6.4 kHz band random vibe

870 Hz +/- 10 Hz, 0.401 (deg/s)rms
190 Hz +/- 10 Hz, 1.94 (deg/s)rms

40 Hz +/- 10 Hz, 8.66 (deg/s)rms
LCCC5H75, during 1.25 gppms 0-6.4 kHz band random vibe

1740 Hz +/- 20 Hz, 0.020 (deg/s)rms
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PSD of LCCC575 rate—out during 6.4 kHz band 1.25 i random vibe
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Figure 6-12: PSD of Rate-out for LCCC575 during 6.4 kHz band, 1.25 g,,,,s random
vibration

960 Hz +/- 10 Hz, 0.050 (deg/s)rms
190 Hz +/- 10 Hz, 0.72 (deg/s)rms

40 Hz +/- 10 Hz, 3.49 (deg/$)rms

6.3.3 Components due to Real Rotation of Test Structure

The 190 Hz and 40 Hz components are common to both units. This suggests that
they come from the environment (which is common to both units) rather than from
the units themselves. Indeed, they seem to come from motion (probably rotation)
of the test structure at those frequencies (i.e. there is a spike in the accelerometer
outputs at those frequencies indicating large structure motion). Figure 6-13 shows
a PSD of the sense axis accelerometer signal, which should give an indication of the
magnitude of structure rotation.

In figure 6-13, we clearly see the 190 Hz and 40 Hz spikes, indicative of rotation

of the structure (most sideways motion of the structure should be due to rotation
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PSD of Sense Accelerometer Output during 400 Hz band 0.37 9ms Rand Vibe
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Figure 6-13: PSD of Sense Accelerometer during 400 Hz band, 0.37 gy, random
vibration

since the shaker is more compliant to rotation than sideways translation). Thus, we
can conclude that these two spikes come from real rotation of the test structure, and

should therefore appear in rate-out.

6.3.4 Rate-out Components due to Other Gyro Modes

The 870 Hz and 960 Hz signals seen in the rate-out spectrum for LCCC574 and
LCCChH75 are exactly at the difference between motor and hula frequencies. This
occurs because the small amount of vibration energy at the hula frequency is enough to
excite the high-Q hula mode. Motion at hula gets coupled into AC-out due to charge
injection effects, as described in section 2.4.1. Equation 6.6 repeats the equation

relating hula motion to AC-out given in section 2.4.1.

Vout = =7~ 1

‘=G o o (6.6)

1 (‘/lbias CYz'ml V;"bias Cimr )
— I+ ——Z9

Where
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Vibias = DC bias on the right inner motor = +5 V

Vivies = DC bias on the left inner motor = -5V

Cy, = sense preamp feedback capacitor ~ 2.2 pF

Cimu = zero displacement left inner motor capacitance =~ 0.45 pF

Cimr = zero displacement right inner motor capacitance ~ 0.45 pF

29 = nominal motor comb overlap ~ 25 um

x1 = displacement of the left proof mass in the plane with respect to the substrate

2o = displacement of the right proof mass in the plane with respect to the substrate

During hula motion, z; and x5 are opposite one another in phase, so their effects
sum. Thus, hula motion creates a signal on AC-out with scale factor 80 mV/um of
hula amplitude.

When the hula frequency gets demodulated by the velocity clock, we get a signal
on rate-out at the difference between hula and drive, which is low enough frequency
not to be completely attenuated by the low pass filter.

There is a substantial spike at the hula frequency, for both units, in both AC-out
and the position signal. This spike is not evident when no vibration is being delivered.

The 1740 Hz spike for LCCC575 is the difference between the sense and drive
frequencies. This is caused by motion of the sense axis in the sense mode driven by
the random vibration. Again, the difference frequency appears at rate-out due to the
demodulation with the motor velocity clock. LCCC574 is not as sensitive to vibration
driving the sense mode, as demonstrated in table 5.1 of section 5.3. Thus, it does not

exhibit an erroneous rate-out signal at Weense — Wiune fork -
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Chapter 7

High Frequency Closed Loop
Vibration Testing

Since the four lightly damped gyro modes lie in the high frequency band between 10
kHz and 20 kHz, the gyro is very sensitive to high frequency vibration. Section 5
describes the open loop mechanical response of the various modes to both sinusoidal
vibration and random vibration in the gyro modal band. This chapter explores the
effects of high frequency vibration on the closed loop operation of the gyro.

The effects of high frequency vibration on rate-out measurements are discussed.
Changes in rate-out mean, as well as frequency components appearing on rate-out,
will be examined. The maximum sustainable vibration levels which will not clip AC-
out (that is, saturate the electronics due to a high AC-out signal) will be considered.
Also, measurements of vibration levels that cause the motor loop to lose lock are
presented. In all the tests discussed here, the gyro was mounted in the Wilcoxon

piezoelectric shaker, running closed loop using the EDM3 electronics.

7.1 Summary
There are a few essential conclusions drawn from the results outlined in this chapter:

e Random vibration in the band containing all four gyro modes excites every
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mode, but due to sensing schemes and mechanical gains the sense and hula

frequencies are predominant on AC-out.

Random vibration creates an erroneous rate-out component at the difference
between hula and tuning fork, on the order of 1 deg/s for a 0.5 grpms 11-19 kHz

random vibe.

Random vibration levels of approximately 0.025 g/v/ Hz in the 11-19 kHz band

excite enough hula and sense motion to begin clipping AC-out.

Random vibration levels of more than 0.005 g/+/ Hz will shift the mean of rate-

out by as much as 2 deg/s, and cause it to become very unstable.

The gyro is most sensitive to sinusoidal vibration at the hula frequency. Vibra-

tion levels of 0.015 gpj_p at hula will begin to clip AC-out.

— Vibration at hula of 0.015 gp;_pr or more has a major effect on the mean

of rate-out, causing shifts of up to 17 deg/s.

Vibration at hula of approximately 7 gpr—pr causes the motor loop to lose lock,
and gyro operation ceases. This level of vibration is the level needed to produce

a hula mode amplitude of 10 ym, the nominal tuning-fork amplitude.

Vibration near the tuning fork frequency creates a low frequency signal on
rate-out at the difference between the applied vibration and tuning-fork fre-
quencies. This is probably due to angular vibration, and occurs at levels as low

as 0.003rad/s.

7.2 High Frequency Random Vibration

Random vibration delivered in the 11-19 kHz band (which includes all four major gyro

modes) has a substantial effect on rate out and can quickly rail AC-out. Figure 7-1

gives a PSD of a typical acceleration input spectrum. Most of the acceleration signal

appears in the 11-19 kHz band. The noise is not white, due to fixture dynamics. When
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PSD of Accelerometer output during 11-19 kHz Random Vibe
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Figure 7-1: PSD of Accelerometer Qutput for High Frequency Random Vibration in
11-19 kHz band

determining response of a particular mode to random vibration, the PSD vibration
level is measured near the modal frequency in question. Figure 7-2 gives a narrow
band PSD of the same data.

All four main gyro modes are excited by random vibration, exactly as described for
open loop operation in chapter 5. Hula and Out-of-Plane are excited most strongly.
All of the modal frequencies can be seen on AC-out, although Out-of-Plane is attenu-
ated due to common mode rejection in the sense biasing scheme. Demodulation with
the velocity clock produces sidebands at the difference between each modal frequency
and the tuning fork frequency. Since the hula frequency is closer to tuning-fork, it
is attenuated less by the rate-out demod filter, and is strongly evident on rate-out.
Figure 7-3 shows a PSD of rate-out for LCCC574 undergoing a 0.53 ¢,s 11-19 kHz
random vibration. The large component in rate out at fiunefort — fruia integrates to
0.74 deg/sec.

For both LCCC574 and LCCC575 rate-out contains a substantial component at

the difference between hula and tuning fork. In addition to errors in rate out, AC-out
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Narrow Band PSD of Accelerometer output during 11-19 kHz Random Vibe
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Figure 7-2: Narrow Band PSD of Accelerometer Qutput for High Frequency Random

Vibration in 11-19 kHz band
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Unit Hula Mode Tuning Fork Mode Sense Mode Out-of-Planec Mode
(Wn/(gNHz) | (um/(g/NHz)) (um/(gNHz)) (w/(gHz))

LCCC561, 82.99 3.47 0.68 14.69
predicted
LCCCse61, 56.39 2.65 0.75 2.86
measured
LCCC574, 99.93 2.52 0.48 17.01
predicted
LCCC574, 234.49 2.52 2.04 10.48
measured
LCCC575, 106.05 0.14 0.88 18.03
predicted
LCCC575, 195.38 0.27 7.82 21.56
measured

Table 7.1: Summary of Steady State Open Loop Random Vibration

can be clipped. Table 7.1, taken from section 5.4, gives the open-loop response of each
mode to white noise of a particular level. Sense mode differential motion of 0.1 um
(corresponding to 0.05 pum of each side) will cause AC-out to clip. (see section 2.4.1.
For LCCC574, 2 pym/ (g/ \/H—z) was measured for one side, so, to avoid clipping, we
must keep acceleration levels below 0.025 g/ V/Hz. This corresponds to 2.2 gpms in
the 11-19 kHz band. A random vibration test conducted at 4 ¢,.,,, 11-19 kHz for
LCCC574 does clip AC-out due to excitation of the sense and hula modes.

These are the two major effects of high frequency random vibration on closed loop
performance. AC-out will clip with vibrations on the order of 0.025 g/v/Hz, and an
erroneous signal will appear on rate-out at funefork — fhuia- The fixture rotation
effects seen during low frequency random vibration are not evident, probably because
the fixture modes are all below the 11-19 kHz band in which high frequency vibration
was delivered.

Random vibration has a large effect on the mean of rate-out, causing substantial
changes and a very unstable signal. Table 7.2 shows the change in rate-out mean for

LCCC574 and LCCC575 during random vibration in the 11-17.4 kHz band.
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Unit Vibe Level Mean of Rate Out (deg/sec)
LCCC574 No Vibration 2.04
LCCC574 5E-3 g/rtHz = -0.1, unstable
0.4 gy in 6.4 kHz Band
LCCC574 4E-2 g/rtHz = -11 +/- 3, unstable
3.16 gims in 6.4 kHz Band
LCCCS575 No Vibration 0.36
LCCC575 5E-3 g/rtHz = 0.33
0.4 gyms in 6.4 kHz Band
LCCC575 4E-2 g/rtHz = moving: 25 second averages
3.16 gy in 6.4 kHz Band gave -0.58, 4.32, -1.79, -1.73,
-2.01,0.0,3.17

Table 7.2: Data Showing Change in Rate-out Mean During 11-17.4 kHz Random
Vibration

7.3 Sinusoidal Vibration

Sinusoidal vibration at the gyro resonant frequencies caused shifts in rate-out and
could cause the gyro to lose lock on the tuning-fork mode and shut down completely.
The gyros were most sensitive to vibration at the hula frequency. Refer to section 5.3
for predictions and data showing the response of the various gyro modes to sinusoidal
vibration at the natural frequencies. The sense and tuning fork modes are antiparallel,
and thus not easily excited by vibration. The sense biasing scheme rejects the out-of-
plane mode. Thus, during closed loop vibration the gyro is most sensitive to vibration

of the hula mode.

7.3.1 Clipping of AC-out

Hula motion couples directly onto rate out due to charge injection effects. Since the
two inner motor points are at = 5 V, the charge injection cancels due to tuning fork
motion, but adds during hula motion. The magnitude of the resulting signal on AC-
out can be computed from equations 7.1 and 7.2. See sections 2.3.2 and 2.4.1 for an

explanation of hula charge injection.

Voal£) = Cifb /Ot C;O (=5V - d0(t) = 5V - d(t) dt (7.1)

Where:
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Vout = sense preamp output
Cssp = sense feedback capacitor
Cim = nominal inner motor capacitance (no motion)
zo = nominal comb overlap (no motion)
z1(t) = displacement of left proof mass relative to substrate
zo(t) = displacement of right proof mass relative to substrate
For the hula mode with x; and x5 exactly in phase with each other, and oscillating

at the hula frequency, this becomes

z1(t) = Xq sin(wpgiat)z2(t) = Xo sin(wpyiet)

Cim

V.,.=
out CsfbeO

(=5V (X1 + X)) sin(wt) (7.2)

If we assume matched sides (i.e. for hula motion X; = Xs), then, taking the

capacitor values for LCCC574 and LCCC575,

e LCCC574 has 82.4 mV /um voltage at sense preamp output due to hula motion

of some amplitude (amplitude of one side).

e LCCCH75 has 80.4 mV /um voltage at sense preamp output due to hula motion

of some amplitude (amplitude of one side).

Since AC-out is gained up by a factor of 50 from sense preamp out, and clips at
a voltage of 15 V, this means that hula amplitude of approximately 3.5-4.0 pum will
clip AC-out. From the computations and measurements of section 5.3, summarized
in table 7.3, this corresponds to a hula frequency vibration of 0.005 g for LCCC574,
and 0.008 g for LCCC575. Recall that the values shown in table 7.3 are for vibration
at the nonlinear resonance. Maintaining vibration at the nonlinear resonance requires

a slow downward frequency sweep, creating enough amplitude to shift the frequency
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Unit HulaMode | Tuning Fork Sense Mode Out-of-Plane | Deduced Flexure
(pm/g) Mode (um/g) (pm/g) Mode (um/g) | Spring Mismatch

LCCC561, 214 2%:9.21 9.87
predicted
LCCCS61, 63 0.63
measured
LCCC574, 300 1%: 8.62 1%: 0.41 12.03
predicted 2%: 16,5 2%: 0.84
LCCC574, 826 7.54 0.30 4.36 | motor: ~0.9%
measured sense: ~0.72%
LCCCS75, 331 1%: 8.85 1%: 0.35 14.00
predicted 2%: 16.87 2%: 0.72
LCCC575, 501 0.44 0.69 10.83 | motor: ~0.05%
measured sense: ~1.95%

Table 7.3: Summary of Steady State Open Loop Sinusoidal Vibration

due to spring softening before moving down to a lower frequency excitation. (see
sections 2.2.5 and 2.2.5)

During high frequency vibration testing, vibration was delivered directly at the
closed loop resonant frequencies, no downward sweep was conducted. Thus, due to
nonlinearities, less motion will be created than the measured results from table 7.3
indicate. If, instead of the measured nonlinear response, we use the linear values
predicted by the model (given in the “predicted” rows of the table), we find that
AC-out should clip due to hula charge injection at approximately 0.014 g,;. Testing
of LCCC574 indicates that AC-out clips at 0.015 gy, due to hula vibration. LCCC575
also clips AC-out at approximately 0.015 gp;. Thus, we seem to be operating at the
linear resonance.

Hula vibration delivered at the linear resonant frequency creates hula motion of
3.5-4 pm, enough to begin clipping AC-out, at vibration levels of 0.015 g,;. This
agrees with the level of vibration predicted by the linear model, and corresponds to

the experimentally determined vibration level needed to clip AC-out.
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Unit and Mode | Frequency of | Number of Highest Maximum Comments
Vibe (kHz) Vibe Levels | Acceleration | Deviation of
Tested Tested Rate out Mean
(Epic-pi) from Nominal
(deg/s)

LCCC574, Motor Vibe 14 0.984 17.3 Most sensitive, see

Hula 11.580 figure
LCCC574, Motor Vibe 2 0.37 0.3 Mean fairly insensitive,
TuneFork 12.454 but much beating
LCCC574, Sense Vibe 6 1.66 0.03 Mean insensitive, AC-

Sense 14.419 out clips at ~1.6 gk
LCCC574, Sense Vibe Many 0.1 <0.05 No response seen

O0P 15.893
LCCC575, Motor Vibe 19 0.064 14.2 Most Sensitive, see

Hula 11.964 figure
LCCC575, Motor Vibe 2 1.27 0.18 Mean fairly insensitive,
TuneFork 12.930 but much beating
LCCC575, Sense Vibe 6 413 0.22 Sudden jump in mean

Sense 14.670 at ~1.4 g i
LCCC575, Sense Vibe 5 0.54 1.1 Sudden jump in mean

O0P 16.240 at ~0.45 g o

Table 7.4: Summary of Test Results, Closed Loop Resonant Sinusoidal Vibe

7.3.2 Shift of Rate Out Mean

Vibration at any of the resonant frequencies causes shifts in the mean of rate out.
However, as before, the gyro is most sensitive to hula vibration. Table 7.4 summarizes
the test results for LCCC574 and LCCCH75.

The summary in table 7.4 shows that the gyro is most sensitive to vibration at
the hula frequency. All other modes cause only small changes in rate-out mean, even
at large accelerations. There is still the danger of damaging the gyro by overdriving
a mode and causing contact in the combs or snapdown of the sense axis. The results
of section 5 give the maximum safe levels of vibration to avoid such problems.

In both the out-of-plane and sense mode tests for LCCC575, there is a sudden
jump in rate-out mean at a particular vibration level. This could perhaps be due to
clipping of the AC-out signal at this vibration level. This is particularly likely for
the sense mode, since data for LCCC574 indicates that AC-out clips at the vibration
level where the rate-out mean jumps.

Vibration at hula causes a large change in the mean of rate out. During hula vibra-

tion, substantial hula signal appears on AC-out due to charge injection as described

131



Dependence of Rate—Out Mean on Hula Vibration, LCCC574
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Figure 7-4: Dependence of Rate Mean on Hula Vibration, LCCC574

above. AC-out begins to clip at hula amplitudes of about 3-4 um, corresponding
to vibration levels at hula resonance of approximately 0.015 gpx. (see section 2.4.1)
However, the mean of rate out changes over the entire range of vibration levels deliv-
ered. The errors produced are substantial, sometimes more than 14 deg/s. Figures
7-4 and 7-5 show the change in rate out mean during hula vibration of LCCC574 and
LCCC5H75. Note that there is a threshold level, approximately the acceleration level
at which AC-out starts to clip, below which little change is seen. However, about this

level the rate out mean changes substantially.

7.3.3 Vibration at Tuning Fork Frequency

Vibration at the tuning fork frequency creates a low frequency sinusoid on rate out at
the difference between the vibration frequency and true tuning fork natural frequency.
This occurs because motor axis motion is excited at the vibration frequency, which
is close enough to tuning fork to have substantial gain. Due to capacitive mismatch
or other amplitude mismatch, this signal appears in AC-out. It is demodulated with

the tuning fork frequency, and low pass filtered with the 100 Hz demod filter. Since
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Dependence of Rate—Out Mean on Hula Vibration, LCCC575
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Figure 7-5: Dependence of Rate Mean on Hula Vibration, LCCC575

the applied vibration is well within 100 Hz of the tuning fork frequency, it is not
attenuated at all by the filter, and appears strongly on rate-out. Figure 7-6 gives a
typical example of rate-out for LCCC574 during a 0.2 gpp—pr 12.454 kHz sinusoidal
vibe. Note that the signal on rate-out has a frequency of about 0.7 Hz, so the applied
vibration is 0.7 Hz away from the natural frequency.

The beating problem can be improved by reducing spring mismatch (and thereby
reducing tuning fork response to vibration), or improving capacitor and amplitude
matching between the two sides so that tuning fork charge injection to sense will more

exactly cancel.

7.3.4 Hula Vibration Causes Motor Loop to Lose Lock

High vibration levels at the hula frequency produced enough hula mode motion that
the motor loop would lose its lock on the tuning fork mode. For LCCC575, this caused
all gyro signals to rail and locked up the device. Normal gyro operation could only
be restored by shutting down power, waiting for 5-10 seconds to allow any motion

to damp out, and turning power back on. When lock was lost on LCCC574, AC-out

133



pk—pk

Rate out for LCCC574 During 0.2 g 12.454 kHz vibe
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Figure 7-6: Rate-out for LCCC574 during 0.2 gpi_,, vibe Near Tuning Fork

railed, but the position signal was a clean sinusoid at the hula frequency. Shutting off
the vibration would allow the gyro to reacquire lock, and normal operation resumed
after 10-20 seconds.

Lock was lost at a vibration level that created a hula amplitude equivalent to the
driven tuning fork amplitude of 10 um. For LCCC574, this occurred at a vibration
input of 7.5 gpr—pk, creating a hula amplitude of 9.76 ym. LCCC575 lost lock due to
a vibration of 7 g,5_pi, which drove hula at 9.4 ym. Figure 7-7 shows a PSD of the
position signal just prior to loosing lock ( 7 gpx—pk)-

Driving the gyro at high enough amplitudes to lose lock did not seem to cause any
serious permanent damage to the gyro. Hula motion was at most approximately 10
pm in amplitude, well with safe limits. The loss of lock was an electronic phenomenon,
and although it saturated various components, no damage was done. Measurements of
scale factor for both units before and after losing lock show no change; LCCC574 still
maintains precisely 9.81 mV/(deg/s), and LCCC575 continues at 13.9 mV/(deg/s).
Table 7.5 shows the values of a few closed loop parameters for the two units before

and after they were driven to the point of loosing lock. Thus, although high levels of
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Figure 7-7: PSD of Position Signal for LCCC575 During 7 gp,—pr, 11.964 kHz Vibration

vibration can cause the gyro to shut down, normal operation can be restored with no

permanent damage to the unit.

Table 7.5: Measurements of Characteristic Gyro Parameters before and After Lock

Loss

Parameter LCCC574 Priorto | LCCCS74 After | LCCC575 Priorto | LCCC575 After

Loosing Lock Loosing Lock and Loosing Lock Loosing Lock and
Reset Reset

Scale Factor 9.8 9.8 139 13.9

(mV/(deg/s))

AGC 493 470 444 429

(mV)

In-phase Bias 2,041 1.306 0,360 0,402

(deg/s)
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Chapter 8

Impact Testing

Shock testing of the gyro when running open loop demonstrates the high-() resonances
of the tuning fork, and the coupling of structure resonances into gyro output. Since
a shock excites mounting structure resonances, over a short time period the gyro is
more correctly excited by the oscillating structure rather than a true delta function.
The acceleration of the mounting structure after an impact was measured using the
Endevco 2250A. Some data for fixture acceleration was shown in section 3.3.2 figures

3-10 and 3-11.

8.1 Summary

There are a few essential conclusions drawn from the results outlined in this chapter:

e Mounting structure resonances are excited by impact and drive the gyro. Thus,
mechanical motion is produced not only at gyro resonances, but also at struc-
tural resonances. Structure vibration is more heavily damped than the high-Q

gyro modes, and dies out more quickly.

e Mechanical response of the gyro to impact depends heavily on the width of the
delivered pulse. A pulse more than 3 times the natural period of the gyro modes

will excite very little response.
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Pulse sizes delivered by a steel on aluminum impact were on the order of 0.15-0.3

ms, about 2 or 3 times the gyro natural periods.

Excellent agreement was observed between modeled and measured response of
the gyro to impact, especially when accelerometer data was used as an input to

the linear model. This increases confidence in the model.

During closed loop operation, sense modal motion excited by impact is demod-
ulated by tuning fork and appears at rate out. Thus, there is a strong erroneous

signal at the difference frequency.

AC-out can be easily clipped by impacts. (see section 2.4.1 for a discussion
of clipping) Again, this depends heavily on impulse width and power, but dis-
placement impulses delivered with the hand-held impact hammer on the order

of 7.7:107% m - s in size and 0.15-0.3 ms in width clip AC-out.

Sense mode response to impact causes the most problems during closed loop
operation. Sense modal response to impact is heavily dependent on spring

mismatch. With no mismatch, no sense response will be observed.

As with all other gyro excitations, the effects of impact die out exponentially,
with time constants determined by gyro Q. For the motor axis this is on the

order of 1 s, for the sense axis on the order of 0.1 s.

8.2 Open Loop Testing

There are two main regions to gyro open loop impact response. The first region is

a short region during which the structure is still ringing and driving the gyro at a

resonance of the mounting structure. After this relatively low-Q ringing dies out, the

gyro continues to oscillate at its own fundamental frequency, which has much lower

damping. Both of these regions will be seen in gyro response to real environments;

the resonances of the structure to which the gyro is mounted will appear on gyro

outputs.
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Time History of LCCC560 Sense—out, Open Loop Impact
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Figure 8-1: Time History of Sense Impact Response for LCCC560

8.2.1 Frequency Content of Open Loop Impact Response

Figure 8-1 gives a time history of sense-out for LCCC560 experiencing an impact at
t=0. The initial region of the plot, from 0-4 ms, contains a lot of power at the fixture
resonant frequencies. After this initial region, fixture response dies out, and only the
high QQ gyro modes remain in the response. Figure 82 shows a PSD of the sense-out
signal during the first 10 ms. Figure 8-3 shows the PSD of sense-out for t>10 ms.
There are some low frequency resonances (at 9.18 and 10.7 kHz) in the PSD for early
times. These correspond to two of the strongest sense fixture modes listed in section
3.3.2. At later times, the only spike remaining in the PSD is at 16.677 kHz, which is
the out-of-plane frequency for LCCC560.

Note also that impact does not excite the sense mode. For perfectly matched
springs and masses, the two antiparallel modes (sense and tuning fork) will not be
excited by any impact delivered to the gyro structure. Thus, impact will tend to

excite the parallel modes (hula and out-of-plane).
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PSD of Sense-out for LCCC560 for the First 20 ms after Impact
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Figure 8-2: PSD of the first 15 ms of Sense Impact Response, LCCC560

PSD of Sense—out for LCCC560 due to Impact, for t>20 ms
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Figure 8-3: PSD of the Sense Impact Response after 7.5 ms, LCCC560
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8.2.2 Simplified Modeling

It is important to know how large of a response will be seen due to a particular
impact. To determine this, impact models must be developed. Refer to section 2.2.1
for the basic mechanical gyro model. If we assume matched springs and masses, the

transfer function for the sense axis model reduced to (section 2.2.4)

Yirel _ _m32
Y,e ms2+bys+k,

(8.1)
Where:

Yirer is the displacement of the left proof mass out of the plane, measured relative

to the substrate

Y,s is the displacement of the substrate in the sense direction relative to inertial

space
k, is the sense flexure stiffness.
m is the proof mass mass.

by is the sense damping.

An identical derivation for the motor axis model, again with matched springs and

masses, produces

2
Xlrel _ —ms

X - 2 kwkw
s8 ms? + bys + —f—kﬁ%wf

(8.2)

Where:
Xirer is the motion of the left proof mass in the plane relative to the gyro substrate.
X, is the motion of the substrate in the motor direction relative to inertial space
kg is the sense flexure stiffness.

k. is the basebeam to substrate anchor stiffness.
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Test Data for LCCC560 Sense Impact
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Figure 8-4: Comparison of Model of Sense Response to Actual Data, Acceleration
Data Used as Input

m is the proof mass mass.

b, is the motor damping.

Taking these transfer functions, we can compute the response of the linear system
to any acceleration input. If the acceleration data taken by the reference accelerometer
during a sense impact is used as the input to the linear model, excellent agreement
is observed between model output and measured system response. Figure 8-4 shows

the modeled and actual response.

8.2.3 Impact Modeling

For a true impact, the excitation will be a short input pulse in substrate position or
acceleration. A pulse in substrate position is used for comparison with experiment
rather than a pulse in acceleration, since during my experiments the structure under-
goes no net displacement from the impact. Note that the model does not include the

dynamics of the mounting structure, so will not reflect the early response where a lot
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of fixture modes appear in gyro response.

The maximum output is highly dependent on the width of the pulse. A narrow
pulse contains more power at high frequencies, which will excite the gyro resonances
more effectively. The Dirac delta function models an infinitely narrow pulse. To
compute the response to the delta function input, take the inverse Laplace transform
of equations 8.1 and 8.2. The result is, for an infinitely narrow pulse in substrate

position,

z1(t) = —4(t) + wa(l = 2C%) e™ S gin(wpy/1 — (2 1) + 2wnCe™“ cos(wny/1 — (2 1)
JI-C
(8.3)
Where:

d(t) is the unit Dirac delta function.

wy, is the natural frequency = \/K/m where K = k, for the sense axis, and K =

—f—kfi’;”;c + for the motor axis (see equations 8.2 and 8.1 above)

¢ is the damping coefficient, = b/2vVmK = 1/2Q.

Note that, for ( < 1, equation 8.3 reduces to

z1(t) = —6(t) + ﬁe*“ntsin(wm/l — (%) (8.4)

The delta function in equation 8.3 indicates that with an infinitely thin displace-
ment of the substrate, there is a delta function in the relative displacement of the
proof mass and substrate. For a very narrow pulse this means that there will initially
be a sharp spike in relative displacement, followed by the familiar exponentially de-
caying sine wave. Real inputs can never produce a true §(¢) in position, since the
substrate and test structure have finite mass and thus cannot accelerate in zero time.
Thus, for a real input function, we should use a smooth spike, which will allow the
input to be spread over a finite time. The Gaussian curve serves well for this purpose.

Thus, the theoretical position input signal, X, or Y;,, will have the form
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o(t) = ——e (/%) (8.5)
Where:
o? is the variance. The “width” of the pulse is approximately 4c.
t is time.
z(t) is the position input as a function of time.

This Gaussian is a unit Gaussian, the definite integral of the curve over the interval
t = [—o0,+00] is exactly one. So, we will always deliver the same total impulse to
the gyro model using the above input, but can vary the effective width of the pulse
by varying o. In the limit as the pulse gets very narrow, ¢ — 0, the response
will approach the case of the response to a delta function input, equation 8.3. The

acceleration experienced by the substrate is the second derivative of equation 8.5,

O A (5.6

Using this input function, we can model the response of the gyro plant to an

impact. For an indicative case, take the system parameter values for LCCC560, and
the input function shown in figure 8-5. The result of the linear simulation of sense
axis motion is shown in figure 8-6.

A series of these results have been computed, determining the dependence of
response size on impact pulse width. For LCCC560 sense axis, the simulation results
are shown in figure 8-7. These should be typical of TFG14s in general. Figure 8-8
gives the results of an identical computation for the motor axis response of LCCC561
to impact. Note that at narrow impulse widths the response approaches the delta
function response magnitude wy,/v/1 — (2. There is some threshold pulse width above
which the response diminishes. The threshold is related to the natural frequency of
the parallel resonant frequency for the direction of impact in question (that is, the
hula or out-of-plane frequency). For impact pulses significantly wider than the natural

period of oscillation, little response is seen.
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Figure 8-5: Typical Model Input, Unit Gaussian with Sigma=7.5-10"°% [second]
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Figure 8-6: Linear Simulation Result for LCCC560 Left Sense Response to Gaussian
Impact

144



12 X 104 Dependence of Response on Pulse Width, Sense Model
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Figure 8-7: Modeled Dependence of Maximum Response on Position Pulse Width for
LCCC560 Sense Axis
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Figure 8-8: Modeled Dependence of Maximum Response on Position Pulse Width for
LCCC561 Motor Axis
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Motor Axis Modeled Impact Response at Antiparallel to Unit Displacement Impulse
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Figure 8-9: Model of Max Response to Position Impulse on Pulse Width for Motor
Axis with Mismatch

With perfectly matched springs and masses, no response is generated at the an-
tiparallel (sense and tuning-fork) modes due to impact. However, with spring mis-
match, some motion at the antiparallel modes will be observed. Since motion out of
the plane in the sense mode is preferentially detected by the sense chain, it is impor-
tant to determine how large of a sense response can be expected. Including the effects
of mismatched sense flexures, the response to impact can be computed. Figures 8-9
and 8-10 show the magnitude of response to impacts for various impact widths and

spring mismatches. System parameters taken from data for LCCC575.

8.2.4 Response to Acceleration Impulse

Although all experiments conducted with the existing test setup deliver displacement
impulses (there can be no net motion of the structure), the gyros may experience
acceleration impulses in their operating environments. If, instead of a position input
such as that given in equation 8.2 and 8.1, an acceleration input is considered, then

the transfer functions become
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Sense Axis Modeled Impact Response at Antiparallel to Unit Displacement Impulse
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Figure 8-10: Model of Max Response to Position Impulse on Pulse Width for Sense
Axis with Mismatch

X lrel -m

Ags ms? + bys + —f—kfi];”;%f

erel — -m (8 7)
Ay ms? 4 bys + k, '

Where:

X 1s the motion of the left proof mass in the plane relative to the gyro substrate.

A, is the acceleration of the substrate in the motor direction relative to inertial

space

Yirer is the displacement of the left proof mass out of the plane, measured relative

to the substrate
A, is the acceleration of the substrate in the sense direction relative to inertial space

m is the proof mass mass.
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kg5 is the sense flexure stiffness.

k. is the basebeam to substrate anchor stiffness.
ky is the sense flexure stiffness.

by is the sense damping.

b, is the motor damping.

The inverse Laplace transform of 8.7 gives the response to a unit Dirac delta

function acceleration impulse,

- _ 1 —Cwnt i — (2
z(t) = wnme sin(wyy/1 — C%t) (8.8)

This is the limit for an extremely narrow impulse in substrate acceleration. Note
that there is no delta function in the response for the acceleration impulse response.
As done previously for the case of a position impulse, we can use the Gaussian function
as a finite width impulse input. This allows examination of the dependence of the

response on pulse width.

a(t) = #6_(9/"2)

Varying the pulse width, o, but maintaining a total unit impulse, [*2° a(t) dt =
1[m/s], we can generate a series of theoretical responses. The results are summarized
in figures 811 to 8-14, where the maximum response is plotted verses the impulse
width, always for a input acceleration Gaussian input. For the antiparallel modes, 3
cases are considered with different spring mismatch percentages.

From the results shown in the figures, we see that a narrow motor direction accel-
eration pulse with a total impulse of ~ 0.5 m/s will begin to clip AC-out (3.5-4 um of
hula motion clips AC-out, see section 2.4.1). A narrow sense acceleration impulse of
~ 0.1 m/s could clip AC-out depending on spring mismatch. With a 1% spring mis-
match, 0.1 ym of differential motion (=0.05 ym amplitude) would be created by a 0.1

m/s acceleration impulse. An 0.2 m/s narrow sense acceleration impulse could create
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Motor Axis Modeled Impact Response at Parallel to Unit Acceleration Impulse
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Sense Axis Modeled Impact Response at Antiparallel to Unit Acceleration Impulse
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enough out-of-plane mode motion to cause snapdown. (2 pm) For wider impulses the

level of response diminishes dramatically, as seen in the figures.

8.3 Experimental Closed Loop Impact Results

Experimentally, it was not possible to deliver impacts with widths less than approxi-
mately 0.2-0.3 ms, even with the hardest impulse hammer tip available. Thus, it was
not possible to experimentally examine the extremely narrow pulse width limit pre-
dicted above in section 8.2.3. However, for verification of the theory presented above,
experimental impact response could be measured at the available impact widths and
compared to experiment. In this section the experimental closed loop impact re-

sponses are presented, and the effects of impact on the gyro outputs are considered.

8.3.1 Experimental Impact Frequency Content

As shown above, the magnitude of gyro response depends heavily on the frequency
content of the impact. Impacts with the same total impulse (that is, the integral
of force over time) have very different effects depending on whether the impulse is
delivered over a short or long period of time. If there is little power in the impact at
the gyro resonant frequencies, little response will be observed.

Measurements of the frequency content of various types of impacts have been
recorded. The impulse hammer, as described in section 3.5.3, has a number of tips
which can be used to determine the frequency content of a particular impact. Figure
8-15 is a PSD of the hammer force sensor output for the hard steel tip. This impact
has the most high frequency content. Figure 8-16 is a PSD for the softest plastic
bubble tip.

We can define the effective bandwidth of each tip as the frequency at which the
force PSD in N/v/Hz has diminished by two orders of magnitude from its low fre-

quency level.

e Black hard steel tip bandwidth = 11 kHz
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PSD of Hammer Impact on Sense Fixture, Black Steel Tip
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Figure 8-15: PSD of the Hammer Force Sensor, Black Steel Tip
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Figure 8-16: PSD of the Hammer Force Sensor, Soft Bubble Tip
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x 10%° Acceleration for a Unit Gaussian with Sigma=7.5E-6 seconds
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Figure 8-17: Acceleration For a 0.1 Sigma Unit Gaussian Displacement

e White hard plastic tip bandwidth = 5.7 kHz
e Red small soft bubble tip bandwidth = 1.6 kHz

e Blue large soft bubble tip bandwidth = 1.7 kHz

Impact with the hard steel tip was used for all impact testing, since it causes the
largest gyro response.

To compare the measured results with the model, we need to determine how large
of a displacement pulse is generated by a standard impact with the steel tip. Equation
8.6 gave the acceleration corresponding to a unit Gaussian displacement. Figure 8-17
shows a plot of this acceleration against time.

The acceleration delivered to the gyro is not so simple, however. The dynamics of
the mounting structure significantly shape the acceleration signal. Figure 8-18 shows
the fixture acceleration caused by an impact to the sense fixture. It is accelerations
of this sort which actually end as the input to the gyro. It is extremely important to
consider the structure resonances. As long as the structure resonances all have natural

periods longer than the threshold pulse width discussed in section 8.2.3, there will
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Sense Fixture Acceleration due to Impact
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Figure 8-18: Typical Sense Fixture Acceleration due to Impact

be less gyro response. When designing mounting structures for the gyro, natural
frequencies should be kept below the threshold, to avoid exciting gyro modes due to
impacts to the mounting structure.

Although the fixture dynamics contribute to the forcing, it is convenient to con-
sider the impact to be a pulse. The force delivered by the hammer during an impact
has been recorded using the internal force sensor in the hammer. This force relates
to acceleration of the mounting fixture as
Frammer

Q figture =~
mfizture

The overhung fixture has mass, m =~ 400g. Using the above relationship, we
can compute the initial acceleration of the structure from the hammer input. If this
assumption is valid, the computed acceleration should approximate the first spike
in the accelerometer measurement. Figure 8-19 shows that this is indeed true; the
assumption seems to be at least approximately valid. From the figure, we can also

see that the width of the impulse is approximately 0.3 ms.
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Comparison of Acceleration Computed from Hammer Force to Accelerometer Data
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Figure 8-19: Acceleration Computed from Hammer Force Compared With Accelerom-
eter Measurement

To get the total size of the position impulse (that is, the integral of the fixture
displacement over the initial spike), we should integrate the acceleration from figure

8-19 three times,

0.3ms
_ N AT AT 1n-101, .
I—/O //a(t ) dt" dt' dt ~ 7.7-10"m - o] (8.9)

With an impulse size of approximately 8-1071° m - s,such as that seen in figure
8-4, a response of ~ 0.5 — 1 pm (this is the response size observed) would require
a pulse width of approximately 0.15-0.23 ms. This is a shorter pulse than the one
recorded by the hammer force sensor, but is about the same length as the spike seen
in the accelerometer output. Thus, it is probably better to use the accelerometer as
an indication of the size of the spike, especially since the hammer bandwidth is about
7.76 kHz, so some broadening of the peak is expected. However, considering the
approximations that have been made, excellent agreement is seen between expected
and measured response. This increases confidence in the model, and strongly supports

the theoretical computations presented in this chapter.
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PSD of Rate—out for LCCC574 ~0.2 sec after Impact
T T T T T

10° : -

=

S,
L
i

|
~

[
o
T

I

PSD of Rate-out (deg/s)/rtHz

I I I I I I I
0 200 400 600 800 1000 1200 1400 1600
Frequency (Hz)

Figure 8-20: PSD of Rate-out for LCCC574 soon after Impact

8.3.2 Closed Loop Impact Testing

Impact during closed loop operation excites the same mechanical motion described
above in section 8.2. Now, motion of the sense axis in the out-of-plane and sense
modes appears as a signal on AC-out, and is demodulated with the velocity clock
taken from the position signal. Although the out-of-plane mode is excited much more
strongly by impact than the sense mode, the differential sense capacitance scheme
nulls out most of the signal coming from out-of-plane.

Thus, the sense mode appears more strongly on AC-out, even though the ampli-
tude of sense mode motion is lower. Some out-of-plane signal is also seen because
of mismatched capacitors. The sense mode and out-of-plane mode signals are de-
modulated with the velocity clock, producing sidebands at the difference frequencies,
Wsense — Wiune fork aNd Wogp — Wrunefork- Lhese sidebands are low-pass filtered by the
four-pole rate-out filter. The resulting signal appears on rate-out.

A PSD of the rate-out signal soon after impact clearly shows the predominance of
the Weense — Wiunefork frequency. Figure 8-20 gives the PSD of rate-out for LCCC574

0.2 s after impact.
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x 107 Impact Impulse needed to Clip AC—out, Modeled
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Figure 8-21: Theoretical Impulse Needed to Rail AC-out

Another danger during impact is clipping of AC-out. AC-out will saturate at the
power supply level of 15 V. If the sense mode is excited at an amplitude of more
than 0.1 um peak, AC-out will clip. ( 3V/(um) of differential motion, and a gain of
50 in the sense-out chain). The results in section 8.2.3 indicate the levels of impact
needed to cause this much motion. Figure 8-21 plots the impact impulse needed to
clip AC-out against pulse width for a number of different spring mismatches.

One final issue to be considered is excitation of hula motion in the motor axis. The
velocity clock is a square wave created from the position signal. Since the majority
of the motor motion should still be in the tuning fork mode, it is unlikely that the
velocity clock will be affected by impact. A large enough impact could cause the gyro
to lose lock completely, but my test setup cannot deliver impacts of this magnitude.

Another way that hula motion could cause errors in rate readings is through
Coriolis effects. If there is substantial hula motion of the masses, a DC rate will create
a Coriolis acceleration at the hula frequency as well as at the tuning fork frequency.
Thus, we would expect to see some output on rate-out at the difference between hula

and drive. However, the Coriolis acceleration created due to hula motion will force
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both masses out of the plane in phase with each other. Parallel sense motion of this
type is rejected by the differential scheme used on the sense axis. So, hula effects on
rate-out should be quite small. See section 2.2.3 for a discussion of coriolis effects, in
particular equation 2.12 and figure 2-7. No signal is seen on rate out at the difference

between hula and tuning fork during testing.
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Chapter 9

Conclusions

The linear gyro models developed in section 2.2.1 account well for most of the vibra-
tion and impact effects seen. These models capture the essential modal behavior of
the gyro, incorporating vibration effects and spring mismatch. Measurement of the
model parameters was conducted for each unit, as described in section 4.

Testing indicated gyro Q of approximately 12,000 on the sense axis, and 180,000 on
the motor axis. Measurements of cubic spring nonlinearities showed that cubic spring
softening occurs, with cubic spring constants on the order of -4-10° N/m?3, which
results in a reduction in spring stiffness of approximately 0.14 % at an amplitude
of 10 um. Since cubic spring softening is small, it will be neglected in the model.
However, it does become important in considering the response of a particular gyro
mode to vibration at resonance, since the resonant peak will shift down slightly with
increasing amplitude. Chapter 4 goes into more detail on these issues.

Open loop testing was conducted to verify modeling, determine spring mismatch,
and measure the actual response of various gyro modes to sinusoidal and random
vibration. The mechanical models of section 2.2.1 predict the correct order of magni-
tude for gyro open loop response to both sinusoidal and open loop vibration. However,
differences of as much as 250% are seen between expected and observed response in
the worst case. It is not clear where this error is coming from.

Response of the anti-parallel modes to open loop vibration gave an estimate of

motor and sense spring mismatch. Spring mismatch is between 0 and 2%.
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During applied mechanical vibration, it is important to consider not only gyro
resonant modes, but also modal response of the mounting structure. In addition to
gyro modal frequencies, fixture modal frequencies are seen in gyro response. This will
be true not only for my test fixture, but for any mounting system used during normal
gyro operation.

The time constant for the growth of gyro response to open loop vibration is on
the order of 1 s for the motor axis, and 0.1 s for the sense axis. These values were
predicted from gyro Q measurements and observed during ringup tests.

Estimates for the maximum safe levels for both random and sinusoidal vibrations
near each modal frequency were determined. The values presented in table 9.1 are the
maximum vibrations that can be sustained without clipping AC-out, causing the gyro
to lose lock on the tuning-fork mode, or causing permanent damage due to snapdown
or contact in the motor combs. Chapter 5 describes the open-loop testing results in
depth.

Low frequency vibration of the closed loop system showed that the gyro was insen-
sitive to vibration at every frequency in the 0-3 kHz band with the important excep-
tion of vibration at the difference between the sense and drive frequencies. Vibration
at this frequency excites substantial sense mode motion, and can cause AC-out to rail.
The sense mode is excited due to rocking of the structure at the applied vibration
frequency. Measurements of fixture rocking indicate that rocking at the difference
frequency with amplitude on the order of 0.1-0.3 (rad/s)yk—pr, Will cause AC-out to
clip.

Angular vibration at this difference frequency causes errors on rate-out at the
difference frequency and at the sense frequency, for levels above 0.1 (rad/s)px—pk-
These erroneous components of rate-out have magnitude on the order of 0.1-0.2 deg/ s.
The mean of rate out also changes due to vibration at the difference frequency, drifting
on the order of 0.01 (deg/s) of measured vibration per deg/s of fixture rocking.

Low frequency random vibration in the 0-6.4 kHz band causes substantial response
on rate out. However, almost all of the signal on rate-out during low frequency ran-

dom vibration comes from real rotation of the test structure at structure resonances.
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Erroneous signals do appear due to excitation of the hula and sense modes (partic-
ularly hula), which are driven by high frequency components in the applied random
vibration. These couple through into rate-out and are demodulated, creating errors
on rate-out at the difference between tuning fork and hula, and tuning fork and sense.
Low frequency testing is detailed in chapter 6.

The gyro is insensitive to high frequency vibration except near gyro resonant fre-
quencies. In particular, the tuning fork gyro is very sensitive to vibration at the hula
frequency. Vibration levels of 0.015 gp_pr at hula will begin to clip AC-out. Ampli-
tudes of more than 0.015 gy_pr have a major effect on the mean of rate-out, causing
shifts of up to 17 deg/s. Sinusoidal vibration at the hula frequency of approximately
7 gpk—pr causes the motor loop to lose lock completely, and gyro operation ceases.
This level of vibration is the level needed to produce a hula mode amplitude of 10
pm, the nominal tuning-fork amplitude. Although no permanent damage to the gyro
is incurred, the gyro can lock up until power is shut off.

Vibration near the tuning fork frequency creates a low frequency signal on rate-
out at the difference between the applied vibration and tuning-fork frequencies, even
at low acceleration levels (<0.1 gp_px). This component can become quite large, 40
(deg/s)/gpx—pr. Was observed.

High frequency random vibration in the 11-19 kHz band excites all four major
modes. Due to sensing schemes and mechanical gains the sense modal and hula modal
frequencies are predominant on AC-out. Random vibration creates an erroneous rate-
out component at the difference between hula and tuning fork, on the order of 1 deg/s
for a 0.5 grms 11-19 kHz random vibe. Levels of approximately 0.025 g/\/H—z in the 11-
19 kHz band excite enough hula and sense motion to begin clipping AC-out. Random
vibration levels of more than 0.005 g/ v/Hz will shift the mean of rate-out by as much
as 2 deg/s, and cause it to become very unstable, shifting randomly as much as 6
(deg/s) in 30 seconds. All of the high frequency test results are presented in chapter
7.

Impact testing indicated that mounting structure resonances are excited by impact

and drive the gyro. Thus, mechanical motion is produced not only at gyro resonances,
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but also at structural resonances. Structure vibration dies out much more quickly
than the high-Q gyro modes.

Mechanical response of the gyro to impact depends heavily on the width of the
delivered displacement pulse. A pulse more than 3 times the natural period of the gyro
modes will excite very little response. Pulse sizes delivered by a steel on aluminum
impact were on the order of 0.15-0.3 ms, about 2 or 3 times the gyro natural periods.

During closed loop operation, sense modal motion excited by impact is demodu-
lated by tuning fork and appears at rate out. Thus, there is a strong erroneous signal
at the difference frequency. In addition, AC-out can be easily railed by impacts.
Again, this depends heavily on impulse width and power, but impulses delivered with
the hand-held impact hammer on the order of 7.7-107!% m - s in size and 0.15-0.3
ms in width rail AC-out. Sense modal response to impact is heavily dependent on
spring mismatch. With no mismatch, no sense response will be observed. Chapter 8
describes all impact test results in depth.

For all mechanical gyro excitations, the effects die out exponentially, with time
constants determined by gyro Q. For the motor axis this time constant is on the order
of 1 s, for the sense axis on the order of 0.1 s. Thus, within 10 seconds of an applied
mechanical excitation, gyro operation returns to normal, unless lock was lost on the
tuning fork mode due to an excessively large excitation.

Table 9.1 gives a summary of the various types of vibration excitation that cause
errors or could potentially damage the gyro. Approximate values for the maximum
levels of vibration that can be sustained are given, for three cases: the amount of
vibration that will start to clip AC-out (this occurs at 0.1 um of sense motion, or 3-4
pm of hula motion), the amount of vibration needed to lose tuning fork lock (caused by
10 pm of hula motion), and the levels at which permanent damage could be incurred
(greater than 25 um of motor axis amplitude, or 2 um of sense axis amplitude).
Response will vary from unit to unit, particularly due to spring mismatch. The data
in the table is determined from theory and test results as presented throughout.

Table 9.2 gives similar results for safe levels of impact (total impulse delivered).

Two cases are considered: short pulses (less that 0.01 ms in duration), and pulses
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Type of Excitation Motion Produced | Maximum Level | Maximum Level | Maximum Level
per Input without Clipping | without Causing | without Causing
AC-out (assumes | Gyro to Lose Potentially
gain of 50 Lock Permanent
between preamp Damage
out and AC-out)
Sinusoidal Rocking at 2 um/(rad/s) of | 0.05 (rad/sec)eac | Will not lose 0.5 rad/s
fiensefrunefork sense mode lock
Sinusoidal Vibration at | 100-800 m/g 0.005 g pic at 0.5 gprpi at 0.03 g, at
Hula hula motion at | low amplitude resonant nonlinear
nonlinear resonant frequency, resonance
resonance frequency. measured
(Corresponds to | experimentally
3-4 pmy i hula | for two units
motion)
Sinusoidal Vibration at | ereates tuning high levels, Will not lose 25 gy at
Tuning Fork fork motion, depending on lock nonlinear
depends on capacitor resonance
spring mismatch
mismatch, 1% =
8 um/g
2% =16 um/g
Sinusoidal Vibration at | ereates sense depends on Will not lose depends on
Sense mode motion, spring lock spring
depends on mismatch, mismatch,
spring 1% =0.25 gpipx 1% =5 gpipx
mismatch, 2% =0.12 gy 2% = 2.5 Spipk
1% = 0.4 pm/g
2% =0.8 um/g
Sinusoidal Vibration at | 10 um/g, out-of- | 1% sense Will not lose 0.2 gox
Out-of-plane plane mode capacitor lock
mismatch, clips
AC-outat 1. gy
Random Vibrationin | Hula: 50250 | 0.015 g/VHz 0.05 ghHz, due | 0.1 g/VHz causes
High Frequency Band | pm/g/NHz causes 3,75 tmy, | to hula motion | 25 yum,, hula
along Drive Direction Tunefork:0-3.5 | hula motion, motion
wm/gA Hz clips AC-out
Random Vibration in Sense:0-8 0.013 g\ Hz, Will not lose 0.1 gN'Hz could
High Frequency Band wm/gh Hz createsmy, 0.1 | lock cause snapdown
along Sense Direction 00P:3-20 much sense
um/g/NHz mode
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of the width generated by steel on aluminum hammer impacts. Longer impacts
than this will generate substantially less response; the response falls off exponentially
with the width of the pulse. Both displacement and acceleration impulse excitations
are presented. These results, although supported by experiment as demonstrated in

chapter 8, are more theoretical.
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Type of Excitation Motion Produced | Maximum Level Maximum Level Maximum Level
Divided by Total without Clipping without Causing without Causing
Impulse Delivered | AC-out Gyro to Loose Potentially
in ms or m/s as Lock Permanent
appropriate Damage
Motor Direction Hula:810" 410" ms creates | 1.310"° ms 310" ms
Narrow Position umyg,/ms 3.75 umy hula creates 10 pm,; creates 25 pmy;
Impulse (<0.01 ms) TuneFork: 2110° | motion, clips AC- | hula motion hula motion
-710° um,/ms, | out
1% -3 %
mismatch
Sense Direction Sense:2:10° -8:10° | 6:10™"* ms could | Will not lose lock | 2:10™"" ms could
Narrow Position ump/ms 1%-3% | create 0.1 pmpy.px cause snapdown
Tmpulse (<0.01 ms) mismatch sense mode due to 2 pmy,
O0P: motion, clips AC- out-of-plane
110" umy/ms | out mode
Motor Direction Steel | Hula:3-10° 1.310” ms 3.310° ms 8.710” ms
on Aluminum pumg,/ms creates 3.75 um,,; | creates 10 pmp, creates 25 pmg,
Position Impulse TuneFork:0.510° | hula motion, hula motion hula motion
(~0.2 ms) -1.510° clips AC-out
pmg,/ms, 1%-
3% mismatch
Sense Direction Steel | Sense: 510° - 2.510” ms could | Will not lose lock | 410 ms could
on Aluminum 2107 pm,,/ms create 0.1 umy; cause snapdown
Position Impulse 1%-3% sense mode due to 2 pumy,
(~0.2 ms) mismatch motion, clips AC- out-of-plane
ooP: oul mode
510° pmy/ms
Motor Direction Hula:14 0.27 m/s creates 0.72 m/s creates 1.8 m/s creates 25
Narrow Acceleration | pmg,/m/s 3.75 umy,, hula 10 pmy, hula pmyy hula motion
Impulse(<0.01 ms) TuneFork: 0.7- motion, clips AC- | motion
2.5 pmg,/m/s, out
1%-3% spring
mismatch
Sense Direction Sense:0.6-1.9 0.025 m/s could Will not lose lock | 0.2 m/s could
Narrow Acceleration | ump,/m/s 1%-3% | create 0.1 impy i cause snapdown
Impulse(<0.01 ms) spring mismaich | sense mode due to 2 pmy,
O0P: motion, clips AC- out-of-plane
10 pmg,/m/s out mode
Motor Direction Steel | Hula: 0.5 7.5 m/s creates 20 m/s creates 10 | 50 m/s creates 25
on Aluminum pumg,/m/s 3.75 pmg hula pm, hula motion | pmy, hula motion
Acceleration Impulse | TuneFork:0.02- motion, clips AC-
(~0.2 ms) 0.08 pumy,/m/s, out
1%-3% spring
mismatch
Sense Direction Steel | Sense: 2:107 - 6.25 m/s could Will not lose lock | 8 m/s could cause
on Aluminum 8107 umg/m/s create 0.1 umgy o, snapdown due to
Acceleration Impulse | 1%-3% spring sense mode 2 umyy out-of-
(~0.2 ms) mismatch motion, clips AC- plane mode
OO0P: out

0.025 pmy,/m/s

Table 9.2: Summary of Safe Impact Levels

165




Appendix A

Derivation of Linear Models

The linear models used in this thesis are derived in more detail here.

A.1 Motor Model

The motor model is taken from the lumped element model in figure A-1.

Where
x1 = displacement of the left proof mass in the plane with respect to inertial space
2o = displacement of the right proof mass in the plane with respect to inertial space

zp = displacement of the basebeam with respect to inertial space

— X1 —> Xy motor/drive direction ——

Figure A-1: Motor Axis Lumped Element Model
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Zs, = displacement of the substrate with respect to inertial space
F,; = additional force applied to left proof mass

F,, = additional force applied to the right proof mass

b, = linear dashpot between proof mass and substrate

k;1 = linear spring between left proof mass and basebeam

k.2 = linear spring between right proof mass and basebeam

k, = linear spring between basebeam and substrate

my; = mass of left proof mass

me = mass of right proof mass

A force balance on each mass and on the basebeam produces,

mit, = Fp— kxl(IEl - IEbb) - bw(:tl - :tsw) (A-l)
Moy = Fpo— kx2($2 - IEbb) - bw(:t2 - :tsw) (A-2)
0 = ky(@sp — 2bb) + kg1(z1 — Tpp) + kg2 (@2 — Tip) (A.3)

Solving equation A.3 for zy, produces

_ kwxsw + kwlxl + kw2x2

= A4
oo kw + kw2 + kwl ( )

Substituting into A.1 and A.2 to eliminate x,, then rearranging to group the

coefficients of =, 1, 9, £, and Z,, we recover,

miEr = Fp — by(21 — Ts) — Keniz1 + K222 + Kppi sy (A.5)

Moy = Fuo — by(Ze — Tsz) — Kyoo®o + Kyo1%1 + KppoZsy (A.6)
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Where:

— kprketkioks
lel - k:c+k:c1+k:c2

— — kz1kz2
Kw12 - Kw21 - k:c1+k:c2+k:c

— k:c2k:c+k:c2k:cl
Kw22 - kz+kz1+kz2

— k:ck:cl
Kapr = kotko1 +hoz

_ kokgzo
X
Kapo = ko tko1 +ho2

However, it is more useful to use the relative displacements of the proof masses

with respect to the substrate, since this is the quantity measured by the gyro readouts.

Thus, defining new variables,

Tipel = T1 — Tsz

Torel = X2 — Tsg

and substituting back into A.5 and A.6 gives,

mMiTirer = le - walrel - lelxlrel + Kw12x2rel — M1 Ty

m2i2rel = Fw2 - wa2rel - Kw22x2rel + Kw21x1rel — MaZsy

(A7)

(A.8)
(A.9)

Where all the definitions stand as before. If we consider the forces F,; and Fyo

to be zero, as well as the acceleration of the substrate, i,,, then this produces the

unforced state space formulation presented as equation 2.1 of section 2.2.1, where

T1 = Zireg and xo = Zopq since the substrate is not allowed to translate,
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by\\j; TFyz

ky1 kyZ
torsional spring, k a RE'
=
e
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N

Figure A-2: Sense Axis Lumped Element Model

T
4|
dt | 4,

L 22

A.2 Sense Model

space

by =Kz 0
mi mi
1 0 0
0 Ky by
ma ma
0 0 1
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Ty
I
Ty

T2

(A.10)

A similar derivation of the sense model is taken from the lumped element model in
figure A-2.
Where

y1 = displacement of the left proof mass out of the plane with respect to inertial



y2 = displacement of the right proof mass out of the plane with respect to inertial

space
f = angular displacement of the basebeam with respect to the substrate
Ysy = displacement of the substrate with respect to inertial space

F,; = additional force applied to left proof mass

F,» = additional force applied to the right proof mass

b, = linear dashpot between proof mass and substrate

ky1 = linear spring between left proof mass and basebeam
kys = linear spring between right proof mass and basebeam
kg = torsional spring between basebeam and substrate

my; = mass of left proof mass

me = mass of right proof mass

L = effective length of the basebeam from the center substrate anchor to the flexure

A force balance on each mass and a torque balance on the basebeam produces,

mith = Fy — ky(yr +sin(0)L) — by (91 — Jsy) (A.11)
m2ﬂ2 = Fy2 - ky2(y2 - sin(H)L) - by(y2 - st) (A-12)
0 = —kob — k1 L(y1 — ysy + Lsin(8)) + ky2L(y2 — ysy — Lsin(6)) (A.13)

If we assume 6 is small, and make the approximation sin(f) = #, and then solve

equation A.13 for €, we produce

=—L

ky (Y1 — ysy) — ky2(y2 — ysy)
A.14
Fo + L2yt + L?kya (A.14)
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Substituting into A.11 and A.12 to eliminate #, then rearranging to group the

coefficients of y,y, ¥1, y2, 71 and g2, we recover,

mihy = Fy— by(yl - st) — Ky + Kyioyo + Kyp1Ysy

ngQ = Fy2 - by (y2 - ysy) - Ky22y2 + Ky21y1 + Kyb2ysy

Where:

_ ky1kg+L2ky1ky2
Kyll - kg+L2(ky1+ky2)

—L2ky1ky2
— — y1%y
Ky12 - Ky21 T kot L2ky1+L2kyo

Kooy = FuzkotL2kyaky1
Y22 7 ki T2 (ky1+hy2)

Ko, = Fuiko+2L%ky1kys
Yl = i L2ky1+ L 2ky2

K — kl 2k€+2L2k1 1k1 9
Y02 T ki L2ky1+ L 2ky2

(A.15)
(A.16)

Again, it is more useful to use the relative displacements of the proof masses with

respect to the substrate, since this is the quantity measured by the gyro readouts.

Thus, defining new variables,

Yirel = Y1 — Ysy

Yorel = Y2 — Ysy

and substituting back into A.15 and A.16 gives,

mlglrel = Fyl - byylrel - Kyllylrel + Ky12y2rel - mlgsy

MaYorer = Fy2 - byy2rel - Ky22y2rel + Ky21y1rel — MolYsy

(A.17)

(A.18)
(A.19)

Where all the definitions stand as before. If we consider the forces Fy; and F

to be zero, as well as the acceleration of the substrate, §s,, then this produces the
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unforced state space formulation presented as equation 2.2 of section 2.2.1, where

Y1 = Y1rel and Yo = Yore Since the substrate is not allowed to translate,

_ i }

d|h

dt Ui
L y2 .

A.3 Combined Model

—Kyn

mi

(7
v
(7

Yo

(A.20)

The two axis model is a combination of these two models in equations A.10 and A.20,

adding in crosscoupling terms k,, and b,,, and considering the forces Fy,Fy0,Fy, Fyp,

and accelerations Agoriolis,Gas = Lz a0d ays = sy as inputs. The Coriolis acceleration,

Acoriolis 18 an acceleration in the frame of the gyro produced by rotation of the frame

with respect to inertial space. See section 2.2.3. This produces the full linear model

used in this thesis, as described in section 2.2.4.

z 1rel
Tirel
I.E2rel
d Torel
ylrel
Yirel

y2rel

Yorel

z 1rel
Tirel
ft2rel
Lorel
ylrel
Yirel
y2rel

Yorel

Qys
Qys
le
Fw2
Fy
F,

L ACoriolis ]

(A.21)

Where A is the system matrix, given in equation A.22, and B is the input matrix,

given in equation A.23.
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_be ZKun Kpiz | bzpn Kz 0 0
ma ma ma ma
1 0 0 0 0 0 0
0 Kyo1 by =Ko 0 bay2 kay2
ma my my ma ma
0 0 1 0 0 0 0
A=
bayr  Key1 0 0 _b Ky g Kyr2
mi mi ma mi
0 0 0 0 1 0 0
0 0 bayz  kay2 0 Ky by Ky
mo mo mo mo
0 0 0 0 0 1 0
And the input matrix,
-1 0 m% 0 0 0 0
0 0 0 0 0 0 0
-1 0 0 o~ 0 0 0
0 0 0 0 0 0 0
B =
0 -1 0 0 - 0 1
0 0 0 0 0 0 0
0 -1 0 0 0 m% -1
0 0 0 0 0 0 0

(A.22)

(A.23)

Section 2.2.4 also gives some transfer functions relating the relative displacement

of a single mass in a single direction to a particular input. The simplified cases of

matched springs K11 = K99, etc. and matched masses m; = ms are also considered

there. Section 2.2.2 derives the normal modes of the system, and gives relationships

allowing the determination of the various spring constants from the experimentally

measured modal frequencies.
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Appendix B

Mechanical Drawings

The mechanical drawings used for construction of the vibration fixtures are presented
here. This includes the overhung fixture, the sense fixture, the adapter plate used
for attaching to the Labworks electromagnetic shaker, the clamping plate, and the
TFG cover. These were the final iterations of a process which went through the

construction of 3 sets of fixturing.

B.1 Overhung Fixture

The overhung fixture is used for motor directed vibration delivered by the piezoshaker.

B.2 Sense Fixture

The sense fixture, along with the baseplate adapter, allows sense axis vibration to
be delivered by the piezoshaker. It also bolts directly to the electromagnetic shaker
for low frequency sense directed vibration. Two mounting brackets allow 90 degree
rotation on the electromagnetic shaker for delivery of low frequency motor directed
vibration.

Mechancial drawings of the sense fixture are unavailable.
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Piezo Mounting Fixture
Robert D White 11/6/98
Room 1314 x3454

6061-T6 Aluminum, solid

Make one part

Piezo Mounting Fixture, Isometric View

Top View

Front View

Back View

SCALE 2.000

Piezo Mounting Fixture, Top View

SCALE 1.750

‘ ‘ — 2.625
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2-56 screw. 2 250 Room 1314 x3454
2.350 —= 6061-T6 Aluminum, solid
¢.800 Make one part
2.894
2.990 —=
3.100 —=|
3.800

‘V"\
\

175




4.063 —=

3.753
3.563 —&=

= 1.063 AAAAﬁsﬂ

TM6

2.313 —=

4.563 —==

1.188
H
% 1.250
o v
/| 1.563
2.000
[>~—r.125
CENTER-SECTION2 CENTER-SECTION2
R LMD T
o | o
DTl O DIEDTM3 SECTION CENTER-SECTION2-CENTER-SECTION2
\_"'\o oﬁnf SCALE  1.750
Piezo Mounting Fixture SEROALE 0,250
Robert D White 11/6/98
Room 1314 x3454
6061-T6 Aluminum, solid Piezo Mounting Fixture, Cross-Section H-H’
Make one part
Side View of Piezo Mounting Fixture
4.313 —=
4.063
3.863 |
*’7534‘% Tug 6 ‘
‘ }:”
Y
P§\\\\\‘4*See crosgl-section
— ‘ G-G" on dext page —
‘ [— 2.000
= ‘ 1.563
0 E—
150 / L] —
|6 4£f2>\4// 438
R.125 Vb
™2
f=— 0634444445%
1.613
3.013
3.563
4.563
Piezo Mounting Fixture
Robert D White 11/6/98
SCALE 1.750 Room 1314 x3454
6061-T6 Aluminum, solid
Make one part
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Piezo Mounting Fixure,

Section G-G”

=—.625 &~

2.000 —==

2.3715 —=

2.625 &

250 = G
™
565| / /
150 %
Q] cso
1.250
DTM5
1.440
2.000
R SECTION SIDE-SECTION4-SIDE-SECTION4 G'
SIDE-SECTIONd —=——  SECTION £/D
TM6 . Piezo Mounting Fixture
4 ﬂE Robert D White 11/6/98
L LF Room 1314 x3454
= 6061-T6 Aluminum, solid
L TMZ ||
SCALE  0.500 Make one part
S\DE'SECT\ON44—1
Piezo Mounting Fixture, Front View
2.625 =
1.625 &=
1.563 —=|
= 1.063 =
1.000
— 1440 A A 2 000
O O
¢ 1.546
1.250 ZF T
1.188
1.337
ﬁ\s Oc Cr
150 LF — .663
565 A A
4} .454
%
—= 250 }67
= 625 —= Piezo Mounting Fixture
ADrill to a depih of o0 |.875 Robert D White 11/6/98
0.25" & tap for 2-56 screw
CDrill through top 2.000 Room 1314 x3454
Teature and tap 2,375 —=|
for 4-40 screw. 6061-T6 Aluminum, solid
Make one part
SCALE 2.000
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Piezo Mounting Fixture, Back View
Piezo Mounting Fixture
Robert D White [11/19/98 2.375
Room 1314 x3454 2.000
606116 Al lid -ers
uminum, soli 150 —=1
Make one part =—— 625 &=
250 —=| f— ™
O cso O
1.435 M 2.000
1.250
f O O
.150
560
2.625
Notice that Hveri a:e&o scriw
hol the b .
o8 Shown 1n tnis vien o SCALE 2,000

B.3 Baseplate Adapter

This baseplate allows the sense axis fixture to mate with the bolt pattern on the
piezoshaker; the sense fixture bolt pattern mates directly with the electromagnetic

shaker.
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Baseplate,

Rev 3

2.350

Diameter bolt

| 1,800
//+//*7mrﬂe,hwesa¢m
90,180,270 degs.

2.350

115

614" Diameter bolt
rcle, holes at 30,
0,210,330 degs

L

N

Reference line for
angles given in
bolt circle description.

A Clearance holes for
1/4-28 screws drilled
through and countersunk
to o depth of

0.275"

B Holes drilled and
tapped for 6-32 screws
Through

—— 635—9‘

1175

Build from 0.75" thick plate

1.715

SCALE 2.000

Baseplate Rev 3

Robert D White 11/1/98

Room 1314 x3454

6061-T6 Aluminum, solid
Make one part
Baseplate, Rev 3, Side View
: 1 T, |l
150 0
o | 1| L]
.500 DTM2
% il e L]
=. 463 =
=— .635=
[.715
|.888 —=
2.350 =
SCALE 2.000
Baseplate, Rev 3
Robert D White 11/1/98
Room 1314 x3454

6061-T6 Aluminum,

Make one part

solid
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Baseplate, Rev 3. lsometric View

SCALE 2.000

Baseplate, Rev3

Robert D White 11/1/98

Room 1314 x3454

6061-T6 Aluminum, solid

Make one part
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Appendix C

Matlab Models

The modeling results used throughout were often generated using the matlab systems
toolbox. This toolbox allows manipulation of linear models described in state-space
or transfer function form. The m-file listed below creates a state-space model repre-
senting the mechanical gyro system derived in section 2.2.1. The user fills in system

parameters such as modal frequencies and Q, depending on the unit being modeled.

%#This m-file constructs a SS model for the entire TFG system.
%The model is of two masses each with a motor and sense

Jmotion allowed, connected via translational springs to a rigid
Jbasebeam which connects to the substrate via a third spring
Jwith both translational and rotational stiffness.

%It linearizes everything, including the readout electronics,
%which do not include any feedback effects.

%The electrostatic spring is currently not taken into account
#Parameters estimated from some physical

Ydimensions and also from data.

Jx**xxApproximate values for system parameters, user must supplyx*xx
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YMasses
mass_mismatch=0;

mbar=3.6e-8;

#Flexure springs

YFractional mismatch in the masses

hAverage mass of proof masses (kg). Nominal TFG14

y_spring_mismatch=0.0; %Fractional mismatch in the sense springs

Xx_spring_mismatch=0.0; %Fractional mismatch in the motor springs

AN
Qmotor=157000;
Qsense=12000;

%Frequencies
fhula=13035;
ftunefork=14250;
fsense=15556;
foop=17352;

%#Crosscoupling
kxy1=0;
kxy2=kxyl;
bxy1=0;

bxy2=bxy1;

YMotor Q (measurements available for each unit)

Y%Sense Q "

#Hula Frequency (Hz) (measurements available)
#Tuning fork frequency (Hz) (measurements available)
%#Sense frequency (Hz) "

%0ut of plane frequency (Hz) "

%#Coupling between sense and motor, left proof mass (N/m)
%#Coupling between sense and motor, left proof mass (N/m)

#Surfboarding coupling (In-phase)

J#Biasing and electronic components

%Sense:
Vs1=-5.0;
Vs2=0;
Csl=2.64e-12;

%Voltage on left sense plate (V)
%Voltage on right sense plate (V)

%Left sense capacitance (F) (Measurements available
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Csr=2.70e-12;

y0=2.8E~6;
Csf=1.8889E-12;

Gs=-1;

Motor:
Vil=-5.0;
Vir=5.0;
Vol=0;

Vor=0;
Cil=0.42e-12;

Cir_mismatch=0;

Col_mismatch=0;
Cor_mismatch=0;
Cmf=1.83E-12;
Gm=-10;

%for each unit)

#Right sense capacitance (F) (Measurements available
%for each unit)

JNominal sense gap. (m) Typical TFG14From Marc
%Sense preamp feedback capacitance. (F) (Measured
havailable)

#Gain of any additional gain stages before output is

Y%read.

#Voltage on left inner motor comb

%Voltage on right inner comb

#Voltage on left outer comb

%Voltage on right outer comb

#Nominal left inner motor capacitance (F) Taken from
%outer motor cap measurements on LCCC575

%capacitor mismatches from left inner motor for all

%motor caps.

iMotor preamp feedback capacitance. (F) Measured LCCC490
%Gain of any additional gain stages before output is

Y%read.

SFmotor=0.0366e6;%Motor scale factor (V/m)

%*x**x*xEnd of user supplied constantsk*x

YMass

ml=2%mbar/(2+mass_mismatch) ; #Mass of left proof mass. (kg)
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m2=m1* (1+mass_mismatch) ; #Mass of right proof mass. (kg)

%#Spring computations

kybar=4* (foop~2) *(pi~2)*mbar; %#Average sense flexure (N/m)

ky1=2xkybar/(2+y_spring_mismatch) ; %sense flexure for left proof
Jmass. (N/m)

ky2=ky1x*(1+y_spring_mismatch) ; %sense flexure for right proof
Jmass. (N/m)

kxbar=mbar*4* (pi~2)* (ftunefork~2) ; %haverage motor flexure

Ystiffness (N/m)

kx1=2¥kxbar/(2+x_spring_mismatch) ; sleft motor flexure (N/m)
kx2=kx1* (1+x_spring_mismatch) ; #Right motor flexure (N/m)
%Damping

by=sqrt (kybar*mbar)/Qsense; %Sense axis

%damping. (N*s/m)Computed to
%get correct sense Q

bx=gqrt (kxbar*mbar) /Qmotor; YMotor
%damping. (N*s/m)Computed to

%produce correct motor Q.

/#Basebeam to substrate stiffness
/#Basebeam to substrate motor axis spring (N/m) computed to get fhula

kxb=((8* (pi*fhula) “2)*mbar) / (1- ((2*xfhula*pi) ~2) *mbar/kxbar) ;

/#Basebeam to substrate torsional spring (N*m/radian) computed to get

Yfsense
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P=(1/8)*((foop~2)-(fsense”2))/((foop~4)*((pi~2)*mbar)) ;

%Computations of openloop readout scalefactors:

motor_il=SFmotor*Cmf/5; Y%Linearized dC/dx about no
%deflection from motor equilibrium
%(F/m)
%Computed based on nominal TFG 5 V
%inner motor bias and V/m SF
motor_ol=motor_ilx(1+Col_mismatch); %Outer left motor cap scaling (F/m)
motor_or=motor_ilx(1+Cor_mismatch); ’%Outer left motor cap scaling (F/m)

motor_ir=motor_ilx(1+Cir_mismatch); %Outer left motor cap scaling (F/m)

lin_sense_SF_left=(-Csl)/(y0); Y%Linearized dC/dx for left sense
%habout no deflection from nominal
hgap (F/m).

lin_sense_SF_right=(-Csr)/(y0) ; %#Linearized dC/dx for right sense
%habout no deflection from nominal

hgap (F/m).

Klm=motor_olx*0.5; %Left motor force/volt~2 constant
h(N/V"2)

Krm=motor_or*0.5; #Right motor force/volt~2 constant
h(N/V"2)

#Computations of stiffnesses to go in the state matrix:

#Motor axis:

Kx11=kx1*(1-(kx1/(kxb+kx1+kx2))); Kx22=kx2*(1-(kx2/(kxb+kx1+kx2)));
Kx12=kx2xkx1/(kx1+kx2+kxb); Kx21=Kx12; Kxlb=kxbxkx1l/(kx1+kx2+kxb) ;
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Kx2b=kxb*kx2/ (kx1+kx2+kxb) ;

%Sense axis:
Kyli=kyl*(1-P*xkyl); Ky22=ky2*(1-Pxky2); Kyl2=-kylxky2+P; Ky21=Ky12;
Kylb=kyl; Ky2b=ky2;

%#State variables:Motor velocity of left mass, motor position of left mass,
iMotor velocity of right mass , motor position of right mass,

%sense velocity of left mass, sense position of left mass,

hsense velocity of right mass , sense position of right mass, motor velocity
%of substrate, motor position of substrate, sense velocity of substrate

%sense position of substrate

A=[ -bx/m1 -Kx11/ml O Kx12/ml bxyl/ml kxyl/ml O O bx/ml Kxib/mi1 0 O; 1
0000000000 O0; 0Kx21/m2 -bx/m2 -Kx22/m2 0 0 bxy2/m2
kxy2/m2 bx/m2 Kx2b/m2 0 0; 001 0000000 0 0; bxyl/ml
kxyl/m1 0 O -by/m1l -Kyi11/ml O Ky12/ml O O by/ml Kylb/mil; 0 0 O
010000000; 00 bxy2/m2 kxy2/m2 0 Ky21/m2 -by/m2
-Ky22/m2 0 0 by/m2 Ky2b/m2; 0 000 00100000; 00000
0000000; 000000001000, 00000000000
0 00000000001 0;];

%Inputs: Acceleration of substrate in motor direction, acceleration
%of substrate in sense direction, %voltage squared on left drive,
hvoltage squared on right drive, additional motor forces on left mass,
%additional motor forces on right mass,additional sense forces on left
Jmass, additional sense forces %on right mass, coriolis

%#forces.... these will be in Newtons, acting on %both masses in the

%sense direction in opposite directions
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B=[0 0 -K1lm/m1 0 1/m1 0 0 0 0; 00 000000O0; 000 Krm/m2 0 1/m2
000;000000000; 0000001/m1 01/m1; 00000000
0 00000001/m2 -1/m2; 000000000; 10000000 O0;
000000000, 010000000; 00000000 0;];

#0utputs:Left mass motor position, right mass motor position, left mass ...

yA sense position, right mass sense position, motor_outxl0, sense_out,
% relative left mass motor displacement (relative to substrate), relative
% left mass sense displacement

C=[010000000000; 000100000000; 000001000
000; 00000001000 0; O Gm*motor_il*Vil/Cmf 0 0 0 0 0 0 O
(-1*%Gm*motor_i1*Vil/Cmf) 0 O0; O Gsx(-motor_il*Vil+motor_ol*Vol)/Csf
0 Gs*(motor_ir*Vir-motor_or*Vor)/Csf O Gs*lin_sense_SF_left*Vs1/Csf
0 Gs*lin_sense_SF_right*Vs2/Csf 0
—-Gs* (((-motor_il*Vil+motor_ol*Vol)/Csf)+((motor_ir*Vir-motor_or*Vor)/Csf))
0
(-1%Gs*1in_sense_SF_left*Vs1/Csf)+(-1%Gs*1lin_sense_SF_right*Vs2/Csf) ;
010000000-100; 00000100000 -1; 1;

D=zeros(8,9); 'Note that I am *not* taking into account

hcharge injection from the motor drive signal

sys=ss(A,B,C,D); disp(’System defined’)
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