


-2-



-3-

The Earth�s Interior from both a Seismological and Petrological Perspective

by

Rebecca Lee Saltzer

Submitted to the Department of Earth, Atmospheric and Planetary Sciences on

September 10, 2001 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in

Geophysics

Abstract

Shear-wave splitting measurements of teleseismic shear waves, such as SKS,
have been used to estimate the amount and direction of upper-mantle anisotropy
worldwide.  One of the basic assumptions in making these measurements is that
the anisotropy is confined to a single, homogeneous layer.  In this thesis, I use
both numerical and analytical modeling to examine the validity of this
assumption.  I find that variability in the orientation of anisotropy with depth
causes observable effects, such as frequency dependence in the apparent splitting
parameters, and that the measured fast-axis direction is consistently different
than the average of the medium.

A separate focus of this thesis is how spatial associations between minerals in
a thin-section can be used to infer the evolutionary pressure-temperature history
of a rock.  I present a new method for textural analysis that uses digital images
obtained with the electron microprobe.  This method is used to characterize nine
mantle xenoliths erupted from kimberlite pipes in South Africa and to test
whether the pyroxenes are spatially correlated with the garnets.  The observed
associations can be explained by a model in which harzburgitic residues are
produced by large extents of partial melting at shallow depths (~60-90 km) and
high temperatures (~1300-1400° C) and are then subsequently dragged down to
greater depths where garnet and clinopyroxene exsolve, perhaps in an Archean
subduction zone.

The third focus of this thesis is on the seismological evidence for
compositional heterogeneity in the lower mantle.  Using reprocessed ISC data, I
compare P and S wave tomographic models and find systematic differences
between regions that have undergone subduction in the last 120 million years
and those that have not below ~1500 km.  This global study is followed up with a
regional study using higher-quality P and S wave differential traveltimes.
Beginning at depths of ~1000 km down and continuing down to the core-mantle
boundary I find variability in Poisson�s ratio that is greater than what would be
expected by temperature variations alone.  A simple explanation is that the
variability includes a contribution from compositional effects, such as 2%
variability in iron from one region to another.

Thesis Supervisor:  Robert D. van der Hilst, Professor of Geophysics



-4-



-5-

To my wonderful friend and devoted companion, Tory (a.k.a.  T-dog).



-6-

Table of Contents

Abstract .........................................................................................................................3

Table of Contents.........................................................................................................6

1 Introduction ............................................................................................................9

2 How are Vertical Shear Wave Splitting Measurements Affected by

Variations in the Orientation of Azimuthal Anisotropy with Depth? .........11

Summary .......................................................................................... 11
Introduction .....................................................................................................11

Problem Formulation......................................................................................13

Forward problem: synthetic seismograms ........................................15

Inverse problem: apparent splitting parameters...............................18

Weak-scattering Regime .................................................................................21

Fréchet kernels .....................................................................................21

Limiting forms of the kernels .............................................................25

Apparent depth of sampling ..............................................................26

Numerical Tests ...................................................................................28

Strong Scattering Regime ...............................................................................32

Discussion ........................................................................................................35

Conclusions......................................................................................................37

Acknowledgements.........................................................................................38

3 The Spatial Distribution of Garnets and Pyroxenes in Mantle Peridotites:

Pressure-Temperature History of Peridotites from the Kaapvaal Craton ....39

Abstract ............................................................................................................39

Introduction .....................................................................................................39

Sample Selection..............................................................................................41

Mineral compositions and modal analysis ........................................42

Chemical compositions .......................................................................42

Classification as low-temperature peridotites...................................44

Textural analysis method ...............................................................................47

Spatial analysis.....................................................................................47

Synthetic rock calculations..................................................................51



-7-

Results and interpretation.............................................................................. 53

Conclusions ..................................................................................................... 62

Acknowledgements ........................................................................................ 63

4 Comparing P and S wave Heterogeneity in the Mantle ................................. 67

Abstract............................................................................................................ 67

Introduction..................................................................................................... 67

Data and Tomographic Models ..................................................................... 68

Results.............................................................................................................. 72

Conclusions ..................................................................................................... 74

Acknowledgements ........................................................................................ 75

5 Poisson�s ratio beneath Alaska from the surface to the Core-mantle boundary

Abstract............................................................................................................ 77

Introduction..................................................................................................... 77

Data .............................................................................................................. 81

Methodology ................................................................................................... 83

Inversion .............................................................................................. 83

Uncertainties........................................................................................ 84

Results of inversion for elastic parameters................................................... 86

Dependence of Poisson�s Ratio on temperature and composition............. 90

Effect of temperature .......................................................................... 91

Effect of partitioning between perovskite and magnesiowüstite ... 92

Effect of iron content........................................................................... 94

Discussion........................................................................................................ 95

Conclusions ..................................................................................................... 98

Acknowledgements ........................................................................................ 99

Appendices ............................................................................................................ 101

Appendix A................................................................................................... 101

Appendix B.................................................................................................... 107

References ............................................................................................................ 111



-8-



-9-

Introduction

This thesis addresses three different and unrelated problems in earth science.

The first is a theoretical look at wave propagation in vertically varying

anisotropic media and how to interpret shear-wave splitting measurements in

such a medium.  Shear wave splitting measurements have been used to estimate

the magnitude and direction of upper-mantle anisotropy worldwide, however

one of the basic assumptions in making these measurements is that anisotropy is

homogeneous throughout the layer.  But what if the fast-axis direction does not

point uniformly in one direction and instead varies as a function of depth?  In

chapter 1, I explore this question with both numerical experiments as well as

analytic calculations.  I investigate how variability in the fast-axis direction is

�averaged� in shear-wave splitting measurements.  I also examine whether there

are any observables, such as frequency dependence of the shear-wave splitting

measurements, that can be used to determine when the anisotropy is variable so

that scientists making shear-wave splitting measurements in the real world can

have more insight into how their measurements should really be interpreted.

The second problem I address in this thesis is how to use the spatial

relationship between minerals to infer the pressure-temperature history of a

rock.  The solution to this problem required developing a new technique for 2-D

textural analysis that used the raw pixel data of scanning back-scattered electron

and x-ray images to determine modal amounts and average crystal sizes.  This

information was then used to determine whether any of the minerals were more

closely associated spatially than would be expected if they were randomly

oriented.  I applied this technique to nine, low-temperature garnet-peridotites

erupted from kimberlite pipes in South Africa that we suspected had formed at

one pressure and temperature and then subsequently re-equilibrated at a

different pressure and temperature.  Eight of the nine rocks I analyzed showed a

spatial relationship between opx, cpx, and garnet suggesting that two of the

minerals had exsolved from the third.  By recombining the three minerals

together again, it is possible to see what this original rock might have been.  In

the South African samples, I found that the original rock was a harzburgite that



-10-

originated at ~100 km depth as a results of large extents of mantle melting

whereas the final rock that was actually erupted had ended up (and equilibrated)

at much greater depths in the lithosphere.

The third issue addressed in this thesis is whether there is seismological

evidence for (or against) compositional heterogeneity in the mantle.  Both

geochemical and heatflow considerations suggest that compositionally distinct

reservoirs have existed in the deep mantle for 1 billion years or more; however,

the seismic evidence for the existence of such domains is more equivocal.  I have

looked at this issue (seismologically) from both a global perspective as well as a

regional perspective.  In the global study, I separate the world into those regions

where there has been subduction in the last 120 million years and where there

has not and examine∂ ∂ln lnVs Vp/  as well as the correlation between the models to

see whether the variability can simply be explained in terms of thermal

variations in the mantle.  One of the drawbacks of the global analysis is that it

relies on routinely processed traveltime residuals with a lot of scatter so that

some conclusions necessarily remain tentative.  Therefore, I have also selected a

regional corridor to study with higher-quality, waveform derived traveltimes.  In

the regional study, I use estimates from the mineral physics community to

explore the relative effects of temperature and composition (Fe and Si) on the

resulting tomographic images.
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Chapter 2

How are vertical shear-wave splitting measurements affected by variations in

the orientation of azimuthal anisotropy with depth?

Published by Blackwell Publishers in Geophysical Journal International by Rebecca Saltzer,

James Gaherty and Tom Jordan, 141, 374-390, 2000.

Summary

Splitting measurements of teleseismic shear waves, such as SKS, have been used to
estimate the amount and direction of upper-mantle anisotropy worldwide.  These
measurements are usually made by approximating the anisotropic regions as a single,
homogeneous layer and searching for an apparent fast direction ( φ̃) and an apparent
split time ( ∆ t̃ ) by minimizing the energy on the transverse component of the back-
projected seismogram.  In this paper, we examine the validity of this assumption.  In
particular, we use synthetic seismograms to explore how a vertically varying anisotropic
medium affects shear-wave splitting measurements.  We find that weak heterogeneity
causes observable effects, such as frequency dependence of the apparent splitting
parameters.  These variations can be used, in principle, to map out the vertical
variations in anisotropy with depth through the use of Fréchet kernels that we derive
using perturbation theory.  In addition, we find that measurements made in typical
frequency bands produce an apparent orientation direction that is consistently different
than the average of the medium and weighted toward the orientation of the anisotropy
in the upper portions of the model.  This tendency of the measurements to mimic the
anisotropy at the top part of the medium may explain why shear-wave splitting
measurements tend to be correlated with surface geology.  When the heterogeneity
becomes stronger, multiple scattering reduces the amplitude of the tangential-component
seismogram and the associated split time, so that a null result may be obtained despite
the fact that the waves have traveled through a strongly anisotropic medium.
Regardless of the amount of vertical heterogeneity, we find that there is very little
dependence on backazimuth for the measured fast-axis direction or split time if the top
and bottom halves of the medium average to similar fast-axis directions.  If, however,
the average fast-axis direction in the top half of the model differs from that in the
bottom half then split time measurements will show a significant dependence on
backazimuth, but fast-axis direction measurements will remain relatively constant.

Introduction

Measurements of seismic anisotropy are used to infer mantle deformation

and flow patterns.  While several different methods for constraining upper-

mantle anisotropy have been developed, such as Pn refraction surveys (e.g.,

Raitt et al., 1969; Shearer & Orcutt, 1986) and surface-wave polarization analyses
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(e.g., Forsyth, 1975, Nataf et al., 1984; Tanimoto & Anderson, 1985; Montagner &

Tanimoto, 1990), the last decade has seen an explosion in shear-wave splitting

studies using vertically propagating shear waves (see reviews by Silver, 1996,

and Savage, 1999).  Typically, these analyses are performed on waves such as

SKS or SKKS because they have a known polarization direction (SV) as a result of

passing through the liquid outer core.  The standard procedure is to find the

inverse splitting operator Γ–1 which, when applied to the observed waveform,

minimizes the energy on the tangential component (Silver & Chan, 1991).  When

other phases such as S and ScS are used, the splitting parameters are found

either by assuming a rectilinear source mechanism (Ando & Ishikawa, 1982,

Ando, 1984) or by explicitly diagonalizing the covariance matrix of surface-

corrected horizontal particle motions (Vidale, 1986; Fouch & Fischer, 1996).

A basic assumption in interpreting measurements using these techniques is

that the splitting operator Γ corresponds to a single homogeneous layer in which

the anisotropy has a horizontal symmetry axis and a constant magnitude.  The

parameters used to describe this model (the splitting parameters) are the

polarization azimuth of the fast eigenwave, φ, and the travel-time difference

between the fast and slow eigenwaves, ∆t.  It is straightforward to construct the

splitting operator for an arbitrary stack of layers with depth-dependent

properties and more general forms of anisotropy using propagator matrices

(e.g., Keith & Crampin, 1977; Mallick & Frazer, 1990).  But it is less clear how one

might use such constructions to make inferences about anisotropic structure.  A

potentially fruitful direction is to fit the waveform data by optimizing the

homogenous-layer operator and then interpret the two recovered quantities,

denoted here by φ̃ and ∆ t̃ , as apparent splitting parameters that are functionals

of the vertical structure.  This approach was adopted by Silver & Savage (1994),

who showed how an approximation to the variation of φ̃ and ∆ t̃  with the

incident polarization angle could be inverted for a two-layer anisotropic model.

They also discussed the generalization of their approximate functional relations,

which are valid for forward scattering at low frequencies (wave periods >> ∆t), to

an arbitrary layer stack.  Rümpker and Silver (1998) have recently expanded this

theoretical discussion of vertical heterogeneity to include expressions for the



-13-

apparent splitting parameters valid at high frequencies, as well as some statistical

properties of the parameters for random layer stacks, and they have tested

various aspects of their theory with numerical calculations.

In this paper, we consider several additional aspects of this interpretation

problem.  Using a propagator-matrix method that includes both forward-

(upgoing) and back-scattered (downgoing) waves, we compute synthetic

seismograms for different types of depth dependence, including smooth models

as well as those with discontinuous variations in the anisotropy axis.  We

investigate the behavior of the apparent splitting parameters with increasing

amounts of vertical heterogeneity in the azimuthal anisotropy and use the

results to define three wave-propagation regimes corresponding to weak,

intermediate, and strong scattering.  For weakly heterogeneous media, we

employ perturbation theory to calculate the sensitivity (Fréchet) kernels for

band-limited, apparent-splitting measurements and show how these

measurements sample the depth dependence as a function of frequency and

incident polarization angle.  In realistic situations, the center frequencies of the

observations are sufficiently small that the kernels are one-sided, and we can

define an apparent depth of sampling that we demonstrate is biased towards the

upper part of the structure.  In principle, the Fréchet kernels can be used to set

up the problem of inverting frequency-dependent splitting measurements for

depth-dependent anisotropy.  We show that in practice, however, strong

scattering by vertical heterogeneity can invalidate the assumptions that underlie

this linearized approach, especially at higher frequencies.

Problem Formulation

Because our purpose is to investigate some elementary aspects of vertical shear-

wave propagation, we adopt a very simple model for the mantle comprising a

heterogeneous, anisotropic layer of thickness d overlying a homogeneous,

isotropic half-space (Fig. 1).
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Figure 1.  Model used in the calculations.  A vertically traveling, rectilinearly polarized shear
wave impinges at depth d on the base of a heterogeneous, anisotropic layer in which the fast
axis direction φ varies as a function of depth z.  The two eigenvelocities, v1 and v2, are constant
throughout the layer, and the velocity of the isotropic half-space is taken to be equal to their
mean.

The anisotropy is assumed to be hexagonally symmetric with a horizontal axis of

symmetry, and the lateral heterogeneity is assumed to be sufficiently smooth

that horizontal gradients in the wave velocities can be ignored.  Vertically

propagating shear waves can thus be represented as linear combinations of

orthogonal eigenwaves with shear velocities v1  and v2  that depend on the depth

coordinate z.  To simplify the problem further, we assume that the mean velocity

v = ( v1  + v2 )/2 and the velocity difference ∆v = v1  � v2  are constants, and we

label the eigenwaves such that ∆v > 0.  The heterogeneity in the medium is

specified by a single function of depth that we take to be the azimuth of the fast

( v1) axis, φ(z) , measured clockwise from the x axis.

For the calculations in this paper, we adopt a layer thickness of d = 200 km

and a mean velocity of v  =  4.54 km/s, and we take the velocity of the isotropic

half-space to equal this mean velocity. The maximum splitting time for shear

waves propagating from the base of the anisotropic layer to the surface�we

ignore the crust�is ∆t = d(v v ) v v1 2 1 2− /  ≈ d∆v/v2, which represents the �splitting

strength� of the model.  We refer to ∆t in some of our numerical experiments as

the "true" split time.
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2.1 Forward Problem: Synthetic Seismograms

We use a stack of thin, homogeneous layers to represent the medium and a

propagator-matrix method to propagate shear waves vertically through the

layers (e.g., Kennett, 1983).  For all our calculations, these layers are less than one

km thick to ensure that seismic wavelengths do not approach layer thickness.

Boundary conditions restrict displacements and tractions to be continuous at the

interfaces between the layers and for tractions to be zero at the surface.  The

Fourier-transformed, density-normalized stress vector τ(z,ω) = ρ–1 [Txz Tyz]
T is

related to the depth derivative of the displacement vector u(z,ω) = [ux uy]T  by the

Christoffel matrix

C( )
cos ( ) sin ( ) )cos ( )sin ( )

)cos ( )sin ( ) sin ( ) cos ( )
z

z z z z

z z z z
=

+ −
− +













v v (v v

(v v v v
1
2 2

2
2 2

1
2

2
2

1
2

2
2

1
2 2

2
2 2

φ φ φ φ
φ φ φ φ

. (1)

The equations of motion are         ∂z ff ffAA= , where the displacement-stress vector

and system matrix are given by

        
ff ( , )

( , )

( , )
z

z

z
ω

ω
ω

= 





u

t
, (2)

        
AA( , )

( )
z

zω
ω

=
−











−0 C

I 0

1

2 . (3)

The rotation operator

U( ( ))
cos ( ) sin ( )

sin ( ) cos ( )
φ

φ φ
φ φ

z
z z

z z
=

−





(4)

diagonalizes the Christoffel matrix:   ˆ [ , ]C ≡ diag v v1
2

2
2  = U C UT .  

The propagator matrix for this problem and some of its approximations are

discussed in Appendix A.  For an upgoing wave uI ( )ω  incident at the base of the

anisotropic layer, the free-surface displacement vector can be written
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u P P P P R u( , ) [ ( ) ] ( )0 ω ω ω ωτ τ= + + −uu u uu u Ii iv v (A16)

where Puu and Puτ are 2 × 2 submatrices of the propagator matrix (A7), R is the 2

× 2 matrix of reflection coefficients (A15), and U Uz z= ( ( ))φ .

The pulse shape at the base of the anisotropic layer in all of our calculations is

taken to be of the form u tI ( ) = exp[–a/(t – t0) – (t – t0)/b] H(t – t0) with a duration a

= 2 s and a decay constant b  = 4 s.  The convolution of this initial pulse shape

with the broadband instrument response and prefilter is given in Fig. 2a.  There

is no energy on the tangential component because the initial pulse is radially

polarized; however, propagation of the pulse through an anisotropic layer

produces energy on both the radial and tangential components of the surface

seismogram. An example of a synthetic seismogram calculated for a

homogeneous anisotropic layer is shown in Fig. 2b for velocity contrast of ∆v/ v

=  4.54%.  This corresponds to a splitting strength of ∆t  = 2 s, which lies toward

the high end of the observations summarized by Silver (1996) and Savage (1999).

The azimuth of the fast axis, measured clockwise from the radial ( x̂) direction, is

45°.  The seismograms in this example are �broadband� with a corner at 50 mHz

and at 300 mHz and a center frequency of ~140 mHz.

A simple model of a heterogeneous anisotropic layer, used extensively in our

numerical illustrations, is one in which φ(z)  varies linearly with depth:

φ φ κ φ κ( ) ( )z z z dd= + = + −0 (5)

The constant κ = dφ / dz  is the vertical rotation rate.  The orientation of the fast
axis varies from φ0 at the surface to φd  at the base of the layer, and the total
change in the orientation ∆φ φ φ κ≡ − =d d0  measures the strength of the

heterogeneity.  Figures 2c-e show synthetic seismograms for the linear- rotation
model with a splitting strength of ∆t  = 2 s and increasing amounts of

heterogeneity:  ∆φ  = 30°, 100°, and 1000°, respectively.  In all three examples,  the

incident polarization was chosen such that the mean orientation of the fast axis

was 45°;  i.e.,
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a) input

R

T

b) homogeneous layer

R

T

c) fast axis rotates 30o

R

T

d) fast axis rotates 100o

R

T

40 60 80 100 120
Time (s)

e) fast axis rotates 1000o

R

T

Figure 2.  Radial and Tangential component seismograms at a) the base of the
anisotropic layer b) the surface after passing through homogeneous anisotropic layer c)
surface after passing through weakly heterogeneous anisotropic layer in which the fast
axis direction ( ∆φ) linearly rotates 30° ) intermediate heterogeneous anisotropic layer in
which the fast axis direction ( ∆φ) linearly rotates 100° ) strongly heterogeneous
anisotropic layer in which the fast axis direction ( ∆φ) linearly rotates 1000°. _
Seismograms are bandpass filtered with a butterworth filter to frequencies between 50
mHz and 300 mHz.
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φ φ≡ ∫1

0d
z dz

d
( )   = φ0 + ∆φ/2  =  π/4. (6)

In the case where ∆φ  = 30°, the surface seismograms (Fig. 2c) are very similar to

those produced in the homogeneous anisotropic case (Fig. 2b).  Both the radial

and tangential component seismograms have a comparable amount of energy.

As ∆φ  increases to 100°, the energy on the radial component becomes greater

than that on the tangential component (Fig. 2d), and when ∆φ  is as large as

1000°, the net effect of the anisotropy is to put very little energy onto the

tangential component (Fig. 2e).

Inverse Problem: Apparent Splitting Parameters

If the incident pulse is known to be radially polarized, then the apparent splitting

parameters φ̃ and ∆ t̃  can be defined as the values that minimize the energy on

the transverse ( ŷ ) component of the displacement field back-projected to z = d

using a homogeneous-layer splitting operator (Silver & Chan, 1991). Parseval�s

theorem allows the transverse-component energy to be written as the

frequency-domain integral:

ε φ φ ω ω2 1 20( ' , ' ) | ˆ ( ' , ' ) ( , )|∆ ∆t t d= −

−∞

∞

∫ y uT Γ h . (7)

Here Γ h
−1 is the inverse of the splitting operator given by eqn. (A24).  In practice,

determination of these so-called splitting parameters requires a search over a

grid of fast-axis directions and delay times.  For typical teleseismic observations,

these parameters can be determined to within +/-10° and 0.15 s (Fouch &

Fischer, 1996, Silver & Chan, 1991).  Figure 3 shows the  �energy map�

contoured as a function of φ'  (0° to 180°) and ∆t'  (0 to 4 s) for the three linear-

gradient examples shown in the previous section and Figure 4 shows the

inferred seismograms at the base of the layer, calculated by back-projecting the

splitting parameters and assuming propagation of waves through a

homogeneous, anisotropic layer.
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The energy map for the seismograms computed for a homogeneous layer

(Fig. 3a) shows a well-defined minimum at the correct values of splitting

parameters ( φ̃ = 45°, ∆ t̃  = 2 s).  For weak heterogeneity ( ∆φ  = 30°), the energy

minimum remains close to the layer mean ( φ̃ = 48°, ∆ t̃  = 1.9 s), and the bulk of

the tangential component energy has been removed (Fig. 4c).  At intermediate

values of the heterogeneity ( ∆φ = 100°), the energy minimum is still well defined

(Fig. 3c), but it is displaced away from the layer mean by 18° ( φ̃ = 63°).

Moreover, the scattering from the vertical gradients in the anisotropy is

sufficient to reduce the apparent splitting time significantly below its true

0.
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Figure 3.  Energy diagrams for a) homogeneous anisotropic layer b) weakly
heterogeneous anisotropic layer ( ∆φ=30°) intermediate heterogeneous anisotropic layer
( ∆φ=100°) and d) strongly heterogeneous anisotropic layer ( ∆φ=1000°).
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a) input
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T

b) homogeneous layer

R

T

c) fast axis rotates 30o

R

T

d) fast axis rotates 100o

R

T
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Time (s)

e) fast axis rotates 1000o

R

T

Figure 4. Radial and Tangential component seismograms.  After determining the
apparent splitting parameters, the seismograms can be back-projected to the base of the
layer again using those same parameters and assuming a homogeneous layer.  a) input
pulse at the base of the anisotropic layer to be compared with back-projected
seismograms from b) homogeneous anisotropic layer c) weakly heterogeneous
anisotropic layer ( ∆φ  linearly rotates 30°) d) intermediate heterogeneous anisotropic
layer ( ∆φ) linearly rotates 100°)  e) strongly heterogeneous anisotropic layer ( ∆φ)
linearly rotates 1000°).   Seismograms are bandpass filtered with a butterworth filter to
frequencies between 50 mHz and 300 mHz.
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value ( ∆ t̃  = 1.5 s).  When the heterogeneity gets to be very large ( ∆φ = 1000°),

the scattering is sufficiently strong as to cause destructive interference that nearly

wipes out the arrivals on the transverse component (Fig. 2e).  The resulting

energy map (Fig. 3d) is characteristic of a �null measurement�, with the lowest

values occurring near the horizontal axis where ∆t'  = 0 and along vertical ridges

corresponding to the degenerate azimuths of φ'  = 0° and 90°.

The behaviors illustrated in Fig. 3 are typical of three scattering regimes that

can be qualitatively described as �weak,� �strong coherent�, and �strong

incoherent�.

Weak-Scattering Regime

When the scattering is weak, the effects of the heterogeneity on the apparent

splitting parameters can be approximated with a linearized perturbation theory.

In this section, we derive analytical expressions for perturbations from a

homogeneous starting model, test their applicability with numerical calculations,

and use them to gain insight into how the sensitivity of the apparent splitting

parameters varies with depth.

Fréchet Kernels

The linearized equations that relate a structural perturbation δφ(z) to

perturbations in the apparent splitting parameters, δφ̃ andδ t̃ , can be written as

integrals over the layer:

δφ δφφ
˜ ( ) ( )≈ ∫ G z z dz

d

0
, (8)

δ δφ˜ ( ) ( )t G z z dzt

d
≈ ∫0

(9)

This approximation ignores terms of order δφ2 .  Gφ(z) and Gt(z) are the

sensitivity functions, or Fréchet kernels.  They generally depend on the structural

model that is being perturbed, as well as the spectral properties of the waves



-22-

being measured.  For the structures considered here, a model is specified by the

fast-axis orientation function {φ(z): 0 ≤ z ≤ d} and the two velocity constants v1

and v2.

The Fréchet kernels can be numerically approximated for an arbitrary

starting model by computing the small change in the splitting parameters due to

a small perturbation in the fast-axis orientation distributed over a thin layer.

However, in the special case of a homogeneous starting model (φ(z) = φ0), the

kernels for narrow-band pulses can be derived analytically.  The details are

relegated to Appendix B.  The approximate results for a pulse with center

frequency ω0 and half-bandwidth σ are,

G
g g g

g g g
k Oφ

φ σ ω
φ σ ω

σ
ω

= + +
+ +

+






4 5 0 6
2

0
2

1 2 0 3
2

0
2

4

0
4

4

4

[ cos ]( / )

( cos )( / )
∆ , (10)

G
g g g

g g g
k Ot = + +

+ +
+







7 8 0 9
2

0
2

1 2 0 3
2

0
2 0

4

0
4

4

4
2

[ cos ]( / )
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where ∆k =  ω0 (v2
–1 – v1

–1) is the differential wavenumber.  The three parameters

appearing in the denominator of these expressions are independent of depth z:

g kd1
21= −( cos )∆ (12a)

g kd kd kd kd kd2
2 2= + −∆ ∆ ∆ ∆ ∆[sin ( )sin cos ] (12b)

g g kd kd kd kd3 2
2 22 1= + + −( ) [sin ( cos )cos ]∆ ∆ ∆ ∆ (12c)

The other six can be written in terms of trigonometric functions of the height

variable r = d – z:

g r kd kr4 1( ) ( cos )sin= − ∆ ∆ (13a)

g r kd kd kr kd kd kr kd kr kd kd kr5 1( ) ( )sin cos ( )sin sin cos cos= − + − −∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

(13b)
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∆ ∆ ∆
(13c)

g r kd kr kd kd kr7
21 1( ) ( cos ) cos ( cos )sin sin= − − −∆ ∆ ∆ ∆ ∆ (14a)

g r kd kd kd kd kr kd kr kr

kd kd kd kr
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2( ) sin (sin cos )[ cos ( )( )sin ]

( ) sin cos cos

= − −
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(14b)

g r g r kd kd kd kd kr

kd kr kr kr kr

9 8
2 2

2 2

2 1

1

( ) ( ) ( ) [sin ( cos )cos ]cos

( cos ) [ sin ( ) cos ]

= + + −

− − +

∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆
(14c)

The relative bandwidth σ/ω0, which is less than 0.5 in most seismological

applications Hz (e.g. Silver, 1996; Fouch and Fischer, 1996; Wolfe and Solomon,

1998), is sufficiently small that it is safe to ignore the fourth-order terms in (10)

and (11).  Fig. 5 displays kernels computed under this approximation for a range

of initial polarizations and center frequencies.  The sinuosity of the kernels

increases with frequency, reflecting the first-order trigonometric dependence on

∆k z.  The kernel for the apparent splitting azimuth satisfies the lower boundary

condition, Gφ(d) = 0, which can be verified from the analytical expressions.

Integration of these expressions show that the kernel for δφ̃ is unimodular

and the kernel for  δ t̃  averages to zero:

G z dz
d

φ( )
0

1∫ = , (15)

G z dzt

d
( )

0
0∫ = . (16)

These properties must apply to the exact forms of the Fréchet kernels, not just to

their narrow-band approximations given by (10) and (11), because a constant

perturbation maintains the structural homogeneity of the starting model.  In

other words, setting the perturbation in (8) and (9) to a constant value of δφ must

always yield δφ̃ = δφ and δ t̃  = 0.
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Figure 5.  Fréchet kernels for the apparent splitting parameters computed from eqns. (10)
and (11) to second order in the relative bandwidth σ /ω0.  The reference model is a 200-
km thick homogeneous layer with ∆t  = 2 s.  Left panels show the apparent azimuth
kernels Gφ(z), and right panels show the apparent splitting time kernels Gt(z).  The initial
polarization φ0 increases downward from 20° (top panel) to 80° (bottom panel).  In each
panel, the center frequencies ω0 range from 0.1 Hz  to 0.8 Hz (lowest frequencies are
solid lines, intermediate are dashed and highest frequencies are dotted), while the
relative bandwidth is held constant at σ /ω0 = 0.125.
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Limiting Forms of the Kernels

By considering the zero-bandwidth limit, we gain additional insight into the

nature of the sensitivity kernels:

G z G z
k d z

kd
kφ σ φ

0

0 1
( ) lim ( )

sin ( )
cos

≡ = −
−→

∆
∆

∆ (17)

G z G z k d z
kd k d z

kd
kt t

0

0
01

( ) lim ( ) cos ( )
sin sin ( )

cos
cot≡ = − − −

−








→σ

φ∆ ∆ ∆
∆

∆ (18)

The splitting-time kernel (18) varies like the cotangent of 2φ0 and is thus singular

at φ0 = nπ/2, which corresponds to incident polarizations aligned with an

eigenwave orientation in the unperturbed model.  In contrast to this singular

behavior, the splitting-azimuth kernel (17) is independent of the initial

polarization, and δφ̃ remains well defined even at its degenerate values.  

This important theoretical point deserves special emphasis.  A shear wave

with a polarization aligned with one of the eigenwave directions is not split by

propagation through the reference model, and the tangential-component energy

of the back-projected displacement field is thus identically zero at φ'  = φ0 = nπ/2

for arbitrary values of ∆t'  > 0.  Consequently, the energy map displays vertical

nodal lines at these azimuths, as well as a horizontal nodal line at ∆t'  = 0 and the

inversion of the seismograms for the apparent splitting parameters via the

minimization of (7) becomes unstable (e.g., Silver & Chan, 1991).  Nevertheless,

the apparent splitting azimuth remains formally defined in this limit by the

orientation of the appropriate vertical node; i.e., φ̃ equals either φ0 or φ0 + !/2.

Moreover, φ̃ is Fréchet differentiable, because a small perturbation to the model

will result in a small, well-defined perturbation of the node in the φ'  direction.

The splitting-time functional ∆ t̃ , on the other hand, is not Fréchet differentiable

at the nodes, which is why its kernel is singular.  This behavior generalizes to

pulse shapes with finite bandwidths, as is evident from eqn. (11).  

The cotangent dependence of the splitting-time kernel also implies that Gt(z) =

0 for φ0 = nπ/4, which means that at polarization angles near 45° the apparent
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splitting time is only weakly dependent on perturbations to the local splitting

orientation.

Equations (17) and (18) show that, in the zero-bandwidth limit, both kernels

become unbounded at ∆kd = 2nπ, where the total splitting time ∆t is an integral

multiple of the wave period 2π/ω0.  A finite bandwidth introduces a weak (~σ
2/ω0

2) dependence of Gφ and Gt on the initial azimuth through the cos 4φ0 term,

which suppresses this resonance singularity.

The expressions for the kernels presented thus far apply to splitting strengths

that are arbitrarily large.  At low frequencies, when the splitting strength is much

less than the wave period, the maximum phase shift between the two

eigenwaves is small, ∆kd = ω0∆t << 1.  If we expand the trigonometric functions

and retain only the leading terms, the single-frequency kernels become linear

functions of the depth:

G z
d z

d
φ
0

2
2

( )
( )≈ −

, (19)

G z t
z d

d
t
0

2 02
2

( ) cot≈ −



∆ φ . (20)

Thus, in the low-frequency limit, the apparent splitting azimuth is insensitive to

heterogeneity at the base of the layer and most sensitive to heterogeneity at the

top of the layer.  The sensitivity of the apparent splitting time to azimuthal

heterogeneity is zero in the middle of the layer, and it is of equal magnitude and

opposite sign at the top and bottom of the layer.

Apparent Depth of Sampling

The previous discussion shows that the Fréchet kernel for the apparent splitting

azimuth will be nonnegative when the center period of the wavegroup, 2π/ω0, is

greater than or equal to twice the splitting time ∆t (i.e., ∆kd ≤ π).  Under this

condition, which applies to most observations of teleseismic shear-wave splitting,

we can define an apparent depth of sampling by the centroid of the kernel:
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z G z z dz
d

app = ∫ φ( )
0

. (20)

Using (15), we obtain for the zero-bandwidth limit,

z z
k d k d k d

k d k dapp app
0

0 1
= = −

−→
lim

sin cos
( cos )σ

∆ ∆ ∆
∆ ∆

. (21)

In the low-frequency limit, where the φ̃ kernel becomes a linear function of

depth, the apparent depth of sampling goes to one-third the layer thickness.

This value increases to half the layer thickness as the center period approaches

the splitting time.  Figure 6 shows three low-frequency φ̃ kernels and their

apparent depths of sampling for a 200-km thick, anisotropic layer.  In the low-

frequency limit, the apparent depth of sampling is just 66 km whereas for data

low-pass filtered at 100 mHz, the depth of sampling increases to 71 km and for

data low-pass filtered at 200 mHz, it increases to 88 km.

This bias in the sensitivity to near-surface structure explains why the

recovered value for φ̃ in the weak scattering case (Fig. 3b) is greater than the

layer mean by about 3°.  In this model, the fast axis rotates linearly from 40° at
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Figure 6.  Low frequency Fréchet kernels and the apparent depth of sampling computed
with eqn. 20.  Solid line is the kernel in the low-frequency limit.  Dashed line is the low-
passed kernel for 100 mHz and the dotted line is the low-passed kernel at 200 mHz.
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the base of the layer to 50° at the top.  The kernels predict that the upper part of

the model, where the fast axis ranges between 45° and 50°, will dominate the

shear-wave splitting measurement and indeed, the value found numerically ( φ̃ =

48°) agrees with this prediction, corresponding to the fast axis direction

approximately one-third of the way down the layer.  This increase in sensitivity

to the fast-axis direction near the surface may explain why shear-wave splitting

measurements tend to correlate with tectonic deformation observed at the

surface (Silver, 1996).  Most shear-wave splitting measurements are made on

seismograms with relatively low center frequencies (< 200 mHz), so that the

apparent depth of sampling is less than the mean thickness of the layer.  There

are significant variations in the center frequencies used by different researchers,

however, so this apparent depth varies from study to study.

Numerical Tests

We conducted a series of numerical experiments to test the perturbation theory

derived for a homogeneous model.  To investigate the sensitivity of the kernels

to the reference structure, we have computed them by numerical perturbation to

heterogeneous starting models.  The results for starting models with a linear

gradient and a step-wise discontinuity in φ(z) are compared with the

homogeneous-layer case in Fig. 7.  The average orientation was chosen to be the

same for all three models, φ φ≡ − ∫d z dz
d1
0

( )  = 45°, while the total variation in φ(z)

was taken to be 20° for the two heterogeneous models.  The kernels are very

similar, indicating only a weak dependence on the starting model when the

heterogeneity is of this magnitude.  In particular, the apparent depths of

sampling for the layered and linear model are 91 km and 90 km respectively,

essentially the same as the value of 88 km calculated for the homogeneous

model.  The properties found for the homogeneous-layer kernels, such as their

dependence on frequency, bandwidth, and incidence azimuth, should therefore

pertain more generally in the weak scattering regime.
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We also compared the perturbations calculated from the Fréchet kernels

using eqns. (8) and (9) with the results of a direct numerical calculation that

minimized the tangential-component energy on back-projected synthetic

seismograms.  Figure 8 shows several examples of these comparisons as a

function of the average polarization direction φ  for an initial pulse with a center

frequency at 60 mHz and corners at 45 mHz and 75 mHz.  Figure 9 plot the

results for φ  = 45° for increasing values of the center frequency ω0.  We note that

care must be taken in the numerical calculations when evaluating the apparent

splitting parameters near the azimuthal nodes at φ0 = nπ/2, because the energy

surfaces can be very flat in the ∆t' direction, and the location of the minimum is

susceptible to numerical inaccuracies that can cause a π/2 ambiguity.

When the heterogeneity is small ( ∆φ  = 10°) in the linear gradient models, the

kernels do a good job of predicting φ̃ and ∆ t̃  for all backazimuths (Fig. 8a).  For

heterogeneity with a total rotation angle as large as 60° (Fig. 8b), the kernels

typically overestimate the apparent splitting time by about 0.3 s, and, near the

nodes, φ̃ can be off by as much as 20°.  This failure of the kernels with greater

heterogeneity reflects a breakdown in the small-angle approximations (e.g., eqn.

B5).  Inclusion of the back-scattering terms in the calculation of synthetic
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Figure 7.  A comparison of Fréchet kernels for three starting models.  Panel (a) is a plot
of φ(z) for the homogeneous-layer (solid line), constant-gradient (dotted line), and two-
layer (dashed line) models.  Panels (b) and (c) show the corresponding kernels for these
models, G zφ( ) and G zt ( ), respectively.  The kernels were calculated by a numerical
perturbation scheme for ω0 = 0.14 Hz, σ  = ω0 /6 Hz, which are similar to the values
used in the processing of teleseismic shear waves.  The models have the same average
azimuth, φ  = 45°.  Eqn. (10) shows that G zt ( ) = 0 for a homogeneous layer with this
initial azimuth.  The agreement illustrates the weak dependence of the kernels on the
starting model.
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Figure 8.  Comparison of numerical and analytical results.  Left panels show φ̃ and right
panels show ∆ t̃ , plotted as a function of backazimuth.  Solid lines are analytical
predictions from the kernels.  Solid circles are the numerical results including back
scattering and open circles include just forward scattering.  a) weakly heterogeneous,
( ∆φ  = 10°) linear rotation model. b) strongly heterogeneous ( ∆φ  = 60°) linear rotation
model.  c) weakly heterogeneous 10 random layers model (maximum ∆φ  = 30°) in which
the average fast-axis direction in the top and bottom halves are similar.  d) weakly
heterogeneous 10 random layers model (maximum ∆φ  = 30°) in which the layer
orientations in the top half are different than that in the bottom half.  e) strongly
heterogeneous 10 random layers model (maximum ∆φ  = 120°) in which the average fast-
axis direction in the top and bottom halves are similar.  f) strongly heterogeneous 10
random layers model (maximum ∆φ  = 120°) in which the layer orientations in the top
half are different than that in the bottom half.
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seismograms (solid dots in Figure 8) does not produce significantly different

results from those obtained using just the forward-scattering terms.

In a second set of comparisons, we use what is perhaps a more geologically

relevant model comprising 10 layers, each 20 km thick, of differing orientations

constrained such that the fast-axis directions varies between 0° and 30°.  When

the layer orientations φi  are distributed randomly, such that the average

orientation in the top half of the model was similar to the bottom half, the

agreement between the numerical results and the predictions of the analytical

kernels is usually very good (Fig. 8c).  In addition, both the exact values of the

apparent splitting parameters and perturbation-theory predictions show very

little dependence on the polarization angle, with the variations in the apparent

splitting time associated with nodal singularities compressed into a narrow range

of azimuths.

When the layer orientations are skewed, however, such that the average

orientation in the top half of the model differed significantly from the bottom

half (Fig. 8d), the π/2 periodicity in ∆t̃  associated with the nodal singularities

becomes more pronounced.  This differences in the variation of ∆t̃  with initial

azimuth results from the fact that Gt(z) is approximately a linear function of

depth that averages to zero, as seen from its low-frequency form (18).  That is,

the perturbation to the apparent splitting time will be small and the π/2

periodicity will be suppressed when the first moment φ( )z z dz
d
0∫  is small.  For a

specified level of heterogeneity, the constant-gradient case has the largest first

moment of any model, which is why the initial-azimuth dependence in Figs. 8a

and 8b is so pronounced.  

These results can be used to qualify Silver and Savage�s [1994] argument that

a π/2 periodicity in initial azimuth should be diagnostic of vertical

heterogeneity.  This periodicity will be relatively weak for heterogeneous

structures where the azimuth of the anisotropy does not vary systematically

with depth.

Increasing the heterogeneity in the 10 random layers so that the fast-axis

direction ranges over 120°, we find azimuthal discrepancies of up to ±5° and

splitting-time discrepancies exceeding 1 s (Figs. 8e and 8f).  At this level of
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heterogeneity, back-scattering effects, given by the differences between the open

and solid circles, begin to become important.

A comparison of the analytic and numerical results for different frequencies

at a single backazimuth, shows that the kernels do a nice job of predicting φ̃ and

∆t̃ up to 0.5 Hz when the heterogeneity is weak (Figs. 9a and 9c) but that when

the heterogeneity gets stronger, the kernels break down more quickly at higher

frequencies (Figs. 9b and 9d) than at lower frequencies.   In these examples, ∆t =

2.14 s.  At frequencies approaching 1/∆t (~0.46 Hz) the kernels predict highly

oscillatory behavior in φ̃, which also corresponds to the frequency at which the

kernels become unbounded in the single-frequency limit.

Strong-Scattering Regime

The numerical experiments demonstrate that the first-order perturbation theory

expressed in eqn. (8) and (9) provides an accurate description of the apparent

splitting parameters in situations where the magnitude of the vertical

heterogeneity is small.  As this magnitude increases, the perturbation theory fails

because the small-angle approximations employed in obtaining the scattering

matrix (B5) and the linearized minimization condition (B11) become inaccurate,

owing to the accumulating effects of multiple forward-scattering.  The

combination of these strong-scattering effects causes the behavior of the

apparent splitting parameters to deviate from the weak-scattering results.

Aspects of this behavior were noted in the previous discussion of Fig. 3,

which display the numerical results for a constant-gradient model.  In these

calculations, ∆t = 2 s, φ  = 45°, and all forward- and back-scattering terms were

retained.  For a 45° average polarization, the general form of the kernel (11)

shows that the splitting-time perturbation should be zero to first order;  i.e., the

apparent splitting time ∆ t̃  should equal the total splitting strength ∆t.  Strong

scattering acts to reduce ∆ t̃  below this theoretical limit, so that the ratio

( ˜) /∆ ∆ ∆t t t− , to the extent it can be accurately estimated, measures the higher-

order effects.  For the 30° rotation in Fig. 2c, this reduction is only about 5%,

consistent with the weak-scattering approximations.  The 120° rotation in Fig. 2d
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Figure 9.  Comparison of numerical and analytical results.  Left panels showφ̃ and
right panels show ∆ t̃ , plotted as a function of frequency.  Solid lines are analytical
predictions from the kernels.  Solid circles are the numerical results with both forward
and back scattering and open circles include just forward scattering.  a) weakly
heterogeneous, ( ∆φ  = 10°) linear rotation model.  b) strongly heterogeneous ( ∆φ  =
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(maximum ∆φ  = 30°).  d) strongly heterogeneous 10 random layers model (maximum
∆φ  = 120°).
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gives a much more substantial effect (~35%), indicating that these

approximations are not accurate for heterogeneity of this magnitude. For the

1000° rotation, the scattering is sufficiently large that the tangential-component

arrivals are incoherent, so that the long-period amplitude is nearly zero, and the

energy diagram looks nodal.  In this case, there is no well-defined energy

minimum, and it is difficult to measure the apparent splitting parameters.

In Fig. 10, we extend these calculations to constant gradient models with φ  =

45° and a range of splitting and heterogeneity strengths.  The ordinate is taken to

be 1/κ, a quantity proportional to the inverse of the heterogeneity gradient,
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which defines a vertical correlation length.  The contours of apparent splitting

time on this plot can be used to delineate the three scattering regimes.  The

region with nearly vertical contours at large values of the correlation length

corresponds to weak scattering, where ∆ ∆t̃ t≈  and the perturbation theory of

Sect. 3 is valid.  The deviation of these contours towards the horizontal defines a

region where the scattering is too strong for perturbation theory to apply but

not so strong as to prohibit the estimation of the apparent splitting parameters.

The boundary between these two scattering regimes, indicated by the dashed

line in Fig. 10, is given by a correlation length that increases exponentially with

the anisotropy strength.  As the correlation length of the vertical heterogeneity

decreases at constant ∆t, the apparent splitting time decreases, at first slowly then

rapidly.  Below some critical value of the correlation length (~50 km in this

example, corresponding to κ = 1 deg/km), the scattering becomes so strong that

∆ t̃  cannot be defined.

As this diagram makes clear, it is not possible to distinguish on the basis of

low-frequency splitting observations the difference between highly

heterogeneous anisotropy (∆t and κ large) and weak anisotropy (∆t small).

Analysis of horizontally propagating surfaces waves (e.g., Jordan and Gaherty,

1996) is one way to distinguish between these two cases.

Discussion

For the case of weak scattering, differences in the sensitivity kernels as a

function of frequency can, in principle, be exploited to invert frequency-

dependent shear-wave splitting measurements for a picture of anisotropic

variation with depth.  To do so, one applies standard splitting analysis to

broadband recordings in order to obtain an apparent fast direction to be used as

a starting estimate for φ .  Frequency-dependent apparent splitting parameters

are then extracted by applying the back-projection procedure to narrow-band

filtered seismograms, and their kernels constructed from (10) and (11).

Adherence to the weak-scattering regime can be checked by confirming that

minimal signal remains on the tangential-component seismogram after back-

projection via the apparent splitting parameters (Fig. 4).  The frequency-



-36-

dependent splitting parameters can then be inverted for φ(z).  (In all of our

calculations, the difference between the speeds of the two eigenwaves remained

constant throughout the model.  In the real world, this parameter, like the

anisotropy orientation, probably varies with depth.  It is a simple matter,

however, to extend the theory to depth-dependent wave speeds.)

The applicability of this procedure is likely to be limited by difficulties in

extracting apparent splitting parameters at higher frequencies.  Above 0.1 Hz,

observed shear waveforms become increasingly complex due to microseisms,

crustal scattering, and other sources of "noise".  In addition, split shear waves

have distinct "holes" in their amplitude spectra at frequencies with integer

multiples of 1/∆t (Silver and Chan, 1991), which complicate analysis at higher

frequency.  As a result, most shear-wave splitting analyses in the literature utilize

center frequencies that fall within a relatively narrow frequency band of

approximately 0.05-0.2 Hz (e.g. Silver, 1996; Fouch and Fischer, 1996; Wolfe and

Solomon, 1998).  Our numerical experiments in the weak-scattering regime

indicate that across this bandwidth, variations in ∆ t̃  and φ̃ are generally less than

0.1 s and 5°, respectively (Figs. 8a, 9a).  These variations are smaller than the

typical error estimates in observational studies, and thus they cannot resolve

changes in anisotropy with depth.

In the case of strong scattering, the approximations made in deriving the

kernels are no longer valid, so that the kernels cannot be used to solve the

inverse problem.  We can, however, utilize the numerical results in the

interpretation of splitting observations.  Marson-Pidgeon and Savage (1997)

report frequency-dependent shear wave splitting results from New Zealand

(between 50 and 200 mHz) that are consistent with our numerical results for the

strong coherent scattering regime (Figs. 9b, 9d), implying significant vertical

heterogeneity with depth.  In addition, splitting results from cratons in South

Africa (Gao et al, 1998), Australia (Clitheroe and van der Hilst, 1998; Özalaybey

and Chen, 1999), India (Chen and Özalaybey, 1998), and Tanzania (Owens et al.,

1999) all find splitting times that are smaller (generally < 0.6 s) than many other

continental environments (e.g. Silver, 1996).  Such observations are typically

interpreted as evidence for little or no anisotropy.  Our calculations provide an
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alternative explanation for these null results in terms of strong incoherent

scattering in an upper mantle that is anisotropic, but has a high degree of vertical

heterogeneity.  Other data, such as horizontally propagating surface waves, are

necessary to distinguish between these two possibilities.

In at least two cratonic regions where null or near-null results are reported

(Australia and Southern Africa), analyses using surface waves find that the upper

mantle is anisotropic between the Moho and 200-250 km depth, with ∆vs/vs of

approximately 3-4% (Gaherty and Jordan, 1995; Saltzer et al., 1998).  If perfectly

aligned, such anisotropy would produce over 2 s of splitting.  We interpret the

apparent discrepancy between the splitting and surface-wave results as evidence

for strongly heterogeneous anisotropy in these regions.  In particular, both sets

of observations can be explained by a model in which the local anisotropy axis

remains, on average, close to horizontal, but varies in azimuth as a function of

position, with a vertical correlation length on the order of 50 km (Jordan et al.,

1999).

Conclusions

In both weakly and strongly heterogeneous media we find that shear-wave

splitting measurements made in the low-frequency bands typically used to make

observations are more sensitive to the upper portions of the model than to the

lower portions.  Consequently, if the orientation of the anisotropy is

heterogeneous, the measured splitting direction will be more reflective of the

fast-axis direction near the top of the upper mantle and the measured split time

will vary as a function of backazimuth.  This effect may explain why global

shear-wave splitting measurements tend to correspond to the local tectonic

fabric in crust beneath the observing station (Silver, 1996).

We have derived analytic expressions for sensitivity kernels that relate a

perturbation in the measured splitting parameters to a perturbation in the

anisotropy of the model.  For weakly heterogeneous media, frequency-

dependent shear-wave splitting measurements can be inverted using these

kernels to determine how the anisotropy varies as a function of depth.
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Variations in the strength of the anisotropy as a function of depth can be

accounted for with a weighting function.  Practically speaking, however, a

sufficient number of measurements may not be available at high enough

frequencies or with enough precision (errors are typically ±10° or more) for such

an inversion to be feasible.

Strongly heterogeneous media (i.e., where the fast axis direction varies

anywhere between 0° and 180°) have the additional property that they cause

strong scattering.  This scattering will cause the tangential component

seismograms to have very little energy and a null-like energy measurement will

be made despite the fact that the medium may be highly anisotropic.  Our

numerical experiments show that the greatest diagnostic of strong vertical

heterogeneity is the drop-off in ∆ t̃  relative to ∆t.
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Chapter 3

The Spatial Distribution of Garnets and Pyroxenes in Mantle Peridotites:

Pressure - Temperature History of Peridotites from the Kaapvaal Craton

To be published by Oxford University Press in the Journal of Petrology by Rebecca
Saltzer, Neel Chatterjee and Tim Grove, December 2001.

Abstract

We present a new method for textural analysis of mineral associations that uses digital
backscattered electron and x-ray images obtained with the electron microprobe to
determine the spatial properties of minerals on a two dimensional surface of the rock at
different scale lengths.  We determine modal amounts and average grain sizes of each
mineral in the thin section without resorting to ellipsoidal approximations of grain
boundaries, and investigate the spatial relationship of mineral pairs.  The method is
used to characterize nine mantle xenoliths erupted from kimberlite pipes in South Africa
and to test whether the pyroxenes are spatially correlated with the garnets.  The spatial
association of these minerals is used to develop a model for the evolutionary history of
the Kaapvaal peridotites.  The observed distributions can be explained by a two-stage
model.  In stage 1, harzburgitic residues are produced by large extents of partial melting
at shallow depths (~60-90 km) and high temperatures (~1300-1400° C).  The melting
process leading to this depletion occurs in the garnet stability field where garnet,
clinopyroxene and olivine are consumed and orthopyroxene and liquid are produced.
The Kaapvaal sample suite shows modal and compositional variations consistent with
a progressive melt depletion event.  In stage 2, the residuum is dragged down to greater
depths by mantle corner flow adjacent to a subducted slab. The most depleted
harzburgites descend to 140 to 160 km depth and are cooled.  The least depleted
harzburgites end up at shallower depths.  The resulting stratigraphy is the opposite of
what would be expected for a preserved mantle melt column and is consistent with
inversion of the melt column as it was dragged around the wedge corner and cooled by
the subducted slab.  The cooling process causes clinopyroxene and garnet to exsolve
from the orthopyroxene.  Therefore, the depleted cratonic peridotites of the Kaapvaal
preserve a temperature-pressure path consistent with an origin in an Archaean
subduction zone.

Introduction

Mantle xenoliths erupted from kimberlite pipes in South Africa may provide

clues to the formation and evolution of the depleted mantle that makes up the

Kaapvaal craton.  One hypothesis that has been proposed is that the peridotite

originally resides deep in the mantle (at depths of perhaps 300 or 400 km) and is

transported upwards into the cratonic lithosphere (~180 km depth), where re-

equilibration occurs and clinopyroxene (cpx) unmixes from the garnet phase
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[Haggerty & Sautter, 1990].  An alternative idea is that the garnet lherzolites were

originally high-temperature harzburgites that originated at depths between 100

and 250 km and that both the cpx and garnet subsequently exsolved from the Al-

rich orthopyroxene (opx) when the rocks cooled and re-equilibrated [Cox et al.,

1987].  If exsolution of minerals has indeed occurred, then a spatial relationship

between grains of minerals that were formerly dissolved in each other should be

apparent in the present-day xenoliths.  In particular, the first model implies a

spatial relationship between cpx and garnet for rocks of pyroxenite or eclogitic

compositions, whereas the second implies cpx, opx and garnet should be

correlated.

The question of whether two minerals are spatially related arises frequently

in petrologic studies.  Despite the availability of digital images of thin sections,

textural studies described in the literature are typically crystal-oriented rather

than pixel-oriented [Cashman & Ferry, 1988; Kretz, 1993; Jerram et al., 1996].  These

analyses generally take a "nearest neighbor approach", measuring the distance

between the center of a grain and the center of its nearest neighbor, to

determine whether the grains are randomly distributed, clustered, or ordered

[Kretz, 1969, 1993; Carlson et al., 1995; Jerram et al., 1996; Miyake, 1998].  The most

sophisticated of these involve fitting ellipsoids to a digital image of the grains,

while others simply project the thin section on a screen and trace the crystals by

hand.  Recently, studies of digital images have used Markov-chain analysis to

look for the same sort of clustering or anti-clustering of minerals [Kruse &

Stünitz, 1999].  A prior spatial analysis of Kaapvaal peridotites [Cox et al., 1987]

specifically tested the hypothesis that two different minerals were spatially

associated and found a strong correlation between the presence of garnet and

cpx with opx, but their method required labor-intensive manual outlining,

identification and counting of crystals.

We describe a new technique for textural analysis in which the digital image

of a thin section is statistically analyzed over a range of spatial scales.  By

analyzing the pixel data, we determine the modal amounts and average crystal

size for each mineral type and examine whether any of the minerals are more

closely associated spatially than would be expected if they were randomly
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distributed.  This method may be applicable to different textural studies in which

average crystal sizes need to be determined or the relationship between mineral

types, and in particular their spatial relation due to metamorphism or

metasomatism, needs to be assessed.  We apply this statistical method to nine

mantle xenoliths erupted from kimberlite pipes in South Africa to determine

which, if any, of the constituent minerals are correlated.  In this way, we test the

two hypotheses regarding the history of South African mantle xenoliths and, by

implication, the structure and evolution of the Kaapvaal craton.

Sample Selection

We selected three garnet-peridotite xenoliths from the Bulfontein kimberlite

pipes (Kimberley, South Africa), four from the Jagersfontein pipes (130 km SSE

of Kimberley), one from the Premier Pipes (25 Km NE of Pretoria, South Africa)

and one from the Letseng pipes in northern Lesotho (Fig. 1).

 
Figure 1.  Map of southern Africa.  Nine, low-temperature, garnet-peridotite xenoliths
were collected from the four kimberlite pipes shown.

Several criteria were applied in selecting the sample suite.  All samples contained

dominantly olivine and opx with the coarse texture that characterizes low-

temperature peridotites [Boyd, 1987].  Peridotite nodules (~25 × 25 × 10 cm) were
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cut into multiple slabs (3 to 5 slabs each ~1cm thick) and samples were chosen

from nodules that had a uniform distribution of garnet and cpx in all slabs.

Samples that contained clots of garnet and cpx were avoided, as were samples

that contained veins of phlogopite or samples that were serpentinized.  We also

avoided samples that appeared to have undergone metasomatic modification.  A

suite of representative low-temperature peridotites that spanned the range of

modal olivine percentages observed by Boyd  [1989] were supplied by F.R. Boyd.

Mineral compositions and modal analysis

From each slab we prepared two by three inch polished thin sections for

chemical and modal analysis.  We obtained a back-scattered electron image

(brightness corresponding to atomic number) as well as x-ray concentration

maps of Si, Al, Ca, and Mg) of each thin section using the four wavelength

dispersive spectrometer-JEOL JXA-733 Superprobe electron microprobe at MIT.

We used an accelerating voltage of 15 kV, a beam current of 100 nA and a dwell

time of 5 ms per spot.  By comparing the various images, we were able to

identify each pixel in the image as either olivine, orthopyroxene, clinopyroxene

or garnet.  Eight of the samples we mapped and analyzed are shown at the same

scale in Fig. 2.  The image resolution ranged between 62 microns/pixel to 200

microns/pixel and the areas imaged were approximately 3 cm × 5 cm.

Depending on the image resolution and the area mapped, the image collection

time varied between 12 to 16 hours per sample.

Chemical Compositions

Chemical compositions of the minerals were obtained for five of the samples

with the same electron microprobe at MIT using wavelength dispersive

spectrometry.  Phases were analyzed at an accelerating voltage of 15kV, a beam

current of 10nA, a beam diameter of ~1 micron and typical counting times

between 20 and 40 seconds per element.  Data were reduced with the CITZAF

program [Armstrong, 1995] using the atomic number correction of Duncumb and

Reed, Heinrich�s tabulation of mass absorption coefficients and the fluorescence

correction of Reed.  A minimum of 10 measurements were made for each
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mineral on every thin section.  The average and standard deviation of those

measurements are summarized in Table 2.  Mineral compositions for the other

(a) (b)

(c) (d)

(e) (f)

(g) (h)

5mm

Figure 2.  Eight of the nine samples we mapped and analyzed.  All are shown at the
same scale.  Grey=olivine, blue=opx, red=garnet, and green=cpx.  (a) UX497 (b) K1 (c)
JAG93_8 (d) JAG90_72 (e) FRB4265 (f) FRB1350 (g) FRB347 (h) FRB1009.
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four samples were provided by F.R. Boyd of the Geophysical laboratory at the

Carnegie Institution of Washington.

Classification as Low-Temperature Peridotites

Garnet-peridotites are broadly classified as either low- or high-temperature in

origin, based on estimated equilibration temperatures [Boyd, 1987, 1989].

Xenoliths classified as low-temperature have been interpreted as representing

lithospheric samples from the upper mantle, originating from depths of less than

150 km whereas the high-temperature xenoliths have been interpreted as

representing asthenospheric samples from depths of 175 km and greater [Nixon

& Boyd, 1973; Boyd, 1987, 1989; Harte, 1983; Finnerty & Boyd, 1987; Nixon, 1987;

Herzberg, 1993; Brey & Köhler, 1990].  The high-temperature xenoliths tend to

have a sheared or deformed texture [Nixon & Boyd, 1973; Bouillier & Nicolas, 1975;

Harte, 1977, 1983; Herzberg, 1993; Boyd, 1987] making them poor candidates for a

spatial study such as ours, while the low-temperature xenoliths have presumably

retained their original spatial configuration making them ideal candidates for a

study of unusual mineral clustering.

Table 1 lists the modal proportions and olivine Mg numbers (atomic

MgO/FeO+MgO) for the samples we analyzed with low- and high-temperature

averages for comparison and Table 2 gives the mineral compositions.  All nine

xenoliths have olivine Mg numbers greater than 91.5, a coarse, granular texture

with no preferred dimensional orientation or other obvious signs of shearing,

and estimated equilibration temperatures of between 800° and 1100° C and

pressures of 30 to 55 kilobars (Table 1, using the thermometer of Brey & Köhler

[1990]) consistent with a classification of low-temperature peridotites [Nixon &

Boyd, 1973; Harte, 1975, 1983; Finnerty & Boyd, 1987; Boyd, 1987, 1989].   In

addition, the bulk rock, major element geochemistry of the samples is typical of

low-temperature peridotites from South Africa, which tend to be depleted in

FeO, TiO2, CaO and Al2O3 relative to higher-temperature xenoliths [Nixon &

Boyd, 1973; Harte, 1977, 1983; Nixon, 1987; Boyd, 1989; Herzberg, 1993].
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The oxide compositions of our samples are also consistent with low-

temperature xenoliths.  Fig. 3 shows the weight percent oxides for the individual

minerals of the xenoliths normalized to the average for the corresponding

minerals of thirteen low-temperature garnet lherzolites from southern Africa

analyzed in a previous study by Cox et al., [1987].  One of the rocks (JAG90_72)

has 2 to 3 times as much TiO2 as the average 13 low-temperature rocks do,

however it is still within the range of what is found for low-temperature

xenoliths [Boyd, 1987].

Table 1.  Modal analyses and Olivine Mg numbers of low-T garnet

lherzolite xenoliths from South Africa

Pipe Rock # olivine opx garnet cpx Mg # T °c P kb

Jagersfontein JAG90_72 71% 7% 9% 12% 93.2 1,055° 51

Jagersfontein JAG93_8 76% 16% 6% 2% 92.6 1,131° 53

Jagersfontein UX497 66% 25% 8% 2% 92.1 800° 36

Kimberley K1 73% 21% 5% 1% 93.0 977° 45

Kimberley K12 79% 11% 9% 2% 92.5

Kimberley FRB347 64% 27% 7% 2% 93.1 1,092° 49

Jagersfontein FRB1009 61% 29% 7% 3% 91.8 865° 39

Premiere FRB 1350 56% 33% 5% 5% 91.7 770° 27

Lesotho FRB4265 51% 42% 5% 1% 92.5 1,110° 52

low T avg 1 61% 31% 6% 2% 92.6

high T avg 2 77% 16% 6% 3% 91.1

Modal results are expressed as volume percentages.  Olivine Mg number is atomic

MgO/(MgO+FeO).  Kelyphite minerals have been counted as garnet and serpentinized minerals

have been counted as olivine.

(1) [Boyd, 1989]

(2) [Boyd & Mertzman, 1987]

(3) Final equilibration P and T estimates using the thermobarometer of Brey and Köhler [1990]
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Figure 3.  Spider plot of weight percent of oxides in individual minerals normalized by
the average of 13 low-temperature garnet lherzolites from southern Africa analyzed by
Cox et al. (1987).

The only way in which some of the rocks we analyzed differ from the low-

temperature classification is in their modal concentrations of opx and cpx.  Three

of the rocks (JAG90_72, JAG93_8, and K12) contain unusually low amounts of

opx and one (JAG90_72) has very high amounts of cpx, much more akin to high-

temperature xenoliths than low-temperature ones.  Except for this variability in

modal amounts, these rocks are, otherwise, very typical of low-temperature,

garnet peridotites from kimberlite pipes in South Africa.  Moreover, they span

almost the entire range of modal olivine and olivine Mg numbers that is found in

the Kaapvaal craton xenoliths (Fig. 4) so they should provide a representative

and potentially contrasting set of low-temperature samples.
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Figure 4.  Plot of modal olivine versus Mg number of olivine from Boyd [1989].  The
figure has been modified to show the eight samples we analyzed (solid black circles) in
addition to those previously analyzed (open circles) by Boyd [1987].  Arrows show the
oceanic trend inferred by Boyd [1989].

Textural Analysis Method

In order to test for a preferential spatial correlation between two minerals, we

employ a box-counting method (described in the spatial analysis section below)

on a series of different scales, to determine some of the statistical properties of

the rock.  We compare these results with those obtained from analysis of

computer-simulated rocks that contain randomly-distributed crystals with the

same modal proportions and average grain sizes as determined in our analysis

of the real rock. In this way, we can test whether there is a statistically unusual

spatial association between any of the mineral pairs in the real rocks.

Spatial Analysis

We divide the digital image of the thin section into squares.  We choose the

square size to have a total number of pixels Nn = 22n
 where n  is initially the

largest possible integer allowed by the image size.  Fig. 5 shows the back-

scattered electron image and x-ray maps for an example thin section (FRB347) as
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(a) (b)

(c) (d)

(e) (f)

10mm

Figure 5.  Example thin section.  a) BSE image b) Si map c) Al map d) Fe map e) Ca
x-ray maps for sample FRB347 and f) final results of mineral identification.
Grey=olivine, blue=opx, red=garnet, and green=cpx.  The sample has been
subdivided into 4 squares that are 128 pixels by 128 pixels in size.  The upper
lefthand corner shows successively smaller boxes for n = 6,...1.  When n = 0 , each
box contains a single pixel.
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well as the final digital image (the final identification of each pixel as opx, cpx,

garnet or olivine).  In this case, we begin with n = 7 (corresponding to a square

128 pixels by 128 pixels in size with N7 16 384= , ) and 4 such squares.  We then

calculate the number of squares that contain a large fraction of each of the

minerals.  To make this determination, we define a correlation condition

nx

Nn

≥ α        (1)

where nx  is the total number of pixels of mineral x  in the box and α  is the

fraction of the box the crystal must occupy.  In our analysis, we chose

α = 0.75, 0.80  and 0.875 .

Fig. 6 shows a plot of these results on a ternary diagram for the case of a

three mineral system; however, the garnet-opx-cpx-olivine system has four

components, so in our analyses we actually plot the results on a tetrahedron

(not shown) which is comprised of 4 ternary diagrams joined on each side. The

distance from each corner is equivalent to (1 − nx

Nn

)  and α  plots as a line near

each of the three corners defining a region we call a .  The boxes that satisfy the

condition defined in equation (1) are represented as points that lie within the

corner regions a .

a b

α

β a

a

b b

Figure 6.  Triangular plot of counting results.  The regions marked " a"contain the number
of boxes that have a large fraction (greater than α ) of the mineral identified in the
corner.  Each region marked " b "contains the number of boxes that have a large
proportion of the two minerals identified at the two corners that bound the region.  The
unidentified region in the center contains the number of boxes with a small proportion of
all three minerals.
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We then count the number of boxes that contain a large proportion of any

two minerals.  These points plot in the sidebars (regions b ).  The correlation

condition for this determination is

nx

Nn

≤ β        (2)

where nx  is the total number of pixels of the mineral in the corner opposite the

sidebar being determined, and β  is a chosen correlation threshold.  In our

analysis, we chose β = ( . , .0 25 0 20  and 0 125. ) and found that all gave similar

results.  We repeat the counting procedure for successively smaller boxes

(n = 6,...,1) and plot the results for each n  on a separate ternary diagram.  For

each decrement of n , the box area is reduced by one quarter.  This process yields

a "mineral correlation spectrum" as a function of box size.  When n = 0 , each box

contains a single pixel and all regions of the ternary diagram are empty except

for the corners, from which the modal amounts of each mineral comprising the

rock can be determined.

As n  increases, the percentage of boxes plotted in each of the corners Pnx will

gradually decrease.  When the box size exceeds the average crystal size, Pnx  will

drop abruptly.  A plot of Pnx  as a function of box size (Fig. 7) will show a break

in slope, which indicates that this critical size has been reached.  For equant
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Figure 7.  Percentage of boxes containing garnet as a function of n  for sample JAG90_72.
The break in slope at n = 6 indicates that the grid size has become larger than the
average crystal size of n = 5.  The percentage of boxes at n=0 indicates the modal
percent of garnet in this rock (~9%).



-51-

minerals, this size will correspond to the average crystal size n .  In some cases,

the break in slope is less evident and so we used the additional criterion

Pnx ≥ 0.25Mx , where Mx  is the modal proportion of mineral x .

Given the above results, we can create a thin section of a synthetic rock

containing the same modal proportions and average grain sizes as the real rock,

but with randomly distributed crystals.  In this way, the synthetic rocks match

the real rocks for n = 0  , and the average number appearing in each of the

ternary diagram corners is the same as the real rock for all n .  We then test

whether significantly more points occur in the sidebars of the real rocks than in

the randomly distributed synthetic rocks.

Synthetic Rock Calculations

In general, average crystal sizes differ between minerals in the rocks we

examined.  Therefore, we create the synthetic thin section in two stages.  First,

we lay out a grid of the same size as the largest average crystal size.  Since the

larger crystals will fill the boxes completely while that the smaller ones will not,

we re-normalize the modal proportions to account for the various size

differences.  The re-normalized modal amount for each mineral is

Rx = Mx

4(nx −1) ⋅ Mi

4(ni −1)
i=1

4

∑
       (3)

where i  denotes the minerals comprising the rock (e.g., olivine, opx, cpx, and

garnet), x  denotes the particular mineral being re-normalized, Mx  is the modal

proportion of mineral x  and nx  is the average crystal size of mineral x .  Using a

random number generator, we fill the boxes according to the Rx  proportions

with the appropriate sizes nx .  This will produce a partially filled rock with the

same modal proportions as the real rock.  The second stage is to go back and fill

the remaining blank spaces according to the modal proportions Mx  of the rock.

In this way, the final rock produced has appropriate modal proportions,

representative crystal sizes, and the minerals are randomly distributed.  Fig. 8
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shows an example of a synthetic rock that was generated according to this

scheme (both stages of its creation) and the real rock it represents.

We create 1000 synthetic thin sections for each of the real rocks imaged and

then analyze each of the synthetic rocks in exactly the same manner as the real

rock.  Therefore, for each n , we get a distribution of synthetic results for the

Figure 8.  Partially filled synthetic (a), fully filled synthetic (b), and real rock (c).
Grey=olivine, blue=opx, red=garnet, and green=cpx.
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three corners of the ternary diagram and the three sidebars.  Because we have

created the synthetic rocks using the average crystal sizes, the results plotting in

the corners of the ternary diagram for the real rock are well within the range of

95% of the results obtained for the synthetic rocks for all n .  We focus on the

sidebars to see if statistically significant differences arise.  For example, when

examining the garnet-pyroxene bar, we look at the ternary diagram for box size

n  corresponding to the n  for garnet and pyroxene.  If n  differs for the two

minerals, we take the average of the two and if they differ by just one order of

magnitude, then we consider both n .  When the value in the sidebar of the real

rock exceeds 95% of the expected range found in the synthetic rocks, we

conclude that the two minerals are spatially associated.

Results and Interpretation

We found statistically significant relationships between cpx, opx and garnet in

eight of the samples and between cpx and opx in the remaining sample, as

summarized in Table 3.  On the basis of these spatial relationships, it is possible

that eight of the nine xenoliths we analyzed (JAG90_72, JAG93_8, UX497, K1,

FRB347, FRB850, FRB1350, and FRB4265) were originally two-phase rocks

consisting of primary olivine and opx (harzburgites) and that later in the

sample's history the garnet and cpx unmixed from the opx.  Assuming this

history, we can reconstruct what the composition of these "original"

orthopyroxenes would have been using the microprobe analyses of the weight

percent oxides and relative densities of the garnet, cpx and opx.

There are several sources of error in making such a reconstruction including

errors in the chemical analyses and errors in the estimates of modal abundances.

We have calculated formal errors for the measurements of weight percent oxides

and for the modal amounts imaged in the thin sections and found both to be

negligible.  The largest source of error is in the assumption that the modal

amounts contained in the particular slice of rock we analyzed is representative of

the bulk rock.  In order to estimate the size of this error, we subdivide the thin

sections into 10 strips and calculate the modal abundances of each mineral for

every strip.  We then use a Student's T distribution to determine the error
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bounds on the modal amounts with 95% confidence.  Table 4 lists the chemical

compositions of the reconstructed orthopyroxenes and the average estimated

errors in these reconstructions given our modal error estimates.

The reconstructed Kaapvaal orthopyroxenes are chemically similar to the

orthopyroxenes that are produced in both anhydrous and hydrous peridotite

melting experiments.  In Fig. 9a the compositions of pyroxenes from liquids

saturated with a harzburgite (oliv + opx) residue are plotted along with the

Kaapvaal reconstructed orthopyroxenes.  The anhydrous melting experiments

span a range of pressures from 2.2 GPa [Parman, 2001] to between 3 and 6 GPa

[Walter, 1998].  Over this pressure range there is a systematic decrease in the Ca

and Al proportions that is dominantly correlated with an increase in melt

fraction.  The effect of increasing pressure under anhydrous conditions is to

increase the amount of melting required to exhaust cpx and garnet from the

residual assemblage (Walter, 1998).  Therefore, both higher temperatures and

higher melt fractions are required in order to reach oliv + opx saturation at

higher pressures.  The effect of increasing H2O is to increase the melt fraction and

depress the temperature at which high melt fractions are stable with an oliv +

opx residue [Parman, 2001].  Also shown in Fig. 9 are the orthopyroxenes in

equilibrium with olivine and a Barberton komatiite liquid (24 wt. % MgO, 6.5 wt.

Table 3.  Correlation of mineral pairs in garnet lherzolite xenoliths from South

Africa

rock cpx/opx opx/garnet cpx/garnet

JAG90_72 √ √ √

JAG93_8 √ √ √

UX497 √ √ √

K1 √ √ √

K12 √

FRB347 √ √ √

FRB1009 √ √ √

FRB1350 √ √ √

FRB4265 √ √ √
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% H2O) at 2.4 GPa.  The low Al in the opx is a consequence of the higher

temperature of oliv + opx saturation in this liquid compared to the hydrous

peridotite melts.

Most of the Kaapvaal reconstructed orthopyroxenes parallel the trend

defined by the experimental data.  The compositions of reconstructed pyroxenes

from Cox et al. [1987] also parallel the trend defined by our sample suite.  The

exception is the cpx + garnet rich sample JAG90_72 that plots at much higher Ca

contents than the experimental data.  Sample JAG90_72 will not be considered

further in the discussion, and we assume that it formed by a different process

than the one discussed below.  When the remaining reconstructed

orthopyroxenes are compared to the experimentally produced orthopyroxenes,

the Ca and Al contents of the anhydrous opx compositions match the

reconstructed compositions most closely.  However, the differences between the

hydrous and anhydrous Ca contents are small and our assumption that opx was

the only pyroxene present initially in these samples may be artificially inflating

the reconstructed Ca contents to higher values than were actually present in the
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Figure 9.  a) Comparison of Ca and Al in the reconstructed Kaapvaal orthopyroxenes
from our study (black circles) and from Cox et al. [1987] (grey circles) with anyhdrous
[Walters, 1998; Parman, 2001] and hydrous [Parman, 2001] peridotite melting
experiments.  Units are the number of cations based on 6 oxygens.  b) Temperature in oC
plotted against the number of Al cations per 6 oxygens found in the experimentally
produced orthopyroxenes that are in equilibrium with olivine.  Numbers indicate pressure
in GPa.  Hydrous experiments were performed at 1.5 and 2 GPa.
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original, high temperature protolith (see below).  There is an inferred 500º C

difference between the anyhydous and hydrous orthopyroxenes containing the

lowest Al (Fig. 9b), so that temperature variations have a small effect on the

pyroxene Ca content.  The important first-order observation is that neither an

anhydrous or hydrous melting origin for the Kaapvaal orthopyroxenes can be

excluded.

Kinzler & Grove [1999] (K&G) explored the compositional trends that would

be expected in a peridotite residue as it underwent a near-fractional melting

event beginning in the garnet stability field.  Using experimental data from

Walter [1998] and Kinzler [1997], they calculated the reaction coefficients for the

melt reaction and the composition of residues expected for melting up until the

exhaustion of garnet and cpx.  Their model extracts melt over the pressure range

of 3.7 to 1.5 GPa and is reproduced in Fig. 10.  The plot of modal olivine vs

olivine Mg# (Fig. 10a) shows an enlargement of the low-T peridotite data plotted
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Figure 10.  a) Kinzler & Grove [1999] model predictions for the evolution of modal olivine
and garnet, cpx and opx (lower diagram) vs Mg#. Variations are produced by near-
fractional decompression melting that begins in the garnet stability field (at 3.7 GPa)
and ends with the exhaustion of cpx (1.5 GPa).  Outlined field defines the field of
Kaapvaal low-T garnet peridotites from Boyd [1989] (see Fig. 3).  Arrow indicates the
path followed by the mantle residue in the Kinzler & Grove [1999] model.  b) The solid
lines show the variation in modal garnet (lowest line that reaches zero at Mg# of 92),
cpx and opx for near fractional melting predicted by the Kinzler & Grove [1999] model.
Actual Mg# and modal amounts are plotted as dark symbols and the recombined modal
opx (grey diamonds) is shown for comparison.  The cpx calculated by K&G is a
subcalcic augite.
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in Fig. 3, and Fig. 10b shows the evolution of the opx, subcalcic cpx and garnet in

the residue as melt is extracted.  K&G demonstrate that fractional melting can

produce part of the trend that extends through the center of the modal olivine vs

Mg# variation (Fig. 10a).  The extension of that trend to more olivine-rich

compositions is not explained by fractional melting and requires an alternative

process [Boyd et al, 1997; Kelemen et al., 1998].  Boyd et al. [1997] propose that the

extension of the modal variations to high opx is a consequence of a later stage

metamorphic process.  K&G propose that olivine enrichment samples are

formed by passage of a melt that crystallizes olivine after the fractional melting

event has occurred.

When the K&G model predictions are compared with the reconstructed

Kaapvaal opx compositions, some interesting systematics emerge (Fig. 10 b).

The trend of increasing modal opx with increasing degree of melt extraction

predicted by K&G is shown as the solid line.  The trend of the more depleted

Kaapvaal peridotites (olivine Mg# > 92.5) follows the prediction closely.  Sample

FRB4265 is the exception and it plots on the olivine-poor side of the predicted

fractional melting trend (Fig. 10a).  The less depleted samples (with olivine Mg# <

92) show a trend of increasing modal opx with decreasing Mg#, which is the

opposite of the modeled trend.  However, the K&G model predicts that in this

part of the Mg# - modal olivine space a sub-calcic cpx is present in the residue.

Therefore, our initial assumption that opx was the only residual pyroxene may

be incorrect for these low Mg# samples.

The Kaapvaal samples that plot at the low Mg#, low modal percentage

olivine-end of the K&G model trend (FRB 1009 and FRB 1350) plot at the high-Ca

and high-Al end of the opx trend in Fig. 9a, consistent with lower extents of

melting.  Note that the least depleted Kaapvaal opx (UX497) also plots in the

appropriate part of Mg# - modal olivine space.  The Kaapvaal reconstructed opx

with the lowest Ca and Al contents plots at the end of the K&G model trend,

where the most depleted residue would be expected to plot.

Another prediction of the K&G model is that the fractional melting residue

over the range of olivine Mg# spanned by the Kaapvaal peridotites should have

contained both opx and cpx as residual phases.  Only at the end of the model
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residue trend (where it coincides with FRB 347) would cpx be exhausted from the

residue.  Therefore, the modeled Ca contents of the reconstructed Kaapvaal

orthopyroxenes could be artificially high because some of the cpx that was

recombined should have remained apart.  Melting experiments suggest that the

high-temperature protolith would have contained cpx with ~9-10 wt. % CaO and

7-9 wt. % Al2O3 [Walter, 1998; Parman, 2001].  Our statistical model does not test

the presence of mixtures of opx + cpx + garnet that exsolved from both high and

low Ca pyroxenes.  It is also possible that the reconstructed residue was more

similar to the lower pressure, lower temperature trend predicted by K&G and

can be accounted for by a shallow anhydrous or hydrous melting process.

Another interesting correlation is the depth from which the samples were

derived (Fig. 11).  The most depleted samples (FRB 347 and FRB4265) come from

the greatest depths whereas the least depleted samples (FRB 1350, FRB1009 and

UX497) all come from the shallowest depths.   The Cox et al. [1987] sample suite

shows a trend that parallels the trend defined by our sample suite, but it does not

extend to the low temperature, undepleted end member defined by our samples.

This relationship is not completely followed by all of the samples because

undepleted samples JAG93_8 and JAG90_72 have final equilibration depths

equivalent to FRB347, but there are no depleted samples in our dataset that come

from shallow depths.  If these mantle samples were derived from a melt

extraction column that was left behind after near-fractional melting, one would

expect that the deepest mantle residues should be the most fertile and the

shallowest mantle residues would be the most depleted.  The opposite

correlation is observed.

Our conclusions are basically similar to those of Cox et al., [1987] who found a

spatial relationship between grains of opx, cpx and garnet in 10 low-temperature

xenoliths from the Bulfontein and Mothae pipes and compared the reconstructed

opx compositions of those rocks to the Al2O3 and CaO isopleths of Yamada &

Takahashi [1984].  In their analysis, Cox et al. [1987] concluded that the peridotites

were formed as residual products of melting at temperatures near the dry

peridotite solidus of Kushiro (1973) in the pressure range of 4�8 GPa.  However,
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a comparison of their 10 reconstructed orthopyroxenes (Fig. 9) with more recent

mantle melting experiments [Walter, 1998; Parman, 2001] shows they are also

consistent with large extents of melting as discussed above.

Following Cox et al., [1987], we have plotted the final equilibration

temperatures and pressures of our mantle samples on a pressure-temperature

grid derived from the geothermobarometer of Brey & Köhler [1990] (Fig. 11).  All

of them plot in one section of the figure between temperatures of ~770° and

1130° C and pressures of ~2.7-5.3 GPa (100-165 km depth).  For comparison, we

have also calculated the final equilibration temperatures of the 10 rocks analyzed

by Cox et al. [1987] and found that they too plot in the same temperature range

as our samples (Fig. 11).  Distinctly different from these final rocks, the

reconstructed pyroxenes have compositions that are consistent with dry melting

experiments that would place them at ~1300-1500° C and pressures of 2-3 GPa

(60-90 km depth) or experimentally produced orthopyroxenes in equilibrium

with a hydrous mantle melts from 2 GPa [Parman, 2001].
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Figure 11.  a) Pressure-Temperature plot of all low-temperature samples after final
equilibration using the geothermobarometer of Brey & Köhler [1990].  The opx stability
field is shown for both dry peridotite as determined by melting experiments of Walter
[1998], and for hydrous peridotite [Parman, 2001].  The dry peridotite solidus is from
Kinzler [1997].  B) Depth of final equilibration from geothermometry is plotted against
Mg# of olivine in the sample for the data set from Cox et al. [1987] (grey circles) and this
study (black circles).  Depleted samples are from greater depths.  This correlation is the
opposite of what would be expected if the samples had preserved a mantle melt column
produced by near-fractional decompression melting.
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Together, these pieces of information can be reconciled with a scenario in

which large degrees of shallow mantle melting (~60-90 km) produce a

harzburgitic residuum that is subsequently pushed down to greater depths (~160

km) as a result of cratonic formation.  At these greater depths, the high-

aluminum opx is no longer stable and the garnet and cpx exsolve, forming the

garnet-peridotite rocks that are then erupted as kimberlite xenoliths (Fig. 12).

We see no evidence that the xenoliths in our sample suite originated at greater

depths (300 to 400 km), as suggested by Haggerty & Sautter [1990] since none of

the rocks we analyzed showed a relationship between cpx and garnet or opx and

garnet alone.  However, we cannot rule this scenario out since it is possible that

majorite would decompose to the same residual products. It should be realized

that the ultradeep samples appear distinctly different in texture and mineralogy

than the low-temperature harzburgites and that they constitute about 10% of the

nodule population at the Jagersfontein pipe [Sautter et al., 1991].  Therefore, these

�deeper� samples may be representative of another process that is also

preserved in the Kaapvaal peridotite suite. Our results are also consistent with

previous studies that suggest the low-temperature xenoliths were formed as

cold
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Figure 12.  Pressure-Temperature Time Scenario. Large degrees of shallow mantle
melting (~100 km) produce a harzburgitic residuum that is variably depleted by the
melting event.  This is schematically represented by a rectangular section of a melting
column in which the deeper (dark grey) mantle residue is less depleted and the most
shallow mantle residue (lightest grey) is most depleted.  This melt column is
subsequently pushed down to greater depths (~160 km) as a result of mantle flow
around the corner of the mantle wedge in a subduction zone, where it cools against
the cold subducting slab.  After the mantle has been delivered to these greater depths,
and is cooled by the slab, it re-quilibrates in the cratonic geothermal gradient.  High-
aluminum opx is no longer stable and the garnet and cpx exsolve forming the garnet-
peridotite rocks that are then erupted as kimberlite xenoliths.
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residual products of extensive amounts of melting (>20%) in the Archaean at

shallow depths (~100 km) [Boyd et al., 1997; Keleman et al., 1998; Walter, 1998].

The thermal history inferred for these mantle samples could have been

imposed by mantle flow that occurs in a subduction zone.  In modern subduction

zones, anhydrous and hydrous mantle melting results in extreme depletion of

the mantle lithosphere, and subduction zone melts are extracted from shallow

mantle depths [Baker et al., 1994].  After this mantle is depleted it could be

entrained in the flow around the wedge corner, where it would undergo cooling

as it descended into the mantle above the subducted slab [Kincaid & Sacks, 1997;

Davies & Stevenson, 1992]. The presence of the most depleted samples at the

greatest depths is consistent with this model.  If the melt column that was left

from adiabatic decompression melting in the backarc was dragged around the

mantle wedge corner and cooled against the subducted slab, the column may

have been inverted (Fig. 12) as it was cooled and dragged to greater depths.   If

the subduction process shut down or the trench migrated, the depleted mantle

would record an initial, hot, shallow equilibration followed by a later, cooler,

deeper re-equilibration event.  Thus, the depleted Kaapvaal harzburgites may

provide a record of Archean subduction processes, and may form a complement

to komatiite magmas that have also been proposed to record Archean

subduction zone processes [Parman et al., 1997].

Conclusions

We have developed a new technique for 2-D textural analysis that uses the raw

pixel data of scanning backscattered electron and x-ray images to determine

modal amounts, average crystal sizes and whether any of the minerals are more

closely associated spatially than would be expected if they were randomly

oriented.

We apply this technique to thin sections of nine, low-temperature garnet-

peridotites erupted from kimberlite pipes in South Africa.  Eight of the nine rocks

we analyzed show a spatial relationship between opx, cpx, and garnet.  By

recombining these three minerals together, we infer that the original rock was a

harzburgite that originated at ~100 km depth from large amounts of mantle

melting.  The rocks were subsequently pushed down to greater depths in the
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creation of the craton and the cpx and garnet then exsolved when they re-

equilibrated.
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Table 2.  Mineral Compositions

Jag90_72 olivine +/-   garnet +/-   opx +/-   cpx +/ SiO2 41.16 0.19 41.83 0.48 58.52 0.24 55.15 0.46
 TiO2 0.00 0.01 0.32 0.02 0.10 0.01 0.27 0.04
 Al2O3 0.00 0.00 20.47 0.26 0.65 0.01 2.29 0.06
 Cr2O3 0.02 0.01 4.81 0.22 0.27 0.01 1.92 0.06
 FeO 6.67 0.16 6.35 0.16 4.15 0.08 1.93 0.09
 MnO 0.07 0.02 0.33 0.03 0.04 0.02 0.02 0.02
 MgO 51.49 0.32 20.61 0.18 36.19 0.27 16.80 0.17
 CaO 0.03 0.01 5.30 0.15 0.42 0.02 19.92 0.14
 Na2O 0.00 0.00 0.00 0.01 0.01 0.02 1.94 0.07
 NiO 0.31 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.75 100.03 100.36 100.25

Jag93 8 olivine +/-   garnet +/-   opx +/-   cpx +/-
 SiO2 40.73 0.19 41.77 0.26 58.45 0.32 54.68 0.46
 TiO2 0.01 0.01 0.14 0.02 0.03 0.01 0.14 0.03
 Al2O3 0.01 0.01 20.10 0.10 0.72 0.03 3.06 0.11
 Cr2O3 0.02 0.01 5.33 0.06 0.40 0.01 3.46 0.12
 FeO 7.17 0.16 6.96 0.16 4.51 0.16 2.19 0.14
 MnO 0.05 0.02 0.38 0.02 0.11 0.01 0.11 0.03
 MgO 50.55 0.40 20.63 0.11 36.04 0.17 15.17 0.14
 CaO 0.00 0.00 4.65 0.13 0.33 0.01 17.43 0.28
 Na2O 0.00 0.00 0.00 0.00 0.11 0.03 3.31 0.10
 NiO 0.39 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Total 98.94 99.96 100.71 99.54

K1 olivine +/-   garnet +/-   opx +/-   cpx +/-
 SiO2 40.59 0.18 41.45 0.33 58.07 0.42 54.80 0.11
 TiO2 0.03 0.01 0.04 0.01 0.01 0.02 0.02 0.02
 Al2O3 0.01 0.01 21.07 0.09 0.75 0.03 1.85 0.07
 Cr2O3 0.00 0.01 4.01 0.07 0.28 0.02 1.53 0.02
 FeO 6.82 0.13 6.59 0.14 4.40 0.12 2.00 0.09
 MnO 0.08 0.02 0.30 0.02 0.10 0.02 0.07 0.02
 MgO 50.98 0.41 20.64 0.17 36.17 0.21 17.14 0.13
 CaO 0.03 0.01 5.18 0.11 0.44 0.04 20.93 0.21
 Na2O 0.00 0.00 0.00 0.00 0.05 0.03 1.62 0.06
 NiO 0.47 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.00 99.29 100.26 99.98

UX497 olivine +/-   garnet +/-   opx +/-   cpx +/-
 SiO2 40.69 0.24 41.41 0.35 58.18 0.34 54.86 0.47
 TiO2 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
 Al2O3 0.01 0.01 22.22 0.13 0.66 0.04 2.28 0.07
 Cr2O3 0.01 0.01 2.63 0.07 0.19 0.03 1.69 0.06
 FeO 7.79 0.37 8.49 0.15 4.92 0.11 1.50 0.06
 MnO 0.10 0.02 0.40 0.04 0.10 0.02 0.05 0.01
 MgO 50.63 0.52 19.59 0.15 36.33 0.22 16.25 0.16
 CaO 0.01 0.01 4.97 0.13 0.19 0.02 21.58 0.18
 Na2O 0.00 0.02 0.01 0.01 0.00 0.00 1.76 0.09
 NiO 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 99.67 99.72 100.58 99.98
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    Table 2. Mineral Compositions Continued
FRB347 olivine   garnet   opx   cpx
 SiO2 41.30 41.80 58.00 54.80
 TiO2 0.00 0.00 0.00 0.00
 Al2O3 0.00 20.50 0.86 2.61
 Cr2O3 0.00 4.14 0.31 1.64
 FeO 6.71 6.30 4.18 2.04
 MnO 0.09 0.36 0.13 0.06
 MgO 50.80 21.50 37.20 16.60
 CaO 0.00 4.62 0.45 19.30
 Na2O 0.00 0.00 0.12 2.29
 NiO 0.41 0.00 0.00 0.00
Total 99.31 99.22 101.25 99.34

FRB1009 olivine   garnet   opx   cpx
 SiO2 40.39 41.71 56.29 55.57
 TiO2 0.00 0.02 0.00 0.05
 Al2O3 0.00 21.88 0.71 2.67
 Cr2O3 0.02 2.87 0.26 1.87
 FeO 8.01 8.39 4.80 1.71
 MnO 0.08 0.44 0.11 0.08
 MgO 50.58 20.32 36.03 15.93
 CaO 0.02 4.87 0.21 20.87
 Na2O 0.00 0.01 0.04 2.17
 NiO 0.43 0.00 0.06 0.04
Total 99.53 100.51 98.51 100.96

FRB1350 olivine   garnet   opx   cpx
 SiO2 40.96 41.96 57.97 54.87
 TiO2 0.00 0.01 0.01 0.01
 Al2O3 0.04 22.10 1.13 2.04
 Cr2O3 0.00 2.07 0.22 0.90
 FeO 8.30 8.23 5.20 1.70
 MnO 0.11 0.46 0.10 0.07
 MgO 51.67 20.09 36.53 17.26
 CaO 0.02 5.43 0.27 22.87
 Na2O 0.00 0.02 0.03 1.23
 NiO 0.43 0.00 0.10 0.04
Total 101.53 100.37 101.56 100.99

FRB4265 olivine   garnet   opx   cpx
 SiO2 40.28 41.91 58.43 55.91
 TiO2 0.00 0.00 0.00 0.01
 Al2O3 0.00 20.66 0.80 2.26
 Cr2O3 0.02 4.34 0.27 1.47
 FeO 7.30 6.47 4.36 1.96
 MnO 0.08 0.32 0.10 0.10
 MgO 50.84 21.10 37.02 17.43
 CaO 0.06 5.33 0.50 19.74
 Na2O 0.00 0.02 0.09 1.79
 NiO 0.43 0.00 0.12 0.05
Total 99.01 100.15 101.69 100.72
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Chapter 4

Comparing P and S wave Heterogeneity in the Mantle

Published by the American Geophysical Union in Geophysical Research Letters by Rebecca

Saltzer, Rob van der Hilst and Hrafnkell Kárason, 28, 1335-1338, 2001.

Abstract

From the reprocessed data set of Engdahl and co-workers we have carefully selected
matching P and S data for tomographic imaging.  We assess data and model error and
conclude that our S model uncertainty is twice that of the P model.  We account for this
in our comparison of the perturbations in P and S-wavespeed.  In accord with previous
studies we find that P and S perturbations are positively correlated at all depths.
However, in the deep mantle systematic differences occur between regions that have
undergone subduction in the last 120 million years and those that have not.  In
particular, below 1500 km depth ∂ ∂ln lnVs Vp/  is significantly larger in mantle regions
away from subduction than in mantle beneath convergent margins.  This inference is
substantiated by wavespeed analyses with random realizations of the slab/non-slab
distribution.  Through much of the mantle there is no significant correlation between
bulk sound and S-wave perturbations, but they appear to be negatively correlated
between 1700 and 2100 km depth, which is also where the largest differences in
∂ ∂ln lnVs Vp/  occur. This finding supports convection models with compositional
heterogeneity in the lowermost mantle.

Introduction

Systematic differences between P and S-wave velocity models can be used to

infer mantle properties because the bulk (κ ) and shear ( µ ) moduli have different

sensitivities to temperature and mineral composition.  In particular, similar

behavior in the moduli is consistent with a thermal origin for velocity variations

while an inverse relationship suggests chemical heterogeneity or the presence of

volatiles [Stacey, 1998].

Robertson & Woodhouse [1996] have found that P and S-wave models are

correlated to ~2100 km depth but that the patterns of P and S-wave heterogeneity

are different below that depth.  Other studies focusing explicitly on bulk-sound

and S-wave heterogeneity find that variations in κ  and µ  are decorrelated below

~2000 km depth [Su et al., 1997; Kennett et al., 1998].  Furthermore, Su et al. [1994]

and Li and Romanowicz [1996] suggested that somewhere between 1500 and 2000

km depth imaged velocity structures become longer wavelength.  In accordance
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with these and other observations [van der Hilst & Kárason, 1999], and in an

attempt to reconcile geophysical convection models with geochemical

constraints, Kellogg et al. [1999] suggested the presence of a compositionally

distinct region in the lower mantle that is hotter, but nonetheless more dense

than the overlying mantle, due to compositional differences.

Previous studies used spherical harmonic representations of long wavelength

radial and lateral variations [Robertson & Woodhouse , 1996; Su et al., 1997; Masters

et al., 2000] or relatively small constant wavespeed cells [Kennett et al., 1998]. Here

we take a different approach and investigate whether subduction leaves a

discernible imprint on the large-scale distribution of compositionally distinct

domains in the deep mantle, as implied by Kellogg et al. [1999]. We determine as a

function of depth the difference in average P, S and bulk-sound wavespeed

perturbations between regions where subduction has occurred in the last 120

million years and where it has not. For the upper mantle we also distinguish

between oceans, active tectonic regions, and Precambrian cratons and shields,

but we emphasize the results for the lower mantle.

Figure 1.  Map depicting regions (light grey) where there has been subduction in the last
120 million years (after Wen & Anderson [1995]).

Data and Tomographic Models

Following Robertson & Woodhouse [1996] and Kennett et. al. [1998] we select

bodywave traveltime residuals with common source-receiver pairs.  We use the

most recent global dataset of reprocessed ISC traveltime residuals [Engdahl et. al.,
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1998] (EHB), which are better than the original in both hypocenter determination

(EHB includes S phases also) and phase identification.  Owing to the interference

of the S and SKS wave fields near 84° epicentral distance, S picks associated with

rays turning in the lowermost mantle are prone to phase misidentification that

can affect shear wave models at depths exceeding 2000 km [Robertson &

Woodhouse, 1996; Su et al., 1997; Kennett et al., 1998; van der Hilst & Kárason, 1999].

Engdahl et. al. [1998] paid special attention to this problem and we use this

dataset to infer aspherical variations in P and S-wave models throughout the

entire mantle.

Restricting the P and S-wave datasets to match one another allows us to

construct P and S-wave models with similar ray coverage and, hence, similar

resolution properties.  The individual P and S models could be improved by

exploiting all EHB P wave data or by adding constraints from surface wave

propagation, but the one to one correspondence between the P and S sampling

would then be lost and comparisons between the resulting models more

problematic.  We further limit the P and S-wave residuals to those that are less

than 5 s and 10 s respectively, group the data associated with nearby events and

recorded within 1° by 1° regions into summary rays, and take the median of the

repeated measurements.  This clustering reduces the tomographic system of

equations and produces robust residuals for well-traveled paths.  The clustered

rays contribute more heavily to the solution with a weighting that depends on

the total number of rays contributing to the bundle.  Bundles containing more

than 10 rays are limited to the equivalent weight of just 10 rays so that they do

not dominate the solution [Kárason & van der Hilst, 2001]. We recognize that the

level of noise (picking errors) in the P and S datasets is different, and we account

for this in our present study.

Rays are traced through the one-dimensional Earth model ak135 [Kennett,

1995], and the P and S-wave data are inverted separately to obtain tomographic

images with 1° by 1° by 100 km constant velocity blocks using an iterative,

conjugate gradient algorithm.  From the independently derived P and S-wave

velocity models it is possible to extract a bulk-wavespeed model Vφ using the

relation
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which, unlike the P wavespeeds, depends on just one elastic modulus, κ .  While

this model is perhaps noisier than one that would be generated in a joint

inversion of the data [Kennett et al., 1998] it makes explicit the differences

between the P and S-wave models.

Even though the P and S-wave models are constructed from a similar ray set

and subjected to identical damping and smoothing constraints, we have more

confidence in the P-wave model than we do in the S-wave model because the

traveltime residuals used to construct the model are of higher quality.  We

quantify this by determining the scatter of the residuals in ray bundles

containing at least 25 paths.  On average, we found that the P-wave traveltime

residuals for earthquakes originating from within a 50 km square region to any

single station have ~0.6 s of scatter.  In contrast, the S-wave residuals show ~2.0 s

of scatter along the same path.  Part of this difference is structural signal but S-

waves also tend to have larger picking errors because they often arrive in the

coda of P and PP and they may be more prone to effects of attenuation and

anisotropy.  As regards the latter, we note that ISC does not report on which

sensor component an S wave pick was made.  The inferred bulk-sound model is

noisier still, since it is derived by differencing the P and S-wave models.

Nonetheless, we find that the resulting models are qualitatively similar to one

another, and when we take the ratio of velocity perturbations from one model to

the next the large scale features in the tomographic images remain evident.

To quantify the confidence we have in the P-wave model relative to the S-

wave model we add uniformly distributed random noise to the traveltime

residuals in an amount equal to the estimated picking error associated with each

data type and then calculate how much the model changes when the noisier data

is inverted.  In over 300 inversion runs we find that with the addition of 0.6 s

maximum P-wave noise and 2.0 s maximum S-wave noise the average change in

the S-wave model (the block by block difference between the noise-free and

noisy models) is just twice (0.02%) that of the P-wave model (0.01%), even

though the variability in the raw S-wave data is 3.3 times that of the P-wave data.
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This is due to the larger signal in S and the effects of smoothing and

regularization imposed upon inversion.  In the following we assume that the

uncertainty in the S-wave model is twice that of the P-wave model.

To quantify the correlation between the models and to calculate ∂ ∂ln lnVs Vp/

and ∂ φ ∂ln lnV Vs/  for a given region and depth of interest, we plot for each cell the

magnitude of the perturbations against one another and determine the slope of

the best-fitting line by iterative linear regression.  After rescaling the axes

according to the results of the noise tests, so that both have similar estimated

uncertainties, we make an initial guess of the slope and y-intercept and then

iteratively refit the line by weighting the perturbations that are outside of 1σ  by

the inverse of their distance from this line.  Perturbations within 1σ  are

weighted equally.  This weighting scheme minimizes the effects of outliers and at

the same time prevents the data closest to the initial guess from dominating the

solution.  Unsampled regions are excluded from the analysis.  The bulk-sound

errors (σ φV ) are inferred from the errors in the P and S wave models according to

Figure 2.  Plots of P-wave versus S-wave perturbations from each of the four depth
ranges.  Note how the slope of the fitted line changes with depth.
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which yields an estimate of bulk-sound model uncertainty of ~1.2 times the S-

wave model.

Results

We find that the P and S-wave models are strongly correlated at all  depths

(R~0.6-0.7) confirming earlier results [Robertson & Woodhouse, 1996; Kennett et al.,

1998; Masters et al., 2000].  However, except for the very deep mantle and the top

several hundred km near the surface, we find that through much of the mantle

there is no significant correlation between the bulk-sound and S-wave

perturbations, although the magnitude and slope of the correlation coefficients as

a function of depth is similar to that of Masters et al. [2000].  It is possible that this

lack of correlation is due to compositional heterogeneity throughout the lower

mantle or that the contribution of the bulk modulus is small.  It is also possible

that our bulk-sound wavespeed model is too noisy for this comparison.

Next, we distinguish regions where there has been subduction in the last 120

million years from those where there has not and loosely divide the mantle into

four depth intervals: I (0-660 km), II (660-1500 km), III (1500-2400 km), and IV

(2400-CMB).  In the upper mantle (depth I), which is best sampled beneath

earthquakes and stations, and the mid-mantle (depth II), which is generally well

sampled, we find no significant differences in ∂ ∂ln lnVs Vp/  between regions

where there has and has not been subduction in the last 120 million years.

However, in the lower mantle the curves have different slopes and begin to

diverge at ~1000 km depth.  The lack of a statistically significant difference

between the slab and non-slab regions to at least 1200 km depth is consistent

with an interpretation that the anomalies have a thermal origin.

Between ~1500 and ~2100 km depth, ∂ ∂ln lnVs Vp/  increases slightly in the slab

regions and dramatically in the non-slab regions before decreasing (along with

data coverage) toward the core mantle boundary.  Previous studies [Robertson &

Woodhouse, 1996] found a similar increase in ∂ ∂ln lnVs Vp/  and argued that it

results from the increase in pressure with depth, which causes a reduction in the

sensitivity of the bulk modulus to changes in temperature [Agnon and Bukowinski,
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1990; Isaak et al., 1992].  While that effect may be occuring, it is unlikely the

dominant factor here because at those same depths we also find the bulk and

shear wave perturbations are negatively correlated in the non-slab regions

(Figure 3b), which suggests, instead, a predominance of compositional

heterogeneity [Stacey, 1998].

In addition to our uncertainty analysis, we conducted two tests to assess the

significance and robustness of the result shown in Figure 3a.  First, we applied

the above analysis to a large number of different regionalizations.  Figure 3c
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Figure 3.  (a) S-wave versus P-wave model perturbations in non-slab regions (solid line)
versus slab regions (dashed line) as a function of depth.  The shaded areas indicate the
1σ  uncertainty and encompass the models allowed by the data.  (b) Correlation
coefficients for bulk and shear (pair on the left) and P and S-waves (pair on the right) as
a function of depth. Slab regions shown with dashed and non-slab-regions with solid
lines.  The gray zone around zero depicts the range within which the correlations are not
thought to be significant.  Throughout most of the mantle the bulk and shear models are
not significantly correlated except for a negative correlation between 1700 and 2400 km
depth.  The P and S-wave models are positively correlated throughout the mantle.  (c)
Difference between the slab and non-slab regions for a series of regionalizations shifted
by 10 degree intervals around the globe (green).  The regionalization shown in Figure 1
is the one that produces the largest difference between the slab and non-slab regions
(pink curve) in the lower mantle, demonstrating that the differences are not due to a bias
in sampling or random chance.
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shows the result of shifting the slab vs. non-slab regions randomly around the

globe.  The deep mantle difference in ∂ ∂ln lnVs Vp/  peaks for the regionalization

that is based on the actual distribution of slabs, that is, the regionalization as

shown in Figure 1. For any other regionalization the differences are smaller,

except in the shallow mantle.  Second, we have tested whether preferential

sampling of low-velocity regions beneath the southern Pacific ocean and Africa

as suggested by Masters et al., [2000] could bias our results and found that

excluding those regions from the analysis does not significantly change them.

These results suggest that the deep mantle difference in ∂ ∂ln lnVs Vp/  between the

slab and non-slab regions and the negative correlation in ∂ φ ∂ln lnV Vs/  are robust

and causally related to the pattern of subduction in the lower mantle.

The boundary layers (regions I and IV) are another part of the globe where

we find significant differences.  In the very top of the upper mantle beneath

cratons and shields (not shown) we find a negative correlation in ∂ φ ∂ln lnV Vs/

suggesting they are compositionally distinct, in support of the tectosphere

hypothesis [Jordan, 1975].  In addition, ∂ ∂ln lnVs Vp/  is significantly higher in both

tectonically active and young, oceanic regions than in more stable, continental

regions, which is consistent with high temperature gradients or the presence of

partial melt and volatiles.  At the very bottom of the mantle (the lower boundary

layer) we find a positive correlation between ∂ ∂ln lnVs Vp/ , which is consistent

with thermal effects at the core-mantle boundary.

Conclusions

The deep mantle (>1000 km depth) beneath regions that have undergone

subduction in the last 120 million years have consistently lower ∂ ∂ln lnVs Vp/

ratios than regions that have not.  In addition, largest difference occurs between

1700 and 2400 km depth where a significant negative correlation between

∂ ∂ln lnVs Vp/  suggests widespread chemical heterogeneity.  These results do not

dictate the nature of the compositional heterogeneity and are consistent with

mantle models involving anomalous domains, as envisioned by Kellogg et al.

[1999], or slab accumulations, as suggested by Christensen and Hofmann [1994],

provided the latter extend far enough above the core mantle boundary.
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The boundary layers (regions I and IV) are another part of the globe where

we find significant differences.  Beneath Pre-cambrian cratons and shields to

~250 km depth, we find a negative correlation in ∂ φ ∂ln lnV Vs/  suggesting

compositional heterogeneity.  In tectonically active and young oceanic regions

∂ ∂ln lnVs Vp/  is significantly higher than in more stable, continental regions,

consistent with elevated temperature gradients and partial melt or volatiles.  We

find a positive correlation between ∂ φ ∂ln lnV Vs/  at the base of the mantle (the

lower boundary layer) which is consistent with thermal effects at the core mantle

boundary.

We realize that higher-quality traveltime residuals are necessary to provide a

more complete and robust picture.  In particular, the S-wave model is less robust

than the P-wave model despite similar ray sets, damping etc., which we attribute

to lower quality S-wave residuals.  Higher-quality S-wave and bulk-sound

wavespeed models are required to determine whether the lack of correlation in

bulk and shear wavespeed models throughout much of the mantle is due to

physical properties in the mantle or is just an artifact of noise in the models.
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Chapter 5

Poisson�s Ratio beneath Alaska from the surface to the Core-Mantle Boundary

Submitted for publication to the American Geophysical Union in the Journal of
Geophysical Research  by Rebecca Saltzer, Eléonore Stutzmann and Robert D. van der
Hilst, 2001.

Abstract

Using waveform cross-correlation, we have picked P and S wave differential travel times
from earthquakes and receivers lying along a great circle path that spans Japan-Alaska
and the Western United States.  We jointly invert the data using 2° ×  2° ×  200 km
constant velocity blocks and then calculate Poisson�s ratio in each of those blocks. In the
mid mantle, the magnitude of the lateral variations in Poisson�s ratio is large (~8%) and
the dominant length scales over which these variations occur are ~2000 km and ~4000
km in size.  In the bottom 1000 km of the mantle where laterally coherent, slab-like
structures are absent, the magnitude of the lateral variations in Poisson�s ratio decrease
to 3% and the dominant length scale over which variations take place is ~4000 km.  The
variability in Poisson�s ratio is greater than what would be expected by temperature

variations alone, assuming that the four different estimates of 
∂
∂
V

T
p  and 

∂
∂
V

T
s  we have

used [Karato, 1993; Karki & Stixrude, 1997; Stacey, 1998; Trampert et al., 2001] are anywhere
in the ballpark.  A simple explanation is that the variability in Poisson�s ratio includes a
contribution from compositional effects.  One effect that could explain the difference is
the depletion of the subducted slabs in perovskite relative to the convecting mantle as
suggested by Ringwood [1991].  Another possibility that can explain the differences is
that we are seeing variability in iron content from one region to another.

1.  Introduction

An issue that has been receiving a lot of attention lately is whether there

might be compositionally distinct domains in the lower mantle.  Both

geochemical and heatflow considerations suggest that such mantle reservoirs

have existed for 1 billion years or more [Zindler and Hart, 1986; Albarède and van

der Hilst, 1999], however the seismic evidence for the existence of such domains

is more equivocal.  In an effort to reconcile these views, van der Hilst and Kárason

[1999], Kellogg et al. [1999] and Davaille [1999] have proposed the existence of a

compositionally distinct layer in the lower mantle that is hotter but at the same

time intrinsically more dense as a result of compositional differences, which

renders it essentially �invisible� to traditional seismic detection.  In a similar

vein, Tackley [1998, 2000] has suggested �piles� of material at the base of the core-
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mantle boundary (CMB) and Becker et al. [1999] have suggested blobs in the

lowermost mantle.

Although none to date really proves it, an emerging body of seismic evidence

is consistent with the idea of compositional heterogeneity in the lower mantle.

For example, studies of global P and S-wave models find that the patterns of P

and S-wave heterogeneity are strongly correlated down to ~2100 km depth but

that below that depth the correlation declines [Robertson and Woodhouse, 1996].  In

addition, below ~2000 km depth other studies find that ∂ ∂lnV lnVps /  is greater

than 2.5 [Romanowicz, 2001] and that the bulk (κ) and shear ( µ ) moduli behave

significantly differently from one another [Kennett et al., 1998; Su and Dziewonski,

1997; Masters et al., 2000].  Studies that consider lateral variability find that the

high values for ∂ ∂lnV lnVps /  found in the 1-D profiles are characteristic only for

deep mantle regions away from regions of recent subduction (< 120 million

years) and that ∂ ∂lnV lnVps /  maintains expected values near downwellings

[Saltzer et al., 2001].  Moreover, they find that bulk and shear models for the non-

slab regions are negatively correlated at the same depths where ∂ ∂lnV lnVps /

becomes abnormally high.

Although still debated [e.g., Resovsky and Ritzwoller, 1999; Romanowicz, 2001] a

recent joint inversion of seismological and gravity data finds high densities

below two major low-velocity regions of upwelling in the lower mantle [Ishii and

Tromp, 1999, 2001] which is consistent with lower mantle heterogeneity.  In

addition, global tomographic studies have found that the P and S-wave velocity

structures change significantly from predominantly shorter to longer

wavelengths, somewhere between 1500 and 2000 km depth [Su et. al., 1994; Li and

Romanowicz, 1996] and that in the current snapshot of convection few slabs seem

to descend below ~1700 km depth [van der Hilst and Kárason, 1999; Kárason and

van der Hilst, 2001].  While these various studies are consistent with

compositional heterogeneity, they do not unequivocally prove the existence of

such domains.  Moreover, there has been no evidence to date of reflected or

converted phases that might be expected if a compositionally distinct layer

existed [Vidale et al., 2001; Castle and van der Hilst, 2001].  Consequently, the

nature and existence of such domains remains debated.
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In this paper, we investigate the idea of compositional heterogeneity further

by looking at the variability in Poisson�s ratio both laterally and as a function of

depth.  Our study differs from most Vp/Vs studies to date in that it focuses on a

specific region rather than drawing inferences from global inversions that are

plagued with uneven data coverage and differences in sampling of the P and S

waves.  We have chosen a great-circle transect between Japan, Alaska and the

western US to study propagation differences between P and S waves.  We

selected this particular study area for three reasons.  First, the entire transect lies

along continental or island arc plate boundaries, so there is a fairly continuous

distribution of earthquakes and stations (Figure 1).  This geometry produces a

large number of crossing rays within the corridor of interest that can be used to

illuminate the region well and allow us to investigate the idea of deep mantle

compositional heterogeneity better.  Second, Wadati Benioff zone seismicity and

body-wave travel time tomography [e.g., van der Hilst et al., 1997; Bijwaard et al.,

1998; Kárason and van der Hilst, in prep., 2001] delineate the trajectories of mantle

flow in the upper mantle beneath Alaska and the Aleutian arc and in the middle

mantle only to depths of ~1700 km beneath North America.  Figure 2 depicts the

predicted locations of slab material subducted between 90 and 120  Myr

according to a recent numerical mantle flow calculation that accounts for lateral

advection (�mantle wind�) [Steinberger, 2000].  The predicted location of slab

Events and Stations

Figure 1.  Location map of earthquakes (black circles) and stations (red circles) along
transect.  Shaded grey region shows width of corridor investigated.
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fragments is in excellent agreement with the images of P and S wave speeds in

the mid mantle.  However, at depths beneath 1700 km or so, the tomographic

models reveal more scatter and laterally coherent slab structures appear absent

in P-wave models [van der Hilst et al., 1997; Kárason and van der Hilst, in prep,

2001].  The dense data coverage produced by the distribution of sources and

receivers (Figure 1) allows us to investigate in more detail than hitherto possible

if, and how, slab fragmentation is reflected in the images of shear and bulk-

sound speed and Poisson�s ratio.  This information may contain important clues

as to how downwellings interact with deep mantle domains, if present.

Third, there have been a number of interesting but also puzzling observations

in this region.  In particular, near the CMB it has been observed that S-waves are

fast while P-waves are slow [Wysession et al., 1992; van der Hilst et al., 1997; Grand

et al., 1997; Li and Romanowicz, 1996; Masters et al., 1996; Bijwaard et al., 1998;

Kárason and van der Hilst, 2001], which is difficult to explain by thermal variations

alone.  In addition, there is both evidence for [Revenaugh and Meyer, 1997; Garnero

and Helmberger, 1998] and against [Castle and van der Hilst, 2000; Persh et al., 2001]

an ultra-low velocity zone at the CMB directly beneath and to the south of the

Aleutians (Figure 2) and evidence of increased lateral variation in anisotropy in

the bottom 200 km from beneath Alaska eastwards [Matzel et al., 1996; Garnero

150oE 180oE 210oE 240oE 270oE

60oN 45oN 30oN 15oN 0oN

Figure 2.  Locations of ultra low-velocity zones reported in previous studies (light grey)
[e.g., Revenaugh & Meyer, 1997; Garnero & Helmberger, 1998], inferred locations of slabs
>90 million years old from plate reconstructions [Steinberger, 2000], and the surface
projection of hotspots at the core-mantle boundary (black circles) [Richards et al., 1988].
Figure is aligned along the great circle transect investigated in our study.  Dashed lines
show parallels and meridians for geographical correspondence.
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and Lay, 1997; Lay et al., 1998].

In this paper, all map views are aligned with the great circle arc along which

the corridor we have investigated.  In Figure 2, we have superimposed parallels

and meridians so that the correspondence between images and geographical

locations can be made more easily.

2  Data

We used waveform cross-correlation on unfiltered, broadband seismograms

to measure a total of 16,926 differential travel times from 128 events and 76

stations (Figure 1). The data were obtained from the archives of the Data

Management Center (DMC) of the Incorporated Research Institutions for

Seismology (IRIS) and were comprised of large events (Mb>5.8) between the

years 1993 and 2000 that occurred anywhere along the corridor of interest.

Events outside of this corridor were excluded in order to avoid the erroneous

mapping of structure from outside the plane.  The dominant period of the

broadband data was ~1 s for the P-waves and ~10 s for the S-waves.  This

difference has a negligible effect on the elastic moduli.

For a given event, we selected a reference station and cross-correlated the P or

S waveform with the direct arrival of all the other stations to obtain P or S

differential travel times.  The PcP-P and ScS-S travel times were made for a given

source-receiver pair by selecting the P or S waveform, applying a t* operator to

account for differences in attenuation along the raypaths, and then cross-

correlating that waveform with the PcP or ScS phase.  We also tried to measure

PP-P and SS-S traveltimes, but found that those phases were very weakly excited

and that we obtained so few measurements (and of questionable quality) that we

did not include them in the inversion.  The shifted traces were inspected visually

so that errors due to cycle skipping could be corrected and noisy and otherwise

unpickable traces discarded.  The Harvard Centroid Moment Tensor database of

source mechanisms were used to determine when the polarity of a given

seismogram should be reversed relative to the reference waveform and

corrections for the earth�s ellipticity were made after the measurements were

complete.
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We calculated differential travel time residuals by taking the difference

between the ak135 [Kennett et al., 1995] predicted travel time difference and the

observed differential times.  Only when both the P wave and S wave differential

times for a given source-receiver pair (and phase) could be successfully

measured would those traveltimes be included in the inversion so that the

raypaths and geometries (and ultimately model resolution) would be as similar

as possible for both resulting tomographic models.  Unfortunately, many events

that excited beautiful ScS did not excite any discernible PcP and vice versa.

Therefore, we ended up with just 99 matched pairs of PcP-P and ScS-S traveltime

measurements (198 in total) with the remainder of our measurements (16,728)

comprised of relative P and relative S wave traveltime measurements.

Figure 3.  Example of reference trace (dashed) and data (solid) for an mb 6.2 event in the
Kuril Islands on January 28, 2000.  The reference trace has been shifted to the ak135
predicted arrival time for the P wave (a) and S wave (b).  Note that the differential P-
wave arrival time is ~0.3 s earlier than the predicted differential time from ak135
whereas the differential S-wave arrival times for the same station pair is ~2 s.  Bottom
panels show PcP along with the shifted P-wave reference trace (c) and ScS  along with
the shifted S-wave reference trace (d) for a single station.  In general, the PcP data are
much noisier than the ScS data for all events, limiting the number of differential travel
times that could be measured.
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3  Methodology

3.1  Inversion

Rays were traced through the radially stratified one-dimensional Earth model

ak135 [Kennett et al., 1995] using the improved earthquake hypocenters of

Engdahl et al. [1998].  The P and S wave data were jointly inverted to obtain

tomographic images of P and S-wave models using the following formulation

                                              G m d
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The G-matrix contains the partial derivatives relating the functional dependence

of the traveltime residuals to the slowness perturbations, m  is the slowness

model vector, and d  is the vector of measured differential traveltime residuals.

Each row of the G-matrix corresponds to a particular raytraced source-receiver

pair and each column corresponds to one of the model parameters.

From the P and S wavespeeds, the bulk-sound wavespeed can be derived.

V V Vp sφ
κ
ρ

2 2 4
3

2= = − (2)

One attractive property of the bulk-sound wavespeed is that it depends on just

the bulk modulus, (κ ), and density ( ρ) alone, so that the separate effects of the

bulk and shear moduli can be evaluated.  In addition, the bulk-sound wavespeed

can be directly compared with experimental and theoretical mineral physics

results and is relatively insensitive to anelastic effects.  Because of its inherent

relationship to the P and S wavespeeds, it is possible to obtain tomographic

images of bulk-sound and shear wavespeed models from joint inversion of P and

S wave data using a similar formulation to the one above
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The partial derivative of the P-wave travel times with respect to the bulk sound

and shear slowness (the bulk-matrix) are obtained by rewriting equation (2) in

terms of slowness (inverse of velocity) and computing the appropriate

derivatives which yields

δ δ δ δt ds a ds c bp

ray

a

c

a

b
ray

= = +( )∫ ∫
3

3

3

3

4
3

(4)

where a
Vp

= 1 , b
Vs

= 1 , c
V

= 1
φ

,δtp is the P-wave traveltime residual and δa , δb , and

δc  are the perturbations in P-wave, S wave and bulk-sound slownesses

respectively.

We inverted the traveltime data using both formulations (equations (1) and

(3)) with 2° by 2° by 200 km constant velocity blocks.  The model grid contained

5083 parameters and was aligned along the great-circle corridor containing the

majority of the sources and the receivers.  An iterative, conjugate gradient

algorithm solved the system of equations [Paige and Sanders, 1982] which

included additional model parameters to absorb the effects of earthquake

mislocations.  We found that all events moved less than 10 km and generally

only 1 or 2 km in any direction.  In part, this is due to the use of Engdahl et al.�s

[1998] improved hypocenter locations, which we took as our starting locations.

However, the differential travel times used here have a reduced sensitivity to

errors in source location and origin time, which also explains why the events

moved such small distances.  Optimal amounts of damping and smoothing were

determined by a series of tests with synthetic data in which the model misfit

error and amount of damping/smoothing were compared.  The tomographic

models presented here were obtained after 200 iterations and produced a 90%

variance reduction.

3.2  Uncertainties

There are several sources of error in our results.  We estimate our P and S

wave picking errors at 0.2 s and 0.4 s respectively.  On the basis of noise tests in

previous work [Saltzer et al., 2001] we estimate the effect of these errors on the

resulting tomographic models to be less than 0.01% (when measured on %

deviation tomographic images) and on calculations of Poisson�s ratio in the
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following results section to be less than 0.04%.  Since we employed just one-

dimensional ray tracing (we did not re-raytrace through imaged anomalies) we

are implicitly assuming that the velocity anomalies do not distort the raypaths.

The maximum velocity variations we found were just a few percent and so this

assumption seems justified.  We also carried out various synthetic tests to

understand problems associated with our sampling geometry and to verify the

resolution of our model (i.e. checkerboard, random slabs, etc).

Figure 4 shows an example of a synthetic model containing velocity
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Figure 4.  Results of two synthetic tests.  Rays are traced through a known velocity
model (a) and then the resulting traveltime anomalies are jointly inverted to see what
structure is actually recovered for the (b) P wave model and (c) S wave model.  First set
shows anomalies in the shallow mantle and second set shows smaller anomalies in the
very deep mantle.
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anomalies in just the upper mantle and an example in which velocity anomalies

are in just the bottom of the mantle.  Figure 5 shows the number of times each

block was hit.  As a result of dense path coverage, streaking of anomalies in the

radial direction from the surface downwards is small from which we conclude

that the lower mantle anomalies we image are indeed required by the data.

However, some smearing does occur upwards when anomalies are placed at the

very base of the mantle which is not surprising given the arcuate nature of ray

paths and decline in data coverage with depth.
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Figure 5. Hit count.  Number of times a ray passes through each cell of the tomographic
models.  Since the source-receiver geometry for the P and S waves is the same, the
hitcount pattern looks the same for both as well.  Note that even at the base of the
mantle, the blocks in the central region are hit at least 100 times.

4 Results of inversion for elastic parameters

We find that the bulk-sound model obtained through explicit joint inversion

is virtually indistinguishable from the inferred bulk-sound wavespeed models

using equation (2) confirming the results of Kennett et al. [1998], but that the

amplitudes of the perturbations are slightly greater for the inferred bulk-sound

wave speed model than the one that is directly inverted for.  Neither type of

bulk-sound model consistently shows a significant correlation with the shear-

wave models (correlation coefficient < 0.2) whereas on average we find a high

degree of correlation (correlation coefficient =0.8) between the P and S wave

models except at depths below ~2300 km (Figure 6).  We consider correlations

above 0.25 to be significant.  This high-degree of P and S wave correlation is

similar to results obtained for many global inversions of P and S wave data [i.e.

Robertson and Woodhouse, 1996; Kennett et al., 1998; Masters et al., 2000; Saltzer et al.,
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2001].  The low degree of correlation between bulk-sound and shear (and the

value of the correlation coefficient) is consistent with our previous global

analysis [Masters et al., 2000; Saltzer et al., 2001].

In order to compare the P and S wave tomographic images quantitatively, we

calculate the Poisson�s ratio (σ ) in every block through which at least two P and

two S rays passed.  Poisson�s ratio has the following relationship to Vp and Vs:


 *σ λ

λ µ
=

( ) −













=
+

0 5 1
1

1 22.
( )V

V
p

s

,− (5)

where λ and µ are the Lamé parameters (µ=rigidity).  Figure 7(a-f) shows a map

of shear-wave (Vs) and bulk-sound (Vφ) velocity perturbations at various

example depth slices and Figure 7(g-l)) shows the corresponding values for

Poisson�s ratio along with the sampling density at the same depths.

In the upper mantle, ray coverage is fairly sparse since it is restricted

primarily to blocks directly beneath the sources.  Therefore, we choose not to

interpret the calculated Poisson�s ratios in the shallow mantle.  Beginning at ~650

km depth the ray coverage is much more dense and coherent patterns begin to

emerge.  Near the Aleutian arc and near the Kuriles there are regions of lower

Poisson�s ratio (implying greater rigidity) in the same locations where there has

been recent subduction [e.g. Steinberger, 2000] with ± 5% variability.  It seems

likely that this variability is simply a result of thermal anomalies from the cold
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Fig 6. Correlation coefficients for P and S models (blue) and bulk sound wavespeed and
shear models (red).
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slabs subducting in the mantle.  Consistent with this interpretation, the shear-

wave images show seismically fast regions where recent subduction has

occurred (what we interpret as �slab fragments�).  However, these fragments do

not show up as visibly on the bulk-sound maps.  This observation is similar to

what Widiyantoro et al., [1999] found for the northwest Pacific slab systems they

studied.

At depths of ~1050 km, in the region behind the Aleutian arc we observe a

shift in Poisson�s ratio from low to high (implying softer or warmer material

properties).  The higher Poisson�s ratios persist to ~2000 km depth.  In the bottom

200 km, above the core-mantle boundary and within what most people would

call D�, we see a band of lower Poisson�s ratio (more rigid) material more or less

in the predicted locations of ancient subducted slabs (>90 million years old).  At

these same locations, the bulk-sound and shear wave models appear to be anti-

correlated.  The regions of lower Poisson�s ratio surrounds a small area of higher

Poisson�s ratio that lies within a region that has been identified in two studies as

an ultra-low velocity zone [Revenaugh and Meyer, 1997; Garnero and Helmberger,

1998] (Figure 2).  The value of Poisson�s ratio in this central zone is ~0.29 which is

similar to but not quite as low as the value found by Wysession et al, [1999] with

diffracted waves, while the value in the surrounding regions is ~0.31.  It should

be noted that the results from the diffracted wave studies represent values

averaged over large regions owing to the broad fresnel zones of the long-period

diffracted waves.  By taking a regional approach in our study, we get much

better spatial resolution of structure over smaller length scales.

Figures 8(a,b) show lateral averages of Poisson�s ratio as a function of depth.

Poisson�s ratio has a much larger dynamic range at 1000 km depth (±4%) than

below 1500 km depth (±2%), where it remains fairly constant down to the core-

mantle boundary.  At all depths, the average Poisson�s ratio value is within a

fraction of a percent of the value given by the ak135 reference model.

Figure 8c shows the dominant wavelengths of imaged structure (along the

great-circle arc of our transect) as a function of depth.  These were determined by

taking the Fourier transform of the center row of each depth slice as well as the

two adjoining rows on each side and computing the power density spectrum at

each depth (accounting for the decrease in block size that occurs as a function of
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depth when determining the wavelength).  The two strongest peaks are found at

wavelengths of ~4000±800 km and ~8500±2000 km (corresponding to features of

~2000 km and ~4250 km in size); however, the relative power of the two varies as

a function of depth.  At shallow depths, both wavelengths are similarly

represented in our images, but below ~1500 km depth, the dominant wavelength

of the imaged structures shifts to longer wavelength, with very small power in

the short-wavelength structures.  This change in dominant wavelength can also

be seen directly in the depth slices themselves (Figure 6).  These wavelengths are

consistent with the size of domes (2000-4000 km) observed in laboratory tank

experiments of thermo-chemical convection in a fluid with stratified density and

viscosity [Lebars and Davaille, 2001].

5  Dependence of Poisson�s Ratio on temperature and composition

Our seismic images of Poisson�s ratio along the Alaska corridor provide

information on the physical state of the mantle.  From the seismic inversion we

infer that the magnitude of the lateral variation in Poisson�s ratio is ~8% at 1000

km depth, 4% at 1500 km depth and ~3% just above the core-mantle boundary.
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Figure 8.  a) Poisson�s ratio as a function of depth for reference model (blue), mean of
each layer (green) and the range inferred from our data (red). b) Same as in a) except
shown as percent variations from ak135 reference model.  (c) Power of the two dominant
wavelength structures found in the corridor.  The shorter wavelength structures (green
line) have similar power to the longer wavelength structure (blue line) down to about
1500 km depth.  Below that depth, the shorter wavelength structures start to diminish
and the longer wavelength structures become more dominant.  At the base of the
mantle, the structure is entirely long wavelength in nature.
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Variability in Poisson�s ratio can be caused by temperature or compositional

differences.  We discuss below how each of those factors might contribute to the

variability we image.  Since the composition of the lower mantle is still a subject

of debate, we explore two simple possibilities. The first is that the amount of

perovskite (MgSiO3) in the perovskite-magnesiowüstite assemblage is variable in

the lower mantle, perhaps comprising 95% in some regions and just 80% in

others.  It has been argued that subducted slabs are depleted in perovskite

[Ringwood, 1991] relative to a convecting pyrolitic mantle, which might give rise

to such differences.  The other effect we explore is the addition of iron to certain

regions of the lower mantle.

5.1 Effect of Temperature

We have calculated 
∂
∂
V

T
p  and ∂

∂
V

T
s  at various depths using the quantum mechanics

calculations of Karki & Stixrude  [1999] for the elastic properties of the major

minerals considered likely constituents of the lower mantle and assuming a

lower mantle comprised of 90% perovskite, 10% magnesiowüstite and XFe=0.1.

With these derivatives, we can compute the effect that temperature perturbations

would have on Poisson�s ratio.  Figure 9 shows the results of these calculations

for a 300° thermal anomaly as a function of pressure (depth).  For comparison,

we have also plotted the percent change in Poisson�s ratio predicted by several

other independent calculations of lower mantle P and S wave temperature-

velocity derivatives [Karato, 1993; Stacey, 1998; Trampert et al., 2001], all of which

were derived by extrapolating mineral physics data from relatively shallow

pressures to lower mantle conditions.  The extrapolations were done using

various 3rd order Birch-Murnaghan equations of state with varying assumptions

(i.e. quasi-harmonic approximations vs. including higher order anharmonic

terms vs. including anelastic effects) and all assumed a simplified model of the

lower mantle consisting of perovskite and magnesiowüstite only.  In addition,

only the Karato [1993] derivatives include an estimate for the effects of

anelasticity, the effect of which may be substantial, but is also relatively

unknown.  At pressures representative of the core-mantle boundary (130 GPa), a

given temperature difference has less of an effect on Poisson�s ratio than at
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shallower depths (Figures 9b, c); however, the magnitude of the effect varies by a

factor of three depending upon which derivative you choose.  A temperature

difference of 300° can explain 1-2% Poisson�s ratio variability at 1000 km depths,

and 0.5-1.5% at CMB depths.  If one were to explain the entire peak-to-peak

variability we image, temperature differences of at least 1300° at 1000 km depth

and of 700° at the CMB would be required.

5.2  Effect of partitioning between perovskite and magnesiowüstite

One of the problems in investigating what happens when the amount of

perovskite in a magnesiowüstite-perovskite assemblage varies is that the relative

velocities are affected by the presence of iron.  Not only is the total amount of

iron in the lower mantle debated but results from experimental studies of iron

partitioning between the two minerals do not agree.  Many studies have shown

that iron tends to concentrate in the magnesiowüstite [Yagi et al., 1979, Ito et al.,

1984, Guyot et al., 1988; Ito & Takahashi, 1989; Mao et al., 1997] but more recent

studies have suggested that the partitioning may be more equal [Wood & Rubie,

1996; Kesson et al., 1998], and with the inclusion of Aluminum in the mix the iron

may actually concentrate entirely in the perovskite instead [McCammon, 1997].
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Figure 9.  a) Effect of a 300° thermal anomaly on Poisson�s ratio at various presures.
Poisson�s ratio is computed with equation (5) and the temperature-velocity derivatives
of Stacey [1998] (pink), Karato [1993] (green), Trampert et al. [2001] (black) and Karki and
Stixrude [1997] (blue).  For cmparison, the dotted orange line shows Poisson�s ratio
inferred from the tomographic images. Also shown is the effect of various thermal
anomalies on Poisson�s ratio at a constant pressure of b) 40 GPa (~1000 km depth) and c)
130 GPa (the core-mantle boundary) using the same derivatives as in a).
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Bearing these experimental uncertainties in mind, Figure 10 shows the effect

of the relative amount of perovskite using the Karki & Stirxrude [1999] and the

Trampert et al. [2001] formulation.  The two differ by a factor of two on the

magnitude of the effect.  According to Karki & Stixrude [1999], a change in the

proportion of perovskite does not really affect Poisson�s ratio in any significant

manner unless (1) there is a significant amount of iron in the lower mantle

(~10%) (2) all of that iron partitions exclusively into either the magnesiowüstite

or the perovskite minerals, (3) the shear modulus is strongly affected by the

addition of iron and (4) the bulk modulus is unaffected by the presence of iron.

If those criteria are met, the Karki and Stixrude [1997] derivatives show that a 10%

difference in the volume proportion of perovskite would give rise to ~1.75%

variability in Poisson�s ratio at ~1000 km depth (40 GPa) and ~0.5% variability at

the base of the mantle (Figure 9).  Using the Trampert et al. [2001] derivatives, that

same variability in Poisson�s ratio can be explained by less than half the
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Figure 10. a) Effect of a 5% change in the proportion of MgSiO3 in an MgO-MgSiO3
assemblage on Poisson's ratio.  Poisson's ratio is computed with equation (5) and the
compositional-velocity derivatives of Trampert et al. [2001] (solid black line) and for
several different behavioral effects of the shear modulus with the Karki & Stixrude [1997]
derivatives since the behavior of the shear modulus in perovskite is not constrained
experimentally.  First, we allow µ to remain unchanged, so that the seismic velocities are
affected only by the density change associated with iron (green), second we change µ in
a manner similar to what has been observed experimentally for orthopyroxene (light
blue) and third we change µ in a manner similar to what has been observed
experimentally for MgO (dark blue).  Dotted orange line shows range of inferred
Poisson�s ratio from our tomographic images.  b) Effect of different amounts of
perovskite depletion at depths of 1000 km and c) at the core-mantle boundary for the
same examples as in a).
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difference in volume proportion of perovskite; however, their compositional

derivatives do not come with a clear statement of how iron was partitioned

between the two minerals nor what assumptions were made concerning the

effect of iron on the shear and bulk moduli, which makes it difficult to assess the

differences between these two sets of predictions.  Recognizing the inherent

uncertainties in both methods, these derivatives show that 10% perovskite

depletion can explain ~20% of the variability in Poisson�s ratio that we see at

1000 km depth and between 40-80% of the variability at CMB depths.

5.3  Effect of iron content

Figure 11 shows the effect of iron depletion (or concentration) for both

perovskite and magnesiowüstite.  One problem in doing this calculation is that

its effect on the elastic moduli is not well known.  Experiments have shown that

the effect of iron on the bulk modulus is negligible [Mao et al, 1991; Fei et al., 1992]

so we do not vary that parameter for either mineral.  For the shear modulus,

experimental results show that magnesiowüstite is weakened according to

µ µ= −0 1 0 59( . )XFe (6)

where X Fe Fe MgFe = +/( ) is the Fe-number [Duffy & Anderson, 1989] and µ0  is

the shear modulus with XFe = 0 .  There are no similar constraints regarding the

effects of iron on the shear modulus for perovskite so we consider several

possibilities.  One possibility is that there is no effect at all, so the only change to

the velocities results from the density change associated with changes in iron,

which we calculate following Jeanloz & Thompson [1983].  Another is to assume

that the effect of iron on the shear modulus is similar to that observed in

orthopyroxene [Duffy & Anderson, 1989], and a third is that the effect of iron is

the same as that observed for magnesiowüstite [Duffy & Anderson, 1989].

Using the quantum mechanics calculations of Karki & Stixrude [1999],

accounting for mantle temperatures and then varying the shear modulus in the

three different manners described, we find that if the shear-modulus in

perovskite behaves similarly to what has been observed for magnesiowüstite,

then 1% variability in Poisson�s ratio can be explained by 2% variation in total

iron content.  In order to explain the observed peak-to-peak variability in
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Poisson�s ratio, more than 8% iron variation is required at all depths.  If the

observed range in σ were to be explained entirely by variations in Fe content

alone, a change of ∆XFe=16% would be required at 1000 km depth and ∆XFe=8%

near the core-mantle boundary.

6  Discussion

The results for shear wave speeds obtained here are generally in good

agreement with the recent P-wave model of Kárason and van der Hilst [in prep.

2001] and consistent with Widiyantoro et al., [1999].  What we interpret as slab

fragments produce strong variations in shear wavespeed but have only a very

weak bulk-sound signature.  In the mid mantle, the magnitude of the lateral

variation in Poisson�s ratio is large (~8%) and the dominant length scales over

which these variations occur are ~2000 km and ~4000 km.  In the bottom 1000 km

of the mantle beneath Alaska and North America where the laterally coherent,

slab-like structures are absent, the magnitude of the lateral variations in
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Figure 11. Effect of 2% change in the iron content on Poisson�s ratio.  The effect of the
shear modulus is not constrained experimentally in perovskite and so we try several
variations, assuming the bulk modulus is unaffected.  If the shear modulus is strongly
affected (such as has been observed in MgO) then the elastic equations of Karki &
Stixrude [1997] predict that the effect of iron on perovskite (green) and on MgO (red)
velocities can be significant.  If the shear modulus in perovskite is similarly to
orthopyroxene (light blue) then the effect is less significant.  Also shown is the effect of
different amounts of iron enrichment/depletion at pressures of b) 40 GPa (~1000 km
depth) and c) 130 GPa (~CMB pressures) for the same set of cases.  For comparison, the
dotted orange line shows the range in Poisson�s ratio inferred from our tomographic
images.
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Poisson�s ratio decrease to 3% and the dominant length scale over which

variations take place is ~4000 km.  Interestingly, a recent study by Lebars and

Davaille [in prep. 2001] of the dynamics of compositional stratification in the deep

mantle suggests that oscillations of compositionally distinct domains occur on

spatial wave length scales that are very similar to those inferred from our maps.

Because of the limited size of our study region and the practical difficulty of

accurately mimicking an earthlike parameter range in the analog experiments, a

discussion of the causal relationship between these two is premature.  However

an intriguing scenario could be considered in which downwelling slabs interact

with compositionally distinct domains whose vertical oscillations organize slab

fragmentation on the wavelengths inferred from our study.

At 1000 km depth, the observed variability in Poisson�s ratio is ~8%.  From

the previous discussion we see that temperature differences of 800° can explain

3%-5% of the variability and then differences in perovskite depletion can explain

another 2% if the Karki & Stixrude, [1997] derivatives are used.  An additional 2%

of the anomaly can be explained by 2% iron depletion.

The peak-to-peak variability in Poisson�s ratio at the CMB is ~3%.  In order to

explain this variability by temperature alone, temperature differences between

700°C and 1500°C are required, depending on which velocity-temperature

derivatives are used [Karato, 1993; Stacey, 1998; Karki & Stixrude , 1997; Trampert et

al., 2001], which seems unlikely, in particular, if the colder, more rigid regions

correspond to ancient subducted slabs.  A finite difference calculation (solving

the heatflow equation) of the thermal differences between a 120 million year-old

subducted slab and the surrounding, convecting mantle shows that these

differences should be of the order of 300°C (see Table 1 for values used in this

calculation.)

Assuming that the velocity-temperature derivatives are anywhere in the

ballpark, even a 500° temperature anomaly between the old subducted slabs and

the surrounding mantle, would leave at least half (~1.5%) if not 5/6 of the

variability in Poisson�s ratio unexplained.  Therefore, it seems likely that we are

seeing some sort of compositional effect at the base of the mantle.
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Ringwood [1991] argued that slabs are composed primarily of depleted

harzburgite as a result of the large extents of melting they have undergone in

formation.  Since garnet and pyroxenes transform exclusively to perovskite, one

consequence of this idea is that subducted slabs having less of these minerals

may end up depleted in perovskite relative to the convecting mantle.  The

Trampert et al, [2001] compositional derivatives suggest that 5% perovskite

depletion could cause a 1% change in Poisson�s ratio although Karki & Stixrude

[1997] would predict a less dramatic effect.  The Karki & Stixrude [1999] iron-

depletion derivatives show that the remaining 1% variability we see in Poisson�s

ratio can be explained by just 2% variation in total iron content (slabs being 2%

depleted or the region in the center of our image being 2% enriched in iron), if

the shear-modulus in perovskite behaves similarly to what has been observed for

magnesiowüstite.  Therefore, the observed variability in Poisson�s ratio of 3% can

be explained by a combination of a 300° temperature perturbation, 5% perovskite

depletion and 2% iron variability.

Despite the many questions regarding the magnitude of the effect of iron, it

seems clear that none of the published temperature-velocity derivatives are able

to fully explain the variability in Poisson�s ratio that we see in the lowermost

mantle.  Variability in the depletion of iron and/or depletion of perovskite seem

to be possible explanations that are compatible with the limited set of

compositional-velocity derivatives currently at our disposal.  As additional high-

Table 1. Values used in slab temperature calculation
Length of
Time spent

ρ (kg/m3) Ambient
Mantle Temp
(°C)

κ (W/mK)

Upper mantle 17 Myr 3400 1350° 4.5
Top of lower
mantle

40 Myr 4000 1800° 7.0

Bottom of
lower mantle

40 Myr 5500 2700° 9.6

D� 20 myr 5600 3450° 10.0

In the diffusion equation we use:
   Cp=1250 (J/Kg K) at all depths
   Slab thickness = 100 km
   Temperature profile decreases linearly from 200° to 1200°C
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pressure, high-temperature laboratory results become available, it should

become possible to answer this question more strongly.

7 Conclusions

From waveform cross-correlation of broadband data, we have obtained high-

resolution tomographic images of the shear wave and bulk-sound velocities

along a great-circle transect between Japan, Alaska, and the western US.  We

infer lateral variability in Poisson�s ratio of 8% at depths of 1000 km, 4% at

depths of 1500 km and 3% at the CMB, which we have interpreted in terms of

temperature and compositional effects (both Si and Fe).

The entire transect lies along continental or island arc plate boundaries and so

we consider the effect of subducted slab fragments on the observed variability in

Poisson�s ratio.  If slab fragments are carried all the way down to the core mantle

boundary, then the associated temperature anomaly should be ~300°.  However,

the variability in Poisson�s ratio that we see at the bottom of the mantle (~3%)

would imply temperature variations of 700°-1500° (if they were purely thermal in

origin), assuming that the four different estimates of 
∂
∂
V

T
p  and 

∂
∂
V

T
s  we have used

[Karato, 1993; Karki & Stixrude, 1997; Stacey, 1998; Trampert et al., 2001] are

realistic.  A simple explanation is that the variability includes a contribution from

compositional effects.  One effect that could explain the difference is if the

subducted slabs are 10% depleted in perovskite relative to the convecting mantle

as suggested by Ringwood [1991].  Alternatively, variability in iron content from

one region to another by 3% could equally well explain the differences.

Combinations of the two in lesser amounts also work equally well (eg. 5%

perovskite depletion with 2% iron depletion).  At depths of 1000 km we find a

variation in Poisson�s ratio of 8%, which can be explained by an 800° thermal

perturbation in addition to 5% perovskite depletion and 2% iron variation.
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Appendix A:  Propagator Matrices and Splitting Operators

The system matrix         AA( )z  is rotated into the eigenwave coordinate system by the

4 × 4 block-diagonal matrix         UU = diag[ ]U,U ,

        
ÂA UUAAUU= =

−










−
T 0 C

I 0

1

2ω , (A1)

and is diagonalized by a matrix whose columns represent the downgoing and

upgoing eigenwaves:          DD AADD!!− = − −ˆ [ , , , ]i diag k k k k1 2 1 2 .  Here,  kj j= ω / v  (i = 1,

2) are the eigenwavenumbers, and

        
DD =









∗

D D

D D
u u

τ τ
,  

        
DD−

− −

− ∗−=








1

1 1

1 1

D D

D D
u

u

τ

τ
,  (A2)

where the 2 × 2 blocks are

Du = 





ε
ε

1

2

0

0
,  Dτ

ω ε
ω ε

= 





i v

i v
1 1

2 2

0

0
. (A3)

Kennett's (1983, eqn. 2.63) energy normalization procedure yields ε j j= −( ) /2 1 2v .  

In a homogeneous layer (φ(z)  = constant), the eigenwave propagator from z0

to z is

        
EE( , )

( , )

( , )
z z

z z

z z0
0

0
= 





∗
E

E

0

0
,  (A4)

where (*) indicates complex conjugation and

E( , )
( )

( )z z
k z z

k z z0

1 0

2 0

0

0
=











−

−
e

e

i

i . (A5)
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Therefore, the displacement-stress propagator in the eigenwave coordinate

system is         ˆ ( , )PPh z z0  =         DD        EE( , )z z0         DD−1, and the general homogeneous-layer

propagator matrix can be written as

        
PPh

h h

h h( , )
( , ) ( , )

( , ) ( , )
z z

z z z z

z z z z
uu u

u
0

0 0

0 0

≡








 =

P P

P P
τ

τ ττ
        UU( )φ         ˆ ( , )PPh z z0         UUT ( )φ . (A6)

The propagator for the anisotropic, heterogeneous interval 0 ≤ z ≤ d can be

constructed by approximating the heterogeneity as a stack of homogeneous

layers and multiplying propagators in the form of (A6).  Better analytical insight

into the effects of the heterogeneity can be obtained by proceeding in a different

fashion, however.  We make the ansatz (cf. Kennett, 1983, p. 53),

        PP( , ' )z z =         UU( ( ))φ z         DD        EE( , )z z0         QQ ( , )z z0         DD−1
        UUT ( ( ))φ z0 , (A7)

and find that (A7) obeys the system equation         ∂zPP AAPP=  if and only if   Q
satisfies

        ∂z z z z z zQQ SS QQ( , ) ( ) ( , )0 0= (A8a)

            QQ ( , )z z0 0 = I (A8b)

where

        

SS( )

( ) * ( )

* ( ) * ( )

( ) * ( )

( ) ( )

z

a z b z

a z b z

b z a z

b z a z

d

dz
=

−

−



















0 0

0 0

0 0

0 0

φ
. (A9)

The depth dependent coefficients a and b depend exponentially on the

wavenumber difference ∆k = k2 − k1 and the wavenumber average

k = (k1 + k2) / 2 , respectively:

a z k z( ) = v
v v

ei

1 2

∆ , (A10a)
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b z k z( ) = ∆v
v v

e2i

2 1 2
. (A10b)

The propagator         QQ ( , )z z0  is a 4 × 4 differential scattering matrix for the

eigenwaves, which we write in block form as

        QQ    =   
Q Q

Q Q
++ +−

−+ −−









 . (A11)

The submatrices Q++ and Q−−  describe, respectively, the forward scattering of

downgoing (+) and upgoing (�) eigenwaves by gradients in φ(z) , and Q−+  and

Q+−  describe the corresponding backward scattering.  These scattering

operators satisfy the reciprocal relations

Q Q−− ++= ∗ , (A12a)

Q Q+− −+= ∗ . (A12b)

From eqns. (A8)-(A10) we can see that the strength of forward-scattering in a

depth increment dz is proportional to a0 ei∆k z dφ(z), while the strength of the

back-scattering goes like b0 e2ik z dφ(z).  If the relative difference in the

eigenvelocities is small, then forward-scattering will tend to dominate because

b0 << a0 ~ 1.  Moreover, in this situation of small anisotropy, ∆k << 2k , so that

the back-scattering kernel will be more oscillatory and its integral contributions

will tend to cancel if φ(z)  is smooth.

At zero frequency,         SS SS= 0 depends on z only through ˙ /φ φ≡ d dz .  Therefore,

        SS0 commutes with its integral, and the solution to (11) is         QQ SS( , ) exp( )z z0 = ∆φ , where

∆φ = φ(z) − φ(z0).  Using the fact that         SS0
2 21n n n= −( ) ∆φ I and         SS0

2 1 2
01n n n+ = −( ) ∆φ S ,

we can sum the exponential series.  This yields a good approximation to the

propagator across a layer that is thin compared to a wavelength;  i.e., for

k ∆z<<1,
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Q++ + ≈
−







( , )
cos ( )sin

* ( )sin cos
z z z

a z

a z
∆

∆ ∆
∆ ∆

φ φ
φ φ

. (A13a)

Q−+ + ≈ 





( , )
( )sin

( )sin
z z z

b z

b z
∆

∆
∆

0

0

φ
φ

(A13b)

We note that this approximation is independent of the form of φ(z)  and, for

example, does not require φ(z)  to be a smooth function of depth.  Indeed, it

provides the generalization of the propagator to self-affine (fractal) media for

which φ̇ may not be well defined.  Equations (A7) and (A13) are the basis of our

computational algorithm.

For an upgoing wave uI
kzz( ) ~ e i−  incident at the base of the anisotropic

layer, the displacement-stress vector in the half-space can be expressed as

        
ff ' ( )

( )

( )
( )d u dI=

+
−







I R

I Ri vω
, (A14)

where R is a 2 × 2 matrix of reflection coefficients.  Satisfying the zero-traction

boundary conditions at the surface yields

R U P P P P U= − +−
d u u di i( ˆ ˆ ) ( ˆ ˆ )ω ωττ τ ττ τv v1 T . (A15)

From here on, Uz = U(φ(z)), and it is understood that, unless otherwise specified,

the propagators are taken from the base of the anisotropic layer to the surface;

e.g.,  P̂uu  ≡ U P U0 0T
uu dd( , ) .  In this notation, the free-surface displacement vector

is

u U P P P P R U u( ) [ ˆ ˆ ( ˆ ˆ ) ˆ ] ' ( )0 0= + + −uu u uu u d Ii i dω ωτ τv v T (A16)

The symmetries in (A2), (A4) and (A12) can be used to express the

propagator submatrices as the following (real-valued) expressions:

ˆ Re[ ( )]P D E Q Q Duu u u= +++ +−
−1 (A17a)
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ˆ Im[ ( )]P D E Q Q Du uτ τ= +++ +−
−i 1 (A17b)

ˆ Im[ ( )]P D E Q Q Dτ τu u= +++ +−
−i 1 (A17c)

ˆ Re[ ( )]P D E Q Q Dττ τ τ= +++ +−
−1 (A17d)

In the case of a homogeneous layer, these expressions reduce to P̂uu
h = P̂ττ

h  =

diag[cos ( )]k z zj − 0 , ˆ [( ) sin ]Pu j jk dτ ωh diag v= −1 , and ˆ [ ( )sin ]Pτ ωu j jk dh diag v= − .

A useful approximation, almost always employed in vertical shear-wave

splitting analysis, is to ignore back-scattering and reverberations within the

anisotropic layer.  This amounts to ignoring terms of order ∆v / v  in eqn. (A17).

Under this approximation, a0 =1 and b0 = 0, so that Q Q+− −+= = 0.  A little

algebra obtains

R U Q E Q U

u U EQ U u

=
=





++ ++

++

d d

d I d

T T

T

2

00 2( ) ' ( )
  (no back-scattering).

(A18a)

(A18b)

Eqn. (A18b) shows that, when back-scattering can be ignored, the eigenwave

propagator is just EQ++.  It will be convenient to pull out the phase factor

corresponding to the mean travel time through the layer, t k d= /ω , and rewrite

these expressions in terms of the eigenwave splitting matrix,

H E= =








−

−
e

e

e
i

i

i
ω

ω

ω
t

t

t

∆

∆

/

/

2

2

0

0
, (A19)

which is unimodular;  i.e., det[H] = 1.  We define the splitting operator,

Γ = ++U HQ U0 d
T . (A20)

The surface displacement is thus u u( ) ' ( )0 2= eiωt
I dΓ , and the reflection matrix is

R = e2iωt Γ T Γ .  The factor of two in the former comes from the constructive

interference of the upward-going wave and its surface reflection.  In the case of a

homogeneous layer, Q++ = I , and (A20) becomes
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Γ h( , ) ( ) ( ) ( )φ φ φ∆ ∆t t= U H UT    (homogeneous layer). (A21)

All of the matrices in (A20) are both unitary and unimodular;  e.g.,

Γ −1 = Γ† ≡ (Γ * )T, det[Γ] = 1.  (The unimodularity of Q++ follows from

  tr[SS++(z)] = 0;  see Kennett, 1983, p. 42.)  Therefore, all of the matrix operations

associated with forward scattering belong to the group SU(2).  This symmetry

can be used to simplify the analysis.  Any member of this group can be written in

it terms of two complex numbers,

α β
β α−







* *
,   where | | | |α β2 2 1+ = . (A22)

An SU(2) matrix thus depends on three real parameters and can be written in the

following general forms (Varshalovich et al., 1988):

Γ =










− + +

− + +
e e

e e

i i

i i

( ) / ( ) /

( ) / ( ) /

cos / sin /

sin / cos /

α γ α γ

α γ α γ
β β
β β

2 2

2 2

2 2

2 2

    = − −
− +









−

cos / cos sin / sin sin /

sin sin / cos / cos sin /

Ω Θ Ω Θ Ω
Θ Ω Ω Θ Ω

Φ

Φ
2 2 2

2 2 2

i ie

ie i

i

i . (A23)

SU(2) is homomorphic (with a two-fold ambiguity) to O+(3), the group of proper

orthogonal transformations in 3-space, which allows the splitting operations to

be visualized as 3D rotations.  In the first form in (A23), the parameters (α, β, γ)

correspond to the Euler angles of the 3D rotation;  in the second, the 3D rotation

is through an angle _  about an axis with polar coordinates (Θ, _).  Equation

(A21) can be recast as

Γ h
i i

i i
=

− −
− +







cos / cos sin / sin sin /

sin sin / cos / cos sin /

ω φ ω φ ω
φ ω ω φ ω

∆ ∆ ∆
∆ ∆ ∆

t t t

t t t

2 2 2 2 2

2 2 2 2 2
(A24)

The splitting matrix for a homogeneous layer thus corresponds to a 3D rotation

through an angle ω∆t  about an axis located at co-latitude 2φ and zero longitude.
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Appendix B: Fréchet Kernels for Homogeneous Starting Model

To calculate the Fréchet kernels defined by (8) and (9), we perturb the splitting

orientation function φ(z) by a small constant amount δφ in a thin layer of

thickness δz at a depth 0 < z < d and compute the corresponding perturbations

δφ̃( )z  and δ ˜( )t z .  The kernels G zφ( ) and G zt ( ) are then given as the limiting

values of the ratios δφ δφδ˜( ) /z z and δ δφδ˜( ) /t z z , respectively.  This calculation can

be done numerically for arbitrary starting models and pulse shapes (e.g., Fig. 7).

Here we present an analytical derivation for narrow-band pulses in the special

case of a homogeneous starting model.

Because the perturbations are small, the forward-scattering approximation

applies.  Vertical propagation through a homogeneous anisotropic layer with a

fast-axis orientation φ0 and splitting time ∆t yields the Fourier-transformed

vertical displacement u(0,ω) = 2 0ei
h

ω φ ωt
ItΓ ( , ) ( )∆ u , where the homogeneous-

layer splitting operator Γh is given by eqn. (A24).  We assume the incident pulse

is radially polarized, uI ( )ω  = uI ( ) ˆω x  = [uI ( )ω  0]T, and we approximate its energy

spectrum by a Gaussian:

| ( ) | ( ) / ( ) /uI ω
σ σ

ω ω σ ω ω σ2 2 21
8

1
8

0
2 2

0
2 2

=
π

+
π

− − − +e e . (B1)

This spectrum has peaks of half-bandwidth σ centered at frequencies of ±ω0, and

it is normalized to have unit total energy: | ( ) |u dI ω ω2 1
−∞
∞

∫ = .  If pulse is narrow-

band in the sense that σ << ω0, then the integral of its energy spectrum against

any reasonably smooth function can be approximated by integrating a truncated

Taylor expansion of the function about the center frequency ω0:  

2 22

0
0 0

2
0

2

0

0
2

0

f u d f f f u d

f f

I I( ) | ( ) | [ ( ) ˙( ) ˙̇ ( )] | ( ) |

( ) ˙̇ ( ).

ω ω ω ω ω ω ω ω ω ω

ω σ ω

∞ ∞

∫ ∫≈ + +

≈ +
(B2)

The terms dropped in this approximation are of order (σ /ω0)
4.

Since the perturbed model is homogeneous above z and below z + δz, its

splitting operator can be written in the form
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Γ = ++U H Q U( ) ( ) ( )φ φ0 0∆t T , (B3)

where H is given by (A19).  For a constant perturbation δφ in a layer (z, z + δz), Q

satisfies (A8) with a0 = 1, b0 = 0, and

˙( ) [ ( ) ( )]φ ζ δφ ζ ζ δ= − − − −δ δz z z . (B4)

Integrating up from the base of the layer across the discontinuities yields an

expression for Q++ that is product of two matrices in the form of (A13a), one for

an azimuthal change of δφ at z + δz and one for a change of –δφ at z.  Multiplying

these out and using the small-angle approximations, we can express the forward

scattering matrix in terms of a perturbation parameter δ δ δφX k z k d z≡ −∆ ∆ei ( ) :

Q++ =
−

−








1

1

i

i

δ
δ

X

X *
. (B5)

The apparent splitting parameters minimize the energy on the transverse

component of the back-projected displacement field, given by the quadratic form

(7).  In the present notation, this integral becomes

ε φ φ ω ω2 1 2 2

0
2( ' , ' ) |ˆ ( ' , ' ) ˆ | | ( )|∆ ∆t t u dI= −

∞

∫ y xT Γ Γh (B6)

The homogeneous-layer splitting operator in this expression corresponds to the

perturbed apparent splitting parameters φ φ δφ' '= +0  and ∆ ∆t t t' '= +δ , which can

be expressed in a form similar to (B3):

Γ h( ' , ' ) ( ) ( ) ' ( )φ φ φ∆ ∆t t= ++U H Q U0 0
T . (B7)

Equating (B6) with Γ h( ' , ' ) ( ' ) ( ' ) ( ' )φ φ φ∆ ∆t t= U H UT  yields the scattering matrix,

Q'
cos ' sin '

* sin ' * * cos '++ =
− −

− +








c s s

s c s

i i

i i

2 2

2 2

δφ δφ
δφ δφ , (B8)
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with complex coefficients,

c t tt= +eiω ω δ∆ ∆/ cos[ ( ' ) / ]2 2 , (B9a)

s t tt= +eiω ω δ∆ ∆/ sin[ ( ' ) / ]2 2 . (B9b)

Eqn. (B8) is exact and does not require the perturbations δφ'  and δt'  to be small.

When φ0 0= =∆t , for example, c t= cos ' /ωδ 2, s t= sin ' /ωδ 2, and (B7) reduces to

Γ h( ' , ' )δφ δt  in the form given by (A24).  

From (B3) and (B6) and the fact that Q'++  is unitary, we obtain Γ Γh
−1( ' , ' )δφ δt

= U Q Q U( ) ' ( )†φ φ0 0++ ++
T .  The energy (B6) involves an integration over the (2,1)

component of this matrix.  The product Q Q' †
++ ++ can be expressed in the general

SU(2) form (A22), where

α δ δφ δφ
β δ δ δφ δφ

= + +
= − + +

c s X

X c s X

* * ( * sin ' cos ' ),

* * ( cos ' sin ' ).

2 2

2 2

i

i i
(B10)

Working out the appropriate matrix element in terms of the real and imaginary

parts of these coefficients, we find

ε δφ δ β β φ α φ ω ω2 2

0
0 0

2 22 2 2( ' , ' ) {Re( ) [Im( )cos Re( )sin ] }| ( ) |t u dI= + +
∞

∫ . (B11)

To find the energy minimum, we differentiate (B11) with respect to the

perturbations δφ δ' 'and t and set the results equal to zero, which gives two

equations for the apparent splitting parameters.  Linearizing these equations in

δφ δ˜ ˜and t , we obtain a 2 × 2 system for the Fréchet kernels:

A A

A A

G z

G z
k

D z

D zt

11 12

21 22

1

2













= 





φ( )

( )

( )

( )
∆ , (B11)

A u dI11
2

0 0
2

0
2=

∞

∫sin ( / )| ( ) |φ ω ω ω ω, (B12a)

A t u dI12 0 0
2

0
2 2=

∞

∫sin cos sin | ( ) |φ φ ω ω ω∆ , (B12b)

A t u dI21 0 0 0
2

0
2 2=

∞
∫sin cos ( / )sin | ( ) |φ φ ω ω ω ω ω∆ , (B12c)
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A t u d t u dI I22
2 2

0

2
0

2 2

0
1 2= − +

∞ ∞
∫ ∫( cos ) | ( ) | cos sin | ( ) |ω ω ω φ ω ω ω∆ ∆ , (B12d)

D z k d z u dI1 0 0 0
2

0
2 2( ) sin cos ( / )cos ( ) | ( ) |= −

∞

∫φ φ ω ω ω ω∆ , (B13a)

D z t k d z u d

k d z t u d

I

I

2
2

0

2
0 0

2

0

1

2

( ) ( cos )sin ( ) | ( ) |

cos ( / )sin ( )cos ' | ( ) | .

= − −

+ −

∞

∞

∫
∫

ω ω ω

φ ω ω ω ω ω

∆ ∆
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(B13b)

Approximating these integrals using (B2) and solving for the kernels leads to the

expressions (10)-(14) given in the text.
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