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Abstract

Quantum signal processing (QSP) as formulated in this thesis, borrows from the formalism
and principles of quantum mechanics and some of its interesting axioms and constraints,
leading to a novel paradigm for signal processing with applications in areas ranging from
frame theory, quantization and sampling methods to detection, parameter estimation, co-
variance shaping and multiuser wireless communication systems. The QSP framework is
aimed at developing new or modifying existing signal processing algorithms by drawing a
parallel between quantum mechanical measurements and signal processing algorithms, and
by exploiting the rich mathematical structure of quantum mechanics, but not requiring a
physical implementation based on quantum mechanics. This framework provides a unify-
ing conceptual structure for a variety of traditional processing techniques, and a precise
mathematical setting for developing generalizations and extensions of algorithms.

Emulating the probabilistic nature of quantum mechanics in the QSP framework gives
rise to probabilistic and randomized algorithms. As an example we introduce a probabilistic
quantizer and derive its statistical properties. Exploiting the concept of generalized quan-
tum measurements we develop frame-theoretical analogues of various quantum-mechanical
concepts and results, as well as new classes of frames including oblique frame expansions,
that are then applied to the development of a general framework for sampling in arbitrary
spaces. Building upon the problem of optimal quantum measurement design, we develop
and discuss applications of optimal methods that construct a set of vectors with a given
inner product structure that are closest in a least-squares sense to a given set of vectors.
We demonstrate that, even for problems without inherent inner product constraints, im-
posing such constraints in combination with least-squares inner product shaping leads to
interesting processing techniques that often exhibit improved performance over traditional
methods. In particular, we formulate a new viewpoint toward matched filter detection that
leads to the notion of minimum mean-squared error covariance shaping. Using this concept
we develop an effective linear estimator for the unknown parameters in a linear model,
referred to as the covariance shaping least-squares estimator. Applying this estimator to a
multiuser wireless setting, we derive an efficient covariance shaping multiuser receiver for
suppressing interference in multiuser communication systems.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Electrical Engineering
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Chapter 1

Introduction

Quantum signal processing (QSP) as formulated in this thesis, borrows from the principles
of quantum mechanics and some of its interesting axioms and constraints. However, in
contrast to such fields as quantum computing and quantum information theory, it does not
depend on the physics associated with quantum mechanics. Consequently, in developing the
QSP framework we are free to impose quantum mechanical constraints that we find useful
and to avoid those that are not. In essence, the QSP framework is aimed at developing
new or modifying existing signal processing algorithms by drawing a parallel between quan-
tum mechanical measurements and signal processing algorithms, and by exploiting the rich
mathematical structure of quantum mechanics, but not requiring a physical implementation
based on quantum mechanics. This framework provides a unifying conceptual structure
for a variety of traditional processing techniques, and a precise mathematical setting for
developing generalizations and extensions of algorithms, leading to a novel paradigm for
signal processing with applications in areas ranging from frame theory, quantization and
sampling methods to detection, parameter estimation, covariance shaping and multiuser

wireless communication systems.

There are many examples in the signal processing literature in which new classes of algo-
rithms have been developed by artificially imposing physical constraints on implementations
that are not inherently subject to those constraints. One class of well known examples is
wave digital filters [1], which exploit consequences of energy conservation inherent to ana-
log implementations. A direct result of the principle of conservation of energy is that, in

contrast to digital filters, analog filters implemented with passive elements have the desir-

21



able property that they are guaranteed to be stable, even in the presence of element drift
or inaccuracies. The general framework of wave digital filters is based on paralleling the
energy conservation constraint in the form of a set of concepts referred to as pseudo-energy
and pseudo-passivity.

Besides imposing constraints, nature exhibits a variety of behaviors that are potentially
interesting to emulate in a wide range of contexts. Using nature as a metaphor we may syn-
thesize systems capitalizing on particular aspects of nature. For example, a diverse collection
of natural phenomena exhibit fractal behavior, perhaps suggesting that fractal geometry is
somehow optimal or efficient. Whether or not this is truly the case, the fractal-like aspects
of nature and related modeling have inspired interesting signal processing paradigms that
are not constrained by the physics. For example, fractal modulation [2] emulates the fractal
characteristic of nature, resulting in a potentially interesting method for communicating
over a particular class of unreliable channels. Likewise, the chaotic behavior of certain
features of nature have inspired new classes of signals for secure communications, remote
sensing, and a variety of other signal processing applications [3, 4, 5]. Other examples of al-
gorithms using physical systems as a simile are solitons [6], genetic algorithms [7], simulated
annealing [8], and neural networks [9].

These examples underscore the fact that even in signal processing contexts that are not
constrained by the laws of physics, exploiting laws of nature can inspire new methods for
algorithm design and may lead to interesting, efficient and effective processing techniques.

Three fundamental inter-related underlying principles of quantum mechanics are the
concept of a measurement, the principle of measurement consistency, and the principle of
quantization of the measurement output. In a broad sense, the terms measurement, mea-
surement consistency and output quantization are well known in signal processing, although
not with the same precise mathematical interpretation and constraints as in quantum me-
chanics.

In signal processing, the term measurement can be given a variety of precise or imprecise
interpretations. However, as discussed in Section 1.1 of the introduction and in Chapter 3,
in quantum mechanics measurement has a very specific definition and meaning, much of
which is carried over to the QSP framework. Similarly, in signal processing, quantization
is thought of in fairly limited terms. In quantum mechanics, quantization of the measure-

ment output is a fundamental underlying principle and applying this principle along with
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the quantum mechanical notions of measurement and consistency, leads to some intrigu-
ing generalizations of quantization as typically viewed in signal processing. Measurement
consistency also has a precise meaning in quantum mechanics, specifically that repeated
applications of a measurement must yield the same outcome. A similar consistency con-
cept is the basis for a variety of signal processing techniques including signal estimation,
interpolation, and quantization methods. Some early examples of consistency as it typi-
cally arises in signal processing are the interpolation condition in filter design [10], and the
condition for no intersymbol interference in waveforms for pulse amplitude modulation [11].
More recent examples include perfect reconstruction filter banks [12, 13], multiresolution
and wavelet approximations [14, 15], and sampling methods in which the traditional per-
fect reconstruction requirement is replaced by the less stringent consistency requirement
[16, 17, 18, 19]. Here again, as developed in this thesis, viewing measurement consistency in
a broader framework motivated by quantum mechanics leads to some new and interesting

signal processing algorithms.

Each of the consistent signal processing algorithms cited above can be described by a
linear operator operating on an input signal. Relaxing the requirement for linear processing
allows for a broader class of consistent algorithms that can be viewed as generalized quan-
tizers. As part of the thesis we develop a general framework for signal processing algorithms
based on the quantum mechanical consistency axiom, which encompasses linear algorithms
and nonlinear quantizers as special cases. The algorithms we develop follow from imposing
the quantum mechanical interpretation of measurement, quantization and consistency, and
by exploiting the formalism and some of the interesting constraints of quantum mechanics
to the development of signal processing algorithms, leading to a new framework which we

call Quantum Signal Processing (QSP).

QSP imposes the quantum mechanical interpretation of the concepts of measurement,
quantization and consistency on signal processing algorithms, and borrows further from the
formalism and principles of quantum mechanics and some of its interesting constraints. For
example, when using quantum systems in a communication context a fundamental problem
that arises is the quantum detection problem which is subject to the constraints of quantum
physics. The constraints imposed in the quantum detection problem suggest some intrigu-
ing signal processing algorithms that we explore as part of our framework. As outlined

further in this introduction, this approach leads to a new paradigm for signal processing
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with applications in a wide range of areas including frame theory, quantization, sampling,
parameter estimation, covariance shaping, detection and multiuser wireless communication
systems. This thesis is about development and application of this new framework.

In the next section, we sumimarize the basic principles of measurement, consistency and
quantization as they relate to quantum mechanics, and outline the key elements and con-
straints in the quantum detection problem. In Section 1.2 we indicate how these principles

and constraints will be applied in the framework of QSP.

1.1 Quantum Systems

In both signal processing and quantum mechanics, the setting we consider is an arbitrary

Hilbert space H. The elements of H are referred to as vectors or signals interchangeably.
A quantum system in a pure state is characterized by a normalized vector in H. In-

formation about a quantum system is extracted by subjecting the system to a quantum

measurement.

1.1.1 Quantum Measurement

A gquantum measurement is a nonlinear (probabilistic) mapping, that in the simplest case
can be described in terms of a set of measurement vectors {y;,7 € Z} that span measurement
subspaces {S; C H,i € I}, where Z denotes an index set. The laws of quantum mechanics
impose the constraint that the vectors u; must be orthonormal. In the more general case,
the quantum measurement is described in terms of a set of projection operators {P;,7 € 7}
onto subspaces {S; C H,i € Z}, where from the laws of quantum mechanics these pro-
jections must form a complete set of orthogonal projections. In quantum mechanics, the
outcome of a measurement is inherently probabilistic, with the probabilities of the out-
comes of any conceivable measurement determined by the state vector. The measurement
collapses (projects) the state of the quantum system onto a state that is compatible with
the measurement outcome so that the final state of the system is in general different than
the original state.

Measurement consistency is a fundamental postulate of quantum mechanics, i.e., re-
peated measurements on a system must yield the same outcomes; otherwise we would not

be able to confirm the output of a measurement. Therefore the state of the system after a
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measurement must be such that if we re-measure the system in this state, then the final state
after this second measurement will be identical to the state after the first measurement.
Quantization of the measurement outcome is a direct consequence of the consistency
requirement. Specifically, the consistency requirement leads to a class of states referred to
as determinate states of the measurement [20]. These are states of the quantum system for
which the measurement yields a known outcome with probability one, and are the states
that lie completely in one of the measurement subspaces S;. Furthermore, even when the
state of the system is not one of the determinate states, after performing the measurement
the system is quantized to one of these states, i.e., is certain to be in one of these states,
where the probability of being in a particular determinate state is a function of the inner

products between the state of the system and the determinate states.

1.1.2 Quantum Detection

The constraints imposed by the physics on a quantum measurement lead to some inter-
esting problems within the framework of quantum mechanics. In particular, an interesting
problem that arises when using quantum states for communication is the guantum detection
problem. As outlined further in this introduction, this problem suggests some intriguing
signal processing applications within the framework of QSP.

In a quantum detection problem a sender conveys classical information to a receiver
using a quantum-mechanical channel. The sender represents messages by preparing the
quantum channel in a pure quantum state drawn from a collection of known states ¢;.
The receiver detects the information by subjecting the channel to a quantum measurement
with measurement vectors u; that are constrained by the physics to be orthogonal. If the
states are not orthogonal, then no measurement can distinguish perfectly between them.
Therefore, a fundamental problem in quantum mechanics is to construct measurements
optimized to distinguish between a set of non-orthogonal pure quantum states.

We may formulate this problem as a quantum detection problem, so that the mea-
surement vectors are chosen to minimize the probability of detection error. Necessary and
sufficient conditions for an optimum measurement minimizing the probability of detection
error have been derived [21, 22, 23]. However, except in some particular cases [23, 24, 25],
obtaining a closed-form analytical expression for the optimal measurement directly from

these conditions is a difficult and unsolved problem.
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In [26] we take an alternative approach of choosing a different optimality criterion,
namely a squared-error criterion, and seeking a measurement that minimizes this criterion.
Specifically, the measurement vectors u; are chosen to be orthogonal, and closest in a least-
squares (LS) sense to the given set of state vectors ¢; so that the vectors p; are chosen to
minimize the sum of the squared norms of the error vectors e; = u; — ¢;, as illustrated in

Fig. 1-1. The optimal measurement is referred to as the LS measurement (LSM).

U2
¢2

€2

Figure 1-1: 2-dimensional example of the least-squares measurement.

As discussed further in Chapter 3, it turns out that the LSM problem has a simple closed-
form solution, with many desirable properties. In particular, this measurement minimizes
the probability of a detection error in many cases of practical interest and is nearly optimal
in many other cases.

Thus, in the context of quantum detection the constraints of the physics lead to the
interesting problem of choosing an optimal set of orthogonal vectors. Borrowing from
quantum detection, a central idea in QSP applications is to impose orthogonality or more
general inner product constraints on algorithms, and then use the LSM and the results
derived in the context of quantum detection to design optimal algorithms subject to these

constraints.

1.2 Quantum Signal Processing

The QSP framework draws heavily on the notions of measurement, consistency and quan-
tization as they relate to quantum systems and borrows further from the interesting con-

straints imposed by quantum physics. However, the QSP framework is broader and less
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Figure 1-2: Illustration of the QSP framework. In this framework quantum mechanics is
used as a metaphor to design new signal processing algorithms by drawing a parallel between
a signal processing algorithm and a quantum mechanical measurement. An algorithm is
designed by constructing a QSP measurement borrowing from the principles of a quantum
measurement, which is then translated into a signal processing algorithm.

restrictive than the quantum measurement framework since in designing algorithms we are

not constrained by the physical limitations of quantum mechanics.

In quantum mechanics, systems are “processed” by performing measurements on them.
In signal processing signals are processed by putting them through an algorithm. There-
fore, to exploit the formalism and rich mathematical structure of quantum mechanics in
the design of algorithms we first draw a parallel between a quantum mechanical measure-
ment and a signal processing algorithm by associating a QSP measurement with a signal
processing algorithm. We then apply the formalism and fundamental principles of quantum
measurement to the definition of the QSP measurement. The QSP framework is primarily
concerned with the design of the QSP measurement, borrowing from the principles, ax-
ioms and constraints of quantum physics and a quantum measurement. As we will show in
Chapter 4, the QSP measurement depends on a specific set of measurement parameters, so
that this framework provides a convenient and useful setting for deriving new algorithms by
choosing different measurement parameters, borrowing from the ideas of quantum mechan-
ics. Furthermore, since the QSP measurement is defined to have a mathematical structure
similar to a quantum measurement, the mathematical constraints imposed by the physics
on the quantum measurement can also be imposed on the QQSP measurement leading to
some intriguing new signal processing algorithms. This conceptual framework is illustrated

schematically in Fig. 1-2.
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1.2.1 The QSP Measurement

We now outline how the quantum-mechanical principles of measurement, consistency and
quantization are applied to the definition of the QSP measurement.

Measurement of a signal in the QSP framework corresponds to applying an algorithm
to a signal. In the QSP measurement, the signal to be measured may be equal to the signal
we wish to process, or may represent this signal in a possibly different signal space. The
measurement outcome is a signal in the same signal space as the measured signal, which
represents the output of the algorithm, which in turn may be a signal or any other element.
As in quantum mechanics, we require that if we re-measure the outcome signal, then the
new outcome will be equal to the original outcome.

In analogy with the measurement in quantum mechanics, a rank-one QSP measurement
(ROM) M on H is defined by a set of measurement vectors {g;,7 € Z} that span subspaces
{8; C H,i € I}. Since we are not constrained by the physics of quantum mechanics,
these vectors are not constrained to be orthonormal. Nonetheless, in some applications we
will find it useful to impose such a constraint. A subspace QSP measurement (SM) on H
is defined by a set of projection operators {E;,i € Z} onto subspaces {S; C H,i € T}.
Here again, since we are not constrained by the physics, the projection operators and the
subspaces S; are not constrained to be orthogonal. The measurement of a signal x is denoted
by M (z).

Measurement consistency in our framework is formulated mathematically as

M(M(z)) = M(z). (1.1)

Note that by our definition of measurement, if z is a signal in a signal space H then M (x)
is also a signal in #, and can therefore be re-measured.

Quantization of the measurement outcome is imposed by requiring that the outcome
signal M (z) is one of a set of signals determined by the measurement M. Specifically, in
analogy with the quantum mechanical determinate states we define the set of determinate
signals, which are the signals that lie completely in one of the measurement subspaces
{Si,i € T}.

The measurement M is then defined to preserve the two fundamental properties of a

quantum measurement:
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1. The measurement outcome is always equal to one of the determinate signals;

2. For every input signal z, (1.1) is satisfied.

1.2.2 Rank-One Measurements

A ROM M defined by a set of measurement vectors {¢;,7 € Z} that span measurement
subspaces {S; C H,i € Z} is in general a nonlinear mapping between # and the set
of determinate signals of M. With E; denoting a projection onto §;, the measurement
is defined such that if z is a determinate signal then M(z) = E;z = =z, and otherwise

M(z) = E;z where

i = fu{(z, qr), k € I}). (1.2)

Here fjs is a (possibly probabilistic) mapping between the input signal z and the set of
indices Z, that depends on the input = only through the inner products between x and the
measurement vectors ¢;, which are a subset of the determinate signals. For example, we
may choose fys(z) = argmax(z, ).

Note, that since E;xz € S; for any x, the outcome M (zx) is always a determinate signal
of M, and since for any determinate signal z, M (z) = z, this definition of a measurement
satisfies the required properties.

As an example of a ROM, suppose that the measurement input is = (1/2)q1 +(v/3/2)¢o
where ¢; and g2 are two orthonormal measurement vectors. Then the measurement output
will be either a vector in the direction of g; or a vector in the direction of ¢o. The particular
output chosen is determined by the mapping fas which depends on the input = only through
the inner products (z,¢;) = 1/2 and (z, ¢2) = v/3/2. The measurement process is illustrated
in Fig. 1-3.

As developed in detail in Chapter 4, our definition of a rank-one QSP measurement is
very similar to the definition of a rank-one quantum measurement, with two main differ-
ences: First, we allow for an arbitrary mapping fas in (1.2); in quantum mechanics fys is
unique, and is the probabilistic mapping in which ¢; is chosen with probability |(z,g;)|?.
Second, the measurement vectors are not constrained to be orthonormal as in quantum

mechanics.
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Figure 1-3: Illustration of a rank-one QSP measurement.

1.2.3 Subspace Measurements

The definition of a SM parallels that of a ROM, and borrows from the definition of a
higher-rank quantum measurement.

Therefore, a SM M defined by a set of measurement projections {E;,i¢ € Z} that span
measurement subspaces {S; C H,7 € Z} is a nonlinear mapping between H and the set of
determinate signals of M where if z is a determinate signal then M(z) = E;xz = z, and

otherwise M(z) = E;z where
i = far({{Ex, By, k € T)). (13)

Here fas is a (possibly probabilistic) mapping between the input signal z and the set of
indices Z, that depends on the input z only through the inner products {(Exz, Exz),k € T}.

A special case of a SM is the case in which the measurement is defined by a single
projection. Then M (x) = Ez for all z and the SM reduces to a linear projection operator.
We refer to such a measurement as a simple subspace measurement (SSM).

The subspace QSP measurement is very similar to a higher-rank quantum measurement,
with three main differences: We allow for an arbitrary mapping fjs, the measurement
projections are not constrained to be orthogonal, and the measurement subspaces are not

constrained to be orthogonal.

1.3 Algorithm Design in the QSP Framework

Within the QSP framework, the QSP measurement plays a central role in the design of signal

processing algorithms. In this framework, signals are processed by either subjecting them to

30



T — Tx M Ty —y

)
{fMaqlaE’L}

Figure 1-4: Designing algorithms using a QSP measurement.

a QSP measurement as outlined in Section 1.3.1, or by using some of the QSP measurement

parameters but not directly applying the measurement, as described in Section 1.3.2.

1.3.1 Algorithm Design Based on QSP Measurements

Algorithm design

To design an algorithm using a QSP measurement we first identify the measurement vec-
tors ¢; in a ROM, or the measurement operators F; in a SM, which specify the possible
measurement outcomes. For example, in a detection scenario the measurement vectors may
be equal to the transmitted signals, or may represent these signals in a possibly different
space. As another example, in a scalar quantizer the measurement vectors may be chosen
as a set of vectors that represent the scalar quantization levels. In a SM the measurement
operators may be projections onto a set of subspaces used for signalling. We then embed
the measurement vectors (projections) in a Hilbert space H. If the signal Z to be processed
does not lie in #, then we first map it into a signal  in H using a mapping Tx. To obtain
the algorithm output we measure the representation x of the signal to be processed. If x
is a determinate signal of M, then the measurement outcome is y = M (z) = z. Otherwise
we approximate z by a determinate signal y using a mapping fas. If necessary, the mea-
surement outcome y may be mapped to the algorithm output ¢ using a mapping 73 . These

basic steps are illustrated in Fig. 1-4.

As we explore in the thesis, by choosing different input and output mappings Ty and
Ty, and different measurement parameters fys,q; and E;, and using the QSP measure-
ment framework of Fig. 1-4, we can arrive at a variety of new and interesting processing

techniques.

31



Modifying known algorithms

As we demonstrate throughout the thesis, many traditional detection and processing tech-
niques fit naturally into the framework of Fig. 1-4. Examples include traditional and
dithered quantization, sampling methods, matched-filter detection, and multiuser detec-
tion. Once an algorithm is described as a QSP measurement, modifications and extensions
of the algorithm can be derived by simply changing the measurement parameters. Thus, the
QSP framework provides a unified conceptual structure for a variety of traditional process-
ing techniques, and a precise mathematical setting for generating new, potentially effective
and efficient processing methods by modifying the measurement parameters.

To modify an existing algorithm represented by a mapping 7" using the QSP framework,
we first cast the algorithm as a QSP measurement M, i.e., we choose an input mapping Ty
and an output mapping T if necessary, and the measurement parameters fas, ¢; and E;. We
then systematically change some of these parameters resulting in a modified measurement
M', which can then be translated into a new signal processing algorithm represented by
a mapping T'. The modifications we consider result from either imposing some of the
additional constraints of quantum mechanics on the measurement parameters of M, or
from relaxing some of these constraints which we do not have to impose in signal processing.

These basic steps are summarized as follows:

1. Original algorithm r — T — Yy
Y
- z Y _
2. QSP representation T — TIx M Iy —y
Y
- z Y _
3. Modify parameters T — TIx M’ Iy —y
Y
4. Obtain new algorithm T T’ y

Typical modifications of the parameters that we consider include
1. Using a probabilistic mapping fas.
2. Imposing inner product constraints on the measurement vectors ¢;.

3. Using oblique projections E; in place of orthogonal projections.
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1.3.2 Algorithm Design Using the Measurement Parameters

Another class of algorithms we develop result from processing a signal with some of the
measurement parameters, and then imposing quantum mechanical constraints directly on
these parameters. For example, we may view any linear processing of a signal as processing
with a set of measurement vectors, and then impose inner product constraints on these
vectors. Using the ideas of quantum detection we may then design linear algorithms that
are optimal subject to these inner product constraints.

To generate new algorithms or modify existing algorithms we describe the algorithm as
processing by one of the measurement parameters, and then modify these parameters using
one of the three modifications outlined above.

In the remainder of this section we discuss each of these modifications. In Sections 1.4

and 1.5 we indicate how they will be applied to the development of new processing methods.

1.3.3 Probabilistic Mappings

The QSP framework naturally gives rise to probabilistic and randomized algorithms by
letting fas be a probabilistic mapping, emulating the quantum measurement. We expand
on this idea in the context of quantization in Chapter 7 and in the context of combined
measurements in Chapter 5. However, the full potential benefits of probabilistic algorithms

in general resulting from the QSP framework remain an interesting area of future study.

1.3.4 Least-Squares Inner Product Shaping

One of the interesting elements of quantum mechanics is that the measurement vectors are
constrained to be orthonormal. This constraint leads to some interesting problems such
as the quantum detection problem described in Section 1.1.2. A fundamental problem in
quantum mechanics is to construct optimal measurements subject to this constraint, that
best represent a given set of state vectors. In analogy to quantum mechanics, an important
feature of QSP is the idea of imposing constraints on algorithms. The QSP framework
provides a systematic method for imposing such constraints: The measurement vectors are
restricted to have a certain inner product structure, as in quantum mechanics. However,
since we are not limited by physical laws, we are not confined to an orthogonality constraint.

As part of our work, we develop methods for choosing a set of measurement vectors that
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“best” represent the signals of interest, and have a specified inner product structure [27];
these methods rely on ideas and results we obtained in the context of quantum detection
[26], which unlike QSP are subject to the constraints of quantum physics. Specifically, we
construct measurement vectors ¢; with a given inner product structure that are closest in a
LS sense to a given set of vectors s;, so that the vectors ¢; are chosen to minimize the sum
of the squared norms of the error vectors e; = ¢; — s;. These techniques are referred to as
LS inner product shaping.

The concept of LS inner product shaping is used in Chapters 8-12 to develop effective
solutions to a variety of problems that result from imposing a deterministic or stochastic
inner product constraint on the algorithm, and then designing optimal algorithms subject
to this constraint. In each of these problems we either describe the algorithm as a QSP
measurement and impose an inner product constraint on the corresponding measurement
vectors, or we consider linear algorithms on which the inner product constraints can be
imposed directly. We demonstrate that, even for problems without inherent inner prod-
uct constraints, imposing such constraints in combination with least-squares inner product
shaping leads to new processing techniques in diverse areas including frame theory, de-
tection, covariance shaping, linear estimation and multiuser wireless communication, that

often exhibit improved performance over traditional methods.

1.3.5 Oblique Projections

In a quantum measurement defined by a set of projection operators, the rules of quantum
mechanics impose the constraint that the projections must be orthogonal. In QSP we may
explore more general types of measurements defined by projection operators that are not
restricted to be orthogonal, i.e., oblique projections.

An oblique projection is a projection operator E satisfying E? = E that is not necessarily
Hermitian. The notation Eys denotes an oblique projection with range space U and null
space S. If S = U™, then Fys is an orthogonal projection onto /. An oblique projection
Eys can be used to decompose z into its components in two disjoint spaces U and S that
are not constrained to be orthogonal, as illustrated in Fig. 1-5.

Oblique projections are used in Chapter 5 to develop new classes of frames and effective
subspace detectors, and in Chapter 6 to develop a general sampling framework for sampling

and reconstruction in arbitrary spaces.
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Figure 1-5: Decomposition of x into its components in i/ and in § given by Eysx and Egyx,
respectively.

1.4 Applications of Rank-One Measurements

1.4.1 QSP Quantization

In Chapter 7 we explore quantization methods suggested by the QSP framework. In par-
ticular, by emulating the quantum measurement we develop a probabilistic quantizer and
show that it can be used to efficiently implement a dithered quantizer.

In dithered quantization a random signal called a dither signal is added to the input
signal prior to quantization [28, 29, 30, 31]. Dithering techniques have become commonplace
in applications in which data is quantized prior to storage or transmission. However, the
utility of dithering techniques is limited by the computational complexity associated with
generating a random process with an arbitrary joint probability distribution.

As we show in Chapter 7, a probabilistic quantizer can be used to effectively realize
a dither signal with an arbitrary joint probability distribution, while requiring only the
generation of one uniform random variable per input. By introducing memory into the
probabilistic selection rule we derive a probabilistic quantizer that shapes the quantization

noise.

1.4.2 Covariance Shaping Matched Filter Detection

As an example of the type of procedure my may follow in using the concept of LS inner
product shaping and optimal QSP measurements to derive new processing methods, in
Chapter 9 we consider a generic detection problem where one of a set of signals is transmitted

over a noisy channel. When the additive noise is white and Gaussian, it is well known (see
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e.g., [11, 32]) that the receiver which maximizes the probability of correct detection is the
matched filter (MF) receiver. If the noise is not Gaussian, then the MF receiver does
not necessarily maximize the probability of correct detection. However, it is still used as
the receiver of choice in many applications since the optimal detector for non-Gaussian
noise is typically nonlinear (see e.g., [33] and references therein), and depends on the noise
distribution which may not be known.

By describing the MF detector as a QSP measurement, and imposing an inner product
constraint on the measurement vectors, we derive a new class of receivers consisting of a bank
of correlators with correlating signals that are matched to a set of signals with a specified
inner product structure, and are closest in a LS sense to the transmitted signals. These
receivers depend only on the transmitted signals, so that they do not require knowledge of
the noise distribution or the channel signal-to-noise ratio (SNR).

Alternatively, we show that the modified receivers can be implemented as an MF de-
modulator followed by an optimal covariance shaping transformation, that optimally shapes
the correlation of the outputs of the MF prior to detection. This equivalent representation
leads to the concept of minimum mean-squared error (MMSE) covariance shaping, which
we consider in its most general form in Chapter 10.

As we demonstrate through simulation, when the additive noise is non-Gaussian these
receivers can significantly increase the probability of correct detection over the MF receiver,

with only a minor impact in performance when the noise is Gaussian.

1.4.3 MMSE Covariance Shaping

Drawing from the quantum detection problem, we can develop new classes of linear al-
gorithms that result from imposing a deterministic or stochastic inner product constraint
on the algorithm i.e., a covariance constraint, and then using the results we obtained in
the context of quantum detection to derive optimal algorithms subject to this constraint.
In particular, we may extend the concept of LS inner product shaping suggested by the
quantum detection framework to develop optimal algorithms that minimize a stochastic
mean-squared error (MSE) criterion subject to a covariance constraint.

As an example of this approach, in Chapter 10 we exploit the concept of LS inner product
shaping to the development of a new viewpoint towards whitening and other covariance

shaping problems.
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Data shaping arises in a variety of contexts in which it is useful to shape the covariance
of a data vector either prior to subsequent processing, or to control the spectral shape after
processing [34, 35]. As is well known, the linear transformation that shapes the covariance
of a data vector is not unique. While in some applications certain conditions might be
imposed on the transformation such as causality or symmetry, with the exception of the
work in [36, 37, 38, 39, 40, 41] which explicitly relies on the optimality properties developed
in this thesis, there have been no general assertions of optimality for various choices of
a linear shaping transformation. In particular, the shaped vector may not be “close” to
the original data vector. If this vector undergoes some noninvertible processing, or is used
as an estimator of some unknown parameters represented by the data, then we may wish
to choose the covariance shaping transformation so that the shaped output is close to the
original data in some sense.

Building upon the concept of LS inner product shaping, we propose choosing an optimal
shaping transformation that results in a shaped vector that is as close as possible to the
original vector in an MSE sense, which we refer to as MMSE covariance shaping. The MMSE
covariance shaping problem can be interpreted as a stochastic analogue of the LS inner
product shaping, in which the covariance shaping transformation is designed to minimize

the MSE between its input and output.

1.4.4 Covariance Shaping Least-Squares Estimation

As another example of an algorithm suggested by the quantum detection framework, where
we use the ideas of least-squares inner product shaping to design an optimal linear algorithm
subject to a stochastic inner product constraint, in Chapter 11 we derive a new linear
estimator for the unknown deterministic parameters in a linear model. The estimator is
chosen to minimize an MSE criterion, subject to a constraint on the covariance of the
estimator. This new estimator is defined as the covariance shaping least-squares (CSLS)
estimator.

Many signal processing estimation problems can be represented by the linear model y =
Hx + w, where H is a known matrix, x is a vector of unknown deterministic parameters to
be estimated, and w is a random vector. A common approach to estimating the parameters
x is to restrict the estimator to be linear in the data y, and then find the linear estimate of x

that results in an estimated data vector that is as close as possible to the given data vector
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y in a (weighted) LS sense, so that it minimizes the total squared error in the observations
[42, 43, 44, 45]. A difficulty often encountered when using the LS estimator to estimate the
parameters x, is that the error in estimating x can have a large variance and a covariance
structure with a very high dynamic range. This is due to the fact that in many cases the
data vector y is not very sensitive to changes in x, so that a large error in estimating x may
translate into a small error in estimating the data vector y, in which case the LS estimate
may result in a poor estimate of x. This effect is especially predominant at low to moderate
SNR, where the data vector y is typically affected more by the noise than by changes in x;
the exact SNR range will depend on the properties of the model matrix H.

The CSLS estimator is a biased estimator directed at improving the performance of the
traditional LS estimator at low to moderate SNR by choosing the estimate to minimize the
(weighted) total error variance in the observations subject to a constraint on the covariance
of the estimation error, so that we control the dynamic range and spectral shape of the

covariance of the estimation error.

Various modifications of the LS estimator under the linear model assumption have been
previously proposed in the literature. Among the more prominent alternatives are the ridge
estimator [46] (also known as Tikhonov regularization [47]) and the shrunken estimator
[48]. We show that both the ridge estimator and the shrunken estimator can be formulated
as CSLS estimators, which allows us to interpret these estimators as the estimators that
minimize the total error variance in the observations, from all linear estimators with the

same covariance.

We develop two equivalent representations of the CSLS estimator. In the first, the
CSLS estimator is expressed as a LS estimator followed by a weighted MMSE (WMMSE)
covariance shaping transformation, and in the second, the CSLS estimator is expressed as

an MF estimator followed by an MMSE covariance shaping transformation.

Analysis of the MSE of the CSLS estimator demonstrates that over a wide range of
SNR, the CSLS estimator results in a lower MSE than the traditional LS estimator, for
all values of the unknown parameters. The simulations presented in Chapter 11 strongly
suggest that the CSLS estimator can significantly decrease the MSE of the estimation error

over the LS estimator for a wide range of SNR values.
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1.4.5 Covariance Shaping Multiuser Detection

In Chapter 12 we consider an application of the CSLS estimator to the problem of sup-
pressing interference in multiuser wireless communication systems. Specifically, we develop
a new linear multiuser receiver for synchronous code-division multiple-access (CDMA) sys-
tems, in which different users transmit information over a joint channel by modulating
distinct signature vectors. The receiver is referred to as the covariance shaping multiuser

(CSMU) receiver.

Multiuser receivers for detection of CDMA signals try to mitigate the effect of multiple-
access interference (MAI) and background noise. These include the optimal multiuser re-
ceiver, the linear MMSE receiver, the decorrelator, and the MF receiver [49]. Both the
optimal receiver and the linear MMSE receiver require knowledge of the channel parame-
ters, namely the noise level and the received amplitudes of the users’ signals. On the other
hand, the MF and the decorrelator receivers are linear receivers that only require knowledge
of the signature vectors. The MF optimally compensates for the white noise, but does not
exploit the structure of the MAI; the decorrelator optimally rejects the MAI, but does not
consider the white noise. Like the MF and the decorrelator, the CSMU receiver does not
require knowledge of the channel parameters and relies only on knowledge of the signature
vectors. However, by contrast to the MF and the decorrelator, this receiver takes both the

background noise and the MAI into account.

Building upon the properties of the CSLS estimator, we develop three equivalent repre-
sentations of the CSMU receiver. In the first, the receiver consists of a bank of correlators
with correlating vectors that have a specified inner product structure, and are closest in a
LLS sense to the users’ signature vectors. In the second, the receiver consists of a decorre-
lator demodulator [50] followed by a WMMSE covariance shaping transformation. In the
third, the receiver consists of an MF demodulator followed by an MMSE covariance shaping

transformation.

To evaluate the performance of the receiver, we derive exact and approximate expressions
for the probability of bit error. We also develop methods to analyze the output signal-
to-interference+noise ratio (SINR) in the large system limit. We show that the SINR
converges to a deterministic limit, and compare this limit to the known SINR, limits for the

decorrelator, MF and linear MMSE receivers [51, 52, 53]. The analysis suggests that this
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modified receiver can lead to improved performance over the decorrelator and MF receiver,
and can approach the performance of the linear MMSE receiver over a wide range of channel

parameters without requiring knowledge of these parameters.

1.5 Applications of Subspace Measurements

1.5.1 Simple Subspace Measurements

A SSM is equivalent to a linear projection operator. Numerous signal processing and de-
tection algorithms based on orthogonal projections have been developed. Algorithms based
on oblique projections have received much less attention in the signal processing literature.
Recently, oblique projections have been applied to various detection problems [54, 55], to
signal and parameter estimation [56], to computation of wavelet transforms [57], and to the
formulation of consistent interpolation and sampling methods [16, 58].

In [16] the authors develop consistent reconstruction algorithms, in which the recon-
structed signal is in general not equal to the original signal, but nonetheless yields the same
samples. Using a SSM corresponding to an oblique projection operator, in Chapter 6 we
extend the results of [16] to a broader framework that can be applied to arbitrary subspaces
of an arbitrary Hilbert space. The algorithms we develop yield perfect reconstruction for
signals in a subspace of H, and consistent reconstruction for arbitrary signals. This frame-
work leads to some new sampling theorems, and can also be used to construct signals from
a certain class with prescribed properties. For example, we can use this framework to
construct a finite-length signal with specified low-pass coefficients, or an odd signal with

specified local averages.

1.5.2 Subspace Coding and Decoding

Subspace measurements also lead to interesting and potentially useful coding and decod-
ing methods for communication-based applications over a variety of channel models. In
particular, in Chapter 4 we develop a subspace approach for transmitting information over
a noisy channel in which the information is encoded in disjoint subspaces. To detect the
information, we design a receiver based on a SM and show that for a certain class of channel
models this receiver implements a generalized likelihood ratio test. Although the discussion

constitutes a rather preliminary exploration of such coding techniques, it represents an in-
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teresting and potentially useful model for communication in many contexts. In particular,
decoding methods suggested by the QSP framework may prove useful in the context of

recent advances in multiple-antenna coding techniques [59, 60].

1.6 Combined Measurements

An interesting class of measurements in quantum mechanics results from restricting mea-
surements to a subspace in which the quantum system is known a priori to lie. This leads
to the notion of generalized measurements, or positive operator-valued measures (POVMs)
[61, 62]. It can be shown that a generalized measurement on a quantum system can be
implemented by performing a standard measurement on a larger system. Alternatively, we
can view a generalized quantum measurement as a combination of a standard measurement
followed by an orthogonal projection onto a lower space.

Drawing from the quantum mechanical POVM, in Chapter 5 we consider combined QSP
measurements. The QSP analogue of a quantum POVM is a ROM followed by an SSM
corresponding to an orthogonal projection operator. Since the QSP framework does not
depend on the physics associated with quantum mechanics, we may extend the notion of
a (physically realizable) POVM to include other forms of combined QSP measurements,
where we perform any two measurements successively. We show that such measurements
lead to a variety of extensions and rich insights into frames, to new classes of frames, and
to the concept of oblique frame expansions. This framework also leads to subspace MF

detectors and randomized algorithms for improving worst-case performance.

1.6.1 Combined Measurements and Tight Frames

Emulating the quantum POVM leads to combined measurements where a ROM is followed
by an orthogonal projection onto a subspace Y. Such measurements are characterized by
an effective set of measurement vectors. We show that the family of possible effective
measurement vectors in U/ is equal to the family of rank-one POVMs on U, and is precisely
the family of (normalized) tight frames for .

Frames are generalizations of bases which lead to redundant signal expansions [63, 64].
A frame for a Hilbert space U is a set of not necessarily linearly independent vectors that

spans U and has some additional properties. Frames were first introduced by Duffin and
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Schaeffer [63] in the context of nonharmonic Fourier series, and play an important role in the
theory of nonuniform sampling [63, 64, 65]. Recent interest in frames has been motivated in
part by their utility in analyzing wavelet expansions [66, 67]. A tight frame is a special case
of a frame for which the reconstruction formula is particularly simple, and is reminiscent of
an orthogonal basis expansion, even though the frame vectors in the expansion are linearly
dependent.

Exploiting the equivalence between tight frames and quantum POVMs, we develop
frame-theoretic analogues of various quantum-mechanical concepts and results [68]. In
particular, motivated by the construction of optimal LS quantum measurements [26], we
consider the problem of constructing optimal LS tight frames for a subspace ¢ from a given
set of vectors that span U.

The problem of frame design has received relatively little attention in the frame lit-
erature. A popular frame construction from a given set of vectors is the canonical frame
[69, 70, 71, 72], first proposed in the context of wavelets in [73]. The canonical frame is
relatively simple to construct, can be determined directly from the given vectors, and plays
an important role in wavelet theory [74, 14, 75]. In Chapter 8 we show that the canonical
frame vectors are proportional to the LS frame vectors.

This relationship between combined measurements and frames suggests an alternative
definition of frames in terms of projections of a set of linearly independent signals in a larger
space. This perspective provides additional insights into frames, and suggests a systematic
approach for generating new classes of frames by changing the properties of the signals or

changing the properties of the projection.

1.6.2 Geometrically Uniform Frames

In the context of a single QSP measurement, we have seen that imposing inner product
constraints on the measurement vectors of a ROM leads to interesting new processing
techniques. Similarly, in the context of combined measurements imposing such constraints
leads to the definition of geometrically uniform frames [76]. This class of frames is highly
structured resulting in nice computational properties, and possesses strong symmetries that
may be advantageous in a variety of applications such as channel coding [77, 78, 79] and
multiple description source coding [80]. In Chapter 5 we present some results regarding

these frames which also appear in [76].
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1.6.3 Consistent Sampling and Oblique Dual Frame Vectors

We also explore extensions of frames that result from choosing an oblique projection oper-
ator onto Y. In this case the the measurement is described in terms of two sets of effective
measurement vectors, where the first set forms a frame for / and the second set forms what
we define as an oblique dual frame. The frame operator corresponding to these vectors is
referred to as an obligue dual frame operator, and is a generalization of the well known dual
frame operator [69]. As we show in Chapter 5, these frame vectors have properties that
are very similar to those of the conventional dual frame vectors. However, in contrast with
the dual frame vectors, they are not constrained to lie in the same space as the original
frame vectors. Thus, using oblique dual frame vectors we can extend the notion of a frame
expansion to include redundant expansions in which the analysis frame vectors and the
synthesis frame vectors lie in different spaces.

Based on the concept of oblique dual frame vectors, in Chapter 6 we develop redundant
consistent sampling procedures with (almost) arbitrary sampling and reconstruction spaces.
By allowing for arbitrary spaces, the sampling and reconstruction algorithms can be greatly
simplified in many cases with only a minor increase in approximation error [16, 81, 17,
82, 83, 84]. Using oblique dual frame vectors we can further simplify the sampling and
reconstruction processes while still retaining the flexibility of choosing the spaces almost
arbitrarily, due to the extra degrees of freedom offered by the use of frames that allow us to
construct frames with prescribed properties [66, 85]. Furthermore, if the measurements are
quantized prior to reconstruction, then as we show the average power of the reconstruction
error using this redundant procedure can be reduced by as much as the redundancy of the

frame in comparison with the nonredundant procedure.

1.7 Thesis Outline

This thesis can roughly be divided into two parts: Chapters 2-5 provide the necessary
background, and develop the QSP framework. Chapters 6-12 discuss applications of QSP to
sampling procedures, quantization, detection, covariance shaping and estimation problems.

Chapters 2-3 summarize relevant background material: In Chapter 2 we review elements
of linear algebra that are used in the development of QSP, and derive new results that are

used in applications throughout the thesis. In Chapter 3 we provide a brief introduction
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to quantum states and measurements, and recapitulate some results on optimal quantum
measurements in the context of the quantum detection problem.

In Chapters 4-5 we develop the QSP measurement framework: Chapter 4 considers
ROMs and SMs. Throughout the chapter we provide examples of signal processing tech-
niques that can be cast in terms of QSP measurements, as well as generalizations of these
algorithms and new algorithms that stem from changing the measurement parameters.
Chapter 5 considers various forms of combined measurements. In particular, we develop
the oblique dual frame vectors and discuss their key properties.

Chapters 6-12 consider applications of QSP, focusing on applications of SSMs in Chap-
ter 6 and on applications of ROMs in Chapters 7-12.

In Chapter 6 we provide a general framework for redundant and nonredundant consistent
sampling procedures with arbitrary sampling and reconstruction spaces.

Chapter 7 discusses quantization methods resulting from ROMs.

In Chapter 8 we systematically construct optimal ROMs from a given set of vectors,
with measurement vectors that have a specified inner product structure and are closest in
a LS sense to a given set of vectors.

Chapters 9-12 focus specifically on applications of LS inner product shaping. Chapter 9
develops a new viewpoint toward MF detection based on optimal ROMs, that leads to a
stochastic analogue of the LS inner product shaping problem, taking on the form of an
MMSE covariance shaping problem, considered in Chapter 10. In Chapter 11 we derive
the covariance shaping LS estimator, based on which, in Chapter 12, we develop efficient

techniques for suppressing interference in multiuser wireless settings.
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Chapter 2

Signal Spaces

Underlying the development of QSP is the signal space viewpoint toward signal processing
we take on in this thesis, in which signals are regarded as vectors in an abstract Hilbert
space referred to as the signal space.

This chapter is intended to summarize the key results that we exploit in the development
of QSP, and establish the signal space notation used throughout the thesis. We also derive
new results that will be used in applications in subsequent chapters. In particular, we
provide an explicit construction of oblique projections on arbitrary Hilbert spaces, develop
an alternative characterization of oblique pseudoinverses, and establish the key properties
of transjectors! (partial isometries) [68, 86].

Background material on Hilbert spaces helpful to understanding the material presented
in this chapter can be found in [87, 88, 64].

Throughout the thesis Z denotes the set of integers and Z C Z denotes a countable

index set.

2.1 Hilbert Spaces

2.1.1 Vector Spaces

A complex vector space V over the complex numbers C is a set of elements called vectors,
together with vector addition and scalar multiplication by elements of C such that V is closed

under both operations. We will assume throughout that all vector spaces are complex.

!This nomenclature was suggested by G. D. Forney, Jr..
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A set W of vectors in V is a subspace of V if it is closed under addition and scalar
multiplication.

Two subspaces W and S are said to be disjoint if they intersect only at the zero vector,
i.e., VNW = {0}.

The sum of two closed subspaces V and W, denoted V + W, is the set of all vectors of
the form z = v 4+ w where v € ¥V and w € W. The direct sum of ¥V and W, denoted V & W,
is the sum of two disjoint subspaces. If H =V & W, then VNW = {0} and any z € H can
be decomposed uniquely as t = v + w, with v € V and w € W.

A vector z is a limit point of a subspace W if there exists a sequence of vectors x; € W
such that z; = x. The closure W€ of a subspace W is the set of all points z that are limit

points of W. A subspace W is closed if W = W¢.

2.1.2 Hilbert Spaces

We now add geometric structure to a vector space in the form of an inner product relation

between pairs of vectors, which also induces a distance measure or metric on the space.

Definition 2.1. The inner product on the vector space V, denoted (x,y), is a mapping from

V to C that satisfies:
1. (z,y) = (y,2)";
2. (z,ay + bz) = alz,y) + bz, 2);
3. (z,z) >0 and (z,z) =0 if and only if z =0,

where (-)* denotes the conjugate. The norm of a vector x is defined by ||z| = +/(z,x), and

the distance between = and y is defined by ||z — y||.

Any mapping satisfying properties (1)—(3) above is a valid inner product. The choice
of inner product will depend on the properties of the underlying vector space V, as well
as the particular application. For example, let V be the vector space of all finite-energy
signals. Then a vector x € V represents a signal z(t) with ft z(t)|?dt < co. We can
immediately verify that (z,y) ftf— o y(t)dt is a valid inner product on this space.

Two vectors z,y are said to be orthogonal in V if (z,y) = 0. If W is a subspace of V,
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then the orthogonal complement of W in V, denoted by W+, is defined as
Wt = {z € V|(z,y) =0 for all y € W}. (2.1)

We are now ready to define a Hilbert space.
Definition 2.2. A Hilbert space is a complete? vector space together with an inner product.

Some examples of Hilbert spaces that are used throughout the thesis are considered

below.

Example 2.1 (The Hilbert space l2). H = Iy denotes the set of all sequences z = {z;}
with z; € C that are absolutely square summable, i.e., Y oo, |z;|* < co. The inner product
on Iy is defined by (z,y) = > 72, z}y;.

Example 2.2 (The Hilbert space Ly). H = Ly denotes the set of all functions x = x(t)
that are absolutely square integrable, i.e., [ > _ |z(t)|*dt < co. The inner product on L,
is defined by (z,y) = [;= __ «*(t)y(t)dt.

Example 2.3 (The Hilbert space C™). H = C™ denotes the set of all m-dimensional

vectors £ = x with components in C. The inner product on C™ is defined by (z,y) = x*y =

Yo xFyi, where x; and y; denote the ith component of x and y, respectively.

A signal space is a Hilbert space whose elements are signals; we refer to these elements
as vectors or signals interchangeably. Vectors in C™ (m arbitrary) are denoted by boldface
lowercase letters, e.g., x. The ith component of x will be denoted by x;. A sequence in [y

is denoted by a lowercase letter, e.g., x, and the ith element of = is denoted by z;.

2.2 Bases

One of the useful features of a signal space H is that every signal x € H can be represented

by a unique sequence of scalars using a set of vectors that form a basis for H.

Definition 2.3. A set of vectors {x; € H,i € T} is a Schauder basis® for H if to each vector
x € H there corresponds a unique sequence of scalars a; € C such that x =), a;x;. The

dimension of H is equal to the cardinality of .

2A subspace V is complete if any Cauchy sequence z; € V converges to a vector € V, where a Cauchy
sequence is a sequence of vectors z; that satisfies ||z — zs|| = 0 as k,7 — oo.
3We will use the term basis to denote a Schauder basis.
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If the vectors {z;,7 € Z} form a basis for H, then any x € H has a unique decomposition
of the form z = ), ; a;x;, where a; € C. However, the coefficients a; are in general not
guaranteed to be in [, leading to expansions that are not necessarily stable. To ensure

stability, we introduce the definition of a Riesz basis.

Definition 2.4. A sequence {x; € H,i € I} is a Riesz basis for H if it is complete*, and
there exists constants o > 0 and B < oo such that
2

<BY el (2.2)

ad lail* < | i

i€T i€T ic€T
for all a € ly. Then for any x € H
allz]* <Y Kz, @i)* < Bll=]*. (2.3)
€T

After introducing set transformations in Section 2.6, in Section 2.6.1 we will use these
transformations to determine the coeflicients a; in a Riesz basis expansion of an arbitrary
signal x, and we will show that (2.3) implies that the sequence of coefficients a is in [s.

Note that any basis for a finite-dimensional space is a Riesz basis. We also note that
(2.2) implies that the span of a Riesz basis is closed [89].

Basis expansions are pervasive in signal processing applications. In particular, they form
the foundation of Fourier analysis and modern sampling techniques, in which the coefficients

a; are interpreted as “samples” of a signal we wish to represent [16, 14, 89, 81, 17, 18, 19].

2.3 Linear Transformations

Linear transformations play an important role in the development of QSP. Of particular
importance are the projection operator discussed in Section 2.4, and the set transformation

defined in Section 2.6.

Definition 2.5. Let H and S be Hilbert spaces. T is a linear transformation from H to
S, denoted T: H — S, if every x € H is mapped to one and only one y € S, and

T(c1z1 + cozo) = 1T (x1) + 2T (x2) for all x1,29 € H and ¢1,co € C.

A sequence {x;} is complete in H if the closure of the span of {x;} equals .
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We denote general linear transformations by uppercase letters. Iy denotes the identity
transformation on the space H, and 0 denotes the zero transformation. Matrices are denoted
by boldface uppercase letters. In particular, I,,, denotes the m x m identity matrix.

A transformation T: H — S is continuous if x; — = implies that Tz; — Tz for every

x € H. The adjoint of a continuous linear transformation is defined as follows.

Definition 2.6. The adjoint of a continuous linear transformation T: H — S is the unique
continuous linear transformation T*: S — H such that (Tz,y) = (z,T*y) for all x € H,

yeS.

A linear operator is a continuous linear transformation of a Hilbert space onto itself:
T: H—H. An operator T: H — H is unitary if T*T = TT* = Iy. An operator
T: H — H is Hermitian (self-adjoint) if T* =T.

2.3.1 Subspaces Associated with a Linear Transformation

With every linear transformation T: H — S we associate 4 subspaces: The null space
(kernel) N (T) of T, the orthogonal complement N(T)+ of N(T) in H, the range space
(image) R(T) of T, and the orthogonal complement R(T)* of R(T) in S.

The null space of T is the set of vectors x € ‘H for which Tx = 0. The range of T is the
set of vectors y € S for which there exists an « € H such that y = Tz. The definition of
N(T)* and R(T)* follow immediately from (2.1).

A transformation T: H — S is injective if for any x # y we have that Tz # Ty, which
implies that N (T) = {0}. T: H — S is surjective if R(T) = S. A transformation is
bijective if it is both injective and surjective.

A linear operator T': H — H is invertible if and only if it is bijective.

The subspaces associated with a linear transformation 7' are related to the subspaces

associated with T, as incorporated in the following proposition [87].
Proposition 2.1. Let T': H — S be a continuous linear transformation. Then
1. N(T) = R(T*)*;
2. N(T)*+ = R(T*)¢;
3. N(T*) = R(T)*;
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4. N(T*)+ =R(T)",
where R(-)¢ denotes the closure of R(-). If T is Hermitian, then N(T) = R(T)*.

The spaces associated with a transformation 7': H — S can be used to decompose H
and § into direct sums of smaller subspaces. To this end we rely on the following pair of

propositions [87].
Proposition 2.2. IfV is a closed linear subspace of a Hilbert space H, then H =V & V.

Proposition 2.3. The null space N(T) of a linear transformation T: H — S is a closed
subspace of H. The orthogonal complement V- of an arbitrary subspace ¥V C H is also a

closed subspace of H.

Combing Propositions 2.3 and 2.2, we can decompose H as
H=N(T)eNT)". (2.4)

Then any z € H can be expressed uniquely as ¢ = zpr + xr1 where zpr € N(T), zp1 €
N(T)*t, and (zpr,zprL) = 0.

We would like to obtain a similar decomposition of S in terms of R(T) and R(T)" .
However, since R(T') is not necessarily closed we cannot apply Proposition 2.2 directly.

Instead, we substitute ¥V = R(T')¢ in Proposition 2.2, which leads to the decomposition
S=R(T)®R(T)" . (2.5)

Then any y € S can be expressed uniquely as y = yr + yrL where yg € R(T)¢, yrL €
R(T)*, and (ygr,yzr.) = 0.

Decomposing H and S as in (2.4) and (2.5) respectively, we may describe the action
of T and T™ on each of these subspaces. Specifically, from Proposition 2.1 we have that T
maps N (T)+ C H to R(T) C S, and N (T) C H to 0. T* maps R(T)¢ C S to N(T)*+ C H,
and R(T)* C S to 0. The action of T and T* is illustrated in Fig. 2-1.

The direct sum decompositions of (2.4) and (2.5) are not unique. Specifically, there are
many choices of subspaces V C H with ¥V # N(T)* such that H = N(T) © V. Then any
x € H can be decomposed uniquely into its components in N (T) and V; however, these

components are not necessarily orthogonal. Similarly, there are many choices of subspaces
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Figure 2-1: The action of T and T* on the subspaces N (T), N (T)*,R(T)¢ and R(T)*.

W C S with W # R(T)¢ such that S = R(T)¢ @ W, so that any y € S can be decomposed
uniquely into its components in R(T")¢ and W, where these components are not necessarily
orthogonal. To decompose an arbitrary x € H into its possibly non-orthogonal components

in the appropriate subspaces we now discuss projection operators.

2.4 Projection Operators

A linear operator T: H — H is a projection if T = T?. We distinguish between two
different types of projections: Hermitian projections (orthogonal projections) for which
T = T* and non-Hermitian projections (oblique projections). Orthogonal projections have
enjoyed widespread use in the signal processing literature; oblique projections have received
much less attention.

A projection with range equal to V and null space equal to W is denoted by Eyyy, and is
called a projection onto ¥ along W. Since W is not necessarily equal to Y+, this projection
in general is not constrained to be an orthogonal projection, i.e., it is an oblique projection

[90, 91, 92]. If W = V1, then Fyyy is an orthogonal projection onto V, denoted by Py.

2.4.1 Orthogonal Projection Operators

An orthogonal projection with range equal to V C H is denoted by Py. Since Py is
Hermitian, we have immediately from Proposition 2.1 that N'(Py) = V.
An orthogonal projection can be used to decompose a signal space into orthogonal sub-

spaces. Specifically, given an orthogonal projection Py on H, we can decompose H as
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Figure 2-2: Decomposition of  into its orthogonal components in V and V* given by Ppz
and Py, .z, respectively.

H =V @ V! so that any x € H can be expressed uniquely as x = zy + Ty,1, where
zy = Pyz € V and zy1 = (I — Py)r = Pyoz € V4, as illustrated in Fig. 2-2. The proof
of this well-known result is given in Theorem 2.1 in Section 2.4.2, in the context of more
general oblique projections.

The vectors zy and zy,1 are called the projections onto ¥ and V1 respectively, and have
the additional property that (zy,zy1) = 0. Then ||z||? = ||zy||? + |2y 1]|?, from which it

follows that the norm of the projection is never greater then the norm of the vector:
1Pya|® = [lav|? < [l]*. (2.6)

This property does not necessarily hold true for an oblique projection onto V [54].
The orthogonal projection xy = Pyz has another well-known characterization; it is the

closest vector to z in V.

Proposition 2.4. Let V C H be a closed subspace of H, let Py denote the orthogonal

projection onto V, and let x be an arbitrary vector in H. Then
. 2
= —vl|%. 2.7
zy = argmin||z — o (2.7)

Proof: Expressing z as x = zy + xy1 where zy = Pyz € V and zy,1 € Y+, we have that

zy —v €V for any v € V, so that (zy —v,zy1) =0 and

lz = vl = llzys + 2y — ol = Jzya[? + oy = o|® > ||z, (2.8)
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Figure 2-3: Decomposition of z into its components in ¥V and in W given by Eyyx and
Eywvyzx, respectively.

with equality if and only if xy = v. O

An orthogonal projection is a special case of a transjector, defined in Section 2.5. Explicit

constructions of orthogonal projections are given in Sections 2.5 and 2.6.2.

2.4.2 Oblique Projection Operators

As with orthogonal projections, oblique projection operators can also be used to decompose
a signal space into smaller subspaces; however, when using oblique projections these spaces
are no longer constrained to be orthogonal.

Specifically, given a projection Eyyy on H, we can decompose H as H = V & W so
that any = € H can be expressed uniquely as x = zy + )y, where xy = Epyyz € V and
zw = (Ix—Eyw)x = Eywyr € W, as illustrated in Fig. 2-3. Note, however, that zy and zyy
are not necessarily orthogonal. This basic property of an oblique projection is incorporated

in the following theorem.

Theorem 2.1. Let Eyyy be a projection on H, with R(E) =V and N(E) =W. Then
1. Eywv =w for anyv € V;
2.V and W are both closed subspaces of H;

3 H=V&W, and any x € H can be decomposed uniquely as © = xy + xyy where
xy = Eywx € V and is called the projection onto V along W, and xyw = (I —

Evyw)z = Eywyz € W and is called the projection onto W along V.
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Proof: 1. Since R(Eyw) =V, for any v € V there exists an z € H such that v = Eypyz.

Then va’l) = vava.’E = EVW{IJ =.

2. Since W = N (Eyyy) from Proposition 2.3 it is a closed subspace of H. From part
(1), YV = R(Eyw) is the space of vectors v satisfying v = Eywv. So, V = R(Eyy) =

N (Eyw — I3) and is therefore also a closed subspace of H.

3. If v € V then from part (1) Eyywv = v, and if v € W then Eyywv = 0. Thus, if

v € VNW then v = 0so VNW = {0}. Now, any z € H can be expressed as

z = Eywz+ (Iy— Eyw)x = zy+xw, where 2y = Eyywr € V and zyy = (Iyy— Eywy)z.

But Eywzw = Eyw(Iy — Eyw)z = 0, so zyy € W. Since any = € H can be expressed
asr=zy+ayw withzy €V, 2y e W, and VNW = {0}, H=V & W.

O

Proposition 2.5 below is a converse to part (3) of Theorem 2.1, and complements Propo-
sition 2.2 by specifying how to determine the components of a signal in a direct sum de-

composition.

Proposition 2.5. Suppose H =V & W where V and W are closed subspaces so that any
x € H can be written uniquely as = xy + xyw with xy € V and xyw € W. Then there

ezists a projection operator Eyyy such that xy = Eywez, and zyw = (I — Eyw)z = Eyyr.

Proof: Let x = zy + xyy where zy € V and xyy € W, and let E be the operator defined by
Ex =xy for all z € H. Then EEx = Exy = xy = Ex for all x € H and E is a projection
operator. Since R(E) =V and N(E) =W, E = Eyy. Then, zyy =z —zy = (Iy — E)z =
(I — Byw)z = Eyyz. O

In Section 2.6.2 we develop an explicit construction of an oblique projection operator
using set transformations, which are defined in Section 2.6.

In summary, oblique projections and orthogonal projections can both be used to de-
compose a signal into components in disjoint subspaces as illustrated in Figs. 2-2 and 2-3.
However, contrary to decompositions using orthogonal projections, when using oblique pro-
jections the components are not necessarily orthogonal. Furthermore, while the norm of the
components in an orthogonal projection are no larger than the norm of the original vector,
the norm of the components when using an oblique projection can be larger than the norm

of the original vector, as can be seen in Fig. 2-3.
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2.5 Transjectors

An orthogonal projection is a special case of a transjector (partial isometry) [68, 86], de-
veloped in Section 2.5.2. As we will see in Chapter 5, the transjector is useful for studying
quantum measurements and combined QSP measurements. To characterize transjectors we

rely on the singular value decomposition (SVD), described in Section 2.5.1.

2.5.1 Singular Value Decomposition

It is often useful to decompose a transformation T' into elementary transformations that
reveal its properties. Such a decomposition is the singular value decomposition (SVD) [93].
For simplicity we focus on the case in which 7" = T is a matrix; however the results extend

to the case in which T is an arbitrary bounded transformation® [94].

Proposition 2.6 (Singular Value Decomposition (SVD)). Let T be an arbitrary n X

m matriz with rank r. Then
T
T =UXV* = Z aiuiv;",
i=1

where

1. T*T = V(Z*T)V* = Y7, o2v;v} is an eigendecomposition of the rank-r m x m

mairic G = T*T, in which
(a) {02,1 <i<r} are the nonzero eigenvalues of G, and o; > 0;
(b) {vie C™,1<1i<r} are the corresponding orthonormal eigenvectors;

(c) X is a diagonal n X m matriz whose first r diagonal elements are o;, and whose

remaining diagonal elements are 0;

(d) V is an m X m unitary matriz whose first r columns are the eigenvectors v;,
which span the subspace V = N (T)+ C C™, and whose remaining m —r columns

v; span the orthogonal complement Y+ C C™;

and

A transformation 7' on H is bounded if ||Tz|| < a||z|| for some o > 0 and all z € H.
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2. TT* =02 U =37, azzuiui s an eigendecomposition of the rank-r nxXn matriz

S =TT*, in which

(a) {02,1<i<r} are now identified as the nonzero eigenvalues of S;
(b) {u; € H,1 <i<r} are the corresponding orthonormal eigenvectors;

(c) U is an nxn unitary matriz whose first r columns are the eigenvectors u;, which
span the subspace U = R(T) C H, and whose remaining n — r columns u; span

the orthogonal complement U+ C .

The matrix T may be viewed as defining a linear transformation T : C™ — H according
to v = Tv. The SVD allows us to interpret this map as follows. A vector v € C™ is first
decomposed as v = ), v;(v;,v). Since T maps v; to o;u;, T maps the ith component
vi(vi, v) to oju;(v;, v). Therefore, by superposition, T maps v to ), o;u;(v;, v). Similarly,
the conjugate Hermitian matrix T* defines the adjoint linear transformation T* : H — C™
where T* maps u € H to ), o;v;{(u;,u) € C™.

The key element in these maps is the one-dimensional “transjector” (partial isometry)
u;v;, which “transjects” a basis vector v; € C™ to the corresponding basis vector u; € H,

and the adjoint transjector v;u;, which performs the inverse map.

2.5.2 Transjectors (Partial Isometries)

A rank-r n x m matrix T is called an r-dimensional transjector if its r nonzero singular
values are all equal to 1. The special case of a Hermitian operator whose nonzero eigenvalues
are all equal to 1 is an orthogonal projector. In other words, T = UZ,V*, where U and V

are unitary and

Z, = : (2.9)

Equivalently, TT* = U(Z,Z;)U* = Py is an r-dimensional orthogonal projector onto
an r-dimensional subspace Y C ‘H with an orthonormal basis {u; € H,1 < i < r} consisting
of the first  columns of U, and T*T = V(Z}Z,)V* = Py is an r-dimensional orthogonal
projector onto an r-dimensional subspace ¥V C C™ with an orthonormal basis {v; € C™,1 <

i <} consisting of the first r columns of V.
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An r-dimensional transjector T is also called a partial isometry, because it is an isometry
(distance-preserving transformation) between the subspaces Y C H and V C C™. Indeed,

if v,v' €V and u = Tv,u’ = TV, then

(u,u) = u*u' = v'T*TV =v*Ppv = vV = (v, V'), (2.10)

so inner products and a fortiori squared norms and distances are preserved. Similarly,
if u,u’ € U, then (T*u, T*u’) = (u,u’). However, inner products are not preserved if
u,u' ¢U or v,v' ¢ V.

The properties of the transjector are summarized in the following theorem [68]:

Theorem 2.2 (Transjectors (partial isometries)). The following statements are equiv-

alent for a matriz T whose columns are m vectors in a complex Hilbert space H.:
1. T s a transjector between r-dimensional subspaces Y CH and ¥V C C™;
2. TT* = By for an r-dimensional subspace U C H,;
3. T*T = Py for an r-dimensional subspace YV C C™.

A transjector T between r-dimensional subspaces U C H and V C C™ may be expressed as
T = UZ,V*, where U is a unitary matriz whose first r columns {u;,1 < i < r} are an
orthonormal basis for U, V is an mxm unitary matriz whose first r columns {v;,1 <i <r}
are an orthonormal basis for V, and Z, is given by (2.9). Equivalently, T =3, u;v}.

A transjector T : C™ — U (resp. T* : H — V) is an isometry if restricted to V (resp. U).

2.6 Set Transformations

A useful mathematical tool for describing linear combinations of vectors is the set transfor-

mation®, which we now define.

Definition 2.7. Let {z;,i € Z} be a set of vectors in a Hilbert space H. The set transfor-
mation X: lo — H corresponding to these vectors is defined by Xa = ) ;.7 a;x; for any

a€ls.

In [95] the set transformation corresponding to the vectors {z;} is referred to as a hypervector and
denoted by (z1,... ,%:,...). We prefer the more compact transformation notation.
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From the definition of the adjoint X*: H — ls, if a = X ™y, then

ai = (zi, ). (2.11)

A set transformation can be regarded as a possibly infinite-dimensional matrix.
A set transformation corresponding to a set of orthonormal vectors is referred to as an

orthonormal set transformation. We summarize its key properties in the following theorem.

Theorem 2.3 (Orthonormal set transformation). Let {z;,i € Z} denote a set of or-
thonormal vectors in a Hilbert space H. The set transformation X corresponding to these
vectors satisfies X*X = Iy. If in addition the vectors {x;,i € I} span H, then X X* = Iy.
Conversely, if a set transformation X corresponding to a set of vectors {x; € H,i € I}
satisfies X*X = Iy, then the vectors {x;,i € I} are orthonormal. If XX* = Iy, then the

vectors {z;,i € I} span H.

Proof: Suppose the vectors {x;,i € Z} are orthonormal, and let b = X*Xa with a € .
Then,

by = (T, D aimi) = Y ag(Tp, 7)) = »_ aibk; = ag, (2.12)

1€L i€T i€T

for all k so that X*Xa = a for any a € ls and X*X = Iy. If in addition the vectors {z;}

span 7, then any x € H can be expressed as © = ) ;.7 a;z; = Xa for some a so that
XX'z=X(X"X)a=Xa=r, (2.13)

and XX* = Iy. Next, suppose X*X = Iy and let e¥ € Iy denote the sequence with ith
element ef = &;. Then, e = X*XeF = X*zy, so that (z;,zx) = e = §i;, and the vectors

{z;} are orthonormal. Finally if X X* = I, then for any z € H

r=XX"zr= Z(wi,x)xi, (2.14)
1€

and the vectors {z;} span H. O

In the next section we use set transformations to determine the coefficients in a basis

expansion of a signal. In Section 2.6.2 we use set transformations to develop an explicit
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construction of oblique projections.

2.6.1 Basis Expansions

Let {x;,7 € Z} denote a Riesz basis for H. Then we have seen in Section 2.6.1 that any

x € H can be expressed uniquely as
T = Z a;z;, (2.15)
i€l
where a; € C. With X denoting the set transformation corresponding to the vectors {z;}
we may write (2.15) as z = Xa.

If the vectors {z;} are orthonormal then from (2.14), a; = (z;,z). To determine the

coefficients a; when the basis vectors are not orthonormal we introduce the dual basis of

{z;}, denoted {Z;}, defined by
(@i, z) = bik (2.16)

for all 7 and k. The motivation behind this definition is that if we find a set of vectors

satisfying (2.16), then we can take the inner product of z given by (2.15) with Zj to obtain
(@,1) = ai(@r, w:i) = ax, (2.17)
€L
so that any = € H can be expressed as

= Z(i‘z,m)xz (2.18)

1€T

It is well known that every Riesz basis {x;,7 € Z} for a Hilbert space possesses a unique
dual basis {Z;,i € Z}, which is also a Riesz basis [64]. From (2.3) it then follows that the
expansion coefficients a; = (Z;,x) are in lo.

To explicitly compute these coefficients we need to determine the dual basis {Z;} of
{z;}. Let X and X denote the set transformations corresponding to the Riesz bases {x;}

and {Z;}, respectively. Then in a similar manner to the proof of Theorem 2.3 it can be
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shown that (2.16) is equivalent to
X*X = Iy,. (2.19)

To solve for X we first show that X*X is invertible, and then express X in terms of this
inverse.
Since the vectors {z;} form a Riesz basis, from (2.2), a|la|? < || Xa||? < B||a]|?, for any

a € lp. But, || Xal|? = (Xa,Xa) = (X*Xa,a) so that
aly < X*X < (I, (2.20)
which implies that X*X is invertible [69, Lemma 3.2.2]. We may then readily verify that
X =X(X*Xx)"! (2.21)

is a solution to (2.19): X*X = (X*X)"1X*X = Iy.
Note that if the vectors z; are orthonormal, then from Theorem 2.3 and (2.21) it follows
that Z; = x; for all 4, so that (2.18) reduces to x = ), 7 (x;, )x;, which agrees with (2.14).

This discussion is summarized in the following theorem:

Theorem 2.4 (Basis expansion). Let the vectors {z;,i € I} form a Riesz basis for a
Hilbert space H and let X be the set transformation corresponding to the vectors {x;,i € Z}.
Let the vectors {Z;,1 € I} be the unique dual Riesz basis of {x;,1 € T} such that (T, zi) = Ok;
for all k and ©, and let X be the set transformation corresponding to the vectors {Z;,i € T}.

Then
X =X(X*X)"\.

Any x € H can then be expressed uniquely as © = ), 7(%;, x)x; where the sequence of
coefficients (Z;, ) is in ls.
2.6.2 Construction of Projection Operators

Using set transformations we now explicitly construct a projection Fyyy in terms of arbitrary

Riesz bases for ¥V and W. This new construction will be used in Chapter 6 to develop
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consistent reconstruction algorithms with arbitrary sampling and reconstruction spaces.
Explicit formulas for finite-dimensional oblique projections have been given in [54, 91],
but are different then the formula presented in Theorem 2.5. We suspect the formula in
Theorem 2.5 to be known in finite-dimensions; however, our construction includes infinite-
dimensional projections as well. Formulas for oblique projections in atomic spaces [92] and
in shift invariant spaces [16] have also been previously considered.

To construct an oblique projection Eyyy, we first prove the following lemma.

Lemma 2.1. Let the vectors {v;,i € I} form a Riesz basis for a subspace V of a Hilbert
space H, and let the vectors {w;,i € T} form a Riesz basis for a subspace W of H such that
VAW =H. Let V: Iy = H and W: Iy = H denote the set transformations corresponding
to the vectors {v;,i € I} and {w;,i € I}, respectively. Then W*V is invertible if and only
if Vnw = {0}.

Proof: Suppose that x is a nonzero vector in YN W. Then since the vectors v; form a basis
for V, x = Va for some nonzero a € ly. But since z € W we have that W*x = 0. Thus
W*x = W*Va = 0 for a nonzero a € ly, so that W*V is not invertible.

Now, suppose that ¥V N W = {0}. Since the vectors {v;} from a Riesz basis, V is a
bijection from Iy to V. We now show that W* is bijective on V.

Suppose that W*v = 0 for some v € V. With v; = Pyv and v2 = P)y1v, we have that
0 =W* = W*v; + W*vg = W*vy. Thus Y, [(w;,v2)|? = 0 where vy € W' which implies
from (2.3) that v = 0. But then v = v; where v € ¥ and v; € W which implies that v = 0
since VN W = {0}, so W* is injective on V.

Now, let {i;} denote the dual Riesz basis of {w;}, and let w = ), a;w; for some a € lo.
Decompose w as w = wq + we with wq € V and we € WW. Then we have that (wg,w) = a.
But (wg, w) = (wg, wr) + (wg, we) = (wg,w1). We therefore conclude that a = W*w; where
w1 € V, so that W* is surjective on V.

Since V is bijective, W*V is a bijection from I5 to I3 and consequently invertible. O

Using Lemma 2.1 we immediately deduce our main result:

"This proof, due to A. Aldroubi [96], is a more elegant version of my proof of this result as originally
constructed.
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Theorem 2.5. Let the vectors {v;,i € I} form a Riesz basis for a subspace V of a Hilbert
space H, and let the vectors {w;,i € T} form a Riesz basis for a subspace W= of H such that
VOW =H. Let V: lo = H and W: Iy — H denote the set transformations corresponding
to the vectors {v;,i € I} and {w;,i € I}, respectively. Then Eyy = V(W*V) 1W*.

Proof: Let T = V(W*V)"'W*. From Lemma 2.1, W*V is invertible so that T is well
defined. Since w; € WL, W*w = 0 for any w € W, and Tw = 0. Furthermore, any v € V

can be expressed as v = Va for some a € lo, so that Tv =TVa = Va =wv. Thus, T = Epy.
O

Using Theorem 2.5 we can construct an orthogonal projection Py onto V using any
Riesz basis {v;,7 € Z} for V. With V denoting the set transformation corresponding to the
vectors v;, Py = V(V*V)™1V*. If the vectors {v;} are orthonormal, then from Theorem 2.3

V*V = Iy and

Py =VV*=> wuj. (2.22)
1€

2.7 Pseudoinverse of a Transformation

A linear transformation between spaces of different dimension (e.g., a rectangular matrix),
or an operator that is not bijective (e.g., a singular matrix) does not have an inverse in the
usual sense. Nevertheless in Section 2.7.1 we define the pseudoinverse which has properties
closely related to those of an inverse. Using oblique projections, this concept is extended in

Section 2.7.2 to a class of pseudoinverses called oblique pseudoinverses.

In this section we obtain alternative characterizations of the pseudoinverse and the

oblique pseudoinverse that are important in applications in this thesis.
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2.7.1 Pseudoinverse

Let T be a continuous linear mapping T: H — S. The pseudoinverse of T, denoted T, is

defined as the unique mapping that satisfies the Moore-Penrose conditions [93]:

TT'T = T; (2.23)
rirrt = Tt (2.24)
(rrhHy* = 171, (2.25)
(Tt = T'T. (2.26)

These conditions are equivalent to a more intuitive set of conditions given in Theorem 2.6
below. Essentially this theorem states that if we restrict 7" to the subspace V(T)+ C H
and T to the subspace R(T)¢ C S, then T is invertible and its inverse is T'f, as illustrated
in Fig. 2-4.

Figure 2-4: The action of 7" and Tt on the subspaces N (T)*, N (T), R(T)¢ and R(T)" .

Theorem 2.6 (Pseudoinverse). Let T be a continuous linear mapping T: H — S. The

pseudoinverse of T, denoted T?, is the unique mapping that satisfies the conditions:

TT' = Prirye; (2.27)
T'T = Prre)e; (2.28)
R(TY) = R(T*). (2.29)

We remark that while it is known that the Moore-Penrose conditions imply (2.27)—(2.29),
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the converse does not appear to be established.

Proof: We first prove that any T satisfying (2.27)-(2.29) satisfies the Moore-Penrose con-
ditions. Since an orthogonal projection operator is Hermitian, (2.25) and (2.26) are im-
mediately satisfied. Next, for any y € H, Ty € R(T) and TTTy = PrryTy = Ty for
all y € H, establishing (2.23). Finally from (2.29), Ttz € R(T*)¢ for any = € S, and
T'TT'w = Pgep«ye Ttz = TTx for all 2 € S, establishing (2.24).

We now show that any T'f satisfying the Moore-Penrose conditions satisfies (2.27)(2.29).
From (2.25) and (2.26), TT" and T!T are Hermitian. Furthermore, TT'TT = T(T'TT") =
TT' and TI'TTIT = TH(TT'T) = T'T, so that TTT and T'T are both orthogonal projec-
tions. It remains to determine R(TTT) and R(T'T).

First we show that R(TT') = R(T)¢. If z € R(T), then z = Ty = TTT(Ty) for some
y € H so that x € R(TT'). If z is a limit point of R(T), then there exists a sequence
t, € R(T) such that £ = limz,. Then z = limz, = lim Ty, = im TT(Ty,) for some
Yn € H, and z € R(TT)¢ = R(TT?'), because the range space of a projection operator is
closed®. If z € R(TT?"), then z = T(TTy) for some y € S and = € R(T).

We now show that R(TTT) = R(T*)¢. If z € R(T*), then x = T*y = T*(TT)*T*y =
(TYT)*T*y = TIT(T*y) for some y € S, and z € R(T'T). If z is a limit point of R(T*),
then z = lim T*y,, = lim T1T(T*y,) for some y, € S, so that € R(TT)¢ = R(TTT). If
z € R(T'T) and x # 0, then = TTTy for some y € H and Tz = TTTy = Ty # 0, since
if Ty = 0 then z = 0. Thus z € N (T)*+ = R(T*)".

Finally, we show that R(TT) = R(T*). If y € R(TT), then y = Ttz = TITTiz =
(T'T)*Ttz = T*(T)*TtTx = T*u where u = (TT)*Ttxz, so that y € R(T*). If y € R(T*),
then y = T*z = (TT'T)*x = (T'T)T*z = T'u where u = TT*z, and y € R(T"). O

In summary, if we apply T to a y € N(T)*, then we can invert this mapping by applying
Tt to the result: T1Ty = y. Similarly, if we apply TT to an = € R(T)¢, then we can invert
this mapping by applying T to the result: 777z = .

Since TT' = (TT")* = (T1)*T* and T'T = (TTT)* = T*(T)*, for any 2z € R(T)¢ =
N(T*L, (TH*T*z = z and for any y € R(T*) = N(T)*, T*(TH*y = y. If we apply

T* to a © € N(T*)*, then we can invert this mapping by applying (T1)* to the result:

8For any projection E on H, R(E) = N (I3 — E) which from Proposition 2.3 is a closed subspace of #.
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(TH*T*z = z. Similarly, if we apply (T1)* to a y € N(T)t, then we can invert this
mapping by applying T* to the result: T*(T1)*y = .

We note that if T*T is invertible, then TT = (T*T)~'T*. Similarly if TT* is invertible,
then T = T*(TT*)~".

2.7.2 Oblique Pseudoinverse

The oblique pseudoinverse [97] of a matrix is not very well known in the signal processing
literature. In [98] the oblique pseudoinverse is used in a solution to a constrained least-
squares problem, introduced in [54]. In Chapter 5 we show that oblique pseudoinverse can
be used to generalize frame expansions, and in Chapter 6 we derive a redundant sampling
scheme with arbitrary sampling and reconstruction spaces, based on oblique pseudoinverses.

Let T: H — S be an arbitrary linear transformation, and let H = G & N(T') and
S =R(T)¢® Z. The oblique pseudoinverse of T on G along Z, denoted Tgﬁz, is the unique

transformation satisfying the Milne conditions [97]:

Tj&ZT’U = for all v € G; (2.30)

Tg#zw =0 forallwe Z. (2.31)

These conditions are equivalent to a more intuitive set of conditions given in Theorem 2.7
below. Essentially this theorem states that the oblique pseudoinverse of T' on G along Z
inverts T between G and R(T'), while nulling out any vector in Z, as illustrated in Fig. 2-
5. From Fig. 2-4 we see that the pseudoinverse T of T is a special case of the oblique
pseudoinverse Tg#z for which G = M(T)* and Z = R(T)* .

Theorem 2.7 (Oblique pseudoinverse). Let T be a continuous linear mappingT: H —
S. The oblique pseudoinverse of T on G along Z, denoted sz, 15 the unique mapping that

satisfies the conditions:

TTY, = Ex(ryez; (2.32)
TE,T = Egnry; (2.33)
R(TE;) =G. (2.34)

While it is known that the oblique pseudoinverse satisfies (2.32)-(2.34), the converse does
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Figure 2-5: The action of 7" and Tg#z on the subspaces G, N (T'), R(T)¢ and Z. In the special
case in which G = N(T)* and Z = R(T)*, T, g#z reduces to the pseudoinverse T,

not appear to be established.

Proof: We first prove that any Tg#z satisfying (2.32)—(2.34) satisfies the Milne conditions.
From (2.32) TTg#Zw =0 for any w € Z, so that Tg#zw € N(T). But from (2.34), R(sz) =
G so Tg#zw € G. Since N(T) and G are disjoint, Tg#zw = 0, establishing (2.31). From (2.33),
Tg#ZTv = v for any v € G, establishing (2.30).

We now show that any Tg#z satisfying the Milne conditions satisfies (2.32)—(2.34). From
(2.31), TTg#Zw =0forallwe Z. If w e R(T), then w = Tv for some v € G and using
(2.30), TTg#Zw = TTQ#ZT’U = Tv = w. A similar argument can be used to show that if
w € R(T)® then TTj,w = w, establishing (2.32). Combining (2.30) with T}, Tv = 0 for
any v € N(T) establishes (2.33). Finally, suppose that v € R(sz). Then v = Tg#zw for
some w € R(T)¢. We may therefore express w as w = limTy,, for some sequence y,, € G.
Thus v = lim Tg#ZTyn, and from (2.30) we conclude that v = limy, so v € G° = G. Also
from (2.30), any v € G is in R(T}) so that R(Igy) = G. O

In summary, if we apply T to a v € G, then we can invert this mapping by applying
Tg#z to the result: TS#ZT’U = v. Similarly, if we apply sz to a w € R(T)¢, then we can
invert this mapping by applying 7" to the result: TTgEZw = w. Thus T and Tg#z are mutual

inverses on G and R(T)¢, respectively.
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Chapter 3

Quantum States and Measurement

In this chapter we present some elements of the theory of quantum mechanics. Rather
than attempting to provide a comprehensive survey, we concentrate on portions of the
theory that we will draw upon in the development of the QSP framework. In addition
to establishing notation and summarizing the important results, this overview provides a
particular perspective on quantum mechanics that is central to the development of the QSP
measurement. This presentation is based on work with G. D. Forney, Jr. [68, 86], and on
the book by D. G. Griffiths [20]. Excellent introductions to quantum mechanics can be
found in [99, 100, 101].

In both quantum mechanics and in QSP, the setting we consider is an arbitrary Hilbert
space ‘H, whose elements are referred to as vectors (or signals).

The state of a closed quantum system is characterized by a normalized (unit-norm)
vector ¢ € H, and is referred to as a pure state. Information about a quantum system is
extracted by subjecting the system to a measurement. In quantum theory, the outcome
of a measurement is inherently probabilistic, with the probabilities of the outcomes of any

conceivable measurement determined by the state vector ¢ € H.

3.1 Standard Measurements

A standard (von Neumann) measurement in quantum mechanics is defined by a collection of
projection operators {P;,i € Z} onto subspaces {S; C H,i € Z}, where Z denotes an index
set and the index ¢ € Z corresponds to a possible measurement outcome. The operators P;

and the subspaces S; are referred to as the measurement operators and the measurement
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subspaces, respectively. The laws of quantum mechanics impose the constraint that the

operators {P;,i € Z} form a complete set of orthogonal projections so that for any i,k € Z,

P = P

W
—_

~—~~ o~~~ o~
w
N

~— ~— ~—

w
=

P} = P;

2

w
)

PP, = 0, ifi#k;

€L
Conditions (3.3) and (3.4) imply that the measurement subspaces S; are orthogonal, and
that their direct sum is equal to H.
If the state vector is ¢, then from the rules of quantum mechanics, the probability of

observing the ith outcome is

p(i) = (Fi¢, ). (3.5)

Since the state is normalized, Y, p(i) = (3, Pi¢, ¢) = (¢, ¢) = 1.

We note that from (3.5) it follows that any state of the form e/?¢ where @ is an arbitrary
angle, leads to the same probabilities on the output as the state ¢. Therefore these states
are considered to be equivalent’.

In the simplest case the projection operators are rank-one operators and have the outer-
product form P; = p;u} for some nonzero vectors {u; € H,i € Z}. We refer to such
measurements as rank-one quantum measurements. Then (3.3) implies that (u;, ux) = di,

while (3.4) implies that

€T

so the measurement vectors {y;,7 € Z} form an orthonormal basis for . If the state vector

is ¢, then the probability of observing the ith outcome is

p(i) = |{ps, $)I%. (3.7)

L A state is therefore defined as a ray in a Hilbert space, where a ray is an equivalence class of vectors that
differ by multiplication by a nonzero complex scalar. We may then always choose a unit-norm representative
of this class.
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Due to the probabilistic nature of a quantum measurement, in general identical mea-
surements on identically prepared systems do not produce the same outcome. However,
associated with every measurement are particular preparation states that are determinate
so that if the system is prepared in one of these states then the measurement will yield the
same outcome with probability one (w.p. 1). For a rank-one quantum measurement defined
by orthonormal measurement vectors p;, it follows from (3.7) that if ¢ = p; for some 4,
then p(i) = 1 and output 7 is obtained w.p. 1. The states {¢ = p;} are therefore called
the determinate states of the measurement. More generally, the determinate states are the
states that lie completely in one of the measurement spaces S;. Indeed, if ¢ € S;, then
P;¢ = ¢ and from (3.5), p(i) = 1.

A fundamental postulate of quantum mechanics is that repeated measurements on a
quantum system yield the same outcome; if the outcome cannot be confirmed by immediate
repetition of the measurement, then we cannot prove that the output was actually observed.
Evidently, the measurement alters the state of the system. In quantum terminology, the
state is said to collapse onto a state consistent with the measurement outcome so that if we
re-measure the system in this state, then the final state after this second measurement will
be identical to the state after the first measurement. Suppose that we measure a system in
a state ¢, using a rank-one measurement with orthonormal measurement vectors u;, and let
¢' denote the state of the system after the measurement. If the kth output is observed and
a second measurement is performed, then we must have that p(k) = |{ux, ¢')|*> = 1, which
implies that (up to a possible phase factor) ¢' = ug. In the more general case in which the
measurement corresponds to orthogonal projections P; onto subspaces S;, if the kth output

is observed, then ¢’ is a normalized vector in the direction of Pye.

Thus, the state after a measurement is quantized to one of the determinate states. In
a rank-one measurement, the probability of being in any particular determinate state is a
function of the inner product between the state of the system and the determinate state.
More generally, the probability is a function of the norm of the projection of the state onto
the corresponding measurement space.

The discussion above leads to a particular viewpoint towards quantum measurement
which can be formulated in terms of a probabilistic mapping between H and the determinate
states. Given a state space X' and an observation space )Y, a probabilistic mapping from X

to Y is a function f: X X W — Y, where W is the sample space of an auxiliary chance
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variable W (z) = {W, py|x (w|z)} with a probability distribution py|x(w|z) on W that in
general depends on x € X. Note that a deterministic mapping f: X — ) is a special case
of a probabilistic mapping in which the auxiliary chance variable is deterministic; i.e., has
one outcome w w.p. 1. In this case the the function f is independent of W.

A rank-one quantum measurement corresponding to orthonormal measurement vectors
{pi € H,i € I} that span subspaces {S; C H,i € Z} can be viewed as a probabilistic

mapping between H and the determinate states that is
1. a deterministic identity mapping for ¢ € S;;

2. a probabilistic mapping for nondeterminate states that maps ¢ to a normalized vector

in the direction of the orthogonal projection P;j¢ for some value ¢ € Z, where i =

f({<Hk,¢>a ke I},’U)Z)

Here f: H xW — 7 is a probabilistic mapping between elements ¢ of H and indices
1 € Z, that depends on a chance variable W with a discrete alphabet W = Z such that the
probability of outcome w; € W depends on the input ¢ only through the inner products
{{px, ¢), k € T}. Specifically, the probability of outcome w; is |{u;, #)|*. If w; is observed,
then f({{pk,x),k € I}, w;) = 1.

A general quantum measurement corresponding to a complete set of orthogonal projec-
tion operators {P;,7 € Z} onto subspaces {S; C H,i € Z} can be viewed as a probabilistic

mapping between H and the determinate states that is
1. a deterministic identity mapping for ¢ € S;;

2. a probabilistic mapping for nondeterminate states that maps ¢ to a normalized vector

in the direction of the orthogonal projection P;¢ for some value i € Z, where i =

F{(Pro, Pro), k € T}, w;).

Here f: H xW — Z is a probabilistic mapping between elements ¢ of H and indices
1 € Z, that depends on a chance variable W with a discrete alphabet YW = Z such that the
probability of outcome w; € W depends on the input ¢ only through the inner products
{(Pr¢, Ppp),k € Z}. Specifically, the probability of outcome w; is (Pj¢, Pi¢). If w; is
observed, then f({(Py¢, Pyp),k € T}, w;) = 1.

This perspective on the quantum measurement is the underpinning of the QSP mea-

surement, defined in Chapter 4.
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3.2 Generalized Measurements

By adding an auxiliary system and performing orthogonal measurements on the combined
system, we can implement generalized measurements [61, 62], which is sometimes a more
efficient way of obtaining information about the state of a quantum system than a standard
measurement. Alternatively, we can view a generalized measurement as a standard mea-
surement followed by an orthogonal projection onto a lower space [62, 68]. We expand on
this interpretation in Section 3.3.1 in the context of Neumark’s theorem.

A generalized measurement on a subspace U C H in which the system to be measured
is known a priori to lie is defined by a set {Q;,7 € Z} of nonnegative Hermitian operators,
not necessarily projectors, that satisfy ) ., @Q; = Iy. Such a set of operators is termed a
positive operator-valued measure (POVM).

A rank-one POVM acting on a subspace f C H is defined by a set of measurement

vectors {ui, ¢ € I} that satisfy

> pipt = Pu, (3.8)
ieT

i.e., the operators (; = p;u; must be a resolution of the identity? on &. A POVM is more
general than a standard measurement in that the measurement vectors y; are not required

to be either normalized or orthogonal.

3.3 Measurement Matrices

The measurement matriz M corresponding to a set of m measurement vectors {u; € U,1 <

i < m} is defined as the matrix of columns p; [68]. We have immediately from (3.8) that
MM* = By. (3.9)

Thus a matrix M with m columns in H is a measurement matrix for states in the subspace
U C H if and only if M satisfies (3.9). Note that in the special case in which M has full

column rank, (3.9) implies that the vectors u; are orthonormal; however if M does not have

2Often these operators are supplemented by a projection Qo = Py = I3 — Py onto the orthogonal
subspace U C H, so that the augmented POVM is a resolution of the identity on H.
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full column rank, then the measurement vectors u; are not orthonormal.

It follows from Theorem 2.2 that a measurement matrix M with m columns in H
corresponds to a rank-one POVM acting on an n-dimensional subspace Y C H if and only
if M is a transjector (partial isometry) between ¢/ and an n-dimensional subspace ¥V C C™.

We summarize the properties of measurement matrices in the following theorem [68].

Theorem 3.1 (Measurement matrices). The following statements are equivalent for a

matriz M whose columns are m vectors in o Hilbert space H.:

1. M is a measurement matriz corresponding to a rank-one POVM acting on an n-

dimensional subspace U C H;
2. M is a transjector between n-dimensional subspaces U CH and YV C C™;
3. MM* = Py for an n-dimensional subspace U C H;
4. M*M = Py for an n-dimensional subspace YV C C™.

A measurement matriz M corresponding to a rank-one POVM on an n-dimensional subspace
U C H may be expressed as M = UZ,V*, where U is a unitary matriz whose first n columns
{u;,1 <i < n} are an orthonormal basis for U, V is an m X m unitary matriz whose first

n columns {v;,1 <i <n} are an orthonormal basis for V, and Z;,1 < i < m is given by

Z; = . (3.10)

A measurement matriz M is an isometry if restricted to V.
A measurement matriz M whose columns are m vectors in H represents a standard mea-

surement if and only if its rank is m. Then M = UZ,, V*, and M*M = 1,,.

3.3.1 Neumark’s Theorem

Neumark’s theorem [62, 68] guarantees that any POVM with measurement vectors p; € U
can be realized by a set of orthonormal vectors fi; in an extended space U such that U C U ,
so that p; = Pyji;.

Using the measurement matrix characterization of a POVM and the SVD, we now obtain

a simple statement and proof of Neumark’s theorem. Moreover, our proof is constructive;
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we explicitly construct a set of orthogonal measurement vectors such that their projections
onto U are the original measurement vectors.

In Chapter 5 we develop a relationship between POVMs and tight frames. We then
apply ideas and results derived in the context of quantum measurement to the construction
and characterization of combined QSP measurements and tight frames. In particular, we
use the construction given in this proof to extend a tight frame into an orthogonal basis for

a larger space.

Theorem 3.2 (Neumark’s theorem). Let M be a rank-n measurement matriz of an
arbitrary POVM, with m columns in a Hilbert space H. In other words, M is a transjector
between an n-dimensional subspace U C H and an n-dimensional subspace V C C™. Then
there ezists a standard measurement with measurement matriz M which is a transjector

between an expanded m-dimensional subspace u D U in a possibly expanded Hilbert space

HDOH and C™, and whose projection onto U is M = Puﬁ.

Proof: Using Theorem 3.1 we may express M as M = UZ, V*. Let u; and v; denote the
columns of U and V respectively, and let k£ = dim H.

We distinguish between the case k > m (i.e., M has at least as many rows as columns),
and the case kK < m (i.e., M has more columns than rows).

In the case k > m, define M = Z:’;l u;v;; then u C H is the m-dimensional subspace

spanned by {u;,1 <i < m}. The projection of M onto U is
N n m n
BM =) wui) uvi=> uvi =M. (3.11)
j=1 i=1 i=1
Moreover, the columns of M are orthonormal, since its Gram matrix is
o m m m
M*M = Z vju; Z u;v; = X:Viv;fF =1I,. (3.12)
j=1 i=1 i=1

In the case k < m, first embed U in an m-dimensional space U in an expanded Hilbert
space H D H, and let {0;,1 < i < m} be an orthonormal basis for U of which the first n

vectors are the U/-basis. Then proceed as before, using 1; in place of u;. O

It is instructive to consider the matrix representation of M in both cases. Recall that

M = UZ,V*, where Z, is given by (3.10).
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In the case k£ > m, we construct M simply by extending the identity matrix along the
diagonal so that M = UZ, V*. (If K = m, then Z,, =1I,, and M = UuvH).

In the case k < m, we first replace the left unitary matrix U by I~J', and thus replace k
by k= m; then Uisanmxm unitary matrix whose first n columns are the U-basis (where

we append m — k zeros to each basis vector u;). We then define M = UV*.

3.4 Quantum Detection and Optimal Quantum Measurements

The constraints imposed by the physics on a quantum measurement lead to some interesting
problems within the framework of quantum mechanics. In particular, when using quantum
systems in a communication context a problem that arises is the quantum detection prob-
lem. The constraints imposed in this problem suggest some intriguing signal processing
algorithms that we explore in Chapters 8-12.

We now describe the quantum detection problem and recapitulate some results on op-
timal quantum measurements according to various criteria, which will be relevant to the
construction of optimal QSP measurements (Chapter 8), to the design of optimal detectors
(Chapters 9 and 12), to the development of a new viewpoint towards whitening and other
covariance shaping problems (Chapter 10), and to the derivation of a new linear estimator
(Chapter 11).

In a quantum detection problem a sender, Alice, conveys classical information to a
receiver, Bob, using a quantum-mechanical channel. Alice represents messages by preparing
the quantum channel in a pure quantum state drawn from a collection of known states.
Bob detects the information by subjecting the channel to a measurement. If the states are
mutually orthogonal, then Bob can perform an orthogonal measurement that will determine
the state correctly w.p. 1 [99]. The optimal measurement consists of projections onto the
given states. However, if the states are not orthogonal, then no measurement will allow
Bob to distinguish perfectly between them. Bob’s problem is therefore to construct a
measurement optimized to distinguish between non-orthogonal quantum states.

Therefore, let {¢;,1 < i < m} be a collection of m < k normalized vectors ¢; in a
k-dimensional Hilbert space H, representing different preparations of a quantum system.
In general these vectors are non-orthogonal and span an n-dimensional subspace U C H.

To distinguish between the different preparations, we subject the system to a measure-
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ment. For our measurement, we restrict our attention to rank-one POVMs consisting of
m operators of the form @; = p;u; with measurement vectors p; € Y. We do not require
the vectors p; to be orthogonal or normalized. However, to constitute a POVM on U the
measurement vectors must satisfy (3.8).

If the states are prepared with equal prior probabilities, then the probability of correct

detection using the measurement vectors y; is given from (3.5) by

m

1 2
Py = m Zzzl (s 9i)|° (3.13)
If the vectors u; are orthonormal, then choosing u; = ¢; results in P; = 1. However, if the
given vectors are not orthonormal, then no measurement can distinguish perfectly between
them. Therefore, a fundamental problem in quantum mechanics is to construct measure-
ments optimized to distinguish between a set of non-orthogonal pure quantum states.

This problem may be formulated as a quantum detection problem, so that the measure-
ment vectors are chosen to minimize the probability of detection error, or more generally,
minimize the Bayes cost. Necessary and sufficient conditions for an optimum measure-
ment minimizing the Bayes cost have been derived [21, 22, 23]. However, except in some
particular cases [23, 24, 25|, obtaining a closed-form analytical expression for the optimal
measurement directly from these conditions is a difficult and unsolved problem.

In [26] we take an alternative approach® of choosing a different optimality criterion,
namely a squared-error criterion, and seeking a measurement that minimizes this criterion.
Specifically, the measurement vectors u; are chosen to minimize the sum of the squared
norms of the error vectors e; = pu; — ¢;, as illustrated in Figure 3-1. The optimizing
measurement is referred to as the least-squares measurement (LSM).

It turns out that the LSM problem has a simple closed-form solution, which we discuss
in the general context of least-squares (LS) inner-product shaping in Chapter 8, with many
desirable properties. Its construction is relatively simple; it can be determined directly from
the given collection of states; it minimizes the probability of detection error when the states
exhibit certain symmetries [26]; it is “pretty good” when the states to be distinguished are
equally likely and almost orthogonal [102]; it achieves a probability of error within a factor

of two of the optimal probability of error [103]; and it is asymptotically optimal [104].

3This work was done in collaboration with G. D. Forney, Jr..
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Figure 3-1: 2-dimensional example of the least-squares measurement.

The LSM can be used to motivate a new method of orthogonalization that constructs a
set of orthogonal vectors that is closest in a LS sense to a given set of vectors. This orthog-
onalization method is the basis for constructing optimal QSP measurements in Chapter 8,
in which we construct a set of vectors to have any desired inner product structure, and to
be closest in a LS sense to a given set of vectors, which we refer to as LS inner product
shaping. These new methods are then used in Chapters 8-12 to develop effective solutions
to a variety of problems in areas ranging from frame theory to multiuser wireless commu-
nication. We demonstrate that, even for problems without inherent orthogonality or other
inner product constraints, imposing such constraints in combination with LS inner product
shaping can lead to new processing techniques that often exhibit improved performance
over traditional methods.

Another interesting aspect of the quantum detection problem is that, as we will see for
example in Chapters 8, 9 and 12, the mathematical form of the quantum detection problem
appears in a variety of different signal processing problems, so that the ideas and results
we developed in the context of quantum detection are also useful in many signal processing
applications.

A special class of vector sets that plays an important role in the context of quantum
detection is the class of geometrically uniform (GU) vectors [77]. Exploiting the strong
symmetry properties of these sets, we show in [26] that for such vector sets the LSM
minimizes the probability of detection error, so that in this case the LSM constitutes a
solution to the unsolved quantum detection problem. The proof of this result reveals some

nice properties of these vector sets which we develop further in [27, 76].
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As we will demonstrate in the ensuing chapters, GU vector sets are also central to a
variety of QSP applications. In particular, in Chapter 5 and in [76] we introduce the class
of GU frames which are highly structured frames that posses nice computational properties.
In Chapters 9-12 we show that GU vector sets play an important role in several classical
detection and estimation problems such as matched filter detection and multiuser detection.

In the next chapter we exploit the basic principles of measurement, consistency and
quantization as formulated in this chapter to the development of the QSP measurement,
and we indicate how the constraints and ideas of quantum detection will be applied in the

framework of QSP.
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Chapter 4

QSP Measurement

The QSP measurement framework derives from the formalism of quantum mechanics by
drawing a parallel between a quantum mechanical measurement and a signal processing al-
gorithm. This framework is aimed at developing new or modifying existing signal processing
algorithms by drawing heavily on the notions of measurement, consistency and quantization
as they apply to quantum systems and by borrowing further from the interesting constraints
imposed by quantum physics. However, it is broader and less restrictive than the quan-
tum measurement framework since in designing algorithms we are not constrained by the

physical limitations of quantum mechanics.

To exploit the formalism and rich mathematical structure of quantum mechanics in the
design of algorithms we associate a QSP measurement with a signal processing algorithm.
We then apply the formalism and fundamental principles of quantum measurement to the
definition of the QSP measurement. In the QSP framework, a signal is processed by either
subjecting it (or its representation in a possibly different signal space) to a QSP measure-
ment, or by processing it using some of the measurement parameters. This framework
leads to a variety of interesting processing techniques which we explore in the thesis. In
particular, since the QSP measurement is defined to have a similar mathematical struc-
ture as a quantum measurement, the mathematical constraints imposed by the physics on
the quantum measurement can also be imposed on the QSP measurement leading to some
intriguing new signal processing algorithms. Furthermore, as will become apparent in ex-
amples throughout the thesis, many known signal processing algorithms and techniques can

be described in terms of a QSP measurement by choosing the appropriate measurement
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parameters. The power of the QSP measurement framework and its pivotal contribution
is in providing a common umbrella for a multitude of different processing techniques and
a systematic framework for generating new, potentially effective and efficient processing
methods by modifying the measurement parameters. The modifications we consider result
from imposing some of the additional constraints of quantum mechanics on the parameters
or relaxing some of these constraints. Throughout the thesis we demonstrate that this new
framework leads to a variety of interesting new algorithms in areas ranging from frame

theory, sampling and quantization to detection, estimation and covariance shaping.

In this chapter we introduce and develop the QSP measurement. We begin by defining
rank-one QSP measurements (ROM) which, in analogy to rank-one quantum measurements,
are described by a set of measurement vectors. We then define subspace measurements
(SMs) which are described by a set of projection operators, in analogy to higher-rank
quantum measurements. A special case of a SM is a simple SM (SSM) which is a SM
defined by a single projection operator, so that it is equal to a linear projection.

Throughout the chapter we provide examples demonstrating the utility of the QSP
framework in deriving new processing methods by either casting an existing algorithm in
terms of a QSP measurement, and then changing some of the parameters of the measure-
ment describing the algorithm, or by directly processing a signal using some of the mea-
surement parameters and then imposing constraints borrowed from quantum mechanics on
these parameters. As we show, this framework provides a unified conceptual structure for a
variety of traditional processing techniques, and a precise mathematical setting for develop-
ing generalizations and extensions of algorithms. While some of these examples are highly
preliminary and require further evaluation, they illustrate the potential of the framework
and the type of procedure that might be followed in using our framework to generate new

processing techniques, as well as highlight some possible directions for future research.

In this chapter we focus primarily on developing the measurement framework. Detailed
applications of ROMs and SSMs to frame theory, sampling, quantization, matched filter
detection, covariance shaping, parameter estimation and multiuser detection are explored
in Chapters 5-12. As an example of a direction for application of SMs, in Section 4.4 we
develop a subspace approach for transmitting information over a channel with a particular
structure. Although the discussion constitutes a rather preliminary exploration of such cod-

ing techniques, it represents an interesting and potentially useful model for communication
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in many contexts.

4.1 The QSP Measurement

To derive the concept of QSP measurement we exploit the principles of measurement, con-
sistency and quantization as they relate to quantum mechanics, as discussed in Chapter 3.

Measurement of a signal in the QSP framework corresponds to applying an algorithm
to a signal. A QSP measurement M on a Hilbert space H operates on an input signal
x € H, and returns an output signal y = M(z) € H. As illustrated in Fig. 4-1, the input
signal = represents the signal Z € X we wish to process, so that © = Ty (%) € H for
a mapping Ty: X — H, where Ty may be equal to the identity in which case x = Z.
Similarly, the measurement outcome y € H represents the algorithm output § € V so that
g = Ty(y) for a mapping Ty: H — Y, where Ty may be equal to the identity in which
case y = 4. In developing the QSP measurement framework we explicitly assume that the
measurement input x and the measurement output y lie in H. Note, however, that after
designing the QSP measurement M, we may always combine Ty, M, and Ty into a single

mapping Tas: X — Y, as illustrated in Fig. 4-1.

Figure 4-1: Processing a signal & € X using a QSP measurement M on H. If necessary, then
the algorithm input # € X is first mapped to x = Tx(Z) € H. Similarly, the measurement
outcome y = M (x) € H may be mapped to the algorithm output § = Ty (y) € Y if necessary.

In applications involving QSP measurements that are not equal to linear projection
operators, we will explicitly assume that x # 0 in Fig. 4-1.
4.1.1 Rank-One QSP Measurement

In analogy with the rank-one quantum mechanical measurement, a rank-one QSP measure-

ment (ROM) M on H is a nonlinear mapping that is described by a set of measurement
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vectors {g;,? € I}, where Z denotes an index set, and ¢; € H for all i € Z. We assume that
no two vectors ¢; are multiples of each other, so that the one-dimensional spaces S; spanned
by the measurement vectors ¢; intersect only at 0, i.e., are disjoint. Since we are not con-
strained by the physics of quantum mechanics, in QSP, in contrast to quantum mechanics,
these vectors are not constrained to be orthonormal. Nonetheless, in some applications we
will find it useful to impose such a requirement.

The primary constraint on the measurement M (x) is the quantum mechanical notion

of consistency: successive measurements must yield identical outcomes. Mathematically,

M(M(z)) = M(z). (4.1)

Quantization of the measurement outcome is imposed by requiring that the outcome
signal is one of a set of signals determined by the measurement vectors. Specifically, in
analogy with the quantum mechanical determinate states we define the determinate signals,
which are the signals € H such that x € S; for some ¢ € Z. Equivalently, x is determinate
if x = cq; for some ¢ € C and 7 € Z. We denote the set of determinate signals of M by Xj,.

The definition of M(z) derives from the definition of a quantum measurement, and
preserves the two fundamental principles of a quantum measurement, i.e., consistency and
quantization of the measurement output. Recall from Chapter 3 that a rank-one quantum
measurement on H is a probabilistic mapping between H and the set of determinate states

that is
1. a deterministic identity mapping for determinate states;

2. a probabilistic mapping for nondeterminate states that maps the input state to a
determinate state where the probability of mapping to a particular determinate state is
a function of the inner product between the nondeterminate state and the determinate

state.

In defining the QSP measurement of z we emulate these properties of a quantum mea-
surement. With FE; denoting a projection onto the one-dimensional space S; spanned by
the vector ¢;, E;x € S; for any © € ‘H so that E;x is a determinate signal. Hence, we define

M (z) as a probabilistic mapping! between H and the determinate signals Xy, that is

'We use the terminology probabilistic mapping whenever the mapping may be probabilistic.
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1. a deterministic identity mapping for z € S; defined by M(z) = E;z = x;

2. a probabilistic mapping for nondeterminate signals x defined by M (z) = E;z for some

value i € Z, where i = far({{qx, ),k € I}).

Here fy: H — 7 is a probabilistic mapping between elements z of H and indices ¢ € Z,
that depends on the input z only through the inner products (g, x), where k ranges over Z.
The role of the probabilistic mapping fjs is to quantize a nondeterminate signal x to one
of the determinate signals {E;z,7 € Z}. Then, like a quantum measurement, the output of
a QSP measurement M is always a determinate signal of M and is a function of the inner
products between the input signal and the measurement vectors which are a subset of the
determinate signals.

Note, that we can always define the mapping fis so that for x € S;, fyr(z) = i. Then
for all z, M(z) = E;z where i = fa({{(gx,x),k € Z}). However we prefer to distinguish
between the two cases so as not to impose additional constraints on fj;.

As an example of a (deterministic) mapping fas, we may choose
= . 4.2
fu(z) = arg max(g, z) (4.2)

As another example, we may choose

fu(z) = arg I,ggg((qk, ) — {qk> Gk))- (4.3)

The mapping fas of (4.3) chooses the vector ¢ that minimizes the distance ||z — gg|| so that
it maps = to the closest vector g.

As an example of a probabilistic mapping, emulating the quantum mechanical rule we
may choose fa;: H X W — T as a probabilistic mapping from H to Z, where W = T
is the sample space of an auxiliary chance variable w, such that w can take on a value
w; € T with probability c|(g;, z)|?, where c is an appropriate normalization constant. Then

let fas(x,w;) = i. The outcome M (z) when z is not determinate is then given by
M (x) = E;z with probability c|{g;, z)|>. (4.4)

We note that the output of the algorithm resulting from a measurement M of a non-
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determinate x may depend in principle on the choice of projections E; onto S;. In some
applications, rather than choosing arbitrary projections, it may be of interest to explore
“optimal” methods for choosing these projections. In subsequent chapters we will see some
examples of how the choice of projection can affect the algorithm output in the context
of SMs. In applications such as quantization and detection, a common choice of output
mapping Ty in Fig. 4-1 maps any vector y € S; to some y; € V. Since for any projection
E; onto S;, y = E;x € §;, in this case the choice of projection will not effect the algorithm
output § = Ty(y).

The discussion above is summarized in the following definition:

Definition 4.1 (Rank-one QSP measurement). Let M be a rank-one QSP measure-
ment on H with measurement vectors {¢;,i € L} that lie in H. Let S; denote the one-
dimensional space spanned by the vector q;, and let E; denote a projection onto S;. Let Xy
denote the determinate signals of M that are the vectors x € S; for some i € T. Then the
outcome of the measurement M (z) of x € H is given by
x T € X
M(z) = ’ ’ (4.5)
Eiw where © = fM({<Qkax>ak € I}),Z € Ia T ¢ XMa
where far: H — I is a probabilistic mapping between elements of H and the index set I,

and depends on the input x only through the the inner products {{qx,x), k € I}.

The QSP measurement leads in general to nonlinear algorithms that are characterized
by a set of linear projection operators. These algorithms have a simple structure taking
on the form of a linear projection operator E; operating on an input signal, where the
projection is chosen out of a set of possible projections {E;,i € Z}, and the particular
choice of projection is determined by the probabilistic mapping fas. Drawing from the
definition of a quantum measurement, the QSP measurement is then formulated in a way
that ensures consistency for all inputs. A direct consequence is that the output of the
algorithm is always ‘quantized’ to one of the determinate signals. Note, however, that far
does not necessarily quantize the signal in the strict sense since typically a quantizer has
a countable set of outputs, whereas the images in the output space ) of the determinate
signals may in principle contain an uncountable number of signals, so that the final output

in Y may be chosen from an uncountable set.
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Since a ROM depends directly on the choice of probabilistic mapping fas, the choice of
measurement vectors ¢;, and possibly the choice of projections F;, this framework provides
a systematic method for deriving new, potentially interesting processing algorithms by, for
example, varying the probabilistic mapping fas or imposing constraints on the measurement
vectors g;.

In summary, our definition of a ROM M is very reminiscent of the quantum measure-
ment as defined in Section 3.1, and preserves the fundamental concepts of consistency and
quantization. However, whereas in quantum mechanics fjs is uniquely specified as the prob-
abilistic mapping in which the measurement vector ¢; is chosen with probability |{g;, z)|?,
in our formulation we allow for more general probabilistic and deterministic mappings fas.
Furthermore, the measurement vectors are not constrained to be orthonormal as in quantum
mechanics, and the projections E; are not constrained to be orthogonal projections.

In later chapters of the thesis we demonstrate the utility of the QSP measurement frame-
work in deriving effective solutions to problems in a wide range of areas. All the processing
methods we develop result from either formulating an algorithm as a QSP measurement and
then systematically changing some of the parameters on which the measurement depends,
or by processing a signal using one of the measurement parameters and then imposing
constraints borrowed from quantum mechanics on these parameters. Typical modifications
we consider include choosing a probabilistic mapping fjs emulating the quantum mechan-
ical measurement, and imposing inner product constraints on the measurement vectors.
There are potentially a host of additional applications of the QSP framework beyond those
explored in the subsequent chapters. In particular, we may consider imposing other con-
straints on the measurement vectors and choosing different probabilistic mappings fas.
Perhaps the most rewarding direction for future research is in discovering and developing

further applications of this framework.

4.2 Algorithm Design Using Rank-One Measurements

In the QSP framework signals are processed by either subjecting them to a QSP measure-
ment, or by using some of the QSP measurement parameters but not directly applying
the measurement. In Section 4.2.1 we consider designing algorithms using the QSP mea-

surement, and in Section 4.2.2 we consider algorithms that result from using some of the
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Figure 4-2: Designing algorithms using a rank-one measurement.

measurement parameters.

4.2.1 Algorithm Design by Applying Rank-One Measurements
Algorithm design

To design an algorithm using a ROM we first identify the measurement vectors which specify
the possible measurement outcomes. For example, in a detection scenario the measurement
vectors may be equal to the transmitted signals, or may represent these signals in a possibly
different space. As another example, in a scalar quantizer the measurement vectors may
be chosen as a set of vectors that represent the scalar quantization levels. We then embed
the measurement vectors in a Hilbert space H and, if necessary, map the signal Z to be
processed into a signal = in ‘H using a mapping Ty. To obtain the algorithm output we first
measure the representation z of the signal to be processed. If z is a determinate signal of
M, then the measurement outcome is y = M(x) = z. Otherwise we approximate = by a
determinate signal y using the probabilistic mapping fas. If necessary, the final algorithm
output ¢y may be obtained from the measurement outcome y using the mapping 7. These
basic steps are illustrated in Fig. 4-2.

By choosing different input and output mappings Ty and Ty, and different measurement
parameters fas,¢; and F; in Fig. 4-2, we can arrive at a variety of new and interesting

processing techniques.

Modifying known algorithms

As we now demonstrate, many traditional detection and processing techniques fit naturally
into the framework of Fig. 4-2. Once an algorithm is described as a QSP measurement
M, a myriad of modifications and extensions of the algorithm can then be derived by, for

example, varying fus, or by imposing constraints on the measurement vectors of M. The
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modifications we consider result from borrowing from some of the additional constraints of
quantum mechanics.

In particular, QSP measurements naturally give rise to probabilistic algorithms by let-
ting fas be a probabilistic mapping, emulating the quantum measurement. We expand on
this idea in the context of quantization in Chapter 7, and in the examples below, and in
the context of combined measurements in Chapter 5. However, the full potential benefits of
probabilistic algorithms in general resulting from the QSP framework remain an interesting
area of future study.

Another possibility for extensions is by imposing constraints on the measurement vectors
g;- One of the interesting constraints of quantum mechanics is that measurement vectors
must be orthonormal, which leads to some interesting problems within the framework of
quantum mechanics such as the quantum detection problem, described in Section 3.4. A
fundamental problem in quantum mechanics is to construct optimal measurements subject
to this constraint, that best represent a given set of state vectors. In analogy to quantum
mechanics, we may impose inner product constraints on the measurement vectors of a QSP
measurement M. However, since we are not limited by physical laws, we are not confined
to an orthogonality constraint. Borrowing from the ideas we developed in the context of
quantum detection (see Section 3.4 and [26]), in Chapter 8 we consider in detail methods for
choosing a set of measurement vectors that best represent the signals of interest and have
a specified inner product structure, which we refer to as least-squares (LS) inner product
shaping. Applications of this concept to matched filter (MF) detection, MMSE covari-
ance shaping, estimation, and multiuser wireless communication systems are developed in
Chapters 9-12. These applications demonstrate that LS inner product shaping, inspired
by optimal quantum measurement design, is a very versatile methods with applications
spanning many different areas.

We now consider applications of ROMs to MF detection and quantization. We demon-
strate both how to formulate these algorithms in terms of a QSP measurement, and also how
to use the framework to develop various modifications. Further details on and extensions

of these applications are considered in Chapters 9 and 7, respectively.

Example 4.1 (Matched Filter). In this example we demonstrate how to cast an MF
detector in terms of a QSP measurement. Suppose that one of m signals {s;(t),1 <i < m}

is received over an additive noise channel with equal probability, where the signals lie in a

87



real Hilbert space H with inner product (z(t),y(t)) = [[Z _ x(t)y(t)dt, and are normalized
so that (s;(t), s;(t)) =1 for all i. The received signal r(¢) is also assumed to be in H, and is
modeled as 7(t) = s;(t) + n(t) for one value i, where n(t) is a stationary white noise process
with zero mean and spectral density o2, and with otherwise unknown distribution.

A classical receiver for detecting the received signal is the well known MF detector [11],
depicted in Fig. 4-3. The received signal r(t) is cross-correlated with each of the m signals
s;(t) so that a; = (s;(t),7(t)). The declared detected signal is s;(t) where i = arg max ay.
The mapping 7' in Fig. 4-3 maps the index ¢ into the algorithm output s;(t).

=) [()dt -
Sl(t)
a2
(%) J()at i
r(t) —  sy(t) arg max T — s;(t)
(%) Odt |
& J

Figure 4-3: Matched filter detector.

To implement the MF detector using a QSP measurement M, we define measurement
vectors {q;(t) = s;(t),1 <i < m}, and define the mapping fis by

fu(r(t)) =i, where i = arg lg}cagn@k(t),r(t)). (4.6)

If r(t) = csi(t) for some ¢ € C and one value 4, then r(¢) is a determinate signal of M
and M(r(t)) = r(t) = cs;(t). Otherwise, M(r(t)) = E;r(t) = cs;(t) for some ¢ € C, where
i = fa(r(t)) = argmax(sg(t),r(t)), and E; is a projection onto the space S; spanned by
$;(t). Thus the MF output can be obtained by performing the measurement M on the
observed signal r(t), followed by a mapping Ty from H to Y = H defined by Ty(y) = s;(t)
if y € §;. The measurement description of the MF detector is illustrated in Fig. 4-4.

We note that if the signals s;(¢) do not have equal norm, then the MF receiver is
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csi(t)

Figure 4-4: Measurement description of the matched filter detector.

modified so that the declared detected signal is s;(t) where i = argmax(ag — ||sx(¢)|?). In
this case we can implement the modified MF using a ROM with mapping fa(z(t)) = 4
where i = arg max((sx(t), z(t)) —||sx(¢)||?). A similar modification also occurs if the signals

are transmitted with unequal prior probabilities. O

A significant advantage to describing a known algorithm in the QSP measurement lan-
guage, is that it suggests modifications of the algorithm by changing the measurement
parameters. In the next two examples we consider modifications of the MF detector that

result from changing the parameters of the basic measurement describing the MF detector.

Example 4.2 (Orthogonal Matched Filter). An interesting modification of the MF
detector suggested by the QSP framework results from constraining the measurement vec-
tors of the MF measurement M to be orthonormal, as in a quantum mechanical mea-
surement. In this case the measurement vectors can no longer in general be equal to the
transmitted signals s;(t). Instead, borrowing from the construction of optimal quantum
measurements in Section 3.4, we construct a measurement with orthonormal measurement
vectors h;(t) that are closest in a LS sense to the transmitted signals. We discuss this con-
struction in the context of LS inner product shaping in Chapter 8. The resulting detector
consists of correlating the received signal with each of the m signals h;(t), and choosing as
the declared detected signal the one for which (h;(¢),7(¢)) is maximum. We refer to this
detector as the orthogonal matched filter (OMF) detector [36, 37].

In Chapter 9 we discuss the OMF detector in considerable detail, and develop further
modifications of the MF detector by imposing additional inner product constraints on the
measurement vectors of M. We provide simulation results that suggest that in certain cases
of non-Gaussian noise the OMF detector can significantly increase the probability of correct
detection over the MF receiver, and may have only minor impact on performance in the
Gaussian case. By exploiting results derived in the context of quantum detection [26], we

show that in many practical cases the OMF detector has a property analogous to the MF

89



detector, namely that it maximizes the total output SNR subject to a whitening constraint

on the outputs. U

In the previous example we considered a modification of the MF detector that results
from imposing an inner product constraint on the measurement vectors. In the next example
we consider a modification of the MF detector that results from choosing a probabilistic

mapping fas in place of the conventional MF mapping (4.6).

Example 4.3 (Probabilistic Matched Filter). Employing the measurement descrip-
tion of the MF detector (Example 4.1), we can derive a probabilistic MF by choosing
a probabilistic mapping fas. Specifically, emulating the quantum measurement we choose
far: H x W — T as a probabilistic mapping from H to Z, where W = T is the sample space
of an auxiliary chance variable w with discrete alphabet W, such that w can take on a value
w; = i with probability c|(s;(t), z(t))|?, where for normalization, ¢ = 1/ 7", |(sk(t), z(¢))|?.
Then let fa(z(t),i) = 4. The declared detected signal is then s;(¢t) with probability
c|(si(t),7(t))|*> = ca?. Note, that the output of this probabilistic MF is a random vari-
able even when the input to the detector is known.

To allow for more freedom in the design of the probabilistic MF we can first map
the transmitted signals s;(¢) and the received signal r(t) onto a different set of vectors in a
possibly different Hilbert space. We may then design a new measurement with measurement
vectors equal to the representations of the transmitted signals. Using this method we can

generate any desired probability distribution on the outputs. O

In Chapter 7 we consider probabilistic algorithms in more detail, in the specific context

of quantization. A brief description of a probabilistic quantizer is given in the next example.

Example 4.4 (Probabilistic Quantizer). A scalar quantizer depicted in Fig. 4-5, with
m quantization levels aq,... , an,, quantizes an input value z to the level a; = Q(z), where
i = argmin|z — ak|. In this example we formulate the scalar quantizer as a QSP measure-
ment, and develop a probabilistic quantizer by modifying the measurement parameters.
To describe the scalar quantizer as a QSP measurement, we first define an input mapping
Ty: R — R™ that maps the quantization levels a; and the input signal z onto vectors
in R™. With {q;,1 < i < m} denoting m orthonormal vectors in R™, the mapping
Ty is defined such that Tx(a;) = q;, and Tx(z) = x for z # a; for all i, where x =

S (2 —a;)"'q;. We then construct a QSP measurement with measurement vectors equal
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Figure 4-5: Quantizer transfer characteristic.

to the representations q; € R™ of the quantization levels a;. To quantize z using the QSP
measurement M, we first map z to x = Tx(z), and then perform the measurement M on x.
The outcome of the measurement is mapped to the final quantized level using the mapping
Ty: R™ — R defined by Ty(y) = a; if y is a multiple of q;. The resulting measurement

description of the quantizer is depicted in Fig. 4-6.

Figure 4-6: Measurement description of quantizer.

If 2 = a; for some ¢, then x = q;, and M(x) = x. The quantized output is then
Ty(q;) = a;. If z is not equal to one of the quantization levels a;, then M (x) = cq; for some
c € C, where i = fy;(x) and fys is a function of the inner products (q;,x). The quantized
output is then Ty(q;) = a;. The choice of the probabilistic mapping fj; determines the

overall function of the quantizer.

Since {(q;,x) = (z — a;)~!, the quantizer resulting from the measurement description
of Fig. 4-6 can be described directly in R as Qun(z) = a;, where i = f(z) and f is a

probabilistic mapping that depends on z through the numbers {z — a;,1 < i < m}. We
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refer to the resulting quantizer as a QSP quantizer with mapping f. If we choose

f(z) =i, where i = argmin |z — ag|, (4.7)

then the output of the QSP quantizer is a; where i = argmin |z — a,| and is equal to the
output of the quantizer of Fig. 4-5 with input z.

As an example of a generalization suggested by the QSP measurement framework, sup-
pose instead of the mapping (4.7) we choose the probabilistic mapping f: RxW — T
where W = T is the sample space of an auxiliary chance variable w with discrete alphabet
W, such that w can take on a value w; = 4,1 < i < m with probability p; = g(z — a;), for
some function g, that is chosen so that the values p; represent probabilities for all possible
input values z, and such that if z is close to a quantization level a;, then the corresponding
p; is relatively large. Then let f(z,w;) = i. The output of the QSP quantizer with this
choice of mapping is then equal to a; with probability p;.

In Chapter 7 we consider the probabilistic quantizer in more detail, and show that it
can be viewed as a dithered quantizer [31, 28], in which continuous-time random noise is
added to the input signal prior to quantization. The advantage of this implementation
of a dithered quantizer is that it can effectively realize a dither signal with an arbitrary
joint probability distribution, while requiring only the generation of one uniform random
variable per input. By introducing memory into the probabilistic selection rule we also

derive a probabilistic quantizer that shapes the quantization noise. O

4.2.2 Algorithm Design Using the Measurement Parameters

Another class of algorithms we develop results from processing a signal with some of the
measurement parameters, and then imposing quantum mechanical constraints on these
parameters. In particular, we may view any linear processing of a signal as processing with
a set of measurement vectors, and then impose inner product constraints on these vectors.
Using the ideas of quantum detection we may then design linear algorithms that are optimal
subject to these inner product constraints.

Specifically, suppose we are given a linear algorithm described by some linear transfor-
mation T: X — ). In an appropriate basis for X and ) we can always represent T as

a (possibly infinite) matrix. Let the columns of 7" in this representation be denoted by ¢;.
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Then for an input z, the algorithm output y = Tz is a linear combination of the vectors ¢;.
We may therefore interpret the vectors ¢; as a set of measurement vectors, and then impose
inner product constraints on these vectors. Thus, we may seek the vectors h; that have a
specific inner product structure and are closest in a LS sense to the vectors ¢;, and then
process z using the transformation H whose columns are the optimal vectors h;. In this
way we are replacing the given linear algorithm 7" with a modified linear algorithm H that
is the ‘closest’ transformation to T from all linear transformations whose columns satisfy
certain inner product constraints.

Drawing from the quantum detection problem, we can also develop new classes of linear
algorithms that result from imposing a stochastic inner product constraint on the algorithm
1.€., a covariance constraint, and then deriving optimal algorithms subject to this constraint.
In particular, we may extend the concept of LS inner product shaping suggested by the
quantum detection framework to develop optimal algorithms that minimize a stochastic
MSE criterion subject to a covariance constraint. In the next example, we use this approach

to develop an interesting new viewpoint towards whitening.

Example 4.5 (MMSE Whitening). Suppose we have a random vector a € C™ with
covariance C,, and we want to whiten the vector a using a whitening transformation W to
obtain the random vector b = Wa, where the covariance matrix of b is given by Cp = ¢?I,,

for some ¢ > 0. Thus we seek a transformation W such that
Cy = WC,W* = ’1,,, (4.8)

for some ¢ > 0.

Given a covariance matrix C,, there are many ways to choose a whitening transformation
W satisfying (4.8). However, no general assertion of optimality is known for the output
b = Wa of these different transformations. In particular, the white random vector b = Wa
may not be “close” to the input vector a. If the vector b undergoes some noninvertible
processing, or is used as an estimator of some unknown parameters represented by the data
a, then we may wish to choose the whitening transformation in such a way that b is close
to a in some sense. This can be particularly important in applications in which b is the
input to a detector, so that we may wish to whiten a prior to detection, but at the same

time minimize the distortion to a by choosing W so that b is close to a.
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Drawing from the ideas of quantum detection, we propose a whitening transformation
that is optimal in the sense that it results in a random vector b that is as close as possible
to a in MSE. Specifically, among all possible whitening transformations we seek the one

that minimizes the total MSE given by
m
evse = 3 B ((ai —b:)?) = E((a—b)*(a— b)), (4.9)
=1

subject to (4.8), where a; and b; are the ith components of a and b respectively. We refer
to such a whitening transformation as an MMSE whitening transformation.

In Chapter 10 we show that the MMSE whitening problem can be interpreted as a LS
inner product shaping problem, so that the MMSE whitening transformation can be found
by applying results derived in that context. We also consider more general forms of MMSE
covariance shaping so that we seek the vector b with covariance proportional to an arbitrary
covariance matrix R, that is closest to a in an MSE sense.

This new concept of MMSE shaping, inspired by the ideas we derived in the context of
the quantum detection problem, can be useful in a variety of signal processing methods that
incorporate shaping transformations in which we can imagine using an optimal procedure

that shapes the data but at the same time minimizes the distortion to the original data. [

As another example of an algorithm suggested by the quantum detection framework,
where we use the ideas of least-squares inner product shaping to design an optimal linear
algorithm subject to a stochastic inner product constraint, in the next example we consider

a new linear estimator for the unknown deterministic parameters in a linear model.

Example 4.6. A generic estimation problem that has been studied extensively in the lit-
erature is that of estimating the unknown deterministic parameters x observed through a
known linear transformation H and corrupted by zero-mean additive noise w with covari-
ance C,. A common approach to estimating the parameters x is to restrict the estimator
to be linear in the data y = Hx + w, and then find the linear estimate X, 3 = Gy of x that
results in an estimated data vector y = Hx g that is as close as possible to the given data
vector y in a (weighted) LS sense [42, 43, 44, 45], so that X5 = Gy is chosen to minimize

the total squared error

ers = (y — HGy)*C,'(y — HGy). (4.10)
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However, in many cases the data vector y is not very sensitive to changes in x, so
that a large error in estimating x may translate into a small error in estimating the data
vector y, in which case the LS estimate may result in a poor estimate of x. A difficulty
often encountered in this estimation problem is that the error in the estimation can have a
covariance structure with a very high dynamic range.

To improve the performance of the LS estimator we propose a modification of the LS
estimate based on the ideas developed in the context of quantum detection, in which we
control the dynamic range and spectral shape of the covariance of the estimation error in
estimating x by choosing the estimator of x to minimize the total error variance in the
observations y, subject to a constraint on the covariance of the estimation error. The
resulting estimator of x is referred to as the covariance shaping LS (CSLS) estimator, and

is denoted by Xcsrs. Thus, Xess = Gy is chosen to minimize
eoss = B ((y' —HGy')*C,'(y' — HGy')), (4.11)

where y’ = y — E(y), subject to the constraint that the covariance of the error in the
estimate Xqgrs, which is equal to the covariance of the estimate Xcg.g, is proportional to a

given covariance matrix R. Thus G must satisfy
GC,G* = ¢’R, (4.12)

where ¢ > 0 is a constant that is either specified, or chosen to minimize the error (4.11).
In Chapter 11 we develop the CSLS estimator, ¢.e., we determine the matrix G that
minimizes (4.11) subject to (4.12). We also analyze the MSE of this estimator from which
we conclude that over a wide range of SNR, the CSLS estimator results in a lower MSE than
the traditional LS estimator, for all values of the unknown parameters. The simulations
presented in Chapter 11 strongly suggest that the CSLS estimator can significantly decrease

the MSE of the estimation error over the LS estimator for a wide range of SNR values. [

4.3 Subspace Measurements

In the previous section we developed the properties of a ROM M with measurement vectors

{¢;}. In particular, we showed that a ROM selects an outcome from the determinate signals,
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that is “best matched” to the measured signal in some deterministic or probabilistic sense.
In this section we consider measurements that select a subspace that is “best matched” to
the measured signal. We refer to these measurements as subspace measurements (SMs).

In analogy with the general quantum mechanical measurement, a SM M on H is a
nonlinear mapping that is described by a set of projection operators {E;,: € Z}, where E;
is a projection onto a subspace S; C H. We assume that the subspaces S; intersect only at
0. Since we are not constrained by the physics of quantum mechanics, these projections are
not constrained to be orthogonal projections and the subspaces S; are not constrained to
be orthogonal subspaces. Nonetheless, in some applications we may find it useful to impose
such requirements. The outcome of a SM is always a determinate signal of M*° where, as
in a ROM, a signal = € H is a determinate signal of M* if z € S; for some i € Z. The set
of determinate signals of M* is denoted by X3,

We now define the SM to preserve the fundamental principles of consistency and quanti-
zation, drawing from Definition 4.1 of a ROM and the definition of a quantum measurement.

Specifically, the SM M9 (z) is a probabilistic mapping between H and X3, that is
1. a deterministic identity mapping for x € S; defined by M*(z) = E;x = ;

2. a probabilistic mapping for nondeterminate signals = defined by M (z) = E;z for some

value i € Z, where i = f3;({(Exz, Exz), k € T}).
Here f J\S/ﬁ ‘H — 7 is a probabilistic mapping between elements x of H and indices i € Z,
that depends on the input z only through the inner products (Eyx, Exz), where k ranges
over Z. Note that if Ej is an orthogonal projection operator, then (Fyx, Exz) = (x, Exx).
For example, we may choose the mapping

fu(x) = arg rilng(Ekx, Eyx). (4.13)

As another example, emulating the quantum mechanical rule we may choose f f/[ tHXW—
T as a probabilistic mapping from H to Z, where W = 7 is the sample space of an auxiliary
chance variable w, such that w can take on a value w; € Z with probability ¢(E;z, E;z),
where c¢ is an appropriate normalization constant. Then let f AS/[(ar,wi) = 4. The outcome

M%(z) when z is not determinate is then given by

M?®(z) = E;x with probability ¢(E;z, E;z). (4.14)
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In the special case in which the projections E; are orthogonal projections onto orthogonal
subspaces S;, this choice of probabilistic mapping is equivalent to the probabilistic mapping

in the quantum measurement.

Thus, the SM projects the input signal  onto the subspace S; that is “best matched”
to z in some deterministic or probabilistic sense. The particular choice of subspace depends
on the probabilistic mapping f ]‘\9/[ which is a function of the “similarity” between x and the
subspaces S; as measured by the inner products (E;z, E;z). Since (F;x, E;z) is the norm of

the projection of x onto S;, we expect this norm to be relatively large if z is “close” to S;.

The discussion above is summarized in the following definition:

Definition 4.2 (Subspace measurement). Let M® be a subspace measurement on H
with measurement projections {E;,i € L}, where E; is a projection onto a subspace S; C H,
and the subspaces {S;,i € I} intersect only at 0. Let Xf/[ denote the determinate signals
of M® that are the vectors x € S; for some i € Z. Then the outcome of the measurement
M?5(z) of x € H is given by
x, zeX?,
M5 (z) = M (4.15)
E;x where i = f3;,({{Exx, Byz), k € I}),i €I, = ¢& X3,
where f]\i,: H — T is a probabilistic mapping between elements of H and the index set T,

and depends on the input x only through the inner products {(Eyz, Exx),k € I}.

Note that in the special case in which the SM M? is defined by a single projection E,
M?(z) = Ex for all z so that the SM is equal to the projection E. In this case we refer to
the SM as a simple SM (SSM).

To summarize, in our development of the QSP measurement we distinguished between
3 classes of measurements: ROMs defined by a set of measurement vectors; SMs defined by
a set of projections; and SSMs which are linear projections. In contrast to SSMs, ROMs

and SMs are typically nonlinear and have a lot of flexibility in their design.

Several applications of ROMs where outlined in Section 4.2. Further applications are
considered in detail in Chapter 5, and in Chapters 7-12. Applications of SMs are considered

in the next section and in Chapters 5 and 6.
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4.4 Applications of Subspace Measurements

In this section we consider some applications of SMs.

4.4.1 Simple Subspace Measurements

Since a SSM is a projection, the only flexibility in the design of a SSM is in choosing the
type of projection (namely choosing the range space and null space). As we have seen in
Section 2.4, there are two different types of projections: orthogonal projections and oblique
projections. In contrast to orthogonal projections that abound in signal processing, oblique
projections have received limited attention in the signal processing literature. In Chapter 6
we derive a general framework for consistent sampling and reconstruction procedures using
a SSM equal to an oblique projection operator. In Chapter 5 we use a SSM to develop
the new concept of oblique dual frame vectors that lead to frame expansions in which
the analysis and synthesis frame vectors are not constrained to lie in the same space as
with conventional frame expansions. This expansion is then used in Chapter 6 to develop
redundant consistent sampling procedures.

Also in Chapter 5, based on oblique projections we construct subspace MF detectors for
detecting a signal contaminated by both structured noise and white noise, and illustrate that

these detectors can lead to improved performance over conventional GLRT based detectors.

4.4.2 Subspace Coding and Detection

Recall that a SM selects a subspace that is best matched to a measured signal. Therefore,
SMs are useful in problems where we want to distinguish between subspaces and not be-
tween individual signals. This suggests coding strategies in which rather than encoding the
desired information in a particular signal, the information is encoded in a disjoint set of not
necessarily orthogonal subspaces that intersect only at 0. Detection is performed using a
SM.

The concept of transmitting information in disjoint subspaces is not new in signal pro-
cessing. In fact, many well known communication systems are based on this principle. For
example, in a frequency division multiplexing system the desired information is sent over
disjoint frequency bands. Similarly, in a time division multiplexing system the information

is sent over disjoint time intervals. In both these case the subspaces used for signalling are
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orthogonal. A more recent application of subspace coding is to multi-antenna communica-
tions [59, 60], in which the subspaces used for signaling are not necessarily orthogonal. The
QSP subspace measurement framework provides a unified description of these known tech-
niques, and opens up a new realm of subspace methods by allowing for different probabilistic
mappings fy; than the typical mapping given by (4.13), by imposing different constraints
on the subspaces S; used for detection which are not constrained in this framework to be
equal to the subspaces used for transmission, and by choosing different projection operators
onto §;. For example we may choose a probabilistic mapping f ;\g/[, resulting in a probabilistic
subspace method. As another example we may constrain the detection subspaces S; to be
orthogonal, or we may constrain the angle between these subspaces. If the subspaces used
for transmission do not satisfy this angle constraint, then we may choose detection sub-
spaces that satisfy this constraint and are as close as possible to the transmission subspaces
in some sense, thus extending the idea of LS inner product shaping to higher dimensions.
These modifications parallel those we discussed in the case of ROMs. Although we do
not pursue these ideas further in the thesis, they constitute an interesting area for further
research.

We now consider several coding and detection techniques based on SMs, indicating the
direction that some applications may take. We study a general channel model and proceed
to demonstrate that the use of SMs in combination with coding techniques in which data is
encoded in subspaces, is quite natural. We also undertake a very preliminary investigation
of such coding techniques under certain channel models, that establishes the basic viability
of these methods.

We begin with two examples that are intuitive outside the QSP framework but shown

here to illustrate the main idea.

Example 4.7. Suppose that a transmitter transmits one of m signals {s;(t),1 < i < m}
over an unknown channel, which can be modeled as an LTI filter with unknown impulse
response h(t) and frequency response H (w), followed by an additive noise source, as depicted
in Fig. 4-7. The received signal r(t) is given by r(t) = s;(t) * h(t) + n(t) for one value 7.

If the Fourier transform S;(w) of s;(¢) is supported on a frequency band A;, then regard-
less of the choice of H(w), when s;(t) is transmitted the filter output z(t) = s;(t) * h(t) is
also supported on A;. This suggests choosing the signals s;(¢) so that S;(w) =0 for w ¢ A;

where the frequency bands A; do not overlap. The information regarding the transmitted

99



Figure 4-7: Channel model.

signal is therefore encoded in the orthogonal subspaces {S;,1 < i < m}, where S; is the

subspace of signals with frequency support on A;.

In the absence of noise the transmitted signal can be perfectly detected by determining
the frequency support of the received signal. To detect the transmitted signal in the presence
of noise, we need to determine which of the subspaces S; is best matched to the received
signal r(t). We therefore propose detecting the transmitting signal by performing a SM
corresponding to the projections {E;,1 < i < m}, where E; is an orthogonal projection
onto §; defined by E;y(t) = b;(t) * y(t) where the Fourier transform B;(w) of b;(t) is equal
to 1 for w € A; and 0 otherwise. To complete the description of the SM we need to specify

the mapping f ]*\9/[ In analogy to the MF detector of Example 4.1, we choose
fay(@(t)) = i where i = arg max(z(t), Eyz(t)). (4.16)

Then y = M3(r(t)) = E;r(t) where i = arg max(r(t), Eyr(t)), and

1

T 2r

(r (), By () /A IR(w)Pdw & F, (4.17)

where R(w) denotes the Fourier transform of r(¢). The measurement outcome y is then
mapped to one of the signals s;(t) using the mapping Ty, where Ty (y) = s;(t) if y € S;. The

measurement description of the detector is depicted in Fig. 4-8. This detector is equivalent

EZ'T'
o) — s PO

Figure 4-8: Measurement description of detector.
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to the detector depicted in Fig. 4-9, in which F{-} denotes the Fourier transform, and T’

maps the index 7 to the signal s;(t).

F
Sa, (e
F
Ia, (Ve | — Z
H(0) — FLH o |- are max T e
F,
fAm(-)dw

Figure 4-9: Subspace signal detector for the channel of Fig. 4-7.

If the transmitted signal is s;(t), then for k # 1,

o % /A 15:(w) + N(w)[2dw = /A N (@) [2dw, (4.18)

where N(w) denotes the Fourier transform of n(t), and

r=5(/. I+ | NP+ 2w [ isi(w)Nwdw}). (4.19)

Consequently if the noise has zero mean and is spread out evenly in the different frequency
bands, then F; will tend to be larger than Fj for k # ¢, and the subspace detector will
correctly identify the transmitted signal. Therefore, this detection scheme resulting from a
SM seems intuitively reasonable.

An additional justification for the SM outlined above, or equivalently, for the subspace
detector of Fig. 4-9, is that if the noise n(t) is a stationary white Gaussian process, then
this detector implements the generalized likelihood ratio test (GLRT) [105] for detecting
the signal s;(t). We prove this result in a more general setting below that does not require
the signaling spaces to be orthogonal.

A possible extension of the basic subspace detector results from choosing different map-
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pings f]f/[ than that considered in (4.16). For example, we may choose a probabilistic
mapping which leads to a probabilistic subspace detector.

Another interesting extension suggested by the QSP framework is to the case in which
the frequency bands A; overlap, so that the signaling subspaces are no longer orthogonal.
Although we may still use the subspace detector of Fig. 4-9 to detect the transmitted signal,
we may be able to improve the detection performance by projecting the received signals
onto a set of orthogonal subspaces that are closest to the transmission subspaces, using the

ideas of LS inner product shaping. O

In the next example we consider an application of the coding and decoding technique
proposed in Example 4.7 to the problem of detecting which one of a set of known signals has

been received over an additive noise channel, where the covariance of the noise is unknown.

Example 4.8. Suppose that a transmitter transmits one of m signals {s;(t),1 < i < m}
over an additive noise channel, so that the received signal is modeled as r(t) = s;(t) + n(t)
for some index i. The noise n(t) is stationary, zero mean, with unknown covariance function
R(t). This problem is similar to the MF problem discussed in Example 4.1, however now
the noise is not assumed to be white.

If the covariance function of the noise is known, then we may first filter r(¢) with a
whitening filter that whitens the noise component in r(¢). The problem then reduces to a
conventional MF problem where the signals s;(t) are now replaced by the signals filtered
by the whitening filter. However, if the correlation function of the noise is unknown, then
the whitening filter and consequently the filtered signals are unknown, and an MF detector
matched to the filtered signals cannot be designed.

To derive a coding and decoding technique in this case we exploit the ideas of Exam-
ple 4.7 by modeling the received signal 7(¢) as the output of the channel depicted in Fig. 4-7,
where now H(w) is the unknown whitening filter and n(¢) is a white noise process. This
suggests designing the transmitted signals s;(¢) to lie in different frequency bands, and then

detecting the transmitted signal using the subspace detector of Fig. 4-9. O

Examples 4.7 and 4.8 demonstrate that SMs can lead to effective detectors for problems
where the information regarding a signal is conveyed by a subspace in which the signal is
known a priori to lie. This motivates coding techniques for transmitting information over an

unknown channel, that is not necessarily linear or time-invariant, in which the information
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is embedded in subspaces that intersect only at 0. The subspaces are chosen so that the
channel can be decomposed into two components, where the subspaces are invariant to the
first channel component, and are perturbed only by the second channel component. This
idea is illustrated in Fig. 4-10, where the input to the channel lies in one of the subspaces
{8i,1 <i < m}. The output of the first channel component lies in the same subspace as the
input, while the second component perturbs the signal out of the subspace and the output
is no longer guaranteed to be in the input space. A detector based on a SM then chooses

as the detected signal the one that lies in the subspace “closest” to the received signal r.

T €S;

8 €S — Go Gy —>7~¢SZ.

Figure 4-10: Decomposition of a channel into two components. The first channel Gy operates
within the subspace associated with the input signal. The second channel GG1 perturbs the
signal out of the subspace.

In the special case depicted in Fig. 4-11, where G is an additive white Gaussian noise
source n and (G is an arbitrary not necessarily linear or time-invariant channel, we can
construct a SM that implements the GLRT for detecting the transmitted signal. This

provides further justification for the use of SMs.

n
e
si — Gy ® r

Figure 4-11: Special case of Fig. 4-10 in which G is an additive white Gaussian noise
source.

4.4.3 Generalized Likelihood Ratio Test for Subspace Detection

Suppose that a transmitter transmits one of m signals {s; € S;,1 < i < m} where the
subspaces {S; C H,1 <14 < m} intersect only at 0 but are not assumed to be orthogonal,

and H is an arbitrary Hilbert space with inner product (z,y) for any z,y € H. The received
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signal is modeled as r = Gg(s;) + n for one value of i, where n is a white Gaussian noise
vector whose components have variance o2, and Gy (+) is a channel invariant to the subspaces

{Si} so that if s; € S; then z = Gy(s;) € S;, and otherwise unknown.

Based on the received signal r we detect the transmitted signal using a SM M?* with

projections {E;,1 <14 < m}, where E; is an orthogonal projection onto S;, and
far(r) =i where i = arg max(Ejr, Eyr). (4.20)

The declared detected signal using this SM is s; where i = arg max({Eyr, Exr).

We now show that this SM implements the GLRT for detecting the transmitted signal.
The GLRT [49, 32] chooses as the detected signal the signal s; where ¢ = arg max f(r|sg, é’g)
Here f(r|sg, GE) is the probability density function of 7 given s; and G, and G¥ is the
maximum likelihood (ML) estimate of G given that the transmitted signal is s, and is

chosen to maximize f(r|sk, Go).

Since n is white and Gaussian,

log f(r|sk, Go) = K — %(r — Go(sk),r — Go(sg)), (4.21)

where K is a constant independent of Gg. The ML estimate é’g is thus chosen to minimize
e=(r—=Go(sk),r — Go(sk))- (4.22)

Expressing r as r = ry + - where ry € Sy, and rj- € Sj-, we may rewrite (4.22) as
e=(rp+ T,i‘ —Go(sk),rx + rkL — Go(sg)) = (rx — Go(sk), 7k — Go(sg)) + <1“,i‘,rfc‘), (4.23)
where we used the fact that (ri-, Go(sg)) = 0 since Gy(sx) € S, for any choice of Gy. Thus,
Gk = argmin(ry — Go(sg), e — Go(sp)). (4.24)

Since ry € S and the only restriction on Gy is that Go(x) € S for any = € Sk, we can

always choose G such that Gy(sg) = . Therefore the ML estimate satisfies

GE(sp) = . (4.25)
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The detected signal is then chosen to maximize

R 1 . R
log f(7|sk, G§) = K — 2—<7“ — GE(sk),m — GE(sk)) = K — =TT —Tg), (4.26)

02 ﬁ<

so that with Ej denoting the orthogonal projection operator onto Si, the detected signal is
equal to s; where i = argmin(r — rg,r — ) = arg max(rg,rx) = arg max(Eyr, Exr). Evi-
dently, the detected signal is equal to the detected signal using the SM described previously.

We note that no specific model was assumed for the channel G in our analysis above.
In particular, Gy is not constrained to be an LTI system as in Examples 4.7 and 4.8.
Regardless of the properties of Gg, under the assumptions of the analysis, a subspace de-
tector corresponding to the proposed SM will always implement the GLRT for detecting
the transmitted signal. However, the structure of Gy will determine the invariant subspaces
and subsequently the coding strategy.

Although using orthogonal projection operators onto the invariant subspaces implements
a GLRT, in many applications we may be able to improve the detection performance by
using oblique projections. The use of oblique projections for detection is considered in more
detail in Section 5.6.

If Gy is an LTI system, then the invariant subspaces can be chosen as subspaces of
signals with support on different frequency bands. We now consider two other choices of
channel models that are of practical importance: linear memoryless (LM) channels and

nonlinear memoryless (NLM) channels.

4.4.4 Subspace Detection for Linear Memoryless Channels

Suppose that Gy in Fig. 4-11 is a linear memoryless (LM) channel. To employ the coding
and detection strategy outlined in the previous section, we need to find subspaces {S;,1 <
i < m} that are invariant to Gy. Since Gy is a LM channel, if the input to the channel is
s;(t), then x(¢) must have the form z(t) = ¢(t)s;(t) for some function ¢(t). Consequently, if
si(t) = 0 for t ¢ A; where A; is an arbitrary time interval, then z(¢) = 0 for t ¢ A;. We
thus conclude that the subspace of signals time-limited to a time interval A; is an invariant
subspace of a LM channel.

To transmit information over a LM channel we therefore design a transmitter that

transmits one of m signals {s;(t) € S;,1 < i < m} where S; is the subspace of signals y(t)
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such that y(¢t) = 0,t ¢ A;, and the time intervals {A;,1 < i < m} do not overlap. To detect
the transmitted signal we perform a SM corresponding to the projections {E;,1 < i < m},

where E; is the orthogonal projection onto S; and is defined by

t), teA;
By ={ Y0 : (4.27)
0, otherwise.
The mapping fy; is chosen as in (4.20). Then MS(r(t)) = E;yr(t) where i =

arg max(r(t), Exr(t)), and from (4.27),
(0, Ber(t) = [ (o)t 2 7. (4.28)

The outcome y of the measurement is then mapped to one of the signals s;(¢) using the
mapping Ty defined by Ty(y) = s;(t) in y € S;. The resulting subspace detector is depicted
in Fig. 4-12, where in the figure T'(i) = s;(¢).

fAl(-)dt T
fAz(-)dt b i
r(t) — |2 —» max T — si(t)
Tm
Ja,, ()dt

Figure 4-12: Subspace signal detector for a linear memoryless channel.

4.4.5 Subspace Detection for Nonlinear Memoryless Channels

We now consider the case in which G in Fig. 4-11 is a nonlinear memoryless (NLM) channel
where the inputs and outputs of the channel lie in the space #H of signals that are zero outside
the interval [0, T], with inner product (z(t),y(t)) = fiox(t)y(t)dt.

We can immediately verify that in this case the subspaces S; of all signals in H that
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are arbitrary on a time interval A; and constant outside this interval, are invariant to Gy.
Based on these invariant subspaces, we can design a coding and decoding scheme using
the strategy outlined in the beginning of the section. Note, that in this case the invariant
subspaces are not orthogonal.

To implement a subspace detector corresponding to a SM we need to determine the
orthogonal projection E; onto S;. To this end we note that each subspace S; can be expressed
as a direct sum S; = V; ®G; where V; is the subspace of signals in H that are zero outside the
interval A; and G; is the space of signals in #H that are zero on the interval A; and constant
outside this interval. Since V; and G; are orthogonal, (r(t), Exr(t)) = (r(t), EYr(t)) +
(r(t), Egr(t)) where E) is the orthogonal projection onto V, and is given by (4.27), and Eg

is the orthogonal projection onto G, and can be readily derived as

T
fﬁﬁﬂﬁmﬂmﬁt¢Am

Egr(t) =
0, t€ Ay,

(4.29)

where 1y, = ﬁte Ay dt. The declared detected signal using the resulting subspace detector is

s;(t) where 7 = arg max Ry, and

1 T
Ry = ‘ / r(t)dt
t

T — 1tk Ji—o¢n,

+ /t N () |2t (4.30)

In summary, subspace measurements lead to interesting and potentially useful coding
and detection methods for communication-based applications over a variety of channel mod-
els. However, this section represents a rather preliminary exploration of such techniques
and there are several aspects that require further study and evaluation, providing some

interesting directions for further research.

4.4.6 Successive Subspace Measurements

Subspace measurements can be performed in sequence to identify smaller and smaller sub-
spaces that are best matched to a signal. For example, we may start by performing a SM
corresponding to subspaces {Si,...,Sy}. If the outcome lies in S;, then we measure the
projected signal using a SM corresponding to subspaces {S;1,... ,Sin} of S;, and continue

recursively. A similar idea is considered in the next example.
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Example 4.9 (Adaptive wavelet tree). In this example we use repeated SMs to create
a deterministic or probabilistic adaptive wavelet tree, which is “best” fitted to a given signal.

A wavelet tree is used to decompose a signal into a wavelet basis. A standard wavelet
tree has the form of Fig. 4-13, where each branch in the tree is depicted in Fig. 4-14. Here

Hy(w) denotes the the frequency response of a lowpass filter with impulse response hg[n],

Figure 4-13: Wavelet tree.

and Hi(w) denotes the frequency response of a highpass filter with impulse response hq[n].

The coefficients of the wavelet decomposition are given by the nodes of the wavelet tree

Hi(w) | 2 -

Ho(w) | 2 -

Figure 4-14: Branch in a wavelet tree.

shown in Fig. 4-13.

For some signals it may be more efficient to choose coefficients adaptively, depending on
the signal properties. Instead of using a fixed tree, we may use an adaptive tree [106, 107]
in which at each node we decide whether to choose the highpass or lowpass branch, based
on some criterion. For example, the criterion may be the energy of the signal at each node
in the highpass and lowpass regions. A possible tree resulting from such an algorithm is
depicted in Fig. 4-15.

We now implement an adaptive decomposition using successive SMs. Let zx[n]| denote
the signal at the kth node, where zy[n] is the input to the tree, and let X} (w) denote the

Fourier transform of zx[n|. We define Ey and E; as projections onto Sy and S;, where S;
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Figure 4-15: Possible wavelet decomposition resulting from an adaptive algorithm.

is the subspace of signals with frequency support on A;. Here Ay and A; are the effective
frequency bands corresponding to the lowpass and highpass filters respectively. We then
construct a SM with projections Ey and F4, where the properties of the tree will depend
on the choice of projections and the choice of mapping f3,(zx[n]). For example, we may

choose a deterministic mapping

far(zi[n]) = E; where i = arg max(zy[n], Ejzi[n]), (4.31)
with
{z[n], Byzg[n]) = i/ | Xp(w)Pdw £ Fy, 1=1,2. (4.32)
2w Ly

The resulting SM can be implemented by computing F,? and Fk1 at each node in the tree,
and choosing the branch corresponding to the larger value. The signal is then filtered with
the appropriate filter, and downsampled by 2, and the measurement is repeated on the
filtered signal.

We may also choose a probabilistic mapping such as
far(xx[n]) = E; with probability c¢(z[n], Eizx[n]), (4.33)
where ¢ is a normalization constant. In this case at each node we choose a branch proba-
bilistically, with probabilities proportional to F,i,z' =1,2. O

In Example 4.9 we repeated the same SM at each stage. We may also perform different
SMs at each stage, that could depend on the output of the previous stage. In the example
above this corresponds to using different filters at each node.

In this section we introduced the idea of combining measurements. Here, we focused on
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successive SMs. In the next chapter we turn our attention to combined measurements in

which two measurements are performed in sequence, where each measurement is either a

ROM or a SSM.
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Chapter 5

Combined Measurements

An interesting and important class of measurements in quantum mechanics results from
restricting measurements to a subspace in which a quantum system is known a priori to lie.
This leads to the notion of positive operator-valued measures (POVMs) [62, 61] which, as we
discussed in Chapter 3, can be realized by a combination of a standard measurement followed
by an orthogonal projection onto a lower space. Therefore, central to the concept of a
POVM is the notion of applying measurements successively. Since a combined measurement
is sometimes a more efficient way of obtaining information about the state of a quantum

system than a standard measurement, such measurements have enjoyed widespread use.

The QSP analogue of a rank-one POVM is a rank-one measurement (ROM) followed
by a simple subspace measurement (SSM) i.e., a projection. We begin this chapter by
exploring applications of combined QSP measurements of this form. We show that such
measurements lead to a variety of extensions and insights into frames, which are gener-
alizations of bases that result in redundant signal expansions [63, 64]. In particular, the
combined measurement framework offers an alternative perspective on frames in terms of
projections of vectors in a larger space. This viewpoint provides a convenient setting for de-
veloping generalizations and extensions of frames, for example, by changing the properties
of the vectors in the larger space or by exploring the effect of oblique projections, leading
to new classes of frames and to the concept of oblique frame expansions. This framework
also offers rich insights into conventional frame expansions that result from exploiting the
connection between combined QSP measurements and quantum POVMs. Based on this

relationship, we develop frame-theoretic analogues of various quantum-mechanical concepts
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and results. In particular, motivated by the construction of optimal quantum measurements
[26], we consider the problem of optimal frame design. These applications are considered
in more detail in subsequent chapters of the thesis, and in the references [68, 76, 19].
Since the QSP framework does not depend on the physics associated with quantum
mechanics, we may extend the notion of a POVM to include other forms of combined
QSP measurements, where we perform any two measurements successively. There are a
number of interesting potential applications of these more general forms of combined QSP
measurements. In the later part of the chapter we consider some specific examples as an
indication of the direction that some applications may take. In particular we show that this
framework leads naturally to subspace MF detectors and to certain classes of randomized
algorithms. We remark at the outset that these examples are highly preliminary and require
further study and evaluation. The primary purpose is to identify some concrete applications

and discuss some of their merits, which may then suggest future directions to explore.

5.1 Classes of Combined Measurements

In our development, we restrict our attention to combinations of ROMs and SSMs. There-
fore let M7 and My denote QSP measurements that can each be a ROM or a SSM, and
suppose that we perform the measurements successively. Then the combined measurement
My, is defined by Moy (x) = Mo(M;(z)) for any z € H. We distinguish between 4 classes

of combined measurements:
1. My is a ROM and Ms is a SSM;
2. Mj is a SSM and M> is a ROM;
3. M and M, are both ROMs;
4. M7 and My are both SSMs.

We now briefly consider each of the cases above pointing our their primary applications,

which are then explored in more detail in the ensuing sections.

1. If M5 is a SSM then My = FE for some projection E, and the effect of My is to project
the outcome of M; onto the range R(E) of E. In this case, the possible outputs of

the combined measurement, denoted by Mg, are proportional to the projections of

112



the measurement vectors of M7, which we call the effective measurement vectors. As
we show, these vectors have the property that they form a frame for R(E). Imposing
inner product constraints on the measurement vectors of M; leads to a variety of
interesting insights into existing frame expansions as well as new classes of frames that
are explored in Section 5.3 and in [68, 76]. If E is an orthogonal projection and we only
measure vectors in R(F), then the combined measurement is fully characterized by
the effective measurement vectors. If, on the other hand, F is an oblique projection,
then an additional set of vectors is needed to describe the combined measurement.
This new set of vectors forms a frame for A(E)L, that is intimately related to the
frame for R(E), and leads to the definition of the oblique dual frame vectors. Oblique
frame expansions are studied in Section 5.4 and in [19], and are subsequently used in

Chapter 6 to develop redundant consistent sampling algorithms.

2. If M7 is a SSM and M, is a ROM, then the combined measurement of a signal is
equal to the ROM of the projected signal. As we discuss in Section 5.6, combined
measurements of this form are useful in applications in which we may benefit from
processing only certain components of a signal, e.g., when a signal is contaminated
by subspace noise. Based on these combined measurements we develop subspace MF
detectors for detecting a signal contaminated by both structured noise and white noise,
and illustrate that these detectors can lead to improved performance over conventional

GLRT based detectors.

3. If My and My are both ROMSs, then the effect of M, is to postprocess the outcome of
M in a deterministic or probabilistic fashion. Thus, combined measurements of this
form can be used to generate new algorithms by processing the outputs of existing
algorithms. In particular, these measurements lead to randomized algorithms in which
an algorithm is modified so that the original output is used to generate a probability
distribution on the final output. As we illustrate in Section 5.7, randomized algorithms

of this type have the effect of improving worst case performance.

4. If M7 and My are both SSMs, then the combined measurement is equivalent to a

linear operator which is equal to the concatenation of the two projections.

In the remainder of this chapter we study the first three classes of combined measure-

ments in more detail.
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5.2 Frames and Combined Measurements

The first class of combined measurements we consider is the QSP analogue of the quantum
POVM, which consists of a ROM M; with measurement vectors {¢; € H,1 < i < m},
followed by a SSM M, = E, where E is a projection onto a subspace Y C H. Since in
the QSP framework we are not constrained by physical laws, the measurement vectors g;
are not constrained to be orthogonal and the projection E is not constrained to be an
orthogonal projection, as in a quantum POVM. We assume that the vectors {g;} span a
subspace W C H such that 4 C W, and that we only measure signals in /. Then, like its
quantum analogue, the combined measurement can be viewed as a restriction onto i/ of a
measurement on H.

Combined measurements of this form lead to a variety of extensions and insights into
frame expansions, which are developed in this section and in Sections 5.3 and 5.4. In
particular, these measurements lead to a new viewpoint towards frames, which we now

discuss.

5.2.1 Alternative Perspective on Frames

To develop the relationship between combined measurements and frames, we note that since
M, (z) is proportional to ¢; for some i, the outcome of the combined measurement Mg (x)
where Mg = E is proportional to one of the vectors {Eq; € U,1 < i < m}, which we call
the effective measurement vectors of Mgy. In Section 5.2.3 we show that these vectors form
a frame for U, which will be defined in Section 5.2.2. The properties of the frame depend
on the properties of the vectors g; as well as on the properties of the projection E. We
also show that any frame for U/ can be viewed as the effective measurement vectors of a
combined measurement or, equivalently, that any frame for I/ can be viewed as projections
of a set of vectors in a larger space containing .

Typically in the literature frames are defined in terms of their properties in &/. The
combined measurement framework offers a different perspective on frames in terms of pro-
jections of vectors in a larger space. This viewpoint leads to some rich insights into frames
as well as a convenient framework for developing extensions of frame expansions. Specifi-
cally, by choosing vectors ¢; with different inner product constraints, and choosing different

projection operators E, a variety of new classes of frames can be developed.
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In the context of a single QSP measurement, we have seen that imposing inner prod-
uct constraints on the measurement vectors of a ROM leads to new, effective processing
techniques. Similarly, as we show in Section 5.3, in the context of combined measurements
imposing such constraints leads to interesting classes of frames as well as new insights into
existing frames. In Section 5.3.1 we consider the case in which M; has orthonormal measure-
ment vectors and E = P is an orthogonal projection onto U. The corresponding effective
measurement vectors are shown to form a tight frame for U. Building upon the connection
between combined QSP measurements and quantum POVMs, we show that tight frames
and rank-one quantum POVMs are intimately related. Using this relationship, we develop
frame-theoretical analogues of various quantum-mechanical concepts and results. In Sec-
tion 5.3.2 we explore the class of geometrically uniform (GU) frames that results from a
combined measurement Mg, where Mg = Py and where we impose certain inner product
constraints on the measurement vectors of Mj.

Extensions of frames that result from choosing E = Fys as an oblique projection onto
U along S, where S C H is disjoint from U so that Y NS = {0}, are explored in Section 5.4.
These measurements lead to the new concept of obligue frame expansions in which, contrary
to conventional frame expansions, the analysis and synthesis vectors do not lie in the same
space.

Before proceeding to the detailed development, in the next section we provide a brief

introduction to frame expansions.

5.2.2 Frames

Frames are generalizations of bases which lead to redundant signal expansions [63, 64]. A
frame for a Hilbert space U is a set of not necessarily linearly independent vectors that spans
U and has some additional properties. Frames were first introduced by Duffin and Schaeffer
[63] in the context of nonharmonic Fourier series, and play an important role in the theory
of nonuniform sampling [63, 64, 65]. Recent interest in frames has been motivated in part
by their utility in analyzing wavelet expansions [66, 67].

Many efforts have been made to construct bases with specified properties. Since the
conditions on bases are quite stringent, in many applications it is hard to find “good” bases.
The conditions on frame vectors are usually not as stringent, allowing for increased flexibility

in their design [66, 85]. For example, frame expansions admit signal representations that
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are localized in both time and frequency [67], as well as sparse representations [108].

Frame expansions have many desirable properties. The coefficients may be computed
with less precision than the coefficients in a basis expansion for a given desired reconstruction
precision [67]; the effect of additive noise on the coefficients on the reconstructed signal is
reduced in comparison with a basis expansion [67, 69, 109, 19]; and the coefficients are
more robust to quantization degradations [110, 111]. Recently, frames have been applied to
the development of modern uniform and nonuniform sampling techniques [112], to various
detection problems [37, 39], and to multiple description source coding [80].

Let {y;,1 <i < m} denote a set of m vectors in H. The vectors ¢; form a frame for an

n-dimensional subspace U C H if there exist constants o > 0 and § < oo such that

m
|l <3 e, ) < B2l )%, (5.1)
i=1
for all z € U [69]. In this chapter, we restrict our attention to the case where m and n are
finite. The lower bound ensures that the vectors ¢; span i; thus we must have m > n. If
m < oo, then the right hand inequality is always satisfied with 8% = > (¢;, ;). Thus,
any finite set of vectors that spans U is a frame for U/. In particular, any basis for I/ is a
frame for ¢/. However in contrast to basis vectors, which are linearly independent, frame
vectors with m > n are linearly dependent. If the bounds o = § in (5.1), then the frame
is called a tight frame. If in addition @ = 8 = 1, then we call the frame a normalized tight
frame; otherwise it is said to be (3-scaled [68]. The redundancy of the frame is defined as
r =m/n, i.e., m vectors in a n-dimensional space.

The frame operator corresponding to frame vectors {¢;,1 <i < m} is defined as [69]
m
S=Y wie} (5.2)
i=1
Using the frame operator, (5.1) can be rewritten as
?|lzl|* < (Sz,z) < 5|z]|*. (5.3)

From (5.3) it follows that the tightest possible frame bounds o? and 3? are given by o? =
min; A\;(S) and 4% = max; A\;(S), where {);(S) > 0,1 <i < n} are the n positive eigenvalues

of the frame operator S.
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If the vectors {p;,1 < i < m} form a frame for U, then any x € U can be expressed as
a linear combination of these vectors: z = ) . a;p;. When m > n, the coeflicients in this
expansion are not unique. A possible choice is a; = (@;, z) where @; are the dual frame

vectors [69] of the frame vectors @;, and are given by
@i = ST, (5.4)

where S is the frame operator defined by (5.2), and (-)! denotes the pseudoinverse (see
Chapter 2). This choice of coefficients has the property that among all possible coefficients
it has the minimal l-norm [69, 113]. With F and F denoting the set transformations corre-
sponding to the vectors @; and ¢; respectively, we have that F = (F!)*. The transformation
F is referred to as the dual frame operator [69)].

Since for any z € U,

Z (z, @i)|” = Zw*%s@}‘fﬂ = (z, (Z %ﬁ) ), (5.5)

for (-scaled tight frames,
m
> i =Py (5.6)
i=1

Conversely, if the vectors ¢; € H satisfy (5.6), then (5.5) implies that (5.1) is satisfied with
a = ( for all x € U. We conclude that a set of m vectors ¢; € H forms a tight frame for a
subspace U C H if and only if the vectors satisfy (5.6) for some # > 0. In this case the dual
frame vectors are @; = (1/3?)p;. Tight frames are very convenient analytically and possess

very nice numerical properties [69], and are therefore particularly popular.

5.2.3 Effective Measurement Vectors and Frames

We now establish the relationship between combined measurements and frames, which is
the basis for the developments in subsequent sections. The following proposition follows

immediately from [85, Theorem 2].

Proposition 5.1. Let {q; € H,1 < i < m} be the measurement vectors of a ROM M; and
let W C H denote the space spanned by the vectors q;. Let {v; = Eysqi,1 < i < m} be
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the effective measurement vectors of a combined measurement Mg where Mg = Eys is a
projection onto U along S. Here U is a subset of W and S is an arbitrary subspace of H
such that H=U @& S. Then the vectors {v;,1 <1i < m} form a frame for U.

Thus, a set of vectors in I/ can be the effective measurement vectors of a combined
measurement with measurement vectors spanning a subspace W D U only if they form a

frame for Y. Theorem 5.1 below asserts that this condition is also sufficient.

Theorem 5.1. Let {v;,1 < i < m} be a frame for an n-dimensional subspace Y C H. Then
there erists a set of linearly independent vectors {qi,1 < i < m} that span an ezpanded
m-dimensional subspace W D U in a possibly expanded Hilbert space H D H such that
{vi = Eysqi,1 <1i < m}, where Eys is a projection onto U along S, and S is an arbitrary
subspace of H such that H =U ® S. Consequently, the vectors {v;} may be viewed as the
effective measurement vectors of a combined measurement Mgy, where Mg = Eys and M,

is a ROM with measurement vectors {¢;}.

Proof: Let V be the set transformation corresponding to the vectors v;. Since the vectors
v; form a frame for the n-dimensional subspace U, V has rank n and can be expressed using
the SVD as V = Y | oyu;z} where the vectors {u; € H,1 <4 < n} form an orthonormal

basis for U, the vectors {z; € C™,1 < i < n} are orthonormal, and {o; > 0,1 <i < n}.
We distinguish between the case k = dim H > m, and the case k < m.

In the case k > m, let {s;,1 < i < m — n} denote m — n linearly independent vectors
in § and define the vectors x; such that x; = u;,1 <i<nand z;4n, = 55,1 <1 <m—n.

Then the vectors z; are linearly independent and satisfy
Eysz; = - (5.7)

since Fysu = u for any u € Y and Eygss = 0 for any s € S. Next, extend the vectors
{zi,1 < i < n} to an orthonormal set {z;,1 < i < m} and define Q = > 7", o;z;2],
where g;,n + 1 < i < m are arbitrary positive numbers. Let {g;,1 < ¢ < m} be the

vectors corresponding to Q. Then W C H is the m-dimensional subspace spanned by
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{z;,1 <i <m}, and using (5.7), the projection of @ onto U is

m n
EL{SQ = Z O'Z'Eu,s.’I,'Z'ZE( = ZO’iuiZE( = V, (58)
1=1 i=1

so that v; = Eysq;. Moreover, the vectors g; are linearly independent since () has rank m.
In the case k < m, first embed I/ and S in an expanded Hilbert space HD H, and then

proceed as before. O

Combining Proposition 5.1 with Theorem 5.1 we can conclude that a set of vectors
{vi, 1 <4 <m} in U may be the effective measurement vectors of a combined measurement
Mg, where M = E is an arbitrary projection onto ¢ and M is a ROM with measurement
vectors that span a subspace W D U, if and only if they form a frame for /. This relationship
between combined measurements and frames suggests an alternative definition of frames in
terms of projections of a set of vectors in a larger space. Specifically, from Proposition 5.1

and Theorem 5.1 we conclude that:

Theorem 5.2 (Frames). A set of vectors {¢; € H,1 < i < m} forms a frame for U if
and only if there exists a set of linearly independent vectors {@;,1 < i < m} that span
an expanded m-dimensional subspace W D U in a possibly expanded Hilbert space H O H
such that {p; = Eyspi,1 < i < m} where Eyg is a projection onto U along S, and S is
an arbitrary subspace of H such that H =U & S. Moreover, the vectors ¢; can always be

chosen to be linearly independent.

This perspective on frames provides additional insights into frames, and suggests a
systematic approach for generating new classes of frames by changing the properties of the
vectors in the larger space or changing the properties of the projection.

In Section 5.3 we consider frames that result from choosing E = Py as an orthogonal
projection operator onto U and imposing various inner product constraints on the mea-
surement vectors of M;. Extensions of frames resulting from using oblique projections are

considered in Section 5.4.

5.3 ROM Followed by an Orthogonal Projection Operator

In this section we consider combined measurements Mpg; where M7 is a ROM with mea-

surement vectors ¢; that span a subspace W, and E = P where Y C W. If we assume
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that we only measure signals x € U, then Mgi(z) depends only on the effective mea-
surement vectors v; = Pyg;. Indeed, for any x € U, Mi(xz) = cg; for some ¢ € C and
some value i, where i depends on the input z only through the inner products (g;, z), and

Mg (z) = PyMi(z) = cPyq; = cv;. Since z € U, x = Pyx and

(gi, ) = {(qi, Puz) = (Pugi, z) = (vi, T). (5.9)

Thus for any x € U, Mgi1(x) is proportional to one of the vectors v;, where the particular
outcome depends on the input z only through the inner products (v;, x).

We have seen in Theorem 5.1 that the vectors v; form a frame for /. In the remainder
of this section we consider the frame properties when different inner product constraints

are imposed on the measurement vectors g;.

5.3.1 Tight Frames

Suppose now that the measurement vectors {g;,1 < ¢ < m} are orthonormal and span a
subspace W where Y C W, and let {v; = Pyq;,1 < i < m} denote the effective measurement

vectors of Mgy with Mg = Py. Then for any z € U,

Iz = >~ g, @) = D g, Pua)* = Y [(wi, ), (5.10)
=1 1=1 =1

so that the vectors {v;} form a normalized tight frame for U.

Since a ROM with orthonormal measurement vectors followed by an orthogonal projec-
tion corresponds to a quantum POVM, this connection between the effective measurement
vectors and tight frames suggests that there is a relationship between quantum measure-
ments and frames. Indeed, Theorem 5.3 below asserts that the family of normalized tight
frames for a subspace U in which a quantum mechanical system is known to lie is precisely
the family of POVMs on Y. Exploiting this equivalence, we can apply ideas and results
derived in the context of quantum measurement to the theory of frames and wice versa.

Specifically, comparing (5.6) with the definition of a POVM (3.8), we conclude that:

Theorem 5.3 (Tight frames). A set of vectors ¢; € H forms a (3-scaled tight frame for
U if and only if the scaled vectors 3~ 'p; are the measurement vectors of a rank-one POVM

on U. In particular, the vectors p; form a normalized tight frame for U if and only if they
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are the measurement vectors of a rank-one POVM on U.

This fundamental relationship between rank-one quantum measurements and tight
frames can be used to develop frame analogues of various results in quantum measure-
ment [68]. In particular, we define frame transformations in analogy to the measurement
matrices of quantum mechanics. We then use Neumark’s theorem to extend tight frames
to orthogonal bases. Finally, motivated by the least-squares measurement of quantum me-

chanics [26], we address the problem of constructing optimal tight frames.

Frame transformations

In analogy to the measurement matrix described in Section 3.3, we define the frame trans-
formation F as the set transformation corresponding to the vectors ¢;, where the vectors

@i form a tight frame for &. From (5.6) it then follows that
FF* = 3°Py. (5.11)

The properties of F' follow immediately from Theorem 5.3 and Theorem 3.1:

Theorem 5.4 (Frame Transformations). For a set transformation F corresponding to

m vectors in a Hilbert space H and for 8 > 0, the following statements are equivalent:

1. F is the frame transformation of a B-scaled tight frame for an n-dimensional subspace

UCH;
2. B7LF is a transjector between n-dimensional subspaces Y CH and YV C C™;
3. FF* = 2Py for an n-dimensional subspace U C H;
4. F*F = 3?Py, for an n-dimensional subspace V C C™.

A frame transformation F of a B-scaled tight frame for an n-dimensional subspace U C H
may be expressed as F = BUZ* = B, u;z;, where U is a set transformation correspond-
ing to n vectors {u;,1 < i < n} that form an orthonormal basis for U, and Z is an m X n
matriz whose columns {z;,1 <1i < n} form an orthonormal basis for V.

A frame transformation F of a (-scaled tight frame is an isometry if restricted to V and

scaled by 3.
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A frame transformation F of a [(-scaled tight frame represents an orthogonal basis for U
(i-e., is an orthogonal frame transformation ) if and only if its rank is m. Then F*F = 321,,;

i.e., all frame vectors have squared norm [3°.

Neumark’s theorem and construction of tight frames

Neumark’s theorem (Theorem 3.2) was derived based on the properties of measurement
matrices. Since by Theorem 5.3 frame transformations of tight frames have essentially
the same properties as measurement matrices of rank-one POVMs, we can now obtain an
equivalent of Neumark’s theorem for tight frames. The proof is essentially the same as the

proof of Theorem 3.2, so we omit it.

Theorem 5.5 (Neumark’s theorem for tight frames). Let F be a rank-n frame
transformation, corresponding to m vectors in a Hilbert space H that span an n-dimensional
subspace U C H. Then there exists an orthogonal frame transformation F corresponding to
equal-norm orthogonal vectors that span an erpanded m-dimensional subspace u U ina

possibly expanded Hilbert space H D ‘H such that the projection Pqu of F ontoU is F.

We remark that given a set of equal-norm orthogonal vectors in u D U, their projections
onto U will always form a tight frame for / [85]. Combining this result with Theorem 5.5,
we can conclude that a set of vectors forms a tight frame for U if and only if the vectors
can be expressed as a projection onto U of a set of orthogonal vectors with equal norm in
a larger space U containing . This then implies that a set of vectors {v; € U} can be the
effective measurement vectors of a combined measurement Mpg; where Mg = Py, and M;
is a ROM with measurement vectors {g;} that are orthogonal and have equal norm, if and
only if they form a tight frame for .

Starting with a given frame transformation F' in U, the proof of Theorem 3.2 gives
a concrete construction of an orthogonal frame transformation F in U D U such that
P,F = F. We now give two examples of this construction in which H = C*¥ for some k.
(These examples were also given in [68].) We consider first an example in which & < m,

and then one in which k > m.

Example 5.1. Consider the four frame vectors ¢; = [0.35 — 0.61]*, @2 = [0.61 0.35]*,
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w3 =[0.5 —0.5]*, and ¢4 = [0.5 0.5]*. The frame matrix associated with this frame is

0.35 0.61 0.5 0.5
F = ; (5.12)

—-0.61 035 —-0.5 0.5

we may check that F is indeed the frame matrix of a tight frame since FF* = I,.

We wish to construct an orthogonal frame matrix F such that F = PUI*~‘. In the proof
of Theorem 3.2 for the case k < m, we constructed an m X m unitary matrix F using the

SVD F = UXV*. Using this construction here, we obtain:

0.70 0 070 0
0.5 —0.87 1000 0 —0.70 0 —0.70
= , Z: ) V:
—0.87 —-0.5 0100 0.68 —0.18 —0.68 0.18
| 018 —0.68 0.8 0.68
(5.13)

We now define the extended frame matrix U in accordance with the proof of Theorem 3.2.
The first two columns of U are uniquely defined as the first two columns of U with zeroes
appended. The remaining two columns are arbitrary, as long as the resulting U is unitary.

A possible choice is:

[ 05 —0.87 0 0]
| 087 -05 0 0
U= (5.14)
0 0 05 —087
0 0 087 —05 |

Then

035 061 05 05 |
o —0.61 035 —05 05
F—UV* = . (5.15)
035 0.61 —05 —0.5

| —0.61 035 05 —0.5 |

We may immediately verify that F*F = I; v.e., F represents an orthonormal set of vectors.
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Since the columns of F span a 2-dimensional Hilbert space U = H,

100 0]
0100
Py = , (5.16)
0 00O
(000 0
and indeed F = Puf‘. O

Example 5.2. We now consider an example in which £ > m. Constructing F is simpler
than in the previous case because we do not have to extend H. Consider the frame vectors

Y1 = %[1 11J*, o = %[—1 1 1)*, and @3 = %[\/Q 0 0]*. The corresponding frame matrix is

1 -1 V2
1
F:§ 1 1 0]- (5.17)
1 1 0

To verify that F is a frame matrix of a tight frame, we compute the SVD F = UXV*,

where
0.58 0.82 0 100 0.87 0 05
U=|058 -04 07 |.2=(010]|, V=102 —-08 —05|. (5.18)
0.58 —0.4 —0.7 000 0.4 0.58 —0.7

From Theorem 5.4 we conclude that F is indeed the frame matrix of a tight frame since its
nonzero singular values are all equal to 1; i.e., F is a transjector. A basis for the subspace

U spanned by the columns of F is the two vectors

*

u; = [ 0.58 0.58 0.58 ] ug = [ 0.82 —0.4 —0.4 ] : (5.19)

Thus, Py is given by

, 1 0 0
Py=) uw=|0 05 05 |; (5.20)
=1
Z 0 05 0.5
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and indeed FF* = Py,.

We now define an extended frame matrix F such that F = Puf‘ and F*F = I5. From

the proof of Theorem 3.2, we have

0.5 —05 0.7
F=UV*=F+uvi=|08 015 —05 |, (5.21)
0.15 0.85 0.5

where

*

u3:[0 0.7 —0.7]*, V3=[0.5 —0.5 0.7] : (5.22)

Since Pyu3vi = 0, we have immediately that F = Puf‘. O

Optimal tight frames

In the special case of a tight frame the dual frame vectors are proportional to the original
frame vectors so that the reconstruction formula is particularly simple. In many applications
it is therefore desirable to construct a tight frame from an arbitrary set of frame vectors.

The problem of frame design has received relatively little attention in the frame lit-
erature. Typically in applications the frame vectors are chosen, rather than optimized.
Iterative algorithms for constructing frames that are optimal in some sense are given in
[114]. Methods for generating frames starting from a given frame are described in [85].

A popular frame construction from a given set of vectors is the canonical frame [69, 70,
71, 72, 115, 68], first proposed in the context of wavelets in [73]. The canonical tight frame

vectors {ui, 1 <1i < m} associated with the vectors {¢;,1 <i < m} are given by

pi=(52)" (5.23)

where S is the frame operator. The canonical frame is relatively simple to construct, can be

determined directly from the given vectors, and plays an important role in wavelet theory

[74, 14, 75]. Some optimality properties of canonical frames have been discussed in [115].
Exploiting the equivalence between normalized tight frames and POVMs, in [68] we

use the least-squares measurement developed in the context of quantum detection [26], to
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systematically construct optimal tight frames from a given set of vectors. Specifically, we
seek a tight frame consisting of frame vectors that minimize the sum of the squared norms
of the error vectors, where the ith error vector is defined as the difference between the ith
given vector and the ith frame vector. The optimal tight frame is derived both for the case
in which the scaling of the frame is specified, and for the the case in which the scaling is such
that the error is minimized. It turns out that the canonical frame vectors are proportional
to the optimal frame vectors. We discuss these results in more detail in Chapter 8, in the

context of general least-squares inner product shaping.

5.3.2 Geometrically Uniform Frames

We have seen in the previous section that imposing an orthogonality constraint on the
measurement vectors {g;} of M; leads to effective measurement vectors that form a tight
frame. In this section we explore a class of frames that results from imposing more general
inner product constraints on the vectors {¢;}. Specifically, we consider the case in which the
measurement vectors {¢;} have a strong symmetry property called geometric uniformity,
which as we show is equivalent to a particular inner product constraint. We have seen in
Chapter 3 that such vector sets play an important role in quantum detection theory, since
in contrast with general vector sets, the optimal measurement for distinguishing between
geometrically uniform sets is known and is equal to the least-squares measurement [26]. In
the context of combined measurements, the effective measurement vectors corresponding
to these sets form what we define as a geometrically uniform frame' [76]. This class of
frames is highly structured resulting in nice computational properties, and possess strong

symmetries that may be advantageous in a variety of applications.

Geometrically uniform vector sets

A set of vectors {¢; € H,1 < i < m} is geometrically uniform (GU) [77, 116, 26] if every
vector in the set has the form ¢; = U;p, where ¢ is an arbitrary generating vector and the
transformations {U;, 1 < i < n} are unitary and form an abelian group? Q. For concreteness

we assume that U; = I. The group Q will be called the generating group of S.

!The work on geometrically uniform frames was done in collaboration with H. Bélcskei.
2That is, Q contains the identity transformation I; if Q contains U;, then it also contains its inverse U[l;
the product U;U; of any two elements of Q is again in Q; and U;U; = U;U; for any two elements in Q [117].
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Alternatively, a vector set is GU if given any two vectors ¢; and ¢; in the set, there is
an isometry Z;; that transforms ; into ¢; while leaving the set invariant [77]. Intuitively,
a vector set is GU if it “looks the same” geometrically from any of the points in the set.

Some examples of GU vector sets are considered in [77].

We remark that in our development we focus our attention on GU vector sets that are
generated by finite abelian groups, although GU vector sets can also be defined over possibly

infinite, non-abelian groups.

The Gram matrix of inner products {G = (s, ¢;)} of a GU signal set has the property
that every row (column) is a permutation of the first row (column) [26]. Such a matrix is
called a permuted matriz®. Furthermore, if the Gram matrix G = {(¢;, ¢;)} is a permuted
matrix and in addition G = G, then we show in [27] that the vectors {p;} are GU. For
example, a set of vectors with the property that the inner products between distinct vectors

in the set are all equal is GU.

To further characterize the properties of a GU vector set, it will be convenient to replace
the multiplicative group Q by an additive group @ to which Q is isomorphic*. Specifically,
it is well known (see e.g., [117]) that every finite abelian group Q is isomorphic to a direct
product @ of a finite number of cyclic groups: Q = Q = Z,, X --- X Z, , where Z,, is the
cyclic additive group of integers modulo n;, and m = [[,ns. Thus every element U; € Q
can be associated with an element ¢ € @ of the form ¢ = (q1,92,-.. ,qp), Where ¢; € Z,,;

this correspondence is denoted by U; ¢ gq.

Each vector ¢; = U;p is then denoted as ¢(q), where U; <> q. The zero element
0 = (0,0,...,0) € Q corresponds to the identity I € Q, and an additive inverse —q € Q

corresponds to a multiplicative inverse Uz-_1 = U} € Q. The Gram matrix is then the matrix

G = {{p(d),0(@)d,a€Q}={s(¢—d),¢,q € Q}, (5.24)

ai a2 as a4
a2 a1 a4 as
as Qa4 a1l a2
a4 as a2 a1l
“Two groups Q and Q' are isomorphic, denoted by Q = Q', if there is a bijection (one-to-one and onto
map) ¢ : Q — Q' which satisfies p(zy) = o(z)p(y) for all z,y € Q [117].

3An example of a permuted matrix is
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with row and column indices ¢/, ¢ € Q, where s is now the function on @ defined by

s(q) = (¢(0), ¢(q))- (5.25)

The Fourier transform (FT) of a complex-valued function ¢ : Q@ — C defined on @ =

Zpy X --- X Zy, is the complex-valued function ¢ : Q@ — C defined by [26, 118]
1
p(h) = — h 5.26
p(h) m2< ,0)(q), (5.26)

where the Fourier kernel (A, q) is

p
(h,q) = [ e iheae/m. (5.27)

t=1

Here h; and ¢; are the tth components of h and ¢ respectively, and the product h;q; is taken
as an ordinary integer modulo 7.

The FT matrix over @ is defined as the m x m matrix F = {ﬁ(h,q), h,q € Q}. The
FT of a column vector ¢ = {¢(g),q € Q} is then the column vector ¢ = {¢(h),h € Q}

given by ¢ = Fp. Since F is unitary, we obtain the inverse FT formula

1
=F'¢=( — h,)*o(h),q € . 5.28
p=F0=1 7= > (hg)*@(h),q €Q (5.28)
heQ
The FT matrix plays an important role in defining GU vector sets, as incorporated in

the theorem below. We provide a proof of this theorem in [76].

Theorem 5.6. A set of vectors {p; € H,1 < i < n} is geometrically uniform if and only
if the Gram matriz G = {(ps, @)} is diagonalized by a Fourier transform matriz F over a

finite product of cyclic groups Q.
As a consequence of Theorem 5.6 and its proof, we have the following corollary.

Corollary 5.1. A set of vectors is geometrically uniform if and only if the corresponding
set transformation F has an SVD of the form F = UXF*, where U is a set transformation
corresponding to m orthonormal vectors u;, ¥ is an m X m diagonal matrix with diagonal
elements o;, and F is an m X m Fourier transform matriz over a direct product Q of cyclic

groups. Then the vectors corresponding to F' may be expressed as {p(q) = U(q)p,q € Q}
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where U(q) = UB(q)U* with B(q) denoting the diagonal matriz with diagonal elements
{(h,q),h € Q} where (h,q) is defined by (5.27), and ¢ = (1/\/n) Y, oiu;.

Geometrically uniform frames

Suppose now that M; is a ROM with measurement vectors {g;} that are GU and span a
subspace W C H. Then the effective measurement vectors {v; = Pyq;} of the combined
measurement Mgy with Mg = Py, are also GU. Indeed, let Q and V' denote the set trans-
formations corresponding to the vectors ¢; and v;, respectively. Then From Corollary 5.1
@ has the form @ = UXF*, where the vectors {u;,1 < i < m} corresponding to U form
an orthonormal basis for W in which the first n vectors form an orthonormal basis for i/.
Then V = PyQ = UX'F* where Py = Y., ujuf, and ¥’ is a diagonal matrix with the
first n diagonal elements equal to the diagonal elements of ¥ and the remaining diagonal
elements all equal zero, and from Corollary 5.1 the vectors v; are also GU. In addition,

from Proposition 5.1 the vectors v; = Pyq; form a frame for Y. Consequently, the effective

measurement vectors form what we define as a geometrically uniform frame for U.

Definition 5.1. A finite set of vectors {p; € H,1 < i < m} form a geometrically uniform

frame for a subspace U C H, if the vectors {¢;} are GU and span U.

If a set of vectors forms a GU frame for U/, then they can always be the effective
measurement vectors of a combined measurement Mg, where Mgy = Py, and Mj is a
ROM with measurement vectors that are GU. Equivalently, a GU frame for U can always
be viewed as the orthogonal projection onto U of a set of GU vectors in a larger space
containing U. The proof of this result follows immediately from the proof of Theorem 5.1
and Corollary 5.1, and is therefore omitted.

GU frames, that arise from a ROM with an inner product constraint on the measurement
vectors followed by a SSM, have many desirable properties, which we explore in [76]. A
fundamental characteristic of these frames is that they are highly structured and posses
strong symmetry properties that may be desirable in a variety of applications such as
channel coding [77, 78, 79] and multiple description source coding [80].

Two important classes of highly structured frames are Gabor (Weyl-Heisenberg (WH))
frames [119, 120] and wavelet frames [66, 67, 69]. Both classes of frames are generated by a

single generating function. WH frames are obtained by translations and modulations of the
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generating function (referred to as the window function), and wavelet frames are obtained
by shifts and dilations of the generating function (referred to as the mother wavelet). Like
WH and wavelet frames, GU frames are also generated from a single generating vector.
Furthermore, we show in [76] that the dual frame vectors and canonical tight frame vectors
associated with GU frames are also GU, and are therefore generated by a single generating
vector which can be computed very efficiently using a F'T matrix defined over the generating

group Q of the frame. These properties are summarized in the following theorem [76]:

Theorem 5.7 (GU frames). Let {p; = Uijp,1 < i < m,U; € Q,} be a geometrically
uniform frame generated by a finite abelian group Q of unitary transformations, where ¢
is an arbitrary generating vector, and let F' be the corresponding frame transformation.
Let Q be an additive abelian group isomorphic to Q, let {p(q),q € Q} be the elements of
the geometrically uniform set under this isomorphism, and let F be the Fourier transform

matriz over Q. Then

1. the dual frame vectors {p;,1 < i < m} are geometrically uniform with generating

group Q and generating vector ¢ = (1//m) >, cr(1/a(h))u(h), where

(a) {o(h) = m”‘ﬂ/@,h € Q} are the singular values of F,

(b) {8(h),h € Q} is the Fourier transform of the inner-product sequence
{{0(0),0(0)),q € @},

(c) T is the set of indices h € Q for which o(h) # 0,

(d) u(h) = ¢(h)/o(h) for h € T,

(e) {¢(h),h € Q} is the Fourier transform of {x(q),q € Q},

2. the canonical tight frame vectors {u;,1 < i < m} are geometrically uniform with

generating group Q and generating vector p = (1/y/m) Y,z u(h).

An important special case of Theorem 5.7 is the case in which the generating group Q
is cyclic so that U; = Z*~1,1 <4 < m, where Z is a unitary transformation with Z™ = I.
A cyclic group generates a cyclic vector set {¢; = Z'~1p, 1 <i < m}, where ¢ is arbitrary.

If Q is cyclic, then G is a circulant matrix®, and Q is the cyclic group Z,,. The FT kernel

5A circulant matrix is a matrix where every row (or column) is obtained by a right circular shift (by one

ap a2 a1
position) of the previous row (or column). An exampleis: | a1 ao a2 |.
a2 a1l ao

130



is then (h,g) = e~27h9/™ for h, g € Z,,, and the FT matrix F reduces to the m x m DFT

1/4

matrix. The singular values of F' are then m'/* times the square roots of the DFT values

of the inner products {{¢1,¢;),1 < j <m}.

Pruning GU frames

In applications it is often desirable to know how a frame behaves when one or more frame
elements are removed. In particular, it is important to know or to be able to estimate the
frame bounds of the reduced frame. In general, if no structural constraints are imposed on
a frame this behavior will depend critically on the particular frame elements removed.

One of the prime applications of frames is signal analysis and synthesis, where a signal
is expanded by computing the inner products of the signal with the frame elements. The
resulting coefficients are subsequently stored, transmitted, quantized or manipulated in
some way. In particular, a coefficient may be lost (e.g., due to a transmission error) which
results in a reconstructed signal that is equivalent to an expansion using a pruned frame
obtained by removing the corresponding frame vector.

Recently, there has been increased interest in using frames for multiple description
source coding where a signal is expanded into a redundant set of functions and the resulting
coefficients are transmitted over a lossy packet network, where one or more of the coefficients
can be lost because a packet is dropped [80]. The goal of multiple description source coding is
to ensure a gradually behaving reconstruction quality as a function of the number of dropped
packets. When using frames in this context, the reconstruction quality is often governed
by the frame bound ratio of the pruned frame. If the packets are dropped with equal
probability, then it is desirable that the frame bound ratio should deteriorate uniformly
irrespective of the particular frame element that is removed. In [76] we show that GU
frames have this property. We also demonstrate that if the original frame is a tight GU
frame, then the frame bound ratio of the pruned frame obtained by removing one frame
element can be computed exactly.

Finally, we consider distance properties of GU frames, which may be of interest when
using GU frames for code design (group codes) [116, 77]. In particular, in [76] we introduce
a class of GU frames with strictly positive distance spectra for all choices of generating
vectors. Such GU frames are shown to be generated by fixed-point-free groups [121].

An interesting direction for further research is to characterize the more general class
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of infinite-dimensional GU frames over possibly nonabelian groups using continuous-time

Fourier transforms defined over nonabelian groups (see e.g., [118]).

5.4 ROM Followed by an Oblique Projection Operator

In the previous section we considered generalizations of frames that result from viewing
frames as orthogonal projections of a set of vectors in a larger space, and imposing various
inner product constraints on these vectors. In this section we consider extensions of frames
that result from viewing frames as oblique projections of vectors in a larger space.

To this end, we now characterize the outcomes of the combined measurement Mg on
U, where M; is a ROM with measurement vectors {g;,1 < i < m} that span a subspace
W 2 U, and Mg = Eys is an oblique projection onto U along S, where S is an arbitrary
subspace of H such that X = U & S. For any x € U, Mi(z) = cq; for some ¢ € C and
one value of i, where ¢ depends on the input x only through the inner products {g;, ), and

Mg (z) = cEysgi = cv; where v; = Eysq;. Since © € U, x = Eyst and

(i, ) = {qi, Busz) = (Eysi, ) = (i, ), (5.29)

where ¥; = Ej;gq;- We therefore conclude that the outcome of the combined measurement
Mpg1 on U is proportional to one of the vectors v;, where the value of ¢ depends on the input
x only through the inner products (v;,z). Note that in contrary to the case Mg = Py,
here we need two sets of vectors, {v;} and {?;}, to fully characterize the outcome of the
combined measurement Mgq.

From Proposition 5.1 the vectors {v; € U,1 < i < m} form a frame for . Since Ejjsis
an oblique projection onto S+ along the direction of U+, the vectors {#; € S*+,1 < i < m}
form a frame for S*. In the special case in which the vectors {g;,1 < i < m} are orthonormal
we have that Py = Y, ¢ig; so that for any z € U,

m m
r = FysPwEysx = FEys (Z qz'q;k) Eysz = Z(ﬁz’,iﬂ)vz’- (5.30)

Any vector in U can then be expressed as a linear combination of the vectors v; where
the coefficients may be chosen as (¥, z). The expansion (5.30) is reminiscent of a frame

expansion in I/ in terms of a set of frame vectors and dual frame vectors, however here the
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analysis vectors 9; do not lie in I/ as in a conventional frame expansion and are therefore
not equal to the dual frame vectors of v;. Since the vectors ¥; lie in S, we call these vectors
the oblique dual frame vectors of the vectors {v;} over S*.

Thus, combined measurements with oblique projection operators lead to interesting
new frame expansions that result from viewing frames as oblique projections of vectors
in a larger space. Here the oblique dual frame vectors are defined in terms of a set of
orthonormal vectors in a larger space; in the next section we suggest a more general and
direct definition motivated by the properties of the effective measurement vectors of the

combined measurement.

5.4.1 Oblique Dual Frame Vectors

The effective measurement vectors considered in the previous section lead to the notion
of signal expansions in which the analysis and synthesis vectors do not lie in the same
space. We now would like to obtain a general definition of oblique dual frame vectors to
preserve these properties. Therefore, suppose that the vectors {y;,1 < i < m} form a
frame for U with frame transformation F'. We define the oblique dual frame vectors ¢;
on St of the vectors ¢; such that @; € S+ and such that any = € U can be expressed as
o= Y (G ahpn

First we note that any z € U can be expressed as = Y " | (@i, )i, where the vectors
@; € U are the dual frame vectors of the frame vectors ¢; € U, and are the vectors corre-
sponding to the set transformation (FT)*. The definition of the dual frame vectors suggests
a useful approach for defining the oblique dual frame vectors. Specifically, we suggest defin-
ing them as the vectors corresponding to the set transformation (F# s)*, where F#S is the
oblique pseudoinverse of F on V along S, described in Chapter 2, and V = N(F)+. We
now show that this definition is compatible with our basic requirements.

Let {p;,1 <i < m} be a frame for i with corresponding frame transformation F', and
let F#S be the oblique pseudoinverse of F on ¥V = N(F)* along S. Let @; denote the
vectors corresponding to (F#S)* Then since R((F#S)*) = ./\/(F;Q&S)L = S, the vectors
@; lie in S*. Furthermore, since R(F) = U it follows from the properties of the oblique
pseudoinverse (2.27) that F F# s = Eus. Thus,

(Fi5)" F* = (FFlg)* = Ejjs = Egiy1. (5.31)
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Using (5.31), any z € S* can be expressed as
m
T = EsJ_uJ_.’E = (F#S)*F*LL' = Z ai@, (532)
i=1

where a; are the elements of a = F*z so that the vectors ¢; span S+ and consequently form

a frame for S*. In addition, since F F# s = Eys, any z € U can be expressed as

m

z=Eyst =Y (i, 2)p;. (5.33)

i=1
Eqg. (5.33) is just a frame expansion of a signal € Y. However, in contrast with conventional
frame expansions, here the synthesis frame vectors lie in ¢/, while the analysis frame vectors

lie in an arbitrary space S+, such that ¢/ and S are disjoint.

We therefore propose the following definition.

Definition 5.2. Let {¢; € U,1 < i < m} denote a frame for a subspace U of H. The
oblique dual frame vectors of ¢; on S*, where S is an arbitrary subspace of H such that
H=UGOS, are the frame vectors {@; € St,1 < i < m} corresponding to the oblique dual

frame operator (F#S)* .

We may immediately verify that the effective measurement vectors v; = Ej;5q; resulting
from a combined measurement Mp; where M is a ROM with orthonormal measurement
vectors ¢; and Mg = Eygs, satisfy the requirements of Definition 5.2 to be the oblique dual
frame vectors on St of the effective measurement vectors v; = Eysgi. To this end it is
sufficient to show that E,sQ = F# s, Where @ is a set transformation corresponding to the
orthonormal vectors ¢; and F' = Fys@, which may be readily verified.

In [19] we derived explicit constructions of F#S. In particular, we have the following

proposition.

Proposition 5.2 ([19]). Let the vectors {w;,1 < i < n} denote a basis for an n-
dimensional subspace U C H, let W denote the set transformation corresponding to the
vectors w;, and let the vectors {p;,1 < i < m} denote a frame for U expressible as F = W Z
for some Z: C* — C™. Let the vectors {s;,1 < i < n} denote a basis for an n-dimensional

subspace St C H, such that H =U & S, let the vectors {zi,1 <i < m} denote a frame for
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St, and let S and X denote the corresponding set transformations. Then
Fis = X*P)ix*=z1(sw) s

If in addition the vectors w; are orthonormal and the vectors @; form a (-scaled tight frame,

then

]‘ * * — *
Ry = @Z (S*W)~Ls*.

Note that since SNU = {0}, from Lemma 2.1 it follows that S*W is invertible.

5.4.2 Properties of the Oblique Dual Frame Vectors

Given frame vectors {¢;,1 < i < m} for U, there are many ways of choosing coefficients
a; such that for any z € U, x = ), a;jp;- The particular choice a; = (;,z) given by
the oblique dual frame vectors has some desirable properties that we now discuss, which
are analogous to the properties of the conventional dual frame vectors (see, e.g., [113, pp.

88-89, Theorems 4.7-4.8]), and therefore justify our choice of terminology.

Proposition 5.3. Let {y;,;1 < i < m} denote a frame for an n-dimensional subspace
U CH, let F be the matriz of vectors @;, and let V = N (F)*. Let S C H be an arbitrary
subspace of H such that H =U & S. Then from all possible coefficients a; that satisfy

m
x = Z a;pi (5.34)
=1

for all x € U, the coefficients d; corresponding to a = F#Sx have minimal norm.

Proof: From (5.33) it follows that the coefficients a; indeed satisfy (5.34). Now, let a;

denote the elements of an arbitrary sequence a such that (5.34) is satisfied. Then

D (@i — )i =0, (5.35)
i1

which implies that a —a € N(F'). Since @ = F#Sx, ae€ R(F#S) which from (2.29) is equal
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to YV = N(F)*. Thus a = &+ y where y € N(F) so that {d@,y) = 0. Thus,
lall* = llall* + lla]l* > llall?, (5.36)

with equality if and only if a = a. O

We can consider the property stated in Proposition 5.3 from a slightly different point of

view. Since the vectors {p;,1 <i < m} form a frame for U, any = € U can be expressed as
x=Fa (5.37)

for some coefficients a;. However, these coefficients are not unique because the vectors ;
are linearly dependent. Suppose we are interested in finding the coefficients with minimal
norm. Then a is the unique solution to (5.37) that lies in V'(F)L = V. We may express this
solution as a = F'z; indeed Fa = FFlz = Pyz = z. Alternatively, we have that a = F#Sx
where S is an arbitrary subspace of H such that H =U & S; Fa = FF#SZL' = Eysz = .
Thus, although the minimal norm coefficients a; are unique, the resulting analysis vectors t;
such that a; = (t;, f) are not unique. If in addition we impose the constraint that t; € S+,
then the unique vectors that result in coefficients with minimal norm correspond to (F;j’E )"
This interpretation is useful in applications in which a signal = € U is corrupted by noise
that is known to lie in a subspace S. By using appropriate analysis vectors in S*, we can
totally eliminate this noise and at the same time recover the minimal norm coefficients.
Next, suppose we want to reconstruct a signal in U/ from some given coefficients b;.
Among all possible reconstruction vectors we seek the vectors that result in a reconstructed
signal whose coefficients using a given set of analysis vectors are as close as possible to b;.

Then the optimal synthesis vectors are given by the oblique dual frame operator.

Proposition 5.4. Let & =) ;" byw; for some vectors {w;,1 <i < m} that form a frame
for U, and are to be determined. Let {t;,1 <1i < m} denote a set of analysis vectors cor-
responding to T. Then the vectors w; corresponding to the set transformation (TA#,E(T)LL{L)*
result in a reconstruction & with coefficients (t;, f) that are as close as possible to b; in

lo-norm sense.

Proof: Let z denote the coefficients of & with analysis vectors t;, so that z = T*Wb.

Then z € R(T*) = N(T)*. To minimize ||z — b|| we need to choose a W such that
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z = Ppyq)1b, i.e., such that T*W = Py 1. In addition we must have that R(W) = U.
Let W = (TA#/E(T)LL{L)*' Then from (2.28), T*W = (T/\#/.(T)LMLT)* = Py(ry1, and R(W) =

N(Tﬁ(T)J_uJ_)J_ =U. ]

In summary, the oblique dual frame vectors are very similar to the conventional dual
frame vectors: Given a set of vectors {;} that form a frame for I, the dual frame vectors
{@i} are the unique vectors in I/ such that any x € U can be expressed as z = > ,(®;, )i,
and the coefficients (@;, ) have minimal norm from all possible coefficients. Similarly, the
oblique dual frame vectors of ¢; on S*, with H = U ® S, are the unique vectors in S+
such that any = € U can be expressed as © = ), (s, z);, and the coefficients (p;, z) have
minimal norm from all possible coefficients. Thus, using the concept of oblique dual frame
vectors we can extend the notion of a frame expansion to the case in which the analysis
frame vectors do not lie in the same space as the synthesis frame vectors, but rather lie in
an arbitrary subspace St C H, with H=U & S.

It is interesting to note that the oblique dual frame vectors of @; on U are the frame

vectors ;. Thus not only do we have f = 7" (s, f)yi for any f € U but we also have
[ =2 {pi, [)i for any f € St [19].

5.5 Summary of Combined Measurements and Frames

To conclude, we presented various generalizations and extensions of frames that result from
QSP analogues of the quantum POVM, taking on the form of a combined measurement
where a ROM is followed by a SSM. We demonstrated that viewing tight frames in the
context of the quantum measurement framework provides additional insight and perspec-
tive and leads to frame-theoretical analogues of various results in quantum measurement.
Furthermore, imposing inner product constraints on the measurement vectors of the ROM
leads to the new class of GU frames that constitute an interesting and potentially impor-
tant class of frames for various signal processing and communication applications due to
their inherent symmetry properties. Choosing the SSM as an oblique projection leads to
the definition of oblique dual frame vectors, which can be useful in applications in which it
is desirable to work in two different spaces. As one possible application, in Chapter 6 we
consider a very general sampling problem with almost no restrictions on it, and we use the

oblique dual frame vectors to derive very general reconstruction algorithms. Specifically,
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we develop redundant sampling and reconstruction procedures with (almost) arbitrary sam-
pling and reconstruction spaces, that can be used to reduce the quantization error when
quantizing the samples prior to reconstruction by as much as the redundancy of the frame
in comparison with a nonredundant procedure.

In our closing remarks, there appear to be other important connections to be explored
between frame theory and quantum POVMs. There are also a host of applications in which
various properties of GU frames can be exploited e.g., multiple description coding, and
multiple-antenna code design. These applications require further study of the properties of
GU frames, in particular their robustness to erasures and their distance properties.

Another interesting direction for further research is applications of oblique dual frame
vectors to sampling and reconstruction algorithms, beyond those explored in Chapter 6.
Since the oblique dual frames can be defined over an almost arbitrary space, they can be
used to develop sampling procedures with arbitrary sampling and reconstruction spaces. It
is well known that by allowing for arbitrary sampling and reconstruction spaces the sampling
and reconstruction algorithms can be greatly simplified in many cases with only a minor
increase in approximation error [16, 81, 17, 82, 83, 84]. Using oblique dual frame vectors
we can further simplify the sampling and reconstruction processes while still retaining the
flexibility of choosing the spaces almost arbitrarily, due to the extra degrees of freedom
offered by the use of frames that allow us to construct frames with prescribed properties

[66, 85].

5.6 SSM Followed by a ROM

We now consider the second class of combined measurements in which a SSM M; = E
is followed by a ROM Mj. Combined measurements of this form amount to applying a
projection as a preprocessor to an existing algorithm, so that the input to the algorithm
represented by the ROM M is a projection of the original signal we wish to process.
There are a variety of applications in which orthogonal projection operators have
been used as preprocessors, e.g., in various detection scenarios. One justification for the
widespread use of orthogonal projections in detection applications is that they arise natu-
rally as part of a GLRT in many problems (see e.g., [122]). By contrast, oblique projections

have received comparatively less attention. Although GLRT based detectors are popular,
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they are not necessarily optimal. In fact, as we show in the context of a concrete example be-
low, using an oblique projection rather than an orthogonal projection may be advantageous
in a variety of contexts and may lead to improved detection performance. Furthermore,
in many cases the oblique projection can also be derived as part of a GLRT, albeit under

non-standard assumptions.

5.6.1 Subspace Matched Filter Detection

There are a multitude of applications in which oblique projections may be used as a pre-
processor as suggested by the combined measurement framework, even though they may
not arise as naturally as solutions to popular processing criteria. In this section we consider
one such example in a rather preliminary manner to highlight some of the key merits and
issues with this approach, as well as identify some directions for further research.

Suppose we have a transmitter that transmits one of m known signals {s;(t),1 < i <
m} that span a subspace Y C H with equal probability, where the signals lie in a real
Hilbert space H with inner product inner product (z(t),y(t)) = [2 _ z(t)y(t)dt, and
are normalized so that (s;(t),s;(t)) = 1 for all i. The channel is assumed to corrupt the
transmitted signal by both additive white noise and structured (or low-rank) noise, i.e.,
noise that lies in a linear subspace [54]. The structured noise component lies in a known
subspace S of H, where we assume that &/ and S are disjoint, but not necessarily orthogonal.

Thus, the received signal r(t) is modeled as
7(t) = si(t) + ns(t) + nw(t), (5.38)

for one value ¢ where n4(t) € S is a structured noise component, and n,,(t) is a stationary
white noise process with zero mean and spectral density o2.

Based on the observation 7(¢) we wish to detect the transmitted signal. In Example 4.1
of Chapter 4 we considered the case where ns(t) = 0, and constructed a ROM, which we
denote here by M, that implements the MF detector. Since the structured noise lies in
a known subspace it seems intuitively that we may be able to improve upon simple MF
detection by entirely or partially eliminating this noise. Therefore we propose detecting the
transmitted signal using a SSM M; = E where F is a projection operator, followed by the

ROM Ms. Equivalently, we first project the received signal onto an appropriate subspace,
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and then process the projected signal with an MF detector matched to the transmitted
signals. The properties of the resulting detector will depend on the projection E. To
eliminate the structured noise entirely we choose the null space N(E) = S. Then, if E is
chosen as an orthogonal projection, £ = Pgi. If, on the the other hand, we choose E as
an oblique projection, then we can choose the range of E arbitrarily as long as it is disjoint
from §. Since the transmitted signal lies in U, a reasonable choice is £ = Eys. We now
consider the detectors corresponding to the combined measurements resulting from these
two choices.

With £ = Eys, the combined measurement is equivalent to the detector depicted
in Fig. 5-1, which we refer to as the oblique subspace MF (OBSMF) detector. The
projected signal rys(t) = Eysr(t) is cross-correlated with the m signals s;(t) so that
a; = (si(t),rus(t)), and the declared detected signal is s;(t) where ¢ = argmaxay. We
note that we can construct Fys explicitly using Theorem 2.5 and Proposition 5.2. Specifi-
cally, Eyys = S(V*S)IV* where S is the set transformation corresponding to the m signals

s;(t) and V is a set transformation corresponding to a set of m signals that span S*.
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Figure 5-1: Oblique subspace matched filter detector.

If the transmitted signal is s;(t), then

Eysr(t) = Eus(si(t) +ns(t) + nw(t) = si(t) + Eusnw(t), (5.39)

where we used the fact that Eyss;(t) = s;(t) since s;(t) € U, and Eysns(t) = 0 since
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ns(t) € S. Thus, projecting the received signal using the oblique projection Eys totally
eliminates the structured noise without modifying the transmitted signal. However, we
note that the noise power of the projected white noise || Eysnq,(t)||? may be larger than the
noise power of the original noise ||n,,(¢)||?, due to the oblique projection [54]. A desirable
property that the OBSMF detector has is that when the variance of the background noise
o — 0, Eysr(t) — si(t) and the detector will correctly detect the transmitted signal with

probability 1, irrespective of the transmitted signals and the noise subspace S.

If we choose E = Pg. as an orthogonal projection operator onto S+, then the detector
resulting from the combined measurement is equivalent to the detector depicted in Fig. 5-2,
which we refer to as the orthogonal subspace MF (OTSMF) detector. The projected signal
rsi(t) = Pgir(t) is cross-correlated with the m signals s;(t) so that ¢; = (si(t),rg1 (%)),

and the declared detected signal is s;(t) where i = arg max c.

In this case,

Pgsir(t) = Pgi(si(t) + ns(t) + ny(t)) = Psisi(t) + Psingy(t), (5.40)

where we used the fact that Pging(t) = 0 since ny(t) € S. Thus, the orthogonal projection
operator eliminates the structured noise, but at the same time alters the transmitted signal.
Since Pgi is an orthogonal projection operator, the power of the projected noise is no
greater than the power of the original noise: |[Pginy(t)|| < ||nw(t)||. However, when
o — 0, Pgir(t) = Pgisi(t) so that the OTSMF will not necessarily correctly detect the
transmitted signal. Thus, clearly there are situations in which the OBSMF detector leads

to improved performance over the OTSMF detector, particularly in the high SNR regime.

In summary, using a combined measurement we arrived at two subspace MF detectors
corresponding to different choices of projection operators. Both projections eliminate the
structured noise entirely but have different effects on the background noise and on the
transmitted signal. The oblique projection does not alter the signal, but tends to enhance
the background noise. We therefore expect the OBSMF detector to be particularly useful
in the high SNR regime. By contrast, the orthogonal projection modifies the signal but
does not enhance the background noise, and will therefore be advantageous in the low SNR
regime. In general, we expect the relative performance of the detectors to depend on the

power of the white noise as well as on the structure of the projections onto S* of the
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Figure 5-2: Orthogonal subspace matched filter detector.

transmitted signals.

An outstanding issue that would be interesting to investigate is under what conditions
on the background noise the OBSMF detector leads to improved performance over the
(more common) OTSMF detector. We expect that there is a threshold SNR, above which
the OBSMF detector will lead to a higher probability of correct detection than the OTSMF
detector. We expect this threshold to depend on the transmitted signals and on the norm
of the oblique projection, which in turn depends on the angle 6,51 between the spaces U

and S+, defined as [16]

cos(byst) = zeuiI||1:£|\:1 | Pg z||. (5.41)

Specifically, it is shown in [82] that for all z € H,

1

E, < —
1Fsl| < cos(bys1)

||z (5.42)

Thus, if the angle is large then the oblique projection will tend to enhance the background
noise while if the angle is small, the enhancement will be marginal.

To conclude, even though the orthogonal projection may result as part of a standard
GLRT, the oblique projection may lead to improved performance in many cases. In fact, as

we show in the next section, the OBSMF detector can also be derived as a GLRT detector
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for detecting the transmitted signal, under certain (nonstandard) assumptions.

5.6.2 Oblique Projections and the Generalized Likelihood Ratio Test

We now assume that the background noise n,,(¢) has a Gaussian distribution. Then under
a variety of assumptions on the background and structured noise it has been shown in [122]
that a (standard) GLRT detector consists of a preprocessor equal to Pg1. As we discussed in
the previous section in many scenarios we can improve the performance by using an oblique
projection operator rather than an orthogonal projection. In this section we establish the
viability of the OBSMF detector by showing that it too can be derived as a GLRT detector.

The received signal is now modeled as

r(t) = si(t) + ns(t) + ny(t), (5.43)

where s;(t) and ny(t) € S are as before, and n,(t) is a stationary white noise Gaussian

2. Based on the observation r(t) we wish

process with zero mean and spectral density o
to detect the transmitted signal. Since the structured noise n4(¢) is unknown we cannot
derive a detector that minimizes the probability of a detection error, or maximizes the
likelihood of the received signal. Instead, we use a GLRT detector in which we first find
the maximum likelihood (ML) estimate of the unknown structured noise, and then detect
the transmitted signal as the signal that maximizes the likelihood of the received signal
given the transmitted signal and the estimate of the structured noise. The ML estimate of
the structured noise is derived based on the assumption that the transmitted signal is an
unknown signal in the signal subspace® 4. As we now show, the resulting GRLT detector
is equivalent to the OBSMF detector of Fig. 5-1.

To derive the ML estimate of ng(t) we seek ng(t) € S and s(t) € U that maximize
the likelihood function log f(r(t)|ns(t), s(t)) where f(x(t)|y(t)) is the probability density

function of z(t) given y(t). Since n,(t) is a white Gaussian process,

log f(r(t)[ns(t), s(t)) = K : (r(t) — s(t) = ns(8),r(t) — s(t) — ns(t)), (5.44)

202

where K is a constant. The maximizing ns(t) is [54] ns(t) = Esyr(t), where Egy is

SIn a conventional GRLT the structured noise is estimated under each of the hypotheses s;(t). However,
as we have seen, the resulting detector does not always yield satisfactory performance.
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the oblique projection onto S along . The declared detected signal is then s;(t) where
i = argmax log f(r(t)|si(t), ns(t)), and

log f(r(t)|si(t), s (t)) = K — 2}7@(@ = si(t) = Bsur(t),r(t) — si(t) — Esur(t))
= K — 55 ((T — Bsu)r(t) - si(t), (I~ Bsu)r(t) — s:(0). (5.49)

Finally, arg max((I — Esy)r(t), sx(t)) = arg max(Eysr(t), sg(t)) = argmax ay, where a, is
the kth output of the OBSMF demodulator depicted in Fig. 5-1.

In our closing remarks, we note that we may view both projections Pg: and Eys as
special cases of an oblique projection Fygs in which V C H is disjoint from S. The oblique
projection Eys in the OBSMF detector corresponds to the choice ¥V = U, while the orthog-
onal projection Pg. in the OTSMF detector corresponds to the choice V = S+. We may be
able to improve the performance over these detectors by choosing a preprocessor Fys where
V is an “optimal” subspace in some sense. If V = U, then the resulting projection does not
modify the signal but from (5.41) the norm of the noise can be enhanced by as much as
1/ cos(fg1). On the other hand if V = S+, then the corresponding projection does not
increase the norm of the noise, but the norm of the desired signal is reduced by as much
as arg min(||Pg1s;(t)]|/]/si(t)||). We may therefore consider choosing an optimal V to max-
imize a possibly weighted combination of cos(fyg1) and arg min || Eyss;i(t)||. Alternatively,

we can consider the average effect on the transmitted signal ), | Eyss;(t)]|-

5.7 Combined ROMs

The last class of combined measurements we consider are combinations of two ROMs M;
and My. The effect of the ROM M, is to map the possible outputs of the ROM M to a new
set of outputs, in some deterministic or probabilistic fashion. Thus, combined measurements
of this form are useful for developing algorithms based on existing algorithms, where we
postprocess the output of the original algorithm. For example, by choosing the mapping
fo of the ROM M, as a probabilistic mapping we can generate randomized algorithms in
which the original outputs induce a probability distribution on the final outputs. This can
be useful, e.g., in detection algorithms where we implement a randomized decision rule, by

first obtaining a deterministic decision which then begets a distribution on the final outputs
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(e.g., a randomized likelihood ratio test).

More specifically, suppose that M; is a ROM with measurement vectors {g;,1 < i < m},
and that My is a ROM with measurement vectors {h;,1 < i < n}. We assume that
gi # hyg for all i and k. Then Mi(z) = c¢;jq; for some value i and some ¢; € C, and
Mo (z) = My(ciq;) = dihy where | = fo({(hg, cigi), 1 < k < n}), for some d; € C. Evidently,
f2 depends only on the nm values {(hg,c;q;),1 < k < n,1 < i < m}. The mapping fo
maps the ith output of M; to the Ith output of My, where the value of [ may be selected
deterministically by the value of 7, or may be chosen randomly with probabilities determined
by the value of 7.

To deterministically map the ith output of M; to the /th output of My we may choose
the vectors {hg,1 < k < n} such that (hg, c;q;) = fr; where maxy, fx; = f;, and then choose

fa(x) = h; where | = arg max(hg, ).

5.7.1 Randomized Algorithms

A more interesting class of algorithms results from choosing f2 to be a probabilistic mapping.
Then each output of M; generates a (possibly) different probability distribution on the
outputs of My, as illustrated in Fig. 5-3. Specifically, if the ¢th outcome is obtained from the
measurement M, then the [th outcome of My, is obtained with probability p(l|). To realize
a particular distribution we may choose the vectors h; such that (h;, ¢;q;) = p(I|i), and choose
the mapping fo: H x W — T as a probabilistic mapping from H toZ = {1,2,... ,n}, where
W = T is the sample space of an auxiliary chance variable w, such that w can take on a
value w; € Z with probability (h;,xz). Then let fo(xz,w;) = [. If the ith output of M is
obtained, then the output of the combined measurement will be proportional to h; with
probability p(I|7).

We now consider some examples of randomized algorithms resulting from combined

ROMs, that highlight some of their merits.

Example 5.3 (Randomized MF). Suppose that one of m signals {s;(¢),1 < i < m} is
received over an additive noise channel with equal probability, where the signals lie in a
real Hilbert space A with inner product (z(t),y(t)) = [=__ x(t)y(t)dt, and are assumed
to be normalized. The received signal r(¢) is also assumed to be in #, and is modeled as
r(t) = s;(t) + n(t) for one value i, where n(t) is a stationary white noise process with zero

mean and spectral density 02, and with otherwise unknown distribution.
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Figure 5-3: Action of a probabilistic mapping fs.

In Example 4.3 we introduced a probabilistic MF for detecting the transmitted signal,
based on a ROM with a probabilistic mapping. In that example the observed signal r(t)
induced a probability distribution on the declared detected signal so that s;(¢) is declared
with probability c|(r(t), s;(t))|?, where c is a normalization constant. Since this probabil-
ity distribution depends explicitly on the value of r(¢), in principle there are an unlimited
number of possible distributions. To reduce the complexity of the probabilistic MF we can
instead use a combined measurement to obtain a randomized MF, where like in the proba-
bilistic MF the declared detected signal is chosen probabilistically, however the probability
distribution on the output is now chosen from one of a set of m distributions, where the

particular choice depends on the signal r(t).

To describe the combined measurement let M; be the ROM that implements the MF
detector as in Example 4.1, and let Ms be a ROM with measurement vectors {hy,1 < k <
m} and probabilistic mapping fo: H X W — Z where Z = {1,2,... ,m}, and W =T is
the sample space of an auxiliary chance variable w, such that w can take on a value w; € 7
with probability (h;(t),z(t)). Then let fo(z(t),w;) = I. The signals {h(t),1 < k < m}
are chosen to satisfy (h(t),si(t)) = p(k|i) where the probabilities p(k|i),1 < i,k < m
are prespecified. The output of the combined measurement is then mapped to one of the
signals s;(t) by the mapping Ty: H — H which maps any multiple of h;(t) to s;(t), as
depicted in Fig. 5-4. If the outcome of the measurement M is ¢;s;(t), then the declared
detected signal using the combined measurement is s;(¢) with probability p(I|7). Thus, the
MF output generates a probability distribution on the final declared detected signal where

the probability distribution is chosen from one of m prespecified distributions depending on
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Figure 5-4: Measurement description of randomized matched filter detector.

the output of the MF demodulator. The detector resulting from the combined measurement
can equivalently be represented as in Fig. 5-5, and is referred to as a randomized MF (RMF)

detector. In this figure, T: Z — H is a mapping that maps the index [ to the signal s;(t).

p(1]i)
Matched Choose p(2l0) Generate
a; 0 [
r(t) filter p'I“Ob'abl Tty ran.dom T si(t)
detector distribution ) variable
p(mli)

Figure 5-5: Randomized matched filter detector.

To gain some insight into the effect of the randomized MF, suppose that m = 2 and
that (s1(t),s2(t)) is close to 1. Then we expect the probability of detection error using an
MF detector to be pretty large. If the probability of detection error is greater than 1/2,
then we can reduce the probability of detection error by reversing the detector outputs, so
that we declare so(t) when the outcome of the detector is s1(t), and vice versa. However,
if we do not know the probability of detection error, then by deterministically reversing
the outputs we may actually increase the probability of detection error. Instead we use
a combined measurement to randomly reverse the outputs. Specifically, if the output of
the MF detector is s1(t), then we declare that sq(¢) was transmitted with probability pg
and that so(t) was transmitted with probability 1 — pg, and vice versa. As we now show,

by using such a randomized decision rule we can improve the worst case behavior of the
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detector.
With P}F and P"" denoting the probability of detection error using the MF detector

and the RMF detector respectively, we have that
PeM =poP™ + (1= po)(1 = P'") = (2po — )P + 1 — po. (5.46)

From (5.46) it follows that, as we expect intuitively, P** < PMF only if PM* > 1/2. If
we know that P)'* < 1/2, then we do not gain using the RMF. On the other hand, if we
know that P)F > 1/2, then we can always reverse the outputs of the MF and again we do
not gain using the RMF. However, if we do not know PMF, then using the RMF we can
reduce the worst case probability of detection error. Indeed, regardless of the value of P)'¥,
using the randomized MF we always have that PM" < pg. In the extreme case in which

po = 1/2, the output of the RMF is s1(¢) or so(t) with probability 1/2, independent of the

received signal r(t), resulting in a constant probability of detection error. O

The previous example suggests that in a detection scenario combined ROMs can be used
to improve worst case behavior. The next example demonstrates the same characteristic of

the combined measurement in a different context.

Example 5.4 (Modular redundancy). Suppose we have a system S that performs some
computation which we want to protect using modular redundancy [123]. Thus, we have 3
copies of the system operating in parallel using the same data. The outputs are then
compared with voter circuitry. For simplicity we assume that the output of the computation
is binary; thus the possible outputs of each system are 0 and 1, and the possible outputs of
the three systems are all possible triplets of 0 and 1, e.g., (0,0,0),(0,0,1) etc., where the
first entry corresponds to the output of the first system, and so forth. The outputs of the
systems could either all agree, or two outputs will be the same and different than the third.
The voter circuitry declares as the final output the output that is common to at least two
of the systems. If each system has a probability of failure p, then without redundancy the
probability of an output error is p. Using modular redundancy there will be an error if all 3
systems fail, or if 2 of the systems fail, and the probability of error is PM® = p? + 3p?(1—p).

We now propose using randomized modular redundancy (RMR) based on a combined
measurement to improve the worst case performance of the overall system. Specifically, we

first construct a ROM M; to implement the voter circuitry by mapping the 8 possible input
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Figure 5-6: Probability of error P*M® using randomized MR, as a function of the probability
of failure p, for different values of ¢, where ¢ is the probability of reversing the output of
the voter circuitry.

triplets to vectors ¢; and the two possible outputs 0 and 1 to vectors h;. The mapping f;
is chosen to realize the required mapping between the ¢;s and the h;s, using the techniques
described at the beginning of this section. The second measurement Ms is constructed such
that the outcome is the same as the outcome of the first measurement with probability
q, and reversed with probability 1 — ¢q. This construction is similar to the construction of
the measurement My in the combined measurement implementing the RMF, described in
Example 5.3, and is therefore omitted. We refer to this approach as randomized modular

redundancy (RMR). The probability of error using RMR is given by

PR = P 4 (1 - q)(1— P)™) = (2~ DPY™ +1—¢. (5.47)

In Fig. 5.4 we plot the probability of error using RMR, as a function of the probability of
failure p. The case ¢ = 1 corresponds to the case of conventional modular redundancy. As
we see from the figure, by choosing values of ¢ such that 0 < ¢ < 1, we can improve the

worst case performance of the system. O

In this chapter we suggested some new processing techniques that result from combined
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QSP measurements. We have seen that combined measurements lead to various generaliza-
tions and insights into frame expansions, to the notion of subspace MF detectors, and to
certain types of randomized algorithms. There are potentially a host of additional applica-
tions of the combined measurement framework beyond those considered in this chapter.
As indicated at the outset, this chapter represents a preliminary exploration of the com-
bined measurement framework and many topics and issues within these examples remain to
be explored. While some of the applications are not sufficiently developed, they potentially

represent interesting novel methods for signal processing.
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Chapter 6

Sampling With Arbitrary Sampling

and Reconstruction Spaces

In this chapter we exploit our results regarding oblique projections and oblique dual frame
vectors, derived in Chapters 2 and 5 respectively, to develop a general framework for sam-
pling and reconstruction procedures. The procedures we develop allow for almost arbitrary
sampling and reconstruction spaces, as well as arbitrary input signals. We first derive a
nonredundant sampling procedure. Based on the concept of oblique dual frame vectors, we
then develop a redundant sampling procedure that can be used to reduce the quantization
error when quantizing the measurements prior to reconstruction. The algorithms we de-
velop satisfy the consistency requirement, introduced in the context of sampling by Unser
and Aldroubi in [16]. Building upon this property of our algorithms, we develop a general

procedure for constructing signals with prescribed properties.

6.1 Sampling in Signal Spaces

Many methods exist for representing a signal by a sequence of numbers, which can be
interpreted as measurements of the signal we wish to represent. The classical approach
is to choose the measurements as samples of the signal. A more recent approach [16, 14,
89, 81, 17, 18, 19, 124, 125] is to consider measurements that may be expressed as the
inner products of the signal with a set of vectors that span some subspace S, which is
referred to as the sampling space. Examples include multiresolution decompositions [14],

and spline decompositions [81]. The problem then is to reconstruct the signal from these
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measurements, using a set of vectors that span a subspace W, which we refer to as the
reconstruction space. If the signal we wish to reconstruct does not lie in W, then it can not
be perfectly reconstructed using only reconstruction vectors that span W. Therefore, if we
allow for signals out of VW, then we must relax the requirement for perfect reconstruction.

Given a reconstruction method, we can always choose a sampling method so that the
reconstructed signal is equal to the orthogonal projection of the original signal onto the
reconstruction space, which is the minimal-error approximation to the original signal. How-
ever, this requires the sampling space S to be equal to the reconstruction space W. If the
sampling scheme is specified such that S is not equal to W, then the minimal-error approx-
imation can not be obtained. Our problem therefore is to construct a ‘good’ approximation
of the signal given both a sampling method and a reconstruction method.

The rudimentary constraint we impose on the reconstruction is that if the original signal
lies in W, then the reconstruction will be equal to the original signal. We will show that this
requirement uniquely determines the reconstructed signal. Furthermore this reconstructed
signal is a consistent reconstruction of the original signal, namely it has the property that
although if the original signal does not lie in W then it is not equal to the original signal,
it nonetheless yields the same measurements.

In [16], Unser and Aldroubi introduce the concept of consistent reconstruction, based
on which they develop a new sampling procedure for the special case in which the signals
lie in Lo, and where the sampling and reconstruction spaces are not necessarily equal but
are both generated by integer translates of appropriately chosen functions.

In this chapter we extend the results of [16] in several ways. First, we expand their results
to a broader framework that does not require the sampling and reconstruction spaces to be
generated by integer translates, and does not require the signals to lie in L9, but rather can
be applied to arbitrary subspaces of an arbitrary Hilbert space. This framework leads to
some new sampling theorems, as well as further insight into the results of [16].

Second, we exploit the new concept of oblique dual frame vectors introduced in Sec-
tion 5.4 of the previous chapter to develop redundant sampling procedures in which the
measurements constitute an overcomplete representation of the signal. These measure-
ments correspond to inner products of the signal with a set of linearly dependent vectors
that form a frame for S, and reconstruction is obtained using a set of linearly dependent

vectors which form a frame for W. Using oblique dual frame vectors we can simplify the
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sampling and reconstruction processes while still retaining the flexibility of choosing the
spaces almost arbitrarily, due to the extra degrees of freedom offered by the use of frames
that allow us to construct frames with prescribed properties [66, 85]. Furthermore, if the
measurements are quantized prior to reconstruction, then as we show the average power of
the reconstruction error using this redundant procedure can be reduced by as much as the
redundancy of the frame in comparison with the nonredundant procedure. This generalizes
a similar result of Goyal et al. [111] for the case in which the sampling and reconstruction
spaces are equal.

Third, building upon a geometric interpretation of the consistent sampling procedures
we develop a general framework for constructing signals with prescribed properties. For
example, using this framework we can construct a signal with specified odd part and spec-
ified local averages, or a signal with specified lowpass coefficients and specified values over
a time interval.

In Section 6.2 we consider the sampling framework in detail, and develop a geometric
interpretation of the sampling and reconstruction scheme that provides further insight into
the problem. In Section 6.3 we consider nonredundant sampling schemes, and derive explicit
consistent reconstruction methods. Section 6.4 illustrates the reconstruction in the context
of a concrete example. The aliasing error and reconstruction error resulting from our general
scheme are analyzed in Section 6.5. In Section 6.6 we use the oblique dual frame vectors
to develop a redundant sampling procedure, and show that it can be used to reduce the
quantization error when quantizing the measurements prior to reconstruction by as much
as the redundancy of the frame in comparison with a nonredundant procedure. Based on
our consistent reconstruction algorithms, in Section 6.7 we develop a general framework for

constructing signals with prescribed properties.

6.2 Consistent Reconstruction

6.2.1 Consistency Condition

Suppose we are given measurements! c[i] of a signal f that lies in an arbitrary Hilbert

space H. The measurements are obtained by taking the inner products of the signal with

'To be consistent with the notation typically used in the sampling literature, throughout this section we
use the notation c[i] to denote the elements of a sequence ¢ € [s.
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a set of sampling vectors {s;} that span a subspace S C H, which is referred to as the
sampling space, so that c[i] = (s;, f). In the case of nonredundant sampling the vectors
form a Riesz basis for §; in the case of redundant sampling the vectors form a frame for
S. We construct an approximation f of f using a given set of reconstruction vectors {w;}
that span a subspace W C H, which we refer to as the reconstruction space. In the case
of nonredundant sampling the reconstruction vectors form a Riesz basis for W, and in the
redundant case the vectors form a frame for WW. We do not require the sampling space S
and the reconstruction space W to be equal. However, we assume that they have equal
dimension.

The reconstruction f has the form f = 37, d[iJw; for for some coefficients {d[i]} that
are a linear transformation of the measurements {c[i]}, so that d = Hc for some H. Then,
with W and S denoting the set transformations corresponding to the vectors w; and s;

respectively,
f=> dlilw; =Wd=WHc=WHS"f. (6.1)
i

The sampling and reconstruction scheme is illustrated in Fig. 6-1.

cfi] dli]

Figure 6-1: General sampling and reconstruction scheme.

If f does not lie in W, then it cannot be perfectly reconstructed using only vectors in
W since f given by (6.1) will always lie in W. Therefore, our problem is to choose the
transformation H in Fig. 6-1 so that f is a good approximation of f. In addition we require
that f reduces to a perfect reconstruction of f when f lies in W. If W and S* are not
disjoint, i.e., W N S+ # {0}, then perfect reconstruction for all f € W is not possible. For
suppose that z is a nonzero signal in WNS*. Then c[i] = (s;,z) = 0 for all i, and clearly =
can not be reconstructed from the measurements c[i]. Consequently, we assume throughout
the chapter that W and St are disjoint, and that H = W @ S*. Subject to this condition,
we will show that any f € W can be perfectly reconstructed from the measurements {c[i|}

using reconstruction vectors {w;}.
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Since we are requiring that f = WHS*f = f for all f € W it follows immediately
that with G = WHS*, GGf = Gf for any f € W. Furthermore, since any = € H can be
expressed as £ = w + v with w € W and v € S* and $*v = 0, Gz = Gw = w, so that for
any f € H, GGf = Gf. We conclude that G must be a projection operator. To specify G,
we need to determine its null space N(G) and its range space R(G). Since G = WHS*,
N(G) D N(S*) = 8+ and R(G) C R(W) = W. But since Gf = f for all f € W we have
that R(G) = W which immediately implies that N'(G) = S+, so that G = Ej,g1.. We

therefore have the following theorem:

Theorem 6.1. Let {c[i] = (si, f)} denote measurements of f € H with sampling vectors
{si} that span a subspace S C H, and let the reconstruction vectors {w;} span a subspace
W C H such that H =W & S*. Then f s a linear reconstruction of f that reduces to a

perfect reconstruction for all f € W if and only if
f=Epysif. (6.2)

The reconstruction (6.2) has the additional property that it satisfies the consistency
requirement as formulated by Unser and Aldroubi in [16]. A consistent reconstruction f
of f has the property that if we measure it using the measurement vectors s;, then the
measurements will be equal to the measurements cfi] of f. Since f = Eyysif it follows
immediately that S™ f = S*E\ysLf = S*f, so that f is a consistent reconstruction of f.
Furthermore, any consistent reconstruction f of f reduces to a perfect reconstruction for
f € W. Indeed, if f € W and f is a consistent reconstruction of f, then (s;, f) = (s;, f)
for all i, so that (s;, f — f) = 0, which implies that f — f € SL. But f — f also lies in W,
and since W and S+ are disjoint we conclude that f = f . We therefore have the following

corollary to Theorem 6.1:

Corollary 6.1. Let {c[i]] = (s, f)} denote measurements of f € H with sampling vectors
{si} that span a subspace S C H, and let the reconstruction vectors {w;} span a subspace
W C H such that H =W & S*+. Then f 18 a consistent linear reconstruction of f if and

only if

~

f=Epystf. (6.3)
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Theorem 6.1 describes the form of the unique consistent reconstruction if it exists,
however it does not establish the existence of such a reconstruction. In Sections 6.3 and
6.6 we use our results regarding oblique projections (Section 2.4) and oblique dual frame
vectors (Section 5.4) to show that a consistent reconstruction can always be obtained, and
we derive explicit reconstruction procedures. This then implies that if f € W, then f can
be perfectly reconstructed from the measurements c[i]. Therefore, our results can also be
used to generate new sampling theorems that yield perfect reconstruction. We will illustrate
these ideas in the context of a concrete example in Section 6.4. In that example H is the
space of length n discrete-time sequences z[k], the reconstruction space W is the space of
length m = 2m’ + 1 < n sequences, and the sampling space S is the space of “bandlimited”
sequences in H so that z[k] € S if and only if X[k] = 0 for m' < k < n —m’, where X[k]
is the n point DFT of z[k]. Using our framework we obtain a consistent “time-limited”
reconstruction of any signal in H, so that the lowpass DFT coefficients of the time-limited
sequence and the original sequence are equal. Furthermore, we show that since any signal
in W can be perfectly reconstructed from its samples in S, a time-limited sequence can be
reconstructed from a lowpass segment of its DFT transform.

Before proceeding to the detailed methods, in the next section we present a geomet-
ric interpretation of the sampling and reconstruction that provide further insight into the

problem.

6.2.2 Geometric Interpretation of Sampling and Reconstruction

Let us first consider the case of perfect reconstruction for signals in W. Thus, we would
like to determine conditions under which any f € W can be reconstructed from the mea-
surements c[i] = (f, s;). We first note that sampling f with measurement vectors in S, is
equivalent to sampling the orthogonal projection of f onto S, denoted by fs = Psf. This

follows from the relation

(84, f) = (Pssi, f) = (34, Ps f). (6.4)

We may therefore decompose the sampling process into two stages, as illustrated in Fig. 6-2.
In the first stage the signal f is orthogonally projected onto the sampling space S, and in

the second stage the projected signal fs is measured. Since fs € S and the vectors s; span
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S, fs is uniquely determined by the measurements c[i]. Therefore, knowing c[i] is equivalent

to knowing fs.

fs
f — Ps S* cli]

fr=— 8§ — i

Figure 6-2: Decomposition of the sampling process into two stages.

In view of the interpretation of Fig. 6-2, our problem can be rephrased as follows. Can
we reconstruct a signal in W, given the orthogonal projection of the signal onto S, with
W and S+ disjoint? Fig. 6-3(a) depicts the orthogonal projection fs of an unknown signal
f € W onto §. The problem is to determine f from this projection. Since the direction
of W is known, there is only one vector in YW whose projection onto S is fg; this vector is
illustrated in Fig. 6-3(b). From this geometrical interpretation we conclude that if W and
S+ are disjoint, then perfect reconstruction of any f € W from the measurements cli] is
always possible.

We now discuss consistent reconstruction for signals f € H. If f is a consistent recon-
struction of f, then f and f have the same measurements: c[i] = (s;, f) = (s;, f). From
our previous discussion it follows that fs = fs where fs = Psf. Thus, geometrically a
consistent reconstruction f of f is a signal in W whose orthogonal projection onto S is
equal to the orthogonal projection of f onto S, as illustrated in Fig. 6-4. Evidently, the
consistent reconstruction is unique and always exists. We have seen in Theorem 6.1 that
this reconstruction has a nice geometrical interpretation: It is the oblique projection of f
onto W along St. This interpretation is illustrated in Fig. 6-5, from which it is apparent
that E)),s.f and f have the same orthogonal projection onto & and consequently yield the
same measurements.

In summary, by considering a geometric interpretation of the sampling process and the
consistency requirement we have demonstrated that perfect reconstruction for signals in
W is always possible as long as W and S+ are disjoint, and we illustrated the reconstruc-
tion geometrically. We also showed that consistent reconstruction is always possible, and
illustrated the reconstruction. It is important to note that the geometric interpretation

(and Theorem 6.1) hold irrespective of whether the sampling process is nonredundant or
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Figure 6-3: Illustration of perfect reconstruction of f € W from fs = Psf, with W and
S disjoint (a) projection of unknown signal in W onto S (b) unique signal in W with the
given orthogonal projection.

redundant. However, the specific reconstruction algorithms will be different in both cases.
In the next section we provide mathematical proof of these results for the case of nonre-
dundant sampling, and derive an explicit reconstruction scheme; redundant procedures are

considered in Section 6.6.

6.3 Reconstruction From Nonredundant Measurements

Suppose that the sampling vectors {s;} form a Riesz basis for § and the reconstruction vec-
tors {w; } form a Riesz basis for W. Then we can always find an invertible transformation H
such that G = WHS* = E), 51, which from Theorem 6.1 implies consistent reconstruction
for all f € H and perfect reconstruction for all f € W. Specifically, from Theorem 2.5 it
follows that with H = (S*W)~!, G = WHS = E),g.. Thus, reconstruction is obtained by

first transforming the measurements c[i] into “corrected” measurements d[i] corresponding
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SL

Figure 6-4: Tllustration of consistent reconstruction of an arbitrary f from fg, with W and
St disjoint.

SJ_

EWSJ-f

Esiwf

Figure 6-5: Decomposition of f into its components in W and in S* given by E,ys.f and
Egs.yf, respectively.

to the sequence d = Hc = (S*W) !¢, which by Lemma 2.1 is well defined. Then
f=> dlilw; =Wd=W(SW)"'S*f = Byys.f. (6.5)
i

The resulting measurement and reconstruction scheme is depicted in Fig. 6-6.

cli] ] .
f— 5 (s*w)~t w [ =Eystf

Figure 6-6: Consistent reconstruction of f using sampling vectors s; and reconstruction
vectors w;, with W and S+ disjoint.

If f € W then f = Eyysif = f, and f can be perfectly reconstructed from the mea-

surements c[i] using the scheme depicted in Fig. 6-6. By choosing different spaces H, W
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and S and using the measurement and reconstruction scheme of Fig. 6-6, we can arrive at
a variety of new and interesting perfect reconstruction sampling theorems.

We can interpret the sampling and reconstruction scheme of Fig. 6-6 in terms of a basis
expansion for signals in W. Specifically, for any f € W we have that f = f so that f can
be represented as f = ), d[iJw;. The coefficients d[i] can be expressed as d[i] = (v;, f)
where the vectors v; € S correspond to the set transformation V = S(W*S)™!, and are
biorthogonal to wj: (v;,wy) = ;. This follows immediately from V*W = (S*W)~1S*W =
I. Therefore Fig. 6-6 provides an explicit method for constructing basis vectors for an
arbitrary space S with W and S disjoint, that are biorthogonal to the basis vectors w;.

We summarize our results regarding nonredundant sampling in the following theorem:

Theorem 6.2 (Nonredundant sampling and reconstruction). Let {¢; = (s;, f)} de-
note measurements of a signal f € H with sampling vectors {s;} that form a Riesz basis for
a subspace S C H. Let {w;} denote a set of reconstruction vectors that form a Riesz basis

for a subspace W C H, with H =W & S*+. Then

1. Any f € W can be perfectly reconstructed from the measurements c[i] using the recon-

struction vectors w; as f =Y, d[ilw; with d = (S*W) e, In addition,

(a) d[i] = (vi, f) where the vectors {v;} are the unique vectors in S biorthogonal to
the vectors {w;};
(b) the coefficients d[i] are unique.
2. Any f € H can be consistently reconstructed from the measurements c[i| using the
reconstruction vectors w; as f = >, dliw; with d = (S*W) e, In addition,
(a) the consistent reconstruction f 1§ unique;

(b) the coefficients d[i] are unique.

6.4 Bandlimited Sampling of Time-Limited Sequences

To illustrate the details of the sampling and reconstruction scheme of Fig. 6-6, we now
consider in detail the example outlined in Section 6.2.1. H is the space of sequences z[k]
such that z[k] =0 for k < 0,k > n, W is the space of sequences z[k] such that z[k] = 0 for

k <0,k > m where m = 2m’ + 1 < n, and S is the space of “bandlimited” sequences z[k]
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such that X[k] = 0 for m' < k < n — m/, where X[k],0 < k < n — 1 denotes the n point
DFT of z[k]. The bases for S and W are chosen as the sequences s;[k],0 <i < m — 1 and
w;[k],0 < i < m — 1 respectively, given by s;[k] = e/>7=")k/" for 0 < k <n—1and 0
otherwise, and w;[k] = §[i — k.

The measurements c[i],0 < i < m — 1 of an arbitrary sequence f € H are equal to

n—1 n—1
i) = (si, f) = 3 siRIfIR] = 3 FIRe P27 0= 0R" — F((i —m!))a], (6.6

where F[k],0 < k < n —1 is the n point DFT of f[k], and ((p))n = p mod n. Thus, the
measurements c[¢] are the m lowpass DFT coefficients of the n point DFT of f. To obtain
a consistent reconstruction of f from c[i] we need to determine (S*W)~!. The jlth element

of the m X m matrix S*W is

1
(sj,wi) = ) s5[klwilk] = s}[l] = Z"'B, (6.7)
0

3
|

ES
Il

where Z = ¢ 927/" and B = 72™'/" We can therefore express S*W in the form

1 1 1 s 1
1z zz ... zm

SW = . D. (6.8)
1 zm-1 Z2(m71) . Z('mfl)2

Eq. (6.8) is the product of a Vandermonde matrix and a diagonal matrix D with nonzero
diagonal elements B',0 < < m — 1. Therefore, S*W is always invertible which implies by
Lemma 2.1 that W and S* are disjoint. From Theorem 6.2 it then follows that consistent
reconstruction is possible for all f. We can compute the inverse of S*W using any of the
formulas for the inverse of a Vandermonde matrix (see e.g., [126, 127]). The corrected
measurements d[i] are then given by the elements of d = (S*W)~!c where c is the vector
with elements c[i] given by (6.6), and f[k] = Z?:_Ol w;k]d[i] = di for 0 < k < m —1 and
0 otherwise. The consistency requirement implies that F[((k —m/)),] = F[((k —m')),] for
0 < k < m—1, where F[k] is the n point DFT of f[k]. Thus f is a “time-limited” sequence
that has the same lowpass DFT coefficients as f.

In Section 6.7 we develop a systematic method for constructing signals in a subspace
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W with specified properties in a subspace S. We also consider the more general problem
of constructing a signal in H with specified properties in both W and §. Using these
methods we can generalize our construction here to produce a signal with specified lowpass
coefficients and specified values on a given time interval.

Now, suppose that f is a length m sequence in W, and we are given m lowpass DFT
coefficients F[((k —m/))n], 0 < k < m — 1. We can then perfectly reconstruct f from
these coefficients using the method described above. This implies the intuitive result that
a time-limited discrete-time sequence can be reconstructed from a lowpass segment of its
DFT transform. This result is the analogue for the finite length discrete-time case of
Papoulis’ theorem [128], which implies that a time-limited function can be recovered from
a lowpass segment of its Fourier transform. The reconstruction based on Papoulis’ theorem
is typically obtained using iterative algorithms such as those discussed in [128, 129]. By
choosing appropriate sampling and reconstruction vectors in the general scheme of Fig. 6-6,
we obtained a finite length discrete-time version of this theorem together with a simple
non-iterative reconstruction method. This example illustrates the type of procedure that

might be followed in using our framework to generate new sampling theorems.

6.5 Aliasing and Error Bounds

Since in general f does not lie in W, the reconstruction scheme of Fig. 6-6 may result in
aliasing at the output. Intuitively, aliasing will occur when components of f that lie out of
W are aliased into f . A very nice and intuitive way to think about aliasing was proposed
in [130] in the context of multiresolution spaces in terms of the norm of the “out-of-space”
component. Let I' denote the sampling operator defined by f =T'f where f is the original

signal and f is the reconstructed signal. Then the aliasing norm is defined as [130, 131]

r

Ar = sup M (6.9)

rews IIfll

As we expect intuitively, Ar = 0 if T'f =0 for all f € W+.
In our case I' = Ey,,5., and
E

Ar = sup 1Bws f (6.10)

rew+  IF]
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From (6.10) we conclude that Ar = 0 only if Ey,g. = 0 for all f € W which implies
that § = W. To avoid aliasing when S # W, we can first orthogonally project f onto W,
and then measure the projection, so that the part of the signal that lies in W' will not
contribute to the reconstruction f . The measurements are then given by ¢ = S*Py f, or
c[i] = (t;, f) where t; = Pyys; and consequently ¢; € W; as we expect the effective sampling
space is equal to the reconstruction space. When the spaces are not equal, we can obtain
a bound on the aliasing norm Ar in terms of the angle 6yys between the spaces W and S,

defined in (5.41) [16]. Specifically, using (5.42) we have that

1
cos(bs)’

ﬂ
IA

(6.11)

where cos(byys) = infrepy |7=1 [[Psfll- As we expect, the bound decreases as the angle
between the spaces W and S decreases, in which case St is “close” to W-.

To decrease the aliasing norm when W and S are not equal, we may oversample the
signal using a larger set of sampling and reconstruction vectors. Intuitively, we can reduce
the aliasing norm by effectively decreasing the angle between W and §. This can be done
by expanding W and S to larger spaces W and S8’ such that W Cc W' and § C &', and
such that cos(fyrs') > cos(fyys). Mathematically, by enlarging the reconstruction space the
supremum in (6.10) can not increase. We then oversample the signal using sampling vectors
{s} that span the larger space S’ and include the sampling vectors {s;}. To reconstruct
the signal, we use reconstruction vectors {w}} that span W' and include the reconstruction
vectors {w;}. As long as W' and (S’)* are disjoint, we can still perfectly reconstruct any
signal f € W from the new measurements, and at the same time decrease the aliasing norm
when measuring signals that do not lie in W.

The reconstruction error using the general scheme of Fig. 6-6 can be bounded based on

results derived in [16],

1

If = Pwfll < IIf = Ewse fII < mllf — Py fll, (6.12)

where || f — Py f]| is the minimal norm of the reconstruction error corresponding to the case
in which W = §. From (6.12) we see that there is a price to pay for the flexibility offered
by choosing the sampling space (almost) arbitrarily: The norm of the reconstruction error

for input signals that do not lie in the reconstruction space is increased. However, in many
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practical applications this increase in error is very small [17, 82, 83, 84].
Since the error bounds presented in this section depend only on the reconstructed signal,
they also hold in the case of redundant sampling and reconstruction, which we discuss in

the next section.

6.6 Reconstruction From Redundant Measurements

6.6.1 Reconstruction Scheme

In Section 6.3 we considered consistent reconstruction of f € H from a nonredundant set of
measurements, given by inner products of f with a set of basis vectors. We now consider the
problem of consistent reconstruction from redundant measurements, given by inner products
of f with a set of frame vectors. Throughout this section we assume that S and W both
have finite dimension m; the results extend to the infinite-dimensional case as well.

Suppose we are given a set of n > m measurements ¢[i] = (x;, f) of a signal f € H, where
the sampling vectors {z;,1 < ¢ < n} form a frame for S, and reconstruction is obtained
using reconstruction vectors {y;,1 <i < n} that form a frame for W. From Theorem 6.1 it
follows that to obtain a consistent reconstruction for all f € H and perfect reconstruction
for all f € W we need to find a transformation H such that G = YHX* = Ey, 51, where
X and Y are the set transformations corresponding to the vectors x; and y;, respectively.
Using our construction of oblique dual frame vectors presented in Section 5.4.1, we now
show that such a transformation always exists.

Specifically, from Proposition 5.2 and the properties of the oblique pseudoinverse devel-
oped in Section 2.7.2, it follows that with H = (X*Y)f, G = YHX* = YYj’fSL = Eyyst,
where V = V(Y)+ and Y.

ysi
construction is obtained by first transforming the measurements ¢[i] into “corrected” mea-

is the oblique pseudoinverse of Y on V along S*. Thus, re-

surements d[i] corresponding to the sequence d = (X*Y)fé = in, f so that d[i] = (i, f)

where the vectors ¢; are the oblique dual frame vectors of y; on S. Then
f=Yd=YY}, . f=Eys.f. (6.13)

The resulting measurement and reconstruction scheme is depicted in Fig. 6-6.

From the properties of the oblique dual frame vectors, developed in Section 5.4.2, it
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follows that although the coefficients J[z] are not unique, they have the property that from

all possible coefficients d[i] such that f = > iy d[i]y;, they have the minimal lo-norm.

cld] dli] R
[ — X* (X*Y)f Y ~ f=Eps.f

Figure 6-7: Consistent reconstruction of f using redundant sampling vectors x; and redun-
dant reconstruction vectors y;.

Now, any frame {y;,1 < i < n} for W can be expressed as Y = WZ where W is a
set transformation corresponding to an arbitrary basis for W, and Z: C™ — C" satisfies

ZZ' = I,,. Then, from Proposition 5.2
Y =2Zi(s'w)lsr, (6.14)

where S is a set transformation corresponding to an arbitrary basis for S. From (6.14)
it follows that we can obtain the redundant corrected measurements d[i] directly from the
nonredundant corrected measurements d = (S*W)~1S*f = (S*W)~ ¢, via d = Z'd, where
cli] = (si, f) are the nonredundant measurements obtained using the vectors s;. This

interpretation is illustrated in Fig. 6-8.

i i dii
f— 5 (s°W)™! 7t 72— w—j

Figure 6-8: Equivalent form of Fig. 6-7.

We summarize our results regarding redundant sampling in the following theorem:

Theorem 6.3 (Redundant sampling and reconstruction). Let {¢; = (z;, f),1 <1i <
n} denote redundant measurements of a signal f € H with sampling vectors {z;,1 <i <n}
that form a frame for an m-dimensional subspace S C H. Let {y;,1 <i < n} denote a set

of reconstruction vectors that form a frame for an m-dimensional subspace W C H, with

W St. Then
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1. Any f € W can be perfectly reconstructed from the measurements ¢[i] using the recon-

struction vectors y; as f = Y1 dlily; with d = (X*Y)tc. In addition,

(a) the coefficients J[z] are not unique;

(b) the coefficients d[i] have minimal norm among all possible coefficients d[i] such
that f = Z?:l d[Z]y’u
(¢) d[i] = (i, f) where the vectors {f;,1 < i < n} are the oblique dual frame vectors

of y; on S.

2. Any f € H can be consistently reconstructed from the measurements ¢[i| using the

reconstruction vectors y; as f = Yo dlily; with d = (X*Y)tc. In addition,

(a) the consistent reconstruction f 18 unique;
(b) the coefficients d[i] are not unique;

(c) the coefficients d[i] have minimal norm among all possible coefficients such that

f = Z?:l d[i]yi-

6.6.2 Reducing Quantization Error

One of the reasons for using redundant measurements is to reduce the average power of the
quantization error, when quantizing the corrected measurements prior to reconstruction. If
the sampling and reconstruction spaces are equal, then f = Py f is the unique consistent
reconstruction of f € H. Since we can express this reconstruction as Pwf = >, (vi, f)vi
where the vectors y; form a normalized tight frame for W, we can consistently reconstruct f
using the vectors y;, where the corrected measurements are d[i] = (y;, f). Alternatively, we
can use a nonredundant scheme where the reconstruction vectors w; form an orthonormal
basis for W, and the corrected measurements are d[i] = (w;, f). Suppose now we quantize
the measurements d[i] and d[i] prior to reconstruction. Then using the redundant procedure,
i.e., quantizing the measurements d[i], it is well known that we can reduce the quantization
error by the redundancy r = n/m of the frame [69, 111] in comparison with quantizing
the measurements d[i]. We now extend this result to the case where the sampling and
reconstruction spaces are not constrained to be equal. In particular, we show that we can

choose a tight frame y; for W such that when using the redundant sampling procedure
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of Figs. 6-7 and 6-8 we can reduce the average power of the reconstruction error by r, in

comparison with the nonredundant scheme of Fig. 6-6.

Let {w;,1 < i < m} denote a set of reconstruction vectors that form an orthonormal
basis for W, and let {s;,1 < i < m} denote a set of sampling vectors that form a basis for
S. Let c[i] = (s;, f) denote nonredundant measurements of a signal f. From Theorem 6.2,
the consistent reconstruction f of f is obtained using the corrected measurements d|i]
corresponding to d = (S*W) ¢, which can be expressed as d[i] = (v;, f), where {v;,1 <
i < m} are the vectors corresponding to the set transformation V = S(W*S)~!, and are

biorthogonal to the vectors w;. Thus,

. m m
f=2 (i Prws =y S qlil(ws, fw, (6.15)
=1

where g[i] = \/a[i]b[d], ali] = (wi,w;) = 1, bli] = (v;, vi), W; = wi/+/ali], and T; = vi/+/b[i].

Assume we quantize the normalized measurements d[i] = (v;, f) prior to reconstruction,
and model the quantization error as an additive zero-mean white noise source, so that the
quantized measurements are d[i] + e[i] where E(e[ile[j]) = 028;;. Then the reconstruction
error is € = y ;" g[i]e[i]w; and the average power of the reconstruction error, denoted by

D, is

m m
= E(|dl®) = o ¢’li] = o > bli]. (6.16)
i=1 i=1

Note, that D does not depend on the particular choice of orthonormal basis vectors
w;. For suppose that the vectors w; corresponding to the set transformation W' form a
different orthonormal basis for W. Then W' = WU for some unitary matrix U. The
biorthogonal vectors are then the vectors v} corresponding to the set transformation V' =
VU = S(W*S)~1U. But then Y, (v},v!) = Tr(VUU*V*) = Tr(VV*), where Tr(-) denotes
the trace of the corresponding matrix, and the average power of the reconstruction error is

again equal to D.

Suppose now we use a redundant procedure so that we reconstruct the signal using a
(-scaled tight frame {y;,1 < i < n} for W, with redundancy r = n/m. Then Y = WZ
for some Z: C™ — C" such that ZZ* = 3%I,,. From Theorem 6.3 and Proposition 5.2 it

follows that the sampling vectors leading to consistent reconstruction correspond to the set
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transformation X = (Y. )* = (1/8%)V Z, so that in this case

vst
f=2 e Py = 3 dlil{@s, )5 (6.17)
where ¢[i] = &[i]g[i], alil = (yi,vi), 5[2] =z, T3), Uy = yi/m, and T; = z;/ 5[2] If

we quantize the normalized redundant measurements (Z;, f) and model the quantization
error as before, then the average power of the reconstruction error using the redundant
procedure, denoted by D, is

n

D=o? Z”: @lil = o alibfi]. (6.18)
=1

=1

We now show that we can choose a tight frame y; such that D = (m/n)D = (1/r)D.

Let Y = WF, where F is an m X n matrix whose rows are equal to the first m rows of
the n x n Fourier matrix F with elements 1/\/ﬁe_j2”kl/”. Since YY* = Py, the vectors y;
corresponding to Y form a normalized tight frame for WW. The oblique dual frame vectors
z; of y; on § are the vectors corresponding to X = VF. We now show that for this choice
of sampling and reconstruction vectors D = (1/r)D. Let f; denote the ith column of F.

From the definition of F, (f;, f;) = m/n for all i so that,
m
ai = {yi,yi) = (Wi, Wfi) = {fi, fi) = (6.19)
since W*W = I,,, and (6.18) reduces to
~ m LIS
D=0"=> #i. (6.20)
(gt
Now,
_ m
D B[] = Tr(X*X) = Tr(V*V) = > b[i]. (6.21)
i i=1

Substituting (6.21) into (6.20), and comparing with (6.16) we conclude that D = (m/n)D.

We note that the average power of the reconstruction error is the same if we choose

Y = W F for any 3 > 0, in which case the vectors y; form a (-scaled tight frame for W.
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Therefore, to reduce the quantization error in the sampling and reconstruction scheme
of Fig. 6-6, we propose the following. Instead of directly quantizing the measurements d[i] in
Fig. 6-6, we first take the n point DFT of the length m sequence of measurements d[i], and
then quantize the DFT coefficients. The reconstructed signal is then a linear combination
of the reconstruction vectors w;, where the coefficients are the first m values of the inverse
DFT transform of the quantized DFT coefficients, as depicted in Fig. 6-9. If we take out
the quantizer in Fig. 6-9, then f = Fyys.f as in Fig. 6-6. However, using the redundant
sampling scheme of Fig. 6-9 the average power of the quantization error is reduced by the

redundancy r = n/m in comparison with a nonredundant scheme.

cld] d[] dli]
f — s* (S*W) -1 DFT Quantizer IDFT w >

Figure 6-9: Reconstruction of f from quantized measurements using a redundant sampling
scheme.

There are many other choices of frame vectors {y;} for W and corresponding oblique
dual frame vectors {z;} on S, that lead to reduction by a factor of r in the average power

of the reconstruction error. In particular we have the following theorem.

Theorem 6.4. Let {w;,1 < i < m} denote an orthonormal basis for W C H, and let
{vi,1 < i < m} denote the biorthogonal basis for S C H, with H =W & S+. Let {y;, 1 <
i < n} denote a frame for W, and let {z;,1 < i < n} denote the oblique dual frame vectors
of yi on S. Suppose we quantize the coefficients in the frame and basis expansions and model
the quantization error as additive zero mean white noise. We consider a ‘good’ oblique frame
expansion {y;,x;} as one for which the average power of the reconstruction error is reduced
by the redundancy r = n/m in comparison with the basis expansion {w;,v;}. Let F denote

the n x n Fourier matriz, and let F denote the first m rows of F. Then

1. The frame vectors corresponding to Y = SWF, X = (l/ﬁ)Vf where B > 0, form a

good oblique frame expansion;

2. The frame vectors corresponding to Y = SWFT, X = (1/5)V]3T where T s a

unitary circulant matriz and B > 0, form a ‘good’ oblique frame expansion.
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Proof: We already proved the first part of the theorem; it remains to prove the second
part. Since the choice of 8 does not affect the derivation we assume for simplicity that
8 = 1. Using Proposition 5.2 we can immediately verify that X = VFT is in fact the
oblique dual frame operator on S of Y = WFT. Next, since T is a circulant matrix it is
diagonalized by F* [27], so we can express T as T = F*AF where A is a diagonal matrix

with diagonal elements A;. Since T is also unitary, |A\;| = 1 for all 7. Then,
Y = WFT = WFF*AF = WIAF, (6.22)
where I = [I,,, 0], and
Y'Y = F*A T IAF = F*I'IF = F* F. (6.23)

Combining (6.23) and (6.19), we conclude that (y;,y;) = m/n for all i. From (6.18) we have
that the average power of the reconstruction error is given by D = o?(m/n) 3.7 (i, x;)-

Now, X = VFT = VIAF so that

D (miymi) = Te(X*X) = Te(F A TVVIAF) = Te(V*V), (6.24)
i=1
and D = (m/n)D where D is the average power of the reconstruction error using the basis

expansion consisting of the orthonormal vectors w; and the biorthogonal vectors v;. O

Based on results derived in [27, 26] we can show that Theorem 6.4 still holds when we
replace F by a generalized Fourier transform matrix defined on a direct product of cyclic
groups, and replace T" by a real unitary permuted matrix. This is because such a permuted
matrix is diagonalized by a generalized Fourier transform matrix [27], and the magnitude

of the elements of an n x n generalized Fourier transform matrix are all equal 1/4/n.

In the special case in which W = § Goyal et al. [111] proved that it is possible to choose
a tight frame for W such that the average power of the reconstruction error is reduced by
r in comparison with an orthonormal basis expansion. Theorem 6.4 extends this result to

the case in which W is not necessarily equal to S.
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6.7 Constructing Signals With Prescribed Properties

A potential class of interesting applications of the consistent sampling procedures we de-
veloped in the previous sections is to the problem of constructing signals with prescribed
properties that can be described in terms of inner products of the signal with a set of vec-
tors. For example, we may consider constructing an odd signal with specified local averages,
or constructing a signal with specified odd part and specified local averages. Exploiting the
results we derived in the context of consistent reconstruction, in this section we develop a
general framework for constructing signals of this form.

We first consider the simpler case, in which we wish to construct a signal f to lie in a
subspace W, and to have some additional properties in a subspace S that can be described
in terms of a set of mathematical constraints of the form (s;, f) for a set of vectors s; that
span §. We then consider the problem of constructing a signal f with properties in two
subspaces W and S that can be described in terms of mathematical constraints of the form
(s, f) for a set of vectors s; that span S, and (w;, f) for a set of vectors w; that span W.

Throughout this section we assume for simplicity that the constraints are nonredundant,
so that each set of vectors {s;} and {w;} is a linearly independent set. We further assume
that the vectors s; form a Riesz basis for § and the vectors w; from a Riesz basis for W.
Using the construction of oblique dual frame vectors the results in this section extend in a
straightforward manner to the redundant case as well.

Our first problem can be solved immediately by noting that it is equivalent to a consistent
reconstruction problem. Specifically, let c[i] = (s;, f) denote the constraints on the signal
f. Then the problem is to construct a signal f € W so that its measurements taken with
respect to the sampling vectors s; are equal to c[i]. If S and W+ are disjoint, then the

unique signal f follows immediately from Theorem 6.2,
f=wW(S*W) e, (6.25)

where W is a set transformation corresponding to a Riesz basis for W, and S is the set
transformation corresponding to the vectors s;.

Next, suppose that we want to construct a signal f with specific properties in two disjoint
spaces W and S, i.e., we want to construct f such that (s;, f) = c[i] and (w;, f) = d[i].

In view of the geometric interpretation of Fig. 6-2 it follows that constructing f such that
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(ss, f) = c[i] and (w;, f) = d[i] is equivalent to constructing f to have a specified orthogonal
projection fs onto S and a specified orthogonal projection f, onto W. Fig. 6-3(a) depicts
the orthogonal projections of an unknown signal f onto § and W. The problem then is to
construct a signal f with these orthogonal projections. With &/ = WS, it is obvious that f
can be arbitrary on . However, there is a unique vector f € U compatible with the given
projections; this vector is illustrated in Fig. 6-3(b). From this geometrical interpretation
we conclude that for W and S disjoint, we can always construct a signal with the desired

properties. Furthermore, the orthogonal projection of this signal onto ¢/ is unique.

SL
w
fw ;
s S
(a)
SL
w
Iw_» ;
s‘ s
f

(b)

Figure 6-10: Illustration of a construction of a signal f with specified orthogonal projections
fs = Psf and fyy = Py f with W and S disjoint (a) orthogonal projection of unknown
signal onto & and W (b) unique signal in &/ =W & S with the given projections.

We now use Theorem 6.2 to explicitly construct the unique vector f € U satisfying the
required constraints. First we note that any signal f € U can be written as f = s+ v
where s € S and v € S with S = St NU. Then, since (si, f) = (si, s) for all i, constructing
a signal f such that (s;, f) = c[i] is equivalent to constructing a signal s € S such that
(84, 8) = c[i]. Since the vectors s; form a Riesz basis for S, $*S is invertible and the unique

vector s € S such that S*s = c is given by s = §(S*S)"'c. Once we determined s, the
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problem reduces to finding v € S such that (w;,v) = d[i] — (wi,s)éd' [¢], which is again
equivalent to a consistent reconstruction problem: We need to construct a signal v € S so
that its measurements using the sampling vectors w; are equal to d'[i]. Since the orthogonal
complement StofSinUis equal to S, St and W are disjoint, and we can apply (6.25)
to obtain v = V(W*V) 1d' = V(W*V)"}(d — W*s), where V is a set transformation
corresponding to a basis for S. Finally, the unique f € U satisfying the desired constraints

f=8(8*)" e+ VIW*V)"1(d - W*S(S*S)"Le). (6.26)

We can immediately verify that indeed S*f = ¢ and W*f = d.

Note that there are many alternative methods of constructing f. Specifically, instead of
utilizing the decomposition f = s+ v we can decompose f as f = x4+ v where v € S and z
is a subspace X such that X & S =U. For example, if W and S are disjoint then we may
choose X = W. We then construct f by first finding the unique vector x € X such that
(si,x) = c[i], and then finding the unique v € S such that (w;,v) = d[i] — (w;,z). With X

denoting a set transformation corresponding to a Riesz basis for X,
f=XS*X) e+ VIW*V)Hd - W*X(S*X)e). (6.27)

In Section 6.4 we considered an application of consistent sampling to the construction
of a time-limited signal with specified lowpass coefficients. Using (6.26) we can now extend
this construction to produce a signal with specified lowpass coefficients and specified values
on a time interval. By choosing different spaces W and S and using (6.26), we can construct
signals with a variety of different properties. We consider some specific examples in the next

section.

6.7.1 Examples of Signal Construction

To illustrate the details of the framework for constructing signals with prescribed properties,
in this section we consider the problem of constructing a signal with prescribed local averages
and prescribed odd part, the problem of constructing a signal with prescribed recurrent

nonuniform samples, and the problem of constructing a signal with prescribed samples
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using a given reconstruction filter.

Constructing a signal with prescribed local averages and prescribed odd part

As an illustration of the framework, we consider an example in which we wish to construct
a signal with prescribed local averages and prescribed odd part. Specifically, we want to
construct a sequence f € I such that f[2k]+ f[2k+1] = c[k] for all k, and f[k]— f[—k] = d[K]

for £ > 1, where the sequences c and d are given and are assumed to be absolutely summable.

To construct such a signal f using our framework we first determine a set of vectors
s; and a set of vectors w; such that the desired properties can be expressed in the form
(si, f) = ¢[i],i > 1 and (w;, f) = d[i],i > 1 where &[i] is a reordering? of c[i]:
c[(i—1)/2], i>1,io0dd;

il = ' . ' (6.28)
c[—i/2], i > 2,7 even.

Let

Ok —i+ 1]+ 6k —1], i>1,io0dd;
si[k] = (6.29)
Ok +i—1]+6[k+1], i>2,ieven,
and w;lk] = §[k —i] — d[k +i]. Then, ¢[i] = (si, f) and d[i] = (w;, f) for i > 1.

In this example, S is the subspace of signals x that satisfy z[2k] = z[2k + 1] for all &,
and W is the subspace of odd signals. It is immediate that S and W are disjoint. To apply
(6.26) we need to select a basis v; for ST, which is the subspace of signals = that satisfy
z[2k] = —z[2k + 1] for all k. A possible basis is

Ok —i+1] =4[k —1i], i>1,io0dd;

vilk] = (6.30)
Ok +i—1] -6k +1], i>2,ieven.

Since U = S & W =I5, there is a unique signal f € Iy with the desired properties.

To determine f we need to calculate the semi-infinite matrices ($*S)~!, (W*V)~!, and

W*S, where S,W and V are the set transformations corresponding to the vectors s;, w;

2The purpose of the reordering is to ensure that the index set of the vectors s; and the vectors w; is the
same.
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and v;, respectively. Since $*S = 21, ($*S)~! = (1/2)I. Now,

(wi, vj) = (=1)7H(6; -1 — 6 ),

so that
1 -1 0 o
0 1 1 0
W*V = 0 0 -1 —1

0 0 0 1

We can immediately verify that

-1 -1 -1 -1
0 1 1 1
w*V)'=| 0o 0 -1 -1
0 0 0 1

and if g = (W*V)~!h for some sequence h, then
. o
gli] = (=1)" > h[K].
k=i
Finally,

(wi, s5) = (=178 51 + 65 ),
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(6.32)

(6.33)
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so that

(1 210 0 0 |

0 -1 1 00
W*S=1]10 01 -1 0 : (6.36)

0 00 -1 1

and with e = (W*S)¢,
e[i] = (1)1 (e[i] — &i + 1]). (6.37)
Applying (6.26) results in
1

f=556+Vy, (6.38)

where g = (W*V)~'h with h = d — (1/2)e and e = W*SE. Thus, f[k] = fi[k] + fo[k]
where fi[k] = (1/2) Y22, ¢i]si[k] and fak] = > 5o glivi[k] with €[i], s;[k] and v;[k] given
by (6.28), (6.29) and (6.30) respectively, and from (6.34)

= Zfi(ﬂk———ew (6.39)
k=1

where e[i] is given by (6.37). The sequence f; lies in S and has the desired local averages:
f1[2k] + f1[2k + 1] = c[k] for all k. The sequence f, lies in S+, and completes the odd part

of f1 to the desired odd part. Finally, we can write f[k] explicitly as

(

sclk/2] + glk + 1], k >0,k even;

FK = scl(k —1)/2) — g[k], k> 0,k odd; 640
sclk/2) — g[—kl, k <0,k even;
| etk —1)/2 + g~k +1], k <0,k odd.

We now consider a concrete example of this construction.

Example 6.1. Suppose we want to construct a signal f such that f[2k]+ f[2k+1] = c[k] for
all k, where c[—1] = ¢[0] = ¢[1] = 1 and c[k] = 0 otherwise, and such that f[k]— f[—k] = d[k]
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Figure 6-11: Constructing a sequence f with specified local averages and specified odd part
(a) unique signal fi € S with required local averages (b) unique signal fo € S with odd
part equal to the difference between the required odd part and the odd part of f; (c) unique
signal f = f1 + fo with both the required local averages and the required odd part.

for k > 1, where d[1] = 1,d[2] = 2,d[3] = 1. We determine f using the construction of (6.40).
From (6.28), &[1] = &2] = ¢[3] = 1 and &k] = 0 for k > 4. Then from (6.37), e[1] = e[2] = 0,
e[3] = 1, and e[k] = 0 for k > 4. Finally, g[1] = —Y3_, (d[k] — 1/2¢[k]) = —3.5, g[2] =
S8, (d[k] — 1/2€[k]) = 2.5, g[3] = —d[3] + 1/2¢[3] = —0.5.

Thus, f is the sum of the two sequences depicted in Fig. 6-11. Fig. 6-11(a) depicts the
unique signal f; € S with the desired local averages, so that fi[2k] + fi[2k + 1] = c[k].
Fig. 6-11(b) depicts the unique signal fo € St with odd part satisfying folk] — fo[—k] =
d[k] — z[k], where x = W*f; is the odd part of fi. Note that, as we expect, the local
averages of fy are all equal 0. Fig. 6-11(c) depicts f = f1 + f2 which is the unique sequence
with the desired local averages and the desired odd part. O
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Constructing a signal with prescribed recurrent nonuniform samples

As a second illustration of the framework, suppose we want to construct a continuous-time
signal f(¢) bandlimited to wy = 7/Tg with specified samples, where the sampling points
are divided into groups of N points each, and the group has a recurrent period T' = NTj.
Each period consists of NV nonuniform sampling points. Denoting the points in one period

by tx, k = 1,2,... N, the complete set of sampling points is
ty +1T, k=1,2,...N, l€Z. (6.41)

Thus our problem is to find an f € W where W is the space of all signals bandlimited
to wg = 7/Tg, such that (s;, f) = c[i] where s;(t) = d(t —IT — t;) with i = IN +k,0 <
k<N —1and (sj, f) = [ si(t)f(¢t)dt. The unique f with these samples is the signal given
by f = (S*W)~lc where S is the set transformation corresponding to the signals s;(t),
and W is a set transformation corresponding to a basis w;(t) for W. A possible choice
is w;(t) = sin(wo(t — iTg))/(wo(t — iTg)). With this choice, if y = S*We, then y can be
obtained as the output of the filter bank depicted in Fig. 6-12, where the filters Hy(w) have

impulse response hy[i] = (—1)% sin(woty )/ (wotg — i).

Hy(w) i N T N e~ Jw

fi] Hy(w) | v t N e=i20 —{+)— y[i]

Hy(w) — | N tN =i

Figure 6-12: Filter bank implementation of y = S*We.

To determine (S*W)~! we need to invert the filter bank of Fig. 6-12. The inverse filter
bank has the form depicted in Fig. 6-13, where the filters Gy (w) have been determined in
[132] and are equal to the filters in [132, Fig. 9] given by Gy (w) = (1/Tg) Rk (w/Tq)e 7/Ta,
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for |w| < 7, where Ry (w) is the frequency response of the filter with impulse response

. N-1

ri(t) = akT% H sin(7(t + tx — tq)/7T), (6.42)
q=0
97k

and

(6.43)

el | v I v G1(w)

yli] ei2w | v I v Ga(w) —+— di]

eINw | v I Gy (w)

Figure 6-13: Filter bank implementation of ¢ = (S*W) 1y.

Therefore to construct f(¢), we first obtain y using the filter bank of Fig. 6-13. Then
f(t) = >, yliJwi(t) which can be implemented by modulating the samples y[i] onto a uni-
formly spaced impulse train with period Ty, and then filtering the modulated impulse train

with a continuous-time lowpass filter with cutoff frequency m/wy.

Constructing signals with prescribed samples

As a third illustration of our framework, suppose we wish to construct a continuous-time
signal f(t) to have prescribed samples so that f(i) = c[i],i € Z, where f (i) denotes the value
of f(t) at t = i. The signal f(¢) is constrained to lie in the subspace W generated by the
integer translates {w(t —4),i € Z} of a given function w(t), so that f(t) = >, z[i|lw(t — 1)
for some coefficients z[i]. We assume that @ < >, |W (w—2m1)|? < 8 where 0 < a < 8 < 00

and W(w) is the continuous-time Fourier transform of w(t), which ensures that {w(t — )}
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forms a Riesz basis for W [89]. We can equivalently obtain the signal f(¢) as the the output
of the block diagram of Fig. 6-14.

a[i] ? W) —— f(®)

Zz’oi—oo 6(t - ’L)

Figure 6-14: Constructing a signal f(¢) from the sequence z[i] using a given filter with
frequency response W(w) and impulse response w(t).

The problem then is to find the coefficients z[i] so that f(i) = c[i]. We can express f (i)
as f(i) = (si(t), f(t)) where s;(t) = 6(t — 1) and (y(¢),r(¢)) = [y*(t)r(t)dt. From (6.25) it
then follows that z = (S*W)~lc where S and W are the set transformations corresponding
to the vectors s;(t) and w;(t) respectively. Since (s;(t), wg(t)) = w(k—1i), S*W is an infinite
Toeplitz matrix, and is therefore equivalent to a filtering operation with a filter whose
impulse response is given by (so(t), wg(t)) = w(k). The frequency response of the filter is

00

Z w(k)e @k = 2n i W(w + 27k), (6.44)

k=—00 k=—00

where we used the Poisson sum formula [133]. It follows that if z = (S*W)~!c, then x is

obtained by filtering the sequence ¢ with a discrete-time filter with frequency response

1

Glw) = 2wy W(w + 27k)’ (6.45)
as depicted in Fig. 6-15.
il ——  GW) ? Ww) —— f()
Z'?i—oo 6(t - 7’)

Figure 6-15: Constructing a signal f(¢) with samples f(i) = c[i] using a given filter with
frequency response W (w), where G(w) is given by (6.45).
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In the special case in which W (w) is the frequency response of an ideal lowpass filter
with cutoff frequency wy = 7, G(w) = 1 so that z[i] = c[d].

To conclude this chapter, based on consistency, oblique projections and oblique dual
frame vectors we developed a general framework for sampling and reconstruction in arbitrary
spaces as well as a general framework for constructing signals with prescribed properties.

In the remainder of the thesis we consider applications of ROMs. Specifically, we develop
new algorithms that result from either processing a signal using a ROM or processing a signal
using the measurement vectors of a ROM and imposing inner product constraints directly

on these vectors.
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Chapter 7

QSP Quantization

In this chapter we consider some quantization methods that result from the QSP mea-
surement framework. In particular, we develop an efficient practical implementation of a
dithered quantizer based on a QSP measurement, that can be used to control the statis-
tical properties of the quantization error, and to efficiently shape the quantization noise.
This new implementation requires only the generation of one uniform random variable per
input regardless of the distribution of the dither signal, thus alleviating the computational
complexity associated with a general dithered quantizer.

In dithered quantization a random signal called a dither signal is added to the input
signal prior to quantization [28, 29, 30, 31]. Dithering techniques have become commonplace
in applications in which it is necessary to quantize data prior to storage or transmission.
However, the utility of dithering techniques is limited by the computational complexity
associated with generating a random process with an arbitrary joint probability distribution.
Therefore, in practice, dithering signals are typically restricted to a weighted combination
of uniform independent, identically distributed (iid) random variables. In this chapter we
show that a probabilistic quantizer can be used to effectively realize a dither signal with an
arbitrary joint probability distribution, while requiring only the generation of one uniform

random variable per input.

7.1 Classical Model of Quantization

Quantization is the operation of mapping an input into a set of discrete outputs. The

input can be, for example, a continuous-time signal or a discrete-time signal that takes on
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continuous values. For concreteness, we assume that the input signal to the quantizer is a
sequence in lo with elements z,,. The quantized output at time n is denoted by y, = Q(z,).
When considering memoryless quantizers the time index n is not important, so we omit it.

A memoryless quantizer has a “staircase” transfer characteristic, illustrated in Fig. 7-1.

We assume that no overflow occurs in the quantizer, so that the signal is never clipped by
saturation of the quantizer. A convenient way of incorporating this premise is by assuming
that the quantizer has infinitely many quantization levels. For simplicity, we assume that
the quantizers are uniform, i.e., the separation between adjacent quantization levels is fixed
and is equal to A, as depicted in Fig. 7-1. The quantizer in Fig. 7-1 is called a uniform mid-
tread quantizer with quantizer step size A. We will assume this quantizer model throughout

this chapter. The input-output relation of this quantizer is given by

z 1
N ()
Alternatively,
Q(z) =iA, where i = argmin |z — kA|. (7.2)

Q()
2A T
A 4
— T
A 3A
2 2

Figure 7-1: Quantizer transfer characteristic.
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7.2 Measurement Description of Quantizer

We now formulate the uniform quantizer as a QSP measurement, and then use the mea-

surement framework to develop modifications of the uniform quantizer.

Suppose we want to quantize z to obtain the output y = Q(z), where @ is the uniform
quantizer of Fig. 7-1. Example 4.4 in Chapter 4 gives a concrete construction of a ROM
which can be used to implement the quantizer. Using this construction here, we map the
quantization levels 1A and the input x into vectors in ls using an input mapping Ty: R —
lo. We then construct a ROM on Iy with measurement vectors equal to ¢; = Tx(:A) and
a mapping fys that depends on z = Ty (z) only through the inner products (z, ¢;), where
the mapping Ty is chosen so that (z,¢;) = 1/(z —iA). The measurement outcome is then
mapped to the final quantized level using the mapping Ty : lo — R defined by Ty (y) = iA if
y is a multiple of g;. Since this construction is analogous to the construction in Example 4.4
we omit the details. The resulting measurement description of the quantizer is depicted in

Fig. 7-2.

i
T — R =l i M it lp = R —— vy

1A

Figure 7-2: Measurement description of quantizer.

Since (z,q;) = 1/(z — i¢A), the input-output relation of the quantizer resulting from
the measurement description of Fig. 7-2 can be described directly in R as y = iA, where
i = f(z) and f is a mapping that depends on the input z only through the numbers {z—iA}.
We refer to this quantizer as a QSP quantizer with mapping f. In the uniform quantizer,
f(z) = argmin |z — kA|. By choosing different mappings f, a variety of new potentially
interesting quantizers can be obtained.

In the remainder of this chapter we focus on QSP quantizers that result from choosing f
as a probabilistic mapping, which we refer to as probabilistic quantizers. In our discussion
we consider both the memoryless case, in which f is a probabilistic mapping that depends
only on the input z, and the more general case in which the mapping f may depend on

previous values of x.
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7.3 Memoryless Probabilistic Quantizer

The main result we establish in this section is that a memoryless probabilistic quantizer
is equivalent to a dithered quantizer [28, 31] with an iid dither signal. However, these
equivalent representations have different implications in terms of implementation. We will
show that the probabilistic quantizer generally results in a more practical and efficient

implementation, which allows for much more flexibility in the design of dithered quantizers.

7.3.1 The Memoryless Probabilistic Quantizer

We now consider the case in which we choose f: R x W — Z as a probabilistic mapping
from R to Z, where W = Z is the sample space of an auxiliary chance variable w with
discrete alphabet Z, such that w can take on a value ¢ € Z with probability p; = g(x —iA),
for some function g(z). Then let f(z,i) = i. The output of the resulting QSP quantizer
with mapping f is then given by

y = 1A, with probability p; = g(z — iA). (7.3)

We refer to this quantizer as a probabilistic quantizer with mapping g(x).

To ensure that the values p; represent probabilities, the function g(x) must satisfy

g9(z) > 0; (7.4)
Z (r—kA)=1 (7.5)
k=—00
Since,
f: glz — kA) = Z 8z — kA), (7.6)
k=—00 k=—00

where * denotes convolution, we can express the condition (7.5) in the frequency domain as

Z G(w (w — Kk) = 210(w), (7.7)

k——oo
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where G(w) denotes the Fourier transform of g(z). Thus, G(w) must satisfy
2r
G (Kk) — Ad[K], keZ. (7.8)

We conclude that g(z) in (7.3) must be a nonnegative function with Fourier transform G(w)
satisfying (7.8).

To implement the probabilistic quantizer with mapping g, we first compute the proba-
bilities p; according to (7.3), and then generate a chance variable w with alphabet Z such
that w = ¢ with probability p;. The quantized output is given by wA. The random variable
w can be generated using a uniform random number generator. Specifically, let a be a
uniform random variable on [0, 1], let s; = 2221 Pk, and let Pr (-) denote the probability
of the corresponding event. Then Pr (s; < a < 8;41) = 8i41 — $; = p;- We can therefore
implement the probabilistic quantizer by generating a realization of a, and then quantizing

the output to 1A where s; < a < s541.

7.3.2 Probabilistic Quantizer and Nonsubtractive Dithered Quantizer

We now show that the output of the memoryless probabilistic quantizer, is equivalent! to
the output of a nonsubtractive dithered (NSD) quantizer [28, 31], depicted in Fig. 7-3.

In NSD quantization, the input to the quantizer is the system input z,, plus an additive
random signal v,, called the dither signal, which is assumed to be stationary and independent
of z,. In this section we assume that v, is an iid signal so that we may omit the index
n. The output of the NSD quantizer is then given by 4 = Q(z + v), where v is a random
variable with probability density function (pdf) fy(v).

Although in a uniform (undithered) quantizer the error is a deterministic function of the
input, the classical model of quantization treats this error as an additive random process,
that is independent of the input signal, iid, and uniformly distributed [134, 135]. This model
of quantization has been shown to be reasonable for quasi-random input signals with large
magnitude relative to the step size A [134]. However, it fails for small relatively simple
signals in which case the error signal retains many of the characteristics of the original

signal, which causes undesirable audio and visual distortions [136, 31].

!By equivalent we mean that the statistics of the outputs of both quantizers are identical. Thus, no
experiment can be performed on the two systems that will allow us to distinguish between them.
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The main objective of dithering is to control the statistical properties of the error ¢ =
y' — z and its relationship to the input z. By using dither, some of the statistical properties
of the error can be adjusted so that e.g., the error can be rendered white and uncorrelated
with the input. The drawback of this approach, alleviated by the use of the probabilistic
quantizer, is that it requires generating a random process with a pdf that may be difficult
to implement in practice. We will show that using a probabilistic quantizer we can realize

any desired pdf on the dither signal, in a practical efficient manner.

v

z %— Q — ¥ =Qx+v)

Figure 7-3: Nonsubtractive dithered quantization.

Using an NSD quantizer, the probability that the output ¢ is equal to iA is given by

A
Pr (y =4iA) = Pr <|m+v—iA|§§)
A A
= Pr (_5+iA_x§vS5+iA_$>

_ /_§+m—m fi(0)do

2 tiA—z
= Ta(z —i4A) x fo(—2), (7.9)
where
1, |z <55
Ma(z) = (7.10)

0, otherwise.

When using a probabilistic quantizer with mapping g(z),

Pr (y =iA) = gz —iA). (7.11)

Comparing (7.11) with (7.9), we conclude that the probability distribution of the output
y of the probabilistic quantizer is equivalent to that of the output ¢’ of the NSD quantizer

188



if we choose
g(z) = Ta(z) * fo(—z). (7.12)
We can express this relation in the frequency domain as
G(w) = A sinc(wA/2)F,(—w), (7.13)

where F,(w) is the Fourier transform of f,(v) and sinc(z) = sin(z)/=x.

Since F,(0) = [ fy(v)dv =1 and sinc(ni) = é[¢], for any choice of noise pdf f,(v), G(w)
generated according to (7.13) always satisfies (7.8). In addition, since f,(x) and IIa(z) are
nonnegative, from (7.12) it follows that g(z) is always nonnegative. We therefore conclude
that any g(z) generated according to (7.12) is guaranteed to satisfy the required conditions
(7.8) and (7.4).

Thus, any NSD quantizer can be realized as a probabilistic quantizer where g(x) is chosen
in accordance with (7.12) or (7.13). We can also implement any probabilistic quantizer with
function g(z) as an NSD quantizer, where the dither signal v is chosen to have a pdf f,(v)
satisfying (7.12) or (7.13). Specifically,

__ G(=v)
A sinc(wA/2)’

27

F,(w) w # A 1,1 ==x1,%£2,..., (7.14)

and the values of F,(w) on w = 27i/A must be chosen such that f,(v) > 0 for all v.

In summary, an NSD quantizer with dither signal with pdf f,(v) and a probabilistic
quantizer with mapping g(z) are equivalent, where g(z) and f,(v) are related through (7.12).
However, they have different implications in terms of implementation. The implementation
of the probabilistic quantizer requires only a uniform random number generator, regardless
of the choice of g(x). By contrast, to implement an NSD quantizer we need to generate a
random variable v with distribution f,(v) which may be hard to do in practice. In fact,
typically in applications [28, 29, 30, 31] f,(v) is constrained to be a sum of iid random
variables distributed uniformly on [-A/2, A/2], so that the random variable v can be easily
generated. By using a probabilistic quantizer we can alleviate this constraint and effectively

implement any desired distribution on v by simply choosing a different function g.

Since the probabilistic quantizer is equivalent to an NSD quantizer, we can apply the
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many known results regarding dither quantization to the probabilistic quantizer. One of
the most important considerations in using an NSD quantizer is to render the moments of
the error at the output of the quantizer, independent of the input. We can achieve the same
effect using a probabilistic quantizer, with an appropriate choice of g(z). Specifically, let
€ = y — z denote the error at the output of the probabilistic quantizer, which we refer to
in the sequel as the quantization error. Then the following result follows immediately from

[28, Theorem 6].

Theorem 7.1. When using a probabilistic quantizer with mapping g(x), E(e*|x) is func-

tionally independent of the input x for k > 1 if and only if

d*G(w)

_2n,
w—Az

where G(w) 1is the Fourier transform of g(x). In particular, if (7.15) is satisfied for k =1,
then € and = are uncorrelated.
When (7.15) is satisfied,

ik b Glw
B |z) = B(ek) = i) %(k) -+ / ok g(z)ds. (7.16)

w=

Thus, by choosing g(z) appropriately we can control the moments of the quantization error.
In applications, we can always construct g(z) by first choosing a distribution f,(v) and
then using (7.12). In the next section we mention a few of the techniques that can be used

to directly construct g(z), by exploiting the connection with other well known problems.

7.3.3 Constructing the Mapping in the Probabilistic Quantizer

There are a variety of contexts in which it is desired to construct a function g(z) satisfying
(7.5). In many of these problems g(z) is also constructed to be nonnegative. We can
therefore exploit these known constructions to the design of g(z).

One context in which the criterion (7.5) arises is in communication over a bandlimited
channel. In this context, a linearly modulated signal )" a;p(t — iT') is received in additive
noise over a bandlimited channel, where {a;} represents the digital information-bearing

sequence of symbols, and p(t) is the bandlimited received pulse shape. The received signal
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is sampled at times 47T, and the sequence of samples is then processed by an appropriate
slicer. It is well known that to ensure that there is no intersymbol interference (ISI) at
the output of the channel, the received pulse shape p(t) must satisfy the Nyquist criterion
2 Plw—27i/T) =T, where P(w) is the Fourier transform of p(¢) [137, 11]. There are
a variety of well known methods for constructing Nyquist pulses that satisfy the Nyquist
criterion. Using any one of these methods we can construct g(z) = (1/T)P(z) where P(w)
is a nonnegative Nyquist pulse. Then g(z) satisfies (7.4) and (7.5) with A = 27/T.
Another context in which the criterion (7.5) arises is in the construction of tight frames.
Specifically, in [138] it is shown that the family of functions hyy, (z) = 2™/ Lh(z 4+ mA),

0 <A <L, n,mEZ,is a tight frame if and only if > 5o |h(z + kA)|? = C for some

—00
constant C' # 0. Thus if h(z) is a function that results in a tight frame, then choosing g(x)
proportional to |h(z)|? will satisfy (7.4) and (7.5).

Based on results in [138] we now provide an explicit construction of symmetric nonneg-
ative functions g(z) satisfying (7.5). Let r(z) be a function such that 7(0) = 0,r(1) = 1,
0<r(x)<lfor0<z<l,andr(z)=1—r(l—z)for 0 <z <1 Let A <L <2A. Then

it can be readily verified that the following g(x) satisfies (7.4) and (7.5):

1, |lz] <A — %;
g@) =1 r(F2), A-k<pi<}; (7.17)

The resulting probabilistic quantizer is in general hard to implement as an NSD quantizer,

since the equivalent noise distribution f,(v) is typically quite involved.

Example 7.1. As a special case of (7.17), suppose we choose 7(z) = 1/2 + (1/2) sin(n(z —
1/2)), and let & = L/A — 1 so that 0 < a < 1. Then

1, [z < (1—a)A/2
g(x) =q L (1—sin(Z(z| - A/2), (1—a)A/2<|z]<(1+a)A/2; (7.18)
0, |z] > (14 a)A/2.

The function g(z) is the well-known raised-cosine function [137, 11] which is widely used in

practice in the context of communication. O
Example 7.2. As another example of (7.17), suppose that L = 2A and r(z) = sin?(rz/2),
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0 <z < 1. The corresponding g(z) is given by

cos?(2rz/A), 0< |z| < A;
o(z) = (7.19)
0, |z| > A.

With G(w) denoting the Fourier transform of g(z),

2 2A3
G(w) = sinc(wA) (A—I— ﬂfiAAQw?)
. 202 A3
— SlIlC(u)A/2) COS(L()A/2) (A + m)
= sinc(wA/2)F,(w), (7.20)
where
2w2A3
Fr,,((d) = COS(A(AJ/Q) <A + m) . (721)

We see that although g(x) given by (7.19) is a simple function to realize, the distribution
of the corresponding dither noise is quite involved and hard to practically implement. Ev-
idently in this case the probabilistic quantizer offers a more practical, efficient method for

implementing the NSD with dither pdf f,(v) whose Fourier transform is given by (7.21). O

7.4 Probabilistic Quantizer With Memory

We have seen in the previous section that by choosing a memoryless function g(x) in the
probabilistic quantizer we can control the moments of the quantization error. It is also
important in a variety of applications to control second order statistics of the quantization
error. For example, in an audio system it may be preferable to shape the quantization error
such that most of its power resides in high frequency bands where the human ear is relatively
insensitive. Noise shaping techniques together with oversampling of the continuous-time
signal also allow for high resolution conversion of low bandwidth signals, e.g., using sigma-
delta modulation [139, 140]. In this section we show that using a probabilistic quantizer
with memory, we can control the second order statistics of the quantization error to allow
for various forms of noise shaping.

Specifically, we now consider the case in which the probabilistic mapping has memory, so
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that the mapping g depends on the current value x,,, and on previous values £,_1,... , Zn—m
for some m > 1. We assume throughout that the function g does not depend on n, so we
denote x,_p = z for 0 < k < m. We then show that the probabilistic quantizer with
memory is equivalent to an NSD quantizer with a dither signal that is not iid. Based
on results derived in the context of NSD quantization, we show that we can choose the
mapping g to control the correlation of the error sequence. The advantage of implementing
an NSD quantizer as a probabilistic quantizer with memory is even more pronounced then
in the memoryless case, since generating a random process with arbitrary joint pdf can be
computationally very demanding, while the probabilistic quantizer with memory still only

requires the generation of one uniform random variable per input.

7.4.1 The Probabilistic Quantizer With Memory

To describe the probabilistic quantizer with memory, suppose that we now choose the
mapping f in the QSP quantizer as a probabilistic mapping f: ¥V x W — Z from V =

R X -+ X R to Z, where W = Z X --- X Z is the sample space of m + 1 auxiliary chance

variables wy, . . . , wy, with discrete alphabets Z such that each chance variable wy can take
on a value i, € Z, where the joint probability of outcomes ig,... i, € W is given by
P(igy -+ yim) = g(xo — G4, ... , Ty — inA), for some function g(zg,...,zy). Given the
previous outcomes i1, ... ,%,,, the conditional probability of outcome i is
L. . p(iOaila"' ,Zm)
Pllo|t1,-.. ,2 = . "
( ‘ ? ? m) p(Zl,---,Zm)

g(wo_iOAa"' axm_"mA)
= . 7.22
Yio 9(To —i0A, z1 — 1AL T — i A) (7.22)

Then let f(xo,. .. ,Zm,%0,.-- ,im) = io. The output of the QSP quantizer with mapping f
is then given by

Yo = ipA, with probability p(ig|ii, ... ,im)- (7.23)
We refer to this quantizer as a probabilistic quantizer with mapping g(zg, ... ,Zm).
To ensure that the values p(ig, . . . ,im ) represent probabilities, the function g(zo, - .., Zm)
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must satisfy

9(xoy - yTm) > 0; (7.24)

o0

Y glwo—ioA,... ,zm —imA) = 1. (7.25)
20y.ee I =—00
In addition, we also require that the joint probability of any subset of variables

Uysee-50t,,0 < t1,...,t, < m depends only on x¢,,... ,z, and is independent of z; for

t£1,1<i<n.

We now translate the last two constraints on g(xo, ... , Zm,) to constraints on the (m+1)-
dimensional Fourier transform G(wy, ... ,wm) of g(xo,... ,zm). First, taking the (m + 1)-

dimensional Fourier transform of (7.25), we have that

2 2
G (—”ko, . ,_”km) = A" 6[ko, ... k], Koye.. km € Z, (7.26)
A A
where 6k, ... ,km]| =1if kg = ... =k, = 0, and 0 otherwise.
Next, suppose that we require p(i1,... ,%m,) to be independent of xg, so that

plity - yim) = Zg($0—i0A,$1—i1A,--- T YAY

10

= u(z1 — A, ..., T;m —inA), (7.27)

for some function u(zy,... ,z.), where

wW(T1,y e Ty) = Zg(mo — 10D, T1y ey Tyy)
)
= g(To,T1y--- ,Tm) * Zé(a:o —0A, T, Ty (7.28)
10

We refer to the function u(z1,... ,z,) as the joint probability function of x4, ... ,x,. With
U(wi,... ,wn) denoting the m-dimensional Fourier transform of u(z1,... ,2,), and taking

the (m + 1)-dimensional Fourier transform of (7.28),

27U (w1, .-+ swm)d(wp) = %T Z G (%Tko,wl,... ,wm> 0 (wo - %k) . (7.29)

ko=—00
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Thus we must have that for all w1, ... ,wn,

2
G (Kﬂko,wl,... ,wm> —0, ko= +1,42,.... (7.30)

The joint probability function is then given by

1 1
w1, Ty) = K}' {G(0,w1,... ,wp)} = K/ 9(zo, .-, Tm), (7.31)
0

where F~™{.} denotes the m-dimensional inverse Fourier transform.

Similarly, we can show that for any subset of variables t1,... ,tn, p(it,--- ,4,) is inde-
pendent of z; for ¢t # t;,1 < ¢ < n, if and only if for any w1,... ,wmn,
2 2
G (Kﬂ.ko,wl,... ,wm) =G (wo, Kﬂ.kl,w%... ,wm> =
27
= G (w0 swmots hm | =0, Koo b = £1,2, (7.32)
Then p(ity, ... i, ) = u(zy — iy A, ..., 24, —it, A) where u(zy,, ... ,x,) is the joint prob-
ability function of z,,... ,z:, and is given by
1 —n
w(Tyyy e ,2p,) = m}" {G(0,wt,,0,...,0,w,,0,...,0)}. (7.33)
We conclude that g(zo, ... ,Zm) in (7.22) must be a nonnegative function with (m + 1)-
dimensional Fourier transform G(wi, ... ,wy,) satisfying (7.26) and (7.32).
To implement the probabilistic quantizer with memory, given i1,... ,%, we compute

the probabilities p(ig,... ,%m), which for notational brevity we denote here by p;,. Then
p(iolit, ... ,im) = Cpi,, where C =1/ Zio Dio- As in the memoryless case, we next generate
a chance variable w with alphabet Z such that w = 7 with probability Cp;,. The quantized

output is given by wA.

7.4.2 Probabilistic Quantizer With Memory and Nonsubtractive
Dithered Quantizer

We now show that the resulting probabilistic quantizer is equivalent to an NSD with a
stationary dither signal {v,}, where v, is statistically dependent on v,_1,... ,vp_n and

Un, Un—g for k > m are statistically independent. Let f,(vg, ... ,vn) denote the joint pdf of
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V0 = Un,-.. ,Um = Un—m, and let y{,... ,y,, denote the outputs of the NSD quantizer at

times n, ... ,n — m, respectively. Then,

Pr (y(') =0, ...,y = ipA) =

m
. A , A
= Pr <|x0+UO_ZOA‘ < 5, a|xm +'Um_'LmA‘ < 5)
%—}—ioA*.’to %—H'mA*CL‘m
= / / fo(os - s vm)dvg - - - dug,
*g—l—ioA*CL‘O *%—H‘mA*wm
= Ta(zo — 04, ... ,Tm — mA) * fo(—T0,-.. , —Tpm), (7.34)
where
]-a xo| < éa 5 [T < éa
HA('TOa . 7$m) - | | ° | ml 2 (735)
0, otherwise.
When using a probabilistic quantizer with mapping g(zo, ... , Zm),
Pr (yo = 104, ... ,Ym = imA) = g(xg — 104, ... , Ty —ipA). (7.36)

As in the memoryless case, comparing (7.36) with (7.34) we conclude that the probability
distribution of the output using a probabilistic quantizer is equivalent to that of the NSD

quantizer if
9(oy - s Tm) =Ua(zg ... ,Zm) * fo(—T0y--- s —Zm)- (7.37)
We can express this relation in the frequency domain as
G(wo,- -+ ,wm) = A™ ! sinc(wgA/2) -+ sinc(wmA/2)Fy(—wo, - .. , —Wm), (7.38)

where Fy(wo, ... ,wn) is the (m + 1)-dimensional Fourier transform of f,(vo,... ,vm).

We can immediately verify that if (7.37) is satisfied, then the joint probability distribu-
tion of any set of outputs using a probabilistic quantizer is equal to the joint probability

distribution of the corresponding set of outputs using an NSD quantizer. For example,
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using an NSD quantizer, for any 1 < k < m,
Pr (yp = i, yj, = ixA) = Ta(zo — i0A, mg — kA) * fy(—x0, —x), (7.39)

where f,(zg,zx) is the joint distribution of zy and zx and is given by integrating
fo(xo,--. ,zm) over all variables different than z¢ and x;. Thus, denoting by F,(wo,ws)

the 2-dimensional Fourier transform of f,(xo,xx) we have that
Fy(wg,wr) = Fy(wp,0,...,0,wg,0,...,0). (7.40)
When using the probabilistic quantizer,

Pr (yo = igA, yp = iA) = > gz — oA, ..., T — i A). (7.41)

il:"' 7ik717ik+1:"- :im

These joint probabilities are equal if

Z g(wo — 04, ... ,Tm — imA) = Ia(zo — 1A, 2 — kA) * fo(—z0, —Tm),

1ye. 7ik—17ik+17--- Jim,

(7.42)
or, equivalently, if

1

WG(wO,O, o5 0,w,0,...,0) = A? sinc(wpA/2) sinc(wrpA/2)Fy(—wo, —wg). (7.43)

From (7.40) and (7.38) we can immediately verify that (7.43) is satisfied. In a similar

fashion we can verify that all other joint probabilities are equal.

Using a probabilistic quantizer with memory we can control the shape of the correlation
function of the quantization error. Specifically, let ¢, = y, —x, denote the quantization error
at time n. In Theorem 7.2 below we show that with ¢y and ¢, denoting two error values
separated in time by k > 0, E(epex) can be determined directly from the 2-dimensional

Fourier transform U (wyg,wy) of the joint probability function u(zg,zy), where

=G (wo,0,...,0,w,0,...,0), 1<k<m
U(wo)U (wk), k> m,

U(wo,wg) = (7.44)
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and,

U(wo) = %G(wo,o, 0. (7.45)

With this notation, the next result follows from [29, Theorem 3].

Theorem 7.2. When using a probabilistic quantizer with mapping g(zo,- .. ,Tm), E(egle’,z“’)

of two error values ey and €, separated in time by k # 0 is independent of the system input

if and only if

dk1+k2 U(wo, wk)
k1 ko
dwqy' dwy,

=0, dg,ip=72142,..., (7.46)
27

. 27 -
wo=3" 0, Wg="R 1k

where U(wy,wyg) s given by (7.44) and (7.45).
When (7.46) is satisfied,

(_j)k1+k2 dk1+k2 U(wo, Wk)

E(egter?) = - — (7.47)
A dwy' dw)? Wo=w=0
Furthermore, E(egl) 1s independent of the system input if and only if
dk
M =0, qo=+1+2,..., (7.48)
dwy’ o
w():KZ()
where U(wy) is given by (7.45).
When (7.48) is satisfied,
— i)k gka
B(ey) = (S92 22U (o) (7.49)

k1
dw wo=0

As a consequence of Theorems 7.1 and 7.2 we have the following Corollary.
Corollary 7.1. Suppose we use a memoryless probabilistic quantizer with a function g(x).

Then the error sequence €, is uncorrelated with the input and is white if and only if

dG(w)
dw

=0, i=441,42,.... (7.50)

— 27,
UJ—AZ
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Using Theorem 7.2 we can choose the mapping ¢ to control the correlation function of

the quantizer error, as we show in the following example.

Example 7.3. Suppose we want to design a probabilistic quantizer with a mapping g so

that the correlation function of the resulting error €, is
E(enensm) = (A%/12)(36[m] — 6[m — 1] — §[m + 1]). (7.51)

As we now show, this can be done by choosing ¢ = g(zg,z1) to be a function of zy = z,

and x1 = x,_1 with Fourier transform
G (wo,w1) = A% sinc((w1 — wp)A/2) sinc?(woA/2) sinc? (w1 A/2). (7.52)

Note that with this choice of G(wp,w1), (7.26) and (7.32) are satisfied.
With k1 = ko = 1, we can immediately verify that (7.46) is satisfied, so that from (7.47)

1 d?G A?
_ 1 £G(wo,w1) _ s (7.53)
A2 dwodwl 12

wo=w1=0

E(eper) =

where we used the fact that with r(z) = sinc(z), 7/(0) = 0 and 7”(0) = —1/3, where 7/(x)

and r”(z) denote the first and second derivatives of r(x), respectively. From (7.45),

U(wo) = A sinc(wgA/2). (7.54)
For k > 1,
2
1 [dU(w
E(epex) = ~A2 # =0. (7.55)
0 wo=0
Finally, from (7.49),
1 d?U(wp A?
E(ed) = N da(JZ ) = (7.56)
0 wo=0
U

There are variety of applications in which shaping the noise at the output of the quantizer
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is desirable. The probabilistic quantizer with memory offers a general method for shaping
the correlation function of the output error, with a simple and practical implementation.
All that is required is a uniform random number generator, regardless of the desired shape
we wish to achieve at the output. This is particularly important in high-speed applications
in which it may be prohibitively time-consuming to generate a random process with an
arbitrary joint pdf.

In our closing remarks we note that the ideas presented in this chapter can also be
applied to requantization. Requantization is a similar operation to quantization in which
the input to the quantizer is discrete in amplitude, and the quantizer maps these discrete
values to a different smaller set of discrete values. Requantization is typically used to reduce
the wordlength of digital data after processing. Using a similar analysis to that presented in
this chapter we can show that probabilistic requantization corresponds to NSD quantization

with a discrete dither signal [29].
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Chapter 8

Optimal QSP Measurements

As we discussed in Chapter 3, one of the interesting elements of quantum mechanics is
that measurement vectors are constrained to be orthonormal. A fundamental problem in
quantum mechanics is to construct optimal measurements subject to this constraint, that
best represent a given set of state vectors. In analogy to quantum mechanics, central to
the concept of QSP is the idea of imposing constraints on algorithms. The QSP framework
provides a systematic method for imposing such constraints: The measurement vectors
of the QSP measurement are constrained to have a certain inner product structure, as
in quantum mechanics. However, since we are not limited by physical laws, we are not
confined to an orthogonality constraint. Therefore, a fundamental problem in QSP is to
construct optimal QSP measurements subject to a general inner product constraint on the

measurement vectors.

As outlined in Chapter 4, in applications involving ROMs, we typically first identify a
set of signals of interest, and then construct a measurement with measurement vectors equal
to these signals. If we constrain these vectors to have a specified inner product structure,
then in general they cannot be chosen to be equal to the desired signals. Instead, we choose
the measurement vectors to have the required inner products, and to “best” represent the

desired signals in some sense.

There are many ways to construct vectors with specified inner products. In this chapter
we consider new methods that construct vectors that are closest in a least-squares (LS)
sense to a given set of vectors. Specifically, the constructed vectors are chosen to minimize

the sum of the squared norms of the error vectors between the constructed vectors and the
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given vectors. These techniques are referred to as LS inner product shaping [27], and rely
on ideas and results obtained in the context of quantum detection, which unlike QSP are

subject to the constraints of quantum physics.

LS inner product shaping has potential applications to a variety of problems. One ap-
plication, outlined in Chapter 3 and developed further in [26], is to a detection problem
in quantum mechanics. In this context, the concept of LS orthogonalization leads to a
quantum measurement with many desirable properties. In Chapters 9-12 we consider ap-
plications of LS inner product shaping to matched filter detection, minimum mean-squared
error (MMSE) covariance shaping, linear estimation, and multiuser detection. These ap-
plications demonstrate that, even for problems without inherent inner product constraints,
imposing such constraints in combination with optimal inner product shaping can lead to
new processing techniques that in many cases exhibit improved performance over traditional

methods.

Finally, we note that most signals used in digital communications are geometrically
uniform (GU) [77, 78], so that the Gram matrix of inner products is a permuted matrix
diagonalized by a Fourier transform matrix. Such signal sets have strong symmetry prop-
erties that are desirable in various applications such as channel coding [77, 78, 79], and
multiple description source coding [76, 80]. It may therefore be useful to have a method for
constructing optimal signal sets of this form, which is equivalent to constructing optimal

signal sets with a specific inner product structure.

8.1 Problem Formulation

Suppose we are given a set of m vectors {s;,1 < i < m} in a complex Hilbert space H, with
inner product (z,y) for any z,y € H. The vectors {s;} span an n-dimensional subspace
U C H. If the vectors are linearly independent, then n = m; otherwise n < m. Our
objective is to construct a set of vectors {h;,1 < ¢ < m} with a specified inner product

structure, from the given vectors {s;,1 <1i < m}.

Based on the LS measurement we developed in the context of quantum detection (see
Chapter 3), we now propose a systematic method for constructing optimal vectors with a

specified inner product structure. Specifically, we seek the vectors h; that are “closest” to
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the vectors s; in the LS sense. Thus, the vectors are chosen to minimize

m

eLs = O _(8i — hi,si — hq), (8.1)
i=1
subject to the constraint
(hiy hi) = Sra, (8.2)

for some ¢ > 0 and constants ;. With S and H denoting the set transformations corre-

sponding to s; and h; respectively, we may rewrite the error e g as
ers = Tr((S—H)*(S—H)), (8.3)
where Tr(-) denotes the trace, and the constraint (8.2) as
H*H = R, (8.4)

where [R];r = ri and [-]ix denotes the ikth element of the matrix.

We may wish to constrain the constant ¢ in (8.2), or may choose ¢ such that the LS error
€rs 18 minimized. Similarly, we may wish to constrain the elements r;;, of the matrix R, or
we may choose R to have a specified structure, so that the eigenvectors of R are fixed, but
choose the eigenvalues to minimize the LS error.

For example, we may wish to construct a set of orthogonal vectors, so that R is a diagonal
matrix with eigenvector matrix equal to I,,, but choose the norms of the vectors, i.e., the
eigenvalues of R, to minimize the LS error. As another example, we may wish to construct a
cyclic set h; so that (h;, hg) depends only on k—4 mod m. In this case {(h;, hg),1 <i < m}
is a cyclic permutation of {(h1,hg),1 < k < m} for all k, and the Gram matrix H*H
is a circulant matrix diagonalized by a DFT matrix', so that the eigenvectors of R are
fixed. We may then wish to specify the values {(hy,h;),1 < k < m} (possibly up to a
scale factor), which corresponds to specifying the eigenvalues of R, or we may choose these
values, equivalently the eigenvalues of R, so that the LS error is minimized.

In our development we consider both the case in which R is fixed, and the case in which

"In [27] we show that a vector set has a circulant Gram matrix if and only if the set is cyclic.
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the eigenvalues of R are chosen to minimize the LS error e, 5. We will see that for fixed
R the LS inner product shaping problem has a simple closed form solution; by contrast, if
the eigenvalues of R are not specified, then there is no known analytical solution to the LS
inner product shaping problem for arbitrary vectors s;.

To develop the solution to the general LS inner product shaping problem, in Section 8.2
we first consider the special case in which R = I,;;, so that the vectors h; are constrained to
be orthogonal with equal norm ¢, which we refer to as c-scaled orthonormal vectors. The
optimal vectors are defined as the scaled-orthonormal LS vectors (SOLSV). In the special
case in which ¢ = 1, the vectors h; are orthonormal and the optimal vectors are referred
to as the orthonormal LS vectors (OLSV). As an outgrowth of the development of the
SOLSV, we derive the LS tight frame which is the closest frame in a LS sense to the given
vectors. Section 8.3 generalizes these results to allow for a weighted LS error. The resulting
vectors are referred to as the weighted SOLSV (WSOLSV). Section 8.5 considers the case in
which R is diagonal, so that the vectors h; are orthogonal, but are not constrained to have
equal norm. The optimal orthogonal vectors are referred to as the orthogonal LS vectors
(OGLSV). We first derive the OGLSV in the case in which the norms of the vectors are
specified. We then show that obtaining a closed form analytical expression for the OGLSV
when the norms are chosen to minimize the LS error is in general a difficult problem. We
consider a special case for which an analytical solution is derived, and then propose an
iterative algorithm to construct the OGLSV in the general case. In Section 8.6 we derive
the solution to the LS inner product shaping problem with arbitrary R, by showing that it

can be reduced to a LS orthogonalization problem.

8.2 Least-Squares Scaled Orthonormalization

In this section we consider the problem of constructing a set of c-scaled orthonormal vectors

{hi,1 <i < m} that minimize (8.1) subject to
(hiy hi) = €O, (8.5)
for some ¢ > 0, or
H*H = 1,,. (8.6)
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The minimizing vectors are referred to as the scaled-orthonormal LS vectors (SOLSV). In
the special case in which ¢ = 1, the vectors h; are orthonormal and the minimizing vectors

are referred to as the orthonormal LS vectors (OLSV).

Our approach to determining the SOLSV is to perform a unitary change of coordinates
U so that in the new coordinate system, S is mapped to S = SU and H is mapped to
H = HU. With 5; denoting the vectors corresponding to S, the transformation U is chosen
such that the vectors {s;,1 < i < n} are orthogonal and {5; = 0,n+1 < i < m}. Since U is
unitary and H*H = ¢*I,,, H H = ¢’1,,, so that the vectors {hi,1 < i < m} corresponding
to H are orthogonal with equal norm c?, and the LS error defined by (8.3) between S and
H is equal to the LS error between S and H:

Tr (S — H)*(S — H)) = Tr (U*(S — H)"(S— H)U) = Tx (§ — H)*(S - H)). (8.7

Thus, we may first solve the LS scaled orthonormalization problem in the new coordinate
system. Then, with H and H denoting the optimal set transformations in the new and

original coordinate systems respectively,

H=HU". (8.8)

Such a unitary transformation is provided by the singular value decomposition (SVD)

of S. Since S is a finite-dimensional transformation, it has an SVD of the form
S =U%XV*,

where U: C™ — H is a set transformation corresponding to a set of orthonormal vectors
{ui,1 <i < m}, sothat U*U = I, ¥ is an m X m matrix with the first n diagonal elements
equal to g; > 0, and the remaining diagonal elements all equal to 0, and V is an m X m
unitary matrix. If we choose S = SV = UY, then the vectors {5;,1 < i < n} are orthogonal

with (8;,8;) = 02, and 5, =0 for n + 1 <4 < m.

To determine H, we express s of (8.1) as

Ers = ZU_?«L — 84, E/z — 51) = mc2 + ZO',LQ -2 Z %{(Ez,gﬁ} (89)
i=1 i=1

=1
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We first minimize (8.9) with respect to the vectors {h;,1 < i < n}. From the Cauchy-

Schwarz inequality,
R{(hi, 5)} < |(hi,5i)] < (hay i)' /? (55,51 = cai, (8.10)

with equality if and only if h; = x;5; for some x; > 0, in which case we also have (h;, h;) =
x2(5,51) = 2, s0 x; = c/(5:,5))/? = ¢/oy, and h; = (c/0i)5; = cu;. Note, that h; can

always be chosen proportional to s; since the vectors {s;,1 <7 < n} are orthogonal.

If n < m, then we may choose the remaining vectors h;, n + 1 < i < m, arbitrarily, as
long as the resulting n vectors h; are mutually orthogonal with equal norm c. This choice
will not affect the residual squared error. A convenient choice which leads to the SOLSV is

hi =uj,n+1<i<m.
If the constant ¢ in (8.5) is specified, then H = cU, and from (8.8),
H=cHV* = cUV*. (8.11)

The SOLSYV are then defined as izi =cH i;, where i; € C™ is the vector with kth component

d;r- In particular, the OLSV corresponding to ¢ = 1 are the vectors UV*i;.

Alternatively, we may choose to further minimize (8.9) with respect to c¢. Substituting

~

the optimal vectors h; = cu; back into (8.9), we choose ¢ to minimize
n
me® — 2c¢ Z ;. (8.12)
i=1
The optimal value of ¢, denoted by ¢, is therefore given by

=— Zgz = L1 ((5°5)'77), (8.13)

and the SOLSV are the vectors corresponding to the set transformation

H=¢eUV™. (8.14)

The SOLSV in both cases can be described in a unified way as the vectors corresponding
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to the set transformation
H=aUV* (8.15)

where if ¢ in (8.5) is specified then a = ¢, and if ¢ is chosen to minimize the LS error then
« = ¢ given by (8.13). Evidently, the SOLSV {h;} have the property that they do not
depend on the order of the vectors {s;}.

If the singular values o; of S are distinct, then the vectors u;, 1 < i < n are unique (up
to a phase factor ejai). Given the vectors u;, the columns {v;,1 < i <n} of V are uniquely

determined, so PyH = a ;  u;v}

i is unique. If, on the other hand, there are repeated

singular values, then the corresponding eigenvectors are not unique. Nonetheless, the choice
of singular vectors does not affect PuﬁI . Indeed, if the vectors corresponding to a repeated
singular value are {u;}, then Zj uju; is a projection onto the corresponding eigenspace,

and therefore is the same regardless of the choice of the vectors {u;}. Thus
Zu-v"-‘ = lZ:u-u"fs, (8.16)
- 7% o ; 777

independent of the choice of {u;}, and Py, H is unique.

Therefore, if the vectors s; are linearly independent so that n = m, then {iLZ =H i;,1 <
i < m} are the unique vectors that minimize (8.1) subject to (8.5), where H is given by

(8.15). Furthermore, in this case we may express " directly in terms of S as
H=aS(5*s)~1/2. (8.17)

Indeed, ($*S)"1/2 = V(X*%)1/2V* = VR 1V* and §(S*S) /2 = UV*. From (8.17) we
see that, as we expect, the optimal signals h; lie in the space U spanned by the vectors s;.

Alternatively, as can be readily verified, " may be expressed as
H = a((S5")/?)1s. (8.18)

If the vectors s; are linearly dependent, so that n < m, then the optimal H that
minimizes (8.3) subject to (8.6) is not strictly unique. However, its action in the subspace

U spanned by the vectors s; and the resulting residual squared error are unique. Specifically,
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for any minimizing H,
PyH = aUL,V* = aS((5*$)/*)F = a((55%)' /)t s, (8.19)

where ir, 1 <r <mis the m x m matrix

- I, |0
I = . (8.20)
010
We note that since the right-hand partial isometries and the left-hand unitary matrices
in the SVD of H and S are equal, it follows from Corollary 5.1 that if the vectors s; are
GU so that V is a Fourier transform matrix, then the vectors h; are also GU with the same
generating group, and generating vector (c¢/v/m) > 7", u;.

Finally, the optimal vectors h; satisfy

~ ~

(hisi) = (Puhi, s:) = [H*PyS)i; = o[S*S);/”. (8.21)

(12

~

This relation may be used to derive bounds on the inner products (h;, s;) in terms of the

inner products (s;,s;); see [104].

8.2.1 Optimal Tight Frames

We now try to gain further insight into the SOLSV in the linearly dependent case. The
perspective which we now develop also leads to the construction of optimal LS tight frames.

Our problem is to find a set of scaled-orthonormal vectors that are as close as possible
to the vectors s;, where the vectors lie in an n-dimensional subspace ¢/. When n < m,
there are at most n orthonormal vectors in U/. Therefore, the optimal scaled-orthonormal
vectors h; must lie partly in the orthogonal complement /. Thus the vectors h; span an

m-~dimensional subspace V, where U/ C V. Each vector has a component in U, hzz-’l = Byh;,

and a component in U=+, hi/L = Py;1h;. Now, we may rewrite the error e;5 of (8.1) as
Ui 1 1
i = S M B K B
i=1
U 1 1
= > ((si = bl i — W) + (5 1) ) (8.22)
i=1
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since (s; — hY, hzi"l) = 0. For any choice of scaled-orthonormal vectors h;,

f:(h? WY = Te((HYY*HY) = Te(PyHH*) = A Te(PyPy) = A Te(Py) = 2n,  (8.23)
i=1

where HY = Py H is the set transformation corresponding to hzf = Pyh;, so that

ST R =37 ((hay ha) — (WY HEY) = A (m - n). (8.24)

i=1 i=1

Thus minimization of e.5 is equivalent to minimization of

m

ey = Z:(lsZ — WY, s; — WYY + 2 (m — n). (8.25)

=1
Since HY = PyH, the vectors Pyh; form a c-scaled tight frame for #. Furthermore,
Theorem 5.5 shows that any c-scaled tight frame for &/ can be expressed as Pyh; for a
set of c-scaled orthonormal vectors h;. Therefore, finding a set of c-scaled orthonormal
vectors that minimize the LS error is equivalent to finding a c-scaled tight frame for U that

minimizes (8.25).

If ¢ is fixed, then minimizing ¢} is equivalent to minimizing

m

> (si— s — BY), (8.26)

i=1
so that choosing a set of c-scaled orthonormal vectors with fixed scaling ¢ that minimize
ELs, 1S equivalent to choosing a c-scaled tight frame for U/ that is closest in a LS sense to
the vectors s;. The unique optimal frame is defined as the LS frame, and follows directly

from (8.19) as the frame corresponding to ¢S((5*S)")1/2.

If the scaling c is chosen to minimize the LS error, then the LS frame vectors minimizing

(8.26) can be determined from the solution to the LS scaled orthonormalization problem.

Specifically, as in the case in which c is fixed, minimizing (8.26) with respect to hY, the

optimal frame vectors are the vectors corresponding to ¢S((S*S)")!/2. Substituting these

vectors back into (8.26) and minimizing with respect to ¢, the optimal value of ¢, denoted
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by ¢, is given by

o
Il

Zn:ai - %Tr (s5)12) = e, (8.27)
=1

S|

where ¢ is given by (8.13). Thus, the optimal tight frame is proportional to the orthogonal
projections onto U of the optimal scaled-orthonormal vectors.

We conclude that choosing an optimal c-scaled tight frame for U with fixed ¢ that
minimizes the LS error (8.26), is equivalent to choosing a set of ¢-scaled orthonormal vectors
that minimize the LS error e5. The unique orthonormal projections onto U/ of the optimal
c-scaled orthonormal vectors are the optimal c-scaled frame vectors. Furthermore, choosing
an optimal tight frame with unconstrained scaling that minimizes the LS error (8.26), is
equivalent to choosing a set of orthogonal vectors with unconstrained equal norm that

minimize €5, and scaling these optimal vectors by m/n.

8.2.2 Orthonormalization in CF

We now consider the particular case 4 = CF for some k > m. Thus, the vectors s; = s;
and h; = h; are vectors in C*, and the set transformations S and H reduce to the k x m
matrices S and H of columns s; and h;, respectively.

Let S have an SVD S = UXV* where U is a k X k unitary matrix, ¥ is a k x m diagonal
matrix with the first n diagonal elements equal to o; > 0 and the remaining diagonal
elements all equal to 0, and V is an m X m unitary matrix. Then, the optimal matrix H

whose columns h; are the SOLSV that minimize the LS error of (8.1), follows from (8.15),
H = oUIL V¥, (8.28)

where i;ﬂ, 1 <r <mis the k£ x m matrix

T = . (8.29)

If the vectors s; are linearly independent, then we may express H as
H = aS(S*S) /2. (8.30)
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Connection with the polar decomposition

We now show that the SOLSV are related to the polar decomposition (PD) of S.

Let A denote a k x m matrix with £ > m. Then A has a polar decomposition [141, 142],
A =QP, (8.31)

where Q is a k x m partial isometry that satisfies Q*Q = I,,,, and P = (A*A)Y/2. The
Hermitian factor P is always unique; the partial isometry Q is unique if and only if A has
full rank. Let A = UXV™* be the SVD of A. Then a natural choice of Q, which is the
unique choice if n = m, is Q = UL, V*, where I/, is given by (8.29).

We have seen in (8.28) that the SOLSV are the columns of H = aUI,, V*, where
S = UXV* is the SVD of S. Therefore, (1/a)ﬁ is just the partial isometry in the PD of S:
S = (1/a)H(S*S)!/2. In particular the OLSV, corresponding to o = 1, are the columns of
the partial isometry in the PD of S. This is consistent with the known result, that the best
partial isometry approximation to a matrix A with PD A = QP is the matrix Q [141].

Exploiting the relationship between the SOLSV and the PD, the SOLSV can be com-
puted very efficiently by use of the many known efficient algorithms for computing the PD
(see e.g., [93, 143, 141, 144]).

Recently the truncated polar decomposition (TPD), a variation on the PD, has been
introduced [145] and has proved to be useful for various estimation and detection problems.
As we now show, the columns of the TPD of a matrix S are just the closest normalized

frame vectors to the columns s; of S.

Let S = UXV* denote an arbitrary k x m matrix with rank n. Then the order-p TPD

of S is the factorization
Py, S = [ULV*][VZ*'I, V'] = QP, (8.32)

where Py, is the orthogonal projection onto the space spanned by the first p singular vectors
u; of S. From (8.32) it follows that the columns of the left-hand matrix in the order-n TPD
of S are the optimal normalized frame vectors. Similarly, the columns of the left-hand
matrix in the order-p TPD of S, with p < n, are the optimal normalized tight frame vectors

corresponding to the vectors Fy,s;.
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Since the SOLSV are related to the PD of S, properties of these optimal vectors can be
deduced from properties of the PD (see e.g., [141, 142, 143, 146]). For example, the SOLSV
corresponding to columns of a symmetric nonnegative definite matrix S are proportional to
the columns of I. This follows immediately from the fact that if S is symmetric and nonneg-
ative definite, then P = S. As another example, the SOLSV with fixed ¢ corresponding to
two vector sets {s;} and {g;} are the same if and only if the corresponding matrices satisfy

SG* = (SS*)'/2(GG*)'/2 [146].

Connection with the orthogonal Procrustes problem

The LS scaled orthonormalization problem is also related to the orthogonal Procrustes
problem [147, 148, 149]. In particular, the OLSV can be obtained as a solution to an
orthogonal Procrustes problem. In this problem, we are given two k£ x m matrices A and

B, and we want to rotate B into A by seeking a unitary matrix Z to minimize
Tr((A —BZ)*(A —BZ)). (8.33)

We can pose the minimization problem of (8.3) with ¢ = 1 in (8.4) as an orthogonal Pro-
crustes problem by choosing A = S and B as a matrix whose columns form an orthonormal
basis for /. The OLSV are then the columns of BZ, where Z is the solution to (8.33).

We summarize our results regarding the SOLSV in the following theorem:

Theorem 8.1 (Scaled-orthonormal least-squares vectors (SOLSV)). Let {s;,1 <
i < m} be a set of m vectors in a Hilbert space H, that span an n-dimensional subspace
UCH. Let {ilz, 1 <i < m} be the scaled-orthonormal least-squares vectors that minimize
the least-squares error defined by (8.1) subject to the constraint (8.5). In the special case in
which ¢ = 1, the vectors h; are orthonormal and are defined as the orthonormal least-squares
vectors. Let S = USV* and H denote the set transformations corresponding to the vectors

s; and ﬁi, respectively. Then the optimal H can be chosen as

~

H=aUV*,

where
1. if ¢ in (8.5) is specified then o = ¢;
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2. if ¢ 1is chosen to minimize the least-squares error then a = ¢é with ¢ =

(1/m)Tr ((5*5)'7?).
In addition,

1. (a) If n =m, then
i. H= aS(5*8) /2 and the scaled-orthonormal least-squares vectors lie in U;
1. the scaled-orthonormal least-squares vectors are unique.
(b) If n < m, then
1. the projection of H onto U is unique and is giwen by PMI:T = UL, V* =
aS((S*S)V/)t = a((85*)/?)1S, where I, is given by (8.20);
#. if c is fized, then the vectors {Puiai, 1 <i < m} are the closest c-scaled tight
frame vectors to the vectors {s;,1 < i < m}, in the least-squares sense;

wi. if ¢ is chosen to minimize the least-squares error, then the wvectors
{(m/n)Pyh;,1 < i < m} are the closest tight frame vectors to the vectors

{si,1 <i < m}, in the least-squares sense.
2. If H =CF for some k > m, then
(a) H = an'mV* where H is the matriz of columns h;, U and V are the unitary
matrices in the SVD of the matriz S of columns s;, and i;n is given by (8.29).
(b) (1/a)H is the partial isometry in the polar decomposition of S.
3. If the vectors {s;,1 < i < m} are geometrically uniform with generating group Q, then

the wvectors {il,, 1 <i < m} are also geometrically uniform with generating group Q

and generating vector (a/\/m) Y v, u;, where u; are the vectors corresponding to U.

8.3 Weighted Least-Squares Scaled Orthonormalization

In Section 8.2 we sought the scaled-orthonormal vectors {h;,1 < ¢ < m} to minimize the
error (8.1). Essentially, we are assigning equal weights to the different errors. However,
in many cases we might choose to weight these errors according to some prior knowledge
regarding the vectors s;. For example, in a detection scenario if the vector s; is transmitted

with high probability, then we might wish to assign a large weight to (s; — hj,s; — hj).
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More generally, we consider the problem of minimizing the weighted squared error,

Ers = Z aik(si — hiysp — hg) = Tr (S — H)*(S — H)A) (8.34)
ik=1

subject to (8.5), where A is a symmetric nonnegative definite m x m weighting matrix with
[A]ik = aix. The minimizing vectors are defined as the weighted SOLSV (WSOLSV). If
¢ =11in (8.5), then the vectors h; are orthonormal and the minimizing vectors are defined

as the weighted OLSV (WOLSV).

The derivation of the solution to this minimization problem is analogous to the derivation

of the SOLSV with a slight modification. With S,, = SA, we can express €} as

ers = Tr((S—H)(S—-H)A)
= Tr((Sw — H)*(Sw — H)) + Tr (A — I, )H"H) + Tr (A(L;, — A)S*S)

= Tr((Sy — H)*(Sy — H)) + *Tr(A — 1) + K, (8.35)

where K is independent of the choice of H.

If ¢ is fixed, then minimizing €% is equivalent to minimizing €'}y where
el =Tr((Sy — H)*(Syw — H)). (8.36)

Furthermore, this minimization problem is equivalent to the LS scaled orthonormalization
problem, if we substitute S,, for S. Therefore we now employ the SVD of S,,, namely
Sw = Uw2ywV,,, and follow the derivation of Section 8.2, where we substitute S,, for S

and Uy, V, and ¥, for U,V and 3, respectively. The optimal set transformation I:Tw then

follows from Theorem 8.1,

Hy, = cU, V%, (8.37)

If we further wish to minimize the weighted LS error with respect to ¢, then substituting

H,, back into (8.35) and minimizing with respect to ¢, the optimal value of ¢ is

Tr ((Sg80)"/?) _ Tr ((AS*SA)'?)
Tr(A) N Tr(A)

(8.38)

Cy —
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The WSOLSYV vectors are thus given by 71;" = I:Twii, where

~

Hy = apUp V5. (8.39)

If c is specified then a,, = ¢, and if ¢ is chosen to minimize €} then a,, = ¢, given by

(8.38). If the vectors s; are linearly independent and A is invertible, then
Hy = S0 (5550) 1 = 0y SA(A*S*SA) /2, (8.40)

and, as we expect, the WSOLSYV lie in the space U spanned by the vectors s;.

8.4 Example of the SOLSV and the WSOLSV

We now give an example illustrating the SOLSV and the WSOLSV.
Consider the two linearly independent vectors,

[ 1 V3 ] (8.41)

N | =

S12[1 O]*, 82 =

We wish to construct the SOLSV with scaling ¢ = 1; thus we seek the orthonormal vectors

that are closest in a LS sense to the vectors s;. We begin by forming the matrix S,

S=- . 8.42
AN (8.42)

We then determine the SVD S = UXV*, which yields

1| V3 -1 1 | V30 1 1 -1
- . Y= , V= . (8.43)
21 -1 -3

U= 1
01 V2| 1 .1

S

From (8.28) and (8.29), we now have

. 0.97 —0.26
H=UV*= : (8.44)
0.26  0.97
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and

*

= [ 0.97 0.26 ] hy = [ —0.26 0.97 ] : (8.45)

where h; and hy are the optimal orthonormal vectors that minimize the LS error defined

by (8.1). Using (8.30) we may express the optimal vectors directly in terms of the vectors

S1 and S2,
/2 1.12  0.30
=S(s*s)" 2 =8 , (8.46)
0.30 1.12
thus
hy = 1.12s; + 0.30sy, hy = 0.30s; + 1.12s,. (8.47)

Figure 8-1 depicts the vectors s; and sg together with the optimal orthonormal vectors
h; and hy. As is evident from (8.47) and from Fig. 8-1, the optimal vectors are as close as

possible to the vectors s;, given that they must be orthonormal.

S2

€2

Figure 8-1: 2-dimensional example of the OLSV. s; and s, are given by (8.41), the optimal
OLSV h; and hy are given by (8.45) and are orthonormal, and e; = s; — h;,i=1,2.

Suppose now we want to minimize a weighted LS error as in (8.34), where we choose
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the weighting matrix A as the diagonal matrix

02 0
A= . (8.48)
0 0.8
This choice of weights corresponds to heavily penalizing deviations of hy from s,. Conse-
quently, we expect the WOLSV to be such that flg’ is closer to so than fl‘l" is to s1.
To determine the WOLSV we compute the SVD of SA = U,%,V;,. The optimal

WOLSYV are then given by the columns of ﬁw = U, V;,, which yields

*

. L
7= [ 0.91 0.41 ] , hy = [ —0.41 0.91 ] : (8.49)
We may express the optimal WOLSYV directly in terms of the vectors s; and so,

. e Aro1)2 115 0.12
H, = SA(AS*SA) /2 =5 : (8.50)
0.47 1.05

thus
hY = 1.15s; + 0.47sy, hY = 0.12s; + 1.05s,. (8.51)

Figure 8-2 depicts the vectors s; and so together with the optimal orthonormal vectors
h? and h¥. As is evident from (8.51) and from Fig. 8-2, h¥ is much closer to sy then h¥
is to s;. Comparing Fig. 8-1 and 8-2 we see that the weighting results in a rotation of the

OLSV hy, hy towards ss.

8.5 Least-Squares Orthogonalization

We now consider the problem of constructing an orthogonal set of vectors from a given set
of vectors {s;,1 < i < m}, where we do not constrain the norms of the vectors to be equal
to a constant c. Instead, we may wish to constrain the vectors {h;,1 < i < m} to have some
specified norm, e.g., (h;, h;) = (s;, s;), or we may choose the vectors {h;} to be orthogonal
and to minimize the LS error e.5 of (8.1). In this case (h;, h;) will be such that e.¢ is
minimized. The orthogonal vectors minimizing the LS error are defined as the orthogonal

LS vectors (OGLSV).
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S2

€2

Figure 8-2: 2-dimensional example of the WOLSV. The weights are chosen as ay; =
0.2,a22 = 0.8, and a12 = a1 = 0, the optimal vectors hy’ and hy are given by (8.49)
and are orthonormal, and e; =s; —h}’,i = 1,2.

8.5.1 Orthogonalization With Constrained Norms

We first consider the problem of constructing a set of vectors {h;,1 < i < m} that minimize

eps of (8.1), subject to the constraint
(hiy hie) = ¢} i, (8.52)

where the scalars ¢; > 0 are specified and ¢ > 0 may be specified, or may be chosen to

minimize the LS error.

We assume without loss of generality that ¢; > 0 for 1 <4 < k. Then minimizing £.g is

equivalent to minimizing
m ~
ELs = Z ci (8i — hi, 8i — hi), (8.53)
i=1

where the vectors h; are c-scaled orthonormal vectors such that h; = (1 Jcihi, 1 <i <k,
and the vectors §; are defined by §; = (1/¢;)s;,1 < i < kand §; =0,k +1 < i < m.
Comparing (8.53) with (8.34) we see that the scaled-orthonormal vectors h; that minimize

(8.53) are the WSOLSYV corresponding to the vectors {3;,1 < ¢ < m} with weighting matrix
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A = C?, where C is the diagonal matrix with diagonal elements c;.

Thus the vectors h; that minimize (8.53) are given by h; = H i;, where from (8.39),

~

H=aUV*. (8.54)

Here S = SCH is the set transformation corresponding to the vectors §;, C' is the diagonal
matrix with diagonal elements 1/¢;,1 < i < k and 0 otherwise, and SC? = USV* is the
SVD of SC2 = SC. If ¢ is specified then & = ¢, and if ¢ is chosen to minimize the LS error
then & = ¢ where from (8.38),

Tr ((CS*SC)Y/?)

= (I (8.55)

The OGLSV are then given by h; = Cz';li = ﬁIii, where
H=aUv*cC. (8.56)

Note that the vectors h; lie in the space V spanned by the first k£ columns of U. This
follows from the fact that with 7" = SC, T*T is a block diagonal matrix whose lower
(m — k) x (m — k) block is a 0 matrix with all 0 entries, so that V is also a block diagonal
matrix. Then, the the last m — k elements of each of the first & columns of the matrix vC

are all equal 0, and the remaining columns of VC are all 0.

Therefore, as we now show, if £ < n, then we can always choose H so that the vectors hy
lie in the n-dimensional space U spanned by the vectors s;. Specifically, if I = rank(SC) is
equal to k, then V is equal to the space spanned by the first k columns of SC so that V C U.
Since h; € V, it follows mediately that hi €U. If | < k then only the first [ columns of U are
specified, and the remaining columns can be chosen arbitrarily. Since these [ columns span
a subset of U, we can always choose the next k — [ columns so that the space V spanned by

the first k columns of I/ is also a subset of ¢/. Then since fLi €Vand VCU, iLi eu.
If the vectors s; are linearly independent and ¢; > 0 for all ¢, then
H = asc(cs*sc) /2c. (8.57)
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8.5.2 Unconstrained Orthogonalization

We now consider the orthogonalization problem with unconstrained norms. Thus, we seek

a set of orthogonal vectors h; that minimize (8.1), subject to

(hiyhg) =0, i #k. (8.58)
Expressing €5 as
€Ls = Z ((8i,8i) + (hi, hi) — 2R{(hs,s:)}) , (8.59)
i=1

it follows that minimization of €.g is equivalent to minimization of
m
ers = O ((hi hi) — 2R%{(ha, 1) }) (8.60)
i=1
Let h; = bih;, where b? = (h;, h;) and (h;, h;) = 1. Then
m ~
ehe = > (07— 26 {(hi, )} (8.61)
i=1
To determine the optimal vectors h; we have to minimize £/, with respect to b; and hi.
Fixing h; and minimizing with respect to b;, the optimal value of b;, denoted Bi, is given by

by = R{(hi, s:)}. (8.62)

Substituting b; back into (8.61), we get that the vectors h; are chosen to maximize

Rys =) ®*{(hi, si)}, (8.63)
=1

subject to the constraint

(hiy hi) = g, (8.64)

Obtaining a closed form analytical expression for the vectors h; that maximize (8.63)

subject to (8.64) is in general a difficult problem. In fact, in the case in which the vectors
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h; and s; are real, this problem is equivalent to a quantum detection problem discussed in
Section 3.4, for which there is no known analytical solution in general [26, 23]. Based on
results we obtained in the context of quantum detection [26], we now show that in the special
case in which the vectors {s;} are geometrically uniform (GU), an analytical solution can be
obtained. An iterative algorithm for constructing the orthonormal vectors that maximize

(8.63) for arbitrary vectors {s;} is considered in Section 8.5.4.

8.5.3 Maximizing R, for Geometrically Uniform Vector Sets

To obtain a more convenient expression for Rp,, let S = UXV* and H denote the set
transformations corresponding to s; and h;, respectively. Since {ﬁz} are proportional to the
vectors closest to the vectors {s;}, the space spanned by the vectors s; is a subspace of the
space spanned by the vectors k;. In addition, the vectors h; are orthonormal. Consequently,
H has an SVD of the form H = UQ for some unitary m X m matrix Q. With v; and q;

denoting the columns of V* and Q* respectively, we can express Ry as
m 5 m ~ m
Rus =Y R{(hi,si)} =Y RH(U R, U*si)} = Y ®*{(qi, Zvi)}-
=1 i=1 i=1

Our problem thus reduces to finding a set of orthonormal vectors q; that maximize
> ®2{(q;, ©vi)}, where the vectors v; are also orthonormal. Using the Cauchy-Schwarz

inequality,

NE

m
Rps = Y RH(ZV2q;, SV2vi)} <Y [(BH2q;, B 2v) 2
i=1

<.
Il
—

(i, Bq;)(vi, Bvi), (8.65)

WE

fi
I

with equality if and only if $1/2q; = 2;%/2v; for some z; > 0 and all 4. In particular, we
have equality for q; = v;. In general the bound of (8.65) depends on the unknown vectors

q;- However, in the special case where (v;, ¥v;) = K independent of 7, (8.65) reduces to

Rus < K'Y (i %q;) = KTr(QEQ") = KTr(D), (8.66)
=1

with equality if v; = q;. Since (v;, Xv;) = [(S*S)l/ 2);i, we conclude that if the diagonal
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elements of (S*S)'/2 are equal, then the optimal orthonormal vectors maximizing Ry, cor-
respond to UV*, and from Theorem 8.1 are just the OLSV with respect to the vectors {s;}.
We note that as with the OLSV, if the vectors {s;} are linearly dependent, then the vectors
maximizing Ry are not unique. However, their projections onto U are always unique.

If the vectors {s;} are GU, then from Corollary 5.1 V is a Fourier transform matrix and
the components of the vectors v; have equal magnitude 1/4/m so that for all 7, (v;, ¥v;) =

1/m 0. Therefore, in this case the OLSV maximize Rjs. The optimal vectors fi
777

.

are then the vectors corresponding to H = UV*, and from (8.62), b; = [(5*S)"/?];;

(1/m) ;05 = ¢ for all i, where ¢ is the optimal scaling in the SOLSV, given by (8.13).
Thus for GU vector sets the OGLSV are equal to the SOLSV with scaling ¢ that minimizes
the LS error.

8.5.4 Tterative Algorithm Maximizing R;, for Arbitrary Vector Sets

For simplicity of exposition, we assume throughout this section that # = R* for some
k >m, so that Ry, = .7 (hy,s:)2.

The proposed algorithm proceeds as follows. Starting with an arbitrary matrix with or-
thonormal columns, at each iteration we construct a new matrix with orthonormal columns
by multiplying the current matrix by an orthogonal matrix. The orthogonal matrix is cho-
sen so that Ry, does not decrease form iteration to iteration, where at each iteration Ry is
computed using the orthonormal columns of the new matrix. Since Ry, is bounded above

for any choice of orthonormal vectors, the iterations are guaranteed to converge.

(0)

The algorithm is initialized by choosing a matrix H( with orthonormal columns h;™.
A good choice is the matrix H(Y) = UI’, V* where U and V are the unitary matrices in the
SVD of the matrix S of columns s;, and I’ is given by (8.29), so that the columns hz(.o) are
the closest orthonormal vectors in a LS sense to the vectors s;. If the vectors s; are linearly
independent, then H(®) = §(S*S)~1/2. Then, for j = 0,1,2,... we choose an orthogonal
matrix QY), and set HUY) = HO QW) If the columns of HY) are orthonormal, and Q\) is
an orthogonal matrix, then the columns of HU*1) are also orthonormal. Since the columns

of H(® are orthonormal, HY) will have orthonormal columns for all j.

Suppose we can choose QU) so that for all j,
R > RY). (8.67)
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S

Here R;Lj) =y (dz(-g)y where dz(-zj) = (hz(j),si), and hz(j) denotes the ith column of HU),
Then, since REZS,H) < Y (si,si) for all j, the iterations are guaranteed to converge.
Thus, the crux of the algorithm is choosing QU) so that (8.67) is satisfied for all j.
This can be accomplished by choosing Q) as an “optimal” Givens rotation [93]. A Givens
rotation J(r,l,0) with 1 < r,l < m,r # [, is an orthogonal matrix that is equal to the

identity matrix except for the entries
J(0), (8.68)

where J; = [J(r,1,0))ik, ¢ = cos(8), and s = sin(h).

Now, let Q@ = J(r,1,6), where 0 is chosen to maximize R;Lj:l). Since for 8 = 0,
J(r,1,0) =1, and Rg:l) = Rgljs), we are guaranteed that for an optimal choice of 6, (8.67)
is satisfied. note, that if HU+YD = HOJ(r,1,0), then d,(cj;rl) = dgc) for k # [,r. Therefore,

choosing 6 to maximize R,(ljj ) is equivalent to choosing 6 to maximize

+1 i+1)) 2 i+1))
R = (df) + (agt) (8.69)
Let §,r,1 be fixed, and let DU) = (H))*S. Denote by D’") the 2 x 2 matrix

. D), [DW)], b1 b
p@ — | D7 DT s | b bz (8.70)
DU, D, bo1 b2

Then R'El];q) is equal to the sum of the squares of the diagonal elements of D'UTY) —

J*(0)D'Y), where J(6) is defined by (8.68). Thus,
RV = (chiy + sbar)? + (cha — sbiz)?. (8.71)

In Appendix A we show that R’ 53;:'1) is maximized when

(1., —1(y j )
stan™! (£) and zcos(20) >0, = #0;
R /4, z =0,y >0;
T Y (8.72)
—m/4, z=0,y <0
L 0, z=y=0,
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where x = b%l + b%Q — b%l — b%Q and y = by1bo1 — bagb1a.
The iterations are continued until convergence, where in each iteration we choose dif-
ferent values of r and |.

We now summarize the iterative algorithm:

1. Choose the vectors hgo) as the columns of H(®) = UI’ V* where U and V are the
unitary matrices in the SVD of the matrix S of columns s;, and i;n is given by (8.29),

and set j = 0;
2. choose r and [ arbitrarily so that 1 < r,l <m and r # [;
3. compute b3 = (hgj),sr),blg = (hﬁj),sl),bzl = (hl(j),sr) and bgy = (hl(j),sl);
4. compute HU+Y = HDJ(r, [, §) where 6 is given by (8.72);
5. set j =7+ 1 and go to step (2).

Our iterative algorithm can be shown to be equivalent to the algorithm developed in [150]
in the context of quantum detection, which is derived using quantum-mechanical ideas and
concepts. However, since our algorithm does not invoke such considerations, its derivation
is more straightforward.

Based on results derived in that context it can be shown that the vectors h; maximizing
Ry are unique (up to multiplication by —1) [150, 21, 23, 22]. Furthermore, the optimal
vectors h; must be such that the matrix T defined by [Y];x = (h;, s)(hg, sk), is nonnegative
definite [150]. Therefore, upon convergence of the algorithm we can test whether or not the
vectors h; are the optimal vectors maximizing Rjys or whether the algorithm converged to
a local maximum, by checking if T is nonnegative definite. If the algorithm converged to a
local minimum, then we may slightly rotate the matrix H of columns h;, i.e., multiply H

by a unitary matrix U, such that the rotated vectors h, = Uh,; result in a higher Rp; these
(0)

vectors form the initial conditions h; for resumption of the main algorithm. A formula for
determining U can be found in [150, Appendix I]. We note that when the initial conditions
for the algorithm are chosen as the OLSV, Rl(l(l) will be pretty close to the maximal value,
and the algorithm is unlikely to converge to a local maximum.

We summarize our results regarding the OGLSV in the following theorem:

Theorem 8.2 (Orthogonal least-squares vectors (OGLSV)). Let {s;,1 <i <m} be

a set of m wectors in a Hilbert space H, that span an n-dimensional subspace U C H.
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Let {fzi,l < i < m} denote the orthogonal least-squares vectors that minimize the least-
squares error (8.1), subject to the constraint (8.52), and let H denote the set transformation

corresponding to the vectors h;. Then,

1. If (hi, hi) = 62612 where the constants ¢; > 0 are given, then let C denote the diagonal

matriz with diagonal elements c;, and let SC = USV*. Then H can be chosen as

H=aUv*c,
where
(a) if ¢ is specified then & = ¢;
(b) if ¢ is chosen to minimize the least-squares error then & = ¢ where ¢ =

Tr ((CS*SC)/2) / Tr(C?).
In addition,

(a) If rank(C) < n, then the vectors h; can be chosen to lie in U;
(b) If ¢; > 0 for all i, then
i. the projection of H onto U is unique and 1is given by Pqu =
aSC((CS*SC)/2)tC = a((CSS*C)1/2)tsC?;
1. if in addition n = m, then
A. H = 45C(CS§*SC)1/2C;

B. the orthogonal least-squares vectors are unique.

2. If the squared norms (h;,h;) are chosen to minimize the least-squares error, then
H can be computed using the iterative algorithm of Section 8.5.4. If the wvectors
{si,1 < i < m} are geometrically uniform, then H = aUV* where S = USV*
and a = (1/m)Tr ((S*S)'/?), and the vectors hi are equal to the scaled-orthonormal

least-squares vectors with optimal scaling, with respect to the vectors s;.

8.6 Least-Squares Inner Product Shaping

We now consider the general LS inner product shaping problem in which we seek the vectors

{hi,1 < i < m} with inner products (h;, hx) = 2[R} for some R and ¢ > 0, that are closest
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in a LS sense to the vectors {s;,1 <i < m}. We assume that R has an eigendecomposition
R = QAQ*, where Q is unitary and A is diagonal. In our development we consider both
the case in which R is specified, and the case in which the eigenvectors of R, or the matrix

Q, are specified and the eigenvalues, or the matrix A, are chosen to minimize the LS error.

8.6.1 Constrained Least-Squares Inner Product Shaping

Suppose that R is a specified rank-r matrix, so that [A]; > 0,1 < i < r, and [A]; >
0,7+ 1 < i < m. We then solve the LS inner product shaping problem by performing a
unitary change of coordinates Q, so that in the new coordinate system, S is mapped to
S = SQ and H is mapped to H = HQ. With h; denoting the vectors corresponding to H,
(hi, hi) = c2[A)ix, so that the vectors {h;,1 < i < r} are orthogonal with (h;, h;) = c2[A]y,

and h; = 0,7+ 1 < i < m. Since Q is unitary,

ers =Tr ((S—H)*(S—H)) =Tr(Q"(S—H)*(S-H)Q) =Tr ((S-H)"(S—H)).
(8.73)

The constraint (8.4) can be restated as

H'H = 2A. (8.74)

Thus we now seek a set of orthogonal vectors h; with (h;, h;) = c?[A];; that are closest

in a LS sense to the vectors 3;. The optimal H follows from Theorem 8.2,
H=aUV*A'/2, (8.75)

where U and V* are the partial isometry and the unitary matrix respectively in the SVD
of SAY/2. If ¢ in (8.4) is fixed then & = ¢, and if ¢ is chosen to minimize the LS error then
& = ¢ where

’I‘I‘((AI/QF*?AI/Q)I/Q) r_[xr((Al/2Q*S*SQA1/2)1/2)

&= @ = To(E) . (8.76)

We can simplify the expression for ¢ using the equality (B.1) derived in Appendix B,
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YX/2Yt = (YXYT)/2 for any X and Y such that R(X/?) C N (Y)*. Then,

Tr ((AI/QQ*S*SQA1/2)1/2>

(S*SR)”Q) : (8.77)

where Py/ryL = QI,Q* is an orthogonal projection onto NV (R)- = R(R), and we used the
fact that PymwyL = P):/(R) , . Thus,
Tr ((S*SR)'/?)

= TR . (8.78)

The optimal H that minimizes (8.3) subject to (8.4) is then given by

~

H=HQ*=aUV*\'/?Q". (8.79)

If » < n, then from Theorem 8.2 it follows that U can always be chosen so that the

optimal vectors h; lie in the space U spanned by the vectors s;, and H= PUI:T .

Suppose in addition that R is such that A'(S) = M(R) = R(R)". Then R(SQA'/?) =
U so that we can express Py as Py = UL, U*, and (8.79) reduces to
H = aP,UV*AY2Q*
= aUL,V*A'/?Q*
— &SQA1/2((A1/2Q*S*SQAI/Z)I/Q)TAI/QQ*
= aS((RS*9)V3)R
= aSR((S*SR)V?)f, (8.80)

In particular, if r = n = m then

H = aS(RS*S) /’R = aSR(S*SR) /2. (8.81)
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8.6.2 Unconstrained Least-Squares Inner Product Shaping

We now consider the LS inner product shaping problem in which the eigenvectors of R
are specified, and the eigenvalues are chosen to minimize the LS error. We may again
solve this minimization problem by performing a change of coordinates Q and solving
an optimal orthogonalization problem in the new coordinate system. However, now the
orthogonal vectors are not norm constrained. Thus our problem reduces to seeking the
orthogonal vectors h; corresponding to H = HQ that minimize the LS error (8.73) subject
to (hi, hg) = 0,7 # k.

This minimization problem is equivalent to the unconstrained LS orthogonalization
problem discussed in Section 8.5.2. We may solve this problem using the iterative algorithm
described in Section 8.5.4. The optimal LS vectors are then the vectors corresponding to
H= ﬁQ*, where ﬁ is the set transformation corresponding to the optimal LS orthogonal
vectors that minimize (8.73).

From Theorem 8.2 it follows that if the vectors s; are GU, then ﬁ is equal to the optimal
set transformation corresponding to the SOLSV with respect to 5;. With § = UXV*
denoting the SVD of S, § = UL V*Q so that From Corollary 5.1, the vectors 3; are GU if

and only if Q*V is equal to a Fourier transform matrix. Then, ﬁ = aUV*Q with
1 * Q% 1 *
a=—Tr ((Q s 5Q)1/2) — Ty ((S 5)1/2) : (8.82)
m m
where we used (B.3), and
H=HQ" = aUV". (8.83)

We conclude that if the vectors §; are GU, then the closest vectors to the vectors s; in a LS
sense with Gram matrix that is diagonalized by Q are scaled-orthonormal, and are equal

to the SOLSV with respect to the vectors s;.

We summarize our results regarding LS inner product shaping in the following theorem:

Theorem 8.3 (Least-squares inner product shaping). Let {s;,1 < i < m} be a set
of m wectors in a Hilbert space H, that span an n-dimensional subspace U C H. Let
{izi, 1 <4 < m} denote the least-squares vectors that minimize the least-squares error (8.1),

subject to the constraint (8.2). Let R = QAQ* be the matriz of inner products <il,z, iLk> = Tik,
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and let H denote the set transformation corresponding to the vectors h;. Then

1. If R is a specified rank-r matriz, then let SQAY/2 = UXV* where S is the set trans-

formation corresponding to the vectors s;. Then H can be chosen as
H=aUV*A'2Qr,
where

(a) if c in (8.2) is specified then & = ¢;
(b) if ¢ is chosen to minimize the least-squares error then & = ¢ where ¢ =
Tr((S*SR)'?) / Tr(R).

In addition,

(a) If r < n, then the vectors h; can always be chosen to lie in U;
(b) If r=n and N(S) = N(R), then

i. H=aS((RS*S)V/2)IR = aSR((S*SR)Y2)t;

1. the least-squares vectors are unique.

(c) Ifr =n=m, then H = GS(RS*S) /2R = GSR(S*SR) /2.

2. If the eigenvalues of R are chosen to minimize the least-squares error, then H can
be chosen as H = ﬁQ*, where ﬁ 18 the set transformation corresponding to an
orthogonal set of vectors that minimize the least-squares error defined by (8.73) with
S = SQ, and can be computed using the iterative algorithm of Section 8.5.4.

Let § = UXV*. If Q*V is a Fourier transform matriz, then H = aUV* where
a=(1/m)Tr ((5*5)1/2), and the vectors h; are equal to the scaled-orthonormal least-

squares vectors with optimal scaling, with respect to the vectors s;.

8.6.3 Weighted Least-Squares Inner Product Shaping

We may also consider a weighted LS inner product shaping problem in which we seek the

vectors h; corresponding to H to minimize the weighted squared error )% given by (8.34),
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subject to (8.4) where R is fixed. With S,, = SA, we can express €%, as

ers = Tr((S—H)(S—H)A)
= Tr((Sw — H)*(Sw — H)) + Tr (A — I, )H"H) + Tr (AL, — A)S*5)

= Tr((Sy — H)*(Sy — H)) + *Tr (A —1,)R) + K, (8.84)

where K is independent of the choice of H.

If ¢ is fixed, then minimizing %, is equivalent to minimizing ¢’} where
e'ls = Tr ((Sy — H)*(Sw — H)) . (8.85)

Furthermore, this minimization problem is equivalent to the general LS inner product shap-
ing problem, if we substitute S,, for S. The optimal set transformation I:Tw then follows

from Theorem 8.3,
Hy, = cU,VEAY?QY, (8.86)

where U,, and \7;*0 are the partial isometry and the unitary matrix respectively in the SVD

of SAQAY2. If the vectors s; are linearly independent and A and R are invertible, then
H, = cSA(RAS*SA) " '/?R = cSAR(AS*SAR) /2, (8.87)

If we further wish to minimize the weighted LS error £}% with respect to ¢, then substi-
tuting I/-\Iw back into (8.84) and minimizing with respect to ¢, the optimal value of ¢ is given
by

| R{Tr(H;SA)} Tr((A'2Q*AS*SAQAY?)'/?)  Tr((AS*SAR)'/?)

‘w T(AR) Tr(AR) - TR - &%)

8.7 Summary

In this chapter we developed new methods that construct a set of vectors with specified
inner product structure, that are closest in a LS sense to a given set of vectors. These
methods are based on the LS measurement, which we developed in the context of quantum

detection. Using these methods we can now construct optimal QSP measurements with
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measurement vectors that have a specified inner product structure, and are closest in a LS
sense to some desired set of vectors. We can also use these methods to construct optimal
linear algorithms subject to inner product constraints, by viewing linear processing of a
signal as processing with a set of measurement vectors, and then imposing inner product

constraints on these vectors.

In the remainder of the thesis we demonstrate that LS inner product shaping, inspired by
the quantum detection problem, is a very versatile method with applications spanning many
different areas. We have already seen in Chapter 3 that by applying LS orthogonalization
to a detection problem in quantum mechanics, we can derive a solution to a previously
unsolved problem in this field, for a very important special case that often arises in practice.
In the ensuing chapters we focus on more subtle applications of LS inner product shaping to
problems with no inherent inner product constraints. By casting various signal processing
algorithms as a QSP measurement or as processing with a set of measurement vectors,
and then imposing an inner product constraint on the corresponding measurement vectors,
we can derive a variety of effective new processing techniques that often exhibit improved
performance over existing methods.

As an example of the type of procedure we may follow in using the concept of optimal
QSP measurements to derive new processing methods, in Chapter 9 we consider a generic
detection problem where one of a set of signals is transmitted over a noisy channel. By
describing the conventional matched filter (MF) detector as a QSP measurement, and im-
posing inner product constraints on the MF measurement vectors, we derive a new class of
detectors. We then demonstrate through simulation that when the additive noise is non-
Gaussian these detectors can significantly increase the probability of correct detection over
the MF receiver, with only a minor impact in performance when the noise is Gaussian.

In Chapter 10 we show that the concept of LS inner product shaping leads to a new
viewpoint towards whitening and other covariance shaping problems which arise frequently
in signal processing applications. Specifically, we derive a stochastic analogue of the LS
inner product shaping problem that takes on the form of an MMSE covariance shaping
problem, in which the covariance shaping transformation is designed to minimize the MSE
between its input and output.

Drawing from LS inner product shaping, we can develop new classes of linear algorithms

that result from imposing a deterministic or stochastic inner product constraint on the algo-
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rithm 7.e., a covariance constraint, and then using the concept of LS inner product shaping
to derive optimal linear algorithms subject to this constraint. In Chapter 11 we use this
basic idea to derive a new linear estimator for estimating a set of unknown deterministic pa-
rameters observed through a known linear transformation and corrupted by additive noise.
This new estimator is defined as the covariance shaping LS (CSLS) estimator. Analysis of
the MSE of the CSLS estimator demonstrates that over a wide range of SNR, the CSLS
estimator results in a lower MSE than the traditional LS estimator, for all values of the
unknown parameters.

Finally, in Chapter 12 we consider an application of the CSLS estimator to the prob-
lem of suppressing interference in multiuser wireless communication systems. Specifically,
we develop a new linear multiuser receiver for synchronous code-division multiple-access
(CDMA) systems, in which different users transmit information over a joint channel by
modulating distinct signature vectors. This receiver can be viewed as an MF receiver
matched to a set of vectors with a specified inner product structure, that are closest in
a LS sense to the users’ signature vectors. Alternatively, we may view the receiver as a
decorrelator receiver [50] followed by an optimal covariance shaping transformation, that
optimally shapes the covariance of the decorrelator output prior to detection. We demon-
strate that this modified receiver can lead to improved performance over the decorrelator
and MF receiver, and can approach the performance of the linear MMSE receiver, which
is the optimal linear receiver that assumes knowledge of the channel parameters and maxi-
mizes the output signal-to-interference+noise ratio, over a wide range of channel parameters
without requiring knowledge of these parameters.

These applications demonstrate that drawing from the ideas and constraints of the quan-
tum detection problem outlined in Chapter 3, and imposing inner product and covariance
constraints in combination with optimal inner product and covariance shaping methods, can
be advantageous in a variety of problems and can lead to a multitude of new, potentially
effective processing techniques.

In our closing remarks, we mention that there would appear to be many other potential
applications of LS inner product shaping beyond those explored in the thesis. An interesting
and potentially fruitful direction for future research is to identify and explore such new

applications.
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Chapter 9

Inner Product Shaping Matched
Filter Detection

In this chapter we consider an application of optimal QSP measurements and LS inner
product shaping to the generic problem of detecting in the presence of additive noise, which

one from a set of known signals has been received.

In place of the classical MF receiver we propose a class of modified receivers that are
derived by formulating the MF receiver as a QSP measurement, and then imposing an inner
product constraint on the corresponding measurement vectors. Specifically, as outlined in
Chapter 4, the MF receiver for detecting the transmitted signal can be implemented as a
ROM with measurement vectors that are equal to the transmitted signals. Building upon the
notion of optimal QSP measurements, we develop a class of modified receivers by imposing
an inner product constraint on the measurement vectors of the ROM describing the MF
receiver, and then designing an optimal QSP measurement subject to this constraint. The
resulting receiver consists of a bank of correlators with correlating signals that are matched
to a set of signals with a specified inner product structure, and are closest in a LS sense to

the transmitted signals.

Alternatively, we show that the modified receiver can be implemented as an MF demod-
ulator followed by an optimal covariance shaping transformation, that optimally shapes
the correlation of the outputs of the MF prior to detection. This equivalent representation
leads to the concept of minimum MSE (MMSE) covariance shaping, which we consider in

its most general form in Chapter 10.
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In our development we focus primarily on the case in which the correlating signals are
chosen to be orthonormal or to form a normalized tight frame, so that the outputs of the
receiver are uncorrelated on a space formed by the transmitted signals. However, the ideas
we develop in this chapter can be readily applied to other forms of inner product constraints

on the correlating signals.

9.1 Detection Problem

9.1.1 Problem Formulation

A generic problem which has been studied extensively is that of detecting which one of
a set of known signals is received over an additive noise channel. This problem arises
in a wide variety of contexts including target classification, signature analysis, and other
multi-signature problems.

When the additive noise is white and Gaussian, it is well known (see e.g., [11, 32]) that
the receiver which maximizes the probability of correct detection consists of an MF demod-
ulator comprised of a bank of correlators with correlating signals equal to the transmitted
set, followed by a detector which chooses as the detected signal the one for which the output
of the correlator is maximum.

If the noise is not Gaussian, then the MF receiver does not necessarily maximize the
probability of correct detection. However, it is still used as the receiver of choice in many
applications since the optimal detector for non-Gaussian noise is typically nonlinear (see
e.g., [33] and references therein), and depends on the noise distribution which may not be
known. One justification often given for its use is that if a signal is corrupted by Gaussian
or non-Gaussian additive white noise, then the filter matched to that signal maximizes the
output signal-to-noise ratio (SNR) [11].

In this chapter we develop modifications of the MF receiver by imposing inner product
constraints on the measurement vectors of the ROM describing the MF receiver. If we con-
strain these vectors to have a specified inner product structure, then in general they can no
longer be chosen to be equal to the transmitted signals. We therefore choose the measure-
ment vectors to have the required inner products, and to “best” represent the transmitted
signals in some sense. The resulting receiver again consists of a bank of correlators followed

by the same detector used in the MF receiver, where now the correlating signals are matched
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to a set of optimal signals with the desired inner products. This receiver depends only on
the transmitted signals, so that it does not require knowledge of the noise distribution or
the channel SNR. The simulations presented in Section 9.6 strongly suggest that when the
additive noise is non-Gaussian this modified receiver can significantly increase the proba-
bility of correct detection over the MF receiver particularly when the probability of correct
detection with the MF is marginal. When the additive noise is Gaussian, the reduction in

performance over the MF receiver is minor.

9.1.2 Receiver Design

Suppose that one of m signals {s;(t),1 <i < m} is received over an additive noise channel
with equal probability, where the signals lie in a real Hilbert space A with inner product
(z(t),y(t)) = [Z__ x(t)y(t)dt, and span an n-dimensional subspace U C H. We assume
that the signals are normalized! so that [* _ sZ(¢)dt = 1 for all i. The received signal
r(t) is also assumed to be in H, and is modeled as r(t) = s;(t) + n(t) for one value i, where
n(t) is a stationary white noise process with zero mean and spectral density o2, and with
otherwise unknown distribution.

The receiver we design consists of the correlation demodulator depicted in Fig. 9-1, that
cross-correlates the received signal r(t) with each of the m signals {¢;(t) € U,1 <i < m}
so that a; = (g;(t),7(t)), where the signals {g;(t)} are to be determined. The declared
detected signal is s;(t) where 7 = argmaxa;. (We can equivalently obtain a; by filtering
r(t) using a filter with impulse response given by ¢;(—t), and sampling the output at ¢t = 0.)
The difference between the modified receivers and the MF receiver lies in the choice of the
signals ¢;(t).

If we choose the signals ¢;(t) = s;(t) in Fig. 9-1, then the resulting demodulator is
equivalent to the MF demodulator [11]. If the noise is not Gaussian, then the MF receiver
does not necessarily minimize the probability of detection error. However, it is still used
as the receiver of choice in many applications since the optimal receiver for non-Gaussian
noise is typically nonlinear, and requires knowledge of the noise distribution.

For a correlation demodulator in the form of Fig. 9-1, we would like to choose the

!The normalization assumption as well as the assumption that the signals are transmitted with equal
probability is for notational convenience only. As we discuss in Section 9.8, the results readily extend to the
more general case of unequal norms and unequal probabilities
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Figure 9-1: Correlation demodulator.

signals g;(t) so that when the noise is non-Gaussian the resulting detector leads to improved
performance over MF detection. Drawing from the quantum detection problem, we propose
imposing an inner product constraint on the signals g;(¢), which as we show is equivalent to
imposing a constraint on the correlation between the demodulator outputs. Building upon
our results regarding optimal QSP measurements (Chapter 8), we then develop a new class
of correlation receivers that, like the MF, depend only on the transmitted signals, and that
can lead to improved performance over the MF for some classes of non-Gaussian noise, with

essentially negligible loss of performance for Gaussian noise.

In the system of Fig. 9-1, the correlation between the outputs a; of the correlation

demodulator is proportional to the inner products between the signals g;(¢):

cov(ai,ar) = E({g:(t), n(t))(n(t), q (1)) = o*(ai(t), qe(2))- (9.1)

In our modification of the MF demodulator we propose shaping the correlation of the
outputs prior to detection. Thus, we propose choosing the signals ¢;(¢) to have a specified
inner product structure, so that the outputs a; have the desired correlation. In the ensuing
sections we consider the special case in which we choose the signals ¢;(¢) so that the outputs
a; are uncorrelated. In Section 9.7 we briefly consider the more general case in which the

signals ¢;(t) are chosen to have an arbitrary inner product structure.

The subsequent development considers separately the case in which the transmitted

signals are linearly independent and the case in which they are linearly dependent.
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If the signals s;(t) are linearly independent, then we may decorrelate the outputs a; by
choosing the signals ¢;(¢) to be orthonormal. The resulting demodulator is referred to as
the orthogonal MF (OMF) demodulator, and the overall detector is referred to as the OMF

detector.

If the signals s;(t) are linearly dependent, so that they span an n-dimensional subspace
U, then there are at most n orthonormal signals in I/, and we cannot choose the correlating
signals to whiten the outputs a; in the conventional sense. Instead we choose the correlating
signals as projections of a set of orthonormal signals in a larger space containing U, i.e.,
we chose the correlating signals to form a normalized tight frame for #/. As we show, the
outputs a; are then uncorrelated on a space formed by the transmitted signals. The resulting
demodulator is referred to as the projected orthogonal MF (POMF) demodulator, and the
overall detector is referred to as the POMF detector.

Alternative derivations of the OMF and POMF receivers are considered in [36, 37].

9.2 The Orthogonal Matched Filter Demodulator

9.2.1 Design Criterion

We first consider the case in which the signals {s;(¢),1 <7 < m} are linearly independent.

From (9.1) it follows that if the correlating signals ¢;(¢) in Fig. 9-1 are not orthogonal,
then the outputs of the demodulator are correlated. To improve the performance of the
detector, we propose eliminating this common (linear) information prior to detection, so
that the detection is based on uncorrelated outputs. We therefore consider choosing the
correlating signals denoted by ¢;(t) = ¢;(t) to be orthonormal. Then the outputs of the
correlation demodulator are uncorrelated and have equal variance.

There are many ways of choosing a set of orthonormal signals g;(¢). In our modification
of the MF receiver we would like to choose these signals so that when the noise is non-
Gaussian the resulting detector leads to improved performance over MF detection. In
addition we want our design criterion to depend only on the transmitted signals so that the

modified receiver does not depend on the noise distribution or the channel SNR.

The MF demodulator has the well known property that if the transmitted signal is s;(¢),
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then choosing ¢;(t) = s;(t) in Fig. 9-1 maximizes the SNR of a;, denoted SNR;. Indeed,

_EmmnmwzéW@ﬁ@V5$@wwm%wmmwzg,wm

with equality in (9.2) if and only if ¢;(¢) is proportional to s;(¢). The choice ¢;(t) =
si(t) also of course maximizes the total SNR defined by SNRy = »*  SNR; =
01—2 S Kai(t), si(t))[?, since the individual terms are maximized by this choice.

To derive a modification of the MF receiver we may consider choosing a set of or-
thonormal signals ¢;(¢) to maximize the output SNR. If we constrain the signals g;(¢) to
be orthonormal, then in general we cannot maximize SNR; individually subject to this
constraint. However, we may seek a set of orthonormal signals g;(¢) to maximize the total

output SNR,
SNRy = — 3 l(gi(0), s:(0) (9.3)

This problem is equivalent to the quantum detection problem discussed in Section 3.4.
Specifically, comparing (9.3) with (3.13) we see that choosing a set of orthonormal quantum
measurement vectors to maximize the probability of correct detection in a quantum detec-
tion problem, is equivalent to choosing a set of orthonormal correlating signals to maximize
SNRy. We may therefore interpret the design problem of (9.3) as a quantum detection
problem, and then apply results derived in that context. In particular, from our discus-
sion in Section 3.4 it follows that for arbitrary signals s;(t), there is no known closed-form
analytical expression for the orthonormal signals ¢;(¢) maximizing SNRy.

Therefore, in analogy to the quantum detection problem, we propose taking an alterna-
tive approach of choosing a different optimality criterion, namely a squared-error criterion,
and seeking the signals g;(¢) that minimize this criterion. Thus, in the OMF demodulator

the signals g;(t) are chosen to be orthonormal, and to minimize the LS error

m

ers = Y _(si(t) — gi(t), si(t) — gi(2)). (9-4)

=1

This problem is equivalent to the LS orthonormalization problem discussed in Sec-
tion 8.2, so that the minimizing signals §;(¢), which we refer to as the OMF signals, follow

immediately from Theorem 8.1. With S and G denoting the set transformations corre-
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sponding to the signals s;(¢) and §;(¢) respectively,
G = S(5*S)"1/2. (9.5)

Thus, the OMF demodulator consists of a correlation demodulator with orthonormal signals

gi(t) defined by (9.5), that are closest in the LS sense to the signals s;(t).

9.2.2 OMF Signals

To implement the OMF demodulator, we may find it more convenient to reformulate the
OMTF signals in terms of their coefficients in a basis expansion for the m-dimensional space

U spanned by the signals s;(¢). These coefficients can be viewed as vectors in C™.

Let X denote a set transformation corresponding to a set of m signals that form an
orthonormal basis for U. Then s;(t) = Xs; for some s; € C™, and S = XS where S is the

m X m matrix of columns s;. We may then express G of (9.5) in terms of X and S as
G = 5(8*S)""/? = XS(8*S)~1/2. (9.6)
Thus, §;(t) = Xg; where g; is the ith column of the m x m matrix G, and
G = S(S*S)"1/2, (9.7)

Since (9.7) has the same form as (9.6), we conclude that the vectors {g;,1 < i < m} are
the closest orthonormal vectors to the vectors {s;,1 < ¢ < m}, in the LS sense. From
the discussion in Section 8.2.2 it then follows that G is just the partial isometry in the
polar decomposition (PD) of S, and can be expressed in terms of the elements of the SVD

S = USNV* as G = UV*.

Exploiting the relationship between the OMF signals and the PD, these signals can be
computed very efficiently by use of the many known efficient algorithms for computing the

PD (see e.g., [93, 143, 141, 144)).
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9.3 The Projected Orthogonal Matched Filter Demodulator

Suppose now that the transmitted signals {s;(¢),1 < ¢ < m} are linearly dependent, and
span an n-dimensional subspace Y C H, where n < m. As in the case of linearly independent
signals, we can choose the signals ¢;(t) = ¢;(t) in Fig. 9-1 to be orthonormal, and to minimize
the LS error (9.4). Since (g;(t), gi(t)) = 1 for any choice of signals g;(t), minimizing the LS

error is equivalent to maximizing
D on(t),si(0) = D (6 (1), si(0), (0.9

where the signals g% (t) = Pyg;(t) form a normalized tight frame for ¢/. Since, as we showed
in (8.23), for any normalized tight frame for U, Y- (¢ (t), g (t)) = n, maximizing (9.8)

is equivalent to minimizing

Z(Q?(t) —silt), g} (1) — si(2)). (9.9)

Thus, when the signals s;(t) are linearly dependent, choosing a set of orthonormal signals
to maximize (9.8) is equivalent to choosing a normalized tight frame for I/ to minimize the
LS error (9.9). Furthermore, if the transmitted signal is s;(¢), then the ith output of the

correlation demodulator with signals g;(t) is
@ = (g:(t),r (1)) = (g (1), 54(2) + n(1)) + (6" (1), (1)) = s + s, (9-10)

where g (t) = PyLgi(t), ni = (g¥ (t),n(t)), and r; = (g4(t), si(t) + n(t)). Since r; and
n; are uncorrelated, n; does not contain any linear information that is relevant to the
detection of s;(t). Therefore in the case of linearly dependent signals s;(t), we propose
choosing the signals ¢;(¢) in Fig. 9-1 to be a normalized tight frame for ¢/, which we denote

by ¢;(t) = fi(t), that minimizes the LS error.

Thus we seek the signals {f;(¢),1 <14 < m} corresponding to F' to minimize
m

es = Y _(si(t) — fi(t), si(t) — fu(t)), (9.11)

=1
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subject to the constraint
FF* = Py. (9.12)

This problem is equivalent to the LS tight frame problem discussed in Section 8.2.1, so
that the minimizing signals fi(t), which we refer to as the POMF signals, follow immediately

from Theorem 8.1. With F denoting the set transformations corresponding to the signals

F = S((5*S)Y)t, (9.13)

Thus, the POMF demodulator consists of a correlation demodulator with signals fz(t)

defined by (9.5) that form a tight frame for U/, and are closest in the LS sense to the signals

S; (t)

9.3.1 POMF Signals

As with the OMF demodulator, to implement the POMF demodulator we may find it
more convenient to reformulate the POMF signals in terms of their coefficients in a basis

expansion for the n-dimensional space U, which can be viewed as vectors in C".

Let X denote a set transformation corresponding to a set of n signals that form an
orthonormal basis for Y. Then s;(t) = Xs; for some s; € C*, and S = XS where S is the

n X m matrix of columns s;. We can now express F in terms of X and S as
F = S5((5*S)Y2)t = XS((S*S)V/?)1. (9.14)
Thus, fi(t) = Xf; where f; is the ith column of the n x m matrix F, and
F = S((S*S)/)t. (9.15)

Since (9.15) has the same form as (9.14), we conclude that the vectors {f;,1 < < m} form
the closest normalized tight frame to the vectors {s;,1 < i < m}, in the LS sense. From the
discussion in Section 8.2.2, F is just the projection onto the space spanned by the vectors

s; of the partial isometry in a PD of S, and can be expressed in terms of the elements of
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the SVD S = USV* as F = UI,,, V*, where

Lim = [ L. Opy(m—n) ] i (9.16)

9.4 Matched Filter Representation of the OMF and POMF

Demodulators

In many practical receivers the MF demodulator serves as a front-end whose objective is to
obtain a vector representation of the received signal. Thus, in many applications we do not
have control over the correlating signals of the correlation demodulator, but rather we are
given the MF outputs. In this section we show that the OMF and POMF demodulators
can be implemented by processing the MF outputs. Specifically, we derive an equivalent
implementation of the OMF and POMF demodulators that consists of an MF demodulator
followed by an optimal whitening transformation on a space formed by the transmitted

signals, that optimally decorrelates the outputs of the MF prior to detection.

9.4.1 Matched Filter Representation of a Correlation Demodulator

We first show that any correlation demodulator of the from of Fig. 9-1 with correlating
signals ¢;(t) € U, is equivalent to an MF demodulator followed by a linear transformation

T on the MF outputs, as depicted in Fig. 9-2.

Since the signals s;(t) span U, any signal ¢;(t) € U can be expressed as a linear combina-
tion of the signals s;(¢), so that the set transformation ) corresponding to the signals g;(t)
may be expressed as ) = ST*, where T is an m x m coeflicient matrix. The vector output a
of Fig. 9-1, with components a;, can then be written as a = Q*r(t) = TS*r(t) = Ta, where

a = S*r(t) is the vector output of the MF demodulator. Thus, the correlation demodulator

with correlating signals ¢;(t) € U is equivalent to an MF demodulator followed by a linear

transformation T defined by @ = ST*.
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Figure 9-2: Equivalent representation of a correlation demodulator. The linear transfor-
mation T is a function of the transmitted signals s;(¢) and the correlating signals g;(t) of
Fig. 9-1.

9.4.2 Matched Filter Representation of the OMF Demodulator

If the signals g;(t) = g;(t) in Fig. 9-1 are orthonormal, then G*G = I,;, and the corresponding
transformation T in Fig. 9-2 defined by G = ST* must satisfy

TS*ST* = I,. (9.17)

We now try to gain insight into the condition (9.17). From (9.1), the covariance between
the outputs @; of the MF demodulator is given by cov(;, dx) = 02(s;(t), s(t)), so that the
covariance matrix of a, denoted C,, is C, = 025*S. The covariance of b = Ta, denoted
Cy, is then equal to C, = 02T'S*ST*, which using (9.17) reduces to Cy = 0°I,,. Thus, T
is a whitening transformation? that whitens the output a of the MF demodulator.

In summary, a correlation demodulator with orthonormal signals g;(t) € U is equivalent
to an MF demodulator followed by a whitening transformation, which we denote by W,
that is defined by G = SW*.

Since every set of orthonormal correlating signals defines a whitening transformation,
and the OMF signals are optimal in some sense, we expect the corresponding whitening
transformation to also have some form of optimality. Indeed, we now show that the whiten-

ing transformation in the OMF demodulator minimizes the MSE between the input a and

*We define a random vector a € C™ to be white if the covariance of a is proportional to I,,.
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the output b.

Let gi(t) denote an arbitrary set of orthonormal signals with set transformation G ex-

pressible as G = SW* for some whitening transformation W. Then

o?(si(t) — gi(t),si(t) = gi()) = E ({sa(t) — gi(t),n(t))(n(t), s:(t) — i(1)))
= E(a; - b)? (9.18)

where a) = a; — E(a;),a; = (si(t),r(t)) is the ith output of the MF demodulator, and
b, = bi — E(b;) where b; = (g;(t),(t)) is the ith component of b = Wa. Thus, seeking a set
of orthonormal signals g;(¢) that minimize the LS error (9.4) is equivalent to seeking the

whitening transformation W that minimizes the total MSE given by

evse = 3 var(a; —b;) =y E((a —b})?), (9.19)
=1 i=1

where b; is the ith component of the output b = Wa of the whitening transformation.
That is, from all possible whitening transformations we seek the one that results in a white
vector b that is as close as possible in MSE to the output a of the MF demodulator. We

refer to such whitening as MMSE whitening.

We may therefore interpret the OMF demodulator as an MF demodulator followed by
an MMSE whitening transformation that optimally whitens the outputs of the MF prior to
detection. Since the OMF signals are the signals corresponding to G = SV/V*, from (9.5) it
follows that W = (5*5)~1/2. The general MMSE whitening problem is considered in the
next chapter. As we expect, applying the general form of the solution (see Section 10.2.1)

to our problem results in the same optimal transformation W.

9.4.3 Matched Filter Representation of the POMF Demodulator

If the signals ¢;(t) = fi(t) form a normalized tight frame for ¢, then F*F = P, where
VY = R(F*) = N(F)*. Thus, in this case T must satisfy

TS*ST* = Py, (9.20)
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and the covariance of b = Ta is
Cy = 0°TS*ST* = o%Py. (9.21)

We therefore conclude that seeking a normalized tight frame for ¢ that minimizes the
LS error defined by (9.4) is equivalent to seeking the optimal transformation T that satisfies
(9.20) and minimizes the MSE given by (9.19).

In the next chapter we show that if a random vector b has covariance given by (9.21),
then b lies in V with probability one (w.p. 1), and its representation in terms of any
orthonormal basis for V is white. We then say that b is white on V. Thus, T = Wi
is a subspace whitening transformation that whitens the vector a with covariance C, on
VY = R(C,) (see Section 10.2.2 and [40] for a detailed discussion on subspace whitening).
So, a correlation demodulator with signals f;(t) € U that from a normalized tight frame for
U is equivalent to an MF demodulator followed by a subspace whitening transformation,
defined by F = SW}.

In a manner analogous to the OMF demodulator, we may show that the POMF de-
modulator is equivalent to a MF demodulator followed by an MMSE subspace whitening
transformation Ws that minimizes the MSE between a and b. The POMF signals then
correspond to F = SW,, so that from (9.13) it follows that W, = ((5*S)1/2)f. The gen-
eral MMSE subspace whitening problem is considered in the next chapter. As we expect,
applying the general form of the solution (see Section 10.2.2) to our problem results in the
same optimal transformation Ws.

The alternative representations of the OMF and POMF demodulators developed in
this section, lead to the new broadly applicable concept of MMSE whitening and subspace
whitening, which can be viewed as a stochastic analogue of the LS orthonormalization
problem. We explore the MMSE whitening problem, together with the more general MMSE

covariance shaping problem, in the next chapter.

9.5 Summary of the OMF and POMF Demodulators

We summarize our results regarding the OMF and POMF demodulators in the following

theorems:
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Theorem 9.1 (Orthogonal matched filter (OMF) demodulator). Let {s;(t),1 <
i < m} denote a set of m transmitted signals in a Hilbert space H that span an m-
dimensional subspace U C H. Let {§;(t),1 < i < m} denote the OMF signals that are
the correlating signals of the OMF demodulator. Let S and G denote the set transforma-

tions corresponding to the signals s;(t) and g;(t), respectively. Then
G = 5(5*8)"1/2.

Let X denote a set transformation corresponding to an orthonormal basis for U, let s;(t) =
Xs;, and let S be the matriz of columns s; with SVD S = UXV*. Then §;(t) = Xg; where

the vectors g; are the columns of é, and
G =S(S*S)" /2 = UV*.
In addition,

1. The OMF demodulator can be realized by an MF demodulator followed by a minimum

mean-squared error whitening transformation W = (§*8)~1/% = (8*8)~1/2;

2. The signals §;(t) minimize the least-squares error given by (9.4), i.e., they are the

closest orthonormal signals to the signals s;(t);

3. The vectors g; are the closest orthonormal vectors to the wvectors s;, and are the

columns of the partial isometry in the polar decomposition of S.

Theorem 9.2 (Projected orthogonal matched filter (POMF) demodulator). Let
{si(t),1 < i < m} denote a set of m transmitted signals in a Hilbert space H that span
an n-dimensional subspace U C H. Let {fi(t),1 < i < m} denote the POMF signals
that are the correlating signals of the POMF demodulator. Let S and F denote the set

transformations corresponding to the signals s;i(t) and fi(t), respectively. Then
F=5((5"8)"/).

Let X denote a set transformation corresponding to an orthonormal basis for U, let s;(t) =

Xs;, and let S be the matriz of columns s; with SVD S = UXV*. Then fz(t) = Xf, where
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the vectors f; are the columns of f‘, and
F = S((8*S)/)t = UL, V*,
where Ly, is giwen by (9.16). In addition,

1. The POMF demodulator can be realized by an MF demodulator followed by a min-
imum mean-squared error subspace whitening transformation W, = (S*S)/:)t =

(8*)'/)1;

2. The signals f;(t) minimize the least-squares error given by (9.11), i.e., they form the

closest normalized tight frame to the signals s;(t);

3. The vectors f; form the closest normalized tight frame to the vectors s;, and are the pro-

jections onto U of the columns of the partial isometry in a polar decomposition of S.

Finally, we note that based on results derived in the context of quantum detection [26]
it can be shown that in many cases the OMF and POMF demodulators have an additional
property, analogous to the SNR property of the MF demodulator.

Specifically, from the equivalence between the maximum SNRy problem and the quan-
tum detection problem established in Section 9.2.1, and the discussion in Section 3.4 regard-
ing the LS quantum measurement, it follows that when the signals s;(¢) are geometrically
uniform, the OMF and POMF signals maximize SNRz subject to the constraint that the
outputs of the demodulator are uncorrelated on the space in which they lie. In [77] it is
claimed that most practical signal sets used in digital communication are indeed geometri-
cally uniform. Thus, in a communications context the POMF and OMF demodulators have
a property analogous to the MF demodulator, namely that they typically maximize the total
SNR7 subject to the decorrelation constraint. This provides some additional justification
for this class of receivers.

Further results regarding the orthogonal or tight frame signals that maximize SNRp
that follow from results pertaining to quantum detection are that if the signals are nearly
orthogonal, then the OMF and POMF signals maximize SNRy [150]. Iterative algorithms

for maximizing SNRy for arbitrary signal sets are given in Section 8.5.4 and in [150].
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9.6 Simulation Results

In this section we provide simulation results suggesting the behavior and performance of

the OMF detector, in comparison to the MF detector?.

The behaviors of the detectors where simulated in non-Gaussian and Gaussian noise
using random signal constellations. The signals in the constellation have dimension m
equal to the number of the signals in the constellation, and the samples of the signals are
mutually independent zero-mean Gaussian random variables with variance 1/y/m, scaled

to have norm 1.

We considered two different distributions for the non-Gaussian noise. The first is a
Gaussian mixture of two components with equal weights. This choice of distribution is
motivated by the fact that Gaussian mixtures have been used extensively to model non-
Gaussian noise [151, 152, 153], and in part because the Gaussian mixture model is capable
of closely approximating many non-Gaussian distributions. The second distribution is the
Beta distribution, which is chosen since it is very flexible and capable of attaining a wide
variety of shapes by varying its two parameter values a and b. Depending on the values
of these parameters the Beta distribution will have the “U”, the “J”, the triangle or the
general bell shape. In addition, the Beta distribution can model the effect of several noise
components since the sum of N Gamma-distributed random variables is Beta-distributed,

if N is not too large [154].

We generated 500 realizations of signals. For each signal realization, we determined the
probability of correct detection for the detectors in both types of noise by recording the
number of successful detections over 500 noise realizations. We then plotted histograms of
the probability of correct detection P; for the different detectors, which indicated that P,
has a unimodal distribution with a bell-shaped appearance. Therefore, it is reasonable to
compactly present the results in terms of the mean and standard deviation of P; for the

various detectors.

3These simulations where performed in collaboration with D. Egnor and appear in [37]. Additional
simulation results appear in [36].
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9.6.1 Gaussian Mixture Noise

We first considered a Gaussian mixture of two components each with standard deviation
0.25 centered at +1, corresponding to an SNR close to 0 dB.

In Fig. 9-3 we plot the mean of P; for the OMF detector and the MF detector as
a function of the number of signals in the transmitted constellation. The vertical lines
indicate the standard deviation of P;. From the figure it is evident that at this SNR the
OMTF detector outperforms the MF detector, where the relative improvement in performance

of the OMF detector over the MF detector increases for increasing constellation size.

Gaussian mixture noise with SNR = 0 dB, o/u=0.2
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Figure 9-3: Comparison between the OMF and MF in Gaussian mixture noise, as a function
of the number of signals in the transmitted constellation. The mixture components have
standard deviation of 0.25 and are centered at £1. The dashed line is the mean P, using
the OMF detector, and the solid line is the mean Py using the MF detector. The vertical
lines indicate the standard deviation of the corresponding P;.

We repeated the simulations for different parameters of the Gaussian mixture compo-
nents, again at an SNR of 0 dB. In general we found that the relative improvement of
the OMF detector over the MF detector increased as the separation between the mixtures
increased. When the separation is decreased relative to the mixture standard deviation the
relative improvement in performance using the OMF detector decreases, consistent with

the fact that the Gaussian mixture distribution approaches a Gaussian distribution. The
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same behavior is evident when varying the standard deviation of the mixture components
for fixed mean separation. In Fig. 9-4 we plot the mean of P; for the OMF and MF de-
tectors for constellations of 13 signals in Gaussian mixture noise of two components each
with standard deviation o centered around 4y, as a function of o/u. The vertical lines
indicate the standard deviation of P;. As the standard deviation of the mixture compo-
nents increases relative to the mixture mean, the Gaussian mixture distribution approaches
a Gaussian distribution, in which case the relative improvement in performance using the

OMF detector decreases.
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Figure 9-4: Comparison between the OMF and MF detectors for transmitted constellations
of 13 signals in Gaussian mixture noise with mixture components with standard deviation
o centered at +pu, as a function of ¢/u. The dashed line is the mean P, using the OMF
detector, and the solid line is the mean P,; using the MF detector. The vertical lines indicate
the standard deviation of the corresponding P,.

In general we observed that the relative improvement in performance of the OMF over
the MF detector increased with decreasing SNR, and is predominant for large signal con-
stellation size. For increasing values of SNR the relative improvement in performance using
the OMF detector decreases.

The qualitative behavior of the POMF detector in comparison to the MF detector when

varying the Gaussian mixture parameters and the SNR is similar to that of the OMF
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detector.

9.6.2 Beta Distributed Noise

We next consider Beta-distributed noise with a variety of parameter values.

In Fig. 9-5 we plot the mean of P; for the OMF detector and the MF detector in
Beta-distributed noise with a = b = 1, as a function of the number of signals in the
transmitted constellation. The vertical lines indicate the standard deviation of Py. From
the figure it is evident that the OMF detector outperforms the MF detector, where the
relative improvement in performance of the OMF detector over the MF detector increases

for increasing constellation size.

Beta-distributed noise with SNR = 0 dB, a=b=0.1
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Figure 9-5: Comparison between the OMF and MF detectors in Beta-distributed noise, as
a function of the number of signals in the transmitted constellation. The parameters of the
distribution are a = b = 0.1. The dashed line is the mean P; using the OMF detector, and
the solid line is the mean P, using the MF detector. The vertical lines indicate the standard
deviation of the corresponding FP;.

We repeated the simulations for different parameter values. In general we found that
the relative improvement of the OMF detector over the MF detector increased as the dis-
tribution became more bimodal. In Figs. 9-6-9-8 we plot the mean of P; for the OMF

and MF detectors for constellations of 13 signals in Beta-distributed noise with varying
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parameters. The vertical lines indicate the standard deviation of P;. As the b parame-
ter increases, the Beta distribution approaches a unimodal distribution, in which case the

relative improvement in performance using the OMF detector decreases.
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Figure 9-6: Comparison between the OMF and MF detectors for transmitted constellations
of 13 signals in Beta-distributed noise, as a function of the parameters with a = b. The
dashed line is the mean P, using the OMF detector, and the solid line is the mean P; using
the MF detector. The vertical lines indicate the standard deviation of the corresponding
Py.

In Fig. 9-9 we plot the mean and standard deviation of P, for the OMF and MF detectors
as a function of SNR for transmitted constellations of 13 signals, in Beta-distributed noise
with @ = b = 0.1. The SNR is given by 10log P;/0?, where P is the signal power and the

variance of the Beta distribution is given in terms of the parameters a and b as
9 ab

R AR ] R (9:22)

The improvement in performance of the OMF over the MF detector is predominant for low

to intermediate values of SNR.
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13 signals in Beta—distributed noise with SNR = 0 dB, b=0.1
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Figure 9-7: Comparison between the OMF and MF detectors for transmitted constellations
of 13 signals in Beta-distributed noise with b = 0.1, as a function of the parameter a. The
dashed line is the mean P; using the OMF detector, and the solid line is the mean Py using
the MF detector. The vertical lines indicate the standard deviation of the corresponding
P,.

9.6.3 Gaussian Noise

We repeated the simulations leading to the results previously presented with zero-mean
Gaussian noise. In Fig. 9-10 we plot the mean of P; for the OMF detector and the MF
detector in Gaussian noise, as a function of the number of signals in the transmitted con-
stellation. The vertical lines indicate the standard deviation of Py. In Fig. 9-11 we plot the
mean of Py using the OMF and MF detectors for transmitted constellations of 7 signals in
Gaussian noise, as a function of SNR.

As expected, for Gaussian noise the MF detector outperforms the OMF detector. This
is consistent with the fact that the MF detector maximizes the probability of correct de-
tection for Gaussian noise. However, it is evident from Figs. 9-10-9-11 that the relative
improvement in performance using the MF detector over the OMF is not very significant.
Specifically, in Fig. 9-11 note that the maximum (mean) difference in probability of cor-
rect detection is less than 0.08. These results are encouraging since they suggest that if

the receiver is designed to operate in different noise environments, or in an unknown noise
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13 signals in Beta—distributed noise with SNR = 0 dB, a=0.1
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Figure 9-8: Comparison between the OMF and MF detectors for transmitted constellations
of 13 signals in Beta-distributed noise with a = 0.1, as a function of the parameter . The
dashed line is the mean P; using the OMF detector, and the solid line is the mean Py using
the MF detector. The vertical lines indicate the standard deviation of the corresponding
P,.

environment, than we may prefer using an OMF or POMF detector since for certain non-
Gaussian noise distributions these detectors may result in a substantial improvement in
performance over an MF detector, without significantly degrading the performance if the

noise is Gaussian.

9.7 Inner Product Shaping Matched Filter Detection

In this chapter we focused our attention primarily on modified receivers that result from
constraining the outputs of the correlation demodulator to be uncorrelated on an appropri-
ate subspace. Equivalently, the correlating signals are constrained to be orthonormal or to
be projections of orthonormal signals. We may also consider modified receivers in which the
correlating signals are chosen to shape the correlation of the demodulator outputs. In this
case the modified receiver consists of signals ¢;(¢) with the desired inner product structure,
that are closest in a LS sense to the transmitted signals s;(¢). The optimal signals g;(¢) can

be readily determined from the results of Chapter 8.
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Figure 9-9: Comparison between the OMF and MF detectors for transmitted constellations
of 13 signals in Beta-distributed noise with a = b = 0.1, as a function of the SNR. The
dashed line is the mean P; using the OMF detector, and the solid line is the mean Py using
the MF detector. The vertical lines indicate the standard deviation of the corresponding
P,.

As in Section 9.4, we can show that a correlation demodulator with signals g;(¢) with in-
ner products @*@ = R, that are closest in a LS sense to the signals s;(¢), can be equivalently
implemented as an MF demodulator followed be an optimal covariance shaping transfor-
mation, that optimally shapes the covariance of the MF output prior to detection. The
optimal shaping transformation has the property that it minimizes the MSE between the
MF output and the shaped output. In the next chapter we consider the MMSE covariance

shaping problem in its most general form.

Preliminary simulations demonstrate that in a variety of cases choosing a set of non-
orthogonal correlating signals with a specified inner product structure, can further improve
the performance of the modified receiver over the MF receiver. An interesting and poten-
tially promising direction for future research is to investigate the relationship between the
inner product structure of the correlating signals, the inner products of the transmitted
signals, and the receiver performance. In particular, it would appear useful to design an

optimality criterion for choosing the desired inner product structure, based on knowledge
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Figure 9-10: Comparison between the OMF and MF detectors in zero mean, unit variance
Gaussian noise, as a function of the number of signals in the transmitted constellation. The
dashed line is the mean P; using the OMF detector, and the solid line is the mean P; using
the MF detector. The vertical lines indicate the standard deviation of the corresponding
Py.

of the transmitted signals.

It is also interesting to evaluate the performance of the modified receivers when the
signals ¢;(t) are designed to have a specified inner product structure, so that the eigenvectors
of R = Q*Q are specified, and the eigenvalues are chosen to minimize the LS error. The

optimal signals g;(¢) of this form can again be determined using the results of Chapter 8.

9.8 Summary and Remarks

In this chapter we provided a preliminary development of inner product shaping matched
filter detection. However, there are various aspects of this new class of receivers that warrant
further study and evaluation.

As noted in the previous section, an interesting and important direction to explore is
the use of other forms of inner product shaping in the design of the modified receiver. Of
particular importance would be to determine methods for optimal design of the correlating

signals inner product structure, or equivalently, the output covariance shape.
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Figure 9-11: Comparison between the OMF and MF detectors for transmitted constellations
of 7 signals in Gaussian noise, as a function of SNR. The dashed line is the mean P, using
the OMF detector, and the solid line is the mean P; using the MF detector. The vertical
lines indicate the standard deviation of the corresponding Py.

The performance improvement using the modified receiver was demonstrated through
simulation only. It would be extremely valuable to analyze the behavior of the proposed
receivers analytically. Of related interest is the development of analytical methods for
determining under which non-Gaussian distributions the modified receivers lead to improved
performance over the MF receiver, for example using large deviation theory and the Chernoff
bound.

Another issue that deserves attention is whether inner product shaping matched filter
detection is optimal in some sense, for example under certain channel assumptions. Al-
though we demonstrated through simulation that in some cases of non-Gaussian noise the
OMF receiver can lead to a significant improvement in detection performance, we have not
established that it is optimal under any specific criterion.

Of significant practical interest is the robustness of the modified receivers with respect
to modeling errors, for example in the case in which the additive noise is not white or
does not have zero mean, or in the case in which the transmitted signals are not known

exactly. Preliminary simulations demonstrate that the modified receivers have improved
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resilience to modeling errors over the MF receiver, however this requires further evaluation
and investigation. It is also interesting to evaluate the performance of the receivers for
coded systems.

In our closing remarks, we note that we can readily extend the results developed in
this chapter to the case in which the signals s;(¢) have unequal norm, or the case in which
the signals are transmitted with unequal probability. In such cases, we may choose the
correlating signals ¢;(t) to minimize a weighted LS error as in Section 8.3, where the weights

may be chosen to reflect the signal priors, or the signal norms.
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Chapter 10

MMSE Covariance Shaping

In this chapter we demonstrate how the ideas and results derived in the context of quantum
detection lead to an interesting new perspective on covariance shaping problems. Specifi-
cally, we develop linear covariance shaping transformations that minimize the MSE between
the original and shaped data, 4.e., that result in an output with the desired covariance that
is as close as possible to the input, in an MSE sense. As we have seen in the previous chap-
ter, the concept of MMSE covariance shaping is closely related to the concept of LS inner
product shaping developed in Chapter 8. Thus, we may view MMSE covariance shaping as

a stochastic analog of the optimal QSP measurement design problem.

Data shaping arises in a variety of contexts in which it is useful to decorrelate or other-
wise shape a data sequence either prior to subsequent processing, or to control the spectral
shape after processing. For example, in a multi-signature system the received signal is typ-
ically processed by a bank of filters matched to the signatures, with the declared signature
being that associated with the maximum value in the MF vector output. In general there
may be correlation between the elements of the vector output of the MF bank. As shown
in the previous chapter and in [36, 37], the probability of correct detection can be improved
in many cases by first shaping the MF output prior to applying a simple detection algo-
rithm. Other contexts in which data shaping has been used to advantage include enhancing

direction of arrival algorithms by pre-whitening [34, 35].

As is well known, the transformation that shapes a data vector is not unique. While
in some applications of covariance shaping certain conditions might be imposed on the

transformation such as causality or symmetry, with the exception of the work in [36, 37, 38,
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39, 41] which explicitly relies on the optimality properties developed here, there have been no
general assertions of optimality for various choices of a covariance shaping transformation.

Shaping the covariance of a data vector or signal introduces distortion to the values of
the data relative to the unshaped data. In certain applications of shaping, it is desirable to
shape the data while minimizing this distortion, i.e., to choose the shaping transformation
in an optimal sense. Drawing from the notion of optimal QSP measurements, in this chapter
we develop a linear shaping transformation that minimizes the MSE between the original
and shaped data, i.e., that results in an output that is as close as possible to the input, in an
MSE sense. We refer to such a covariance shaping transformation as an MMSE covariance

shaping transformation.

10.1 Optimal Covariance Shaping Transformation

I random vector with rank-n covariance matrix C,. We

Let a € C™ denote a zero-mean
wish to shape the covariance of a using a shaping transformation T to obtain the random
vector b = Ta, where the covariance matrix of b is given by Cj = ¢?R for some ¢ > 0 and

rank-r matrix R with » < n. Thus we seek a transformation T such that
C, = TC,T* = ¢’R, (10.1)

for some ¢ > 0. We refer to any T satisfying (10.1) as a covariance shaping transformation.

Given a covariance matrix C,, there are many ways to choose a covariance shaping
transformation T satisfying (10.1). Although there are an unlimited number of covariance
shaping transformations satisfying (10.1), no general assertion of optimality is known for the
output b = Ta of these different transformations. In particular, the random vector b = Ta
may not be “close” to the input vector a. If the vector b undergoes some noninvertible
processing, or is used as an estimator of some unknown parameters represented by the data
a, then we may wish to choose the shaping transformation in a way that b is close to a in
some sense. This can be particularly important in applications in which b is the input to
a detector, so that we may wish to shape the covariance of a prior to detection, but at the

same time minimize the distortion to a by choosing T so that b is close to a.

'If the mean E(a) is not zero, then we can always define a' = a — F(a) so that the results hold for a’.
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We therefore propose a shaping transformation that is optimal in the sense that it results
in a random vector b that is as close as possible to a in MSE. Specifically, among all possible

covariance shaping transformations we seek the one that minimizes the total MSE given by
m

ewse = »_ B ((ai —b:)?) = E((a—b)*(a— b)), (10.2)
i=1

subject to (10.1), where a; and b; are the ith components of a and b respectively. We may

wish to constraint the constant ¢ in (10.1), or may choose ¢ to minimize the total MSE.

Our approach to determining the shaping transformation T that minimizes (10.2) is to
interpret the MMSE covariance shaping problem as a LS inner product shaping problem,

discussed in Chapter 8, and then apply results derived in that context.

To this end, let C, have an eigendecomposition C, = VDV* where V is a unitary matrix
and D is a diagonal matrix whose first n diagonal elements are positive, and whose remaining
diagonal elements are all equal 0, and let R have an eigendecomposition R = QAQ* where
Q is a unitary matrix and A is a diagonal matrix whose first r < n diagonal elements are
positive, and whose remaining diagonal elements are all equal 0. Define S = DY/2V* and
H = cAY2Q* so that S*S = C, and H*H = 2R, and let n be a zero-mean random vector
with covariance I,,. Then a and b have the same mean and covariance as S*n and H*n
respectively, so that as long as we are concerned with first and second order statistics only,

we may write a = S*n and b = H*n. We can then express eygg as

EMSE =

— Tr((S—H)*S - H)). (10.3)

Thus, seeking a covariance shaping transformation T to minimize the MSE is equivalent
to seeking the matrix H with columns h; that are closest to the columns s; of S in a LS
error sense, subject to H*H = ¢?R. This problem is just the LS inner product shaping

~

problem discussed in Chapter 8. From Theorem 8.3 it follows that the optimal vectors h;
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are the columns of
H = oUZ*AY2Q", (10.4)

where SQA'/? = UXZ* is the SVD of SQA'/2. If ¢ in (10.1) is fixed then o = ¢, and if ¢

is chosen to minimize the MSE then « = ¢ with

. Tr((CaR)Y?)
e~ —hm (10.5)

It also follows from the derivation of the LS vectors that H can always be chosen so that
the columns h; of H lie in the space U = R(D) spanned by the vectors s;. Specifically, with
Y = SQA'/? and | = rank(Y), only the first I columns of U are determined by the SVD
of Y. These columns span a subspace of Y. We can therefore always chose the next r —
columns of U so that together, the first r columns span a subspace of /. Since, as showed
in Chapter 8, the range space of H is spanned by the first r columns of U, this then implies

that the vectors flz lie in U.

Thus with an appropriate choice of U, h; € U, and we may write H as
H = p,H = SS'H = SX, (10.6)

where X = STH, and St = V(D!/2)!. The optimal b is then given by b = H*n = X*S*n =

X*a, so that the MMSE covariance shaping transformation T is related to H through
T = X* = H*(sh*. (10.7)
Finally, from (10.4)

T = aQA?ZU*(SH)* = aQAY2ZU*(DY?) v, (10.8)

In the special case in which r = n = m so that C, and R are both positive definite,

UzZ* = SQA1/2(A1/2Q*S*SQA1/2)_1/2
= DY2V*(RC,) /2QA'/?, (10.9)
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where we used (B.3), and T reduces to
T = aQAY?ZU*D /2V* = aR(C,R)"/? = (RC,) /’R. (10.10)
We summarize our results regarding MMSE covariance shaping in the following theorem:

Theorem 10.1 (MMSE covariance shaping). Let a € C™ be a random vector with
rank-n covariance matriz C, = VDV™*. Let T be the optimal covariance shaping trans-
formation that minimizes the MSE defined by (10.2), between the input a and the output
b = Ta with rank-r covariance matriz C, = R where R = QAQ* and ¢ > 0. Let
DY/2V*QA'/2 = USZ* where the first r columns of U are chosen so that they span a
subspace of R(D). Then

T = aQA2ZU*(DV2) V¥,
where
1. if c is specified then a = c;
2. if ¢ is chosen to minimize the MSE then o = ¢ where ¢ = Tr((CaR)l/Q) /Tr(R).

In addition, if r = n =m then T = aR(C,R)"/2 = o(RC,) /?R.

10.2 Examples of MMSE Covariance Shaping

In this section we consider some special cases of MMSE covariance shaping. We first con-
sider MMSE whitening and subspace whitening, in which the whitening transformation is
designed to optimally whiten the vector on a subspace in which it is contained. These con-
cepts are developed in more detail in [40]. Applications of MMSE whitening and subspace
whitening to MF detection where previously considered in Chapter 9. We then consider
the case of MMSE unwhitening and subspace unwhitening, in which the random vector a
is white on the subspace in which it is contained, and the problem is to optimally shape its

covariance.
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10.2.1 MMSE Whitening

Suppose that a € C™ is a random vector with positive definite covariance matrix C,. We
seek a whitening transformation T = W such that the vector b = Wa has covariance
C; = c?1,, for some ¢ > 0, and is as close as possible to a in the MSE sense.

The MMSE whitening transformation follows from Theorem 10.1 with R =1,,,,
W =aC, /2, (10.11)
where o = ¢ if ¢ is fixed and a = é if ¢ is chosen to minimize the MSE where

é= %T&r (C}/Q) . (10.12)

It is interesting to note that the MMSE whitening transformation (10.11) has the addi-
tional property that it is the unique symmetric whitening transformation [155]. It is also
proportional to the Mahalanobis transformation, that is frequently used in signal processing

applications incorporating whitening (see e.g., [44, 34, 35]).

10.2.2 MMSE Subspace Whitening

Suppose now that C, has rank n < m. In this case there is no whitening transformation
W such that WC,W* = ¢2I,,,. Instead, we propose whitening a on the space in which it

is contained, which we refer to as subspace whitening.

Subspace whitening

Let a be a zero-mean random vector in C™ with rank-n covariance matrix C,, and let
Y C C™ denote the range space R(C,). If C, is not invertible, then the elements of a are
deterministically linearly dependent with probability one (w.p. 1)?, and consequently any
realization of the random vector a lies in V (see Appendix C.1). We may therefore consider
whitening a on V, which we refer to as subspace whitening.

First consider a zero mean random vector q € C™ with full-rank covariance matrix, and

let y = Wq where W is a whitening transformation, so that y is white. Then y and q lie in

2Throughout this section when we say that the elements of a random vector are linearly dependent we
mean w.p. 1; similarly, when we say that a random vector lies in a subspace we mean w.p. 1.

264



the same space C™. Furthermore, if y is white then the representation of y in terms of any
orthonormal basis for C™ is also white. This follows from the fact that any two orthonormal
bases for C™ are related through a unitary transformation. We define subspace whitening

to preserve these two properties.

Let a be a random vector with covariance C, with range space V, and let b denote the
output of a subspace whitening transformation of a. Since a € V we require that b € V. In
addition, we require that the representation of b in terms of some orthonormal basis for V
is white, which then implies that the representation in terms of any orthonormal basis for

V is white.

In Appendix C.2 we translate the conditions such that a random vector b is white on

V, to conditions on the covariance matrix C,. Specifically, we show that Cp, must satisfy,
Cy = Py = VL, V*, (10.13)
where the first n columns of V form an orthonormal basis for V, and

N I, 0
I, = . (10.14)
0 0

MMSE subspace whitening transformation

To restate the MMSE subspace whitening problem, let a € C™ be a random vector with
rank-n covariance matrix C, = VDV* where n < m, and let ¥V = R(C,). We seek a
subspace whitening transformation T = W, such that the vector b = W;a is white on V,
namely such that b has a covariance matrix Cy, = 2Py = cQVinV*, where I, is given by

(10.14), ¢ > 0, and is as close as possible to a in the MSE sense.

The MMSE subspace whitening transformation, denoted by Ws, follows from Theo-
rem 10.1 where we substitute V and I,, for Q and A respectively. With these substitutions,
U and Z are determined from the SVD of D/2V*QA'/2 = D'/2, 50 U = Z =I,,. Then

W, = aV(D/?)'V* = o(C, /), (10.15)
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where if ¢ is fixed then o = ¢, and if ¢ is chosen to minimize the MSE then a = ¢ with

¢ = %Tr(Calﬂ). (10.16)

It is intuitively reasonable and follows from the derivation (see [40]) that W, is uniquely
specified on V, but can be arbitrary on V. However, since the input a to the whitening
transformation lies in ¥V w.p. 1, the choice of \/?\Vs on V' does not affect the output b (w.p. 1).

The results above are summarized in the following theorem:

Theorem 10.2 (MMSE subspace whitening). Let a € C™ be a random vector with
rank-n covariance matriz C, = VDV™, and let V denote the range space of C,. Let \/7\78 be
any subspace whitening transformation that minimizes the MSE defined by (10.2), between
the input a and the output b with covariance matriz C, = c?Py = cQVinV*, where I, is

given by (10.14) and ¢ > 0. Then

A~

1. Wy is not unique;
2. Ws = 04((3,11/2)Jr 1s an optimal subspace whitening transformation where

(a) if c is specified then o = c;
(b) if ¢ is chosen to minimize the MSE then a = (1/n) Tr(C,'/?);

3. Define WY = V/\\73Pv where V/\\75 is any optimal subspace whitening transformation;

then
(a) WY is unique, and is given by WY = a(C,Y?)1;

(b) W,a = WYa w.p. 1;

(c) b= W ,a is unique w.p. 1.

10.2.3 MMSE Unwhitening

Suppose now that a € C™ is a white random vector with covariance matrix C, = I,,,, and
we want to “unwhiten” a to obtain the vector b = Ta where the covariance of b is C; = ¢?R.

for some ¢ > 0, and is as close as possible to a in the MSE sense.
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The MMSE transformation in this case can be determined from Theorem 10.1, where

now DY2V* =1,, so that U = Q and Z =1,,. Then
T = aQA2Q* = aRY?, (10.17)

where if ¢ is fixed then a = ¢, and if ¢ is chosen to minimize the MSE then o« = ¢ with

Tr(Rl/Q)
(= ————. 10.18
The MMSE unwhitening transformation will be used in the next chapter to derive the

covariance shaping LS estimator.

10.2.4 MMSE Subspace Unwhitening

We may also consider subspace unwhitening in which a € C™ is a random vector that is
white on an n-dimensional subspace ¥ C C™ so that C, = Py = VI, V*, where V is a
unitary matrix whose first n columns span V. We want to “unwhiten” a on V to obtain
the vector b = Ta where the covariance of b is C, = ¢?R for some ¢ > 0, and covariance
matrix R = QAQ* with R(R) = N(R)! =V, and is as close as possible to a in the MSE
sense.

The MMSE transformation in this case can be determined from Theorem 10.1 as follows.
Since R(R) =V, the first n columns of Q span V, the remaining columns span V-, and the
last m — n diagonal elements of A are all equal 0. Then V*Q is a block diagonal matrix so

that I, V*QA'/2 = V*QA'/2. Thus U = V*Q,Z = 1,,, and
T = aQAY2Q*VI,V* = aRY2P), = aR/2, (10.19)

where if ¢ is fixed then a = ¢, and if ¢ is chosen to minimize the MSE then o = ¢ with

. Tr(PyRY?) Tr(R/?)
é= T;ZR) = @ (10.20)

Comparing (10.19) and (10.20) with (10.17) and (10.18) respectively, we see that the
MMSE subspace unwhitening transformation is equal to the MMSE unwhitening transfor-

mation.
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10.3 Weighted Covariance Shaping Transformation

We may also consider a weighted MMSE covariance shaping problem in which the shaping T
is chosen to minimize a weighted MSE. Thus we seek a transformation T such that b = Ta

has covariance Cy = ¢?R for some ¢ > 0 and rank-r matrix R with 7 < n, and such that
evsg = E ((a—Db)*A(a—b)), (10.21)
is minimized, where A is some nonnegative definite Hermitian weighting matrix.
To determine the weighted MMSE covariance shaping transformation we note that
E((a—b)*A(a—b))=F ((é—b)*(é—b)), (10.22)

where a = A'/2a and b = A/2b. Thus we may first seek the transformation % that mini-
mizes the MSE between the random vector a with covariance Cz = Al/ QCaAl/ 2 and the
random vector b = Ta with covariance C; = TC;T = ¢®R, where R = AY/?2RA'/2. The
optimal % follows immediately from Theorem 10.1. Then, the weighted MMSE covariance

shaping transformation satisfies
AT — TA2, (10.23)
If A is positive definite, then
T = A /2TA2, (10.24)
We now consider two special cases of (10.23). First, if C,, R and A are all positive
definite, then from Theorem 10.1,

T = oRC,)’R
a(Al/ZRACaAl/Q)—1/2A1/2RA1/2

= aAY?(RAC,A)Y/?RA'Y?, (10.25)
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where a = ¢ if ¢ is fixed and a = ¢ if ¢ is chosen to minimize the MSE with

. Tr((AY2RAC,A'2)1/2)  Tr (RAC,A)Y/?)
é= T (RA) = TRA) (10.26)

The weighted MMSE covariance shaping transformation is then given by

T = A Y2TAY? = o(RAC,A) /?RA. (10.27)

The second case we consider is when A = C, and R is a covariance matrix with R(R) =
R(C,) = V. Note that this choice of weighting matrix is reminiscent of the Gauss-Markov
weighting in LS estimation [43]. In this case Cz = (Co'/?)1Cy(C,Y?)t = Py, so that T
is equal to the MMSE subspace unwhitening transformation with R = (C,'/?)IR(C,/?)t.
From (10.19), T = oR"/? where if ¢ is fixed then a = ¢, and if ¢ is chosen to minimize the
MSE then a = ¢é where from (10.20) and (B.1),

Tr (RC,1)Y/?)

&= TRCH (10.28)

The weighted MMSE covariance shaping transformation then satisfies
(Ca/2)IT = oT(C,/2)1. (10.29)
Thus,
PyT = aC,Y/?T(C, /)t = a(PRC,HY2 = o(RC,H)!/2. (10.30)

Evidently if C, is not invertible, then the optimal transformation T is not unique. A

possible choice is
T = a(RC, N2 (10.31)
If C, is invertible, then Py, = I, and

T = o(RC, 1)'/2. (10.32)
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If the scaling c is fixed, C, is invertible, and R = I,,, then the WMMSE whitening
transformation with A = C,~! is equal to the MMSE whitening transformation; however
the optimal scaling values are different in both cases. Similarly, if the scaling c is fixed,
R(C,) = V, and R = Py, then the WMMSE subspace whitening transformation with
A = C,' is equal to the MMSE subspace whitening transformation.

In analogy to the LS inner product shaping problem, we may also consider the MMSE
covariance shaping problem in which the eigenvectors of the desired covariance matrix R
are specified, and the eigenvalues are chosen to minimize the MSE. The MMSE covariance
shaping transformation in this case can then be determined by exploiting the equivalence
between the MMSE covariance shaping problem and the LS inner product shaping problem
and relying on results obtained in that context.

In the next chapter we consider an application of MMSE covariance shaping to the
problem of estimating the unknown deterministic parameters in a linear model. Based on
the concept of MMSE covariance shaping we propose a new linear estimator and show that
it many cases the MSE of the proposed estimator is lower than the MSE of the conventional

LS estimator.

270



Chapter 11

Covariance Shaping Least-Squares

Estimation

The essential idea underlying optimal QSP measurements is to construct optimal measure-
ments or algorithms subject to an inner product constraint, borrowing from the ideas of
quantum detection. A stochastic analogue of this idea is to construct optimal algorithms
subject to a covariance constraint. In particular, in MMSE covariance shaping developed
in the previous chapter, a random vector is constructed to minimize an MSE criterion, sub-
ject to a constraint on the covariance of the constructed vector. In this chapter we further
exploit this fundamental concept inspired by the quantum detection problem, to develop a
new linear estimator for the unknown parameters in a linear model, where we choose the
estimator to minimize an MSE criterion, subject to a constraint on the covariance of the

estimator. We refer to this estimator as the covariance shaping LS (CSLS) estimator.

The CSLS estimator is a biased estimator directed at improving the performance of the
traditional LS estimator at low to moderate SNR by choosing the estimate to minimize the
(weighted) total error variance in the observations subject to a constraint on the covariance
of the estimation error, so that we control the dynamic range and spectral shape of the

covariance of the estimation error.

We develop two equivalent representations of the CSLS estimator. In the first, the
CSLS estimator is expressed as a LS estimator followed by a weighted MMSE (WMMSE)
covariance shaping transformation, that optimally shapes the covariance of the LS estimate.

In the second, the CSLS estimator is expressed as an MF estimator followed by an MMSE
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covariance shaping transformation, that optimally shapes the covariance of the MF estimate.

Analysis of the MSE of both the CSLS estimator and the LS estimator demonstrates
that there is a threshold SNR, such that for SNR values lower than this threshold the MSE
of the CSLS estimator is lower than the MSE of the LS estimator, for all values of the

unknown parameters.

As we show, some of the well-known modifications of the LS estimator can be formulated
as CSLS estimators. This allows us to interpret these estimators as the estimators that
minimize the total error variance in the observations, from all linear estimators with the

same covariance.

11.1 Least-Squares Estimation

A generic estimation problem that has been studied extensively in the literature is that of

estimating the unknown deterministic parameters x in the linear model
y =Hx+w, (11.1)

where H is a known n X m matrix, and w is a zero-mean random vector with covariance
Cy- For simplicity of exposition we assume that rank(H) = m; the results extend in a
straightforward way to the case in which rank(H) < m. An important special case of a non

full-rank model is considered in Section 11.8.

A common approach to estimating the parameters x is to restrict the estimator to be
linear in the data y, and then find the linear estimate of x that results in an estimated data
vector y that is as close as possible to the given data vector y in a (weighted) LS sense, so
that ¥y is chosen to minimize the total squared error in the observations. The Gauss-Markov
theorem [43] states that the weighting matrix that leads to an unbiased estimator of x with
minimum variance is C,'. Thus, the LS estimate %, = Gy is chosen to minimize the total

squared error

es = (y — HGy)*C,'(y — HGy), (11.2)
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and is given by

%5 = (H*C,'H)'H*C,ly. (11.3)

The LS method is widely employed in diverse fields, both as an estimation criterion
and as a method for parametric modeling of data (see e.g., [42, 43, 44, 45]). Numerous
extensions of the LS method have been previously proposed in the literature. The Total LS
method, first proposed by Golub and Van Loan in [156] (see also [157]), assumes that the
model matrix H may not be known exactly and seeks the parameters x and the minimum
perturbation to the model matrix that minimize the LS error. The Extended LS method
proposed by Yeredor in [158] seeks the parameters and some presumed underlying data that
together minimize a weighted combination of model errors and measurement errors. In both
of these extensions it is assumed that the data model (11.1) does not hold perfectly, either

due to errors in H or errors in the data y.

In our method we assume that the data model holds i.e., y = Hx + w with H and y
known exactly, and our objective is to minimize the error between x and the estimate of
x. In many cases the data vector y is not very sensitive to changes in x, so that a large
error in estimating x may translate into a small error in estimating the data vector y, in
which case the LS estimate may result in a poor estimate of x. This effect is especially
predominant at low to moderate SNR, where the data vector y is typically affected more
by the noise than by changes in x; the exact SNR range will depend on the properties of
the model matrix H. A difficulty often encountered in this estimation problem is that the

error in the estimation can have a covariance structure with a very high dynamic range.

Various modifications of the LS estimator for the case in which the model (11.1) is
assumed to hold perfectly have been proposed [159]. In [160], Stein showed that the LS
estimator for the mean vector in a multivariate Gaussian distribution with dimension greater
than 2 is inadmissible, i.e., for certain parameter values, other estimators exist with lower
MSE. An explicit (nonlinear) estimator with this property, referred to as the James-Stein
estimator, was later proposed and analyzed in [161]. This work appears to have been the
starting point for the study of alternatives to LS estimators. Among the more prominent
alternatives are the ridge estimator [46] (also known as Tikhonov regularization [47]) and

the shrunken estimator [48].
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To improve the performance over the LS estimator at low to moderate SNR we choose
the estimator of x to minimize the total error variance in the observations y, subject to
a constraint on the covariance of the error in the estimate of x, so that we control the
dynamic range and spectral shape of the covariance of the estimation error. As we will
show, in many cases the CSLS estimator can reduce the MSE of the estimator by allowing

for a bias, where the MSE of an estimate x of x is defined by
MSE(%) = B(|% — x|[2) = Tr (B((% — %) (% — )")) (11.4)

In Section 11.7 we show that both the ridge estimator and the shrunken estimator can be

formulated as CSLS estimators.

11.2 The Covariance Shaping Least-Squares Estimator

The CSLS estimate of x, denoted Xcgrs, iS chosen to minimize the total variance of the
weighted error between y = HXsgs = HGYy and y, subject to the constraint that the
covariance of the error in the estimate Xcgrg is proportional to a given covariance matrix
R. From (11.1) it follows that the covariance of y is equal to C,, so that the covariance
of Xggrs, which is equal to the covariance of the error in the estimate Xqgrg, is given by

GC,G*. Thus, Xcgs = Gy is chosen to minimize
coss = E ((y' —HGY')'C,' (y' —HGY")), (11.5)
subject to
GC,G* = ¢’R, (11.6)

where y' =y — E(y), R is a given covariance matrix, and ¢ > 0 is a constant that is either

specified, or chosen to minimize the error (11.5).

The minimization problem of (11.5) and (11.6) is a special case of the general WMMSE
shaping problem, considered in Section 10.3. Specifically, with a = y’, C, = C,, and
T = HG, the problem of (11.5) and (11.6) is equivalent to the problem of finding T to
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minimize
E((a—b)*C;'(a—b)), (11.7)
where b = Ta, subject to
C, = TC,T* = ?Q, (11.8)

with Q = HRH*. This problem is equivalent to the WMMSE shaping problem of (10.21)
with weighting A = C, .

Denoting by G = (1/¢)G we then have from (10.32) that the optimal value of G satisfies
HG = (QC,Y)/? = (HRH*C1)Y/2 (11.9)
Multiplying both sides by (RH*C;H)"'RH*C;,

G = (RH*C_,'H) 'RH*C_'(HRH*C,')!/?
= (RH*C_'H)"Y/?2RH*C!

= R(H*C,'HR)'?H*Cj', (11.10)

where we used (B.3).

~%

Note that from Theorem 8.3, the columns of cl/’G = C;lﬂHR(H*C;lHR)*l/2 are

the closest vectors with Gram matrix R to the columns of C;l/ 2H, in a LS sense.

If the scaling ¢ in (11.6) is specified, then the CSLS estimator is given by X¢sps = céy.

If ¢ is chosen to minimize ecgrg, then Xcgrs = ééy, where from (10.28),

«—117\1/2
¢ — TURHTC, H) 7). (11.11)
Tr(RH*C, H)

In general X¢grg is a biased estimator of x, so that when 0% = 0, Xosrs does not converge
to x. At high SNR we therefore expect the LS estimator to perform better than the CSLS
estimator. The advantage of the CSLS estimator is at low to moderate SNR, where we
reduce the MSE of the estimator by allowing for a biased estimator. Indeed, as we show in

Section 11.3, in the case in which R = 1I,,,, there is always a threshold SNR, below which
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the CSLS estimator yields a lower MSE than the LS estimator, for all values of x. Some
examples demonstrating the values of these thresholds are presented in Section 11.4. As we
show in Sections 11.4 and 11.9, in applications this threshold value can be pretty large.

Since the covariance of the LS estimate is given from (11.3) by (H*C_,'H)~! and the
covariance of the CSLS estimate is proportional to ¢?R, it is immediate that Xqsrs can be
equal to X only if R is chosen to be proportional to (H*C,,'H) !. In fact, using the CSLS
estimator with optimal scaling we have that Xcs s = X1s if and only if R = d?(H*C,,'H) !
for some d > 0. Then X.s = (1/d*>)RH*C,y, and Xcs.s = (¢/d)RH*C,y. From (11.11),
¢ =d/d? = 1/d, so that for any choice of d, Xcsrs = Xys-

Thus, the CSLS estimator offers a new interpretation of the LS estimator as the estimator
that minimizes the error variance in the observations, from all estimators with covariance
proportional to (H*C_'H)~1.

Finally, we note that the CSLS estimator with optimal scaling is invariant to an overall
gain in C,. Thus if C,, = ¢>C for some covariance matrix C, then the CSLS estimator
does not depend on ¢. This property does not hold in the case in which c is chosen as a
constant, independent of ¢. In this case the CSLS estimator depends explicitly on ¢ which
therefore must be known.

The CSLS estimator is summarized in the following theorem:

Theorem 11.1 (CSLS estimator). Let x denote the deterministic unknown parameters
in the model y = Hx + w, where H s a known n X m matriz with rank m, and w 1is
a zero-mean random vector with covariance C,,. Let Xqgrs denote the covariance shaping
least-squares estimator of x that minimizes the error (11.5) subject to (11.6), for some

c>0. Then
Xosis = SR(H*C,'HR) /?H*C, 'y = S(RH*C,'H) /?RH*C, 'y,
where
1. if c is specified then 8 = c;
2. if ¢ minimizes the error then § = ¢ where ¢ = Tr((RH*C,,'H)'/?)/ Tr(RH*C,,'H).

In addition,
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o~k
1. The columns of C,l,,/ 2G  are the closest vectors with Gram matriz R to the columns

—-1/2 .
of Cy / H, in a least-squares sense;

2. With 8 = ¢, Xcsrs 15 equal to the least-squares estimate Xis if and only if R =

d*H*C,'H for some d > 0.

11.3 Performance Analysis of the CSLS Estimator

To compare the performance of the LS and CSLS estimators, we evaluate the MSE of the
estimators, where the MSE of an estimate X of x is given by (11.4). In the analysis we
assume that the scaling of the CSLS estimator is chosen as 3 = ¢ given by (11.11), unless

explicitly stated otherwise.

From (11.3) and (11.1),
X5 — x = (H*C'H)'H*C'w, (11.12)
so that
MSE (x.5) = Tr((H*C,'H)™). (11.13)
From Theorem 11.1 with 8 = ¢,
Rosts — x = (¢(RH*C;'H)Y? —1,)x + ¢ RH*C;'H)"/?RH*C'w, (11.14)
where ¢ is given by (11.11). So,

MSE(Rcsrs) = [|(E(RH*CL H)Y? — Ly)x | + é1r ((RH'C,'H) ™ /2R(RHCC,'H)?)

= |((RH*C,'H)Y? —1,)x|? + &Tr(R). (11.15)

We now compare the performance of the LS and CSLS estimators in the special case
in which R = I, and C,, = ¢?C, where the diagonal elements of C are all equal to 1, so

that the variance of each of the noise components of C,, is ¢?. With B = H*C~'H and
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Ai, 1 <4 < 'm denoting the eigenvalues of B, from (11.13)

m
MSE(%ys) = o’ Tr(B™1) =0 Y A, (11.16)
=1
and from (11.15),
MSE(Xes1s) = ||(aBY? — L,)x|? + ma?a?, (11.17)

where,

: 1/2 moA/2
o= CTEBY) 2 N (11.18)
g Tr(B) 2z i

The first term in (11.17) is the squared norm of the bias of the estimate X¢gs, and the

second term in (11.17) is the total variance of Xcgrs-

For large values of o2, the first term in (11.17) is negligible and MSE(XcsLs) ~ ma?a?.

Thus, at sufficiently low SNR both MSE(%X.s) and MSE(Xcs.s) are proportional to o2 and,
as we show in Appendix D, the proportionality constant ma? of the CSLS estimator is
smaller then the proportionality constant ), A;” L of the LS estimator. At sufficiently high
SNR, the second term in (11.17) can be considered negligible and as ¢ — 0, MSE(X¢gLs)
converges to the constant ||(aB'/? —1,,)x||2. These trends in the behavior of the MSE can
be seen in the simulations in Section 11.9. From this qualitative analysis it is clear that
there is a threshold SNR that will depend in general on x, below which the CSLS estimator

outperforms the LS estimator.

From (11.17) we have that,
MSE(Rescs) < aBY2 = Ly 2[x|2 + mo2o® = [aAY/2 — 12]x|? + ma2e®,  (11.19)

where ||A|| denotes the spectral norm [142] of the matrix A defined by ||A|| = max ail /2
with {o;} denoting the eigenvalues of A*A, and

1/2
i

v = argmax |,/ ” — 1)?, (11.20)

with « given by (11.18). We have equality in (11.19) only in the event in which x is in the
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direction of the eigenvector of B corresponding to the eigenvalue A,.

We note that if o is known, then we can choose the scaling of the CSLS estimator as

(3 = ¢ where c is a predetermined constant independent of o. In this case (11.19) becomes
MSE (%cs1s) < |(c/a) A2 — 112[1x||* + mc?. (11.21)

In the low SNR limit in which ¢ is large, this estimator has the desirable property that its
MSE is bounded. By contrast, the MSE of both the LS estimator and the CSLS estimator
with optimal scaling is proportional to o2 and will therefore increase without bound with

decreasing SNR.

Let ¢ = ||x||?/(¢*m) denote the SNR per dimension. Then combining (11.16) and
(11.19) we have that MSE(X¢ss) < MSE(xs) if

1 m

1/2 _ 112 2 -1

a2 — 12+ a? < EZ’\Z' : (11.22)
=1

The expression \a)\}/ ? _ 1] is equal to zero only in the case in which /\3 2 =1 /o for all 4, so

that B = (1/a?)L,,. From Theorem 11.1 it then follows that |a)\}/2 — 1| = 0 if and only if

Xrs = Xgss. If Xps 7# Xcses, then we have that MSE(X¢sps) < MSE(Xyg) if

(1/m) St -’ a

< = . .

Note that (wc given by (11.23) is a worst case bound, since it corresponds to the worst
possible choice of parameters, namely when the unknown vector x is in the direction of the
eigenvector of B corresponding to the eigenvalue A,. In practice the CSLS estimator with

R =1, will outperform the LS estimator for higher values of SNR than (y¢-

In Appendix D we show that when X¢grs 7 Xps, Cwe > 0 so that there is always a range

of SNR values for which MSE(X¢srs) < MSE(%ys).
Starting from (11.17) in a similar manner we can show that
MSE(%cses) > |aA? — 112|)x|)? + ma?e?, (11.24)
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where
Kk = arg min\oz)\;/2 — 113 (11.25)

with equality in (11.24) only if x is in the direction of the eigenvector of B corresponding

to the eigenvalue .. Thus, MSE(X¢srs) > MSE(Xx.s) if

1 moAt—a?
(/m) Zz:l 1 a éCBC' (1126)
|a)\,£/2 — 12

¢2

The performance analysis of the CSLS estimator Xggrs in the case in which R = I,
and C,, = 0?C can be summarized as follows: Let ¢ = ||x]|?/(0?m) denote the SNR per
dimension. Then with {)\;,1 <4 < m} denoting the eigenvalues of B = H*C 'H, and «

given by (11.18),

1. MSE(X¢sps) < MSE(%xyg) for { < (we, where (wc is the worst case bound given by
(11.23);

2. MSE(Xcss) > MSE(%xys) for ¢ > (s, where (gc is the best case bound given by
(11.26);

3. MSE(X¢sLs) may be smaller or larger than MSE(%.s) for {we < ¢ < (e, depending
on the value of x. Thus, the true threshold value in a particular application will be

between (we and (gc-
In addition,

1. if x is in the direction of the eigenvector of B corresponding to the eigenvalue A, given
by (11.20), then MSE(xX¢srs) < MSE(%.s) for ¢ < (we, and MSE(Xgsrs) > MSE(%.s)

for ¢ > (weo;

2. if x is in the direction of the eigenvector of B corresponding to the eigenvalue A\, given
by (11.25), then MSE(X¢gsrs) < MSE(X.s) for ¢ < (g, and MSE(X¢srs) > MSE(%.s)

for ¢ > (ue-

A possibly more realistic threshold can be derived by considering an average performance
rather than a worst case or best case performance. Specifically, in deriving (wc we assumed

that x was in the direction of the eigenvector corresponding to the eigenvalue A,. Similarly,

280



in deriving (g we assumed that x was in the direction of the eigenvector of B corresponding
to the eigenvalue \,. To obtain an average threshold, we now assume that x has equal energy
in each of the eigenvector directions. Specifically, let v;,1 < ¢ < m denote the orthonormal
eigenvectors of B. The thresholds (w¢ and (gc were obtained by assuming that x = ||x||v,
and x = ||x||v,, respectively, where v,, is the eigenvector corresponding to \,, and v, is the

eigenvector corresponding to A..

Now we assume that

X = szi. (11.27)

Then,
(aB'/2 —1,,)x = L} i(a}&ﬂ —1)v; (11.28)
vim ’
and
B2 1,2 = LIS anz gy (11.29)
m =1 '

Thus, the “average” MSE (averaged over x) using the CSLS estimator is

)1 -

2:(04)\;/2 — 124+ a?0%m, (11.30)
m
i=1

and the average threshold is

(11.31)

If x is given by (11.27), then for SNR values lower than ¢ the CSLS estimator will yield a
lower MSE than the LS estimator.

11.4 Examples of Threshold Values

In this section we consider some examples illustrating the threshold values when R = I,

for different matrices B = H*C~'H, where C,, = 02C. These examples indicate that in a
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variety of applications the threshold values are pretty large.

A. Line fitting: A popular application of LS modeling is fitting a line to given data.
Specifically, suppose we are given measurements {y;,1 < ¢ < n} taken at times {t; =
i/n,1 <1i < n} which we model as y; = at; + b + w; for some parameters a and b, where
w; is additive white noise. In this case y is the vector of components y;, x is the vector of

components a and b, w is the vector of components w; so that C =I,,, and

T
1 4
H=| . (11.32)
L 1 tnil .

In Fig. 11-1 we plot (we, (sc and ¢ as a function of n.

SNR thresholds
60 T T T

T T
—— WC threshold
— — Avg. threshold
\ — - BC threshold

551 .

Figure 11-1: SNR worst case threshold (we (11.23), best case threshold (s (11.26), and
average threshold ¢ (11.31), for line fitting with ¢; = i/n, where n is the number of sampling
points.

B. Two-dimensional case: Consider the case where there are two parameters to estimate,
so that B = H*C~'H is a 2 x 2 matrix. In this case the thresholds are a function of the
eigenvalues A\; and Ao of B. If we fix the trace of B to Tr(B) = a, then A\; + Ao = a and
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the thresholds are a function of A = ;.
In Fig. 11-2 we plot (we, (sc and ( as a function of A\ with Tr(B) = 1. When \ = 0.5,

B == 0.512, and )A(LS - )A(CSLS'

SNR thresholds
60 T T T T T
—— WC threshold
— — Avg. threshold
— - BC threshold

50

40+
\

30 : - 4

SNR[dB]

Figure 11-2: SNR worst case threshold (wc (11.23), best case threshold (s (11.26), and
average threshold ¢ (11.31) as a function of A\ with Tr(B) = 1.

The behavior of the thresholds as a function of A for the case in which Tr(B) = a with a

arbitrary is similar to that plotted in Fig. 11-2, where the thresholds increase as a decreases.

11.5 Least-Squares Estimator Followed by WMMSE Shaping

The CSLS was derived to minimize the total variance in the data error subject to a constraint
on the covariance of the estimator of x. In this section we show that the CSLS estimator
can alternatively be expressed as a LS estimator X;5 followed by a WMMSE covariance
shaping transformation that optimally shapes the covariance of xg.

Specifically, suppose we estimate the parameters x using the LS estimator X g. Since
%1s = x + W where w = (H*C_'H) 'H*C,w, the covariance of the noise component
= o?(H*C,'H)~!. To improve the

W in X;g is equal to the covariance of Xrg, Cg ¢

performance of the LS estimator, we consider shaping the covariance of the noise component
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in the estimator X; 5. Thus we seek a transformation T such that the covariance matrix of

% = TXx.g, denoted by Cj;, satisfies

C; = TCq, ., T* = ¢’R, (11.33)

XLs

for some ¢ > 0. To minimize the distortion to the estimator x.g, from all possible transfor-

mations T satisfying (11.33) we choose the one that minimizes the weighted MSE
E (()A(is - Tﬁis)*c(ﬁis - Tﬁis)) ’ (11-34)

where x|, = X5 — E(X.s) and C is an arbitrary weighting matrix.

We now show that if we choose C = C;LIS so that T minimizes

B (s — Tx}¢)"Cg. (% — Ti)) (11.35)

XLS

then the resulting estimator X = TX_g is equal to Xqgrs. Note that this choice of weighting

matrix is reminiscent of the Gauss-Markov weighting in LS estimation [43].

The minimization problem of (11.35) is a special case of the general WMMSE shaping
problem discussed in Section 10.3 with a = %/, C, = (H*C,'H)™}, A= C,;!, and b = x.
Thus from (10.32),

% = ¢RH*'C,'H) Y?RH*C ' 'Hxs
= ¢RH*CZ'H)"'/?RH*Cy, (11.36)
and from (10.28),
Tr((RH*C,'H)'/?
o= DURITC, ) 7) (11.37)
Tr(RH*Cy H)

Comparing (11.36) with X¢ss given by Theorem 11.1 we conclude that X = X¢grg, so that
the CSLS estimator can be determined by first finding the LS estimator %5, and then

optimally shaping its covariance.
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11.6 Matched Filter Estimator Followed by MMSE Shaping

We now show that the CSLS estimator with fixed scaling can also be expressed as an MF
estimator followed by MMSE shaping. Specifically, suppose we estimate the parameters
x using a simple MF transformation %Xy = H*C_'y. Then the covariance of the noise
component in Xyr, which is equal to the covariance of Xy, is Cg,,, = 0’2H*01;1H. To

improve the performance of Xyr we consider shaping its covariance, so that we seek a

transformation T such that the covariance matrix of x = TXyr, denoted by C;, satisfies

C; = TCy,,.T* = R, (11.38)

XMF

where c is given. To minimize the distortion to the estimator Xy, from all possible trans-

formations T satisfying (11.38) we choose the one that minimizes the MSE
E (()A(;\/IF - T)A(;V[F)*()A(;\/IF - T)A(;VIF)) ) (11'39)

where X}, = Xyr — E(Xyr).
This minimization problem is a special case of the general MMSE shaping problem dis-

cussed in Section 10.1 with a = %}, C, = H*C'H, and b = %. Thus from Theorem 10.1,
% = ¢(RH*C'H) /?Rxyr = ¢(RH*C,'H) /?RH*C_ly. (11.40)

Comparing (11.40) with Xcgrs given by Theorem 11.1 we conclude that X = X¢grs, so that
the CSLS estimator with fixed scaling can be determined by first finding the MF estimator
Xur, and then optimally shaping its covariance. The optimal scaling can be found by
choosing ¢ to minimize (11.5) with G = ¢(RH*C,,'H) /?RH*C,,.

This interpretation will be useful in the next chapter when we consider applications of

CSLS estimation to multiuser detection.

11.7 Connection With Other Least-Squares Modifications

We now compare the CSLS estimator with the ridge estimator proposed by Hoerl and
Kennard [46], and Tikhonov [47], and with the shrunken estimator proposed by Mayer and
Willke [48].
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The ridge estimator for the linear model (11.1), denoted by %, is defined by
xr = (H*C,'H+6T) 'H*C,'y, (11.41)

where T is some positive definite matrix and ¢ is a regularization parameter. Often T is
chosen to be equal to I,. It can be shown that Xz minimizes the LS error (11.2) subject
to a constraint on the norm of xi. Thus, for all estimators with fixed norm, Xy given by

(11.41) minimizes the LS error, where ¢ is chosen to satisfy the norm constraint.

We now show that Xy is equal to a CSLS estimator with an appropriate choice of R.
Specifically, let xcgp g be the CSLS estimator with covariance Ry, where Ry, is the covariance

of the estimate Xy and is given by
Ry = (I+6(H*C'H)™'T) ' (H*C'H + 6T)~". (11.42)

Then by direct substitution of (11.42) into the expression for Xcgrs from Theorem 11.1,
XcsLs = Xg. Based on this connection between the ridge estimator and the CSLS estimator,
we may interpret the ridge estimator as the estimator that minimizes the error eqgqrg given

by (11.5) from all estimators with covariance Rg.

The shrunken estimator for the linear model (11.1), denoted by Xg, is a scaled version

of the LS estimator and is defined by

Xs = kX s = k(H*C'H)"TH*C 'y, (11.43)

w

where £ is a regularization parameter. A stochastically (nonlinear) shrunken estimator is a
shrunken estimator in which k is a function of the data y, an example of which is the well

known James-Stein estimator [161].

The shrunken estimator Xg can be formulated as a CSLS estimator where the covariance

of Xcgrg is chosen to be equal to the covariance of Xy given by
Rs = k*(H*C,H) ™. (11.44)

Substituting (11.44) into the expression for Xcgrs from Theorem 11.1, we have indeed that

XosLs = Xg- Thus, we may interpret Xg as the estimator that minimizes the error eqg g of
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(11.5) from all estimators with covariance Rs.

In summary, some of the more popular alternatives to the LS estimator under the model
(11.1) are in fact CSLS estimators. This provides additional insight and further optimality
properties of these estimators. However, the CSLS estimator is more general since we are
not constrained to a specific choice of covariance R. By choosing R to “best” shape the
estimator covariance in some sense we can improve the performance of the estimator over
these LS alternatives.

As a final note, suppose we are given an arbitrary linear estimate % of x with covariance
C;. Then we can compute the CSLS estimate Xqg s with R = C,. If Xcgrs = X, then
the estimate X has the additional property that from all estimators with covariance C, it
minimizes the (weighted) total error variance in the observations. If, on the other hand,
XeosLs 7 X, then we can always improve the total error variance of the estimate without
altering its covariance by using Xcg 5. Therefore an estimate with covariance C; is said to
be consistent with the total error variance criterion if it minimizes this criterion from all

estimators with covariance C,, in which case it is equal to the CSLS estimate with R = C;.

11.8 Example of a Non Full-Rank CSLS Estimator

The CSLS estimator was derived in Section 11.2 for the case in which H has full rank and
R is positive definite. Using similar techniques we can derive the CSLS estimator for the
more general case in which H and R are not assumed to have full rank. Specifically, as
in the full-rank case the CSLS problem of (11.5) and (11.6) is equivalent to the WMMSE
covariance shaping problem of (11.7) and (11.8). Thus, as before, with G = (1/¢)G, the

optimal value of G must satisfy
HG = (HRH*C,)'/2. (11.45)

Since the error (11.5) depends on G only through HG, Pyr@)G does not figure in the
error. Therefore, it is reasonable to choose R so that R(R) = R(G) = N(H)*. In the

remainder of this section we assume that R is chosen to satisfy this condition.

~

To solve (11.45) for G in this case we note that since R(G) = R(G) = N(H)L,

~

PN(H)J_é — G. Furthermore with B = RH*C;'H, N'(B) = N (H) so that PyrayL = B'B.
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Thus,

G = (RH*C,'H)'RH*C,'HG
= (RH'C,'H)'RH"C,'(HRH'C,')!/?

= (RH*C;'H)'RH*(C;'HRH*)'/?C, (11.46)

where we used (B.3). To simplify (11.46) we use the fact that N((Cy'HRH*)Y/?) =
N(HRH*) = N(RH*), to write

(C,'HRH")'/? = (C,'HRH")'/? Py gy = (C,'HRH")'/2(RH*)IRH*.  (11.47)

Substituting (11.47) into (11.46) and using (B.1),

~

G = (RH*C,'H)!(RH*C_'H)/?RH*C,! = (RH*C,'H)/?)IRH*C,!.  (11.48)
Thus
Xesis = S((RH*C'H) V2 IRH*Cy, (11.49)

where if ¢ is specified then # = ¢ and if ¢ is chosen to minimize the error then § = ¢ given

by (11.11).

Note that from Theorem 8.3, the columns of qu,,/ ’G are the closest vectors with Gram

matrix R to the columns of C;1/2H, in a LS sense.

As in the full rank case, using the results of Section 10.3 it is straightforward to show
that in this case the CSLS estimator can again be expressed as a LS estimator followed by

a WMMSE covariance shaping transformation T that minimizes

B (s — Tx}s)"Cl | (% — TL)) (11.50)
subject to
TCy, T* = R, (11.51)

for some ¢ > 0, where now Cg, . = (HC,'H)". Indeed, this minimization problem is a
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LS?

special case of the general WMMSE shaping problem discussed in Section 10.3 with a = x
C, = (H*C;'H)!, A = C{, R(R) = R(C,), and b = %. Thus from (10.30),

T = (RH*C,'H)'/? = (RH*C'H)'/?)'RH*C'H, (11.52)
so that

x = ¢(RH*C,'H)Y?)'RH*C,'Hx,
= ¢(RH*C,'H)Y?)'RH*C,ly,

(11.53)

where from (10.28), ¢ is given by (11.11). Comparing (11.53) with X¢sps given by (11.49)
we conclude that X = Xggrs.
Similarly, as in the full-rank case, the CSLS estimator can also be expressed as an

MF estimator followed by an MMSE covariance shaping transformation T that minimizes

(11.39) subject to (11.38).

11.9 Applications of CSLS Estimation

In this section we consider some applications of CSLS estimation.

11.9.1 System Identification

As a first application of CSLS estimation, we consider the problem of estimating the pa-
rameters in an ARMA model, and compare the estimated parameters to those obtained by
using the modified Yule-Walker equations in combination with Shanks’ method [162, 44].

Suppose we are given noisy measurements y[l] of a signal z[l] with z-transform

b+ bizT 4 bz
S l4az i tapr?

X(2) B(2)H(2), (11.54)

where B(z) denotes the numerator polynomial, H(z) denotes the inverse of the denominator
polynomial, and ¢ < p. The MA parameters of z[l] are the coefficients b; in (11.54), and
the coefficients a; in (11.54) are the AR parameters. The problem then is to estimate the
AR and MA parameters from the data y[0],... ,y[n — 1] where y[l] = z[l] + w[l], and w][I]
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denotes a zero-mean white Gaussian noise process with variance o2.

Various methods exist for estimating these parameters based on different applications
of LS estimation [44]. A popular method is to estimate the AR parameters using the
modified Yule-Walker equations [44], and then use these estimates in combination with
Shanks’ method [162] to estimate the MA parameters. We use this method as a basis for
comparison.

Specifically, for I > ¢ we have from (11.54) that the data y[l] satisfies

yll] = Z ayll — i) + wll]. (11.55)

Now, let a denote the vector with components a;,1 < i < p, let y denote the data vector with

components y[l],p <1 <n—1, let w denote the vector with components w[l],p <! <n-—1

and let
ylp—1] ylp—-2] - y[0]
Yy yp—1} --- y[1
Hur = [.p] [p_ ] [ ] (11.56)
L yln—2] yln—=3] - yln-p—1] |
Then y = Hyra + w, and the LS estimator of the AR parameters is given by
é-LS = (H:RHAR)_IH:RY- (1157)
The CSLS estimator of the AR parameters is given from Theorem 11.1 by
Acss = ¢(RHA Hyy) V2RHY,y, (11.58)

where ¢ is given by (11.11).

We now use these estimates of a to estimate the MA parameters using Shanks’ method.
Specifically, let e[l] = y[l] — h[l] = b[l] where h[l] is the impulse response of the filter with
z-transform H(z), which is computed using the estimates of the AR parameters, and b[l]
is the (unknown) impulse response of the filter with z-transform B(z). Shanks proposed
estimating the unknown sequence b[l] by minimizing 37" €2[I]. With e denoting the error

vector with components e[l],0 <! < n—1, e =y —Hy,b where b is the vector with

290



components b;, 1 < i < ¢, y is the data vector with components y[l],0 <1 <n —1, and

[ hjo] 0 - 0
Hy, = h[_l] h[_O] 0 (11.59)
| h[n—1] hln—2] --- h[n—gq| |

so that Shanks’ method reduces to a LS problem. The LS estimator of the MA parameters
is then given by

bus = (Hy,, Ha,)"'Hjy Ly, (11.60)

where Hj;, is computed using the the LS estimate &, given by (11.57).

We can modify Shanks’ estimator by using the CSLS estimator of the parameters b,

which leads to the estimator
besus = ¢(RH}, Hyr,) V/?RH},,y, (11.61)

where ¢ is given by (11.11), and now Hjs, is computed using the the CSLS estimate acgrs
given by (11.58).
To evaluate the performance of both estimators we consider an example in which the

ARMA parameters are given by
ay = 0.9,(1,2 = 0.6, az = 0.4,b0 = 1,b2 = 0.5, (11.62)

and the matrix R is chosen as R = I,.

In Fig. 11-3 we plot the MSE in estimating the AR parameters using &g and apg for
n = 20 averaged over 2000 noise realizations, as a function of —10logo? where o2 is the
noise variance. As we expect, the MSE of the CSLS estimator decreases with o2 for low
SNR and converges to a constant in the high SNR limit. The MSE of the LS estimator
decreases with o2 at a much slower rate. The experimental threshold is =~ 61 dB so that for
o2 greater than ~ —61 dB the CSLS estimator yields a lower MSE than the LS estimator.

In Fig. 11-4 we plot the MSE in estimating the MA parameters using BCSLS and BLS for

n = 20 averaged over 2000 noise realizations, as a function of —10log 02. The experimental
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threshold is ~ 32 dB.
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Figure 11-3: Mean-squared error in estimating the AR parameters a; given by (11.62) using
the LS estimator (11.57) and the CSLS estimator (11.58).

11.9.2 Exponential Signal Modeling

As a second application of the CSLS estimator, we consider the problem of estimating the
amplitudes of two complex exponentials with known frequencies and damping factor, in

complex additive white Gaussian noise. The data is thus given by
yll] = a1e® + age®? +wll], 1=0,1,... ,n—1, (11.63)

where w]l] is a white complex Gaussian noise process with variance o2, and n is the number

of data points.

Denoting by y the vector of components y[l], we have that y = Hx + w where x is the
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) MSE in estimating the zeros using LS and CSLS
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Figure 11-4: Mean-squared error in estimating the MA parameters b; given by (11.62) based
on the estimated values of the AR parameters, using the LS estimator (11.60) and the CSLS
estimator (11.61).

vector of components a; and ag, w is the vector of components w[l], and

$1 52

H = . ‘ . (11.64)

s2(n—1) s2(n—1)

e

In Fig. 11-5 we plot the MSE in estimating the parameters a; and ao using the CSLS
estimator and the LS estimator, for the case in which s; = —0.6 + j27(0.40), s = —0.6 +
j2m(0.41) and n = 15. The true parameter values are a; = ag = 1. For the noise variance
range shown, the CSLS estimator performs better than the LS estimator. In this example
the experimental threshold variance is ~ 56 dB, so that for values of o2 greater than

~ —56 dB the CSLS estimator yields a lower MSE than the LS estimator.
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MSE in estimating the amplitudes using LS and CSLS
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Figure 11-5: Mean-squared error in estimating the amplitudes a; and as in the model
(11.63) using the LS estimator and the CSLS estimator. The parameter values are given
by s1 = —0.6 + 527(0.40), s = —0.6 + j27(0.41),n = 15 and a; = a9 = 1.

11.9.3 Multiuser Detection

In the next chapter we use the concept of CSLS estimation to derive a new class of linear
receivers for synchronous code-division multiple-access (CDMA) systems. These receivers
depend only on the users’ signatures and do not require knowledge of the channel pa-
rameters. Nonetheless, over a wide range of these parameters the performance of these
receivers can approach the performance of the linear MMSE receiver which is the optimal
linear receiver that assumes knowledge of the channel parameters and maximizes the output

signal-to-interference ratio (SIR).

11.10 Summary

In this chapter we used the constraints of the quantum detection problem and the results
we derived in that context to develop a new linear estimator for the unknown parameters
in a linear model. We demonstrated both through simulation and analytically that this

modification of the LS estimator can significantly outperform the LS estimator, particularly
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over practical ranges of SNR.

In our closing remarks we note that the performance analysis of the CSLS estimator
presented in Section 11.3 only considered the special case in which R = 1I,,,. It would also
be valuable to analyze the MSE of the CSLS estimator for other choices of R.

Another particularly important direction for future research is to develop methods for
optimally choosing the desired covariance shape R in a specific application, based on knowl-
edge of the model matrix H. We have seen in Sections 11.4 and 11.9 that the choice R =1,
leads to good performance in a variety of problems. However, preliminary simulations
demonstrate that further improvement in performance can be obtained by tailoring the
covariance R to the specific problem at hand. Some results for the case in which R # I,
will be presented in the next chapter in the context of multiuser detection.

A possible direction to explore is choosing R to be equal to the covariance of the noise
component in some optimal nonlinear estimate of the parameters x. Then Xqsrs will be
an optimal linear estimator with the same covariance as the optimal nonlinear estimator.
Another interesting direction to pursue is choosing R to have some particular structure,
i.e., fixing the eigenvectors of R, and then finding the estimate Xcg s and the eigenvalues
of R that minimize the MSE error ecgrs. The CSLS estimator in this case can again be
determined by exploiting the equivalence between the CSLS estimation problem and the

LS inner product shaping problem and then relying on results obtained in that context.
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Chapter 12

Covariance Shaping Multiuser

Detection

In this chapter we consider an application of CSLS estimation developed in the previous
chapter, to the problem of suppressing interference in multiuser wireless communication sys-
tems. Based on the concept of CSLS estimation we propose a new class of linear multiuser
receivers for synchronous code-division multiple-access (CDMA) systems. These receivers
depend only on the signature vectors and do not require knowledge of the received ampli-

tudes or the channel SNR.

Building on the properties of the CSLS estimator, we develop three equivalent rep-
resentations of the receiver that are mathematically equivalent but may have different
implications in terms of implementation. In the first, the receiver consists of a bank of
correlators with correlating vectors that have a specified inner product structure, and are
closest in a LS sense to the users’ signature vectors. In the second, the receiver consists of
a decorrelator demodulator followed by a WMMSE covariance shaping transformation that
optimally shapes the noise component in the output of the decorrelator prior to detection.
In the third, the receiver consists of an MF demodulator followed by an MMSE covariance

shaping transformation that optimally shapes the noise component in the output of the

MF.

To evaluate the performance of the receivers, we derive exact and approximate expres-
sions for the probability of bit error. We then derive a result regarding random matrices

that is used to show that for the case in which the outputs of the receiver are constrained

297



to be uncorrelated on a space spanned by the signature vectors, the output signal-to-
interference+noise ratio (SINR) converges in the large system limit. This limit is then
compared to the known SINR limits for the decorrelator, MF and linear MMSE receivers
[561, 52, 53]. The analysis presented in Section 12.5 strongly suggests that in a variety of
cases the CSMU receiver can outperform both the MF and the decorrelator receivers, and
can approach the performance of the linear MMSE receiver, even though it does not rely

on knowledge of the channel parameters.

12.1 Multiuser Detection

Multiuser receivers for detection of CDMA signals try to mitigate the effect of multiple-
access interference (MAI) and background noise. These include the optimal multiuser re-
ceiver, the linear MMSE receiver, the decorrelator, and the MF receiver [49].

Both the optimal receiver and the linear MMSE receiver require knowledge of the channel
parameters, namely the noise level and the received amplitudes of the users’ signals. On
the other hand, the MF and the decorrelator receivers are linear receivers that only require
knowledge of the signature vectors. The MF optimally compensates for the white noise,
but does not exploit the structure of the MAI; the decorrelator optimally rejects the MAI,
but does not consider the white noise. Like the MF and the decorrelator, the receivers we
develop in this chapter do not require knowledge of the channel parameters and rely only on
knowledge of the signature vectors. However, in contrast to the MF and the decorrelator,
these receivers take both the background noise and the MAI into account.

Consider an m-user white Gaussian synchronous CDMA system where each user trans-
mits information by modulating a signature sequence. The discrete-time model for the

received signal y is given by

y = SAb+ w, (12.1)

where S is the n X m matrix of signatures s; with s; € C"* being the signature vector of
the ith user, A = diag(Ay,... ,Ay) is the matrix of received amplitudes with A; > 0 being
the amplitude of the ith user’s signal, b is the data vector of components b; € {1, —1} with
b; being the ith user’s transmitted symbol, and w is a noise vector whose elements are

independent CN(0, 0%). We assume that all data vectors are equally likely with covariance
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I,,, and that sis; =1 for all i.

Based on the observed signal y, we design a receiver to detect the information trans-
mitted by each user. The receiver consists of two parts, the signal demodulator and the
detector. We restrict our attention to linear demodulators that do not require knowledge
of the received amplitudes A4; or the noise level o2. The demodulator estimates the vec-
tor x = Ab as x = Q*y for some matrix Q. The ith user’s symbol is then detected as
b = sgn (&;) where Z; = q]y is the ith component of %X, and q; are the columns of Q. A
receiver of this form can be implemented using a bank of correlators with correlating vectors

qi, as depicted in Fig. 12-1.

q1 J’_ Bl
o .
q2 J’_ b2
Y —
z
qQm i J’_ > Bm

Figure 12-1: General linear receiver comprised of a bank of correlators with correlating
vectors q; followed by a bank of detectors.

The observed signal y is related to the unknown vector of parameters x through
y =Sx+w, (12.2)

which is equivalent to the linear model (11.1) considered in the previous chapter, with
H = S. Therefore the design problem associated with Fig. 12-1 is equivalent to the problem
of estimating x in the linear model (12.2), where we treat x as a deterministic unknown
vector of parameters.

If we estimate x using the LS estimator, then %;s = (S*S)!S*y = Z*y. The result-
ing receiver can be implemented using the bank of correlators of Fig. 12-1 with q; = z;,

where the vectors z; are the columns of Z = S(S*S)f. This receiver is equal to the well

299



known decorrelator receiver, introduced by Lupas and Verdu [50]. The decorrelator opti-
mally rejects the MAI when the signature vectors are linearly independent, but does not
compensate for the white noise. Indeed, denoting by a = x5 the output of the decorrelator

demodulator, it follows from (12.1) that for linearly independent signature vectors
a=Z'y=Ab+Z"'w, (12.3)

and in the absence of noise b; = sgn (A;b;) = b; for all i. However, when noise is present the
inverse operation of the decorrelator may enhance the white noise, resulting in degraded

performance.

Alternatively, we may estimate x using the MF estimator, X,z = S*y. The resulting
receiver can be implemented using the bank of correlators of Fig. 12-1 with q; = s;, which
is equivalent to the single-user MF receiver. The MF receiver optimally compensates for

the white noise on the channel, but it does not take the structure of the MAI into account.

12.2 The Covariance Shaping Multiuser Detector

To improve the performance of the decorrelator and MF receivers without assuming knowl-
edge of the channel parameters, we propose estimating x using a CSLS estimator, which
leads to a class of receivers that we define as the covariance shaping multiuser (CSMU)
receivers. The CSMU demodulator minimizes the total error variance in the received signal
subject to the constraint that the covariance of the noise component in the output of the
demodulator of Fig. 12-1 is equal to 6?R,, where R is a given covariance matrix and o2 is
the noise variance, so that we control the dynamic range and spectral shape of the noise at
the output of the demodulator. The particular shaping R can be tailored to the specific
set of signatures. Like the MF and the decorrelator, this receiver requires knowledge of the

signature vectors only.

To ensure that the corresponding correlating vectors in Fig. 12-1 lie in the space U
spanned by the signature vectors s;, we choose the shaping R at the output of the demod-
ulator to be such that R(R) = N(S)* = V. In particular, if the signature vectors are

linearly independent then R is chosen to be positive definite. With this choice of R the
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CSLS estimator of x follows from Theorem 11.1 and (11.49) as
Xesis = c((RS*S)Y/?)IRS*y = cC*y, (12.4)

where C = SR((S*SR)!/?)!. Note, that the scaling of %ogrs will not effect the detector
output and therefore can be chosen arbitrarily. In our derivation we assume that ¢ = 1.
Henceforth we denote X = X¢gs = C*y.

Thus, the CSMU receiver can be implemented using the bank of correlators of Fig. 12-1
with q; = ¢;, where c¢; are the columns of C. From Theorem 11.1 and 8.3, it follows that
the vectors ¢; are the closest vectors with Gram matrix C*C = R to the signature vectors
S;, in a LS sense. Therefore we may interpret the CSMU demodulator as a correlation
demodulator with correlating vectors ¢; with Gram matrix R, that are closest in a LS sense
to the signature vectors.

Since the output a of the decorrelator demodulator is equal to X.g, from the discussion
in Section 11.5 it follows that the CSMU receiver can equivalently be implemented as a
decorrelator receiver followed by a WMMSE covariance shaping transformation T% with
weighting CL, as depicted in Fig. 12-2. Here C, is the covariance of the noise component in
a, and the shaping transformation T i designed to optimally shape' this covariance prior
to detection.

The covariance of the noise component Z*w in a is given by
C, = 0?Z*Z = 0*(5*S)8*S(8*S)t = 0%(S*S)T. (12.5)

The WMMSE shaping transformation with weighting C,, shaping R, and constant ¢ = o
then follows from (10.31) as

TV = ¢(RC,")/? = (RS*S)'/2, (12.6)

and indeed, T%a = ((RS*S)!/2)IRS*Sa = %.

From the representation of the CSLS estimator of Section 11.6 it follows that the CSMU

'In this chapter when we refer to shaping a random vector a, we explicitly mean shaping the noise
component in a. Equivalently, this corresponds to shaping a — E(a|b). Similarly, when we say that a
random vector a has covariance C, we explicitly mean that the noise component a — E(alb) in a has
covariance C,.
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Figure 12-2: Representation of the CSMU demodulator in terms of a decorrelator demod-
ulator followed by WMMSE covariance shaping.

receiver can also be implemented as an MF demodulator followed by an MMSE covariance
shaping transformation 'f‘, as depicted in Fig. 12-3. The transformation T is designed to
optimally shape the covariance Cj of the noise component in the MF output a = S*y, prior
to detection. Since Cz = S*S, the MMSE shaping transformation with shaping R and

constant c= ¢ is

T = ((RC;)'/?)'R = (RS*S)/?)R, (12.7)
and indeed, Ta = %.
i 1
51 > —
MMSE
do iy
S2 > covariance [—
Yy —— shaping
T
m Em
Sm R

Figure 12-3: Alternative representation of the CSMU receiver in terms of an MF demodu-
lator followed by MMSE covariance shaping.
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We summarize our results regarding the CSMU demodulator in the following theorem.

Theorem 12.1 (CSMU demodulator). Let {s;,1 <i < m} denote m signature vectors,
and let {c;,1 <1i < m} denote the correlating vectors of the CSMU demodulator. Let S and

C denote the matrices of columns s; and c;, respectively. Then
C = SR((S*SR)'/?)1,

where R is a nonnegative definite Hermitian matriz with R(R) = R(S*). In addition,

1. the vectors c; are the closest vectors with Gram matriz R to the signature vectors s;,

in the least-squares sense.

2. the CSMU demodulator can be realized by a decorrelator demodulator followed by a
WMMSE covariance shaping transformation TV = (RS*S)'/2;

3. the CSMU demodulator can be realized by an MF demodulator followed by an MMSE

covariance shaping transformation T = ((RS*S)!/2)IR..

The analysis presented in Section 12.5 strongly suggests that in a variety of cases the
CSMU receiver outperforms the MF and the decorrelator receivers and approaches the
performance of the linear MMSE receiver, even though the received amplitudes of the users

are unknown.

12.3 The OMU and POMU Demodulators

12.3.1 The OMU Demodulator

The orthogonal multiuser (OMU) demodulator is a special case of the CSMU demodulator
in which the signature vectors s; are linearly independent and the covariance of the noise at
the output of the CSMU demodulator is proportional to R = I,,. The OMU demodulator
can be implemented as a correlation demodulator with correlating vectors g;, that are the

columns of
G = S(S*S)" /2. (12.8)

Since G*G = R = I,,,, these correlating vectors are orthonormal.
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From the general properties of the CSMU demodulator, it follows that the vectors g; are
the closest orthonormal vectors to the vectors s;, in a LS sense. We may therefore interpret
the OMU demodulator as a correlation demodulator matched to a set of orthonormal signals
that are closest in a LS sense to the signature vectors.

When implementing the OMU demodulator in the form of Fig. 12-2, the covariance
shaping transformation TV = WY is a whitening transformation that optimally whitens
the noise component in the output of the decorrelator, prior to detection. In Section 10.3 we
showed that the WMMSE whitening transformation for a random vector a with weighting
CL, is equal to the MMSE whitening transformation of a. Therefore, the OMU demod-
ulator can be interpreted as a decorrelator demodulator followed by an MMSE whitening
transformation WY = (S*S)'/2. Equivalently, the OMU demodulator can be interpreted as
an MF demodulator followed by an MMSE whitening transformation T = W = (8*S)~1/2.

We now show that the vectors g; have the additional property that they are the closest
orthonormal vectors to the decorrelator vectors z;, in a LS sense. From Theorem 8.1, the

orthonormal vectors d; closest to the vectors z; are the columns of D where
D = Z(Z*Z)"'/? = §(S*S)!((8*S) 1) "/2 = s(8*S)"1/2, (12.9)

Comparing (12.9) and (12.8), D = G, so that g; = d; as claimed.

We summarize our results regarding the OMU demodulator in the following theorem.

Theorem 12.2 (OMU demodulator). Let {s;,1 < i < m} denote m linearly indepen-
dent signature vectors, and let {g;,1 < i < m} denote the correlating vectors of the OMU

demodulator. Let S and G denote the matrices of columns s; and g;, respectively. Then
G = S(S*S)" /2,

In addition,

1. the OMU demodulator can be realized by a decorrelator demodulator followed by an
MMSE whitening transformation Wv = (8*8)1/2;

2. the OMU demodulator can be realized by an MF demodulator followed by an MMSE

whitening transformation W = (S*S)_l/Q;

3. the vectors g; are the closest orthonormal vectors to the decorrelator vectors z;;
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4. the vectors g; are the closest orthonormal vectors to the signature vectors s;.

12.3.2 The POMU Demodulator

The projected orthogonal multiuser (POMU) demodulator is also a special case of the CSMU
demodulator in which the signature vectors s; are linearly dependent and the covariance
of the noise at the output of the CSMU demodulator is proportional to R = Py, where
VY = N(S)+. The POMU demodulator can be implemented as a correlation demodulator

with correlating vectors f;, that are the columns of
F = S((S*S)/?)t. (12.10)

Since F*F = R = Py, these correlating vectors form a normalized tight frame for the space
U = R(S) spanned by the signature vectors s;.

From the general properties of the CSMU demodulator, it follows that the vectors f; are
the closest normalized tight frame vectors for U, to the vectors s; in a LS sense. We may
therefore interpret the POMU demodulator as a correlation demodulator matched to a set
of frame vectors for U, that are closest in a LS sense to the signature vectors.

When implementing the POMU demodulator in the form of Fig. 12-2, the covariance
shaping transformation Tv = W;" is a subspace whitening transformation that optimally
whitens the noise component in the output of the decorrelator on the space V in which it
is contained, prior to detection. In analogy to the case in which R = I,,,, the WMMSE
subspace whitening transformation of a with weighting Cl is equal to the MMSE subspace
whitening transformation of a. Therefore, the POMU demodulator can be interpreted
as a decorrelator demodulator followed by an MMSE subspace whitening transformation
WY = (S*S)1/2.

Note, that the MMSE subspace whitening transformation VV;" is equal to the MMSE
whitening transformation wv. However, when the signature vectors are linearly indepen-
dent, the vector output x = Wva is white, while for linearly dependent signature vectors
the output x = V/\\7§”a is white only on a subspace. Furthermore, for linearly dependent sig-
nature vectors the whitening transformation is not invertible, while for linearly independent
signature vectors the transformation is invertible.

Finally, the POMU demodulator can also be interpreted as an MF demodulator followed
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by an MMSE subspace whitening transformation T = W, = ((S*S)!/2)t,

As in the OMU demodulator, the vectors f; have the additional property that they are
the closest normalized tight frame vectors to the decorrelator vectors z;, in a LS sense.
From Theorem 8.1, the closest normalized tight frame vectors d; to the vectors z; are the

columns of D where now
D = Z((Z*Z)'/?)t = s((s*S)/?)1. (12.11)

Comparing (12.11) and (12.10), D = F, and indeed f; = d;.

We summarize our results regarding the POMU demodulator in the following theorem.

Theorem 12.3 (POMU demodulator). Let {s;,1 < i < m} denote m linearly depen-
dent signature vectors that span a subspace U, and let {f;,1 <1i < m} denote the correlating
vectors of the POMU demodulator. Let S and F denote the matrices of columns s; and g;,

respectively. Then
F = S((S*S)/?)t.

In addition,

1. the POMU demodulator can be realized by a decorrelator demodulator followed by an
MMSE subspace whitening transformation Wg’ = (S*8)'/%;

2. the POMU demodulator can be realized by an MF demodulator followed by an MMSE

subspace whitening transformation W, = ((S*S)V/2)t;

3. the vectors f; are the closest normalized tight frame vectors for U to the decorrelator

vectors z;;

4. the vectors f; are the closest normalized tight frame vectors for U to the signature

vectors s;.

Alternative derivations of the OMU and POMU receivers are developed in [38, 39].
Exploiting results we derived in the context of quantum detection [26], in the next
section we show that if the signature vectors are GU, which is the case, for example, for

pseudo noise (PN) sequences corresponding to maximal-length shift-register sequences [49,
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163], then the OMU and POMU receivers minimize the total MAI and maximize the total
output SNR, subject to the constraint that the outputs of the demodulator are uncorrelated
on the appropriate space. These properties of the OMU and POMU demodulators also
holds approximately for nearly orthogonal signature vectors. This provides some additional

justification for this class of receivers.

12.4 OMU, POMU Demodulators and Minimizing MAI

In the implementation of Fig. 12-2, the OMU and POMU demodulators are expressed as a
decorrelator demodulator followed by an MMSE whitening transformation that optimally
whitens the noise component in the output of the decorrelator on the space in which it is
contained. In this section we show that this whitening transformation has the additional
property that among all possible whitening transformations, it minimizes the total MAI
in the output of the transformation for GU signature vectors. Furthermore, for nearly
orthogonal signature vectors the MMSE whitening transformation approximately minimizes
the total MAL

For simplicity of exposition, we assume throughout this section that F(A?) = 1 for all 4;
the results extend in a straightforward way to the general case in which the powers E(A?)
are not equal.

We have seen that (in the linearly independent case) the decorrelator eliminates the MAI
by inverting the multiuser channel, but in the process may enhance the white noise. The
OMU and POMU demodulators try and compensate for this possible noise enhancement
by whitening the noise component in the output a of the decorrelator prior to detection.
However, the whitening transformation introduces some MAT into the outputs #;. Indeed,
the data component in the output x of the whitening transformation is the vector WADb,

whose ith component is

m
Z[w]ikAkbk =35 + 3, (12.12)
h=1

where £7 = [W];;4;b; is the signal component in #;, and 2/ = > ket kil Wik Agbg, is the
MAI component in #;. We may therefore choose W to minimize the total MAI in the

output X, or equivalently to maximize the the total signal-to-interference ratio (SIR) in x.
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Thus, we seek the W that maximizes the total SIR given by

A m m bl .
Y E(@DY X Yk ki [Wlil?
subject to the whitening constraint,
WC,W* = ¢°1,, (12.14)
or the subspace whitening constraint,
WC,W* = 02Dy, (12.15)

where C, is the covariance of the noise component in a given by (12.5), and ¥ = N'(C,)" .

We first consider the case of linearly independent signature vectors. In this case, we can
simplify the expression for SIRy given by (12.13) as follows. Since W must be invertible,
(12.14) reduces to

W*W = ¢°C, . (12.16)

From (12.16) we conclude that Tr(W*W) = 37" |[W];k|? is constant, independent of
the choice of W. With a =71, |[W];x|?, we can write (12.13) as

iy W]l
SIRy = —&=L , 12.17
T e (WP (12.17)

so that maximizing SIRy subject to (12.14) is equivalent to maximizing

L =Y (Wl (12.18)
=1
subject to this constraint.

Let C, have an eigendecomposition C, = VAV*, where A is a diagonal matrix with

diagonal elements A; > 0. Then from (12.16), and using the properties of the SVD,
W = o U*A~1/2V*, (12.19)
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for some unitary matrix U*. Let u; denote the columns of U, and let t; denote the columns

of T = gA~'/2V*. Then [W]; = u}t;, and

T=> [[Wlal* =) |ujti|. (12.20)
i=1 i=1

Thus, the problem of maximizing (12.13) subject to (12.14) reduces to seeking a set of

orthonormal vectors u; that maximize (12.20).

When the signature vectors are linearly dependent, we can show that the design problem
of (12.13) and (12.15) reduces to seeking a set of vectors u; that form a normalized tight

frame and maximize (12.20).

This problem is equivalent to the quantum detection problem discussed in Section 3.4.
Specifically, comparing (12.20) with (3.13) we see that choosing a set of quantum mea-
surement vectors to maximize the probability of correct detection in a quantum detection
problem subject to an orthogonality or tight frame constraint, is equivalent to choosing a
set of correlating vectors to maximize I' subject to the corresponding constraint. From our
discussion in Section 3.4 it follows that for arbitrary vectors t;, or equivalently arbitrary
vectors s;, there is no known closed-form analytical expression for the vectors maximizing

r.

Based on results we derived in a quantum detection context (see Section 3.4 and [26]),
it can be shown that when the signature vectors are GU, the vectors u; maximizing (12.20)
are equal to the columns of the unitary matrix V* in the eigendecomposition of C,. From
(12.19) it then follows that the whitening transformation that maximizes SIRy is given by
W = o VA Y/2V* = ¢C, /2 = (8*S)'/2, which is equal to the MMSE whitening transfor-
mation W¥ given by Theorem 12.2. Similarly, the subspace whitening transformation that
maximizes SIRy is equal to the MMSE subspace whitening o(C,?)t = (8*S)1/2 = Wg”,
given by Theorem 12.3.

A common choice for signature vectors in a direct-sequence CDMA system are PN se-
quences corresponding to maximal-length shift-register sequences [49, 163]. These sequences
have the property that the inner product between any two distinct sequences is equal to
a constant. Thus, for this choice of signature vectors the OMU and POMU demodulators
maximize SIR7 subject to the constraint that the outputs of the demodulator are uncorre-

lated on the space in which they lie.
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Further results regarding the whitening or subspace whitening transformation maximiz-
ing SIRr that follow from results pertaining to quantum detection are that if the signature
vectors are nearly orthogonal, then the MMSE whitening and subspace whitening transfor-
mations also approximately maximize SIRy [150].

Based on the results developed in the context of MF detection in Chapter 9, these
whitening transformations have the additional property that for GU signature vectors they
maximize the total output SNR defined by SNRr = > 7" ; SNR;, where SNR; is the SNR

at the ith output of the whitening transformation.

12.5 Performance Analysis of the CSMU Receiver

In this section, we discuss the theoretical performance of the CSMU receiver. We first derive
exact and approximate expressions for the probability of detection error for any choice of
shaping R. We then derive the asymptotic SINR of the output of the OMU and POMU

receivers, corresponding to the choice R = Py where V = N(S), in the large system limit.

12.5.1 Exact Probability of Detection Error

The detector input of the CSMU receiver defined via (12.4) is
% = (RS*S)Y/?)IRS*y = (RS*S)"/?Ab + ((RS*S)'/?)IRS*w. (12.21)

Each component of the detector input vector can be decomposed into

iy = & + 2l + 2V, (12.22)
where the terms
¥ = [(RS*S)Y?);;A:b; (12.23)
& = ) [(RS*S)V/2]i Agby (12.24)
ki
Y = [(RS'S)')TRS"w (1225)

represent the desired signal, the MAI, and the noise respectively. Here [-]; denotes the ith

column of the corresponding matrix. Conditioned on b, the decision statistic #; is Gaussian
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with mean 5:;9 + :%ZI and variance o2[R];. Taking into consideration all possibilities of b, the

resulting probability of detection error for the ith user is

1 [(RS*S)'/?];i A; [(RS*S)"/?]iy Ay,

P, - e . + )

(0) gm—1 Z Z Z Q o [R]zz Z o [R]“ €k
e1€{-1,1} ekek{;},l} em€{—1,1} k#i

(12.26)

where

Qv) = \/% /oo e~ 2t (12.27)

From (12.26), we see that the probability of detection error of the CSMU detector for
the ith user goes to zero as 0 — 0 if and only if the argument of each of the O-functions is

positive.

For example, in the special case in which R = Py and all cross-correlations of the

signature vectors are identically equal to p, it can be shown that

+(m—Day, ifi=F,
(RS*S)/2]y, — [(8%9)1/2]y — { @ T (M= Doz I (12.28)
] — g, if ¢ 75 k,

where ag = (1/m)y/1+ (m —1)p and ay = (1/m)y/1 — p. In this case the probability of

detection error of the CSMU detector for the ith user goes to zero as ¢ — 0 when
(a1 + (m—1)ag)A; > (a1 — az) ZAk. (12.29)
ki

In the special case of m equal-energy users the condition in (12.29) simplifies to

3m —4

T (12.30)

p <
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In the analysis below we choose the shaping R as a circulant matrix with parameter ¢:

(16 & 5 ]
§1 6 ... 6

R=| _ . (12.31)
55 ... & 1]

When § =0, R =1,,, and the CSMU receiver reduces to the OMU receiver.

Figure 12-4 evaluates (12.26) in the special case of two users with cross-correlation
p = 0.8 and with R given by (12.31) with 6 = 0 (i.e., R = I,), where the desired user
has an SNR of 8 dB. The probability of bit error of the CSMU receiver is plotted as
a function of the near-far ratio As/A;, where A; is the amplitude of the desired user.
The corresponding curves for the single-user MF, decorrelator, and linear MMSE receiver
are plotted for comparison. We see that for all values of the near-far ratio shown, the
CSMU receiver performs better than the decorrelator. When the power of the interferer is
negligible, the MF performs better than the CSMU receiver which is expected since the MF
is optimal in the absence of MAI. Thus, the CSMU receiver performs better than both the
decorrelator and the MF when As/A; is roughly between 0.35 and 1. In this regime, the
CSMU receiver performs similarly to the linear MMSE receiver.

In Fig. 12-5 we plot the probability of bit error for two users with cross-correlation
p = 0.8 with R given by (12.31) as a function of the near-far ratio As/A;, for several values
of §. The desired user has an SNR of 10 dB. In general we see that increasing § results
in improved performance at low near-far ratios As/A;, but degraded performance at high
near-far ratios. When p = —0.8 the opposite behavior is observed. The probability of error
plots in this case are identical to those shown in Fig. 12-5 in reversed order, so that e.g.,
the 6 = 0.2 plot in Fig. 12-5 is equivalent to the performance for § = —0.2 when p = —0.8.

In Fig. 12-6 we evaluate (12.26) for two users with cross-correlation p = 0.8 and with
R =1, where the desired user has an SNR of 15 dB. The trends are similar to those seen
in Fig. 12-4. The CSMU receiver performs better than both the decorrelator and the MF
when Ay/A; is roughly between 0.3 and 0.75, and in most of this regime the CSMU receiver
actually performs better than the linear MMSE receiver. The reason this is possible is that
while the linear MMSE receiver is the linear receiver that maximizes the SINR at the slicer

input, the linear MMSE receiver does not necessarily minimize the probability of detection
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Figure 12-4: Probability of bit error with two users and cross-correlation p = 0.8, as a
function of the near-far ratio A2/A;. In the CSMU receiver, R = Is. The SNR of the first
user, the desired user, is 8 dB.

error since the noise at the slicer is not strictly Gaussian due to the MAL.

We now look at the case of 3 users with equal cross-correlation p = 0.8 and R = Is.
Figure 12-7 depicts the bit-error rate when the first user, the desired user, has two interferers
such that Aa/A; = 0.5 and A3/A; = 0.25. The CSMU receiver performs similarly to the
linear MMSE receiver at all SNR, and better than the decorrelator and the single-user MF.

In Fig. 12-8 we examine the scenario in which the desired user has 4 interferers such
that A;/A; = 0.2 for i = 2, 3,4, 5, where all 5 users have equal cross-correlation p = 0.8, and
R = I5. The CSMU receiver performs significantly better than the decorrelator and the
MF. Moreover, the CSMU receiver performs slightly better than the linear MMSE receiver
at high SNR. Fig. 12-9 evaluates the probability of bit error with R equal to a circulant
matrix with parameter 6 = 0.2. Now A4;/A4; = 0.5 for i = 2, 3,4, 5, and all 5 users have equal
cross-correlation p = —0.2. Even though the magnitude of the cross-correlations are low,
the CSMU receiver still performs better than the decorrelator and the MF and performs

similarly to the linear MMSE receiver.

Finally, in Fig. 12-10 we evaluate the probability of bit error of the CSMU receiver
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Figure 12-5: Probability of bit error with two users and cross-correlation p = 0.8 as a
function of the near-far ratio Az2/A;, where R is a circulant matrix with parameter §. The
SNR of the first user, the desired user, is 10 dB.

with R equal to a circulant matrix with parameter § = 0.35, in the case of 10 users with
p = —0.1, and with accurate power control so that A; = 1 for all i. Here again, the CSMU
receiver performs better than the decorrelator and the MF and performs similarly to the

linear MMSE receiver.

The analysis results presented in this section demonstrate that over a wide variety of
the channel parameters, the CSMU receiver can outperform both the decorrelator and the
MF receivers and can perform similarly to the linear MMSE receiver, even though it does

not rely on knowledge of the channel parameters.
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Figure 12-6: Probability of bit error with two users and cross-correlation p = 0.8, as a
function of the near-far ratio A2/A;. In the CSMU receiver, R = Is. The SNR of the first
user, the desired user, is 15 dB.

12.5.2 SINR and Approximating the Probability of Detection Error

From (12.23)—(12.25), the terms 27, !, and £ are mutually independent and zero-mean,

and have variances

var(if) = [(RS*S)Y?)2A42 (12.32)
var(i) = [(RS*S)/?]; A%[(RS*S)"/?]; — [(RS*S)"/?]5 A7 (12.33)
var(zY) = o?[R]- (12.34)

The SINR at the detector for the 7th user is therefore

_ [(RS*S)1/2]2 A2
7T 52[R]y; + [(RS*S) V2 A2[(RS*S)1/2]; — [(RS*S) /22 A2 (12.35)

In the case of accurate power control, i.e., A = AL, we can simplify (12.35) to

N [(RS*S)V/22
7 (R + [RS*S]; — [(RS*S)1/2]2°

(12.36)
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Figure 12-7: Probability of bit error with three users and cross-correlation p = 0.8, as a
function of SNR. In the CSMU receiver, R = I3. The amplitude A; of the desired user
is 2 times greater than the amplitude A, of the second user and 4 times greater than the
amplitude Ag of the third user.

where
- = (12.37)

is the received SNR. An alternate form for (12.36), which will be more convenient for the

analysis in Section 12.5.3, is

B 1
%S EssPE 1. (12.38)

¢[R];i+[RS*S]s;

Assuming :%ZI + L%ZN is Gaussian, the probability of detection error can then be approxi-

mated as

Pi(o) = Q(v/7i)- (12.39)

At low SNR, the Gaussian approximation is acceptable because Gaussian noise is the dom-

inant impairment. However, at high SNR, the discrete distribution of the MAI is poorly
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Figure 12-8: Probability of bit error with five users and cross-correlation p = 0.8, as a
function of SNR. In the CSMU receiver, R = I5. The amplitude A; of the desired user is 5
times greater than the amplitude A; of any of the other interferers.

approximated by a Gaussian distribution, especially at the tails of the distribution where
the bit-error rate is determined. Thus we do not expect (12.39) to be particularly accurate

at high SNR.

12.5.3 Asymptotic Large System Performance

We now evaluate the performance of the CSMU receiver in the large system limit? for the
special case in which R = Py where ¥V = N(S):. If the signature vectors are linearly
independent then Py, = I,,,, and the CSMU receiver reduces to the OMU receiver. If they
are linearly dependent, then the CSMU receiver reduces to the POMU receiver.

When R = Py, the SINR at the detector for the ith user follows from (12.38) as

1
= T 1. (12.40)

¢[Pylii+[S* S

The following theorem characterizes the performance of the OMU and POMU receivers in

2The analysis presented in this section is the product of a joint collaboration with A. Chan, and appears
in [39].
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Figure 12-9: Probability of bit error with five users and cross-correlation p = —0.2, as a

function of SNR. In the CSMU receiver, R is a circulant matrix with parameter § = 0.2.
The amplitude A; of the desired user is 2 times greater than the amplitude A; of any of the
other interferers.

the large system limit when random Gaussian signatures and accurate power control are
used. The method we use in its proof can be easily modified to characterize the performance
of other multiuser detectors in the large system limit as well. For example, the method can
be used to derive the asymptotic SINR for the matched filter detector, and we have recently
used it to derive the asymptotic SINR for the decorrelator [53].

Theorem 12.4 (Asymptotic SINR). Let the elements of the n X m signature matriz S
be independent CN (0,1/n), and let the matriz of amplitudes A be expressible as Al,,. Then
in the limit as m — oo with 0 2 m/n held constant, the SINR for each user at the OMU
and POMU demodulator output satisfy’

m.s. ].

; —1 12.41
% 1 ne[(m4n2)E(y/1-n1/n2)—2m K (\/1-=m1 /n2)]2 ( )
- 92 B2(¢+1)

#We use the notation % to denote convergence in the mean-squared (L?) sense [164].
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Figure 12-10: Probability of bit error with 10 users, cross-correlation p = —0.1, and accurate

power control, as a function of SNR. In the CSMU receiver, R is a circulant matrix with
parameter § = 0.35.

and

m.s, 1
(R -1 12.42
k 1 — mlntm)EG/1-m /n2)—2m K(y/1—m /n2)]? ( )
9m2B2(¢/B+1)

respectively, where [165]

w/2 1
K(k) = / o d / dz (12.43)
0 V1-—k2sin2¢t Jo /(1 —22)(1 - k222)
w/2 1 1 _ k242
Ek) = / V1= k2sin? tdt — / LR (12.44)
0 0 1—=x
are the complete elliptic integrals of the first and second kinds respectively, and
m = (1-B)’ (12.45)
n = (1++/08)>% (12.46)
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Proof: We begin by presenting the following lemma on Wishart matrices*, which have the
form S*S with the elements of S being independent CA'(0,0?). The lemma and its proof
rely on the concepts of isotropically distributed vectors and matrices, which are reviewed

in Appendix E.

Lemma 12.1. Let the elements of an n x m matriz S be independent CN'(0,02). Then
the eigenvector matriz of S*S 1is isotropically distributed unitary and independent of the

eigenvalues.

We emphasize that this lemma, is true for Wishart matrices of any size.

Proof: Let S = UXV™* be the SVD of S, where U is an n X n unitary matrix, V is an
m X m unitary matrix, and ¥ is a diagonal n x m matrix with diagonal elements o; > 0.

Then

S*S = VAV™, (12.47)

where A = ¥*3 is a diagonal matrix of eigenvalues of S*S, and V is a matrix of eigenvectors
of S*S.
Let Y denote an independent, isotropically distributed unitary matrix. By premultiply-

ing and postmultiplying (12.47) by T* and Y respectively, we have that

T*S*SYT = T*VAV*Y, (12.48)

or, equivalently,

(SY)*(SY) = (V*T)*A(V*Y). (12.49)

Let us examine the left-hand side of (12.49). Since the elements of S are CN(0,0?), S
is an isotropically distributed matrix. With S being isotropically distributed and Y being
unitary, ST has the same distribution as S, and consequently (SY)*(SY) has the same

distribution as S*S.

4A similar lemma exists for matrices S*S, where the n-dimensional columns of S are independent and
drawn uniformly from the surface of the unit n-sphere.
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We now focus on the right-hand side of (12.49). Note that V*Y is unitary and A is
diagonal, so that the right-hand side (12.49) is an eigendecomposition. Now, since Y is an
isotropically distributed unitary matrix and V* is a unitary matrix, the eigenvector matrix
V*Y is an isotropically distributed unitary matrix. Furthermore, the eigenvector matrix

V*T is independent of the eigenvalue matrix A because Y is independent of A. O

To prove Theorem 12.4, we need to determine the limits of [(S*S)Y?];, [Py]i, and
[S*S]i; as m — oo with (3 held constant.

From (12.47), the quantity [(S*S)'/?];; can be written as
[(S*S)]ii = [VAY?V*] = viAY?v;, (12.50)

where v; is the ith column of V*. Now, V and A are the eigenvector matrix and the
eigenvalue matrix respectively in the eigendecomposition of the Wishart matrix S*S. Thus
using Lemma 12.1, we conclude that V* is an isotropically distributed unitary matrix
independent of A. Since v; is a column of an isotropically distributed unitary matrix, from
Appendix E it then follows that v; is an isotropically distributed unit vector. Consequently,
v; has the same distribution as z/v/z*z, where z is an m-dimensional vector of independent

CN(0,1) random variables. Thus [(S*S)/?];; has the same distribution as

z*Az doie1 Ajlz|? m

2z Y lg/m

(12.51)

with the A;’s denoting the eigenvalues of S*S and the z;’s denoting the components of z.

To evaluate the limit of (12.51) when m — oo, we rely on the following pair of lemmas.

Lemma 12.2 ([166]). If the ratio of the number of users to the signature length is, or

converges to a constant:

lim 2 = 8 € (0,00), (12.52)

1—00 N

then the percentage of the m eigenvalues of S*S that lie below x converges to the cumulative

distribution function of the probability density function

Viz —mltne — 2]t
27 Bz

fola) =1 -1 0(2) + (12.53)
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here n1 and n2 are defined according to (12.45) and (12.46), and the operator [-]* is defined

according to
+ 24
[u]™ = max{0,u}. (12.54)
Lemma 12.3 ([53]). Let {c;} denote a set of independent identically distributed (iid) ran-
dom variables independent of {\;}, where {\;} denote the eigenvalues of a Wishart ma-
triz under the conditions of Lemma 12.2. Furthermore, let g(-) be a function such that

E((g(M))?) < oo when evaluated according to the probability density function fg(z) of
(12.53). Then as m — oo,

D 9()e; =3 E(g(h)E(e), (12.55)

where E(g(A1)) is evaluated according to fg(x).

Applying Lemma 12.3 and the strong law of large numbers to the numerator and denomi-

nator of (12.51) respectively, we have

2 2
(s8)72 2% EOZOEIAD) _ iy (12.56)

as m — oo, where E(/);) is evaluated according to the probability density function fg(x)
of (12.53). Thus,

[(878)12],; ™% B(v/Ar) = /0 " Vafs(@)da
- /ooo Va {[1 o) 4 Vel e —alt } do

2nBx
" \/(z —m)(np — )
m 271-/3\/‘E &

— L2 + ) E(VT= /) — 20K (V= i ) (12.57)

where the last equality is from [165], and where K (-), E(-), n1, and 7 are defined by (12.43),
(12.44), (12.45), and (12.46) respectively.
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Similarly, [Py];; can be written as
[Pylii = [VIV*];; = vilvi, (12.58)
where I is a diagonal matrix with ith diagonal element equal to y; given by

1, \#0,
i = o7 (12.59)
0, A\i=0,

so that [Pyl;; has the same distribution as

2Tz Y7Ly mjlzl?/m
B s L Ay (12.60)
z'z Y| /m

Applying Lemma 12.3 and the strong law of large numbers to the numerator and denomi-
nator of (12.60) respectively, we have

s, B(m)E(|z1[)

[Pyl = E(a ) = E(u) (12.61)

as m — 00, where F(u1) is evaluated according to the probability density function fgz(z) of
(12.53). Thus,

[y

AN

[Pylii =% E(u1) = Jlim P\ #0) = (12.62)

e
X ®
V

Lastly,
[S*S]i; 232 LY (12.63)

by the strong law of large numbers, with the s;;’s denoting the components of s;.

It is well known that if z, == z and y, —> ¢, then zp £ yp —> z + 7 and Tpyn — Ty
[164]. The following lemma which involves the convergence of 1/z, is now required to

complete the proof of Theorem 12.4.

Lemma 12.4 ([53]). Let z, =% %, where {x,} is a sequence of random wvariables such
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that |1/z,| < B for all n, and T # 0. Then

m.s.

ms L (12.64)

K] =

1
In
Substituting (12.57), (12.62), and (12.63) into (12.40), and using the fact that v; < 1/¢

with Lemma 12.4 completes the proof of Theorem 12.4. O

Since the MAT is asymptotically Gaussian in the infinite-user limit, we expect (12.39)
to be an accurate approximation to the bit-error rate at all SNR, where ; is given by The-
orem 12.4. We will use this approximation to compute the bit-error rate for the remainder
of this section.

From (12.41) and (12.42), we note that as ¢ — 0, i.e. { — 0, the SINR ~; converges to
a finite constant. This behavior is expected, since the condition (12.30) cannot be satisfied
as m — oo. Thus the probability of bit error does not go to zero in this scenario.

In Fig. 12-11, the bit-error rate in the infinite-user limit for the OMU receiver is com-
pared to the single-user MF, the decorrelator, and the linear MMSE receiver, for § = 0.95.
For the SNR range shown, the OMU receiver performs better than the decorrelator and the
MF. At low SNR, the performance of the OMU receiver is close to that of the linear MMSE
receiver. Note that at high SNR, the bit-error rate of the OMU receiver begins to converge
to its high-SNR, infinite-user limit. In Fig. 12-12, we plot the probability of bit error in
the infinite-user limit® as a function of 3, with an SNR of 8 dB. For 3 roughly greater than
0.55 but less than 1.45, the OMU/POMU receiver performs significantly better than both
the decorrelator and the MF.

In summary, the performance analysis shows that over a wide range of channel param-
eters the CSMU receiver performs similarly to the linear MMSE receiver and outperforms
both the decorrelator and the single-user MF.

The asymptotic SINR in the infinite-user limit was derived assuming that the outputs of
the CSMU receiver are uncorrelated on the space in which they are contained. By allowing
for other choices of the output covariance shape R we can further improve the performance
of the CSMU receiver in many cases. An important direction for future work is to compute

the asymptotic SINR for other choices of R. Based on knowledge of these asymptotic limits

®We derive the asymptotic large system performance of the decorrelator for the case 8 > 1 in [53].
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—<— Decorrelator
- — MF

—— MMSE

Probability of Bit Error

SNRI/bit [dB]

Figure 12-11: Probability of bit error in the large-system limit, with equal-power users,
random signatures, and § = 0.95. In the CSMU receiver, R = 1.

we can then develop optimal methods for choosing R.

Another important direction to investigate is the performance of the CSMU receiver
for coded systems. In particular, it would be useful to derive the spectral efficiency in the
infinite-user limit of the CDMA channel when using a CSMU receiver, and then compare

it to the known spectral efficiencies when using other multiuser receivers [52].

325



10°

T
—6— CSMU receiver |]
—»— Decorrelator
- - MF

— MMSE

Probability of Bit Error

1 1 1
0.4 0.6 0.8 1 1.2 1.4 1.6
Ratio of Users to Signature Length, 3

10°

Figure 12-12: Probability of bit error as a function of § in the large-system limit, with
equal-power users, random signatures, and SNR of 8 dB. In the CSMU receiver, R = Py,.
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Appendix A

Iterative Algorithm Computing the

Least-Squares Orthogonal Vectors

In this appendix we derive the angle 6 for the optimal Givens rotation that maximizes

RYTY of (8.71).

Recall that,

nglj:l) = (cby1 + Sb21)2 + (cbog — Sb12)2
= (b}, + b3y) + s2(b3; + biy) + 2cs(bi1bar — baobia), (A.1)
where ¢ = cos(#) and s = sin(@). Differentiating (A.1) with respect to 6,

i
do

= —205(()?1 + b%Q) + 268([)31 + b%Q) + 2(02 — 32)(1)11[)21 — b22b12)

= —xsin(20) + 2y cos(26), (A.2)

where x = b2, +b3y—b2, — b2y, y = b1b21 —bazbio, and we used the relations c2—s? = cos(26),

2cs = sin(26). Equating (A.2) to 0 yields,
x sin(20) = 2y cos(26). (A.3)

Note, that J(r,1,0) = J(r,l,0 + 27k) for any integer k, thus it is sufficient to consider
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solutions @ € (—m,n]. If  # 0, then the solutions to (A.3) are,

_1 12y
9—2tan (x) (A.4)

If z = 0 and y # 0, then the solutions to (A.3) are # = £7/4. If z = y = 0, then from (A.1)

we see that R’ gjs_l_l) does not depend on 8, and we choose 8 = 0.

Taking the second derivative of R’ ;Lj:_l) with respect to 6 yields,

dQRI(j+1)
Tfl; = —2zx cos(20) — 4y sin(26). (A.5)

Thus, a solution € of (A.3) maximizes R’ ;Lj:'l) if
x cos(26) + 2y sin(260) > 0, (A.6)
which for = # 0 reduces to

x cos(26)(1 + 4y?/z?) > 0. (A7)

Thus if  # 0, then @ is a maximum of R’Elj:l) if § has the form (A.4) and cos(26) and z
have the same sign. Similarly, for z = 0, sin(29) and y must have the same sign. So, for

y>0,0=mn/4, and for y < 0, § = —7/4.
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Appendix B

Matrix Equalities

In this appendix we prove some useful matrix equalities which we use throughout the thesis.
Let S be an arbitrary m X n matrix, and let T be an arbitrary n X n matrix with

R(T) C N(S)*t. Then with ST denoting the Moore-Penrose pseudo inverse of S,
sT!/?st = (sTsh)1/2. (B.1)

We establish (B.1) by showing that A% = STS where A = ST'/2St. Indeed,
A? = ST'/?8TST!/?8T = ST!/2 Py (). T/?ST = STST, (B.2)

where we used the fact that R(T'/?) C N(S)* so that Pyr(sy+ T2 = T1/2,
An important special case of (B.1) is the case in which n = m and S is an invertible

m x m matrix. Then N'(S)* = C™ so that for any m x m matrix T, R(T) C N'(S)+, and
ST!/28~! = (STS™1)'/2. (B.3)
If in addition T is invertible, then substituting T~! for T in (B.3),

ST-1/28~! = (STS™!)~%/2, (B.4)
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Appendix C

Subspace Whitening

C.1 Implication of Noninvertible Covariance Matrix

Let a be a zero-mean random vector in C"™ with rank-n covariance matrix C, were n < m,
and let V denote the range space R(C,). Then since C, is Hermitian, the null space
N(C,) = V1. Let {v;,1 <i < n} denote an orthonormal basis for V, and let {v;,n +1 <

i < m} denote an orthonormal basis for V*. Since v; € N(C,) for n +1 < i < m,
Covi=0,n+1<i<m. (C.1)

We now try to gain some insight into (C.1). Let A\; = via, n+1 < i < m. Then the
variance of \;, denoted oy, is 0; = E(v;aa*v;) = viC,v; = 0, n+ 1 < i < m, where we

used (C.1). Thus \; = E(\;) =0 w.p. 1, or
via=0,n+1<i<m, (C.2)

for any realization of a, w.p. 1. From (C.2) we conclude that the elements of a are deter-
ministically linearly dependent and any realization of the random vector a lies in a subspace
of C™. Specifically, a lies in the orthogonal complement in C™ of the space spanned by the

vectors {v;,n+1<1i<m}. Thus,a € V.
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C.2 Subspace Whitening

We now translate the conditions on a random vector b to be white on V, to conditions on
the covariance Cy of b. The first condition on the vector b is that b € V. Suppose that
b e V. Then vib =0,m+1 <4 <n (w.p. 1), since the vectors {v;,m +1 < i < n} span

V1. This in turn implies that
Cyv; =0, n+1<i1<m, (03)

so that the null space of C, contains V1. Conversely, suppose that the null space of Cp
contains V*. Then (C.3) holds, and we have already shown that this implies that b € V.
We conclude that b € V if and only if the null space of Cp contains V', so that Cy
satisfies (C.3).

We now discuss the requirement that the representation of b in terms of any orthonormal
basis for V is white. Let V; denote the matrix of columns {v;,1 < ¢ < n}, that form a basis
for V. The representation of b in this basis for V is b, = Vib, b, € C". We require that
b, is white, namely that the covariance matrix of b, is equal to ¢?I,,. Since the covariance

of b, is given by ViC, V1, our requirement on Cy is
ViCyVi = 1, (C.4)

for some ¢ > 0. Thus the matrix Cy has to satisfy (C.3) and (C.4), which can be combined

into the single condition
Cy = Py = VI, V*, (C.5)
where V is the matrix of columns {v;,1 < i < m}, and I,, is given by

i I, 0
0 0
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Appendix D

Positive Worst-Case Threshold in
CSLS Estimation

In this appendix we show that for XcgLs # Xis, (we = 0, where (wc is the worst case
bound in CSLS estimation, and is given by (11.23). To this end we need to prove that

(1/m) 3" A7 > o? or, equivalently,

%ngl (in) > (ZAW) , (D.1)
1=1 =1 =1

with equality if and only if Xcgrs = Xig-

From the Cauchy-Schwarz inequality,

1 - 1 [ —1/2,1)2 ’
S DR PP TS (Z AN ) =m, (D-2)
i=1 i=1 i=1
and
1/2
>u=—>"1 AiZE(ZAi/) . (D.3)
=1 =1 =1 =1

Combining (D.2) with (D.3) proves the inequality (D.1).

We have equality in (D.2) if and only if )\i_l/ 2 = a)\;/ 2 for a constant a # 0, which
implies that all the eigenvalues A; are equal, so that B is proportional to I,, and from

Theorem 11.1, Xggps = Xps. Under the same condition we have equality in (D.3). We
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therefore conclude that when Xggrs # X1, there is always a range of SNR values for which

MSE (X¢sis) < MSE(%.s).-
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Appendix E

Isotropically Distributed Vectors

and Matrices

In this appendix, we define the concept of isotropically distributed vectors and matrices
and highlight the key properties that are used to prove Theorem 12.4. A more detailed

discussion can be found in [167].

Definition E.1. An m-dimensional complex random vector ¢ is isotropically distributed if
its probability density is invariant to all unitary transformations; i.e., f(¢) = f(O* @) for
all ©® such that ©*O =1,,.

Intuitively, an isotropically distributed complex vector is equally likely to point in any
direction in complex space. Thus, the probability density of ¢ is a function of its magnitude
but not its direction. If, in addition, ¢ is constrained to be a unit vector, then the probability

density is

1(6) = (gt - 1), (B.1)

and ¢ is conveniently generated by ¢ = z/v/z*z, where z is an m-dimensional vector of

independent CN(0,1) random variables.

Definition E.2. An n x m complex random matriz ® is isotropically distributed if its
probability density is unchanged when premultiplied by an n X n unitary matriz; i.e., f(®) =

f(©*®) for all © such that @*O© =1,.
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From the definition of an isotropically distributed matrix, it can be shown that the
probability density is also unchanged when the matrix is postmultiplied by an m x m
unitary matrix; ie., f(®) = f(®0) for all ® such that ®*® = I,,,. Furthermore, by
combining Definitions E.1 and E.2, we can readily see that the column vectors of ® are

themselves isotropically distributed vectors.
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