

Automating Component-Based Testing From UML Models

by

Bryan Che

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 15, 2000

Copyright 2000 Bryan Che All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__

Department of Electrical Engineering and Computer Science
May 17, 1998

Certified by__
Daniel Jackson

Thesis Supervisor

Accepted by___
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

 2

Automating Component-Based Testing From UML
Models

By
Bryan Che

Submitted to the

Department of Electrical Engineering and Computer Science

May 15, 2000

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

And Master of Engineering in Electrical Engineering and Computer Science

Abstract
Software components such as EJB’s or COM objects may be tested in an automated
fashion with the help of UML models. First, these objects should be modeled in UML,
using certain extensions and modeling conventions. Then, an automated software-testing
program can read the UML diagrams and generate testing scripts which drive the
components appropriately. EJBTest is such a program which can read UML diagrams of
EJB’s and generate the appropriate Java code for testing those EJB’s. The generated
scripts can successfully test the EJB’s for functionality and also perform database
verification.

Thesis Supervisor: Daniel Jackson
Title: Associate Professor, MIT

 3

1 Introduction

1.1 The problem with testing multi-tier, component-based programs

Within the past few years, many computer applications have been moving toward a multi-

tier architecture and away from older, monolithic and client/server architectures. In this

multi-tier world of software, software developers divide their programs into various tiers

of functionality, grouping their designs around various hierarchies. Then, they write

these various tiers and assemble them together to form a complete application. Usually,

developers code one or more of these tiers (often the middle tiers) using software

components.

A typical example of multi-tier architecture is the three-tier, e-business model for

computer applications (figure 1). The e-business model consists of three tiers, or layers:

a user-interface tier, a middle tier, and a data tier. The user-interface tier is a thin layer

(for example, a web browser) that interacts with the application’s user, and the data layer

(often a database) stores the application’s data. The middle layer (e.g. an application

server) is component-based and represents the application’s business logic—it processes

information between the program’s users and the program’s data.

Writing multi-tier software with a component-based middle tier has several advantages

over other architectures, including: it allows easy code reuse, it facilitates distributed

computing, and it allows replacement of single or multiple components. These benefit

have prompted many programmers to write multi-tier programs. However, despite these

benefits, implementing multi-tier systems is quite challenging. One of the principal

Data TierComponent-based Middle Tier Client Tier

Figure 1 Three-Tier Architecture

 4

reasons for this difficulty is that there are no standard methods or tools for testing

component-based middle tiers.

There are many software tools on the market that automate the testing of programs.

However, these programs generally drive the GUI of the application they are testing,

looking for undesired behaviors and bugs. These GUI-based testing programs do not

work well when testing multi-tier, component-based programs. This is because they

cannot directly test the heart of multi-tier programs: since multi-tier programs separate

their user interface from their logical components, software that only tests GUI’s cannot

directly test these logical components for bugs.

Other reasons that GUI testing tools may be inappropriate for testing multi-tier programs

include: there might be no GUI at all, and there may be too many flavors of GUI clients

(i.e. multiple browsers on multiple platforms).

As an example of the limitations of GUI-testing software, consider a program—call it

MyMultiTierProgram—that allows its user to change his password. A GUI-based test of

this change-password procedure might enter a username and a password into

MyMultiTierProgram’s password dialog box. If an error occurred during the password

change, the GUI-driving testing program would be able to report that it had found a bug.

But, the testing program would not be able to say where the bug was located—it would

not know if MyMultiTier’s login was buggy in its user lookup component, its password-

verification component, its component updating the user’s password in a database, or

some other component. All these components, which contain the functionality of

MyMultiTierProgram, are located in a middle tier and invisible through the GUI.

A much better way to test MyMultiTierProgram would be to bypass

MyMultiTierProgram’s GUI altogether and test its middle-tier components directly.

Then, it would be easy to know in which component—and even where in that

component—the password-change bug was occurring. One would only have to see

which component did not function properly. Furthermore, since many components

 5

interact directly with a database, testing components directly makes it possible to

automate testing for bugs in database manipulation: one could call a certain component’s

method and then examine the database to make sure that method call updated the

database correctly. There are no current tools, however, that automate testing in this

manner.

1.2 Modeling software with UML

Many programmers now begin their software development efforts by modeling their new

project with the Unified Modeling Language (UML). UML is a graphical language that

allows software architects to create a blueprint for object-oriented programs. It provides

semantic rules for:

•= Names What you can call things, relationships, and diagrams

•= Scope The context that gives specific meaning to a name

•= Visibility How those names can be seen and used by others

•= Integrity How things properly and consistently relate to one another

•= Execution What it means to run or simulate a dynamic model1

By modeling their programs with UML, developers can describe how these programs

should function. So, if a developer modeled a component-based program with UML, he

could design things such as what components his program would have, how the

components related to each other, what the components could do, and how the

components were grouped or tiered. He could describe the program’s GUI, it logic, its

data, and how these three tiers operated and interacted with each other. Once he had

described his program in this way using UML, he only had to translate his design into

code (and augment his code to fill in for things his model did not describe precisely) in

order to produce his application.

 6

1.3 Thesis Goals

My main purpose in this thesis project was to find a way to automate component-testing

by leveraging the expressive power of UML. I wanted to help people model their

software components with UML in such a way that would facilitate automated testing of

those components. To do this, I formulated three thesis goals:

1.3.1 Extending UML

Early on in my research, I found that UML diagrams were not detailed or robust enough

to describe all the information necessary for inferring precisely how components interact

and operate. Therefore, as an initial goal for my thesis, I needed to find a way to

augment UML which would make it capable of modeling component-based applications

in a sufficient manner.

1.3.2 Modeling and testing methodology

My next thesis goal was to investigate testing and modeling methodologies for

component-based applications. I wanted to explore how to create models of component-

based software so that the models would be rich enough to generate test scripts. I also

wanted to examine and determine how to go about testing component-based applications.

1.3.3 Software tool

My final goal for this thesis was to write a software tool that would implement my testing

methodologies and automate generating test scripts for a component-based application

from a UML model of that application. My program would take in a UML description of

a component-based application. Then, it would analyze this UML model, ask the user to

select a component in that model which he would like to test, and generate scripts that

drive the selected component as it was modeled to operate and interact in the application.

With these scripts, the application’s tester could test his program’s functionality by

observing how various components performed when executing an action.

 7

In addition to providing this basic functional testing capability, my software tool would

focus on automating database verification. Since many middle-ware components

manipulate a database, my tool would be able to verify that these components correctly

updated database values.

Going back to the MyMultiTierProgram example, a tester would not have to test

MyMultiTierProgram’s change-password procedure through its GUI by entering data into

its password dialog. Instead, he could execute the scripts my tool would generate and

observe how the various components that implement login functioned and interacted. He

could observe in which components and where in those components errors occurred.

Furthermore, he could use my tool to verify that the users table within his database now

had the correct, updated password from the password change.

Using UML models as an entry point for my testing program is useful for a couple

reasons. First, the program needs to know through some means how to test the

components of the application it’s analyzing. UML is a good and standard way to

accomplish this. Second, many programmers already use UML in designing their

software. By using a tool that reads UML models, these programmers can re-use work

that they have already done when testing their applications.

1.4 What it means to test

For the purposes of this thesis, I test components in two ways:

1.4.1 Verification of results

My thesis project tests a component’s performance against “correct” answers. That is,

the tool automatically drives a component and compares the component’s results with

known, proper results to verify that they are the same. These proper results may come

from previous runs of the tool upon older versions of the component, or they may come

from some other source. One of the primary ways my thesis project tests correctness is

by doing database verification. That is, my project determines if a component is correctly

updating a database’s values if that component should manipulate the database.

 8

This test, in addition to helping people do database verification, is useful for people who

want to update a component and swap it with an older, existing component in a live

system. These people can verify that their new component will not break anything in

their live system.

1.4.2 Understanding what to test and in what sequence

My thesis project tests how a component performs as part of a system; it tests if a

component properly performs a sequence of events during a larger, overall action. For

example, say MyMultiTierProgram implements its login action within a component-

based middle tier. Let one of the components that is part of this login be the user

component. My project can test that the user component performs certain sequential

events properly during the login action.

This test is useful for people who want to accurately test components in a distributed

environment because it allows them to single out components for testing and know how

to test that component as if it were being used as part of some action.

2 Background

2.1 Component Architectures

There are currently two principle component architectures which people use to write

multi-tiered systems: Microsoft’s Distributed Component Object Model (DCOM) and

Sun Microsystem’s Enterprise JavaBeans (EJB). DCOM and EJB are similar in many

regards and have basically the same functionality. However, DCOM runs principally on

Microsoft Windows, whereas EJB can theoretically run on any platform.

DCOM objects are components that must be implemented within a host server. They

export interfaces, each of which contains various methods (functions). Clients can

obtain pointers to these interfaces and then call the methods within them.2

 9

Enterprise JavaBeans reside within a host container, which resides within a host server.

The bean container export methods which EJB clients can call; clients never directly

access an EJB. Instead, EJB clients call container-generated methods which invoke the

beans’ methods.3 There are two types of EJB containers: session and entity. Session

containers hold session beans, which are non-transactional, non-persistent beans. Entity

containers, on the other hand, hold entity beans, which are transactional and persistent.

In addition to being persistent, entity beans directly represent data within a database.

Figure 3 Enterprise JavaBean

For this thesis, I chose to focus upon EJB. Since both DCOM and EJB are similar

component technologies, choosing one over the other should not affect my thesis results.

Server

Interface

Interface Pointer to
Interface

Pointer to
Interface

Interface
DCOM ObjectClient

Figure 2 DCOM

 10

2.2 Rational Rose™

Rational Rose™ is a UML modeling program created by Rational Software Corporation.

Other UML modeling programs include Elixir Technologies’ Elixir Case, Object Domain

Systems’ Object Domain, and Softera’s SoftModeler. Rational Rose can create UML

models from scratch. In addition, it can reverse-engineer UML models from existing

applications and generate code frameworks from UML models. I used Rose to generate

the UML models for my testing tool.

The testing and design methodologies in this thesis should work with any UML-

compliant tool. But, Rose offers the advantage of exposing a well-documented COM-

interface that allows users to manipulate Rose and Rose UML models through other

programs. The software tool that I wrote to implement my modeling and testing

methodologies took advantage of this COM interface to parse Rose UML diagrams.

2.3 UML Interaction Diagrams

One of the constructs of the UML is the interaction diagram. Interaction diagrams

describe the dynamic aspects of a system: they detail various scenarios that can occur

within the system. The diagrams do this by representing the various participants within

an interaction as objects or class instances. These participants relate to one another by

sending message instances. For example, an interaction diagram might model a scenario

where a person drives a car. In the interaction diagram, the object person would send the

message instance to the object car: drive.

Depending on the circumstance, a modeler may choose between two types of interaction

diagrams: sequence diagrams and collaboration diagrams. Sequence diagrams emphasize

the time ordering of messages between objects, and collaboration diagrams focus on the

objects that interact and the relationships between them. Collaboration diagrams tend to

share information with class diagrams, which describe the details of the classes that

specify the objects found in interaction diagrams. Sequence diagrams and collaboration

 11

diagrams are semantically equivalent; modelers may use them interchangeably with no

loss of information.

Figure 4 A Sample Sequence Diagram Created in Rational Rose

My program generates code that implements the actions in interaction diagrams of EJB

objects.

2.4 UML Class Diagrams

UML class diagrams describe all the participants (classes) in a system and how they are

related to each other. Unlike interaction diagrams, class diagrams describe how a system

is structured rather than how it behaves.4

 12

I used class diagrams to describe the structure of EJB systems.

Figure 5 A Sample Class Diagram Created in Rational Rose

2.5 Java

Java is a safe, object-oriented language that is platform independent and supports EJB.

My testing tool generates Java code for its scripts.

2.6 Prior Work

My thesis extends some prior work that a couple people and I had already performed at

Rational Software. We had already done some basic test-script generation from UML

models of COM objects. However, this thesis project is unique because it:

•= Concentrates on automating the testing of EJB objects

•= Identifies problems with modeling specific EJB technologies in UML and Rose

•= Automates database verification

 13

3 Project Description

My thesis project consisted of three primary parts corresponding to my three thesis goals:

3.1 Extending UML

UML, in its current form, is not rich enough to describe interactions in a detailed way.

One of the areas in which it is most lacking is the area of dynamic data correlation.

UML interaction diagrams do not have any standard means of communicating basic

things such as:

•= This function takes as an argument a value which another function returned

•= These two objects are the same

•= Assign this object to be that object

Knowing how to dynamically correlate data is necessary for communicating

meaningfully how to test a component. Therefore, I am using an extension to UML for

this thesis project in order to support dynamic data correlation.

In his thesis work, Correlation of Dynamic Data in the UML Interaction Diagram5,

Jonathan Lie describes extensions to UML interaction diagrams which allow them to

dynamically correlate data. I am using these extensions for my thesis project, with one

exception: due to limitations in Rose, I do not support initializing variables in UML use

case diagrams—only in interaction diagrams.

3.2 Devising a Modeling and Testing Methodology

3.2.1 Modeling EJB’s

There has already been a draft of an EJB/UML mapping submitted to the Java

community: UML Profile For EJB6. I used this document as my basis for modeling

EJB’s. However, this UML profile did not address how to model certain EJB aspects

 14

which I required for my thesis project. Therefore, I devised additional EJB modeling

conventions:

3.2.1.1 <<RelationalTable>> Class

Entity beans directly represent data in a database; they typically map to a single row

within a database table. A UML class diagram which shows a class stereotyped as

<<EJBEntity>> must also have a class stereotyped as <<RelationalTable>> (a stereotype

is a UML mechanism for introducing new modeling elements. So,

<<RelationalTable>>.introducing an <<EJBEntity>> stereotype, for example, means

introducing an EJB Entity bean as a valid modeling element within a UML diagram).

This <<RelationalTable>> class represents the database table to which the

<<EJBEntity>> class maps.

A <<RelationalTable>> class tied to an <<EJBEntity>> class must support the following

tagged values:

Tag Value
DataSourceURL The data source URL identifying this database table
JDBC The JDBC driver to use when connecting to this database

table
User The username to use when logging into this table
Password The password to use when logging into this table

Table 1 <<RelationalTable>> Tags

These tagged values provide sufficient information about how to programmatically

connect to a relational table and manipulate it using JDBC.

As in normal <<RelationalTable>> classes, attributes represent table columns.

3.2.1.2 <<EJBAssociation>> Link

A UML class diagram which depicts EJB classes must have a link stereotyped as

<<EJBAssociation>> between classes with the following stereotypes:

•= <<EJBRemoteInterface>> and <<EJBHomeInterface>>

 15

•= <<EJBRemoteInterface>> and <<EJBEntity>>

•= <<EJBRemoteInterface>> and <<EJBSession>>

•= <<EJBPrimaryKey>> and <<EJBHomeInterface>>

•= <<EJBPrimaryKey>> and <<EJBEntity>>

•= <<EJBPrimaryKey>> and <<EJBSession>>

•= <<EJBPrimaryKey>> and <<RelationalTable>>

•= <<EJBEntity>> and <<RelationalTable>>

This <<EJBAssociation>> link identifies which classes relate to the single EJB

represented by the <<EJBEntity>> or <<EJBSession>> class. The <<EJBAssociation>>

link is necessary in the event that the class diagram holds more than one EJB. If this were

the case, then it would not be clear which group of EJB interfaces comprised a single

EJB. For example, in a system with two EJB’s, there would be two Home Interfaces and

multiple Remote Interfaces. Without <<EJBAssociation>> links linking specific remote

interfaces to specific home interfaces, one would not be able to distinguish readily which

remote interfaces grouped with which home interface.

3.2.1.3 EJBCorrespondingDBColumn Tag

This tag applies to <<EJBEntity>> and <<EJBPrimaryKey>> class attributes:

Tag Value
EJBCorrespondingDBColumn The name of the database column to which this attribute maps

in the EJB’s associated relational table

Table 2 EJBCorrespondingDBColumn Tag

3.2.1.4 Modifies Tag

This tag applies to <<EJBEntity>>, <<EJBSession>>, and <<EJBPrimaryKey>>

operations:

Tag Value
Modifies A semi-colon delimited list of the attributes which this

operation modifies

 16

Table 3 Modifies Tag
The following figure illustrates a UML class diagram, modeled using the UML profile

and my own additions:

Figure 6 A Class Diagram with an EJB

In this diagram, there is an EJB for a bank account. It is implemented through the

<<EJBEntity>> class, BankAccountsBean. This class is associated with the database

table, Accounts—as the <<EJBAssociation>> link between these two classes indicates.

The Primary Key for this EJB is BankAccountsKey, also indicated by the

<<EJBAssociation>> link between the <<EJBPrimaryKey>> and the <<EJBEntity>>

classes. The home interface and remote interface for this bean are, respectively,

 17

BankAccountsHome and BankAccounts. They are both linked together with

<<EJBAssociation>> links and tied to the primary key.

Note that all the classes and interfaces which comprise the bank account EJB are glued

together with <<EJBAssociation>> links. If there were multiple EJB’s within this class

diagram, it might not be clear exactly which classes belonged to which EJB. For

example, it might be difficult to discern which <<EJBPrimaryKey>> classes

corresponded to which <<EJBEntityClass>> without an explicit <<EJBAssociation>>

link.

3.2.1.5 EJB’s in Interaction Diagrams

Interaction diagrams describe how objects in a system behave with respect to each other.

Thus, developers who want to explain how to use an EJB can do so with an interaction

diagram. One of the things he must decide, though, is what level of detail to put into the

interaction diagram. In the case of modeling EJB’s, beans require initialization. This

initialization is a standard process for all Enterprise Java Beans, so it does not add much

value to model the entire initialization process. On the other hand, someone looking at an

interaction diagram with an EJB in it should understand how to create that EJB precisely

the way that the diagram intends. Thus, the interaction diagram should contain just

enough data for modeling EJB initialization—but not too much, lest the diagram become

cluttered with useless details.

For this thesis project, I have defined what information a modeler must put into an

interaction diagram to initialize an EJB. I have chosen to model only the critical steps for

defining the creation of the EJB. All other EJB initialization steps are essentially the

same and do not communicate new information.

Once a modeler has initialized his EJB, he can treat his EJB object as no different from

any other type of object—allowing him to design his diagram as he would any interaction

 18

diagram. Interaction diagrams modeling EJB usage must be specified at the instance

level.

3.2.1.5.1 Initializing Entity Beans

To initialize an entity bean, the interaction diagram must contain the following two

messages in order:

1. A message to an instance of the <<EJBPrimaryKey>> class initializing that object

instance.

Let myKey be the name of an <<EJBPrimaryKey>> object, whose class is KeyClass.

Then, this message must have the form:

myKey := KeyClass([arguments])

2. A message to the EJB’s home interface (<<EJBHomeInterface>>) initializing the

remote interface.

Let myRemoteInterface be the name of the EJB’s remote interface and

myHomeInterface be the name of the EJB’s home interface. Furthermore, let myKey

be the primary key which was initialized in the previous step. Then, the message

must have the form:

MyRemoteInterface := findByPrimaryKey(myKey)

After these two steps, the EJB is initialized, and the modeler may send messages to the

EJB remote interface.

 19

Figure 7 A Sequence Diagram Initializing and Using an Entity Bean

3.2.1.5.2 Initializing Session Beans

Initializing Session beans in an interaction diagram only requires one message to the

session bean’s home interface. Let myRemoteInterface be the name of the EJB’s remote

interface. Then, this message to the home interface must have the form:

MyRemoteInterface := create([arguments])

After this step, the session bean is initialized.

 20

Figure 8 A Sequence Diagram Initializing and using a Session Bean

3.2.2 Testing EJB’s

3.2.2.1 Functional Testing

Testing EJB’s requires knowing what the EJB’s are, what to do with them, and how they

should behave. If a tester wishes to test a bean and has a UML model of that bean,

created according to my modeling conventions, then he can extract all the information

from the model which he needs for verification. The tester can do this by performing the

following steps:

1. Identify within the class diagram the EJB (and its related classes) to test.

To do this, the tester must select a class stereotyped as <<EJBEntity>> (an entity

bean) or <<EJBSession>> (a session bean). Then, he must identify the bean’s

corresponding remote interface and home interface. If the EJB is an entity bean, he

must also find its primary key class. All of these classes should be linked, directly or

indirectly, with <<EJBAssociation>> links. Thus, the tester must simply just select a

bean and find its related classes by following links.

 21

2. Select an interaction diagram which depicts the EJB to test.

3. Initialize and drive the EJB as the interaction diagram describes.

For example, in figure 6, the tester could choose to test BankAccountsBean, an

<<EJBEntityBean>> component. Then, he could find the remote interface,

BankAccounts, by following an <<EJBAssociation>> link. From BankAccounts, he

could find the home interface, BankAccountsHome. He could then find the Primary Key

class, BankAccountsKey, by following an <<EJBAssoication>> link from the home

interface.

Once he had identified these classes, the tester could select to use the interaction diagram

shown in figure 7 to test BankAccountsBean. This diagram says to create a

BankAccountsKey named myKey. Next, it says to assign the remote interface object,

myBankAccounts, to the value returned by calling the home interface’s

findByPrimaryKey() method. Finally, it states to call myBankAccounts’ method,

getBalance(). This sequence of steps corresponds to the java code:

BankAccountsKey myKey = null;
myKey = new BankAccountsKey(1);
BankAccounts myBankAccounts = null;
try
{

myBankAccounts = myBankHome.findByPrimaryKey(myKey);
}
catch (Exception ce)
{

return;
}

try
{

myBankAccounts.getBalance(2);
}
catch (Exception e)
{

return;
}

Following this simple procedure enables the tester to test a component he might not be

able to test without a UML model explaining what to do. Because the component

probably only exposes an interface and requires special initialization, the tester would not

 22

know how to create the component if he only had the component and its API.

Furthermore, he would not know how the component was supposed to perform or what it

was intended to do. The UML model explains this, allowing him to test the component.

3.2.2.2 Database Verification

In addition to helping a tester know how to initialize and test an Enterprise Java Bean’s

functionality, a UML model can help a tester perform database verification on an entity

bean. The tester can use the UML model to perform database verification by doing the

following:

1. Find the entity bean’s corresponding relational table.

The tester can do this by following an <<EJBAssociation>> link from the bean’s

primary key class.

2. Find the <<EJBRemote>> methods in the bean’s implementation class

(<<EJBEntity>> class) corresponding to the methods being called from the bean’s

remote interface.

If the UML interaction diagram depicts calling a method, foo(), from the EJB’s

remote interface, then the tester must find the corresponding method named foo() and

streotyped <<EJBRemoteMethod>> in the <<EJBEntity>> class.

3. Look at the modifies tag for each method in the bean’s implementation class and note

what, if any, bean properties these methods modify.

4. For each property which a method modifies, find that property’s

EJBCorrespondingDBColumn tag and note to which table column this property

corresponds.

5. For each database column noted in the preceding step, perform a SQL query to verify

its value in the database.

For example, figure 9 shows a collaboration diagram of an accounts transfer:

 23

Figure 9 A Collaboration Diagram of a Transfer

The person testing myBankAccounts in this diagram might want to verify that the account

balances in myBankAccounts’ corresponding database table were valid after calling

myBankAccounts’ transfer() method. He would know to do this and know how to do this

by first looking in myBankAccounts’ class diagram (figure 6) and finding the

<<RelationalTable>>, Accounts. Then, as he examined the messages sent to

myBankAccounts, he would find that the method, transfer(), modifies two properties:

m_dCheckingBalance and m_dSavingsBalance. He would then find that these properties

correspond to the database columns, CHECKING_BALANCE and SAVINGS_BALANCE,

respectively. He would then perform SQL queries upon these two columns to verify their

values.

Following these steps allows a software tester to understand how an EJB modifies

database values and perform database verification. Without a UML model, the tester

would not have enough information from just the EJB do know how to test that it was

functioning properly when updating database values.

 24

3.3 Creating a Software Tool

3.3.1 Software Architecture

I created a software application, EJBTest, to apply my EJB modeling and testing

methodologies. EJBTest is just a simple shell, though—I architected my application so

that all of its real functionality resides within a Windows dll, EJBScript. Putting the

functionality into a dll enables other applications in addition to EJBTest to validate

EJB’s.

Figure 10 Component Diagram of EJBTest

EJBScript performs by gathering information from its user about what EJB to test and

then generating Java test scripts to test that EJB. To do this, it first prompts its user to

select a Rational Rose file containing a UML model of an EJB system. Then, it asks the

user to identify the class diagram in that model which describes the EJB system. Then, it

asks the user to select an interaction diagram stating how to drive the EJB. Finally, it

generates and returns Java code implementing the interaction diagram’s depiction.

In addition to creating EJBTest and EJBScript, I wrote a Java package,

com.rational.test.ejb, to facilitate logging and database verification. The Java code which

EJBScript generates uses this package to allow the tester to log errors and results and

examine his database.

 25

Figure 11 Class Diagram of com.rational.test.ejb Java Package

3.3.2 Sample Walk-Through

3.3.2.1 Step 1: Start Application

EJBTest launches as a simple dialog box which starts the script-generation process. All a

user has to do is press the dialog’s button.

 26

Figure 12 EJBTest Start

3.3.2.2 Step 2: Select Project Directory

The first thing EJBTest does is prompt its user for a project directory. The program will

store the script and its associated log and verification point files within this directory.

Figure 13 Select Project Directory, EJBTestScripts

3.3.2.3 Step 3: Name Script

Next, EJBTest asks its user to name the script it will be generating. EJBTest will save

the script with this name, and it will also create a new directory under the project

directory with this script’s name.

Figure 14 Name the Test Script TestTransferScript

 27

In this script directory, EJBTest will also create sub-directories named log and vps. It

will store the generated script’s log files in log and the script’s verification-points files in

vps.

Figure 15 The Script Directory, TestTransferScript, under the Project Directory,
EJBTestScripts

3.3.2.4 Step 4: Select Rose Model

EJBTest will then prompt the user to select a Rational Rose model which contains the

UML diagrams of the EJB to be tested. If the user happens to run EJBTest from within

Rose, however, Rose may already have a model open. In that case, EJBTest will use the

currently-open model and skip this step.

Figure 16 Select Rose Model, BankSystemFinal.mdl

3.3.2.5 Step 5: Select Class Diagram

Once EJBTest has opened the selected Rose model, it will scan the model for class

diagrams. Then, it will present these class diagrams to the user and ask him which one

contains the EJB system he would like to test.

 28

Figure 17 Select Class Diagram, bank.accounts Classes

3.3.2.6 Step 6: Select Interaction Diagram

After selecting a class diagram, the user must select an interaction diagram which models

how to use the EJB he wants to test. Note that Rational Rose calls interaction diagrams

scenario diagrams; hence, EJBTest prompts for scenario diagrams rather than interaction

diagrams.

Figure 18 Select Interaction Diagram, TransferMoney ToChecking

 29

3.3.2.7 Step 7: Create a Log

The script that EJBTest generates supports logging through the class Log in the

com.rational.test.ejb package. Every time the user runs the generated script, a new log

file is created, and the results of that run are stored in that log file. So, if a user has run

the script seven times, then there will be seven log files—one for each run. Each of these

log files will have the same base name with a number appended to it. This step prompts

the user for the base name of the log.

Figure 19 Naming the log TransferLog

3.3.2.8 Step 8: Select an EJB

The user has already selected a class diagram and interaction diagram. Now, EJBTest

displays a list of all EJB’s in the selected interaction diagram and asks the user which one

he would like to test.

 30

Figure 20 Selecting the EJB, myBankAccounts

3.3.2.9 Naming the VP

If the user is testing an entity bean, then EJBTest will generate database verification code

for the bean as part of the test script. Each run of the script will save the results of its

database verifications into a verification-point file. So, if the user runs the generated

script eight times, then there will be eight verification-point files, with each one

containing the database results from its corresponding run. Each of these verification-

point files will have the same base name with a number appended to it. This step

prompts the user for the base name of the verification-file.

Figure 21 Naming the Verification Point file TransferVP

 31

3.3.2.10 Generating the Script

At this point, EJBTest has enough information to generate its script. It places the new

test script in the Script directory and exits.

Figure 22 Finished Generating Script

The user may now take the newly generated Java script, compute its classpath, compile it,

and execute it. The sample script generated from this application walk-through is located

in Appendix A. A sample verification-point file created by running the script is found in

Appendix B. A sample log file created from running the script is located in Appendix C.

To summarize the script and its results, EJBTest generated a Java script which tests the

entity bean, myBankAccounts. It performs a series of balance checks and then an

accounts transfer upon the bean. EJBTest recognizes that the bean’s transfer() method

modifies the CHECKING_BALANCE and SAVINGS_BALANCE columns in the

associated database table. So, the generated script queries the database for these values

and saves them into a verification-point file found in Appendix B. The generated script

also saves a log, like the one in Appendix C.

3.3.3 Verifying Results

The first time the user runs the generated script, the results are stored in base log and

verification-point files. Every subsequent run of the script will store its results in a new

log and verification-point file. Furthermore, it will also compare its database-verification

results with those of the base run. If the new run results in the same values as the base

run, then the log notes that nothing has changed in the EJB. If the results are different,

however, then the EJB has functionally changed since the last time the user tested it.

Therefore, there is a potential error in the EJB, and the log notes that fact. Appendix C

shows a log file pointing out an error.

 32

These log and verification-point files help the user automate testing—all the user must do

is run the script. If the EJB is broken, he will see it from the files. If the results are the

same, he will also note this from the files. Thus, if the tester receives a new version of a

bean and wants to verify that it still performs old methods properly, he can quickly do so

with his generated script.

4 Thesis Results

My software tool, EJBTest, serves to validate my UML extensions as well as my EJB

modeling and testing methodologies; if EJBTest is functional and valuable, then my

extensions and methodologies are adequate for automating the testing of EJB’s.

I tested EJBTest on a variety of sample EJB’s, modeled with my extensions and

conventions. I tested both session beans and entity beans, and in all cases, EJBTest

successfully generated scripts which drove those beans. Furthermore, it successfully

checked database values which entity beans modified.

Most of these EJB’s I tested were small beans with only a few functions. The one

relatively large EJB I wrote was the bank account EJB which I presented earlier in

section three. The relative sizes of these beans does not really matter, though. My

methodology only tests EJB’s one scenario at a time—it does not generate scripts for the

entire bean at once. Furthermore, a bean can have a relatively large number of

interaction scenarios compared to its number of functions.

For example, for the bank account bean, a person could login and get his balance. Or, he

could login and make a deposit and get his balance. Or, he could login, make a deposit,

make a transfer, and then get his balance. Or, he could login, make a transfer, and then

make a withdrawal, and then get his balance, and so on. Clearly, there are a number of

various interactions that could occur with even a small set of functions. A real tester

probably would not be interested in testing all of these various scenarios. But, the fact

 33

that my methodology and software is able to generate tests for all these scenarios

validates my work.

Although I found that my modeling and testing methodologies perform well in principle,

there are some limitations to automating component testing with UML diagrams. First of

all, UML does not have a single, standard way of modeling looping and branching

constructs within interaction diagrams. There are various ways in which a person might

model looping or branching, and they allow using free text to describe what is happening

in a diagram. Consequently, it can be difficult for a an automated-testing program to

decipher a diagram that involves iteration or if statements.

One solution to this problem would be to define a standard way to model looping and

branching within diagrams containing EJB’s. However, since Rational Rose does not

support modeling looping or branching at all within interaction diagrams, I did not

explore doing this. I do not see any reason why this would not be possible, though.

Still, if a person wanted to test an EJB that involved branching, he could do so in a

limited fashion with my EJBTest software. To test branching logic, he could create an

interaction diagram for each possible path that a program might take. This is clearly not

ideal, but it is perhaps better than nothing.

Another potential limitation to my testing methodology is that the person designing (and

maybe even implementing) the EJB is also the person designing the UML diagrams for

testing the EJB. This person will obviously have pre-conceived notions about how to use

the EJB, and he might not be thorough in designing tests for his component due to his

lack of objectivity. However, a third party might not be able to test that component at all

without some explanation from the component’s designer since the component may not

expose a clear interface. Therefore, this seems to be more a limitation of component-

testing than my methodology for automating component testing.

 34

One other consideration for using UML to describe how to test a component is that as the

component becomes more complicated in its interactions, the UML diagrams describing

those interactions become more complicated as well. If the component grew too

complex, the proper UML diagram for that component might be too unwieldy for

someone to model properly. But, UML is a simple, graphical language. If a component

did grow to the point where a UML diagram of that component was too difficult to

understand or create, then the component itself is probably too complex. After all, if a

person cannot clearly and thoroughly explain what a component does, how can he

possibly hope to test it completely—automated or otherwise?

All of these issues do not seem too problematic compared to the advantages of

automating component-testing with UML. UML is a rich, yet simple, and widely-used

language. With the proper extensions and conventions, people can use it to describe how

to test a component and automate testing of that component. And, because most UML

modelers model during the design phase of a project, they will not have to do significant

extra work to facilitate automated component testing—they can simply re-use their

existing models.

Based upon these results, my UML work and my methodologies are for sufficient for

automating component-testing. If someone wishes to model and test an EJB, he may

simply follow my techniques. Then, he could use EJBTest to automate testing of that

EJB. A tester wouldn’t need someone to explain to him how to initialize an EJB, what to

do with that bean, or if that bean manipulated a database. All this information is captured

within the UML model, so the tester just needs to input the UML model into a program

which automates testing for him. My EJB modeling and testing practices enable testers

to validate components—which they might not be able to otherwise test—in a methodical

manner.

5 Conclusion

In this thesis, I have described a methodology for automating component testing. I have

submitted extensions to UML and presented modeling and testing methodologies.

 35

Finally, I have created a software application which successfully puts these procedures to

practice.

One of the interesting aspects of this thesis project is that I am treating UML not just as a

means to design or model an application for development—I am using UML to model for

testability as well. The UML/EJB profile submitted by Inline and Sun only maps enough

information for designing new EJB software. I had to add further modeling conventions

to allow these models to contain testable information as well. This extra knowledge,

however, is minimal, and people may also use it for design purposes.

By treating UML models as a document of design for both architecture and testability,

my thesis project takes a non-traditional approach to software testing. Software

developers typically first design and write their application. Then, when they are nearly

done with their work, they begin to test their code. This thesis takes the approach that

programmers can integrate testing throughout their development cycle rather than simply

test towards the end of a project—as soon as the programmers have started to design their

application, they can begin to think about what they need to do in order to verify that it

works. Indeed, they can begin to test their early work and even their design.

Putting testable information into UML models enables developers to find errors in their

work much earlier in their programming process. For example, as soon as a developer

has finished working on a particular method within an EJB, he can test it in an automated

manner with my EJBTest program. This will allow him to have greater confidence in his

overall work—particularly if he decides to call this method within another method. It

can also increase efficiency.

Designing for testability and performing early testing are not currently wide-spread

software engineering practices. However, as my thesis project demonstrates, they can

help improve software quality in significant ways. These two practices facilitate

automated component-testing—something that is extremely valuable to many developers

but was previously unavailable. It would be interesting to explore what other software

 36

quality assurance techniques or advantages might come from approaching software

testing as an integral part of design rather than an after-thought in the application-

development process.

6 Appendix A: Sample Script Generated by EJBTest

//Script to test EJB: myBankAccounts
// in Scenario Diagram: ToChecking
// in Rose model:
D:\Programs\Rational\Rose2000\models\BankSystemFinal.mdl
//Script generated on 12/07/99 11:47:23

//NOTE: This script is initialized to work for IBM Visual Age 3.0. If
you //use some other Java IDE, you may have to modify the
initialization code

//NOTE: You may need to add more, relevant import statements to this
code

import bank.accounts.*;
import com.rational.test.ejb.*;
import java.rmi.*;
import java.security.Identity;
import java.util.Properties;
import javax.ejb.*;
import java.lang.*;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import java.io.*;

public class TestTransferScript {

public static void main(java.lang.String[] args)
{

//create the FileDBVerifier

FileDBVerifier TransferVP = null;
try
{

TransferVP = new
FileDBVerifier("COM.ibm.db2.jdbc.app.DB2Driver", "jdbc:db2:tmp_db", "",
"", "C:\\EJBTestScripts\\TestTransferScript", "TransferVP");

}
catch (NoDBConnectionException e)
{

System.out.println("exception: " + e);
return;

}
catch (FileNotFoundException fe)
{

System.out.println("exception: " + fe);
return;

 37

}
catch (IOException ioe){

System.out.println("exception: " + ioe);
return;
}
//initialize the log

Log TransferLog = null;
try
{

TransferLog = new Log(TransferVP, "TransferLog");
}
catch (FileNotFoundException fe)
{

System.out.println(fe);
return;

}
catch (NullPointerException npe)
{

System.out.println(npe);
return;

}
java.util.Date myDate = new java.util.Date();
myDate = new java.util.Date();
try
{

TransferLog.append("Begin testing of myBankAccounts",
"EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " + io_exc);
}
//create the EJB

//get the initial context
javax.naming.InitialContext initContext = null;
Properties p = new Properties();
p.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");
try
{

initContext = new javax.naming.InitialContext(p);
}
catch (javax.naming.NamingException e)
{

myDate = new java.util.Date();
try
{

TransferLog.append("Error retrieving the initial
context: " + e, "EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " +
io_exc);

}

 38

return;
} // endtry

//get the home interface

BankAccountsHome theBankHome = null;
try
{

java.lang.Object o = initContext.lookup("BankAccounts");
//assuming the JNDI name is the remote interface name

if (o instanceof org.omg.CORBA.Object)
theBankHome = (BankAccountsHome)

PortableRemoteObject.narrow(o, bank.accounts.BankAccountsHome.class);
}
catch (javax.naming.NamingException e)
{

myDate = new java.util.Date();
try
{

TransferLog.append("Error retrieving the home
interface: " + e, "EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " +
io_exc);

}

return;
} // endtry

BankAccountsKey myKey = null;
int iBankAccountPK = 1;
myKey = new BankAccountsKey(iBankAccountPK);
BankAccounts myBankAccounts = null;

try
{

myBankAccounts = theBankHome.create(myKey);
}
catch (javax.ejb.CreateException e)
{

try
{

myBankAccounts = theBankHome.findByPrimaryKey(myKey);
}
catch (Exception ce)
{

myDate = new java.util.Date();
try
{

TransferLog.append("Error retrieving the remote
interface: " + ce, "EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

 39

System.out.println("error writing to log: " +
io_exc);

}

return;
}

}
catch (java.rmi.RemoteException re)
{

myDate = new java.util.Date();
try
{

TransferLog.append("Error creating the remote
interface: " + re, "EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " +
io_exc);

}

return;
}
double sav_amt = 0;

try
{

sav_amt = myBankAccounts.getBalance(1);

}
catch (Exception e)
{

myDate = new java.util.Date();
try
{

TransferLog.append("Exception thrown: " + e,
"EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " +
io_exc);

}

}

double ret_getBalance = 0;

try
{

ret_getBalance = myBankAccounts.getBalance(0);

}
catch (Exception e)
{

myDate = new java.util.Date();
try

 40

{
TransferLog.append("Exception thrown: " + e,

"EJBScript", myDate.toString());
}
catch(IOException io_exc)
{

System.out.println("error writing to log: " +
io_exc);

}

}
double dAmt = 50;

double ret_transfer = 0;

try
{

ret_transfer = myBankAccounts.transfer(1, 0, dAmt);

}
catch (Exception e)
{

myDate = new java.util.Date();
try
{

TransferLog.append("Exception thrown: " + e,
"EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " +
io_exc);

}

}

//////////////////////////////////
//DATABASE VERIFICATION CODE
//////////////////////////////////

try
{

TransferVP.queryToFile("select CHECKING_BALANCE from
Bank.Accounts where ACCOUNT_NUMBER = 1", "CHECKING_BALANCE", "DOUBLE");

}
catch (Exception ex)
{

myDate = new java.util.Date();
try
{

TransferLog.append("exception: " + ex, "EJBScript",
myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " +
io_exc);

 41

}

return;
}

try
{

TransferVP.queryToFile("select SAVINGS_BALANCE from
Bank.Accounts where ACCOUNT_NUMBER = 1", "SAVINGS_BALANCE", "DOUBLE");

}
catch (Exception ex)
{

myDate = new java.util.Date();
try
{

TransferLog.append("exception: " + ex, "EJBScript",
myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " +
io_exc);

}

return;
}

//compare the results
try
{

if (TransferVP.getCurrentNumber() > 0)
{

if (TransferVP.compareWithBase())
{

myDate = new java.util.Date();
try
{

TransferLog.append("The results of this
run are the same as the base run.", "EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log:
" + io_exc);

}

}
else
{

myDate = new java.util.Date();
try
{

TransferLog.append("The results of this
run are DIFFERENT from the base run!", "EJBScript", myDate.toString());

}
catch(IOException io_exc)

 42

{
System.out.println("error writing to log:

" + io_exc);
}

}
}

}
catch (Exception exc)
{

System.out.println("exception: " + exc.getMessage());
}
myDate = new java.util.Date();
try
{

TransferLog.append("End testing of myBankAccounts",
"EJBScript", myDate.toString());

}
catch(IOException io_exc)
{

System.out.println("error writing to log: " + io_exc);
}

}
}

7 Appendix B: Sample VP File From Run of Generated Script

Data Source: jdbc:db2:tmp_db
SQL Query: select CHECKING_BALANCE from Bank.Accounts where
ACCOUNT_NUMBER = 1
CHECKING_BALANCE: 1001.34

Data Source: jdbc:db2:tmp_db
SQL Query: select SAVINGS_BALANCE from Bank.Accounts where
ACCOUNT_NUMBER = 1
SAVINGS_BALANCE: 10493.35

8 Appendix C: Sample Log File From Run of Generated Script

[BEGIN ENTRY]
Author: EJBScript
Written: Tue Dec 07 14:35:25 EST 1999
Begin testing of myBankAccounts

[BEGIN ENTRY]
Author: EJBScript
Written: Tue Dec 07 14:35:30 EST 1999
The results of this run are DIFFERENT from the base run!

[BEGIN ENTRY]
Author: EJBScript
Written: Tue Dec 07 14:35:30 EST 1999
End testing of myBankAccounts

 43

9 References

1 Grady Booch, Ivar Jacobson, James Rumbaugh. The Unified Modeling Language

User Guide. Reading, Massachusetts: Addison-Wesley, 1999.
2 Chappell, David. Understanding ActiveX and Ole. Redmond, Washington:

Microsoft Press, 1996.
3 Raj, Gopalan Suresh. Enterprise JavaBeans.

http://www.execpc.com/~gopalan/java/ejb.html
4 Alhir, Sinan Si. UML In a Nutshell. Cambridge: O’Reilly, 1998.
5 Lie, Jonathan. Correlation of Dynamic Data in the UML Interaction Diagram.

Cambridge, 1999.
6 Inline Software Corporation and Sun Microsystems, Inc. UML Profile for EJB.

http://www.javasoft.com/aboutJava/communityprocess/jsr/jsr_026_uml.html

	Abstract
	Introduction
	The problem with testing multi-tier, component-based programs
	Modeling software with UML
	Thesis Goals
	Extending UML
	Modeling and testing methodology
	Software tool

	What it means to test
	Verification of results
	Understanding what to test and in what sequence

	Background
	Component Architectures
	Rational Rose™
	UML Interaction Diagrams
	UML Class Diagrams
	Java
	Prior Work

	Project Description
	Extending UML
	Devising a Modeling and Testing Methodology
	Modeling EJB’s
	<<RelationalTable>> Class
	<<EJBAssociation>> Link
	EJBCorrespondingDBColumn Tag
	Modifies Tag
	EJB’s in Interaction Diagrams
	Initializing Entity Beans
	Initializing Session Beans

	Testing EJB’s
	Functional Testing
	Database Verification

	Creating a Software Tool
	Software Architecture
	Sample Walk-Through
	Step 1: Start Application
	Step 2: Select Project Directory
	Step 3: Name Script
	Step 4: Select Rose Model
	Step 5: Select Class Diagram
	Step 6: Select Interaction Diagram
	Step 7: Create a Log
	Step 8: Select an EJB
	Naming the VP
	Generating the Script

	Verifying Results

	Thesis Results
	Conclusion
	Appendix A: Sample Script Generated by EJBTest
	Appendix B: Sample VP File From Run of Generated Script
	Appendix C: Sample Log File From Run of Generated Script
	References

