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ABSTRACT 
 
 

In 1997, the Charles Stark Draper Laboratories commenced a project with the objectives 
of reducing the risk, cost and time associated with obtaining time critical battlefield 
reconnaissance data. The Wide Area Surveillance Projective, or WASP, is a small autonomous 
flyer, which is launched contained in an artillery shell, and then deployed over the battlefield to 
capture images.  The first phase of this project involved identifying and solving the challenges 
associated with designing a device capable of surviving launch loads of 15,000 g’s.  The second 
phase of WASP is currently addressing the manufacturing and flight control issues. The focus of 
this thesis is on the structural design and manufacture of the WASP vehicle, particularly the aft 
fuselage section and the wings.  The aft section is not only subjected to high impulsive inertial 
loads, but its weight (being aft of the center of pressure) has a substantial effect on the 
controllability of the vehicle.  Finite element models of this section as well as test specimens are 
produced to optimize the design.  The wings are required to be stiff aerodynamic surfaces, and 
are folded along the side of the vehicle so as to take up minimal volume.  Several different 
manufacturing procedures are explored to provide a robust set of wings that match all of the 
specified requirements.  All of these pieces need to be as light as possible; therefore they are 
manufactured in advanced composite materials. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 The Wide Area Surveillance Projectile project, or WASP, was commenced 

as a cooperative venture between the Massachusetts Institute of Technology 

(MIT) and the Charles Stark Draper Laboratories in 1997.  The goal was to 

develop a small autonomous flyer that would reduce the risk and time 

associated with obtaining time-critical battlefield reconnaissance data, for 

instance regarding mobile tactical formations in the field.  WASP was to be a 

low cost expendable vehicle, which would be launched in an artillery shell and 

deployed over the battlefield, using visual and infrared cameras to track ground 

targets.  This mission profile required a g-hardened vehicle that was extremely 

light and sufficiently maneuverable to perform its reconnaissance mission with 

acceptable endurance.  This is a very challenging combination to implement 

simultaneously.   

 For the first two years of this project, Draper and the MIT jointly worked 

to develop the Phase I prototype of WASP as seen in Figure 1.1.  During this 

initial “proof of concept” phase, the Draper/MIT team aimed to meet the 
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geometric constrains of the proposed 5” naval shell, as well as to construct 

vehicle components that could survive the 15,000-g acceleration load of the 

launch.  Through a combination of cost, fabrication, and time concerns the 

design team decided to manufacture the prototype largely of aluminum.  This 

design, which can be followed in a previous MIT thesis1, survived the high-g 

tests however was unable to achieve controlled flight due to its high weight and 

poor center-of-gravity placement.  A second phase of the program commenced 

in 1999 to design a second WASP vehicle, incorporating the knowledge gained 

from the first phase of the project to achieve a successful mission. 

 Phase II of WASP, the “integrated vehicle demonstration” phase, added 

some new requirements to the design, and established an end goal of a 

functional test article able to demonstrate its components while remaining “g-

hardened credible.”   The following is a list of the revised key mechanical 

requirements for the WASP vehicle: 

 • Ability to track ground targets at 60 mph 
 • Steady wind 35 knots, gust 10 knots (upper bound) 
 • Altitude <1000 feet 
 • Temperature = 20 - 130° F 
 • Endurance = 30 minutes (minimum) 
 • Round = M83 series, 155 mm diameter 

- Payload length 21 inches max 
- Payload diameter 5 inches max 
- Final design may be wider and shorter with XM898 round 
- Round gyro stability > 1.6 

• Gun launch 
- Set-back acceleration = 16,000 g 
- Set-forward acceleration = 4,000 g 
- Balloting acceleration = 2,000 g 
- Spin = 270 Hz 
- Barrel soak temperature = 300° F for 15 minutes 

• Expulsion pressure = 3,000 psi 
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Key changes from the original design include using an electric motor in place of 

the original internal combustion engine, placing the folded wings against the 

body instead of internally stowed, and making the tail more aerodynamically 

efficient.  The overall design of the WASP II, as seen in Figure 1.2 is outside 

the scope of the present thesis but is described in the project’s final report2.  A 

parallel research program was conducted to explore the use of composites for 

the wing sections, which is described in a separate thesis1. 

One of the key modifications from the original design was the 

introduction of carbon fiber reinforced polymer composites as the principal 

structural material in place of aluminum alloys.  Composites have some of the 

highest values of specific strength and stiffness of any materials, making them 

prime candidates for the WASP vehicle.  However, these potential performance 

advantages are incurred at the expense of increased cost, and increased 

complexity of analysis and manufacturing.  In addition the heterogeneous 

nature of composites increases the risk of unanticipated failure modes.  The 

rationale for the work presented in this thesis was to mitigate the 

programmatic risk of using composites, by providing validated design codes 

and developing manufacturing processes prior to committing to the use of 

composites in the WASP II vehicle.  

The focus of the first several chapters of this research is on the tail-

section of the vehicle.  One method of resolving many of the control issues of 

the original vehicle was by reducing the overall weight of the vehicle as well as 

shifting the center of gravity further forward.  Since the tail-section is located  
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Tail Section 

Flyer 

Projectile 

Figure 1.1:  Original WASP flyer and projectile2 

Figure 1.2:  CAD representation of WASP II flyer2 
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in the very rear of the vehicle, its weight is crucial to the controllability of the 

WASP.  This section, under the original Phase I WASP design, would also 

experience the highest axial compressive load since it would have to support 

the accelerated mass of all the other parts of the vehicle.  Thus the design of 

the tail section was buckling critical in addition to being able to survive the 

static fracture loads.   

Chapter 2 discusses previous research in the buckling of composite 

cylinders and stress concentrations around slots and cutouts in shells.  

Chapter 3 goes on to discuss the specific requirements of the tail section, as 

well as delineating and contrasting the previous design to the current one.  

Chapters 4 through 7 explain the analysis and testing procedures used to 

design and verify the g-hardness of the composite tail section, and discuss the 

different trade-offs associated with the variables involved.  Chapters 8 and 9 

describe some of the other issues that arose with a composite design, such as 

adhesive joints and the manufacturing of composite airfoil section and hinge 

mechanisms.  Finally the last chapter concludes with future recommendations 

for this line of specialized composite research. 
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CHAPTER 2 

 

 

BACKGROUND 

 

 

 This chapter presents the findings of a literature search of previous work 

relevant to this thesis.  There were no reports found which directly involved 

failure of composite cylinders with cutouts under acceleration loading; 

however, there were several papers that presented many aspects of this topic, 

including buckling of composite cylinders, compression of cylinders with 

cutouts, and stress concentrations due to cutouts in shells.  These papers were 

separated into three categories, which are explored further in this chapter:  

analytical studies, computational studies, and experimental studies. 

 

2.1 Analytical Studies 

 

 The analytical methods used to investigate these problems range from 

solving complex differential equations to finite element analysis.  These papers, 

some of which date back to 1965, cover a broad range of topics relevant to this 
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thesis including stress concentrations, buckling, compression of cylinders and 

failure of composite laminates.  The three most pertinent topics are described 

in the following sections. 

 

2.1.1 Stress concentrations 

 

When a section is cut out of a structure under load, such as the 

slots removed in the WASP vehicle for the tail fins, stress concentrations are 

introduced.  The most common cutout analyzed for cylindrical shells were 

circular holes.  In one technique3, linear shallow shell differential equations 

were used to formulate the governing stress functions of the cylindrical shell.  

After applying an axial tensile load to the system, the equations were solved 

using the boundary condition that the stress field had to reach zero at the hole.  

The results of this study can be seen in Figure 2.1. The dimensionless 

curvature parameter β was defined by the equation Rt8/)]1(12[a 2/1222 ν−=β , 

where a was the radius of the hole, R was the radius of curvature of the shell, 

and t was the shell thickness.  These curves show that as the parameter β is 

increased, the circumferential membrane stresses at the top of the hole 

increased as well.  Solutions of stress concentrations for more complicated 

configurations can be found in recently published handbooks4,5. 
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2.1.2 Buckling of cylindrical shells 

 

Few analytical studies have been published on the buckling of 

cylinders.  Hoff presented a closed-form solution for the axial loading of a thin-

walled cylindrical shell of finite length by representing the boundary at the 

circular edges with simple supports6.  His solution, which can be seen in 

Figure 2.2, plotted the normalized shell length 2/14/12 )ah/(L)1(12[ ν−=λ  (where a 

was the shell radius and h the thickness) versus the buckling stress ratio 

p=σ/σcl, where 2/12
cl )]1(3[a/Eh ν−=σ .  The interesting result drawn from this 

figure is the fact that for a symmetric buckling mode with this boundary 

condition, the buckling load was determined to be about half of the classical 

value, regardless of the cylinder length, radius or thickness.  The author was 

unable however, to find close-form solutions for several other boundary 

conditions he investigated in this paper.  Generally, the dynamics of buckling 

are too complicated to solve analytically, and are usually analyzed using finite 

element techniques over differential equations, as described in the following 

section. 
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Figure 2.1:  Variation of stress concentration due to cutout geometry3 

Figure 2.2:  Buckling stress ratio versus normalized shell length6 
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2.1.3 Composite cylinders with cutouts 
 

  Other studies have used more sophisticated methods to solve 

analytical problems, such as the finite element analysis presented in this 

thesis.  Hilburger7 analyzed the response of composite cylindrical shells with 

cutouts using a non-linear finite element code called STAGS (STructural 

Analysis of General Shells).  The results, as shown in Figure 2.3, indicated 

that a nonlinear interaction between in-plane stresses and out-of-plane 

deformations in a compression loaded shell caused local buckling near the 

cutout.  These results also indicated that increasing the area of the cutout 

significantly reduced the initial buckling load of the shell.  Also covered in this 

paper were the effects of internal pressure on the buckling of composite shells.  

Much of this research has been in collaboration with NASA Langley Research 

Center.   

 

2.2 Computational Studies 

 

 A few papers were found that chose a computational approach to solving 

problems concerning buckling of cylinders and failure of composite laminates.  

This involved solving recursive series on a computer to predict stresses and 

displacements, and writing codes to optimize fiber orientation in laminates 

under certain loading conditions.  The following sections describe in more 

detail some of the computational work found. 



 24

Figure 2.3:  Effect of cutout size on shell response7 
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2.2.1 Composite shells 

 

Noor and Burton8 presented an assessment of several 

computational models for multi-layered composite shells.  Although the results 

were not directly relevant to this thesis, four interesting general conclusions 

were drawn.  First, the authors stated that transverse shear deformation had a 

much greater effect on the response than that of transverse normal strain and 

stress that became noticeable only in regions of high localized loading.  

Secondly, the accuracy of the first-order shear deformation theory depended 

strongly on the values of the composite shear correction factors selected.   

Thirdly they concluded that the accurate prediction of the stress and 

displacements through the thickness of a shell required 3-D equilibrium and 

constitutive relations.  Lastly, the authors confirmed that predictor-corrector 

approaches to determining the response characteristics of shells appeared to 

be a very effective procedure for global as well as detailed results.  
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2.2.2 Buckling of composite cylinders 

 

A computational procedure for evaluating the buckling of a multi-

layered cylinder was explored by Noor in a subsequent paper9.  In this paper, 

the author presented an efficient procedure that was based on linear 3-D 

elasticity theory including the orthotropic material properties of the composite 

layers.  The code would approximate the buckling response of the cylinder 

associated with a certain range of Fourier harmonics using a two-field mixed 

finite element models in the thickness direction and successive applications of 

the Rayleigh-Ritz technique.  This method reduced the number of arithmetic 

operations involved in the solution, and presented comparable results to 

traditional methods.  

 

2.2.3 Buckling resistance in composite shells with cutouts 

 

  Some of the more advance research in computational methods has 

been performed in the area of buckling resistance in composite cylinders.  One 

technique10 presented a sequential linear programming method, which 

optimized fiber orientation and cutout geometry for buckling resistance in 

composite shells.  The paper concluded that the buckling of a composite shell 

is strongly influenced by fiber orientation and the presence of cutouts.  As 

demonstrated in Figure 2.4 by the results of a [±θ/902/0]10s laminate, given a  
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Figure 2.4:  Critical shell pressure as a function of ply angle10 
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geometry and laminate pattern, an optimum ply angle could be determined 

using this method to maximize the critical buckling pressure.  Also, it was 

determined that for an optimized laminate, a cutout with an elliptical geometry 

oriented with its long axis parallel to the hoop direction would minimize the 

reduction of the cylinder’s critical buckling load. 

 

2.3 Experimental Studies 

 

Probably the most applicable papers to the research presented in this 

thesis concerned experimentally determining the effects of composite material 

and cutouts on the buckling of cylinders.  While the buckling of thin walled 

cylinders for fuselage sections had been investigated experimentally as early as 

1934, it was not until much more recently that composite materials had been 

introduced to these tests.  Presented in the following sections are experimental 

works with direct applications to the WASP fuselage structure design. 

 

2.3.1 Buckling of thin cylinders 

 

The phenomenon of buckling in both thick and thin walled 

cylinders has been thoroughly explored over the years, and is well documented 

in several papers and textbooks11,12.  Early works in the century attempted to 

explore the boundary between thick and thin solutions, and found that the 
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discrepancy between the theoretical failure stresses increases with the radius 

to thickness ratio.  It was also discovered that this trend behaves differently for 

different metals.  Later it was revealed that this phenomenon was governed by 

a ratio of the metal’s modulus to its yield strength13.  This topic will not be 

explored further here though, since it is not directly relevant to the topic of this 

thesis. 

 

2.3.2 Buckling of composite cylinders 

 

Probably the most germane of all of the papers reviewed here were 

the ones in which the authors manufactured composite cylinders and buckled 

them under axially compressive load.  The main difference between most of 

these experiments was the manufacturing procedure that was utilized—about 

half the specimens tested were filament wound and half were hand laid-up.  

One particularly interesting work14 explored the effect of varying the winding 

angle of a filament wound cylinder on its buckling load as well as investigating 

the effects of cyclic buckling.   Carbon fiber cylinders of three lay-ups were 

tested, and it was found that the laminates with angles closer to 90°, i.e. the 

circumferential direction, failed at a lower buckling load as expected due to the 

reduced laminate stiffness.  It was also found, as demonstrated in Figure 2.5, 

that when a cylinder was repeatedly loaded in the buckling regime, its buckling 

load would lower with each successive cycle due to post buckling damage.   



 30

Figure 2.5:  Effects of cyclic buckling with applied displacement of 1.5 mm14 

Figure 2.6:  Variation of buckling load ratio with radius of circular cutouts17 
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Another article also discovered this same phenomenon in hand laid-up 

composite cylinders, however the manufacturing of these specimens proved 

much more critical since initial defects would cause them to fail prematurely15.  

Finally, in a paper that evaluated two sets of comparable composite 

cylinders16—one filament wound and one hand laid-up with a material of the 

same stiffness—it was found that there was little difference in the failure strain 

of cylinders fabricated by these various techniques.  Furthermore, it was found 

that they buckled in identical modes.  The only difference observed between the 

two sets of specimen was the greater variation found in the results for the hand 

laid-up specimen, apparently due to the more inconsistencies in that 

manufacturing technique.  

 

2.3.3 Buckling of cylinders with cutouts 

 

Experimental work investigating the buckling of cylinders with 

cutouts has found general agreement between theory and test results.  In a 

particularly innovative test17, which used a photoelastic plastic cylinder to 

identify strains in the shell, it was found that the buckling load was 

consistently within few percent of the value predicted by classical mechanics.  

Furthermore, it was discovered that the critical buckling load was significantly 

reduced by the presence of relatively small unreinforced holes in the structure, 

as seen in Figure 2.6.  When doublers were placed around the cutouts in the 
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cylinder, it was found that the buckling load again approaches the value of the 

complete cylinder18; however it was also determined that over-stiffening can 

occur, which again reduced the buckling load of the specimen. 

 

2.4 Conclusions 

 

While none of the papers found directly related to the design of g-

hardened composite fuselage section, several of them laid paths to appropriate 

analytical and experimental techniques.  After reviewing the analytical and 

computational papers presented in this section, it was determined that for the 

level of complexity to be examined in this thesis only finite element methods 

would provide accurate solutions.  Some of the analytical solutions for stress 

concentrations and shell buckling from the textbooks4,5,11,12 listed above were 

used however on simplified cylindrical models in order to check the bounds on 

the finite element solutions. 

The experimental studies reviewed provided two important pieces of 

information for this thesis.  First, they detailed many important issues for the 

manufacturing of specimen for a buckling investigation of composite cylinders, 

including an excellent comparison of multiple manufacturing techniques.  

Secondly, they emphasized the use of reinforcements or doublers to negate the 

stress concentration effect of cutouts in composite cylinders, which was an 

important consideration in the assembly of the WASP II demonstration flyer.
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CHAPTER 3 

 

 

TAIL SECTION DESIGN 

 

 

 The following chapter elaborates on the design requirements of the tail 

section of the WASP vehicle.  This includes the specific shape and loading 

constraints imposed on this section, as well as a comparison to the previous all 

aluminum design.  This chapter also includes a trade study, based on the 

original design, performed to quantify the advantages of a composite design. 

 

3.1 Tail Section Requirements 

 

The specifications for the tail section of the WASP vehicle were dictated 

by the MK64 5” Navy gun shell that it was designed to be contained within.  In 

the following sections, the critical specifications of this round are described and 

their implications for the WASP tail section design are assessed. 
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Figure 3.1:  Tail section of the original WASP vehicle19  
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3.1.1 Geometry 
 

The tail section of the WASP vehicle, as seen in Figure 3.1, housed 

the tail servos, much of the electronic components of the vehicle (which were 

attached to the “male plate”), and was where the tail fins stowed.  It had an 

outside diameter of 3.8” in order to give it clearance with the shell wall, which 

was 3.9” in diameter.  The inner wall thickness varied throughout the section 

and was machined from a solid block of aluminum.  There were two long slots 

cut out of the back of the section, each about ¼” wide and 2” long, which 

allowed the tail fins to deploy, as well as several bolt holes to connect this 

section to the wing module.  The geometrical requirements for this section were 

to maximize the volume while not exceeding the maximum internal diameter of 

the shell, and to provide appropriate cutouts for the fins and bolts. 

 

3.1.2 Loading 
 

The loading of the tail section, as with the rest of the structure, 

was derived from the acceleration loads of the shell launch.  The major design 

load was the set-back of 16,000 g’s pushing the entire mass of the vehicle 

against the tail section.  This acceleration load was distributed evenly across 

the upper cross-sectional face of the tail section.   
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3.1.3 Boundary Conditions 
 

The back of the tail section was bolted to the male plate, which 

housed the electronics.  This boundary effectively clamped the back of the 

section.  The other constraint on the tail section was the wall of the shell 

surrounding the flyer, which restricted the radial expansion of the section. 

 

3.2 WASP I Design 
 

 The WASP I vehicle was designed to be fabricated mostly out of 

aluminum for ease of manufacturing and to save the time and expense of 

developing more complicated parts19.  Consequently, the tail section of the 

vehicle weighed almost 4 lbs.  The design was very conservative to ensure g-

survivability without any yielding; however the excessive weight of the aft 

section proved to be a major factor in the uncontrolled crash of the subsequent 

test flyer. 

   

3.3 Composite Trade Study 

 

The first part to be re-designed for the WASP II flyer was the aft section 

with the objective of further reducing its weight while still retaining g-

survivability.  In order to achieve this, a trade study was performed, comparing 
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several different possible configurations of the flyer.  The first configuration was 

the baseline design in 7075 aluminum.  The second was an optimized 

aluminum design, which accounted for the fact the loading was directly 

proportional to the weight of the section.  Therefore, it was derived 

parametrically by varying both the load and cross-section as a function of 

thickness, producing the minimal weight section to meet the design stress of 

twice the yield stress, 70 Ksi.  This optimization equality yielded a thickness of 

.48”, which therefore dictated the inertial load.  The next two configurations 

modeled were both in graphite/epoxy composite.  Both were quasi-isotropic 

AS4/3501-6 laminates; the first consisted of a constant section of 20 plies 

(02/+45/02/-45/02/90/0)s and the second consisted of 40 plies (02/+45/02/-

45/02/90/0)2s.  Their weight was calculated based upon their volume and a 

density of .06 lbs/in3. 

 For the analysis, the aluminum parts were modeled in I-DEAS as solid 

elements and processed in I-DEAS as a linear model.  The composite parts 

were also modeled in I-DEAS but as thin shell elements, and were processed 

in ABAQUS as a non-linear model since this FEA package is much more 

accurate for advanced materials.  All post-processing was performed in            

I-DEAS, a finite element analysis tool, which has a simple graphical interface.  

The two areas of Von Mises stress chosen for comparison were the far-field 

stresses at the center of the cylinder between the slots, and the maximum 

stress concentration at the tip of the large slot.  The stresses are tabulated in 

Figure 3.2 along with the margin of safety (MOS) over the design stress.   
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Von Mises Stresses (ksi) Axial Strain (microstrain) Stress Strain
Material Comment Far Field Max Far Field Max MOS MOS

7075 AL Optimized 36 52 - - 1% -
AS4 Gr/Ep 20 Ply 70 84 2450 2770 0% 2%
AS4 Gr/Ep 40 Ply 36 42 1290 1400 49% 48%

Savings over Original AL Savings over Optimized AL
Material Comment Weight (g) Aft Overall Aft Overall

7075 AL Original 1860 - - n/a n/a
7075 AL Optimized 1138 39% 10% - -
AS4 Gr/Ep 20 Ply 143 92% 23% 87% 15%
AS4 Gr/Ep 40 Ply 277 85% 21% 76% 13%

Figure 3.2:  Table of stresses found in tail section material trade-study  

Figure 3.3:  Table of weight savings over original WASP design  
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The stress margins of safety listed were calculated by taking the difference 

between twice the far field stress and the yield stress, and dividing it by the 

yield stress.  The far field stress was used to tabulate these margins of safety 

along with an assumed stress concentration of two to be more conservative 

over the traditional use of the maximum stress in the model.  A yield stress of 

73 Ksi was used for the aluminum design; for the composite designs, a first ply 

failure was assumed to occur at a laminate stress of 140 Ksi, which was found 

using classical laminated plate theory (CLPT).  For the composite sections, a 

strain margin of safety was also calculated using 5000 microstrain (.5%) as the 

strain limit. 

These results show that a significant weight savings can be achieved over 

the original vehicle design by optimizing the aluminum configuration.  As 

shown in Figure 3.3, a significant additional weight savings can be achieved if 

composites are used as the primary material.  Furthermore, an additional 

margin of safety can be achieved as a result.  The first pair of percentages 

displayed compare the weight of the three new designs to the original design for 

both overall vehicles as well as just the weight of the aft section.  The second 

set of percentages demonstrates the additional savings of a composite design 

over the optimized aluminum design, again comparing both the weight of the 

entire vehicle as well as the weight of just the aft section.  In Chapter 4, an 

analytical procedure will be introduced to further investigate the advantages of 

composite material in the WASP design.  



 40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[This page intentionally left blank] 

 

 

 

 



 41

CHAPTER 4 

 

 

ANALYTICAL PROCEDURES 

 

 

 The following chapter outlines the analytical procedures that were used 

to predict the response of composite tube sections with cutouts to high-g 

loading.  This includes the use of Classical Laminated Plate Theory (CLPT), as 

well as the implementation of both static and dynamic structural finite element 

models. 

 

4.1 Overview 

 

The general procedure for analyzing the WASP composite sections can be 

followed in the flow chart in Figure 4.1.  The analysis commenced with 

selecting a candidate laminate to be examined.  A CLPT code (explained further 

in the following section) was written in Matlab, which would iterate the 

acceleration load until first ply failure as determined by the Tsai-Wu failure 

criterion20.  This failure theory, which can be found in Figure 4.2, uses the 

anisotropic ultimate strength properties of the composite material to calculate  
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Figure 4.1:  Analysis flow chart  

ANALYSIS FLOW CHART

EQUATION SOLVER (Mathmatica)
Tsai-Wu failure theory constants tabulated
Maximum stress for each direction entered

Failure load factor found

STRESS OUTPUT (ABAQUS-POST)
Stress solutions inported from ABAQUS

Geometry and loads inspected
Maximum stresses located and recorded

PROCESSOR (ABAQUS)
Material properties and laminate defined
Load and boundary conditions defined

Static model processed for nominal 1000 Lbs load

GEOMETRY (I-DEAS)
Model sketched in CAD environment

Finite element model geometry defined
Load and boundary condition groups selected

LAMINATE SELECTION (Matlab)
Composite laminate ply angles entered

Graphite/epoxy material properties entered
CLPT code using Tsai-Wu iterated to select laminate
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failure constants, which are then equated with several combinations of the 

stress components.  The next step was to use I-DEAS as a pre-processor and 

mesh generator.   

There were two distinct configurations investigated; one with two long 

slots where the V-tail was stowed, and the other with two short slots where 

electronic inserts were placed.  The geometry of the section to be studied was 

modeled and meshed, and then sets of boundary elements and nodes were 

grouped to be exported together into ABAQUS.  Once in ABAQUS, material 

properties, boundary conditions and a nominal 1000 lbs axial compressive load 

were imposed via an input “script,” an outline of which can be seen in Figure 

4.3.  After being processed by ABAQUS, ABAQUS-Post was used to examine 

the stress contours of the section for static models, and the message file was 

analyzed for the convergence of a buckling load factor (the load multiplier that 

causes the out-of-plane deformation to diverge) for dynamic models.  Both a 

static and dynamic analysis was performed for each model. 

For the static models, the three stress components—axial, 

circumferential and shear—were extracted from the elements with the highest 

stress state near the slot tip.  These stresses along with the tabulated Tsai-Wu 

failure constants were then entered into Mathmatica.  Since the laminate was 

assumed to behave linearly until first ply failure, the stresses in the cylinder 

would therefore scale linearly with the load applied to the model.  Using this 

fact, the equation solver in Mathmatica was used to solve for the critical load  
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GEOMETRY 

Points 
Shells 
Groups 

 
 
DEFINITION 

Element Definitions 
Material Definitions 
Laminate Definitions 

 
 
CONSTRAINTS 

Boundary Conditions 
Loads 

 
 
OUTPUTS 

Results export 
Custom Routines 

 

Figure 4.3:  ABAQUS code outline  

Figure 4.2:  Tsai-Wu failure criterion and constants 
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factor to be multiplied by the nominal load entered in ABAQUS, which would 

yield the first ply failure load as determined by the Tsai-Wu criterion. 

 

4.2 Classical Laminated Plate Theory 

 

CLPT was implemented by ABAQUS in this analysis to calculate the 

stresses in each ply layer.  This theory assumes that all of the layers in a 

composite laminate are perfectly bonded together, and that each ply strains 

equally in the laminate coordinate system when subjected to a pure tensile or 

compressive load.  A stress or strain is applied to the laminate, and using the 

above assumptions and a couple coordinate transformations, the stress in each 

ply can be calculated.  Several books have been written explaining CLPT, 

including Mechanics of Composite Materials by Jones21.  A Matlab code 

implementing this theory into a ply-by-ply failure analysis can be found in 

Appendix A.  Given cylinder dimensions and a laminate, this code would 

continuously increase the acceleration load until first ply failure, using the 

Tsai-Wu theory as a failure criterion.  Since this code could only analyze 

uniform cylindrical bodies without cut-outs and did not taking bending into 

account, it was only used as a preliminary laminate selection tool. 
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4.3 Static Model 

 

This section describes how I-DEAS and ABAQUS were used to form a 

static finite element model.  The generic geometry of the model was first 

created, and then supplemented with a loading scheme, boundary conditions 

and specific material properties in the ABAQUS input (.inp) file as described 

in the following sections.  A sample of this file can be found in Appendix B.  

Once the edited file was run in ABAQUS, the restart (.res) file was viewed in 

ABAQUS-Post to observe the stress contours. 

  

4.3.1 Geometry 

 

Before the finite element analysis could be performed, it was 

necessary to model the shape of the section in I-DEAS.   I-DEAS is a 

graphical program, which uses points, lines, curves and surfaces to define a 

model.  The tail sections were drawn 3.5” in diameter and 5.5” in length.  Next, 

depending on which of the two geometries was being worked on, a pair of ¼” 

rounded slots were cut from the geometry, either 2” or 5” in length.  A semi-

circle ¼” in diameter was also drawn at the top of the slot to accurately model 

the rounded edges of the WASP vehicle machined slots.  These models’ 

geometries can be seen in Figure 4.4. 
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Once the outline of the tube had been completed, the next step 

was to form surfaces from the boundaries.  These surfaces were meshed with 

8-noded S8R5 shell elements, whose properties were prescribed in a future 

step.  A convergence study was performed to find the appropriate refinement 

for each curve, which in the end was limited by the scratch space available on 

the computer.  The general rules followed were first to keep the scale in each 

direction constant so as to create square elements, and secondly to refine the 

mesh in the area around the slot tip to provide more accurate stress contours.  

For the same reason, 8-noded elements were selected since they quadratically 

interpolate displacement fields with the mid-side nodes as opposed to 4-noded 

quadrilateral elements that use linear interpolations. 

Lastly, a surface mesh was formed on the top of the tube model, as 

seen in Figure 4.5.  This was to provide a uniform pressure load on the 

structure, which will be described more in greater detail in the next section.  

The elements of this top plate were grouped as “force” to be exported in a 

special separated section, and the nodes around the bottom ring of the 

structure were exported in a group called “fixed.”  The entire meshed model 

along with these specially selected sections were then exported into an 

ABAQUS format to be edited and processed. 
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3.5” 

120° 

1/8” short slot 

1/4” long slot 

fixed 
boundary 

2” 

5.5” 5” 

12 lbs @ 12,000 g’s 

SIDE VIEW BOTTOM VIEW 

Figure 4.4:  Model geometry, applied load and boundary conditions  

Figure 4.5:  Mesh of cylindrical model in I-DEAS

top- 
loading 
surface 
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4.3.2 Loading 
 

The loading used in ABAQUS attempted to simulate the effect of 

the rest of the vehicle being accelerated into the tail section.  To accomplish 

this, as described in the previous section, a top surface was meshed onto the 

finite element model.  This surface was given a very stiff modulus so that it 

would not deform significantly under the load, and was meshed freely by I-

DEAS.  A uniform axial compression pressure load of 1000 psi was then 

applied in the ABAQUS input file to the “force” element set.  Since the 

material properties entered (as described below) were linear, the stresses 

outputted by ABAQUS-Post could then be easily scaled by this magnitude of 

pressure. 

 

4.3.3 Boundary Conditions 
 

Using a similar method to how the load was applied, the boundary 

conditions were inserted into the ABAQUS input file.  The boundary to be 

modeled was a clamp formed by the “male plate” which is attached to the 

bottom end of the tail section.  To simulate this, in the input file the set of 

nodes referred to as “fixed” was restrained in all six degrees of freedom using 

the encastre command, thus modeling the plate as infinitely stiff.  Some other 

boundary conditions were experimented with, such as restraining the hoop  
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Ply Property Value Units Ply Property Value Units 

E11 142 GPa Xt 2356 GPa 

E22 9.81 GPa Xc 1468 GPa 

E33 9.81 GPa Yt 49.4 GPa 

G12 6 GPa Yc 186 GPa 

G23 3.773 GPa S 105 GPa 

G13 6 GPa Thickness .134 mm 

V12 .3  Density 1580 Kg/m3 

V23 .34     

V13 .3     

Figure 4.6:  Table of AS4/3501-6 prepreg material properties  
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deformation at the top of the tube, although this had minimal effect on the 

model solutions. 

 

4.3.4 Material Properties 
 

The ABAQUS input files as exported by I-DEAS had only 

generic properties, which were then edited while in text format.  The thin shell 

elements were given a laminate material card, which allows several layers of 

materials of different orientations to be attached together.  Each of the ply 

layers were given the material properties as given by Figure 4.6, which were 

supplied by the manufacturer Hexcel.  There were 18 plies in the laminate, 

arranged [0/±45]3s.  This ABAQUS material card used CLPT, and assumes 

that each ply layer is perfectly bonded to the next. 

 

4.4 Dynamic model 

 

Since there were relatively long slots in the length of the structure, it was 

uncertain whether the tubes would fail by fracture or buckling; therefore a 

dynamic model was also analyzed in ABAQUS.  The dynamic model followed 

the same procedure as described above for the static model, using identical 

geometry, materials, loads and boundary conditions.  The only difference 

occurred in the solution section of the input file, where linear buckling 
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(eigenvalue buckling) was specified instead of a static solution.  A sample of 

this input file can also be found in Appendix B.  The subspace iteration 

method was used to find the buckling load factor, and the number of vectors 

and iterations could also be specified in the input file.  For the tail section, 3 

vectors were chosen for quick convergence, and 30 iterations were chosen so 

the rate of convergence could be calculated.  These solutions could be found in 

the message (.msg) file after the buckling problem had been processed in 

ABAQUS.  Several different variations were experimented with in the buckling 

model, which will be further discussed in the results section.  These variations 

included changing the elastic properties of the material, the tube’s length and 

diameter, and the layup.  In the following chapter, the experimental techniques 

used to validate this analytical model will be discussed. 
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CHAPTER 5 

 

 

EXPERIMENTAL PROCEDURES 

 

 

 The following chapter outlines the experimental procedures that were 

used to investigate the response of composite tube sections with cutouts to 

high-g loading.  These sections are an idealization of the tail section of the 

WASP I vehicle, as described in Chapter 3.  Both the manufacturing method 

implemented and a description of the two testing phases are included in this 

chapter. 

 

5.1 Manufacturing Process 

 

This section delineates the manufacturing process used to fabricate 

composite fuselage sections.  This includes the material used, a detailed 

description of the processes implemented for curing, and subsequent 

machining.  The procedure described produces three tubes each 14” long that 

are then machined into six 5½” long specimens.  
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5.1.1  Graphite/Epoxy Pre-Preg 

 

All of the experiments were performed using AS4/3501-6 graphite 

epoxy pre-preg.  This is TELAC’s standard composite material, so the 

procedures drawn up by the lab22 formed the basis for the manufacturing 

conducted here.  First the roll of pre-preg, which is initially stored in a freezer, 

has to be thawed to room temperature before being removed from its plastic 

bag in order to prevent wrinkles due to moisture absorption.  The roll is then 

placed on a wooden roller and unwound onto a cutting table, prior to being cut 

to the required lengths.   

Since a 3.5” diameter mandrel has an 11” circumference, the 

standard TELAC templates could be used, yielding 12x14” sections of pre-preg.  

The 0° direction of fibers here is defined as axial, or in the 14” direction.  The 

layup investigated was [0/±45]3s so for each tube manufactured six of each 0°, 

+45° and -45° plies had to be cut out.  Since each layer increases the 

circumference of the layup around the mandrel, the outer-most uncured layer 

has a circumference of 12”, so a different procedure than the one described in 

this section would have to be used for any mandrel with diameter greater than 

3.5”.  The plies here were cut to identical lengths, and placed separated with 

backing paper in a vacuum bag in a freezer until they were used. 
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 5.1.2 Cylindrical Mandrel 

 

  The hollow mandrel used for these cures was purchased from TW 

Metals23, and was custom machined in the student machine shop.  It was 3.5” 

in diameter 2024 aluminum and 48” long.  Aluminum was chosen because of 

its high thermal expansion, which would cause it to shrink more then the 

composite tube during cool down from the cure temperature, making it easier 

to remove the tube from the mandrel, which will be described later.  Legs were 

constructed on the water-jet for the mandrel, which consisted of a square 

aluminum plate with 3.5” diameter hole cut out of the middle that was cut in 

half.  A 1” diameter steel threaded rod was then passed through both plates to 

add rigidity, which was held in place by 2 steel bolts on either side of each 

plate.  A vacuum port was then machined into the mandrel by drilling and 

tapping a hole 1” from the end of the tube.  The threads were formed from the 

inside of the tube since the pipe fittings would be screwed in from that side.  In 

order to attach the autoclave’s vacuum hose to the mandrel, a three part 

vacuum fitting assembly was threaded in the mandrel, sealed with Teflon 

tape.  It consisted of a short piece of pipe stock screwed into the hole, an elbow, 

and a long piece of pipe stock protruding from the tube and ending in a swage-

lock fitting.  
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MATERIAL SIZE PIECES 

Guaranteed Non-Porous Teflon 11” x 15” 3 

 12” x 4” 4 

 14” x 5” 3 

Porous Teflon 13” x 16” 3 

Cork 11” 6 

Bleeder paper 16” x width 3 

 4” x width 6 

Glass bag 16” x width 3 

Vacuum Bag 64” x width 1 

Figure 5.1:  Table of required cure bagging materials  

Figure 5.2:  Schematic of cure top-plate configuration 

Mandrel with cylinder 
and bagging materials 

0.008” Brass shim 
stock inner top plate  0.020” Aluminum shim 

stock outer top plate 
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 5.1.3 Pre-cure setup 

 

  Manufacturing closed cylindrical shapes with pre-preg composite 

introduced many complexities.  This forced a deviation from the standard cure 

setup, which had been explored in the Draper “micro-satellite” project24 

through trial and error of many cures.  Figure 5.1 shows a checklist of 

materials that were needed to perform each cure of 6 specimens.  Once these 

materials were cut out, the mandrel was scrubbed using methanol and 

scouring pads to give it a smooth surface.   Masking tape was then wrapped 

around 2” at either end, and Mold Wiz was sprayed over the mandrel’s 

surface to protect it from epoxy.  The tape was then removed and the area it 

was covering was cleaned with methanol.  From this point on, handling of the 

mandrel was minimized.  When it was necessary, latex gloves were worn. 

 Probably the most important part of the setup was the top plates.  

The top plates wrap around the pre-preg, and control the surface finish of the 

specimens.  Often top plates are not used due to the additional complexity they 

add, and they can be replaced by using more bagging materials such as 

excessive bleeder paper.  However, this approach can introduce surface 

wrinkles.  Furthermore, having a metallic top plate present during the cure 

increases the consolidation of the epoxy compared to that achieved with more 

compliant bagging materials.  Here, a two-part top plate system was used to 

minimize the effect on the gap where the two sides meet, as demonstrated in 

Figure 5.2.  The first part was a 20 mil thick piece of sheet aluminum cut into 
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three 10x14” pieces, and rolled into a curvature of 3.5” diameter.  This would 

wrap snugly around the pre-preg leaving a 2” gap between its ends.  This gap 

would then be filled by the second part, which consisted of 15 mil thick brass 

shim stock, cut to 4x14”.  All of these pieces were sprayed with Freekote on 

all sides and allowed to dry before using them.  Additionally, the aluminum 

pieces were coated with guaranteed non-porous teflon (GNPT) on the inside, 

which was attached using 3M Spray Adhesive. 

  The first cure performed only used a butt-joined piece of aluminum 

as the top plate, which created a large ridge in the cured specimens.  This 

resulted in the selection of a two-part system.  The various thicknesses and 

materials were chosen based on experiments performed trying to minimize the 

resulting ridges in the specimen.  This final procedure still yielded some 

indented lines, however from inspection they were considered superficial. 

  

 5.1.4 Laying-up 
 

  The process for hand laying-up composite tubes is very time 

consuming.  Originally it was thought that the pre-preg could be layed-up on a 

flat surface in a stair step fashion, however when implemented the variation in 

wrapping tension was too great and the radius was too small to correctly line 

up all of the ply layers.    The alternative selected was to lay-up each ply layer 

individually on the mandrel.  Since each of the 45° plies is cut into two 

trapezoidal parts, each pair of ±45 plies were stuck together in order to better 
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preserve the ply angles.  This was done by removing one side of the backing 

from each piece of pre-preg, and pressing them together on a flat, hard surface. 

  The prepared mandrel was placed without its legs on a clean glass 

table covered with GNPT.  First three 0° plies were cut to 11” width, the 

backings were removed, and they were wrapped onto the mandrel separated by 

1½” each to start each tube.  Next a ±45° ply group was applied with the 

backing still attached in order to measure the length which needed to be 

trimmed.  This ply group was then removed, and the three groups were 

trimmed to the proper length.  After the backings had been removed, a 1” 

section of each ply group was pressed onto the underlying 0° ply, offset from 

the butt joint, and the rest of the ply group was left resting on the glass table.  

Pressure was then applied to the mandrel, and it was rolled across the table 

until the ply groups had been completely stuck to the previous layer.  This 

process is then repeated for each ply until the final 0° ply, which does not need 

to be trimmed and the backing was not removed until the bagging materials 

were applied.  A picture of the layed-up mandrel can be seen in Figure 5.3. 

 

 5.1.5 Cure Process 
 

 After the pre-preg was wrapped around the mandrel, the bagging 

materials that where cut out previously were placed on the mandrel as shown 

in the Figure 5.4.  Again, many of these layers are non-standard, and were 

determined by an experimental process.  The most important layers to the  
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Figure 5.3:  Picture of layed-up mandrel 

Figure 5.4:  Schematic of bagging material placement 
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survival of the cure were the layers of bleeder paper, which prevented the other 

layers from being epoxied to the mandrel.  The vacuum bag was oversized so 

that wrinkles could be deliberately introduced instead of using a “doggy ear” 

method of bagging.  Vacuum tape was placed on the mandrel at either end, and 

a short section was exposed to tack down the vacuum bag, which was then 

rolled onto the mandrel.  A long piece of vacuum tape was then placed along 

the length of the mandrel on the vacuum bag where the seam was to be made.  

This length then extended down the circumference at either end where it 

overlapped the small section of tape that was already exposed.  Finally all of 

the backing was removed, and the vacuum bag was tacked down at regular 

intervals in order to produce several small wrinkles, which could then be 

drawn to the side and pushed down. 

 The cure cycle used for these specimens is the standard TELAC 

cure cycle used for AS4/3501-6.  The mandrel was placed in the TELAC 

autoclave, standing on the legs that were built for it.  First a vacuum of as 

close to 30” Hg as possible was pulled on the specimens (no less then 25” Hg 

was tolerated), and then a pressure of 85 psig was applied.  Once the correct 

pressure was attained, the temperature was ramped to 240°F and held for 1 

hour to allow the epoxy to gel and remove the voids.  Then another ramp to 

350°F was imposed where the cure was held for two hours while the matrix 

cross-linked and the composite material is cured.  Lastly a 5°F per minute cool 

down was used to cool the autoclave down to 180°F, at which point the 
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pressure was removed and the autoclave was turned off.  The standard cure 

temperature, pressure and vacuum profiles and be seen in Figure 5.5. 

 

 5.1.6 Post-cure procedures  
 

  Once the mandrel was removed from the autoclave, all of the 

bagging materials were removed.  This was done by making a lengthwise 

incision using a utility knife through the region of the bag that appears to have 

the least epoxy on the surface.  If the incision was made deep enough, all of the 

layers of material were then peeled and unwrapped off the mandrel at once, 

and the specimens were still protected by the top plates.  The top plates were 

then removed, which only left the composite tubes on the mandrel.  The 

mandrel was then placed in a large freezer for approximately 15 minutes in 

order to shrink the aluminum tube even further, while the composite tubes 

would stay at relatively the same diameter.   

 The process for taking the tubes off the mandrel also took much 

trial and error.  The final process, which worked the quickest and easiest, was 

to use the mandrel legs to pull off the composite tubes.  First the bolts holding 

on the legs were all loosened and one of the legs was put flush against the near 

side of the tube furthest from the vacuum port.  Next an aluminum block was 

placed on the end of the mandrel opposite the vacuum port, and the other leg 

was against this block.  A furniture clamp was then mounted on each of the 

legs, and cranked so as to bring them closer together.  This pulling action was  
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Figure 5.5:  Standard cure temperature, pressure and vacuum plots1 
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enough to overcome the static friction and charge holding the tubes on the 

mandrel, and they would slide right off.  Sometimes however, the tubes had to 

be cranked all the way off the Guaranteed Non-Porous Teflon (GNPT) 

underneath them before they would slide off.  Each tube was removed in this 

fashion one by one, each being moved away from the vacuum port side of the 

mandrel.  Once removed, the 3 tubes were placed in the post-cure oven for 8 

hours at 350°F. 

 

 5.1.7 Machining the specimens 
 

 After being post-cured, the samples were brought to the central 

machine shop where the initial machining took place.  Two 5½” specimens 

were cut out of each composite tube using a continuous carbide grit band-saw 

blade.  The edges were then smoothed using fine grit sandpaper to make the 

sides parallel to each other for testing purposes.  Both of these tasks were 

contracted out to be performed by the machinists of that shop. 

  The six specimens were then taken to the student machine shop 

where the appropriate slot formations would be milled into them.  Marks were 

placed on the tubes at locations where slots would be cut using a silver pen 

and a lathe tool head to measure the angles.  The tubes were then clamped 

onto a milling machine, which was draped with bleeder paper to protect the 

machine.  The tool used to cut the slots was a ¼” 2-flute carbide endmill 

obtained from Harbor Tools.  The tool was first inserted half way into the 
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composite wall at the middle of the tube in order to prevent edge 

delaminations, and then moved towards the end of the slot.  There the tool was 

lowered while out of the tube to the full thickness, and another pass of the tool 

was made from the outside to the inside to complete the slot.  This two pass 

method alleviated much of the torque on the system, thus reducing the amount 

of delamination and displaced edge fibers.  Lastly a file was used to round the 

edges of the slots and to remove any stray fibers.  The specimens were then 

cleaned, labeled, and were ready for testing.  

 

5.2 Test Fixtures 
 

 To simulate the appropriate boundary conditions during testing, two sets 

of test fixtures were manufactured.  Both of these sets of parts were designed 

on AutoCad4, and were machine at Draper Laboratory.   

 

 5.2.1 Mass simulator 

 
 This part, as seen in Figure 5.6, was placed on the top surface of 

the specimens.  It served the dual purpose of restraining the samples from 

compressing in the radial direction and to provide a uniform line load along the 

upper surface for both mechanical and air-gun testing.  The dimensions of the 

cylindrical block were chosen to be 3” long by 3.8” diameter with a protruding 

½” long cylinder of 3.5” diameter to fit inside the composite specimen with an  
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Figure 5.6:  Aluminum mass simulator for tests 

Figure 5.7:  Aluminum clamp simulator for tests 
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interference fit.  The overall part weighed 4.0 lbs, was designed to obtain 

appropriate stress levels at feasible g-levels during air-gun testing.  Two of 

these parts were machined to allow for replacement in the case of damage 

during air-gun testing.   

 

 5.2.2 Clamp simulator 

 

 This second part was also machined out of aluminum, although its 

dimensions were dictated to minimize its volume.  As seen in Figure 5.7, each 

bottom fixture is ¾” x 3.8” diameter with a ½” deep and .15” groove turned into 

it to allow tubes to be seated in it.  Six of these parts were machined to save 

time during testing.  The samples were held into this fixture by a crystalline 

wax (CA #790) manufactured by Greater Southwest Chemicals, Inc.  A small 

amount of wax was melted in a glass petrie dish on a hotplate at 150°F, and 

then poured to fill the bottom of each groove of the fixture.  The fixtures were 

then placed on the hotplate at 250°F, and after allowing the wax to become 

clear, each specimen was inserted and then the system was cooled in a water 

bath.  This wax could be continually reheated and cooled to place new 

specimens in the fixture, and the water-soluble wax was easily wiped cleaned. 
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5.3 Testing 

 
 This section describes the two series of tests that were performed.  A 

total of 12 specimens were tested, half at MIT using a mechanical compression 

machine, and the rest at Picatinny Arsenal in a 155 mm air-gun. 

 

 5.3.1 Test Matrix 

 

 As described in previous chapters, two specimen configurations 

were investigated:  long slotted and short slotted.  From this we derive a fairly 

simple test matrix to validate the analytical codes, as seen in Figure 5.8.  The 

details of each test will be described in the following sections, as well as why 

not all of these tests were successful. 

  

 5.3.2 Mechanical Compression tests 

 

 Six axial compression tests were performed in displacement control 

on the MTS testing machines in TELAC.  These tests were carried out until 

failure, at a rate of .025” per minute.  The load-displacement data was recorded 

using LabView5.  Compression platens were placed on both heads of the 

MTS, and each specimen was loaded with mass and clamp fixtures in place, as 
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show in Figure 5.9.  For safety, a Plexiglass box was placed around the setup 

since the failure of the tubes tended to be quite violent. 

 

 5.3.3 Air-Gun tests  

 

  Air-Gun testing was conducted in order to simulate the actual 

launch conditions the specimen would experience in service.  Testing was 

performed at Picatinny Arsenal in New Jersey, where two guns were used: a 5” 

diaphragm air-gun and a 155mm air-gun as seen in Figure 5.10.   

  For the 5” diaphragm air-gun, Draper Labs machined custom 

canister shells to be launched out of the gun, as seen in Figure 5.11, which 

would allow larger samples to be tested.  There was a large threaded section in 

the back of the shell along with a large nut, between which an appropriate 

diaphragm would be fastened.  The diaphragm was nothing more than an 

aluminum disk with a certain depth groove turned into it, which determined 

the burst pressure of the disk.  The specimens were loaded in a canister shell, 

a diaphragm was selected and the system was placed into the breech of the 

gun.  Pressure is built up in the breech until the critical burst pressure is 

reached, while at the same time a small backpressure is maintained in the 

muzzle on the other end of the barrel in order to stop the canister once it has 

been launched.  This gun was only used for one test however, since the recoil 

of the mass simulator jammed the canister after the first shot. 
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Figure 5.8:  Test matrix for cylindrical composite sections 

Figure 5.9:  Static compression test configuration  
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Breech Barrel 

Figure 5.10:  155-mm air-gun at Picatinny Arsenal in New Jersey 

Figure 5.11:  Custom machined canisters for air-gun tests  
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  For the remainder of the shots, a 155mm air-gun was used.  This 

used a similar setup to the other gun, although a different firing mechanism.  

The canister, which was supplied by Picatinny Arsenal, was loaded with the 

specimen and then placed in a titanium sleeve with an o-ring on either end.  

This sleeve had several directional guide vanes, which directs the pressure in 

the breech to the back of the shell once released, to obtain the desired 

calculated acceleration.  This test took a little longer to perform than on the 

other gun since the barrel had to be cleaned after each shot, and the sleeve 

insertion process was labor intensive.  Three more shots were successfully 

completed from this gun before both of the borrowed canisters had become 

unusable.  Figure 5.12 summarizes the successful tests at Picatinny Arsenal. 

Chapter 6 presents the results for both the analytical and experiment tests. 
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 Long Slots Short Slots 

5” gun high-g 0 1 

155mm gun 10,000 g’s 1 1 

155mm gun 15,000 g’s 1 0 

 
Figure 5.12:  Table of air-gun tests performed  



 74

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[This page intentionally left blank] 



 75

CHAPTER 6 

 

 

RESULTS 

 

 

 This chapter outlines the results that were collected from both the 

analytical models and the experimental procedures described in the previous 

two chapters.  For the analytical models, results are presented for both the 

static and dynamic models that were processed in ABAQUS.  The 

experimental results include axial compression tests and air-gun test results. 

 

6.1 Analytical Results 
 

In Chapter 4, the procedure for the finite element analysis was described.  

Stresses from the static model results were combined with the Tsai Wu failure 

criteria to solve for first ply failure for the two slot configurations.  For the 

dynamic model, a series of trade studies were executed to observe the 

sensitivity of the buckling load  to different variables.  For all models a 

convergence study was performed, but only the results for the most efficient 

model are presented in this thesis (≈ 2,000 elements). 
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6.1.1 Static Model Stresses 
 

The first ply to fail in both models was found to be the outermost 

45° ply in the laminate; this was due to the combination of stresses present in 

that element.  Figure 6.1 presents the stress resultants that were found in 

these elements, which included the largest negative axial stress, the largest 

positive circumferential stress, and largest absolute shear stress.  The failure 

factor, which was described in Chapter 4, was obtained from the quadratic 

Tsai-Wu formulation in Mathmatica and then multiplied by the applied load 

to calculate the failure strength of the structure.  Since the nominal 

compressive load of 1,000 lbs/in2 was applied to the finite element model over 

a 3.5” diameter .1” thick cross-section, the original load transmitted through 

the structure was 9,620 pounds.  Thus, the calculated failure strength for the 

short slot model was 51,900 pounds, and for the long slot model 64,100 

pounds.  These results will be explained further in the discussion chapter. 

 

6.1.2 Dynamic Model Buckling Loads 
 

The dynamic model results were very straightforward.  After 

processing the model in ABAQUS, the buckling load factor would be found in 

the message file.  This buckling load factor was multiplied by 9620 pounds to 

obtain the buckling load, which is the same constant calculated in the previous 
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section for obtaining the static failure load.  Several different variables were 

then considered in a trade study, to test the sensitivity of the buckling load to 

lay-up, material, and dimensions of the tubes.  These trades were only 

performed for the long slotted model, since those slots would be the driving 

factor of the true WASP vehicle.  The buckling load factors for all of the 

variations studied can be found in Figure 6.2, along with a comparison to the 

control case.  When the control buckling load factors are multiplied by the 

applied force, a buckling load of 92,700 pounds is obtained for the short 

slotted model, and 56,400 pounds for the long slotted one.  In the discussion 

chapter, the implications of this trade study will be considered. 

 

6.2 Experimental Results 
 

This section describes the results obtained from the experiments that 

were carried out according to the procedures described in Chapter 5.  This 

includes the elastic responses and failure loads of the axial compression tests, 

as well as the critical g-levels as obtained from the air-gun tests at Picatinny 

Arsenal.  Some of the failures were caused by fracture, some by buckling, and 

some by a combination of both.  In the discussion chapter the probable causes 

of failure for the particular failure modes will be analyzed in more depth. 
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Model S11 S22 S12 Failure Factor Failure Load 

 (Psi) (Psi) (Psi)  (Lbs) 

Short Slot Model -19,012 444 -1,634 5.40 51,900 

Long Slot Model -20,587 2 1,536 6.66 64,100 

 

 

 

Slot Length Variation Load Factor % of Control 

Short Control 9.64 N/A 

Long Control 5.86 100% 

Long 10% reduction in E 5.26 90% 

Long 90° plies replace 0° 4.43 76% 

Long Two more 0° plies 7.13 122% 

Long 4.5” diameter 3.85 66% 

Long 6.0” tube length 5.56 95% 

Long S8R5 elements 5.80 99% 

Figure 6.1:  Table of failure loads predicted by ABAQUS static model  

Figure 6.2:  Table of buckling load factors predicted by ABAQUS  
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Figure 6.3:  Finite element stress contours for short slotted model 

Figure 6.4:  Finite element stress contours for long slotted model 
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Figure 6.5:  First buckling mode of short slotted model  

Figure 6.6:  First buckling mode of long slotted model  
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6.2.1 Load-Displacement Response 
 

During the axial compression tests, Labview was used to collect 

the load and displacement data.  A plot of load versus displacement for one 

representative test can be seen in Figure 6.7; the remainder can be found in 

Appendix C.  For all of the tests, both of the short and long slotted specimens, 

this plot exhibited identical results.  The load reaction to the constant 

displacement remained linear until damage occurred, which was determined by 

first audible ply failure.  The slight non-linear region at low loads corresponds 

to the self-alignment of the springs on the upper compression platen. 

  

6.2.2 Short Slot Failure 
 

Three short slotted samples were tested in displacement control in 

axial compression.  Each of these samples exhibited a similar failure mode, as 

seen in Figure 6.8, as well as failure loads.  The three samples failed at 43,975 

pounds, 45,194 pounds, and 44,434 pounds respectively.  The initial damage 

event was at approximately 44,500 pounds, at which point the 45° plies near 

the slot tip fractured and damage began to propagate towards the bottom 

clamped edge.  Once these plies failed catastrophically, the structure was no 

longer able to carry any load and began to buckle about the slots. 
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Load Displacement Graph
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Figure 6.7:  Load-displacement graph for a representative compression test 

Figure 6.8:  Fractured short slotted 
specimen  

Figure 6.9:  Buckled long slotted 
specimen  
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6.2.3 Long Slot Failure 
 

Three long slotted samples were also tested in the MTS machine.  

These specimens exhibited the same phenomenon as the short slotted ones, 

demonstrating identical failure modes at similar critical loads, as seen in 

Figure 6.9.  The three samples failed at 54,598 pounds, 51,791 pounds, and 

61,220 pounds respectively.  For these specimens, the failure apparently 

commenced at approximately 55,900 pounds, at which point the entire 

thickness of the structure buckled outward near the upper section of the slots.  

At the point of the largest magnitude of buckling, fracture initiated in the 45° 

plies, and again the damage propagated towards the bottom clamped edge.  

After the angle plies had fractured for almost the entire length of the structure, 

it could not carry any more load, and began to buckle even further.  Collapse 

occurred instantaneously and catastrophically in all cases. 

 

6.2.4 Air-Gun Results 
 

Of the six samples that were supposed to be tested at Picatinny 

Arsenal, only four actually were tested due to one gun jamming, and the 

fracturing of both canisters of the second gun.  For the tests that were 

performed, a 155 mm air-gun was used, whose acceleration profile can be seen 

in Figure 6.10 along with a comparison of it to the actual 155 mm gun to be  
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Figure 6.10:  Air-gun acceleration profile graph 
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used to fire the WASP vehicle.  This figure shows that the loads experienced by 

the specimens were very similar to what they would experience in a true 

launch, making these tests very relevant.  Figure 6.11 shows the g-levels 

experienced by the specimens fired, and the corresponding effect on the 

sample. 

The pressure listed in the table is the pressure which was used by 

the gun in order to obtain the desired acceleration, and the load was calculated 

based on the 4 pound block of aluminum sitting on each specimen being 

accelerated while the bottom of the specimen is fixed against the back of the 

shell.  The samples that survived here had no apparent damage of any sort 

after the tests; however, the samples that failed shattered catastrophically, as 

seen in Figure 6.12 so that only graphite dust and small broken fibers 

remained.  After a sample failed, the aluminum weight was accelerated into the 

back of the canister, damaging the weight, the clamp bottom and even the 

canister itself on some occasions. 

  

6.3 Summary 
 
 

Due to the cost and time associated with manufacturing and testing 

these specimens, not many experiments were performed.  However, the small 

representative group of tests performed did place useful bounds on the failure 

loads that would damage this tail section, and a clear view of the failure loads 

that can be expected.  Note that the accelerations seen in these tests are not  
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Slot Length Gun    g-level Psi in gun Calculated 
load 

Condition 

Long 155 mm 10,000 9,300 40,000 Survived 

Short 155 mm 10,000 9,300 40,000 Survived 

Long 155 mm 12,500 11,700 50,000 Shattered 

Short 155 mm 12,500 11,700 50,000 Shattered 

 

 

Figure 6.11:  Table of air-gun test results  

Figure 6.12:  Catastrophically failed air-gun specimen  

Yielded 
aluminum clamp 

Fragment of fractured 
composite cylinder 
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necessarily representative of the true accelerations experienced by the WASP 

vehicle; however, they provide appropriate load levels and loading conditions to 

the cylinders to validate the design codes.  By combining the analytical and 

experimental results, as seen in the following discussion chapter, a 

comprehensive understanding of the failure of the tail section is obtained, 

which can be confidently used for design criteria.   
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CHAPTER 7 

 

 

DISCUSSION 

 

 

 The following chapter provides a discussion of the results presented in 

the previous chapter.  There are two major comparisons presented:  first the 

predictions of failure obtained using the finite element model together with the 

CLPT code and failure theory is validated against the experimental data, and 

then the compression test results are compared to the air-gun results.  Finally 

the influences of key variables on the failure modes are scrutinized, and a 

preliminary design tool is formulated. 

 

7.1 Comparison Of FEA To Compression Tests 

 
As described in previous chapters, some tuning had to be performed on 

the failure prediction scheme.  However, there was a good correlation between 

the failure predicted—based on FEA together with CLPT and failure theory—

and the compression tests results once this tuning was accomplished.  The 

most consistent result was the correct selection of dominant failure mode, 



 90

which was predicted by comparing the results of the dynamic and static 

models.  Theoretically one could find the point where a tube would start to fail 

in buckling instead of fracture using these codes by adjusting the length of the 

slot in the cylinder, however that was not the point of this analysis.  For the 

two slot lengths of concern in this project, a value could be obtained for the 

load needed to cause fracture and the load needed to cause buckling; the lower 

of which being the first and dominant failure mode.  For the short-slotted case, 

the static failure load was predicted to be 51,900 lbs while the buckling load 

was given as 92,700 lbs, clearly indicating that this cylinder would fail in 

fracture.  Similarly, the static fracture load calculated for the long slotted tube 

was 64,100 lbs and the buckling load was predicted to be 56,400 lbs.  While 

not as obvious as the previous case, these loads still designate the correct 

failure mode as buckling for the long slotted tube. 

Next, one must compare these predicted failure loads with the actual 

loads experienced during testing.  For the short slotted cylinder, the predicted 

fracture load was 51,900 lbs while the actual average failure load was at 

44,710 lbs, a difference of 16%.  The long slotted cylinders were predicted 

above to buckle at 56,400 lbs, whereas the actual average buckling load was at 

55,870 lbs, a difference of 9%.  With the margin of error between these results 

being so small, these codes have been validated to predict reasonably the 

appropriate failure load for cylinders of this geometry and loading.  While not 

proving itself a reliable substitute for testing, these codes do provide insight to 

help design which specimens to test. 
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7.2 Comparison Of Compression To Air-Gun Tests 

 

Since air-gun tests are very expensive and time consuming, one of the 

goals of this project was to be able to prove that compression tests could serve 

as an accurate surrogate.  The air-gun tests performed for this project were 

only able to provide a bound for inertial failure; both cylinders tested could 

survive a launch load of 40,000 lbs, and neither could survive the load of over 

60,000 lbs.  This range does indicate however that the failure experienced 

during the compression tests was in the same ballpark as would be seen in a 

real gun launch.  The results presented in this thesis also suggest that for this 

composite section, the air-gun testing environment was “quasi-static.”  This 

was because the resonant frequency of the system was much higher than the 

gun-shot frequency, so it was not excited.  While this does not conclusively rule 

out the necessity for final air-gun testing of composite sections to prove g-

hardness, it does provide a valid argument to enable the use of compression 

tests as a quick and cheap experimental design tool.  Compression tests also 

help to compare the survivability of competing configurations, thereby 

drastically reducing the number of air-gun tests that will need to be performed. 
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7.3 Influence Of Variables On Failure 

 
There were several variables that were analyzed for these composite 

cylinders.  The rationale behind these trade studies was to provide a rubric to 

predict the effect of certain probable design changes on the failure load.  These 

“rule-of-thumb” numbers would be critical to a quick and efficient design 

strategy.  They would provide a guideline for the eventual entire re-design of 

the WASP II fuselage. 

 The first variable investigated was the effect of changing the slot length 

on the failure load.  Since this is a geometric change, it could be assumed to 

alter both the static failure due to a new stress concentration at the slot tip and 

the buckling load.  Somewhat contrary to expectation, the resulting stresses 

indicated that lengthening the slot did not have much of an effect on the 

fracture strength of the cylinder, and in fact somewhat relieved the stress 

concentration.  The long slotted cylinder was predicted to fail at a lower stress 

level than the short slotted cylinder however, because the buckling load was 

significantly reduced by the slot length, causing the change in dominating 

failure modes.  This reduction in buckling load can be explained through the 

Euler buckling equation, where the length here would be the local length of the 

slot, which accounts for the large reduction in failure load.   

 Next, several changes in the material properties of the composite were 

altered to explore the significance of the cylinder’s stiffness to its final buckling 
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load.  Again the response was found to follow the Euler equation, with a 10% 

reduction in E lowering the load factor by 10%.  Similarly, a laminate with 0° 

plies replacing 90° ones, and a laminate with two additional 0° plies were 

modeled to show the respective linear decrease and increase in load factor.  

The tube dimensions were then adjusted to find their effect on the buckling 

load.  It was discovered that increasing the tube diameter by 1” would decrease 

the buckling load factor by 33%; however, increasing the overall tube length 

had virtually no effect as long as the slot lengths remained constant.  Again, 

these results proved critical when designing the actual WASP II structure, 

circumventing the need to perform a separate analysis to see the effect of each 

part of the design. 

 

7.4 Design Tools For High-g Fuselage Sections 

 

One of the most fundamental goals of this project was to prepare a 

design tool for high-g fuselage sections, which can be followed in the flow chart 

in Figure 7.1.  First of all, using the trade-studies discussed above, one could 

piece together a reasonably survivable section, which could then be verified 

using the static and dynamic modeling tools presented in this paper.  Then, 

iteratively using the results from the failure prediction procedure outlined, the 

design could be further “tweaked” using the trade-studies until an acceptable 

failure strength prediction is outputted.  From there specimens would be  
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Figure 7.1:  High-g design tool flow chart  

HIGH-G DESIGN TOOL

AIR-GUN VALIDATION
(Final Check)

EXPERIMENTAL VERIFICATION
(Static Compression Testing)

ANALYSIS
(Static and Dynamic Models)

LAMINATE SELECTION
(From Trade Study)

(iterate) 

(iterate) 
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manufactured to verify those results in a compressive test, where again it could 

be redesigned slightly if necessary.  Finally, once the desired configuration is 

obtained, the updated fuselage section would only need to be fired out of an 

air-gun a few times to verify its g-hardness.  Using the analysis procedure 

presented in this thesis, a high-g survival part could be designed with much 

less time and effort than with previous techniques.  The final result of this 

conglomerated design tool is a method that allows more changes in the design 

process with fewer penalties, a savings in design and testing time, and 

significantly fewer expensive air-gun tests.  Future uses of this design tool will 

be explored more thoroughly in the future work chapter. 
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CHAPTER 8 

 

 

AIRFOIL MANUFACTURING 

 

 

 The following chapter outlines the manufacturing procedures used to 

make all of the aero-surfaces for the WASP II vehicle.  This includes the main 

wings, the horizontal fins and the vertical rudder.  All of these sections are 

constructed by wet-layup of carbon fibers, and are connected by various metal 

spring-loaded joints. 

 

8.1 Overview 

 
The decision to make the wings in composite material was made for the 

same reason as the fuselage sections; for the high stiffness to weight ratio.  

These sections were manufactured of graphite/epoxy prepreg at first, however 

the curvature and taper of these airfoils drove the design to the conformability 

of wet-layup composite fabric.  There were two types of dry carbon fibers used, 

both ordered from CST in Tehachapi, CA25.   The first was a 2.9 oz/yd2 

unidirectional carbon web that was used to increase the bending stiffness in  
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Gougeon Brothers Corporation 
Manufacturer’s Data Sheet 

 WEST SYSTEM EPOXY   
 

 ASTM 105/205 105/206 105/209 
Mix Ratio (by weight)  5.07:1 5.0:1 3.56:1 
Mix Viscosity (cps @ 72°F) D-2393 1300 580 775 
Pot Life (100g @ 72°F) D-2471 12 min. 21.5 min 51 min. 
Specific Gravity of Cured Resin  1.18 1.18 1.163 
Hardness (Shore D)                  (1 day) D-2240 80 80 68 
                                                  (2 weeks) D-2240 83 83 79 
Compression Yield (psi)           (1 day) D-695 10,120 7,990 1,226 
                                                  (2 weeks) D-695 11,418 11,500 10,027 
Tensile Strength (psi) D-638 7,846 7,320 7,105 
Tensile Elongation (%) D-638 3.4 4.5 4.0 
Tensile Modulus (psi) D-638 4.08E+05 4.60E+05 3.65E+05 
Flexural Strength (psi) D-790 14,112 11,810 11,923 
Flexural Modulus (psi) D-790 4.61E+05 4.50E+05 4.40E+05 
Heat Deflection Temperature (°F) D-648 117.8 123 129.5 
Annular Shear Fatigue (lbs @ 100,000 
cycles) 

  9,300 8,440 

Izon Impact, notched (Ft-lb/in) D-256 .93 .54 1.1 
 
Figure 8.1:  Table of West System epoxy cured properties  
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the airfoils.  The second was a 5.6 oz/yd2 carbon woven fabric, which was cut 

out in ±45° strips to provide torsional stiffness in the outside plies of the airfoil 

sections.  The West System epoxy system was used to bind the fibers 

together, using the 105 adhesive with the 209 extra slow hardener for the main 

wings to allow more volatiles to escape and to achieve improved compaction, 

and the 206 slow hardener for the other sections.  The properties of this epoxy 

system can be found in Figure 8.1.  Several epoxy thickeners were used for 

various sections as well, including colloidal silica, micro-fiber powder and 

chopped carbon fibers. 

All of the composite airfoil parts were fabricated inside the aluminum 

mold shown in Figure 8.2, and peel ply was applied and drawn smoothly 

across the top of the surfaces, which was followed by a layer of porous teflon 

and a dozen sheets of bleeder paper to absorb the excess epoxy.  A vacuum bag 

was placed over the setup, which was then pulled down to 29.5” Hg slowly 

while the part was being smoothed through the bag to eliminate wrinkles and 

spread the epoxy.  All of the cures were performed at room temperature to 

prevent residual thermal stresses, and were cured for either 24 hours with the 

209 hardener or 12 hours with the 206, both under a 1-micron Hg vacuum.   

Upon being cured, the bagging materials were removed, and a “cookie-

cutter” piece, as seen in Figure 8.3 was placed over the mold to guide a utility 

knife in cutting the excess fabric away from the part to define the appropriate 

shapes.  Subsequently, there were several secondary cures to bond different 

sections together, to apply hinges, fill in gaps, and to define a good leading  
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Figure 8.2:  Aluminum mold for curing WASP II aerosurfaces 

Figure 8.3:  Aluminum “cookie-cutter” template  
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edge.  Finally, fine sand paper was used to smooth the rough edges of the 

airfoil sections. 

 

8.2 Main Wings 

 
The two main wings of the WASP II vehicle, as seen in Figure 8.4, 

extended for a 55” wingspan.  Each half span was comprised of three sections; 

the first was a straight cambered airfoil with a chord length of about 3”, and 

the next two were tapered down to a tip chord of about 3.5” at a 16° dihedral.  

The wing was composed of three sections so that they could fold and stow to fit 

in the WASP artillery shell, as seen in Figure 8.5.  The cross section of the 

wing was a T16 thin airfoil, selected by the aerodynamics group of the original 

WASP team26 for its high camber (12%) and maximum lift coefficient (1.8).  The 

first section below describes how these wings were manufactured, followed by a 

description of the hinging mechanism implemented.   

 

8.2.1 Manufacture of structure 

 
The milled aluminum mold cavities were first thoroughly cleaned 

and covered with 5 layers of Frekote to provide a smooth and easily released 

surface.  Then the 105 epoxy and 209 hardener were blended together in a 3:1 

by volume ratio, some of which was set aside and mixed with colloidal silica 

until a vaseline-like consistency was obtained.  This thickened epoxy was  
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Figure 8.4:  Main wing for WASP II vehicle in unfolded and stowed positions2  
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Figure 8.5:  WASP II wing folding scheme2  
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applied in a thin coat over the entire mold with a tongue depressor to help stop 

the initial ply layers from moving, and to ensure a glossy surface finish on the 

part.  The first ply layer was placed in the mold, which covered the entire cavity 

both in span and chord, and a plastic wedge was used to squeeze the excess 

epoxy through the woven fabric.  Next an acid brush was used to apply a 

uniform layer of epoxy along the top surface of the first layer, and the second 

layer of fabric was laid down and smoothed into place.  This procedure was 

followed through each ply layer as seen in Figure 8.6, which lists the layer 

angles and widths.  Each ply was laid down starting at the leading edge and 

then smoothed down carefully towards the trailing edge, being careful not to 

stretch the weave.   Since many of the center layers had shorter chord widths, 

the smallest only being 0.5” wide, some plies only contributed to the leading 

edge thickness.  In this fashion the airfoil cross-section was defined. 

The layers were applied symmetrically, so that at the leading edge 

there was a maximum of 28 plies (counting a ±45° layer as two plies), and a 

minimum of 12 at the trailing edge.  Upon completion of laying down all of the 

carbon fabric, a generous amount of epoxy was poured on the upper surface 

and painted uniformly to guarantee that there would be no dry fabric after the 

cure.  The bagging procedure was then carried out as described in the overview 

section, and the wings were cured under vacuum and trimmed using the 

template “cookie-cutter.”  Then an additional piece of aluminum, as seen in 

Figure 8.7 was bolted onto the mold, which helped to define the lower half of 

the leading edge.  A mixture of epoxy and micro-fiber power was prepared to a  
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Figure 8.6:  Main wing layup 

Figure 8.7:  Aluminum rails for defining leading edge  
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thick peanut-butter-like consistency, and placed under this new piece with a 

tongue depressor and cured.  Lastly, the wings were removed from the mold 

and cut into the three prescribed sections as seen in Figure 8.8 on a horizontal 

milling machine with a diamond grit blade.   

 

8.2.2 Manufacture of hinge 

 
The hinges for the main wings presented one of the greatest 

challenges of both WASP vehicle designs.  The objective was to have a hinge 

mechanism that would integrate a solid pivot, be spring loaded, hold a reliable 

dihedral and have a locking mechanism.  In the original WASP vehicle, all of 

this functionality was integrated directly into the aluminum wing design.  For 

the WASP II vehicle however, it was deemed too difficult to develop a similar 

system for the composite section in such little time.  In the end, a similar 

mechanism to the original design was implemented using secondary cures. 

Standard spring-loaded stainless steel cabinet hinges were 

purchased from McMaster-Carr, and were cleaned and sanded to provide a 

good bonding surface.  First, to obtain the correct pivot line while maintaining 

a low surface profile on the bottom of the wing, the hinges were bent to an 

appropriate angle. A micro-fiber thickened epoxy mixture was used to build up 

a small platform, and holes were drilled through the hinges to allow the flowing 

epoxy to form a rivet like connection between the platform and the hinge.  As 

seen in Figure 8.9 these hinges covered a 3/4” span on either side of the hinge  
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Figure 8.8:  Main wing cut into three sections with cross sectional view 

Figure 8.9:  Main wing hinge cured onto test section airfoil 

 9.75” 

 3” 
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line, which amounted to the entire area of the chord from just below the 

leading edge down to the trailing edge. The hinge was also covered by a small 

piece of woven carbon fabric to help prevent delamination of the bond.  The two 

sides of the hinge were cured simultaneously with their pin and spring 

removed to relieve the spring tension.  After the cure the pin and spring, along 

with two additional springs were replaced on the hinge to hold up the wings 

with an appropriate amount of force.   

In order to set the dihedral angle, the butted wings were sanded 

down to the appropriate angle using a belt-sander with fine grit paper.  Once 

unfolded, the hinge was only capable of opening to the prescribed dihedral 

angle of 17° for the first section joint, and 0° for the second joint.  It was 

determined that aerodynamic forces would be sufficient to support these wings 

during flight27, so no lock mechanism was developed. 

 

8.3 Horizontal Fins 

 

The horizontal fins were manufactured in a similar fashion to the main 

wings, as described in the overview.  Since the aerodynamic loading was not as 

high, these sections did not have to be as stiff as the main wings.  Therefore 

they were cured with less plies to reduce weight.  The layup was as seen in 

Figure 8.10.  The fins were manufactured in four sections, each using a top 

and bottom matching piece to form a completed symmetric airfoil for each side.  

These pieces, as seen in Figure 8.11 were joined together in a secondary  
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Figure 8.10:  Tail fin layup 

Figure 8.12:  Rudder layup 

Figure 8.11:  Tail fins and rudder for WASP II demonstration flyer 
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curing procedure performed in the mold under vacuum, with an epoxy and 

chopped fiber mixed filling the gap.  Once removed from the mold, the leading 

and trailing edges were sanded with fine grit paper to smooth the transitions. 

 

8.4 Rudder 

 
The vertical rudder was also fabricated identically to the other 

aerodynamic surfaces.  The rudder was constructed in 3 pieces; two symmetric 

halves for the top section with lay-up as seen in Figure 8.12, and a bottom 

piece made in stereo lithography (SLA) and reinforced with a single layer of 

woven carbon.  The top section was joined in a secondary cure process the 

same way the horizontal fins were—filled with chopped fiber and epoxy.  Two 

freekoted .093” steel rods were placed in these top sections during cure to leave 

guide-pole holes for the telescoping mechanism.  Since there was a telescoping 

scheme to stow the top section of the rudder, the bottom section had to be 

hollow which presented a challenge.  A separate SLA mandrel was used to 

maintain this gap, which was machined slightly larger than the top section to 

allow smooth sliding in and out of the bottom section.  This piece was then 

laminated with a single layer of woven carbon fabric along each side.   Again, 

the leading and trailing edges were sanded with fine paper afterwards to better 

define them.  The rudder was one of the pieces that needed some additional 

development, which will be discussed further in the future recommendations 

section. 
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CHAPTER 9 

 

 

VEHICLE SUPPORTS, ATTACHMENTS AND JOINTS 

 

 

 The following chapter details how the composite sections described 

previously were attached together, and how other components were attached to 

them.  This includes the fixed joints between the cylindrical fuselage sections, 

the hinged joints between the wing sections, and the joint between the airfoils 

and the body.  Component attachment tests were also performed, bonding and 

bolting materials onto the fuselage sections.  Also described in this chapter is 

the supporting shroud which is intended to mechanically isolate the fuselage 

sections during acceleration, making it possible to reduce structural mass from 

these components. 

 

9.1 Overview 

 
Two methods of attachment were explored:  adhesive bonds and bolting.  

It was decided early on that the initial test vehicle would be constructed with 

all bolted joints so that it could be easily disassembled for display or repairs.  
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The future operational vehicle however, will have all adhesive joints, as they are 

much lighter and easier to manufacture for a single use vehicle such as the 

WASP II.  On the flight demonstration vehicle, several #6 flat-head screws were 

used, distributed around each section to hold them in place.  Each of these 

screw holes were countersunk using a diamond grit beveled end-mill.  The 

following sections will describe the attachment schemes that were designed for 

the operational and production line vehicle. 

 

9.2 Tube Sections 

 
Since the WASP vehicle undergoes very high accelerations, it was 

important to design several “hard-points” into the vehicle for payload 

attachment.  The most convenient place to put these “hard-points,” which were 

to be machined out of aluminum, was between each of the composite sections 

and at the nose of the vehicle.  That way, the aluminum blocks would serve the 

purposes of both holding the sections together, and providing mounting points 

for the heavier components in the vehicle. 

 

9.2.1 Joining tube sections 

 
There were two main bulkheads used to attach the tube sections 

together:  the main bulkhead, which connected the nose and body sections, 

and the aft bulkhead, which joined the body and tail sections.  The main 

bulkhead was a relatively complicated component, as seen in Figure 9.1,  
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Figure 9.1:  Aluminum fore-bulkhead2  

Camera = 18,000 Lbs  

Aft section = 
65,000 Lbs  

Cone = 31,000 Lbs 

16,000 g’s 
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needing to be machined on a computerized milling machine.  The fore-area of 

this bulkhead was where the composite nose section attached to the bulkhead, 

using FM-123 elevated temperature cure film adhesive.  The metal part was 

undersized slightly to accommodate the manufacturing tolerances in the 

composite, and the epoxy was allowed to flow into the gaps during the gel time 

of the cure cycle. 

The next section of the main bulkhead was referred to as the shelf, 

and was a piece of metal that protruded slightly from the vehicle to provide an 

attachment area for the shroud, a part which will be described later in this 

chapter.  Aft of the shelf section of the bulkhead was a long contoured piece 

that matches the inside curvature of the body section, and was bonded to that 

section in the same fashion as described for the fore-area of the bulkhead.  

This main bulkhead also served for attachment purposes, which will be 

explained in the following section.  The aft-bulkhead was similar to the main-

bulkhead, and joined the composite sections in the same fashion using film 

adhesive.  The main difference between the two pieces was that the aft-

bulkhead did not have the shelf piece, since the shroud only contacted the 

vehicle in the front. 



 115

 

9.2.2 Inside attachments 

 
There are two general ways that components were attached to the 

composite sections inside of the vehicle:  either they were mounted to the 

“hard-points,” or adhesively bonded.  The heaviest component inside the WASP 

II vehicle was the battery, which is inserted into a cut-out inside the main 

bulkhead which supports it from all sides.  The front side of this bulkhead was 

also where the cameras and the photo-electronics were fastened.  The next 

heaviest component was the motor, which was housed in the nose plate, a 

piece of aluminum that was placed in the front of the vehicle protruding from 

the nose cone.  The last large components to be mounted into a “hard-point” 

were the servos and gyros, which were fixed onto the aft bulkhead in the rear of 

the vehicle to provide them with a rigid support. 

There were a few more components that needed to be mounted into 

the vehicle, such as guidance and navigation systems.  These parts, which 

were mostly miscellaneous electronic components, either had their casings 

machined to match the contour of the composite wall, or they were mounted by 

welding or soldering onto a piece of metal piping which matched this contour 

as close as possible.  This metal part was then bonded with FM-123 onto the 

composite wall, using a standard surface preparation of cleaning and sanding. 
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9.3 Wing Sections 

 
As described in the previous chapter, the wings were one of the most 

important and challenging parts of this program.  How the wing sections would 

attach together and to the body of the vehicle was a topic of great debate for the 

WASP team.  It has already been described how the test flyer’s wings were 

attached together, and in this section future configurations will be discussed. 

 

9.3.1 Joining wing sections 

 
Chapter 8 describes the hybrid metal/epoxy joint used to join the 

wing sections together, as well as the telescoping rudder in depth.  This was a 

very challenging part since not only did it have very specific volume restrictions 

because of the shell and the folding scheme, but it had to provide a rigid 

support to transfer the bending stress across the joint, as well as being a 

spring loaded pivot with a reliable dihedral lock.  The original design of the 

WASP II vehicle had planned to use custom machined inserts with hinges to 

attach the wing sections together, which was similar to what the final 

configuration ended up being for the test flyer.  For several months, the hinge 

design had switched to a Kevlar flexure, a single piece of woven cloth brushed 

over with epoxy to become a compact hinge with internally stored potential 

energy when folded.  This scheme worked well for smaller test sections, but 

once implemented into the full chord length, the flexure became too torsionally 
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weak and did not hold the wings to a tight level tolerance.  The question of 

dihedral remained for this design as well. 

For the flight demonstration vehicle, the solution was determined 

to be a standard spring-loaded cabinet hinge epoxied onto the underside of the 

wing, with matched sanded angles on the cross section of the wing providing 

the dihedral.  For the final production vehicle, which will most likely be made 

by resin transfer molding or a similar process, these hinges should be an 

integral part of the wing, with a spring loaded pin providing the necessary 

force, and the dihedral lock molded into the cross-section of the wing. 

 

9.3.2 Wing pivot attachment 

 
For wings, tail fins and rudder the same attachment scheme was 

used to connect them to the flyer.  An oversized cavity is machined into a 

mounting piece, which is used to control the folding mechanism, and the 

aerosurface is then potted into the metal.  In the case of the wings, this 

mounting piece protrudes from the sides of the main bulkhead as seen in 

Figure 9.2, and for the tail surfaces they were special separated pieces.  For 

the test vehicle all of the aluminum pieces were thoroughly freekoted, and fast-

hardening epoxy was used to pot all of these pieces so it would be easier to 

replace parts if necessary.  In the final configuration of the vehicle, a wet epoxy 

system would be used to mount the parts without the release agent. 
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TEST Description Bearing Area (in2) 

Square 1”x1” Al pipe 1 

Long 1”x2” long Al pipe 2 

Wide 2”x1” wide Al pipe 2 

Clamp1 Bonded inside and outside of tube for 0.5” 11 

Clamp2 Bonded inside and outside of tube for 0.5” 11 

Clamp3 Bonded inside and outside of tube for 0.5” 11 

Ring1 Bonded inside of both sides, 0.5” 5.5 

Ring2 Bonded inside of both sides, 0.5” 5.5 

Ring3 Bonded inside of both sides, 0.5” 5.5 

Bolt Same as clamped section, with 4 - ¼” bolts 0.1 

 
 

Figure 9.2:  Main wing aluminum root2  

Figure 9.3:  FM-123 adhesive attachment test matrix   
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9.4 Test Matrix 

 

Several tests were performed in order to obtain the shear strength of the 

FM-123 film adhesive, which can be seen in the Figure 9.3.  There were 

basically two categories of tests performed.  The first type of test was to 

experimentally bond metal pieces to the inside walls of the composite as 

described in the component attachment section above.  There were three 

different shape of pieces as described in the table.  The second type of test 

performed was to bond two sections together.  Three variations of this test were 

also performed; the clamped section having bonding surfaces on both sides of 

the tube wall, the ring sections just being bonded into the insides of the tubes, 

and lastly a clamped section with 4 ¼” bolts going through the composite and 

metal sandwich. 

 Special testing fixtures were machined for each of these three tests.  As 

seen in Figure 9.4, a steel test stand was constructed for the three composite 

curved panels with the pipe sections bonded onto them.  These ¼ cylinders 

were constrained from lateral movement by two metal posts in the front, and 

one adjustable post in the back to hold it tightly in place.    Then a special grip 

was made for the MTS hydraulic testing machine, which had a 1 in2 flat square 

cross-section, which bore down on the bonded aluminum pieces until they 

failed.  As seen in Figures 9.5 and Figure 9.6 the aluminum clamps and rings 

had bolt holes cut through them, through which the steel top and bottom  
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Figure 9.4:  Curved panel test stand and load applicator  

Figure 9.5:  Aluminum clamp  Figure 9.6:  Aluminum ring  

Grip attachment 

Load 
applicator 

Adjustable 
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specialty grips where attached to interface with the testing machine.  All of 

these tests were performed in stroke control at .05” per minute, and the 

failures load and modes were recorded. 

 

9.5 Results 

 
The results for these adhesive tests were rather discouraging.  Most of 

the bonds failed at much lower stresses than expected, as seen in Figure 9.7, 

which presents the failure load with its corresponding stress and mode.  All of 

the failures were adhesive failures as opposed to cohesive failures, which 

partially explains the divergence from the expected 5,000 Psi shear strength.  

The age of the material along with the surface preparation used are believed to 

have played an important role in the failure, and need to be experimented 

further with this, and other adhesive films.  Clearly though, the bolt test did 

prove to be a good attachment method for these composite parts, with a 

bearing strength of nearly 25 Ksi.  More attachment tests are specified in the 

future work section of this thesis. 
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TEST Failure Load (Lbs) Failure Stress (Psi) Failure Mode 

Square 1,091 1,091 Composite 
delamination 

 
Long 2,343 1,172 Weld yield 

Wide 1,690 845 Composite 
delamination 

 
Clamp1 169 15 Bad bond 

Clamp2 11,200 1,018 Adhesive 
delamination 

 
Clamp3 4,039 367 Slipped out of top 

Ring1 10,210 1,856 Inner ply failure 

Ring2 5,912 1,075 Inner ply failure 

Ring3 6,882 1,251 Inner ply failure 

Bolt 2,454 24,540 Bearing rip through 

 
Figure 9.7:  Table of results for adhesive attachment tests  
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9.6 Shroud 

 
A protective steel shroud was designed to surround the vehicle, bearing 

on the main bulkhead’s “shelves,” to serve several purposes.   The primary role 

of the shroud was to support the vehicle during the gun launch as seen in 

Figure 9.8, providing a load path for the axial acceleration force and placing 

most of vehicle in tension, which eliminates buckling as a dominant failure 

mode.  This has the consequence of relieving the tail section strength 

requirements, which improves the many vehicle characteristics that were 

described in length in Chapters 2-5.  The shroud also bears the 60,000 lbs 

compressive force of expulsion charge the vehicle would normally feel before 

leaving the shell.  Secondary purposes of the shroud include protecting the 

vehicle during spin launch balloting, and adding ballistic weight to the 

shell/flyer combination to match ballistic trajectory tables. 

 

9.6.1 Material selection 

 
There were four basic failure modes for the shroud that had to be 

considered in order to select the appropriate metal for its construction: 

 
1. Yielding 

2. Euler column buckling 

3. Local shell buckling of the cylinder 

4. Local shell buckling of the half clamshell 
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 Steel Tungsten Moly Titanium AL 
 AISI 4140H W-25Re Mo-47.5Re Ti 6211 AL 7075T6 
Yield  24,000 8,000 9,000 16,000 12,000 
Euler Column Buckling 583,000 643,000 725,000 443,000 331,000 
Local Shell Buckling 145,000 160,000 180,000 110,000 82,000 
Local Clamshell Buckling 30,000 33,000 37,000 23,000 17,000 
 

Shroud  
attachment 
ring 

Gap 

Gap 

Figure 9.8:  Protective shroud surrounding WASP II vehicle2  

Figure 9.9:  Table of materials investigated for shroud design  

Allowable g-Level for Shrouds of Different Metals 
(16,000 required) 
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There were 2 loading conditions to be considered as well: 
 

a. Expulsion charge of 3000 Psi 

b. Acceleration load of 16,000 g’s on shroud and 12 Lbs vehicle 

 

All of these failure criterion and loading conditions are explored for several 

candidate metals, the result of which can be found in Figure 9.9.  A 

demonstration of the various calculations performed is shown in Figure 9.10, 

using steel as an example.  The outcome of this trade-study was that in order 

for the vehicle to be statically and dynamically stable, the shroud metal would 

have to have an Young’s Modulus, E, greater than 16.0 Msi and a yield stress, 

σy, greater than 160 Ksi.  AISI 4140H Steel, with a 500°F temper was selected 

as the best candidate, however several different high grade steels would have 

been appropriate, the trade-off being in their fracture toughness versus their 

yield strength.  All of these steels have a modulus of 30 Msi, and a density of 

around 0.283 lbs/in3; this particular grade has a yield stress of 240 Ksi and 

fracture toughness of 53 Ksi*in½ (giving a critical crack length of 0.07” at the 

design stress level of 160 Ksi). 

 

9.6.2 Analysis 

 

After the material for the shroud had been selected, the 

attachment ledge, which was the part that mated with the main bulkhead 

shelf, was sized for bearing loads and shear.  A finite element analysis was  
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performed in ADINA to solve for the stresses experienced by the shroud 

during loading.  It was modeled as a 2-D axisymmetric cross section, with 

mass-proportional load along its length with the weight of vehicle applied as a 

distributed force on the ledge.  As seen in Figure 9.11, the maximum stress of 

180 Ksi occurs at base of the shroud and at the point where it attaches to the 

vehicle.  All of these stresses in the finite element model agree with the 

calculations presented in the previous section as well.  This analysis confirms 

the fact that steel was an appropriate material selection for the shroud, and 

that it will protect the WASP vehicle with a large margin of safety. 
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CHAPTER 10 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 The work in this thesis investigated the design and manufacture of the 

major structural components of the WASP II vehicle.  These parts included the 

nose, mid-body and tail sections, all of the aerodynamic surfaces, and the 

hinge and joint mechanisms.  This chapter presents conclusions based upon 

the research presented in this thesis, and offers recommendations for further 

work.  First, here is a list of key contributions documented by this thesis: 

Analysis 

• Verified significant advantages of composite materials over aluminum in 
WASP vehicle design 

 
• Trade study on material and geometry variable sensitivity for quick 

design change evaluation 
 
• Shroud concept and design crucial for WASP II survival 
 
• Framework for composite failure analysis code 

 
Testing 

• Tested 6 composite cylinder samples statically, 4 dynamically 
 
• Validated survivability of composite cylinders in high-g environment 
 
• Showed static tests can substitute for air-gun tests in many situations 
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Manufacturing 

• Streamlined procedure for manufacturing graphite/epoxy cylinders 
 
• Prescribed materials and requirements for manufacturing body sections 

by external vendor 
 
• Developed procedure for manufacturing complicated aerosurfaces 

accurately using room temperature vacuum cures on a single faced mold 
 
• Developed new folding hinged wings and dihedral mechanisms 
 
• Manufactured 3 functional sets of all WASP II aerosurfaces 

 
Design 

• Building block approach to improve high-g composite component design 
 

 

 

10.1 Conclusions 

 

The structural design of the WASP vehicle was a very challenging 

problem since it not only had to sustain flight, but survive a gun launch with a 

sensitive payload.  A basic finite element model was created to evaluate the 

advantages of utilizing composite materials over aluminum in the design of the 

tail section.  It was found that a significant saving in weight and a slight 

increase in strength could be achieved by this material substitution.  Further 

finite element models were subsequently made to investigate more thoroughly 

the static and dynamic effects of high-g loading on these fuselage sections.  

Static and air-gun tests were then performed to validate these models.  From 
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these tests and models, a “building-block” procedure for designing high-g 

composite components was proposed utilizing CLPT, an ABAQUS model, and 

a few validating tests.  Also, the correlation between the static tests and air-gun 

launches provided the confidence to save both time and money by hydraulically 

testing these sections to refine their design. 

From these studies performed at the conclusion of the WASP I vehicle, it 

was decided that the entire structure (except for the bulkheads) of the WASP II 

flyer would be constructed of composite material.  The developed high-g 

procedure was employed to design the three main sections of the vehicle, which 

were then manufactured by an external vendor by compression molding.  Wet-

layup was identified as the appropriate fabrication method for the aerodynamic 

surfaces of the vehicle, and a manufacturing technique was developed to obtain 

the correct cross-section and stiffness.  These parts were vacuum-cured in an 

open-faced aluminum mold, and secondary cures were used to join sections 

and to add features.  Attachment and hinge mechanisms were also investigated 

to allow a minimum volume vehicle to stow in an artillery shell. 

Finally, the concept of a protective shroud was introduced that 

significantly reduced the requirements of the composite components.  It 

accomplished this by decreasing the load experienced by many of the sections, 

and by putting most of the components whose failure mode in the original 

design was dominated by buckling, into tension.  The shroud was designed to 

survive both the set-back and forward accelerations, the spin loads, and the 

global and local buckling of its thin shell walls.  It would also serve as ballistic 
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weight, being built out of steel, to trim the center of gravity of the projectile and 

to adjust the overall weight for the use of standard ballistic range tables. 

 

10.2 Recommendations for Future Work 

 
This work represents a preliminary attempt to develop a full design tool 

for composites in a high-g environment.  Further refinement is needed in the 

ABAQUS code presented to more accurately predict the failure load observed 

during testing, and the Matlab CLPT code utilized could be integrated into a 

failure analysis routine embedded in ABAQUS to make this procedure more 

compact.  Other composite materials utilizing higher strength fibers and 

tougher matrices (e.g. IM7/977-2 or T300/914C), and manufacturing 

techniques, such as filament winding, should be investigated as well to confirm 

that this model is appropriate for more than just the hand laid-up AS4/3501-6 

used for these tests.  Also, further static tests should be performed with 

different boundary conditions and loading rates to attempt to more accurately 

match the air-gun launch profile. 

The airfoil sections, which in this investigation were manufactured by 

wet-layup, will most likely need to be deve loped using a different procedure or 

at least using a different adhesive system, since it is unlikely that the ones 

made here are g-hardened.  A probable solution for manufacture of the entire 

detailed WASP vehicle in the future would be resin-transfer-molding (RTM), 

which would consist of designing of a closed mold which is injected with a 
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graphite and epoxy mixture.  This procedure has high development costs, but 

would significantly reduce the cost and time of making each unit, and allows 

more complicated details in the design as well as quasi-isotropic material 

properties in all directions.  If the demands for the WASP vehicle are not high 

enough to justify the high initial costs, or if testing proves that RTM is not 

suitable for high-g applications, compression molding should also be 

considered as a possible candidate for all of the components. 

Lastly, much testing and re-design remains for the attachment and hinge 

mechanisms of this vehicle.  The methods presented in this paper will achieve 

the current flight goals of the WASP II flight demonstrator, however are thought 

not to be survivable for a high-g environment.  Testing is needed to find an 

appropriate adhesive to attach the different composite sections, since the bolts 

and wax used for the current flyer were only meant for demonstration so that 

the vehicle would be easily disassembled or repaired.  Also, testing is needed 

on the hinge sections to examine their response to all the loads on the vehicle, 

and a more integrated system should be developed since the current 

hinge/dihedral/lock mechanism is very labor intensive and requires 4 separate 

cures.  Overall, the work presented in this thesis offers much insight into the 

preliminary design of a high-g composite structure, however more work is 

necessary to fully qualify a protocol for designing a g-hardened vehicle.   
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APPENDIX A:  Matlab  CLPT failure analysis codes
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MATLAB CLPT Laminate Bulk Orthotropic Properties Code 

 
 
 

layup = input('Enter nonSymetric Half Layup: [0 45 -45 ...]s '); 
**(material property definitions)** 
E = [144.5E9 9.63E9 .34 5.85E9 .000134]; 
F = [2167E6 -1720E6 53.7E6 -185.8E6 86.7E6]; 
St = [2.167/144.5 -1.72/144.5 .0537/9.63 -.1858/9.63 .0867/5.85]; 
 
El = E(1,1); 
Et = E(1,2); 
vlt = E(1,3); 
vtl = Et/El*vlt; 
G = E(1,4); 
t = E(1,5); 
ply = size(layup,2); 
**(plane stress coefficients)** 
q = zeros(3,3); 
q(1,1) = El/(1-vlt*vtl); 
q(2,2) = Et/(1-vlt*vtl); 
q(1,2) = (Et*vlt)/(1-vlt*vtl); 
q(2,1) = q(1,2); 
q(3,3) = G;  
 
sym = 0; 
 
QBAR = [0 0 0 
     0 0 0 
     0 0 0]; 
**(ply coordinate transformation and Q matrix assembly)** 
for z = 1 : ply; 
 
 x = layup(1,z)*pi/180; 
 
 a = [cos(x)*cos(x) sin(x)*sin(x) cos(x)*sin(x) 
      sin(x)*sin(x) cos(x)*cos(x) -cos(x)*sin(x) 
   -2*cos(x)*sin(x) 2*cos(x)*sin(x) (cos(x)*cos(x)-sin(x)*sin(x))]; 
 
 b = transpose(a);  
         
 Q = b*q*a; 
 
 QBAR = QBAR + Q; 
end 
if sym == 1; 
 QBAR = 2*QBAR; 
end 
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QBAR; 
A=QBAR/(ply*2); 
As=A^-1; 
Es11=As(1,1); 
Es22=As(2,2); 
Es33=As(3,3); 
Es12=As(1,2); 
**(Bulk orthotropic material properties)** 
E11=Es11^-1 
E22=Es22^-1 
G=Es33^-1 
v=-Es12*E11 
t=ply*2*t 
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MATLAB CLPT Ply-by-Ply Laminate Failure Analysis Code 

 
 

**(Material property definition)** 
E = [144.5E9 9.63E9 .34 5.85E9 .000134]; 
F = [2167E6 -1720E6 53.7E6 -185.8E6 86.7E6]; 
St = [2.167/144.5 -1.72/144.5 .0537/9.63 -.1858/9.63 .0867/5.85]; 
layup = [0 45 -45 0 45 -45 0 45 -45]; 
mass = 1.795; 
 
sym=1; 
kt = input('kt1 kt2 kt12:  '); 
method = input('0 for Tsai-Wu or 1 for Max-Strain:  '); 
 
v1 = kt(1,1); 
v2 = kt(1,2); 
v12 = kt(1,3); 
V = [v1 0 0; 0 v2 0; 0 0 v12]; 
**(Plane stress coefficients)** 
El = E(1,1); 
Et = E(1,2); 
vlt = E(1,3); 
vtl = Et/El*vlt; 
G = E(1,4); 
t = E(1,5); 
ply = size(layup,2); 
area = pi*(2*t*ply*2*.04445 + (t*ply*2)^2); 
 
Xt = F(1,1); 
Xc = F(1,2); 
Yt = F(1,3); 
Yc = F(1,4); 
S = F(1,5); 
 
xt = St(1,1); 
xc = St(1,2); 
yt = St(1,3); 
yc = St(1,4); 
s = St(1,5); 
**(Tsai-Wu Failure Constants)** 
F1 = (1/Xt)+(1/Xc); 
F11 = -1/(Xc*Xt); 
F2 = (1/Yt)+(1/Yc); 
F22 = -1/(Yc*Yt); 
F66 = 1/S^2; 
F12 = -.5/sqrt(Xt*Xc*Yt*Yc); 
 
q = zeros(3,3); 
q(1,1) = El/(1-vlt*vtl); 
q(2,2) = Et/(1-vlt*vtl); 
q(1,2) = (Et*vlt)/(1-vlt*vtl); 
q(2,1) = q(1,2); 
q(3,3) = G;  
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begin_accel_check = 0 
 
broke = zeros(1,ply); 
brokelast = ones(1,ply); 
stress = zeros(3,1); 
strain = zeros(3,1); 
done = 0; 
 
T=0; 
g=0; 
load = zeros(3,1); 
 
while done ~= 1, 
 index = 0; 
 while index ~= 1, 
  **(Remove broken plies from stiffness matrix)** 
  if sum(brokelast) ~= sum(broke) 
   therm = zeros(3,1); 
   QBAR = zeros(3,3); 
   for z = 1 : ply, 
    
    if broke(1,z) == 1 
     Q = zeros(3,3); 
    else 
     x = layup(1,z)*pi/180; 
     a = [cos(x)*cos(x) sin(x)*sin(x) cos(x)*sin(x) 
          sin(x)*sin(x) cos(x)*cos(x) -cos(x)*sin(x) 
       -2*cos(x)*sin(x) 2*cos(x)*sin(x) (cos(x)*cos(x)-sin(x)*sin(x))]; 
     b = transpose(a);  
     Q = b*q*a; 
      
    end 
 
    tforce = T*Q*a^-1*al; 
    therm = therm + tforce; 
     
    QBAR = QBAR + Q; 
   end 
  
   if sym == 1 
    QBAR = 2*QBAR; 
    therm = 2*therm;  
   end 
  end 
   
  brokelast = broke; 
 
  strain = QBAR^-1*((load*ply*2)+therm); 
  **(ply coordinate transformation and Q matrix assembly)** 
  jump = 0; 
  for z = 1 : ply, 
   if broke(1,z) ~= 1 
    x = layup(1,z)*pi/180; 
    a = [cos(x)*cos(x) sin(x)*sin(x) cos(x)*sin(x) 
         sin(x)*sin(x) cos(x)*cos(x) -cos(x)*sin(x) 
      -2*cos(x)*sin(x) 2*cos(x)*sin(x) (cos(x)*cos(x)-sin(x)*sin(x))]; 
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    b = transpose(a);  
    Q = b*q*a; 
     
    mstrain = strain-(T*a^-1*al); 
    sigmal = Q*mstrain; 
    sigma = b -̂1 * sigmal; 
    sigma = V*sigma; 
   else 
    sigma = zeros(3,1); 
   end 
   **(Tsai-Wu Failure Criteria)** 
   if method == 0 
    TSAI = F1*sigma(1,1) + F2*sigma(2,1) + F11*sigma(1,1)^2 + 
F22*sigma(2,1)^2 + F66*sigma(3,1)^2 + 2*F12*sigma(1,1)*sigma(2,1); 
    if TSAI >= 1; 
     jump = 1; 
     broke(1,z) = 1; 
     layup(1,z) 
    end 
   end 
   **(Max Strain Failure Criteria)** 
   if method == 1 
    epsilon = q -̂1 * sigma; 
    if (epsilon(1,1) >= xt) | (epsilon(1,1) <= xc) 
     jump = 1; 
     broke(1,z) = 1; 
     layup(1,z) 
    elseif (epsilon(2,1) >= yt) | (epsilon(2,1) <= yc) 
     jump = 1; 
     broke(1,z) = 1; 
     layup(1,z) 
    elseif (epsilon(3,1) >= s) | (epsilon(3,1) <= -s) 
     jump = 1; 
     broke(1,z) = 1; 
     layup(1,z) 
    end 
   end 
  end 
  
  
  if jump == 1 
   g 
   index = 1; 
   break 
  end 
  **(Increment mass and thus acceleration load)** 
  g = g + 250; 
  load(1,1) = mass*9.8*g/area;  
 end 
 
 if broke == ones(1,ply) 
  done = 1; 
  break 
 end 
 
end 
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APPENDIX B:  ABAQUS  FEA input files
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ABAQUS Static Finite Element Analysis Input File (static.inp) 

 
 
 

*HEADING 
SDRC I-DEAS ABAQUS FILE TRANSLATOR  04-Jun-99   11:38:57 
*NODE, SYSTEM=R 
          1, 1.7500000E+00,-6.8296200E-17, 5.0000000E-01 
   • 
   • 
   • 
       6895,-1.7453480E+00,-9.0608547E-02, 2.2443526E-01 
*ELEMENT,TYPE=S8R     ,ELSET=E1 
   2141,   6056,   6055,   6058,   6057,   6417,   6427,   6105,   6419 
   • 
   • 
   • 
   1948,   5643,   5645,   5971,   5967,   5690,   6061,   6062,   6063 
*ELEMENT,TYPE=S8R     ,ELSET=E2 
   2194,   6473,   6479,    369,    461,   6600,   6601,    430,   6596 
   • 
   • 
   • 
   1097,   3406,   3408,   3500,   3498,   3407,   3452,   3499,   3451 
*SHELL SECTION,ELSET=E1,MATERIAL=STEEL    
 0.5, 3 
*MATERIAL,NAME=STEEL    
*ELASTIC,TYPE=ISOTROPIC 
 2.0E+12, 0.3 
*DENSITY 
 0.1 
*SHELL GENERAL SECTION,ELSET=E2,COMPOSITE,ORIENTATION=SECORI 
.005,,LAMINA, 90. 
.005,,LAMINA,+45. 
.005,,LAMINA,-45. 
.005,,LAMINA, 90. 
.005,,LAMINA,+55. 
.005,,LAMINA,-45. 
.005,,LAMINA, 90. 
.005,,LAMINA,+45. 
.005,,LAMINA,-45. 
*** CENTER LINE 
.005,,LAMINA,-45. 
.005,,LAMINA,+45. 
.005,,LAMINA, 90. 
.005,,LAMINA,-45. 
.005,,LAMINA,+45. 
.005,,LAMINA, 90.  
.005,,LAMINA,-45. 
.005,,LAMINA,+45. 
.005,,LAMINA, 90. 
**defined 90 degrees rotated 
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*MATERIAL,NAME=LAMINA 
*ELASTIC,TYPE=LAMINA 
21E6, 1.4E6, .34, 0.85E6, 0.85E6, 0.5E6 
*DENSITY 
 0.06 
*ORIENTATION,SYSTEM=CYLINDRICAL,NAME=SECORI 
0.,0.,0., 0.,0., 1. 
1, 0. 
*NSET,NSET=CLAMPED  
    61,    92,   153,   184,   245,   276,   337,   368,   429,   460,   521 
   • 
   • 
   • 
  5091,  5122,  5183,  5214,  5275,  5306,  5367,  5398,  5459,  5490,  5551 
*ELSET,ELSET=FORCE    
  1948,  1949,  1950,  1951,  1952,  1953,  1954,  1955,  1956,  1957,  1958 
   • 
   • 
   • 
  2124,  2125,  2126,  2127,  2128,  2129,  2130,  2131,  2132,  2133,  2134 
*STEP 
*STATIC 
*BOUNDARY 
CLAMPED, ENCASTRE 
*DLOAD 
FORCE, P, -1000.0 
*RESTART,WRITE,OVERLAY 
*EL FILE,ELSET=E2,DIRECTIONS=YES 
SDV,FV 
S,E 
*NODE FILE, FREQUENCY=1, LAST MODE=1 
U 
*EL PRINT,ELSET=E2 
S,E 
*NODE PRINT 
U 
RF 
*END STEP 
**------- 
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ABAQUS Dynamic Finite Element Analysis Input File (dynamic.inp) 
 
 
 

*HEADING 
SDRC I-DEAS ABAQUS FILE TRANSLATOR  04-Jun-99   11:38:57 
*NODE, SYSTEM=R 
          1, 1.7500000E+00,-6.8296200E-17, 5.0000000E-01 
   • 
   • 
   • 
       6895,-1.7453480E+00,-9.0608547E-02, 2.2443526E-01 
*ELEMENT,TYPE=S8R     ,ELSET=E1 
   2141,   6056,   6055,   6058,   6057,   6417,   6427,   6105,   6419 
   • 
   • 
   • 
   1948,   5643,   5645,   5971,   5967,   5690,   6061,   6062,   6063 
*ELEMENT,TYPE=S8R     ,ELSET=E2 
   2194,   6473,   6479,    369,    461,   6600,   6601,  430,   6596 
   • 
   • 
   • 
   1097,   3406,   3408,   3500,   3498,   3407,   3452,   3499,   3451 
*SHELL SECTION,ELSET=E1,MATERIAL=STEEL    
 0.5, 3 
*MATERIAL,NAME=STEEL    
*ELASTIC,TYPE=ISOTROPIC 
 2.0E+12, 0.3 
*DENSITY 
 0.1 
*SHELL GENERAL SECTION,ELSET=E2,COMPOSITE,ORIENTATION=SECORI 
.005,,LAMINA, 90. 
.005,,LAMINA,+45. 
.005,,LAMINA,-45. 
.005,,LAMINA, 90. 
.005,,LAMINA,+45. 
.005,,LAMINA,-45. 
.005,,LAMINA, 90. 
.005,,LAMINA,+45. 
.005,,LAMINA,-45. 
*** CENTER LINE 
.005,,LAMINA,-45. 
.005,,LAMINA,+45. 
.005,,LAMINA, 90. 
.005,,LAMINA,-45. 
.005,,LAMINA,+45. 
.005,,LAMINA, 90.  
.005,,LAMINA,-45. 
.005,,LAMINA,+45. 
.005,,LAMINA, 90. 
**defined 90 degrees rotated 
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*MATERIAL,NAME=LAMINA 
*ELASTIC,TYPE=LAMINA 
18.54E6, 1.287E6, .3, 0.785E6, 0.785E6, 0.785E6 
*DENSITY 
 0.06 
*ORIENTATION,SYSTEM=CYLINDRICAL,NAME=SECORI 
0.,0.,0., 0.,0., 1. 
1, 0. 
*NSET,NSET=CLAMPED  
    61,    92,   153,   184,   245,   276,   337,   368,   429,   460,   521 
   • 
   • 
   • 
  5091,  5122,  5183,  5214,  5275,  5306,  5367,  5398,  5459,  5490,  5551 
*ELSET,ELSET=FORCE    
  1948,  1949,  1950,  1951,  1952,  1953,  1954,  1955,  1956,  1957,  1958 
   • 
   • 
   • 
  2124,  2125,  2126,  2127,  2128,  2129,  2130,  2131,  2132,  2133,  2134 
*STEP 
*BUCKLE 
1,,3,30 
*BOUNDARY 
CLAMPED, ENCASTRE 
*DLOAD 
FORCE, P, -1000.0 
*RESTART,WRITE,OVERLAY 
*MODAL FILE 
*END STEP 
**------- 
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ABAQUS Dynamic Finite Element Analysis Message File (dynamic.msp) 

 
 
 

ABAQUS VERSION 5.8-1        DATE 15-JUN-1999    TIME 19:49:33     PAGE    1 
 SDRC I-DEAS ABAQUS FILE TRANSLATOR  04-Jun-99   11:38:57                         
                                                                                  
 STEP    1     INCREMENT     1     STEP TIME      0.     
 
                        S T E P       1     C A L C U L A T I O N   O F   E I G E N V A L U E S 
 
                                            F O R   B U C K L I N G   P R E D I C T I O N 
                                                                                         
     THE SUBSPACE ITERATION METHOD IS USED FOR THIS ANALYSIS 
     NUMBER OF EIGENVALUES                   1 
     MAXIMUM NUMBER OF ITERATIONS           30 
     NUMBER OF VECTORS IN ITERATION          3 
                              ONLY INITIAL STRESS EFFECTS ARE INCLUDED IN THE 
                              STIFFNESS MATRIX 
 
     RESTART FILE WILL BE WRITTEN EVERY     1  INCREMENTS 
 
     ONLY THE LATEST INCREMENT WILL BE RETAINED 
 
     THIS IS A LINEAR PERTURBATION STEP. 
     ALL LOADS ARE DEFINED AS CHANGE IN LOAD TO THE REFERENCE STATE 
 
     EXTRAPOLATION WILL NOT BE USED 
 
     CHARACTERISTIC ELEMENT LENGTH     0.175     
 
     PRINT OF INCREMENT NUMBER, TIME, ETC., TO THE MESSAGE FILE EVERY     1  INCREMENTS 
 
          ITERATION  1  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   69.195        2   102.83        3   167.53     
 
          ITERATION  2  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   43.362        2   45.897        3   60.184     
 
          ITERATION  3  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   9.8411        2   10.655        3   13.792     
 
          ITERATION  4  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   5.6051        2   6.0827        3   6.7424     
 
          ITERATION  5  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   5.4248        2   5.5082        3   6.0477     
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   • 
   • 
   • 
          ITERATION 20  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   5.2596        2   5.2906        3   5.3473     
 
          ITERATION 21  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   5.2595        2   5.2892        3   5.3470     
 
          ITERATION 22  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   5.2594        2   5.2880        3   5.3468     
 
          ITERATION 23  CURRENT ESTIMATES OF EIGENVALUES 
 
              1   5.2594        2   5.2871        3   5.3466     
 
          THE FIRST    1  EIGENVALUES HAVE CONVERGED 
 
     RESTART INFORMATION WRITTEN IN STEP   1  AFTER INCREMENT     1 
 
 
          THE ANALYSIS HAS BEEN COMPLETED 
 
 
 
     ANALYSIS SUMMARY: 
     TOTAL OF          1  INCREMENTS 
                       0  CUTBACKS IN AUTOMATIC INCREMENTATION 
                      25  ITERATIONS 
                      25  PASSES THROUGH THE EQUATION SOLVER OF WHICH  
                       2  INVOLVE MATRIX DECOMPOSITION, INCLUDING 
                       0  DECOMPOSITION(S) OF THE MASS MATRIX 
                       0  ADDITIONAL RESIDUAL EVALUATIONS FOR LINE SEARCHES 
                       0  ADDITIONAL OPERATOR EVALUATIONS FOR LINE SEARCHES 
                      33  WARNING MESSAGES DURING USER INPUT PROCESSING 
                       0  WARNING MESSAGES DURING ANALYSIS 
                       0  ANALYSIS WARNINGS ARE NUMERICAL PROBLEM MESSAGES 
                       0  ANALYSIS WARNINGS ARE NEGATIVE EIGENVALUE MESSAGES 
                       0  ERROR MESSAGES 
 
 
     THE SPARSE SOLVER HAS BEEN USED FOR THIS ANALYSIS. 
 
 
 
     JOB TIME SUMMARY 
       USER TIME (SEC)      =   944.19     
       SYSTEM TIME (SEC)    =   40.640     
       TOTAL CPU TIME (SEC) =   984.83     
       WALLCLOCK TIME (SEC) =        505 
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APPENDIX C:  Load-Displacement Curves
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Load Displacement Graph
Series 1:  Long Slotted Specimen
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Load Displacement Graph
Series 1:  Short Slotted Specimen
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Load Displacement Graph
Series 2:  Long Slotted Specimen
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Load Displacement Graph
Series 2:  Short Slotted Specimen
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Load Displacement Graph

Series 3:  Long Slotted Specimen
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Load Displacement Graph
Series 3:  Short Slotted Specimen
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