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Abstract

Multithreaded shared-memory programs are susceptible to dataraces, bugs that may
exhibit themselves only in rare circumstances and can have detrimental effects on
program behavior. Dataraces are often difficult to debug because they are difficult
to reproduce and can affect program behavior in subtle ways, so tools which aid
in detecting and preventing dataraces can be invaluable. Past dynamic datarace
detection tools either incurred large overhead, ranging from 3x to 30x, or sacrificed
precision in reducing overhead, reporting many false errors. This thesis presents a
novel approach to efficient and precise datarace detection for multithreaded object-
oriented programs. Our runtime datarace detector incurs an overhead ranging from
13% to 42% for our test suite, well below the overheads reported in previous work.
Furthermore, our precise approach reveals dangerous dataraces in real programs with
few spurious warnings.
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Chapter 1

Introduction

Many important classes of software are implemented using multiple threads of ex-

ecution and shared memory. Multithreaded programs often have non-deterministic

behavior that inhibits reasoning about their properties. An interesting characteris-

tic observed in a particular execution of a non-deterministic program may not be

easily reproducible through re-execution. One particularly irksome type of non-

deterministic behavior is a datarace, roughly defined as when two threads access

common memory with no explicit ordering between the accesses, and at least one of

the accesses writes the memory. Dataraces almost always indicate programming er-

rors1, and they can be extremely difficult to debug since their effect on the functional

behavior of a program can be indirect and subtle. Furthermore, some dataraces may

have no discernable effect for almost all executions of a program, making extensive

and repeated testing an ineffective technique for finding them.

Because of the difficulties involved in manually finding and debugging dataraces, a

great deal of work has been done to develop tools and techniques which can automat-

ically detect dataraces and/or prevent them from occurring. One class of previous

research suggested purely static techniques for handling dataraces, addressing the

datarace problem for all possible executions of a given program. Some past work

1A datarace may not be a programming error if the accessed memory location does not need
to hold an exact value for program correctness. Apart benign dataraces on statistics variables like
those in our examples (see Chapter 6), chaotic relaxation algorithms can maintain some convergence
properties even in the presence of dataraces.
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created tools which perform static datarace detection, identifying a set of program

statements which in some execution could be involved in a datarace [26, 14, 10].

Unfortunately, because of scalability and precision issues in static analyses such as

alias analysis, it is often difficult to statically prove that any possible execution of

a program statement will not be involved in a datarace. Therefore, previous static

datarace detection tools tend to conservatively flag a large number of safe instructions

as dangerous, hindering their usefulness. A more recent static approach involves new

programming language constructs and type systems that allow for static verification

that a program is datarace-free [1, 5, 4]. While these solutions could influence future

language design, commonly used languages such as Java have not incorporated these

constructs, and therefore most current software is still datarace-prone.

Another class of past work performed datarace detection dynamically, finding

dataraces in a particular execution of a given program. Although dynamic datarace

detection typically does not prove that a program is free of dataraces since it only uti-

lizes information from one execution, in practice the approach has been shown to be

useful for finding bugs. Some previous research has resulted in tools which can fairly

precisely identify dataraces in program executions, but these tools added an undesir-

able large execution time overhead ranging from 3× to 30× [21, 25, 24, 6, 16, 17, 12].

Recent work dramatically reduced this overhead to between 16% and 129% by de-

tecting dataraces at a coarser granularity than individual memory locations [23].

However, the reduced precision of this technique resulted in the reporting of many

events which were dataraces according to their coarser definition, but were not ac-

tually unsynchronized accesses to shared memory, making their tool less useful for

finding real programming errors.

This thesis presents a novel approach to dynamic datarace detection for multi-

threaded Java programs. The approach is precise, in that almost all dataraces iden-

tified are in fact unsynchronized accesses to shared memory. The approach is also

far more efficient than other approaches with similar precision, with time overhead

ranging from 13% to 42% for our test cases. These results were achieved through a

combination of complementary static and dynamic optimization techniques.

14
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Figure 1-1: Architecture of Datarace Detection System

A high-level view of our datarace detection approach is seen in Figure 1-1 (optional

phases are indicated by dashed boxes). The static analyzer phase identifies a static

datarace set, a conservative set of statements whose executions could potentially be

involved in a datarace. If available, this static datarace set is utilized to avoid instru-

mentation of statements not in the set, as their executions are guaranteed to not be

involved in dataraces.

The instrumentation phase inserts tracing calls into the program to monitor execu-

tions of statements which could be involved in dataraces. Optionally, an optimization

pass can be performed in this phase which removes redundant instrumentation, in-

strumentation which will always produce redundant information (redundancy will be

defined more precisely in Chapter 4). The result of this phase is an instrumented

executable which will run in the program execution phase.

While running the executable, the instrumentation generates a sequence of ac-

cess events containing sufficient information for performing datarace detection. If

employed, the runtime optimizer phase filters these events by caching them and only

sending events to the runtime detector that are not redundant compared to a cached

event. Finally, given a stream of access events as input, the runtime detector phase

performs datarace detection and reports any dataraces to the user.

Since the properties of our datarace detection algorithm enable many of our opti-

mizations, this thesis will present our approach in roughly the reverse order in which it

is actually executed. Chapter 2 defines and illustrates datarace terminology in greater

detail. Chapter 3 describes our datarace detection algorithm. Chapter 4 presents the

dynamic optimizations utilized in our approach, and Chapter 5 delineates our static

optimizations. Results are detailed in Chapter 6, followed by a discussion of related

15



work in Chapter 7. Finally, Chapter 8 presents our conclusions and describes future

work.
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Chapter 2

Datarace Terminology

This chapter defines dataraces and related terminology more carefully and illustrates

them with examples.

2.1 Datarace Definitions

A number of definitions of dataraces have been described in past work on datarace

detection, and the differences between them can be subtle. This section explains some

common datarace definitions, including the monitor-based definition utilized in our

approach, and clarifies the relationships between them.

2.1.1 Happened-Before Dataraces

The formal definition of a datarace which has the closest correspondence to the typical

high-level definition, unordered accesses to a memory location performed by multiple

threads, is based on the happened-before relation, first defined in [18]. The happened-

before relation, written as →, is an irreflexive partial ordering on all events executed

by all threads in an execution of a program. If events ei and ej are executed by the

same thread and ei occurs before ej, then ei → ej. Also, if ei and ej are executed by

different threads, then ei → ej if some inter-thread communication construct forces

ei to occur before ej. For example, in the execution depicted in Figure 2-1, e1 → e2

17



e2: x += 1;

unlock(l);

lock(l);

T1 T2 Time

y += 1;e0:

e3: y += 1;

lock(l);

x += 1;

unlock(l);

e1:

Figure 2-1: Example to illustrate the happened-before relation.

because of the communication between threads T1 and T2 through the locking and

unlocking of monitor l. In the Java programming language, the key inter-thread

communication constructs are monitors (synchronized blocks) and the start and

join methods of the Thread class1. If ei and ej are unordered by the happened-before

relation, they are considered concurrent, written as ei 6→ ej.

Given the happened-before relation, a happened-before datarace can be defined

as follows. For a memory access event ei, let ei.m represent the memory location

accessed and ei.a represent the type of the access (either READ or WRITE). The

memory access event pair (ei, ej) is a happened-before datarace iff (1) ei 6= ej, (2)

ei 6→ ej, (3) ei.m = ej.m, and (4) ei.a = WRITE ∨ ej.a = WRITE. We will discuss

this definition in more detail when comparing it to those based solely on monitors.

2.1.2 Monitor-Based Dataraces

For languages such as Java where the primary method of inter-thread synchronization

is the use of monitors, alternate definitions of dataraces have been proposed which

are based on the use of monitors to protect shared data. Datarace detectors based

on these definitions check that threads consistently acquire certain monitors before

1The wait and notify methods of the Object class are not discussed separately since their
ordering relationships are captured in the locking required to invoke the methods. Also, the current
draft of the revised Java Memory Model would force separate consideration of writes and reads of
volatile fields [20].
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accessing shared memory, thereby “locking” the memory since other threads must

acquire the same monitors before accessing it. Accordingly, monitors are often called

locks, and we shall refer to them in this manner throughout the rest of this thesis.

We will also use the term lockset, introduced in [24], to refer to the set of locks held

by a thread at some point in time.

The first definition of dataraces based on locksets was presented in [13], which

instead of lockset used the term “lock cover.” The original definition was based on

both locks and the happened-before relation, but here we present a version solely

based on locks. Define an access event e as a 5-tuple (m, t, L, a, s) where

• m is the identity of the logical memory location being accessed,

• t is the identity of the thread which performs the access,

• L is the lockset held by t at the time of the access,

• a is the access type (one of { WRITE, READ }) and

• s is the source location of the access instruction.

The exact definition of a logical memory location can vary, but unless stated otherwise

assume that it corresponds to the finest granularity at which reads and writes can

occur, for example object fields and array elements in Java. Also note that source

location information is only present for error reporting purposes and has no bearing

on other definitions and optimizations. In this definition, access events (or, simply,

accesses) ei and ej are a datarace (written IsRace(ei, ej)) iff (1) ei.m = ej.m, (2)

ei.t 6= ej.t, (3) ei.L ∩ ej.L = ∅, and (4) ei.a = WRITE ∨ ej.a = WRITE. Since this

definition checks that some common lock is held in condition (3), but not any specific

lock, we call this type of datarace a common lock datarace.

The researchers who developed Eraser [24] defined dataraces slightly differently,

stating that a datarace occurs when a thread accesses a shared memory location

without holding some unique lock associated with that location. For example, if

three writes to memory location m by three different threads occurred with locksets

{l1, l2}, {l2, l3}, and {l1, l3}, Eraser would report a datarace, since no unique lock is

19



Happened−
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Races

Common Lock Races

Unique Lock Races

Object Races

All Memory Access Pairs

Figure 2-2: Relationship Between Different Datarace Definitions

held during all three accesses, while a detector based on the common lock datarace

definition would not report a problem, since all pairs of accesses have some lock in

common. We call dataraces conforming to Eraser’s definition unique lock dataraces.

Recent work defined another type of lockset-based datarace for object-oriented

programs, an object race [23]. An object race is similar to a unique lock datarace, but

its logical memory location is an object rather than the finer granularity locations

utilized in the aformentioned definitions. This implies, for example, that two threads

accessing different fields of an object without holding a common lock constitutes an

object race. The justification given for this coarser granularity in the presenting work

is that an object is often an abstraction of related data, and therefore it is reasonable

to define the object as the unit of protection rather than individual fields [23].

2.1.3 Comparison

Figure 2-2 illustrates the subset relationships of the different datarace definitions for

a given execution of a program. Note that this figure is not to scale. For our test

suite, we found that the happened-before datarace set, the common lock datarace set,

and the unique lock datarace set were almost equal in size, while the object race set

20



was significantly larger. The differences between the different lockset-based datarace

definitions will be discussed in more detail in Chapter 6, where some statistics will

illustrate the distinctions more clearly.

The happened-before datarace definition is appealing because it precisely cap-

tures the inter-thread communication that underlies all synchronization idioms, so

once the primitive ordering constructs of a language are identified, all higher-level

synchronization operations will automatically be handled correctly, a property which

does not necessarily hold for lockset-based definitions. For example, consider a typi-

cal producer-consumer architecture in which a shared buffer is utilized to send data

from the producer to the consumer. If the reads and writes to the shared buffer are

properly synchronized, mutation of the data read from and written to the buffer can

be safely performed without extra synchronization. A tool which detects happened-

before dataraces will recognize this behavior as safe, but a tool which performs lockset-

based detection will flag the accesses to the shared data as dataraces, since no locks

are held during these accesses. In this sense, the happened-before datarace definition

is more precise than any of the definitions based on locks.

However, when considering its usefulness for a datarace detection tool, one key

drawback of the happened-before datarace definition is its dependence on thread

scheduling, which sometimes masks the existence of synchronization bugs. For ex-

ample, e0 → e3 in Figure 2-1 because of the locking and unlocking of l, but in an

execution where T2 locks l before T1, e0 6→ e3, and (e0, e3) would be a happened-

before datarace. In comparison, a datarace detection tool based on locks would report

a datarace for the execution depicted in Figure 2-1, since no locks are held during

the writes to y. Although no dynamic datarace detection tool could indicate all pos-

sible dataraces in a program while operating on a single execution, in some sense the

happened-before datarace definition is more susceptible than lockset-based definitions

to missing bugs because of the quirks of a particular execution. Using the terminology

defined in [22], lockset-based detectors detect both apparent and feasible dataraces,

while detectors based on happened-before only detect apparent dataraces.

Another important consideration when deciding which datarace definition to use
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for a detector is impact on efficiency. Previous work has asserted that lockset-based

datarace definitions are inherently more amenable to efficient detector implementa-

tions than the happened-before datarace definition [24, 23]. This assertion is based

on the fact that a detector using the happened-before datarace definition must main-

tain information about program execution orderings, which potentially scales poorly

in space and time as the length of the execution and degree of parallelism increases.

A detector for lockset-based dataraces only needs to maintain and compare lockset,

thread, and access type information for access events, for the most part ignoring

program ordering constraints. However, these constraints on what information each

detector must maintain do not necessarily imply that one method will always be more

efficient than the other. In fact, recent work has employed several clever optimiza-

tions to implement a happened-before based detector for Java which has less overhead

than Eraser [12]. While many of the optimizations we employ to reduce the overhead

of datarace detection based on locksets do not directly apply for a detector based

on happened-before, future research may discover how to adapt our optimizations

for happened-before based detectors or may find entirely new optimizations based on

happened-before.

2.1.4 Our Approach

Our datarace detection algorithm finds common lock dataraces, as defined previously

(the implications of this choice will be discussed in more detail in Chapter 6). We

also handle the orderings imposed by the start and join methods of the Thread

class using an ownership model and pseudolocks.

Handling the execution orderings created by Thread.start() is important be-

cause if they were ignored, some techniques which rely on the ordering would cause

many false dataraces to be reported. For example, a thread often initializes some

data and then creates a child thread which reads the data with no locking, a safe

operation that pure lockset-based detection would flag as a datarace. We use an

ownership model similar to the one utilized by Eraser [24] to improve our accuracy

in these cases. The first thread which accesses a location becomes its owner, and

22



tracking of reads and writes to a location only begins after a thread other than its

owner accesses it. While this technique could affect completeness (since the first two

accesses to a location by different threads may indeed be a datarace), in practice we

have not observed this problem, and the method is effective in suppressing datarace

reports for the initialization technique described above. Note that the definition of

unique-lock dataraces does not capture our use of the ownership model. We will dis-

cuss the implications of the ownership model in more detail in section 5.3, after the

rest of our detection system has been presented.

The orderings imposed by Thread.join() are also often exploited by programmers

to avoid locking. After a join call on a child thread returns, the parent thread can

safely read data modified by the child thread without synchronization. We utilize

dummy synchronization objects called pseudolocks to handle these orderings within

our lockset-based detection framework. Each thread Tj performs a monitorenter

on a pseudolock Sj when it begins its execution and a monitorexit on Sj when it

completes its execution. Any thread which invokes the join method of Tj performs

a monitorenter on Sj when the invocation returns. So, any thread Ti which calls

join on another thread Tj will hold the pseudolock Sj after thread Tj completes,

and Tj holds Sj for the entirety of its execution. Pseudolocks allow us to precisely

model the execution ordering introduced by Thread.join() between a parent and

child thread2, in some cases leading to far fewer false positive datarace reports.

2.2 Dataraces Reported

Another important characteristic of any datarace detection technique is the set of

dataraces it guarantees to report. Given the definition of access events and IsRace

given in 2.1.2, we formally define datarace detection as follows. Let E be the se-

quence of access events generated in an execution of a given program. Performing

datarace detection on that execution is equivalent to determining the truth value of

2Note that this scheme does not precisely model all orderings implied by Thread.join(). To be
completely precise, when join() is invoked on a child thread Tj , the parent thread would have to
acquire the pseudolock Sj and all the pseudolocks Tj held at its completion.
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the following condition:

∃ei, ej ∈ E | IsRace(ei, ej).

Most previous datarace detection systems guaranteed the reporting of all access

event pairs in a given execution which were dataraces. However, given an execution

with N accesses, the worst-case time and space complexity required for maintaining

that guarantee is O(N2), since all event pairs could be a datarace. Furthermore, [11]

shows that a single errant write can lead to many datarace pairs for a given execution,

and it is not clear that reporting all of these dataraces would be useful to a program-

mer. To avoid necessarily high execution costs and possibly exorbitant output, we

do not guarantee reporting of all datarace pairs for a given execution. Instead, we

report a useful subset of the dataraces which allows for many new optimizations.

Let MemRace(mk) be the set of access event pairs that are a datarace on memory

location mk. Our datarace detection algorithm guarantees that for memory locations

mk such that MemRace(mk) is non-empty, we report at least one access event e

in MemRace(mk). For a number of reasons, this seemingly limited information is

actually sufficient for determining the cause of most dataraces. e is always reported

immediately after it occurs, allowing for suspension of the program’s execution to

investigate its state more closely. We also guarantee to report the locks held during

the access which races with e, and quite often we can report the thread which executed

the other access. Our static datarace analyzer, discussed in more detail in section 5.1,

usually provides a small, conservative set of source locations whose executions could

potentially race with e, giving further aid in finding the source of the datarace. Finally,

a record / replay tool such as DejaVu [7] could be used alongside our datarace detector

to allow a full reconstruction of the conditions leading to the datarace, although

DejaVu recording will incur an extra runtime overhead of about 30%.
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Chapter 3

Datarace Detection Algorithm

Here we give the details of our datarace detection algorithm. Given a stream of access

events from a running program (generated through instrumentation) as input, this

algorithm tracks the accesses and raises an immediate flag when the most recent access

is a datarace with a past access. The efficiency of the algorithm stems from our use of

the fact that we do not guarantee the reporting of all dataraces in an execution. We

use tries to efficiently represent and search past accesses and the weaker-than relation

to ignore redundant accesses.

3.1 Weaker-Than Relation

Consider the case of a thread t writing memory location m twice, with no synchro-

nization operations between the writes. If the second write to m races with an access

to m by another thread t′, then t’s first write to m must also be a datarace with the

access by t′, since the locks held by t were identical for both writes. Since we only

guarantee reporting one event involved in a datarace on m, our algorithm can safely

ignore t’s second write to m. In general, given past access events ei and ej, we say

ei is weaker-than ej if and only if for all future accesses ek, IsRace(ej, ek) implies

IsRace(ei, ek). We call this relation weaker-than since intuitively, ei is more weakly

protected from dataraces than ej (or equally protected). We exploit the weaker-than

relation throughout our datarace detection system to greatly increase efficiency.
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We can often determine that an event ei is weaker than another event ej solely

by examining the information contained in each event (memory location, lockset,

thread, and access type). First, we allow the the thread value of a past access event

e to be the pseudothread t⊥, meaning “at least two distinct threads”. For some past

event ei, we set ei.t to t⊥ when we see a later access event ej such that ei.m = ej.m,

ei.L = ej.L, and ei.t 6= ej.t. Setting ei.t to t⊥ represents the fact that any future

access ek to ei.m such that ei.L ∩ ek.L = ∅ must be a datarace (unless all accesses

are reads), since multiple threads already accessed ei.m with lockset ei.L. The use of

t⊥ decreases space consumption and simplifies our implementation, but it sometimes

prevents us from reporting both threads that participate in a datarace.

We define a separate partial order v on threads (ti and tj), access types (ai and

aj), and access events (ei and ej):

ti v tj ⇐⇒ ti = tj ∨ ti = t⊥

ai v aj ⇐⇒ ai = aj ∨ ai = WRITE

ei v ej ⇐⇒ ei.m = ej.m ∧ ei.L ⊆ ej.L

∧ei.t v ej.t ∧ ei.a v ej.a

Our algorithm detects when ei v ej, which implies that ei is weaker-than ej, as is

shown in the following theorem.

Theorem 1 (weaker-than). For past accesses ei and ej and for all future accesses

ek, ei v ej ⇒ (IsRace(ej, ek) ⇒ IsRace(ei, ek)).

Proof. Assuming (ei v ej ∧ IsRace(ej, ek)), we show that IsRace(ei, ek) must be

true. ei.m = ej.m and ej.m = ek.m, which implies that ei.m = ek.m. ei.L ⊆ ej.L

and ej.L ∩ ek.L = ∅, so ei.L ∩ ek.L = ∅. Since ei.t v ej.t and ej.t 6= ek.t, ei.t 6= ek.t

(Note that since ek is new, ek.t cannot be t⊥). Finally, we have ei.a v ej.a and ej.a =

WRITE∨ek.a = WRITE. If ek.a = WRITE, then ei and ek are clearly a datarace. If

ek.a = READ, then ej.a = WRITE, and therefore ei.a = WRITE, since ei.a v ej.a.

So, it is shown that IsRace(ei, ek) is true, given our initial assumptions.
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If ei is weaker than ej, our datarace detector only stores information about ei at

most, saving in both time and space overhead1. We also use the weaker-than relation

to filter many events so they never even reach the detector (discussed in greater detail

in Chapters 4 and 5).

3.2 Trie-Based Algorithm

In this section, we delineate the actual execution of our trie-based datarace detection

algorithm, which efficiently maintains an event history and compares new events with

past events to check for dataraces.

3.2.1 Trie Data Structure

We represent relevant information about past access events using edge-labeled tries.

Each memory location observed in some access event has an associated trie. The

trie edges are labelled with lock identifiers, and the nodes hold thread and access

type information for a set of access events (possibly empty). So, the lockset held

for a particular memory access is represented by the path from the root to the node

corresponding to the access in the trie corresponding to the access’s location. Tries

are space-efficient since locksets which share locks also share representation in the

trie. To ensure this sharing property holds, our algorithm maintains the invariant

that the lock labelling the edge whose destination is node n is always less than any

lock labelling an edge whose source is n, under some total ordering on lock identifiers.

Some notation will be useful when describing our algorithm. Each node n in a

trie has a thread field n.t, an access type field n.a, and a lock field n.l corresponding

to the lock identifier labelling the edge whose destination is n. Any inner nodes n′

which do not represent any existing accesses are initialized with n′.t ← t>, where t>

1Note that in the infrequent case that our tool gives a spurious datarace report (because of our
handling of array indices, for example), an optimization based on the weaker-than relation could
lead to the suppression of a true datarace report while leaving the false positive. We believe this
deficiency is minor (we did not encounter it with our test programs), and it can be overcome by
using extra locking to suppress the false positive report and rerunning the detector.
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means “no threads,” and and n′.a ← READ. Also, we define the meet operator u for

threads and access types:

∀i. ti u ti = ti, ti u t> = ti, ai u ai = ai

∀i.∀j. ti u tj = t⊥ if ti 6= tj

∀i.∀j. ai u aj = WRITE if ai 6= aj

3.2.2 Datarace Check

Given an access event e which has just executed, we first check if a past event ep

exists such that ep v e. If ep does exist, then e can be ignored without affecting

our reporting guarantees. We search for ep by performing a traversal of the trie for

memory location e.m, only traversing edges in e.L (depth-first, in sorted order). This

traversal guarantees that any nodes we encounter will meet the memory location and

lockset requirements of the v relation. For each encountered node n, we check the

condition n.t v e.t∧n.a v e.a. If this condition is true, then n represents the desired

ep. In almost all cases, this initial check allows us to ignore e, giving a large time

savings.

If the aformentioned weakness check fails, we check if e is a datarace with any

past event. Again, we traverse the trie corresponding to e.m, but this time we follow

all edges. One of three cases holds for each node n encountered during this traversal:

Case I. n.l ∈ e.L. In this case, e shares the lock n.l with all the accesses represented

by n and its children. Therefore, e cannot be a datarace with any access rep-

resented by the subtrie rooted at n, and this branch of the trie need not be

further traversed.

Case II. Case I does not hold, e.t u n.t = t⊥, and e.a u n.a = WRITE. In this case,

we know n represents some past access ep such that ep.m = e.m, ep.t 6= e.t,

ep.a = WRITE ∨ e.a = WRITE, and ep.L ∩ e.L = ∅, precisely the conditions

of IsRace(ep, e). We immediately report e as a racing access and terminate the

traversal.
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Figure 3-1: An example trie used in our datarace detection algorithm.

Case III. Neither Case I nor Case II holds. In this case, we traverse the children of

n.

To make this checking step more concrete, consider the trie in Figure 3-1 repre-

senting accesses to some memory location m. The empty nodes do not correspond to

any accesses, and the other nodes contain thread and access type information. Now,

say that some thread t2 writes m with lockset {a}. To check this access, we first

traverse the leftmost edge from the root node of the trie, labelled with lock a. After

traversing this edge, Case I holds, so we do not need to traverse any further in this

trie branch. We next traverse the edge labelled b from the root node, and we see that

thread t1 has written m with lockset {b}. Now, Case II holds, and we immediately

report that the most recent access by t2 is racing.

3.2.3 History Update

If e does not race with any past events, we next update the trie for e.m to reflect e’s

information by performing another traversal following the edges with locks in e.L. If

a node n already exists which represents accesses with lockset e.L, we update n so

that n.t ← n.t u e.t and n.a ← n.a u e.a. If no such n exists, we add the necessary

edges and inner nodes to create n, setting n.t ← e.t and n.a ← e.a.

It is possible that some past accesses stored in the trie for e.m are weaker than
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e, and after we add e’s information to the trie, we perform a final pass to remove

information about such accesses. We traverse the entire trie, searching for nodes

n′ such that the accesses represented by n′ were performed with a lockset that is a

superset of e.L. For each such node n′, we also check the condition e.t v n′.t ∧ e.a v
n′.a. If the condition holds, then n′ represents accesses which are stronger than e,

so we re-initialize the node, setting n′.t ← t> and n′.a ← READ. We then traverse

the children of n′ in a depth-first manner. Finally, if after this pass, n′ and all of its

children have been re-initialized (and therefore represent no accesses), we can prune

n′ and its children from the trie.

3.2.4 Analysis

Here we give an analysis of the worst-case time and space complexity of our datarace

detection algorithm. Let Nmax be the maximum number of nodes in a trie for a given

execution of a program. Then, the space required to store the tries is O(NmaxM),

where M is the number of unique memory locations accessed by the program. Since

each access event requires a constant number of trie traversals, the worst-case time

complexity of our algorithm is O(NmaxE), where E is the number of access events in

the execution. Finally, we can bound Nmax by the maximum number of leaf nodes in

any trie multiplied by the deepest path in any trie. The deepest path is bounded by

the size of the largest lockset held during the execution, which we will call Lmax. The

maximum number of distinct locksets held while accessing a given memory location,

Smax, bounds the maximum number of leaf nodes in a trie. So, Nmax can at most be

SmaxLmax. It should be noted that while we believe our datarace detection algorithm

is efficient, our results indicate that the key factors contributing to our low overhead

are the static and dynamic optimizations which allow us to completely avoid executing

our datarace detection code (discussed in Chapters 4 and 5). In some sense, if we

are forced to run the steps described in this chapter for a given event, then our

performance edge for that event has already been lost.
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3.3 Implementation

Our datarace detector is implemented entirely in Java for the Jalapeño Research Vir-

tual Machine [2] (now known as the Jikes Research Virtual Machine). Jalapeño is

a high-performance virtual machine designed for servers, written almost entirely in

Java with no separate virtual machine necessary for execution. Important features

of Jalapeño include a user-level thread scheduler which multiplexes Java threads onto

operating system threads, a modular garbage collection architecture with several

different collection algorithms supported, and an adaptive optimization framework

which selectively applies different optimizations to methods depending on their exe-

cution frequency. The clean and modular design of Jalapeño greatly facilitated the

implementation of our datarace detector. See [2] for a more detailed description

of Jalapeño’s runtime and compilation systems.

For the most part, our implementation is straightforward, with the datarace de-

tection algorithm running alongside the target program. The instrumentation which

generates the input stream of access events for our algorithm is discussed in detail

in Chapter 5. We use memory addresses to identify logical memory locations, which

can introduce some nasty subtleties in interactions with garbage collection. A copy-

ing garbage collector could move objects to different addresses, which would force us

to track the object copying and update our identifiers appropriately. Even a non-

copying collector can cause serious problems by allocating an object at some address,

garbage collecting that object, and then allocating a new object at the address. This

behavior could also be handled by our algorithm through proper flushing of state asso-

ciated with garbage-collected objects and the use of identifiers distinct from memory

addresses for locks. However, for our prototype implementation, we avoid these prob-

lems by using a large enough heap during execution that garbage collection never

occurs.

One extra space optimization we perform is trie packing, which allows us to use

one trie to represent up to 32 distinct memory locations. Each trie node’s state is

implemented with three 32-bit words, and each memory location has an associated
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index to extract its information from the fields of a node. Two of the words represent

the access type for each location (whether it has been accessed and whether it has

been written), and one word represents whether each location has been accessed by

many threads (ie. whether n.t = t⊥ for each location). We always assign new memory

locations to the most recently created trie, the idea being that locations which are

accessed together are often accessed by the same thread and with the same locks.

Each node can only hold one thread id for all of its memory locations (although each

memory location can have its t⊥ flag set independently), so in some cases we cannot

represent all the necessary access information for two different memory locations in

one trie. In this case, we evict one of the locations from the trie and assign it to the

most recent trie as if it were a new memory location. Occasionally, another conflict

occurs, in which case we create a new trie for the memory location.
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Chapter 4

Dynamic Optimization

The datarace detection algorithm described in Chapter 3 takes as input a stream

of access events from a running program. The largest performance improvements in

our datarace detection system stem from optimizations which greatly decrease the

number of access events which need to be reported to the detector. In this chapter,

we describe the dynamic optimization used to filter access events, a caching scheme

for quickly detecting if an access can be ignored.

4.1 Cache Design

In Chapter 3, we defined the weaker-than relation and showed how it could be used as

the basis for space and time optimizations in our datarace detection algorithm. We

observed that in practice, almost all dynamic accesses performed by a program are

ignored because some previous stored access is weaker. Therefore, the critical path in

our datarace detector for a new access was the initial check for a past weaker access,

not the check to see if the access was involved in a datarace. Caching seemed like a

natural way to significantly improve the performance of the weakness check.

At a high level, our caching scheme works as follows. We cache information about

recent accesses that have been sent to the datarace detector for checking, indexed by

memory address. When a new access e of memory address m occurs, we first look up

m in our cache. We maintain the invariant that if an entry for m exists in the cache,
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an access of m has already occurred which is weaker than e, so e can be ignored. If

there is no entry for m in the cache, then e is sent to the datarace detector for a full

check.

Our cache policy must ensure that if an entry for memory address m is found in

the cache, then any future access m must have a corresponding past weaker access.

Recall the conditions used to detect that access ei is weaker than access ej:

• ei.m = ej.m,

• ei.L ⊆ ej.L,

• ei.t v ej.t, and

• ei.a v ej.a.

Since our caches are indexed by memory address, the first condition clearly holds. To

satisfy the third and fourth conditions, we keep separate read and write caches for

each thread. So, for some event e, if a lookup of e.m results in a cache hit, we know

a past event ep occurred such that ep.m = e.m, ep.t = e.t, and ep.a = e.a.

Our techniques for ensuring the second condition, that events represented in the

cache occurred with a subset of the current lockset, are a bit more complex. We

monitor the set of locks held by each thread, and when a thread t releases a lock l,

we evict all events e from the t’s read and write caches such that l ∈ e.L. Note that

the execution of a monitorexit by a thread does not necessarily correspond to the

release of a lock, since in Java a lock can be acquired more than once by a thread.

We track the number of times a lock has been acquired by a thread, and only evict

entries from the cache when the lock is truly relased.

To efficiently evict cache entries corresponding to events executed by a thread

while holding a particular lock, we exploit the strict nesting of Java’s monitors. The

Java source language guarantees that the most recent lock acquired by a thread will

be the first to be released by the thread1. So, for each lock l held by thread, we

need only track the entries in the cache for which l was the most recently acquired

1Note that this guarantee does not necessarily hold for Java bytecodes. We assume that target
programs have been compiled from Java source.
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Figure 4-1: The cache.

lock when the corresponding event occurred. We maintain this information with a

doubly-linked list for each lock held by the thread. The doubly-linked list allows for

efficient eviction of all entries on the list or of a single entry in the case of a cache

conflict.

Figure 4-1 gives a view of the organization of our cache. The beginning of the

doubly-linked list for lock d is shown, and the first entry of the list is expanded. The

cache entry contains the memory location m, the next and previous pointers of the

doubly-linked list for entries added while d was the most recently acquired lock, and

a lockcount entry corresponding to the depth of the lock nesting of d. The lockcount

entry could be used for further optimizing the case where a single lock l is being

acquired and released repeatedly. In this case, the cache entries for l need not be

flushed every time it is released, but only when a different lock l′ is acquired at its

locking depth. In our implementation, the cache hit rate was high enough that it did

not seem like this extra optimization would be useful, so it was not implemented, but

the lockcount field remains to allow for a future implementation.
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4.2 Implementation

For each thread, we maintain two 256-entry direct mapped caches (a read cache and

a write cache), indexed by memory address. Our cache design and the Jalapeño

infrastructure allowed us to implement the cache lookup path very efficiently. Since

we maintain the property that all entries in the caches represent events that are

weaker than any new event (assuming memory addresses match), the cache lookup

solely involves finding an entry which matches the current event’s memory address.

Thread, access type, and lockset information are not stored explicitly in the cache.

Our hash function simply multiplies the memory address by a large constant and then

uses the high-order 16 bits of the result, which seems to give few conflicts in practice

and can be computed efficiently (without division).

Our cache is implemented in Java with some Jalapeño-specific techniques to in-

crease performance. We use VM Magic calls [2] to tell Jalapeño not to perform null

pointer and array bounds checks in our cache lookup code. We also force Jalapeño’s

optimizing compiler to always inline the cache lookup code into the user program.

Through these efficiency tweaks, we decreased the cost of the cache hit path to ten

PowerPC instructions.
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Chapter 5

Static Optimization

Here we describe our techniques for statically decreasing the cost of datarace detec-

tion. The first optimization identifies statements which will never be involved in a

datarace when executed. The second optimization detects statements which if instru-

mented would always produce access events for which another weaker event exists.

The statements flagged by these two optimizations need not be instrumented for

datarace detection, leading to a smaller dynamic set of access events which need to

be checked by our datarace detection.

5.1 Static Datarace Analysis

Our static datarace analysis computes a potential datarace set, a conservative set of

statement pairs whose executions could be a datarace. Statements which do not ap-

pear in any pair in this set cannot be involved in a datarace in any execution of the

program, and therefore do not need to be instrumented for dynamic datarace detec-

tion. Our analysis goes beyond escape analysis of accessed objects [8, 27], performing

an interthread control flow analysis and points-to analysis of thread, synchronization,

and access objects. We will only briefly describe our static datarace analysis tech-

niques here, as I did not play a role in the development of the techniques. A more

detailed presentation of these analyses can be found in [10].
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5.1.1 Example

We first present an example, seen in Figure 5-1, to illustrate some important prop-

erties of a static datarace analysis. In this example, MainThread creates and starts

two instances of ChildThread, and all threads write various fields of Obj objects.

Given such a program as input, our static datarace analysis identifies a set of pairs

of statements which could be involved in dataraces, attempting to make this set as

small as possible while still being conservative.

Points-to analysis plays a key role in identifying whether statement pairs can be

involved in dataraces. For example, if the x field of MainThread can point to the same

object as the b field of the ChildThread created in statement S11, then the statement

pair (S18, S20) must be added to the potential datarace set (the child thread invokes

MainThread.m1 in statement S32). A traditional may points-to analysis identifies this

possibility. Now, consider the two invocations of MainThread.m1 in statements S16

and S32. If the p field of MainThread and the a field of some ChildThread can point

to different objects, then these two invocations may not be properly synchronized,

and (S20, S20) must be added to the potential datarace set. To identify this case, a

must points-to analysis must be employed, and the result negated.

Escape analysis can help to quickly eliminate some statements from consideration

in the static datarace analysis. For example, consider statement S42. An escape

analysis shows that the object pointed to by z cannot escape method m2, and there-

fore must be a thread-local object. Therefore, statement S42 cannot be involved in

dataraces. The escape analysis utilized is fully described in [8].

5.1.2 Static Datarace Conditions

In Chapter 2, we defined a datarace between two accesses in terms of their thread,

access type, memory location, and lockset information. Given two statements x and y,

our datarace definition can be formulated conservatively for static analysis as follows:

IsMayRace(x, y) ⇐= AccessesMayConflict(x, y) ∧
(¬MustSameThread(x, y)) ∧ (¬MustCommonSync(x, y)) (5.1)
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// thread main

class MainThread {

static Obj p, q, x;

public static void main(String args[]) {

. . .

S11: Thread T1 = new ChildThread(...);

S12: Thread T2 = new ChildThread(...);

S13: T2.start();

S14: T1.start();

. . .

S15: synchronized(p) {

S16: m1(q);

} // synchronized

. . .

S17: T2.join(); // wait until T2 terminates

S18: x.f = 200;

}

public static void m1(Obj y) {

S20: y.f = 100;

}

} // class MainThread

// thread T1, T2

class ChildThread implements Runnable {

Obj a, b, c;

public void run() {

S30:

S31: synchronized (a) {

S32: MainThread.m1(b);

S33: m2(c);

} // synchronized

S34:

}

public void m2(Obj w) {

S40:

S41: Obj z = new Obj(...);

S42: z.f = ...

}

} // class ChildThread

Figure 5-1: Example program for static datarace analysis.
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AccessesMayConflict(x, y) = true if x and y could possibly access the same

memory location and either x or y writes the location. We use information from a

may points-to analysis to determine this condition. This analysis would determine

whether MainThread.x and ChildThread.b (for some ChildThread instance) can be

aliased in the program from Figure 5-1, for example, in checking whether statements

S18 and S20 can race.

MustSameThread(x, y) = true if and only if x and y are always executed by

the same thread. To compute this condition, we use must points-to information for

thread objects. For Figure 5-1, this analysis would determine that

MustSameThread(S18, S20) = false since S20 can be executed by child threads T1

and T2.

MustCommonSync(x, y) = true if and only if x and y are always executed while

holding some common synchronization object. We use must points-to information for

synchronization objects to compute this condition. The computation of this condition

would determine whether the synchronization objects used in statements S15 and S31

from Figure 5-1 are always the same, for example.

5.1.3 Interthread Control Flow Graph

The interthread control flow graph (ICFG) is a detailed interprocedural representation

of a multithreaded program used in performing static datarace analysis. Nodes in the

ICFG represent instructions, with distinguished entry and exit nodes for methods

and synchronized blocks. Edges represent four types of control flow: intraprocedu-

ral, call, return, and start. The first three types of edges are found in a standard

interprocedural control flow graph and are referred to as intrathread edges. A start

edge is an interthread edge from an invocation of the method Thread.start() to the

corresponding run() method which executes in the new thread. The target entry

node of a start edge is called a thread-root node. An ICFG path which only includes

intrathread edges is an intrathread path, while a path which includes some interthread

edge is an interthread path. The ICFG for the program from Figure 5-1 can be seen

in Figure 5-2(A) (dashed edges are start edges).
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Figure 5-2: Interthread Control Flow Graph (A) and Interthread Call Graph (B) of
the Example Program in Figure 5-1.

For scalability when analyzing large programs, an abstraction of the ICFG called

the interthread call graph (ICG) is utilized. An interthread call graph is similar to

a standard call graph. Distinguishing features of the ICG are the start edges seen

in the ICFG and separate nodes for synchronized blocks. Figure 5-2(B) shows the

ICG for the program from Figure 5-1. The nodes from the ICFG which have been

combined are indicated by dashed boxes in Figure 5-2(A).

5.1.4 Points-To Analysis

Here we describe how we use points-to analysis to compute the conditions described

in section 5.1.2. Our points-to analysis is a flow-insensitive, whole program analysis

which operates as follows. For each allocation site of the program, a unique abstract

object is created, representing all the concrete objects created at the allocation site at

runtime. We compute the set of possibly referenced abstract objects for each access in

the program. So, if for two access statements, the intersection of the abstract object

set associated with each statement is non-empty, the statements may access the same
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memory location at runtime.

A more expensive analysis is necessary to compute precise must points-to informa-

tion for a program. We employ a simple but very conservative must points-to analysis

based on examining statements which can execute at most once in a given execution,

single-instance statements. If an allocation site is a single-instance statement, its

associated abstract object is a single-instance object. An access statement which can

only reference one single-instance abstract object is associated with the object by the

must points-to relation.

Let the must and may points-to sets for statement x be MustPT (x) and

MayPT (x), respectively. Then, AccessesMayConflict(x, y) from Equation 5.1 can

be computed as follows:

AccessesMayConflict(x, y) = (MayPT (x) ∩MayPT (y) 6= ∅) (5.2)

∧ (field(x) = field(y))

∧ (IsWrite(x) ∨ IsWrite(y)),

where field(x) is the field accessed by x and IsWrite(x) = true iff x is a write.

To compute MustSameThread(x, y), we use must points-to information and the

program’s ICFG. Let ThStart(u) be the set of thread-root nodes in the ICFG such

that for all v ∈ ThStart(u), access u is reachable from v through an intrathread

ICFG path. Then, the following equations will compute MustSameThread(x, y):

MustThread(u) =
⋂

v∈ThStart(u)

MustPT (v.this)

MustSameThread(x, y) = (5.3)

(MustThread(x) ∩MustThread(y) 6= ∅),

where v.this denotes the this pointer of thread-root node v.

Finally, MustCommonSync(x, y) can be computed using the program’s ICG and

must points-to information. We first compute MustSync(v), the set of abstract

objects which must be locked for any execution of v. For each node n in the ICG,

let Synch(n) = true if and only if n represents a synchronized method or block.

Also, let un be the statement which accesses the synchronization object for n if

42



Synch(n) = true, and let Pred(n) be the set of intrathread predecessors of n in

the ICG. MustSync(v) can be found by computing the following set of dataflow

equations:

Gen(n) =





MustPT (un) if Synch(n)

∅ otherwise

SOn
o = SOn

i ∪Gen(n), SOn
i =

⋂

p∈Pred(n)

SOp
o

MustSync(v) = SOn
o ,∀v ∈ n.

Given the MustSync relation, we can now easily compute MustCommonSync(x, y):

MustCommonSync(x, y) = (5.4)

(MustSync(x) ∩MustSync(y) 6= ∅).

Combining results from Equations 5.2, 5.3, and 5.4, we compute the IsMayRace

condition from Equation 5.1.

5.1.5 Extending Escape Analysis

Escape analysis typically aims to identify those objects which are accessed by exactly

one thread during any execution of a program, often called thread-local objects. Since

thread-local objects cannot be involved in dataraces, accesses to thread-local objects

do not need to be instrumented for datarace analysis, often giving a large savings in

runtime overhead.

In some cases, an object is not strictly thread-local as defined above, but in a sense

the object still does not “escape.” For example, when a child thread performs some

computation, the state of the computation is often held in fields of the child thread

(which extends java.lang.Thread) which were initialized by the parent thread at

construction time. The objects referenced by these fields are not thread-local, since

the parent thread initialized them, but in many cases the objects still cannot be

involved in dataraces. To identify this case statically and therefore further decrease

the cost of dynamic datarace detection, we introduces the notion of a thread-specific

object.
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Thread-specific objects can be formally defined as follows. If an object o is thread-

local to thread t, then it is also thread-specific to t. Also, o is thread-specific to t if

every access to o is done by t or by the parent thread p that constructs t, such that

p accesses o only before the completion of t’s construction and t’s construction and

running do not overlap. We have implemented an approximate algorithm for finding

thread-specific objects, and we use this information to exclude statements which only

access thread-specific objects from any statement pair in the potential datarace set.

We plan to do more work to generalize the notion of thread-specificity and develop

better algorithms for statically detecting such conditions.

5.2 Instrumentation Elimination

Our second compile-time optimization technique stems from the weaker-than relation

defined in Chapter 3. If the access events generated by instrumentation for a given

statement will always be ignored because of other weaker events, there is no need to

instrument that statement. In this section, we describe how we extend the weaker-

than relation to instrumentation statements and employ a loop peeling transformation

to avoid this sort of unnecessary instrumentation.

5.2.1 Static Weaker-Than Relation

The static weaker-than relation extends the notion of weaker-than to instrumentation

for program statements, and can be defined as follows. Given an instrumentation

statement S, let Events(S) be the set of access events generated by S in a given

execution. Also, we define Exec(Si, Sj) as follows:

Definition 1. For statements Si and Sj, Exec(Si, Sj) is true iff (1) Si is on ev-

ery intraprocedural path starting at method entry containing Sj and (2) no method

invocations exist on any intraprocedural path between Si and Sj.

The first part of the definition represents the condition that for each execution

of statement Sj, there exists a corresponding execution of statement Si, and the sec-
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ond part conservatively avoids the case where a new thread could be started with a

start() invocation between Si and Sj. The static weaker-than relation on instru-

mentation statements is defined as follows:

Definition 2. Si is weaker-than Sj, written as Si v Sj , iff in all possible executions,

Exec(Si, Sj)∧ ∃ei ∈ Events(Si) | ∀ej ∈ Events(Sj) | ei v ej, with the relation ei v ej

defined in Chapter 3.

Computing the condition Si v Sj for arbitrary Si and Sj would require a complex

and expensive interprocedural analysis. Instead, we employ a conservative intrapro-

cedular analysis for determining Si v Sj when Si and Sj belong to the same method.

We model the instrumentation of an access instruction with the pseudo-instruction

trace(o, f, L, a). o is the accessed object, f is the field of o being accessed, L is the

set of locks held during the access, and a is the access type (READ or WRITE). If

the access is to a static field, then o represents the class in which the field is declared,

and if the access is to an array, then f represents the array index. All operands of

a trace instruction are uses of their values. Given no other information, we insert

trace instructions after every memory access statement in the program. If the static

datarace analysis from Section 5.1 has been run, we use its output to only instrument

instructions which can possibly be involved in a datarace. Also note that no thread

information is represented in trace instructions, since we do not optimize across thread

boundaries and information about the current thread is always available at runtime.

After trace instructions have been appropriately inserted, we attempt to elim-

inate some of them using the static weaker-than relation. Given trace statements

Si = trace(oi, fi, Li, ai) and Sj = trace(oj, fj, Lj, aj), the condition Si v Sj can

be computed as the conjunction of easily verifiable conditions (notation will be ex-

plained):

Si v Sj ⇐= dom(Si, Sj) ∧ ai v aj ∧ outer(Si, Sj)

∧valnum(oi) = valnum(oj) ∧ fi = fj.

To appromixate the Exec(Si, Sj) condition, we use the dominance relation between

program statements [19]. dom(Si, Sj) = true if and only if Si is on every program path

45



from the entry of the method to Sj. We also need to show that Si will always produce

some access event ei weaker than all events ej produced by Sj. Recall the conditions

used to check that ei v ej: ei.t v ej.t, ei.a v ej.a, ei.L ⊆ ej.L, and ei.m = ej.m.

Since our analysis is intraprocedural, we know ei.t = ej.t, and ai and aj can be used

to directly check that ei.a v ej.a. We use the nesting of Java’s synchronization blocks

to verify ei.L ⊆ ej.L, verifying that Sj is at the same nesting level of synchronization

blocks as Si or nested within Si’s block (written outer(Si, Sj)). Finally, to check the

condition ei.m = ej.m, we verify that valnum(oi) = valnum(oj), where valnum(oi)

is the value number of object reference oi [3], and that fi = fj.

5.2.2 Implementation

Our instrumention insertion and elimination passes are implemented as part of the

Jalapeño optimizing compiler infrastructure. We created a new high-level interme-

diate representation (HIR) instruction corresponding to trace, and a pass inserts

them into each method as described above. After insertion, the HIR representation is

converted to static single assignment (SSA) form, and the dominance relation is com-

puted [3]. Then, the elimination of trace instructions based on the static weaker-than

relation is perfomed, utilizing information an existing global value numbering phase.

Note that in our implementation, trace pseudo-instructions are modelled as having

an unknown side effect so that they are not incorrectly eliminated by the optimizing

compiler as dead code.

In a later phase (still operating on HIR), trace pseudo-instructions are expanded

to calls of datarace detection methods. We force Jalapeño to inline these calls for

efficiency. After inlining, some general optimizations such as constant propagation

are again applied to further improve the performance of the instrumentation. Finally,

the HIR is converted to lower-level intermediate forms and eventually assembled by

the compiler, with no further instrumentation-specific optimization.
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5.2.3 Loop Peeling

Multiple executions of a loop body can often generate many ignorable access events.

Consider the loop from statement S10 to statement S13 in Figure 5-3. The first

execution of S13 generates a non-redundant access event, but in later loop iterations,

the events generated by S13 will be stronger than the event generated in the first

iteration, and can therefore be ignored. However, statically eliminating the generation

of the redundant events is non-trivial. S13 cannot be eliminated completely using our

existing analysis based on static weaker-than, since in the first iteration of the loop

its generated access event is non-redundant. We also cannot apply the standard loop-

invariant code motion technique to move S13 outside the loop. Statement S11 is

a potentially excepting instruction (PEI), meaning it can throw an exception which

will cause an immediate exit from the loop body. PEI’s appear frequently in Java

because of null-pointer and array bounds checks. If S11 throws an exception in the

first execution of the loop body, then S13 would never execute, so moving S13 outside

the loop is unsafe.

To handle loops which generate many redundant access events, we perform loop

peeling on the program. Loop peeling transforms a loop so that a copy of the loop

body executes in the first iteration, while the remaining iterations execute the original

loop body. The effects of loop peeling combined with our existing pass to eliminate

redundant instrumentation can be seen in statements S20 through S26 of Figure 5-

3. Statement S20 is a guard for the case in which the loop body never executes,

and the loop condition in statement S24 is modified appropriately to account for

the execution of the first loop iteration in statements S21 through S23. The same

exception handler is utilized for statements S21 and S25. After loop peeling, the trace

statement inside the loop body can be eliminated since the trace statement in the

peeled copy is statically weaker. Therefore, the write to a.f is reported at most once

after the transformations, achieving the goal of statically eliminating all redundant

event generation from the loop.

Our loop peeling transformation is currently implemented as a bytecode to byte-
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// Before optimization.

S00: A a;

S10: for(...) {

S11: PEI

S12: a.f = ...;

S13: trace(a, f, L, W)

}

// After optimization. Redundant trace

// statements have been eliminated.

S20: if (...) {

S21: PEI

S22: a.f = ...;

S23: trace(a, f, L, W);

S24: for (...) {

S25: PEI

S26: a.f = ...;

}

}

Figure 5-3: Example of Loop Peeling Optimization

code transformation which is applied before all other phases. The implementation

näively peels all loops, which results in a code size increase exponential in the loop

nesting depth. We plan to address this issue in the future by using profiling to only

peel “hot” loops which have the greatest impact on performance.

5.3 Interactions with Ownership Model

The ownership model we use to handle the orderings implied by thread creation,

discussed in section 2.1.4, can interact in subtle ways with optimizations based on

the weaker-than relation. Here we discuss in more detail how the ownership model is

implemented and what effects it has on the guarantees of our race detector while our

other optimizations are enabled.

To track memory locations which are in the owned state, only accessed by one

thread, we maintain for each location information about its owner thread. When a

location m is first accessed by a thread t, we sets its owner thread to t, and we do

48



not consider the initial access for dataraces. Any subsequent accesses to m by t while

it remains the owner thread are also not considered for datarace detection. When

some different thread t′ accesses m, we set the owner thread information for m to

⊥, indicating that m has been accessed by multiple threads, and we begin to track

accesses to m for datarace detection (including the initial access of t′). At this point,

m is in the shared state, and all subsequent accesses to m are checked for dataraces.

Unfortunately, our definitions of the weaker-than relation do not consider the

behavior of the ownership model. Therefore, it is possible that even if event ei is

weaker than event ej, it is not safe to eliminate ej if we want to maintain our reporting

guarantees. The bad case occurs when ei.m is in the owned state when ei occurs but

changes to the shared state for when ej occurs, since in this case ej could be a datarace

with another access while ei cannot be.

For the dynamic cache discussed in Chapter 4, this boundary case can be handled

in a straightforward manner by flushing all cache entries for a location m when it

changes from the owned state to the shared state. Unfortunately, fixing the instru-

mentation elimination pass based on the static weaker-than relation is not as simple.

Statically, it is very difficult to prove that between two statements Si and Sj such

that Si v Sj, the accessed memory location m cannot change from owned to shared

dynamically. The only way to completely eliminate instrumentation in a safe way

is to use post-dominators instead of dominators in approximating our Exec(Si, Sj)

condition. Using post-dominators, the weaker statement Si would occur later in the

method, and we would eliminate instrumentation for the earlier statement Sj. How-

ever, post-domination is an extremely weak notion in Java, since almost all bytecode

instructions can throw an exception and therefore no guarantees can be made about

the execution of subsequent statements.

Our implementation actually ignores the interactions between weaker-than based

optimizations and the ownership model, meaning that the possibility exists of our

datarace detector failing to report bugs because it has unsafely suppressed instrumen-

tation or accesses. This potential flaw is ameliorated by two considerations. First, we

ran all of our test programs with and without the unsafe optimizations several times,
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and no new dataraces were reported with the optimizations disabled, indicating that

this problem may be very minor in practice. Second, Chapter 6 will show that while

the instrumentation elimination optimization gives an important improvement for

one scientific benchmark, in general it does not seem to be as effective as the static

datarace analysis or the dynamic cache in reducing overhead for the benchmarks

written in a more object-oriented style. So, if the type of false negatives described in

this section were actually a serious concern, it seems likely that the instrumentation

elimination could just be disabled with a relatively mild effect on performance.
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Chapter 6

Results

Here we present results for a preliminary implementation of our datarace detection

algorithm and optimizations, applied to several test programs. Our results show that

our methods are both efficient, with overhead ranging from 13% to 42% for our tests,

and precise, with almost all reported dataraces being truly unsynchronized accesses.

6.1 Test Programs

Table 6.1 gives information about our test programs. mtrt is part of the standard

SPECJVM98 benchmark suite, and the other tests were obtained from the authors

of [23]. sor2 is a modified version of the original sor benchmark, with some loop-

invariant expressions for calculating array subscripts manually hoisted out of inner

loops. The modified program is semantically equivalent to the original, and the

optimizations could have been performed automatically by a compiler with an in-

traprocedural analysis. However, Jalapeño did not implement the optimization, and

our performance is significantly affected by its application. Also, elevator has been

slightly modified to terminate when its computation completes rather than its orig-

inal behavior of just hanging. Finally, note that elevator and hedc are interactive

benchmarks and therefore not CPU-bound, so we do not report any performance

overheads for them.
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Example Lines of Code Num. Dynamic Threads Description
mtrt 3751 3 MultiThreaded Ray Tracer

from SPECJVM98
tsp 706 3 Traveling Salesman Problem

solver from ETH [23]
sor2 17742 3 Modified Successive

Over-Relaxation benchmark
from ETH [23]

elevator 523 5 A real-time discrete event
simulator

hedc 29948 8 A Web-crawler application
kernel developed at ETH [23],
using a concurrent
programming library by Doug
Lea.

Table 6.1: Benchmark programs and their characteristics

6.2 Accuracy

Table 6.2 indicates the number of races reported by our datarace detection algorithm

and some of its variants. Note that while we normally report races for each relevant

field of an object, the table lists only the number of distinct objects for which races

are reported, for comparison purposes. The “Detected” column gives the number

of dataraces reported by our full algorithm, and the “True” column indicates how

many of these objects were actually accessed in an unsynchronized manner. The

“FieldsMerged” column lists the number of objects on which we would report races

if we did not distinguish their fields (as in [23]). Finally, if we disabled our ownership

model for approximating the orderings enforced by Thread.start(), we would report

races on the number of objects indicated in the “NoOwnership” column.

Nearly all the races we report with our full detection algorithm correspond to

truly unsynchronized accesses to shared memory. In tests for which this is not the

case (tsp and sor2), higher-level synchronization which our lockset-based datarace

model does not capture is utilized. tsp uses synchronized shared queues (producer-

consumer), and sor2 uses barrier synchronization. As is suggested in Section 2.1.3, a

datarace detector based on the happened-before relation would recognize these higher-
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Example Detected True FieldsMerged NoOwnership
mtrt 2 2 2 12
tsp 5 1 20 241
sor2 4 0 4 1009
elevator 0 0 0 16
hedc 5 5 10 29

Table 6.2: Number of Objects With Races Reported

level synchronizations and would not report the false dataraces seen in our method.

However, our data indicates that this problem is small, and our low performance

overhead seems to justify our slightly decreased precision.

6.2.1 Detected Dataraces

Two dataraces are reported for mtrt. The first is on a field whose value is not used,

RayTrace.threadCount, and therefore does not affect correctness. The second race

is on the ValidityCheckOutputStream.startOfLine field in the SPEC test harness,

and it could lead to incorrect line breaks in the output.

The tsp test program has a serious datarace on its TspSolver.MinTourLen field

which could lead to the reporting of incorrect values in its output. This datarace was

reported in previous work [23].

The dataraces reported for hedc have two main causes. A field containing the size

of a thread pool is accessed without appropriate locking, but this datarace does not

affect the correctness of the program. The second cause, unsychronized accesses to

the Task.thread field, is more serious, and could lead to a NullPointerException

with the appropriate thread schedule. This datarace is very subtle and would be

extremely difficult to find with normal testing and debugging. Previous work [23]

mistakenly characterized this datarace as benign, indicating the trickiness of the bug

and the need for precision in a datarace detection tool (their tool reported over 100

dataraces for the same test case).
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6.2.2 Datarace Definition Comparison

The “FieldsMerged” column of Table 6.2 indicates the practical difference between

the common lock datarace definition we use and object races, previously discussed

in Section 2.1.2. The numbers in the “FieldsMerged” column are a lower bound on

the number of object races in the test runs, since we do not consider the effects of

treating method calls as writes. For hedc, not distinguishing fields leads to spuri-

ous datarace reports for the LinkedQueue class, which has some fields accessed with

synchronization and others which are not. We also report spurious races for the

MetaSearchRequest class, in which some fields are thread-local and others are ac-

cessed by multiple threads. Given the mental effort required to investigate even one

datarace report and understand the associated program behavior, we feel that the

extra precision of the common lock datarace definition is practically necessary for

making a useful datarace detection tool.

The only practical difference we observed between the common lock datarace def-

inition and the unique lock definition used in [24] and [23] stems from our handling

of Thread.join(), described in Section 2.1.4. In mtrt, two child threads access I/O

statistics while holding a common lock syncObject, and then a parent thread ac-

cesses the same statistics after calling join() on each of the child threads. If S1 and

S2 were the pseudolocks we introduced for the child threads, then the locksets held

while accessing the statistics variables were {S1, syncObject}, {S2, syncObject}, and

{S1, S2}. Since no unique lock protects the shared variables, these accesses are in-

correctly identified as a datarace under the unique lock datarace definition, while the

common lock definition correctly identifies the accesses as safe.

The necessity of handling thread creation orderings is illustrated by the “NoOwn-

ership” column of Table 6.2. Most of our test programs use a parent thread to

initialize data which is then passed to a child thread without synchronization, which

leads to many false datarace reports without our ownership model. Our handling of

join() with pseudolocks has a less dramatic effect on accuracy, probably because

join() is more rarely used in Java. However, for sor2, which uses join() to safely
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Example Base Full NoStatic NoDominators NoCache
mtrt 9.0s 10.9s (20%) Out of Memory 10.9s (21%) 11.4s (26%)
tsp 10.0s 14.2s (42%) 27.5s (175%) 15.7s (57%) 382s (3722%)
sor2 2.4s 2.7s (13%) 2.7s (13%) 9.8s (316%) 3.2s (37%)

Table 6.3: Runtime Performance

read many values from an array, another 1000 false dataraces are reported if our

pseudolock technique is not employed.

6.3 Performance

The runtime performance of our algorithm with different sets of optimizations enabled

is detailed in Table 6.3. The “Base” column denotes performance with no datarace

detection performed, and the “Full” column gives the runtime for performing datarace

detection with all optimizations enabled. The other columns reflect runs with a single

optimization disabled. “NoStatic” disables the static datarace analysis described in

Section 5.1. The instrumentation elimination and loop peeling passes described in

Section 5.2 are turned off for the “NoDominators” column. Finally, the dynamic

cache described in Chapter 4 is disabled for the “NoCache” column.

Our performance numbers were obtained as follows. Each test was run five times

in one execution of the Jalapeño virtual machine, and the best runtime is reported

(thereby negating compilation costs). Jalapeño’s full optimizing compiler was utilized,

but no adaptive compilation was performed. We used a 1GB heap to help ensure that

no garbage collection occurred during the executions. The machine used for the tests

ran AIX and had a single 450MHz POWER3 CPU.

As seen in Table 6.3 and Figure 6-1, our overheads with all optimizations enabled

are quite low, less than those reported for any previous dynamic datarace detection

system. No single optimization seems to obviously be the most effective, as different

optimizations dramatically affect performance on different benchmarks. mtrt con-

tains a large number of accesses which can never participate in dataraces, making our
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Figure 6-1: A bar chart view of the performance results. The “no inst elim” bars
correspond to the “NoDominators” column in Table 6.3.

static datarace analysis critical (without the analysis, the program generates so many

access events that we run out of memory before termination). Programs with many

loops over arrays, such as sor2, benefit greatly from loop peeling and instrumentation

elimination. Finally, our dynamic cache becomes important when our other optimiza-

tions are less effective, such as for tsp which has many recursive method calls and

loops containing method calls that make static analysis more difficult.

Our use of Jalapeño makes measuring space overhead difficult, as Jalapeño mixes

program and virtual machine data in one heap. Our worst memory overhead was

for the tsp benchmark, with approximately 500K of memory used by our instrumen-

tatation. This memory overhead includes about 16K of memory per thread for our

dynamic caches, plus storage of 7967 trie nodes which held history for 6562 memory

locations. Our trie packing scheme greatly decreases memory overhead in some cases,

with almost all tries representing the maximum of 32 possible memory locations.
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Chapter 7

Related Work

As indicated in Chapter 1, there is a large body of past work on datarace detection.

Much of the earlier work targeted programs that utilized a fork-join parallelism model.

The fork-join model for multithreading allows for simpler reasoning about which

computations can be executing in parallel, since each forked child thread must be

joined at some later point. In Java, join() need not be invoked on a child thread, so

in many cases analyses must conservatively assume that the child thread may run in

parallel with any code of the parent thread executing after the child thread is started.

Because of the differing models of parallelism, a large portion of previous work is

not directly applicable to our target object-oriented applications. Also, much of this

past work defined dataraces based on the happened-before relation [18], which we do

not employ in our work. For an excellent summary of much of the work on datarace

detection for fork-join programs, see [15].

Some of Edith Schonberg’s work on dynamic datarace detection contains ideas

similar to the ones we employed in our system [25, 13]. In [13], the idea of a lock

cover is introduced, corresponding to what we call a lockset, and the advantages of

using lock covers in addition to the happened-before relation for defining dataraces

is discussed. Also, an optimization called subtraction which has many similarities to

our notion of weaker-than is described. However, subtraction is only described as an

optimization to the datarace detection algorithm itself, while we use weaker-than in

several other stages of our race detection system to improve performance. Also, no
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implementation details or overhead results are given in Schonberg’s work.

Eraser was the first dynamic datarace detection system to use a purely lock-based

approach and target object-oriented programs [24]. As discussed in Chapter 2, one

difference between our system and Eraser is that we detect common lock dataraces,

while Eraser detects unique lock dataraces. In practice, this only seems to make a

difference because of our handling of join, which is not handled by Eraser (see Chap-

ter 6 for details). Our ownership model is based on the model employed in Eraser.

Eraser works independently of the source language of the program by instrumenting

compiled binaries, while our current implementation is only for Java programs. The

runtime overhead of Eraser is quite large, from 10× to 30×, and [24] states that low

overhead was not an important goal of their system.

The object race detection system of Praun and Gross uses several techniques to

greatly decrease its overhead [23]. Like our system, Praun and Gross use a static

escape analysis to detect statements which cannot be involved in dataraces and filter

them from consideration. Then, their system dynamically detects dataraces at the

object level instead of at the granularity of individual memory locations. These opti-

mizations lead to an overhead of 16% to 129% for the same benchmarks that we used,

with less than 25% space overhead. But, as discussed in Chapter 6, the coarseness of

the object race definition leads to the reporting of many false positives, which we feel

greatly hampers the usefulness of any debugging tool. Object race detection also uses

an owernship model similar to Eraser’s for handling thread initialization. Finally, our

static analysis goes beyond escape analysis to simulate dynamic datarace conditions

statically, in some cases allowing us to make our set of potentially racing instructions

smaller than what would be found with just escape analysis.

Christiaens’s TRaDe system differs from other recent systems in its use of the

happened-before relation for detecting dataraces [12]. TRaDe’s overhead is higher

than ours, approximately 4× to 15× over an interpreter with about 3× space over-

head. Also, TRaDe does no static analysis, but instead performs escape analysis

dynamically to decrease overhead. Two recent commercial products which provide

datarace detection systems are AssureJ [17] and JProbe [16]. Unfortunately, few tech-
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nical details could be discovered about these systems. The time overhead for AssureJ

has been measured as 3× to 30×, while JProbe’s large memory requirements make

it impractical for use on programs of reasonable size [12].

Static datarace detection for Java has been an active area of recent research.

Static methods are appealing because they can soundly ensure that a program is

free of dataraces, while dynamic approaches cannot. Our static datarace analysis

requires no annotations and is based on escape and points-to analysis [10]. Other

static detection schemes for Java require either annotations or the use of alternate

constructs for shared data. Flanagan and Freund use type-based equivalence of lock

variables with annotations in their static tool for Java [14]. Bacon’s Guava is a dialect

of Java which disallows dataraces [4]. Guava forces all shared objects to be instances

of the Monitor class category, and proper synchronization to these Monitor objects

is enforced statically, thereby eliminating the possibility of dataraces. Boyapati and

Rinard have developed a system of type annotations for Java which ensure that

a well-typed program is datarace-free [5]. Their system is also flexible in that it

allows for a generic class to be subclassed with different protection mechanisms, so

for example the thread-safe Vector class and the unsafe ArrayList class from Java’s

class libraries could both be derived from the same base class. Past work on static

datarace analysis for languages besides Java include Warlock [26], an annotation-

based tool for C which supports lock-based synchronization, and Aiken and Gay’s

system for detecting dataraces in SPMD programs [1].
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Chapter 8

Conclusions and Future Work

We have presented a novel approach to dynamic datarace detection for object-oriented

programs. Our approach is precise, with almost all reported dataraces corresponding

to actual bugs in our test programs. We also employ complementary static and

dynamic optimization techniques to greatly decrease the overhead of our system to

between 13% and 42% for our test cases, well below previous work. We believe that

our techniques could be used as the basis for performing datarace detection in a

production system.

Many interesting issues remain for future work. One drawback of our approach is

its use of whole program static analysis to decrease overhead. This analysis may not

scale well for large programs, and it requires that the whole program be presented

to it as input, which may not be available in some cases. In the future, we hope to

investigate methods for converting this whole program static analysis to an analysis

performed at JIT compilation time, perhaps for only parts of the program. Ideally,

we would be able to get many of the benefits of the whole program analysis without

too much extra runtime overhead. We also think that in general our approach of

applying both static and dynamic analysis could be useful for other problems such as

deadlock detection and immutability analysis.

Also, we are working on a new infrastructure for integrating our datarace detec-

tion techniques with the record/replay techniques of DejaVu [7] and applying these

techniques to a broader range of programs. This platform could provide many new
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debugging techniques, such as taking a detected datarace and creating a malicious

thread schedule that illustrates the dangerous nature of the bug. We hope to integrate

our various bug detection techniques into a powerful platform for reasoning about the

behavior of multithreaded programs.
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