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ABSTRACT 
This paper uses the Design Structure Matrix (DSM) to 

model and simulate the performance of development processes. 
Though the simulation is a powerful tool for analyzing process 
performance, its ability is limited by the quality of input 
information used in the analysis. DSM simulation requires 
process data that is hard to assess or estimate directly from 
development participants. In this paper, we propose a 
methodology that allows a more practical estimation of an 
important simulation parameter: rework probabilities. 
Furthermore, we show how does this assessment method 
(combined with simulation) allow managers to evaluate process 
improvement plans based on two resulting process measures: 
reliability and robustness. The method is illustrated with a real 
application from the automotive industry. 
 
(Keywords: Design Structure Matrix, Product development, 
Simulation, Process Re-engineering) 
 
 
INTRODUCTION 

Complex product development processes are usually 
managed by mapping them through various kinds of project 

flowcharts and diagrams (i.e. Gantt charts, CPM, PERT, IDEF, 
etc.) that attempt to capture and manage process complexity and 
iteration.  While many of these methods are capable of 
illustrating timing, information flows, and task 
interdependencies, they fall short of enabling project teams to 
effectively model, and gain deeper understanding of task 
interdependencies and iteration in the process. The design 
structure matrix (DSM) methodology provides a means to model 
and manipulate iterative tasks and multidirectional information 
flows. The DSM allows complex processes to be illustrated and 
modified through graphical and numerical analyses in a single 
manageable format. Using the DSM methodology to study 
development processes enables graphical representation of how 
tasks and information flows affect other groups of tasks, where 
potential issues lie, and insight about how they may be 
resolved.  However, DSM models, as they stand, do not include 
the duration of tasks, the impact of iteration or rework, and 
consequently do not provide a time line or estimate for the 
project duration. As a result simulation techniques for design 
processes, in general, and DSM models, in particular, started to 
appear in process and project management literature.  
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Recent project management literature points out to the 
potential and success of simulation techniques in managing 
development processes. However, few studies have been 
conducted as compared to manufacturing processes, for 
example. Perhaps one of these first attempts to handle feedback 
relationships, account for iteration, and enable simulation-based 
analyses was GERT (General Evaluation Review Technique) 
[Wiest, 1977].1 Another paper by Adler et al. (1995) describes the 
use of discrete event simulation to study product development 
(PD) performance in companies pursing multiple, concurrent, 
non-unique PD projects. The simulation allowed them to 
identify bottleneck activities and several development process 
characteristics. In a similar venue, Baldwin et al. (1999) also used 
discrete event simulation to manage the design process in 
building construction projects. Finally, Browning and Eppinger 
(1998) used Monte Carlo simulation based on a DSM 
representation of development projects. There simulation 
revealed several interesting process characteristics and 
performance measures including expected project duration, cost, 
and risk.  
 

Though all these models emphasize the fact that simulation 
can be a powerful tool for analyzing process performance, their 
ability is limited by the quality of input information used in the 
analysis. These models require development data that is hard to 
assess or estimate directly from process participants. Such data 
include an estimate of iteration or rework probabilities. However, 
none of these papers describe reliable ways of arriving at these 
probabilities and merely assume that it is possible to obtain 
these measures in real world project environments. 
 

In this paper, we propose a methodology that allows 
practical estimation and assessment of rework probabilities. 
Similar assessment procedures were suggested in the decision 
analysis and system dynamics literature. For example, 
Merkhofer (1987) and Shephard and Kirkwood (1994) present an 
extensive interview procedure to solicit expert probabilities and 
value judgments necessary to conduct decision analysis. 
Similarly, Ford and Sterman (1998) acknowledge the fact that 
system dynamics modelers face difficulties in eliciting and 
representing expert knowledge so that useful models can be 
developed. Consequently, they developed an elicitation method 
that modelers use when interviewing experts for tacit process 
knowledge. Our proposed assessment technique is greatly 
influenced by this line of research, but is tailored to focus on 
issues related to the development of the DSM and the 
corresponding rework probabilities.  
 

Finally, the paper discusses how does this assessment 
method along with simulation results allow managers of 
development processes to evaluate process reengineering plans 

                                                                 
1 GERT is an extension to the popular project management technique 
PERT (Probabilistic Evaluation and Review Technique). 

based on two resultant measures: reliability and robustness. We 
measure reliability in terms of process duration variance. The 
less variability in the duration of a development process, the 
more reliable that process is. Robustness, however, deals with 
the ability of a process to absorb design changes. A robust 
process is the one with a duration that is insensitive to changes 
in design information.  
 

The rest of the paper proceeds as follows. Section 2, 
presents an overview of the DSM method and the main 
techniques used in analyzing the matrix: partitioning, tearing 
and simulation. In Section 3, we present a three-phase 
subjective assessment procedure for assessing rework 
probabilities used in DSM simulations. We demonstrate the 
utility of this procedure with a real application from automotive 
hood development. Finally, the example is used to show how 
can the simulation and the subjective assessment proposed in 
this paper be used to draw insights about ways to streamline 
and reengineer existing development processes. 
 
2. THE DESIGN STRUCTURE  MATRIX METHOD 

The matrix representation of a directed graph is a binary (i.e. 
a matrix populated with only zeros and ones) square matrix with 
m rows and columns, and n non-zero elements, where m is the 
number of nodes and n is the number of edges in the digraph. 
The matrix layout, shown in Figure 1, is as follows: the process 
elements’ names are placed down the side of the matrix as row 
headings and across the top as column headings in the same 
order. If there exists an edge from node i to node j, then the 
value of element ji (row j, column i) is unity (or marked with an 
X). Otherwise, the value of the element is zero (or left empty).  
The diagonal elements of the matrix do not have any 
interpretation in describing the system, so they are usually 
either left empty or blacked out.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        Figure 1: A Simple DSM 
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A major advantage of the matrix representation over the 
digraph is its compactness and ability to provide a systematic 
mapping among process elements that is clear and easy to read 
regardless of size.  If the system is a project represented by a set 
of tasks to be performed, then the order of elements in the rows 
(or columns) of the DSM represents the execution sequence of 
the tasks. Accordingly, the off-diagonal marks in a single row of 
the DSM represent all of the tasks whose output is required to 
perform the task corresponding to that row.  Similarly, reading 
down a specific column reveals which task receives information 
from the task corresponding to that column.  Marks below the 
diagonal represent forward information transfer to later (i.e. 
downstream) tasks.  This kind of mark is called forward mark or 
forward information link.  Marks above the diagonal depict 
information fed back to earlier listed tasks (i.e. feedback mark) 
and indicate that an upstream task is dependent on a 
downstream task. Backward dependencies are a major source of 
iteration in complex processes. 
 
2.1. Partitioning and Tearing 

Partitioning is the process of manipulating (i.e. reordering) 
the DSM rows and columns such that all the information (i.e. 
dependency marks) in the new DSM arrangement flows forward 
and there is no feedback; thus, transforming the DSM into a 
lower triangular form.  For complex engineering systems, it is 
highly unlikely that simple row and column manipulation will 
result in a lower triangular form (Yassine et al., 2000) In this case, 
DSM reordering will not completely eliminate feedbacks, but 
minimizes them and move the rest as close as possible to the 
diagonal (this form of the matrix is known as block triangular). In 
doing so, fewer system elements will be involved in the iteration 
cycle resulting in a faster and more predictable (i.e. reliable) 
development process.  
 

Tearing is the process of choosing the set of feedback 
marks that if removed from the matrix (and then the matrix is re-
partitioned) will render the matrix lower triangular. The marks 
that are removed from the matrix are called "tears". Identifying 
those "tears", that result in a lower triangular matrix, is analogus 
to identifying the set of assumptions that need to be made in 
order to start design process iterations when coupled tasks are 
encountered in the process. Having made these assumptions, 
subsequent iteration will be required to check or revise them. 
 
2.2. Numerical DSMs 

In binary DSM notation, a single attribute is used to 
convey relationships between different system elements; 
namely, the "existence" attribute, which signifies the existence 
or absence of a dependency between the different elements. 
Compared to binary DSMs, Numerical DSMs (NDSM) could 
contain a multitude of attributes that provide more detailed 
information on the relationships between different process 
elements. An improved description/capture of these 
relationships provides a better understanding of the 

development process.  As an example, consider the case where 
task B depends on information from task A. However, if this 
information is predictable or has little impact on task B, then the 
information dependency could be eliminated.  Binary DSMs lack 
the richness of such an argument. Some of the attributes that 
can be used are as follows: 
 
Level Numbers: Steward (1981) suggested the use of level 
numbers instead of simple "X" marks. Level numbers reflect the 
order in which the feedback marks should be torn. Level 
numbers range from 1 to 9 depending on the engineer’s 
judgment of where a good estimate, for a missing information 
piece, can be made.  
 
Importance Ratings: A simple scale can be constructed to 
differentiate between different importance levels for the "X" 
marks. As an example, we can define a 3-level scale as follows: 1 
= High Dependency, 2 = Medium Dependency, and 3 = Low 
Dependency (Pimmler and Eppinger, 1994). In this scenario, we 
can proceed with tearing the low dependency marks first and 
then the medium and high in a process similar to the level 
numbers method, above. 
 
Probability of Repetition: This number reflects the probability of 
one activity causing rework in another. Upper-diagonal elements 
represent the probability of having to loop back (i.e. iteration) to 
earlier (upstream) activities after a downstream activity was 
performed. Lower-diagonal elements represent the probability of 
a second-order rework following an iteration (Browning and 
Eppinger, 1998). Partitioning algorithms can be devised to order 
the tasks in this DSM such that the probability of iteration or 
the project duration is minimized.  
 

This paper is concerned with the estimation of the last 
DSM measure since it constitutes the hardest to obtain input for 
simulating a development process that involves iteration, as will 
be discussed next. 
 
2.3. DSM Simulation 

In this paper, we use the simulation utility described in 
Browning and Eppinger (1998) to demonstrate our proposed 
assessment and analysis procedures.2  Therefore, in the rest of 
this section, we will describe this simulation technique more 
elaborately as compared to the other simulation models 
referenced earlier in this paper. 
 

The DSM-based simulation model for a development 
process, as discussed by Browning and Eppinger (1998), 
quantifies a process configuration’s expected duration/cost and 
variance. Variances in duration and cost are largely attributed to 
the number of iterations required in the process and their scope. 

                                                                 
2 The software is downloadable for free from the MIT DSM web site: 
http://web.mit.edu/dsm/ 
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Since iterations may or may not occur (depending on a variety 
of variables), the DSM simulation model treats iterations 
stochastically, with a probability of occurrence depending on 
the particular package of information triggering rework.  
 

The model characterizes the design process as being 
composed of activities that depend on each other for 
information. Changes in information cause rework. Thus, rework 
in one activity can cause a chain reaction through supposedly 
finished and in-progress activities. Activity rework is a function 
of the probability of a change in inputs and the impact of that 
change. 
 

As input, the simulation requires a binary DSM base model 
and some additional data. For each activity interface (i.e. marks 
in the DSM), the model requires an assessment of the 
probability of a typical change in the data causing rework for a 
dependent activity and the impact of that rework should it 
occur.  Impact values are percentages of an activity’s initial 
duration. Activity duration and cost are random variables, 
represented by triangular distributions using three point 
estimates: best duration, likely duration, and worst duration.  
 
3. REWORK PROBABILITY ASSESSMENT 

In this section, we describe a process to subjectively 
assess the rework probabilities, which are necessary to run the 
simulation discussed in the previous section. Assessing 
reasonable rework probabilities is challenging. Our experience 
indicates that engineers and designers are generally 
uncomfortable providing direct probability assessment.  
Moreover, estimates provided vary widely between respondents 
for the same rework probability. There is a need to use a more 
reliable and indirect method to solicit these rework probabilities. 
We propose a three-stage procedure: 
 
1. SUBJECTIVE ASSESSMENT: Define two independent 

constructs (dimensions): Information Variability, and Task 
Sensitivity.  

2. MAPPING and CALIBRATION: The values of those two 
dimensions are mapped to a probability space.  Then, they 
are correlated to probabilities using some proportionality 
constant based on one or more known criteria, such as 
project duration, project cost, …etc. 

 3.   VALIDATION: Confirm the above resultant probabilities. 
 
3.1. Subjective Assessment of Information Variability 
(IV) and Task Sensitivity (TS) 

Off-diagonal elements in our NDSM are called “task 
volatility”.3  Task volatility (TV) describes the volatility of 
dependent tasks (located in the rows) with respect to changes 

                                                                 
3 Marks above the diagonal represent first order rework and marks below 
the diagonal represent the potential for second order rework (Browning 
and Eppinger, 1998). 

in information from input tasks (located in the columns).  
Because TV describes volatility of a task with respect to an 
input task, it implies a probability that the dependent task will be 
reworked to some extent.  This number is located in the matrix at 
the intersection of the row of the dependent task and column of 
the input task.  Task volatility is the product of two 
components: Information Variability and Task Sensitivity. 
 
A. Information variability (IV) describes the likelihood that 
information provided by an input task would change after being 
initially released.  Since IV is associated with the stability of a 
particular task’s information, each input task has its own IV 
value.  That is, the information from a particular task has its own 
probability of changing. Information variabilities are located 
along the bottom of the matrix and correspond to the task in that 
column (see Figure 5). It is difficult, if not impossible, to come 
up with a universal objective measurement scale for information 
variability to be used in all product development situations. We, 
therefore, construct a discrete, subjective measurement scale for 
this measure. For further details on constructed attributes see 
Keeney (1992). The estimated variability of information provided 
by a task is arbitrarily categorized in three levels, each having a 
numerical value, as shown in Table 1. 
 

Value Description Likelihood of Change 
1 Stable Low 
2 Unknown Medium to high 
3 Unstable Very high 

Table 2: Levels of information variability (IV) 
 
B. Task sensitivity (TS) describes how sensitive the completion 
of a dependent task is to changes or modifications of 
information from an input task. Each task’s sensitivity to 
changes in information from a particular input task varies.  Thus, 
TS depends on the level of dependency between two particular 
tasks.  Table 2 describes the three subjective levels of task 
sensitivity developed using the techniques for constructing 
subjective attributes as described in Keeney (1992).  The TS 
values are not shown in the DSM of Figure 5, instead we 
directly entered the product of the TS values assessed with the 
corresponding IV values for each task. 
 

Value Description Dependent Task is: 

1 Low 
Insensitive to most information 
changes 

2 Medium 
Sensitive to major information 
changes 

3 High 
Sensitive to most information 
changes 

Table 3: Levels of task sensitivity (TS) 
 

Interdependency marks in the DSM are replaced by 
numerical Task Volatilities (TV), the product of IV and TS.  
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While IV and TS are closely related, it is worth noting that they 
are independent.  Task sensitivity is a measure associated with a 
dependent task, whereas information variability is associated 
with an input task. Therefore, it is appropriate to multiply TS 
and IV to describe task volatility. Given the possible values of 
IV and TS, we find that TV values can range from 1 to 9.  
 

A low value for either TS or IV neutralizes the impact of the 
other.  Thus, one might suggest that TV values of 1, 2, or 3 
indicate that a dependent task is stable with respect to the 
corresponding predecessor task.  For example, if variability of 
information from a predecessor task is high (say 3) but the 
sensitivity of the dependent task is low (say 1), then it is 
unlikely that the dependent task will be affected.  However, this 
is not necessarily true for the reverse case.  While a 
combination of low variability and high sensitivity indicates that 
the dependent task is unlikely to be affected, the dependent 
task will require rework if the input information changes at all.  
With this in mind, we use a conservative approach by assuming 
TV values of three (3) imply moderate dependency, rather than a 
weak dependency.  Table 3 shows the possible ranges of TV 
values, their significances, and high-level strategies for 
handling each level.   
 

TV 
Value 

Description Strategies 

1, 2 - Dependency is weak.  
- Low risk of rework. 
 

Feedback and forecast 
information may be used, 
especially if it promotes 
process robustness. 

3, 4 - Dependency is   
   moderate. 
- Moderate risk of   
   rework. 

Avoid using forecast and 
feedback information 
where possible. 

6, 9 - Highly sensitive to        
  change. 
- High risk of rework. 

Task sequence is critical 
to process reliability.  Do 
not use forecast and 
feedback information.   

Table 4: TV values, their significance, and proposed strategies 
 
3.2. Mapping and Calibration 

Since TV represents a probability that some amount of 
rework will occur, it is necessary to calibrate the 1 – 9 scale to 
rework probabilities for use in simulation.  Several measures 
such as process cycle time and/or process development cost 
can be used to calibrate the model.  For example, if the 
development process for a given product typically involves 
approximately a cycle time of 1000 days, then we can correlate 
the rework probabilities for the process model such that the 
simulations provide an average duration of 1000 days (provided 
that there is confidence in the information variabilities and task 
sensitivities data).  This is accomplished by simulating the 
process over various probabilities to find a proportionality 

constant that scales the range of TV values to a sensible range 
of rework probabilities.  To do this, each task volatility in the 
matrix is assigned a probability from 0% to some maximum value 
P.  The probability assigned to each task volatility value is 
based on the magnitude of that task volatility.  That is, the 
maximum probability is assigned to the highest TV value and 
the probabilities are proportionally decreased with decreasing 
TV values.  The maximum probability values are varied for each 
simulation, and process durations are recorded.  Figure 2 
illustrates average process durations associated with various 
trial values for the maximum probability.   
 

Average Duration of the Development Process vs. 
Maximum Probability of Rework
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simulating an actual process known to require approximately 
1000 days) 

  
From this analysis, we see that the baseline duration 

correlates with a maximum rework probability of approximately 
52%.  Therefore, this is the maximum rework probability which 
will be used in all process simulations.  The mapping of task 
volatilities to rework probabilities is provided in Figure 3.  
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It is possible to use linear or non-linear (for example, 
quadratic) mapping functions as shown in Figure 3. The choice 
depends on the kind of behavior we would like this mapping 
function to have. For example, linear mapping would result in 
rework probabilities that increase linearly with the TV values. 
On the other hand, quadratic mapping allows the rework 
probability to increase slowly when the TV values are near 1, 
but as these values depart further away from 1 (towards 9) the 
rework probability increases more rapidly. This is the kind of 
behavior desired in our mapping function; however, a linear 
mapping for the rework probabilities was used in this paper 
since it provides more conservative probability estimates. 
 
3.3. Validation 

It is necessary to validate the established rework 
probabilities by reviewing them with the subject matter experts.  
This is accomplished by re-interviewing these experts. They are 
asked the following question: “Is it reasonable to assume that 
dependent task, X is reworked p% of the time due to changes in 
input information Y?”  For example, “Is it reasonable to assume 
that the gear shaft diameter is revised 17% of the time due to 
changes in load requirements?” The expert can confirm the 
probability value, thus validating it or not. If the probability is 
confirmed, it is not changed.  If it is not accepted, the 
respondent is asked a series of questions to extract the reasons 
why the probability value is not valid. These types of questions 
are represented by the flowchart in Figure 4. The first question 
attempts to identify the main drivers of change for the task 
being investigated (say task X for example). If the respondent 
identifies y1 (for example) as one driver, then the interviewer 
proceeds to validate the influence of y1 on X, which was 
already believed to have a specific probability value based on 
its TV value (35% in the flowchart example). If the expert does 
not confirm the probability, then the interviewer attempts to 
update it by relating the change to either the IV or TS value. The 
same line of questioning is repeated for all the drivers of change 
for task X and all the rework probabilities in the row of task X 
are validated. 
 
4. INDUSTRIAL APPLICATION: AUTOMOTIVE HOOD 
DEVELOPMENT PROCESS4 

A high-level description of the hood development process 
is as follows (Zambito, 2000). Marketing acquires and 
aggregates consumer needs data and supplies them to product 
development.  Product design then generates product concepts, 
which are evaluated for manufacturing feasibility by 
manufacturing and for consumer acceptance by marketing. After 
iterating through this phase to gain marketing, product 
development, and manufacturing concurrence on a set of 
feasible concepts, product concepts are developed further until 
a single concept is selected.  The product concept, 

                                                                 
4 Note that the time and cost data used in this application are scaled to 
protect confidentiality, but preserve its characteristics.  

manufacturing tooling, and marketing strategy evolve to 
completion through an iterative process between marketing, 
product development, and manufacturing that ensures the latest 
consumer needs data will be met while manufacturing feasibility 
is maintained.  
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May we 
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Is it because 
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more/less 
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Is it because 

X is 
more/less 

sensitive to 
changes in 

y1?

Revise IV value

Revise TS value

Stop.
The 

probability
is validated

y1

yes

yes

Figure 4: Validation phase

 The DSM for the hood development process is shown in 
Figure 5. The shaded and outlined regions illustrate subsets of 
tasks that are coupled, which are referred to as iteration or 
feedback loops. The DSM contains five iterative loops.5 While 
these data are typical of DSM models, this NDSM contains 
additional data that offer further insight into the process and are 
useful for making process-reengineering decisions. These 
include estimated duration and cost data associated with each 
task, as well as two-dimensional task volatility indices. For 
clarity, Figure 5 has been annotated to identify each type of 
data and its location in the matrix. 
 
4.1. Data Collection 

Populating the Hood Development DSM involved 
collecting timing, cost, dependency, and other task data from 
historical data and various stakeholders.  A broad cross-section 
of stakeholders were interviewed when historical data were 

                                                                 
5 An iterative loop depicts a situation were earlier tasks are revoked (i.e. 
reworked) when new information unravels later into the development 
process. In a DSM this will be evident by the existence of marks above 
the diagonal. 
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unavailable or needed verification.  This helped eliminate single-
perspective biases and ensure that the DSM accurately 
described the actual hood development process.  Stakeholder 
interviews included experienced representatives from 
manufacturing, assembly, computer-aided engineering (CAE), 
computer-aided design (CAD), product engineering, and 
product engineering management.  In total, 15 personal and/or 
phone interviews with 10 stakeholders were conducted.  The 
duration of each interview varied from 45 to 90 minutes. The 
interviews were structured as follows: 
 
a. Identifying the task(s) of the hood development process 

that the interviewee is involved in, along with a brief 
summary of the task. 

b. Determining the nominal duration (and cost) of the task. 
c. Determining the rework duration (and cost) of the task. 
d. Determining the inputs needed to carry out the task. 
e. Determining the sensitivity of the task to changes in above 

inputs (TS values). 
f. Determining the variability of the task’s output (i.e. IV 

value). 
 

The interviews resulted in the identification of the 43 tasks 
shown  in the  DSM (Figure 5).  The  nominal  durations  and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rework times (and cost) are also displayed in the figure. Most 
historical data were easily concurred through interviewing 
various stakeholders, with the exception of some lower-level 
task durations.  This issue arises in large part because many 
lower-level task durations are not tracked independently, but 
rather are included as part of a larger set or cycle of tasks.  An 
example of this is task 10, developing an initial attachment 
scheme.  This task is an important part of developing a design 
concept, however its duration is not tracked independently.  To 
resolve this issue, experienced product engineers who have 
developed attachment schemes on many hood systems were 
independently asked to provide durations for this task and 
consequently we were able to solicit the three-point estimates 
(required for the triangular distribution) for this task’s duration. 
The duration shown in the matrix represents the average 
duration for the tasks.  
 

After identifying the tasks and their durations in the first 
part of the interview, the interviews progressed into determining 
the inputs required to perform the task and the sensitivity of the 
task to changes in the identified inputs (i.e. TS values). Each 
interviewee was asked to qualify the sensitivity of their task (to 
changes in each particular input) based on the scale shown in 
Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: DSM for the hood development process 
[ED(i) represent the expected duration of task i, 

ED(r) represent the rework duration of task i as a % of ED(i) 
EC(i) represent cost of task completion and EC(r) represent the cost of rework] 
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Finally, the interviewees were asked about the variability of 
their task’s output and the reasons behind variation (i.e. IV 
value).  Discussions relating to task durations immensely helped 
us in assessing the variability. For examp le, responses (from 
different experts) relating to task 10 duration varied from 2 days 
to 20 days.  Follow-up interviews and clarifying questioning 
enabled a deeper understanding of why the duration was 
perceived to vary so widely.  Typical clarifying questions were: 
“Under what circumstances could it take 2 (or 20) days to 
develop an initial attachment scheme?” and “How typical are 
these circumstances?” In many cases, the longer durations were 
found to be due to rare events.  In task 10 for example, the 20-
day duration occurs if a completely new attachment strategy 
was established.  The 2-day duration occurs when a previously 
proven attachment scheme is used, which was said to be 
common.  This understanding allowed the interviewed experts 
to decide on an IV value of 3 from Table 1 and also estimation of 
the three-point task duration. 
 
5. PROCESS MANAGEMENT AND RE-ENGINEERING 
INSIGHTS 
 
5.1 Measuring Process Performance 

Running the simulation with the maximum rework 
probability set to zero (0%) provides the shortest possible cycle 
time associated with these tasks durations and process 
structure.  This analysis results in a mean cycle time of 700 days 
compared to the same process whose baseline duration is 1000 
days. 
 

While achieving the optimal performance (i.e. minimal 
duration) may be unlikely, it is useful to understand how well a 
process is capable of performing in the absence of iteration.  An 
obvious benefit of this determination is that it allows managers 
to gauge the validity of proposed process improvement targets.  
Another is that it enables cost/performance tradeoff analyses.  
That is, managers can use this information to assess the 
sacrifices that are required to achieve optimal (or near optimal) 
performance.  For example, it might be possible to remo ve a 
significant amount of rework by assigning redundant resources 
to improve the quality or feasibility of assumptions through  
parallel validation testing, historical data analysis, or experience.  
Another reliability improvement might be gained through the 
purchase of a new technology that provides assumptions that 
are more reliable.  Thus, limiting the ranges of various inputs 
(i.e. reducing information variability).  The costs of these efforts 
could be weighed against the benefit of having near optimal 
process performance.  
 
5.2 Process Reliability and Process Robustness 

As stated earlier, process reliability deals with the amount 
of variance associated with the duration of a process. 
Furthermore, process robustness is concerned with the ability 
of a process to absorb design changes. In most cases, there is 

an inherent tradeoff between process reliability (controlling the 
variability of a process) and process robustness (allowing 
value-added iteration).  For example, a purely sequential process 
has no potential for feedback, and thus will reliably produce an 
expected process duration and development cost.  While, it is 
typically infeasible to develop complex products using a purely 
sequential or parallel process, such a process would not be a 
very robust one.  That is, a completely reliable process offers 
little robustness because it is not capable of incorporating 
changing inputs that are external to the process (changing 
consumer needs or regulatory requirements, for example).  In 
many cases, iteration in the development of products is needed 
for optimizing key product attributes.  
 

The probability curves shown in Figure 6 would provide 
useful insights into the reliability and robustness of a process.  
The figure shows two sets of simulations: the original hood 
development process and a corresponding reengineered 
process. Without going into the details of the reengineered 
process, the reader may think of it as similar to the original 
process but with few process changes resulting in the deletion 
of some old tasks and addition of new ones (Yassine et al., 
2000).6  Process reliability is described through the curves by 
the range of probable durations (the error bars in Figure 6).  
That is, a curve with a wide range of variation could produce a 
wide range of cycle times for the same level of rework 
probability.  A tight range would produce a more reliable cycle 
time for a given rework probability. Accordingly, Figure 6 shows 
that the reengineered process is more reliable. The error bars 
around the simulated process durations, at any maximum 
probability value, are smaller for the reengineered process as 
observed in the figure. 
 

The acceleration (curvature) of the curves describes the 
robustness of the process in terms of cycle time with respect to 
the maximum rework probability.  A curve with a high 
acceleration, as in the original process of Figure 6, would 
describe a less robust process whose duration is highly 
sensitive to changes in information. Conversely, a lower 
acceleration (flatter curve), as in the reengineered process, 
would describe a process that is more robust to changes in 
input information. For example, a change in the maximum rework 
probability from 10% to 60% will result in an increase of about 
150 days in the expected duration of the reengineered process, 
compared to an increase of 750 days for the original process. 
 

A cost (of process control) / benefit (cycle time reduction) 
strategy can also be established by analyzing the profile of the 
probability curve.  Assume that the maximum rework probability 
can be reduced by more closely controlling the process (i.e. 
adding verification tasks, project managers, redundancies, etc.).  

                                                                 
6 Indeed some of the information dependencies have been also altered in 
the new process.  
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These controls obviously add some cost.  Conversely, reducing 
present control would tend to increase the maximum rework 
probability but reduce the cost of control. For example, Figure 6 
shows that investing in reducing the maximum rework 
probability, for the original process, from 60% to 55% would 
result in expected development time savings of more then 300 
days. Further reductions of the maximum rework probability 
would result in a greater decrease of expected development time, 
but start to exhibit a diminishing rate of return. Therefore, it may 
be economical not to invest in controlling the process, and 
hence reducing the maximum rework probability, below the 50% 
level.  
 

Mean Process Duration vs. 
Maximum Probability of Rework
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Figure 6: Reliability and robustness of development processes 
 
6. CONCLUSION 

This paper presented a subjective assessment procedure 
for rework probabilities used in project and process 
management simulation models, in general, and in the DSM 
simulation model developed in Browning and Eppinger (1998), in 
particular. The assessment proceeds in three phases: subjective 
evaluation of task variability and sensitivity, mapping and 
calibration, and validation. The application example shows that 
the probabilities required for simulating a DSM can be evaluated 
subjectively. Furthermore, this assessment method can also be 
used to shed some light on evaluating process improvement 
and reengineering efforts by defining two new terminologies: 
reliability and robustness.   
 

Perhaps the most useful conclusion from this analysis is 
that the goal of restructuring an iterative process is not to break 
all iterative loops.  Robustness obtained from iterative task 
structures can be more valuable than the reliability obtained in a 
sequential process structure.  
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