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ABSTRACT

This paper uses the Design Structure Matrix (DSM) to
model and simulate the performance of development processes.
Though the simulation is a powerful tool for analyzing process
performance, its ability is limited by the quality of input
information used in the analysis. DSM simulation requires
process data that is hard to assess or estimate directly from
development participants. In this paper, we propose a
methodology that allows a more practical estimation of an
important  simulation  parameter:  rework  probabilities.
Furthermore, we show how does this assessment method
(combined with simulation) allow managers to evaluate process
improvement plans based on two resulting process measures:
reliability and robustness. The method is illustrated with a real
application from the automotive industry.

(Keywords. Design Structure Matrix, Product development,
Smulation, Process Re-engineering)

INTRODUCTION
Complex product development processes are usually
managed by mapping them through various kinds of project
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flowcharts and diagrams (i.e. Gantt charts, CPM, PERT, IDEF,
etc.) that attempt to capture and manage process complexity and
iteration. While many of these methods are capable of
illustrating  timing,  information  flows, and task
interdependencies, they fall short of enabling project teams to
effectively model, and gain deeper understanding of task
interdependencies and iteration in the process. The design
structure matrix (DSM) methodology provides a means to model
and manipulate iterative tasks and multidirectional information
flows. The DSM allows complex processes to be illustrated and
modified through graphical and numerical analyses in a single
manageable format. Using the DSM methodology to study
development processes enables graphical representation of how
tasks and information flows affect other groups of tasks, where
potential issues lie, and insight about how they may be
resolved. However, DSM models, as they stand, do not include
the duration of tasks, the impact of iteration or rework, and
consequently do not provide a time line or estimate for the
project duration. As a result simulation techniques for design
processes, in general, and DSM models, in particular, started to
appear in process and project management literature.
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Recent project management literature points out to the
potential and success of simulation techniques in managing
development processes. However, few studies have been
conducted as compared to manufacturing processes, for
example. Perhaps one of these first attempts to handle feedback
relationships, account for iteration, and enable simulation-based
analyses was GERT (General Evaluation Review Technique)
[Wiest, 1977]." Another paper by Adler et al. (1995) describes the
use of discrete event simulation to study product development
(PD) performance in companies pursing multiple, concurrent,
non-unique PD projects. The simulation allowed them to
identify bottleneck activities and several development process
characteristics. In asimilar venue, Baldwin et al. (1999) also used
discrete event simulation to manage the design process in
building construction projects. Finally, Browning and Eppinger
(1998) used Monte Carlo simulation based on a DSM
representation of development projects. There simulation
reveadled several interesting process characteristics and
performance measures including expected project duration, cost,
and risk.

Though all these models emphasize the fact that simulation
can be a powerful tool for analyzing process performance, their
ability is limited by the quality of input information used in the
analysis. These models require development data that is hard to
assess or estimate directly from process participants. Such data
include an estimate of iteration or rework probabilities. However,
none of these papers describe reliable ways of arriving at these
probabilities and merely assume that it is possible to obtain
these measuresin real world project environments.

In this paper, we propose a methodology that allows
practical estimation and assessment of rework probabilities.
Similar assessment procedures were suggested in the decision
analysis and system dynamics literature. For example,
Merkhofer (1987) and Shephard and Kirkwood (1994) present an
extensive interview procedure to solicit expert probabilities and
value judgments necessary to conduct decision analysis.
Similarly, Ford and Sterman (1998) acknowledge the fact that
system dynamics modelers face difficulties in eliciting and
representing expert knowledge so that useful models can be
developed. Consequently, they developed an elicitation method
that modelers use when interviewing experts for tacit process
knowledge. Our proposed assessment technique is greatly
influenced by this line of research, but is tailored to focus on
issues related to the development of the DSM and the
corresponding rework probabilities.

Finally, the paper discusses how does this assessment
method along with simulation results alow managers of
development processes to evaluate process reengineering plans

! GERT is an extension to the popular project management technique
PERT (Probabilistic Evaluation and Review Technique).

based on two resultant measures: reliability and robustness. We
measure reliability in terms of process duration variance. The
less variability in the duration of a development process, the
more reliable that process is. Robustness, however, deals with
the ability of a process to absorb design changes. A robust
processis the one with a duration that isinsensitive to changes
in design information.

The rest of the paper proceeds as follows. Section 2,
presents an overview of the DSM method and the main
techniques used in analyzing the matrix: partitioning, tearing
and simulation. In Section 3, we present a three-phase
subjective assessment procedure for assessing rework
probabilities used in DSM simulations. We demonstrate the
utility of this procedure with a real application from automotive
hood development. Finaly, the example is used to show how
can the simulation and the subjective assessment proposed in
this paper be used to draw insights about ways to streamline
and reengineer existing development processes.

2. THE DESIGN STRUCTURE MATRIX METHOD

The matrix representation of adirected graphisabinary (i.e.
amatrix populated with only zeros and ones) square matrix with
m rows and columns, and n non-zero elements, where m is the
number of nodes and n is the number of edges in the digraph.
The matrix layout, shown in Figure 1, is as follows: the process
elements’ names are placed down the side of the matrix as row
headings and across the top as column headings in the same
order. If there exists an edge from node i to node j, then the
value of element ji (row j, column i) is unity (or marked with an
X). Otherwise, the value of the element is zero (or left empty).
The diagonal elements of the matrix do not have any
interpretation in describing the system, so they are usually
either left empty or blacked out.

A B C D E F G H J

Feedback:
A X Task B needsinfo
B from Task J
< FEELEACS Feed Forward:
c X Task G needsinfo
from Task E
D X
E |
F X X , &
FEED FORWARD
G L >Z' ngeh&y
S EE
H X X S
J |

Figurel: A SimpleDSM
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A major advantage of the matrix representation over the
digraph is its compactness and ability to provide a systematic
mapping among process elements that is clear and easy to read
regardless of size. If the systemisaproject represented by a set
of tasks to be performed, then the order of elementsin the rows
(or columns) of the DSM represents the execution sequence of
the tasks. Accordingly, the off-diagonal marksin asingle row of
the DSM represent all of the tasks whose output is required to
perform the task corresponding to that row. Similarly, reading
down a specific column reveals which task receives information
from the task corresponding to that column. Marks below the
diagona represent forward information transfer to later (i.e.
downstream) tasks. This kind of mark is called forward mark or
forward information link. Marks above the diagona depict
information fed back to earlier listed tasks (i.e. feedback mark)
and indicate that an upstream task is dependent on a
downstream task. Backward dependencies are a major source of
iteration in complex processes.

2.1. Partitioning and Tearing

Partitioning is the process of manipulating (i.e. reordering)
the DSM rows and columns such that al the information (i.e.
dependency marks) in the new DSM arrangement flows forward
and there is no feedback; thus, transforming the DSM into a
lower triangular form. For complex engineering systems, it is
highly unlikely that simple row and column manipulation will
result in alower triangular form (Y assine et a., 2000) In this case,
DSM reordering will not completely eliminate feedbacks, but
minimizes them and move the rest as close as possible to the
diagonal (this form of the matrix is known as block triangular). In
doing so, fewer system elements will be involved in the iteration
cycle resulting in a faster and more predictable (i.e. reliable)
development process.

Tearing is the process of choosing the set of feedback
marks that if removed from the matrix (and then the matrix is re-
partitioned) will render the matrix lower triangular. The marks
that are removed from the matrix are called "tears". Identifying
those "tears", that result in alower triangular matrix, is analogus
to identifying the set of assumptions that need to be made in
order to start design process iterations when coupled tasks are
encountered in the process. Having made these assumptions,
subsequent iteration will be required to check or revise them.

2.2. Numerical DSMs

In binary DSM notation, a single attribute is used to
convey relationships between different system elements;
namely, the "existence" attribute, which signifies the existence
or absence of a dependency between the different elements.
Compared to binary DSMs, Numerical DSMs (NDSM) could
contain a multitude of attributes that provide more detailed
information on the relationships between different process
elements. An improved description/capture of these
relationships provides a better understanding of the

development process. As an example, consider the case where
task B depends on information from task A. However, if this
information is predictable or has little impact on task B, then the
information dependency could be eliminated. Binary DSMslack
the richness of such an argument. Some of the attributes that
can be used are asfollows:

Level Numbers: Steward (1981) suggested the use of level
numbers instead of simple "X" marks. Level numbers reflect the
order in which the feedback marks should be torn. Level
numbers range from 1 to 9 depending on the engineer's
judgment of where a good estimate, for a missing information
piece, can be made.

Importance Ratings: A simple scale can be constructed to
differentiate between different importance levels for the "X"
marks. As an example, we can define a 3-level scaleasfollows: 1
= High Dependency, 2 = Medium Dependency, and 3 = Low
Dependency (Pimmler and Eppinger, 1994). In this scenario, we
can proceed with tearing the low dependency marks first and
then the medium and high in a process similar to the level
numbers method, above.

Probability of Repetition: This number reflects the probability of
one activity causing rework in another. Upper-diagonal elements
represent the probability of having to loop back (i.e. iteration) to
earlier (upstream) activities after a downstream activity was
performed. Lower-diagonal elements represent the probability of
a second-order rework following an iteration (Browning and
Eppinger, 1998). Partitioning algorithms can be devised to order
the tasks in this DSM such that the probability of iteration or
the project duration is minimized.

This paper is concerned with the estimation of the last
DSM measure since it constitutes the hardest to obtain input for
simulating a development process that involves iteration, as will
be discussed next.

2.3. DSM Simulation

In this paper, we use the simulation utility described in
Browning and Eppinger (1998) to demonstrate our proposed
assessment and analysis procedures? Therefore, in the rest of
this section, we will describe this simulation technique more
elaborately as compared to the other simulation models
referenced earlier in this paper.

The DSM-based simulation model for a development
process, as discussed by Browning and Eppinger (1998),
guantifies a process configuration’s expected duration/cost and
variance. Variances in duration and cost are largely attributed to
the number of iterations required in the process and their scope.

2 The software is downloadable for free from the MIT DSM web site:
http://web.mit.edu/dsm/
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Since iterations may or may not occur (depending on a variety
of variables), the DSM simulation model treats iterations
stochastically, with a probability of occurrence depending on
the particular package of information triggering rework.

The model characterizes the design process as being
composed of activities that depend on each other for
information. Changes in information cause rework. Thus, rework
in one activity can cause a chain reaction through supposedly
finished and in-progress activities. A ctivity rework isafunction
of the probability of a change in inputs and the impact of that
change.

Asinput, the simulation requires a binary DSM base model
and some additional data. For each activity interface (i.e. marks
in the DSM), the model requires an assessment of the
probability of atypical change in the data causing rework for a
dependent activity and the impact of that rework should it
occur. Impact values are percentages of an activity’s initial
duration. Activity duration and cost are random variables,
represented by triangular distributions using three point
estimates: best duration, likely duration, and worst duration.

3. REWORK PROBABILITY ASSESSMENT

In this section, we describe a process to subjectively
assess the rework probabilities, which are necessary to run the
simulation discussed in the previous section. Assessing
reasonable rework probabilities is challenging. Our experience
indicates that engineers and designers are generally
uncomfortable providing direct probability assessment.
Moreover, estimates provided vary widely between respondents
for the same rework probability. There is a need to use a more
reliable and indirect method to solicit these rework probabilities.
We propose athree-stage procedure:

1. SUBXECTIVE ASSESSMENT: Define two independent
constructs (dimensions): Information Variability, and Task
Sensitivity.

2. MAPPING and CALIBRATION: The values of those two
dimensions are mapped to a probability space. Then, they
are correlated to probabilities using some proportionality
constant based on one or more known criteria, such as
project duration, project cost, ...etc.

3. VALIDATION: Confirm the above resultant probabilities.

3.1. Subjective Assessment of Information Variability
(IV) and Task Sensitivity (TS)

Off-diagonal elements in our NDSM are called “task
volatility”*  Task volatility (TV) describes the volatility of
dependent tasks (located in the rows) with respect to changes

% Marks above the diagonal represent first order rework and marks below
the diagonal represent the potential for second order rework (Browning
and Eppinger, 1998).

in information from input tasks (located in the columns).
Because TV describes volatility of a task with respect to an
input task, it implies a probability that the dependent task will be
reworked to some extent. This number islocated in the matrix at
the intersection of the row of the dependent task and column of
the input task. Task volatility is the product of two
components: Information Variability and Task Sensitivity.

A. Information variability (IV) describes the likelihood that

information provided by an input task would change after being
initially released. Since IV is associated with the stability of a
particular task’s information, each input task has its own IV

value. That is, the information from a particular task hasits own
probability of changing. Information variabilities are located
along the bottom of the matrix and correspond to the task in that
column (see Figure 5). It is difficult, if not impossible, to come
up with a universal objective measurement scale for information
variability to be used in al product development situations. We,
therefore, construct a discrete, subjective measurement scale for
this measure. For further details on constructed attributes see
Keeney (1992). The estimated variability of information provided
by atask is arbitrarily categorized in three levels, each having a
numerical value, asshownin Table 1.

Value Description  Likelihood of Change

1 Stable Low
2 Unknown Medium to high
3 Unstable Very high

Table2: Levesof information variability (1V)

B. Task sensitivity (TS) describes how sensitive the completion
of a dependent task is to changes or modifications of
information from an input task. Each task’s sensitivity to
changesin information from a particular input task varies. Thus,
TS depends on the level of dependency between two particular
tasks. Table 2 describes the three subjective levels of task
sensitivity developed using the techniques for constructing
subjective attributes as described in Keeney (1992). The TS
values are not shown in the DSM of Figure 5, instead we
directly entered the product of the TS values assessed with the
corresponding IV values for each task.

Value Description Dependent Task is:

Insensitive to most information
1 Low
changes
5 Medium Sensitive to magor information
changes
. Sensitive to most information
3 High
changes

Table3: Levels of task sensitivity (TS)

Interdependency marks in the DSM are replaced by
numerical Task Volatilities (TV), the product of IV and TS.
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While IV and TS are closely related, it is worth noting that they
areindependent. Task sensitivity isameasure associated with a
dependent task, whereas information variability is associated
with an input task. Therefore, it is appropriate to multiply TS
and |V to describe task volatility. Given the possible values of
IV and TS, we find that TV values can rangefrom 1 t0 9.

A low value for either TS or IV neutralizes the impact of the
other. Thus, one might suggest that TV values of 1, 2, or 3
indicate that a dependent task is stable with respect to the
corresponding predecessor task. For example, if variability of
information from a predecessor task is high (say 3) but the
sensitivity of the dependent task is low (say 1), then it is
unlikely that the dependent task will be affected. However, this
is not necessarily true for the reverse case. While a
combination of low variability and high sensitivity indicates that
the dependent task is unlikely to be affected, the dependent
task will require rework if the input information changes at all.
With thisin mind, we use a conservative approach by assuming
TV values of three (3) imply moderate dependency, rather than a
weak dependency. Table 3 shows the possible ranges of TV
values, their significances, and high-level strategies for
handling each level.

TV Description Strategies
Value
1,2 - Dependency isweak. | Feedback and forecast
- Low risk of rework. information may be used,
especialy if it promotes
process robustness.
3,4 - Dependency is Avoid using forecast and
moderate. feedback information
- Moderate risk of where possible.
rework.
6,9 - Highly sensitiveto Task sequence is critical
change. to process reliability. Do
- High risk of rework. not use forecast and
feedback information.

Table4: TV values, their significance, and proposed strategies

3.2. Mapping and Calibration

Since TV represents a probability that some amount of
rework will occur, it is necessary to calibrate the 1 — 9 scale to
rework probabilities for use in simulation. Several measures
such as process cycle time and/or process development cost
can be used to cdibrate the model. For example, if the
development process for a given product typically involves
approximately a cycle time of 1000 days, then we can correlate
the rework probabilities for the process model such that the
simulations provide an average duration of 1000 days (provided
that there is confidence in the information variabilities and task
sensitivities data). This is accomplished by simulating the
process over various probabilities to find a proportionality

constant that scales the range of TV values to a sensible range
of rework probabilities. To do this, each task volatility in the
matrix is assigned a probability from 0% to some maximum value
P. The probability assigned to each task volatility value is
based on the magnitude of that task volatility. That is, the
maximum probability is assigned to the highest TV value and
the probabilities are proportionally decreased with decreasing
TV values. The maximum probability values are varied for each
simulation, and process durations are recorded. Figure 2
illustrates average process durations associated with various
trial values for the maximum probability.

Average Duration of the Development Process vs.
Maximum Probability of Rework

1450
1350 /f
1250

/

1150
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950
850 A.,_/—/'//

750 ——"
650 v

Average Duration (days)

0% 5% 10 15 20 25 30 35 40 45 50 55 60 65
% % % % % % % % % % %N %

Maximum Rework Probability

Figure 2: Average duration associated with different rework
probabilities— (The average durations were obtained by
simulating an actual process known to require approximately
1000 days)

From this analysis, we see that the baseline duration
correlates with a maximum rework probability of approximately
52%. Therefore, this is the maximum rework probability which
will be used in all process simulations. The mapping of task
volatilitiesto rework probabilitiesis provided in Figure 3.

| Linear Mapping — - —Non-Linear Mapping |
60% |
50% S2%0
e
/
. 40% P
2 35% .
% 30% 4
o 4
©
5 2% 2%
20% 17% D
’
v -
10% 1 6% - 10%
A%
0% =
1 2 3 4 6 9
TV Value

Figure 3: Probability mapping
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It is possible to use linear or non-linear (for example,
quadratic) mapping functions as shown in Figure 3. The choice
depends on the kind of behavior we would like this mapping
function to have. For example, linear mapping would result in
rework probabilities that increase linearly with the TV values.
On the other hand, quadratic mapping allows the rework
probability to increase slowly when the TV values are near 1,
but as these values depart further away from 1 (towards 9) the
rework probability increases more rapidly. This is the kind of
behavior desired in our mapping function; however, a linear
mapping for the rework probabilities was used in this paper
sinceit provides more conservative probability estimates.

3.3. Validation

It is necessary to validate the established rework
probabilities by reviewing them with the subject matter experts.
This is accomplished by re-interviewing these experts. They are
asked the following question: “Is it reasonable to assume that
dependent task, X is reworked p% of the time due to changesin
input information Y?' For example, “Is it reasonable to assume
that the gear shaft diameter is revised 17% of the time due to
changes in load requirements?’ The expert can confirm the
probability value, thus validating it or not. If the probability is
confirmed, it is not changed. If it is not accepted, the
respondent is asked a series of questions to extract the reasons
why the probability value is not valid. These types of questions
are represented by the flowchart in Figure 4. The first question
attempts to identify the main drivers of change for the task
being investigated (say task X for example). If the respondent
identifies y1 (for example) as one driver, then the interviewer
proceeds to validate the influence of yl on X, which was
aready believed to have a specific probability value based on
its TV vaue (35% in the flowchart example). If the expert does
not confirm the probability, then the interviewer attempts to
update it by relating the change to either the IV or TSvalue. The
same line of questioning is repeated for all the drivers of change
for task X and all the rework probabilities in the row of task X
arevalidated.

4. INDUSTRIAL APPLICATION: AUTOMOTIVE HOOD
DEVELOPMENT PROCESS*

A high-level description of the hood development process
is as follows (Zambito, 2000). Marketing acquires and
aggregates consumer needs data and supplies them to product
development. Product design then generates product concepts,
which are evaluated for manufacturing feasibility by
manufacturing and for consumer acceptance by marketing. After
iterating through this phase to gain marketing, product
development, and manufacturing concurrence on a set of
feasible concepts, product concepts are developed further until
a single concept is selected. The product concept,

* Note that the time and cost data used in this application are scaled to
protect confidentiality, but preserve its characteristics.

manufacturing tooling, and marketing strategy evolve to
completion through an iterative process between marketing,
product development, and manufacturing that ensures the latest
consumer needs data will be met while manufacturing feasibility
is maintained.

What arethe
main drivers of
change in X?

May we

assume that Stop.
ylislikely The
to cause i
probability
h 35% X L
ke is validated

ReviselV value

Revise TSvalue

sensitiveto
changesin
y1?

Figure4: Validation phase

The DSM for the hood development processis shownin
Figure 5. The shaded and outlined regionsillustrate subsets of
tasksthat are coupled, which arereferred to asiteration or
feedback loops. The DSM containsfive iterative loops® While
these data are typical of DSM models, this NDSM contains
additional datathat offer further insight into the process and are
useful for making process-reengineering decisions. These
include estimated duration and cost data associated with each
task, aswell astwo-dimensional task volatility indices. For
clarity, Figure 5 has been annotated to identify each type of
data and itslocation in the matrix.

4.1. Data Collection

Populating the Hood Development DSM involved
collecting timing, cost, dependency, and other task data from
historical data and various stakeholders. A broad cross-section
of stakeholders were interviewed when historical data were

® An iterative loop depicts a situation were earlier tasks are revoked (i.e.
reworked) when new information unravels later into the development
process. In a DSM this will be evident by the existence of marks above
the diagonal .
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unavailable or needed verification. This helped eliminate single- rework times (and cost) are also displayed in the figure. Most
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perspective biases and ensure that the DSM accurately historical data were easily concurred through interviewing
described the actual hood development process. Stakeholder various stakeholders, with the exception of some lower-level
interviews included experienced representatives from task durations. This issue arises in large part because many
manufacturing, assembly, computer-aided engineering (CAE), lower-level task durations are not tracked independently, but
computer-aided design (CAD), product engineering, and rather are included as part of alarger set or cycle of tasks. An
product engineering management. In total, 15 personal and/or example of this is task 10, developing an initial attachment
phone interviews with 10 stakeholders were conducted. The scheme. This task is an important part of developing a design
duration of each interview varied from 45 to 90 minutes. The concept, however its duration is not tracked independently. To
interviews were structured as follows: resolve this issue, experienced product engineers who have
developed attachment schemes on many hood systems were
a. ldentifying the task(s) of the hood development process independently asked to provide durations for this task and
that the interviewee is involved in, aong with a brief consequently we were able to solicit the three-point estimates
summary of the task. (required for the triangular distribution) for this task’s duration.
b. Determining the nominal duration (and cost) of the task. The duration shown in the matrix represents the average
c. Determining the rework duration (and cost) of the task. duration for the tasks.
d. Determining theinputs needed to carry out the task.
e. Determining the sensitivity of the task to changesin above After identifying the tasks and their durations in the first
inputs (TS values). part of the interview, the interviews progressed into determining
f. Determining the variability d the task’s output (i.e. 1V the inputs required to perform the task and the sensitivity of the
value). task to changes in the identified inputs (i.e. TS values). Each
interviewee was asked to qualify the sensitivity of their task (to
The interviews resulted in the identification of the 43 tasks changes in each particular input) based on the scale shown in
shown inthe DSM (Figure5). The nominal durations and Table 2.
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Figure5: DSM for the hood development process
[ED(i) represent the expected duration of task i,
ED(r) represent the rework duration of task i asa % of ED(i)
EC(i) represent cost of task completion and EC(r) represent the cost of rework]
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Finally, the interviewees were asked about the variability of
their task’s output and the reasons behind variation (i.e. IV
value). Discussionsrelating to task durationsimmensely helped
us in assessing the variability. For example, responses (from
different experts) relating to task 10 duration varied from 2 days
to 20 days. Follow-up interviews and clarifying questioning
enabled a deeper understanding of why the duration was
perceived to vary so widely. Typical clarifying questionswere;
“Under what circumstances could it take 2 (or 20) days to
develop an initial attachment scheme?’ and “How typical are
these circumstances?’ In many cases, the longer durations were
found to be due to rare events. In task 10 for example, the 20-
day duration occurs if a completely new attachment strategy
was established. The 2-day duration occurs when a previously
proven attachment scheme is used, which was said to be
common. This understanding allowed the interviewed experts
to decide on an 1V value of 3 from Table 1 and also estimation of
the three-point task duration.

5. PROCESS MANAGEMENT AND RE-ENGINEERING
INSIGHTS

5.1 Measuring Process Performance

Running the simulation with the maximum rework
probability set to zero (0%) provides the shortest possible cycle
time associated with these tasks durations and process
structure. Thisanalysis results in amean cycle time of 700 days
compared to the same process whose baseline duration is 1000
days.

While achieving the optimal performance (i.e. minima
duration) may be unlikely, it is useful to understand how well a
process is capable of performing in the absence of iteration. An
obvious benefit of this determination is that it allows managers
to gauge the validity of proposed process improvement targets.
Another is that it enables cost/performance tradeoff analyses.
That is, managers can use this information to assess the
sacrifices that are required to achieve optimal (or near optimal)
performance. For example, it might be possible to remove a
significant amount of rework by assigning redundant resources
to improve the quality or feasibility of assumptions through
parallel validation testing, historical data analysis, or experience.
Another reliability improvement might be gained through the
purchase of a new technology that provides assumptions that
are more reliable. Thus, limiting the ranges of various inputs
(i.e. reducing information variability). The costs of these efforts
could be weighed against the benefit of having near optimal
process performance.

5.2 Process Reliability and Process Robustness

As stated earlier, process reliability deals with the amount
of variance associated with the duration of a process.
Furthermore, process robustness is concerned with the ability
of a process to absorb design changes. In most cases, there is

an inherent tradeoff between process reliability (controlling the
variability of a process) and process robustness (allowing
value-added iteration). For example, apurely sequential process
has no potential for feedback, and thus will reliably produce an
expected process duration and development cost. While, it is
typically infeasible to develop complex products using a purely
sequential or parallel process, such a process would not be a
very robust one. That is, a completely reliable process offers
little robustness because it is not capable of incorporating
changing inputs that are external to the process (changing
consumer needs or regulatory requirements, for example). In
many cases, iteration in the development of products is needed
for optimizing key product attributes.

The probability curves shown in Figure 6 would provide
useful insights into the reliability and robustness of a process.
The figure shows two sets of simulations: the original hood
development process and a corresponding reengineered
process. Without going into the details of the reengineered
process, the reader may think of it as similar to the origina
process but with few process changes resulting in the deletion
of some old tasks and addition of new ones (Yassine et al.,
2000).° Process reliability is described through the curves by
the range of probable durations (the error bars in Figure 6).
That is, a curve with a wide range of variation could produce a
wide range of cycle times for the same level of rework
probability. A tight range would produce a more reliable cycle
time for agiven rework probability. Accordingly, Figure 6 shows
that the reengineered process is more reliable. The error bars
around the simulated process durations, at any maximum
probability value, are smaller for the reengineered process as
observed in thefigure.

The acceleration (curvature) of the curves describes the
robustness of the process in terms of cycle time with respect to
the maximum rework probability. A curve with a high
acceleration, as in the original process of Figure 6, would
describe a less robust process whose duration is highly
sensitive to changes in information. Conversely, a lower
acceleration (flatter curve), as in the reengineered process,
would describe a process that is more robust to changes in
input information. For example, a change in the maximum rework
probability from 10% to 60% will result in an increase of about
150 days in the expected duration of the reengineered process,
compared to an increase of 750 days for the original process.

A cost (of process control) / benefit (cycle time reduction)
strategy can also be established by analyzing the profile of the
probability curve. Assume that the maximum rework probability
can be reduced by more closely controlling the process (i.e.
adding verification tasks, project managers, redundancies, etc.).

% Indeed some of the information dependencies have been also altered in
the new process.
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These controls obviously add some cost. Conversely, reducing
present control would tend to increase the maximum rework
probability but reduce the cost of control. For example, Figure 6
shows that investing in reducing the maximum rework
probability, for the original process, from 60% to 55% would
result in expected development time savings of more then 300
days. Further reductions of the maximum rework probability
would result in agreater decrease of expected development time,
but start to exhibit a diminishing rate of return. Therefore, it may
be economical not to invest in controlling the process, and
hence reducing the maximum rework probability, below the 50%
level.

Mean Process Duration vs.
Maximum Probability of Rework

—&— Original Process
.. 1450

—&— Re-engineered
Process

|
1250 ﬂ
1050 '}/
- Eik"‘/i/"/
650 I—_‘Ié:i —

S - - - -

Maximum Rework Probability

Average Duration (day:

Figure 6: Reliability and robustness of development processes

6. CONCLUSION

This paper presented a subjective assessment procedure
for rework probabilities used in project and process
management simulation models, in general, and in the DSM
simulation model developed in Browning and Eppinger (1998), in
particular. The assessment proceeds in three phases: subjective
evaluation of task variability and sensitivity, mapping and
calibration, and validation. The application example shows that
the probabilities required for simulating aDSM can be eval uated
subjectively. Furthermore, this assessment method can also be
used to shed some light on evaluating process improvement
and reengineering efforts by defining two new terminologies:
reliability and robustness.

Perhaps the most useful conclusion from this analysis is
that the goal of restructuring an iterative processis not to break
al iterative loops. Robustness obtained from iterative task
structures can be more valuable than the reliability obtained in a
sequential process structure.
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