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Abstract

Although the terahertz domain has been explored scientifically, components, especially
sources, are needed to enable further exploration of the frequency range. A photomixer
generates coherent THz radiation through optical heterodyne down-conversion. A terahertz-
frequency beat signal on an optical carrier illuminates an ultrafast photoconductor, mod-
ulating the conductance. The time-varying conductance together with a constant voltage
bias generates time-varying current at the beat frequency. Low-temperature-grown gallium
arsenide (LTG-GaAs) is the photoconductive material of choice, because its short carrier
lifetime allows the conductance to be efficiently modulated at THz frequencies.

The distributed photomixer described in this thesis is a new style of LTG-GaAs photo-
mixer which uses an optical waveguide to couple the beat signal to an active area which
is large relative to the terahertz wavelength. This large, traveling-wave mode active area
distributes the heat load from absorbed optical power and ohmic heating from photocurrent
and avoids the ��� rolloff associated with a lumped-element photomixer’s intrinsic capac-
itance and the load resistance. The distributed photomixer structure consists of coplanar
strips (CPS) fabricated on top of a dielectric strip-loaded waveguide that guides the optical
beat. The conductance of a thin layer of LTG-GaAs between the CPS and optical guide is
modulated by the weakly coupled optical signal. The THz conductance wave between the
dc-biased CPS creates a THz electromagnetic wave which propagates along the CPS. To
velocity match the THz and optical waves, the CPS are periodically loaded with thin elec-
trodes that add a small shunt capacitance to the line. The CPS are terminated in a planar
antenna that radiates the THz wave.

This thesis describes the design, fabrication, and testing of waveguide-coupled dis-
tributed photomixers. The photomixers demonstrated in this thesis operated in traveling-
wave mode and produced 100 nW of power at 0.3 THz and the power output rolled off at
6 dB/octave until 1.4 THz. A model which qualitatively and quantitatively predicts the de-
vice performance as a function of frequency, illumination and voltage bias is developed. A
general design methodology, detailed discussion of fabrication steps and possible methods
to increase output power are also presented.

Thesis Supervisor: Qing Hu

3



Title: Professor

4



Acknowledgments

I first want to express my gratitude to my advisor, Professor Qing Hu. Thank you for giving

me the opportunity to come to MIT and embark on this fantastic journey. Thank you also

for supervising me closely on my Masters work and being my advisor for my PhD work at

Lincoln Lab.

Thank you to Simon Verghese for giving me the opportunity to work at MIT Lincoln

Laboratory and for being a great mentor. Many thanks are also due Alex McIntosh for

all the prodding on project management and for the exceptional assistance in experimental

technique. Thank you to both Simon and Alex for providing guidance and being patient

while I learned the ins and outs of becoming an experimentalist simultaneously in the opti-

cal and far-infrared domains. Many thanks to other folks at Lincoln . . . to Len Mahoney and

Karen Molvar for all the fabrication work . . . to Steve Calawa for the wafer growth . . . to

Joe Donnelly who knew the answer to any device question I ever asked him . . . to every-

one in the group office, Jon, George, Paula, and Mary for making sure that both technical

expertise and funding was available.

I also owe my gratitude to Qing for assembling a dynamic, intelligent research group.

Ben Williams and I spent many hours discussing physics, history, politics, philosophy, and

current events. Many other former and current members of Qing’s group have provided

me with both useful and enjoyable conversations: Dr. Ir. Gert de Lange, Noah Zamdmer,

Kostas Konistis, Farhan Rana, Hans Callebaut, Juan Montoya, Arif Rahman, Bin Xu, Brian

Riely, and Ilya Lyubomirsky.

Thank you to “the boys”, Adam, Amit, Constantine, Dave, Luc, and Zolti, my connec-

tion to the Aero/Astro, Computer Science, and Nuclear departments as well as to many

good times. You are all inspirations to me as researchers and friends.

Thank you to “Coach” Garcia for all the advice on training, racing, car repair, home im-

provement and so on and also to Joe and Mark for their advice and abuse over the thousands

of miles we all ran together.

I owe my thanks also to many non-terahertz folks . . . to the family members and family

friends who have prayed for me, especially, Grandmother Duerr, Jane, Rosemary, Cindy,

5



Marty, Tweedie, Brenda, Julie, Glenda, Nancy . . . to all my friends at Park Street . . . to the

Cafe team who always supported me . . . to my small groups who did the same . . . to Ken

and to Norris who said little but meant much . . . to Chris Sherwood for all the advice . . . to

Julie, Amy, Eva, and Toni for faithfully praying for so long . . . to Victoria & Michael and

Sean & Charlene for the same . . . to Lee, who always checked up on me and made sure I had

a little fun . . . to Johnny, who always understood . . . to Alex, who also always understood

but for different reasons . . . to Chris, who is much of a kindred spirit even though we are

also so different . . . to Jonathan, who also always understood for yet different reasons and

with whom I have shared much . . . and to Tom, whom I have known lo these many years

of grad school and from whom I have learned so much about friendship and faith. These

few words seem so inadequate, and I have neglected to mention so many people, but I have

greatly appreciated and benefited from all of the friendships have developed during the past

7 years in Boston.

Mom and Dad, I cannot possibly express the depth of my gratitude to you. You gave

me a firm foundation and loving home, read Make Way for Ducklings and From Atoms to

Quarks to me, and sent me off to become my own person. Anything I have accomplished

in life is because of the support and love that you have always given me unconditionally.

Finally, to the One who is the Alpha and Omega, my faithful Savior, Jesus Christ . . .

Soli Deo Gloria

6



To my parents

who always had faith





Contents

1 Introduction 23

1.1 Applications of Terahertz Technology . . . . . . . . . . . . . . . . . . . . 24

1.2 Enabling Terahertz Technology . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.1 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Photomixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.1 Photomixing Theory . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.2 Terahertz Photomixers . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Distributed Photomixer Design 43

2.1 Optical Waveguide Design . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Optical Waveguide Modeling . . . . . . . . . . . . . . . . . . . . 45

2.1.2 Comparison of Modeling Techniques . . . . . . . . . . . . . . . . 47

2.1.3 Dielectric Waveguide Design . . . . . . . . . . . . . . . . . . . . . 51

2.2 Terahertz Waveguide Design . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.1 Coplanar Strips . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.2 Quasistatic Calculation for Electrode Design . . . . . . . . . . . . 65

2.2.3 Method-of-Moments Calculation for Electrode Design . . . . . . . 68

2.3 Antenna Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3.1 Bowtie Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3.2 Dipole Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9



3 Distributed Photomixer Fabrication 77

3.1 Mask Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.1 Layer Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.3 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Photographs and Micrographs . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Device and Material Characterization 91

4.1 LTG-GaAs Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1 Absorption Coefficient Measurement . . . . . . . . . . . . . . . . 91

4.1.2 Carrier Lifetime Measurement . . . . . . . . . . . . . . . . . . . . 100

4.2 Dielectric Waveguide Characterization . . . . . . . . . . . . . . . . . . . . 107

4.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Responsivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.2 Voltage Dependence . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.3 Optical Power Dependence . . . . . . . . . . . . . . . . . . . . . . 118

4.3.4 Polarization Dependence . . . . . . . . . . . . . . . . . . . . . . . 120

5 Photomixing Performance 123

5.1 Performance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.1 Distributed Photomixer Circuit Model . . . . . . . . . . . . . . . . 124

5.1.2 Loss and Coupling Efficiencies . . . . . . . . . . . . . . . . . . . 125

5.1.3 Performance Prediction . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Terahertz Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 143

10



A Electromagnetic Model for the Dielectric Waveguide 149

A.1 Method of Field Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2 Modeling Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.3 Fill Factor Calculations using the Method of Shadows . . . . . . . . . . . . 159

B Scriber Operation 163

B.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.2 Scriber Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.3 Scribing and Cleaving the Device Wafer . . . . . . . . . . . . . . . . . . . 165

B.4 Turning off the Scriber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C Gratings near resonance 169

C.1 Predictions of the Grating Circuit Model . . . . . . . . . . . . . . . . . . . 170

C.2 Expressions for the Grating Circuit Model . . . . . . . . . . . . . . . . . . 173

D Hardware Drawings 175

11



12



List of Figures

1-1 Equivalent circuit model for a lumped-element photomixer system. . . . . . 31

1-2 Bandwidth plots of lumped-element and distributed (both velocity-matched

and velocity-mismatched) photomixers operating at the same photocurrent

and neglecting carrier lifetime and parasitic (e.g. ohmic) losses. . . . . . . 38

1-3 Response of traveling-wave photomixers with different �����
	 and ����

��� values.

The smooth (dashed) lines represent the response of an infinitely long de-

vice and are provided as symptotes for the behavior of the finite length

devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1-4 Equivalent circuit model for a distributed photomixer system. . . . . . . . . 41

2-1 Schematics of etched dielectric waveguides. . . . . . . . . . . . . . . . . . 44

2-2 Schematic of strip-loaded waveguide. . . . . . . . . . . . . . . . . . . . . 45

2-3 Schematic showing the treatment of a two-dimensional waveguide as the

combination of orthogonal one-dimensional waveguides using the effective

index method. Propagation in the strip-loaded waveguide is in the � direction. 47

2-4 Cross-section of a distributed ridge waveguide showing the design variables. 52

2-5 Absorber fill factor for core of Al ��� ��� Ga ��� ��� As and cladding of Al ��� ��� Ga ��� ��� As

yielding �����! #"$ &%&' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2-6 Mode waist as a function of core layer thickness parameterized by �(�
between the core and cladding layers. . . . . . . . . . . . . . . . . . . . . 56

2-7 Mode waist as a function of strip width parameterized by ��� eff between

the strip and etched sides. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2-8 Mode in �(�)�* +", &-.' and �(� eff �! +", & .'&/0/ waveguide. . . . . . . . . . . . 61

13



2-9 Absorber fill factor and mode extinction length as a function of strip width

for simulations with different relative 132 values for LTG-GaAs but with the

same geometry and same 154 . Absorber fill factors calculated from a one-

dimensional analysis of the strip are shown for comparison. Extinction

length curves use the left axis, while absorber fill factor curves use the right. 62

2-10 Schematic of coplanar strips with infinite substrate. . . . . . . . . . . . . . 63

2-11 CPS impedance as a function of structure parameter. Impedance is also

shown for a gap of 687 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2-12 Radiation loss for different CPS strip widths. . . . . . . . . . . . . . . . . 66

2-13 Schematic of interdigitated electrodes periodically loading CPS. . . . . . . 67

2-14 Schematic of loaded CPS circuit modeled in Momentum. . . . . . . . . . . 68

2-15 Smith chart showing zero-crossing for a through line. . . . . . . . . . . . . 69

2-16 Capacitance added per length of overlap between the electrodes. . . . . . . 70

2-17 Equivalent wave and 9 -parameter representations of transmission line mod-

eled in Momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2-18 Calculated radiation loss for CPS with and without interdigitated elec-

trodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2-21 Variation of dipole impedance with dipole length. Solid curves from Kom-

inami, et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3-1 Bowtie-coupled photomixer SEBL masks. The etch and metal deposition

masks are superimposed. A wire bond to the middle of the antenna pro-

vides bias contact to the bowtie-coupled devices. Different colors denote

different e-beam doses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3-2 Dipole-coupled distributed photomixer SEBL masks. The e-beam align-

ment mark, etch, and metal deposition masks are all superimposed. Differ-

ent colors denote different e-beam doses. . . . . . . . . . . . . . . . . . . . 79

14



3-3 Detail of the device active area in SEBL masks. The etch and metal depo-

sition masks are superimposed. Different colors denote different doses. . . . 80

3-4 Detail of test structure area in SEBL masks. The e-beam alignment mark,

etch, and metal deposition masks are all superimposed. Different colors

denote different doses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3-5 Schematic of the distributed photomixer epitaxial layer structure. . . . . . . 83

3-6 Photographs of undercut during PA-11 etching. . . . . . . . . . . . . . . . 84

3-7 Distributed photomixer processing steps. . . . . . . . . . . . . . . . . . . . 86

3-8 SEM micrograph of bowtie-coupled distributed photomixer showing the

active area, bias lines, and bowtie antenna. . . . . . . . . . . . . . . . . . . 88

3-9 SEM micrograph of end of the active area of a dipole-coupled distributed

photomixer. The strips in the dielectric away from the CPS are the edges

of the region from which LTG-GaAs has been preserved. . . . . . . . . . . 89

3-10 SEM micrograph at an oblique angle of a distributed photomixer’s active

area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3-11 Distributed photomixer interdigitated electrode SEM micrographs. . . . . . 90

4-1 Transmission and reflection experimental setup. . . . . . . . . . . . . . . . 93

4-2 Beam profile from Transmission/Reflection experiment taken with 5- : m

pinhole mounted on translation stage. . . . . . . . . . . . . . . . . . . . . 94

4-3 Transmission and reflection coefficient of dielectric stack. . . . . . . . . . . 96

4-4 Extracted ;�< values showing the effect of an uncertainty in thickness on ;�=
and an uncertainty in measured power on ;?> . . . . . . . . . . . . . . . . . . 97

4-5 Fraction of power absorbed in dielectric stack. . . . . . . . . . . . . . . . . 98

4-6 Experimental setup for autocorrelation lifetime measurement. . . . . . . . . 102

4-7 Autocorrelation trace with fit. . . . . . . . . . . . . . . . . . . . . . . . . . 103

4-8 Optical spectrum of self-modelocked Ti:sapphire laser with Gaussian line-

shape fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

15



4-9 One-dimensional illustration showing the effect of applied electric field on

the capture cross-section of a Coulomb well. The well to the right models

the effect of the nearest neighbor and is a distance @BA from the donor site in

question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4-10 Electron lifetime extracted for autocorrelation experiment for a device withC+D,E8F
m electrode gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4-11 Schematic of test structure measurement. . . . . . . . . . . . . . . . . . . 108

4-12 Waveguide coupling experimental setup. . . . . . . . . . . . . . . . . . . . 109

4-13 Photographs of a slab mode and waveguide mode from distributed photo-

mixer chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4-14 IV curve of waveguide-coupled test structure with
C+D,E8F

m gap at different

input optical power levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4-15 Example fit to photocurrent in extinction length measurement. . . . . . . . 111

4-16 Experimental setup for responsivity measurement. . . . . . . . . . . . . . . 115

4-17 Surface-illuminated test structure current-voltage characteristics. Solid lines

are model and circles are data. . . . . . . . . . . . . . . . . . . . . . . . . 117

4-18 Responsivity of test structures for E field perpendicular to the interdigitated

electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4-19 IV curves for a surface-illuminated test structure for different incident power

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4-20 Responsivity ratio for a
C+D,EGF

m-gap test structure. . . . . . . . . . . . . . . 121

4-21 Depiction of electric field and power distribution between parallel plates. . . 122

5-1 One segment of a SPICE circuit model for the distributed photomixer. The

upper section is the optical guide model. The lower section is the THz CPS

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5-2 Illustration of coupling the optical signal into the distributed photomixer

dielectric waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

16



5-3 Bandwidth comparison between a distributed photomixer with velocity match

between THz and optical wave and distributed photomixer with a THz

wave slower than the optical. See text for comparison with lumped-element

photomixers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5-4 THz experimental setup cartoon. . . . . . . . . . . . . . . . . . . . . . . . 131

5-5 Expanded view of beam-combiner hardware. The rails are not shown. . . . 133

5-6 (a) View of beamsplitter positioning hardware. (b) View of positioning

hardware with rotated goniometer. . . . . . . . . . . . . . . . . . . . . . . 134

5-7 Views of hyperhemispherical lens mount. View on left includes 6 mm di-

ameter extended hyperhemisphere lens with H&I.J flat. . . . . . . . . . . . . 135

5-8 Illustration of coupling the terahertz signal into the bolometer. . . . . . . . 137

5-9 Comparison of measured at predicted distributed photomixer bandwidth

plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5-10 Bandwidth comparison between a bowtie-coupled distributed photomixer

(—) and a log-spiral coupled lumped-element photomixer (- - -). The lumped-

element photomixer data has been scaled down by about a factor of 50. . . . 140

5-11 Bandwidth comparison between a dipole-coupled distributed photomixer

(—) and a bowtie-coupled distributed photomixer (- - -). . . . . . . . . . . 141

5-12 Distributed photomixer dc photocurrent and bolometer voltage as a func-

tion of incident optical power at constant bias voltage of 16 V across a

I+K,L - M m-gap. The optical signal was chopped for lock-in detection of the

THz signal. Recorded optical power and photocurrent values are half their

unchopped values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5-13 Photomixer dc photocurrent and bolometer voltage illustrating the effect of

field dependent carrier lifetime at different frequencies. . . . . . . . . . . . 144

A-1 Plane wave representation of a mode in a dielectric slab waveguide. . . . . 150

A-2 TE mode in a dielectric waveguide views as a plane wave reflection at a

boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

17



A-4 Schematic showing the relationship between field components propagating

through a layer of thickness, d. . . . . . . . . . . . . . . . . . . . . . . . . 153

A-5 Absorber fill factor for core/cladding Al compositions of: a) N+O,P&N / N+O$P&Q ,
b) N+O$R0N / N+OSR0Q , c) N+OUTVN / N#OWTXQ , d) N+O$P0N / N+OZY.N . . . . . . . . . . . . . . . . . . . . 160

A-6 Absorber fill factor for core/cladding Al compositions of: a) N+O$R0N / N+O$P0N ,
b) N+OUTVN / N+OSR[N , c) N+O$R0N / N#O$P.Q , d) N+OSR[N / N+OZY.N . . . . . . . . . . . . . . . . . . . . 161

A-7 Absorber fill factor for core/cladding Al compositions of: a) N+OUTVN / N+O$P0N ,
b) N+OUTVN / N+O$P&Q , c) N+OUTVN / N#O,Y.N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

C-1 Equivalent circuits for gratings in free space. . . . . . . . . . . . . . . . . . 170

C-2 Transmission through a grating on a substrate with \^]_P+OZY.P as a func-

tion of the grating period to wavelength ratio. The traces are transmission

through: the grid in free space ( `V`V` ), a grid and into the substrate as separate

effects ( a�aba ), and the complete model of a grid modified by the substrate

(—). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C-3 Transmission through a grating on a substrate with \�]cP+OZY.P and a coating

with \d]eR as a function of the ratio the grating period to incident wave-

length ratio. The traces are: transmission through: the grid in free space

( `V`V` ), a grid and into the substrate as separate effects ( afafa ), and the

complete model of a grid modified by the substrate (—). . . . . . . . . . . 172

D-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

D-2 Dimensioned adapter for TO3 laser package. Dimensions are in inches. . . 176

D-3 Dimensioned adapter for TO3 laser package. Dimensions are in inches. . . 177

D-4 Dimensioned Silicon hyperhemispherical lens. Dimensions are in millime-

ters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

D-5 Dimensioned upper part of mount for hyperhemispherical lens. Dimen-

sions are in inches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

D-6 Dimensioned base of mount for hyperhemispherical lens. Dimensions are

in inches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D-7 Dimensioned holder for hyperhemispherical lens. Dimensions are in inches. 181

18



D-8 Views of bracket for beamsplitter positioning hardware. . . . . . . . . . . . 182

D-9 Dimensioned bracket for beamsplitter positioning hardware (long side).

Dimensions are in inches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

D-10 Dimensioned bracket for beamsplitter positioning hardware (short side).

Dimensions are in inches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

D-11 Views of beam combiner assembly. . . . . . . . . . . . . . . . . . . . . . . 185

19



20



List of Tables

2.1 Comparison of modeling techniques: effective index . . . . . . . . . . . . 48

2.2 Comparison of modeling techniques: absorber fill factor . . . . . . . . . . 48

2.3 Comparison of modeling techniques: core fill factor . . . . . . . . . . . . . 48

2.4 Indices of refraction for Al g Ga h�ijg As with kblnm+oZp.m and index contrasts for

selected core and cladding layers according to the Sellmeier equation and

at qsr 850 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Dielectric waveguide design variables with initial constraints. . . . . . . . . 54

2.6 Designs modeled as full two-dimensional strip-loaded waveguides. . . . . . 57

2.7 t�uwvyx ’s for varying etch depths. . . . . . . . . . . . . . . . . . . . . . . . . 58

2.8 Dielectric waveguide designs: structure and characteristics. . . . . . . . . . 60

2.9 Dipole designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Epitaxial layer structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Process steps for waveguide etch. . . . . . . . . . . . . . . . . . . . . . . . 85

21



22



Chapter 1

Introduction

In the broadest definition, the terahertz (1 THz = zV{}|�~ Hz) domain refers to the portion

of the electromagnetic spectrum corresponding to photon frequencies between 0.1 THz

and 10 THz; however, the most common usage of terahertz refers to frequencies between

0.3 THz and 3 THz [1]. Although the terahertz domain, also known as the submillimeter-

wave region, has been explored scientifically, it has been largely unexploited commercially,

due to the lack of low-cost components operating at terahertz frequencies.

A relatively new terahertz source is the photomixer, which generates coherent THz ra-

diation through optical heterodyne down-conversion [2, 3, 4, 5]. A terahertz-frequency

beat signal on an optical carrier illuminates an ultrafast photoconductor, modulating the

conductance. The time-varying conductance together with a constant voltage bias gener-

ates time-varying current at the beat frequency, as long as the photoconductor can respond

on the time scale of the beat. Low-temperature-grown gallium arsenide (LTG-GaAs) is the

photoconductive material of choice in terahertz photomixing, because its short carrier life-

time ( ���0{&{ fs) allows the conductance to be effectively modulated at THz frequencies1.

The distributed photomixer described in this thesis is a new style of LTG-GaAs photomixer

which uses an optical waveguide to couple the beat signal to an active area which is large

relative to the terahertz wavelength and thus operates in the traveling-wave mode.

In the first section of this chapter, I mention some of the driving applications for tera-

1The advantage of materials with short carrier lifetime is discussed in Section 1.3.2
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hertz technology, focusing on those relevant to distributed photomixer development. The

following section contains an overview of terahertz components related to distributed pho-

tomixers, and the chapter concludes with an introduction to photomixer theory.

1.1 Applications of Terahertz Technology

Existing applications of terahertz technology fall into two broad categories, imaging and

spectroscopy. Imaging systems generate THz radiation and then record the transmitted or

reflected images of an object to deduce either its shape or composition. Terahertz spectro-

scopic applications are divided into transmit/receive and receive-only techniques, depend-

ing on whether the system generates and detects the THz signal or only detects it, as in a

heterodyne receiver.

While imaging has been performed with coherent, continuous-wave (cw) sources [6],

the majority of terahertz imaging systems use terahertz-bandwidth electromagnetic pulses

generated by ultrashort-laser-pulse excitation of nonlinear crystals or polymers [7]. The

success of this electro-optic technique suggests that imaging will likely remain in the realm

of pulsed, time-domain systems.

Coherent sources play a critical role in either type of spectroscopy system, as narrow-

band emitters or as local oscillators (LOs) in heterodyne receivers. Spectroscopy is of par-

ticular interest in the terahertz, because a number of important light molecules, including�����
,
���

,
�������

,
���?�

,
�����

,
���y�

,
�����

, � ��� , and
���

, either absorb terahertz frequency

photons through excitation of rotational and vibrational modes or re-radiation of absorbed,

higher-frequency energy in the terahertz. Therefore, observation of absorption or emission

spectra yields information about the composition of the dust or gas being monitored.

Spectroscopy involving both transmission and reception of THz radiation has tradition-

ally been the domain of incoherent sources and Fourier transform spectroscopy (FTS) [1].

The drawback to the FTS technique is that high-resolution spectroscopy ( � MHz) requires

an instrument with tens of meters of travel and liquid-helium cooled detectors. Develop-

ment of the photomixer has created the option of a compact, tunable, narrowband source,

and a number of groups have demonstrated photomixing as a viable option for labora-
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tory molecular spectroscopy [8, 9, 10, 11]. Most experiments have used a helium-cooled

bolometer as the detector [8, 10], but a transmit-and-receive configuration comprised of

two identical photomixers has achieved phase-sensitive detection of radiation through the

technique of homodyne down conversion [12]. While very high atmospheric absorption

in the terahertz makes long-distance versions of this type of spectroscopy unlikely, small

systems for point-detection of chemical and biological agents are actively being pursued.

As a stand-alone systems or in conjunction with sensors at other wavelengths, these “snif-

fers” would monitor local air content by continual measurement of absorption spectra and

comparison to known spectra.

The development of heterodyne receivers has been the dominant driver in terahertz tech-

nology. By down-converting a portion of the THz spectrum to an intermediate frequency

(IF) where it can be processed by low-noise amplifiers and correlators, heterodyne receivers

allow measurement with high frequency-resolution of signals which cannot be amplified

and processed directly. The primary applications of terahertz heterodyne receivers are in:

plasma fusion diagnostics, in which the position-dependent electron temperature within the

plasma can be inferred from the electron-cyclotron-emission spectrum; atmospheric moni-

toring, either of Earth or extraterrestrial bodies; and observation of interstellar dust and gas

emission and absorption [1].

The astronomy applications [13] are those most relevant for photomixers, because they

require compact, tunable LOs, and antenna-coupled photomixers have been demonstrated

as LOs up to 630 GHz [14]. A sampling of planned and operating land and space-based

missions provides a flavor of the scope of terahertz astronomy. Launched in 1998, the Sub-

millimeter Wave Astronomy Satellite (SWAS), has been successfully observing interstellar

clouds and star formation by recording lines of water, oxygen, carbon monoxide and other

molecules in the frequency bands: 487–493 GHz and 547–557 GHz [15]. With its 3.5-

meter primary mirror, the telescope for the European Space Agency’s Herschel (formerly

FIRST, Far InfraRed Space Telescope) mission will enable unprecedented observation from

480 GHz to 5 THz for investigation of interstellar dust, star-forming regions, extreme red-

shifted emissions from galaxies, and possibly even atmospheric composition of comets and

extrasolar plants [16]. Scheduled for a 2007 launch, the Heterodyne Instrument for the Far
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Infrared (HIFI) unit for Herschel completely covers 480 GHz to 1.25 THz in five bands

and 1.41 THz to 1.91 THz in two bands. The HIFI unit will provide frequency resolution

from 0.1–1.0 MHz with a 4 GHz IF bandwidth and receiver noise temperatures of 3–5�����&�.�
[17].

In addition to peering deep into the universe, space-based observatories monitor the

chemistry of the Earth’s atmosphere. Scheduled for a 2003 launch, the Earth Observ-

ing System (EOS) Aura mission [18] will contain a microwave limb sounder (MLS) for

detecting chemicals in the upper atmosphere, especially those related to ozone deple-

tion. Aura continues the work of the 1991-launched Upper Atmosphere Research Satel-

lite (UARS) [19] and extends observation to higher frequencies including the OH line at

2.52 THz through the use of a compact methanol laser pumped by a ����� laser producing

30 mW of THz LO power to pump a Schottky-diode receiver [20].

Ground-based terahertz astronomy has been demonstrated since 1988 at the Caltech

Submillimeter Observatory (CSO), a single 10.4-meter telescope operating on Mauna Kea,

Hawaii. Operating frequencies of the heterodyne receivers at the CSO range from 300 GHz

to 1 THz [21]. One of the most ambitious Earth-based astronomy projects ever attempted,

the Atacama Large Millimeter Array (ALMA) will offer significant opportunities for tera-

hertz technology development during its implementation and for terahertz astronomy dur-

ing its operation. Planned for a 5000 m plateau in Chile, ALMA consists of a reconfig-

urable array of sixty-four 12-meter-dish telescopes covering all atmospheric transmission

windows from 30 GHz to 850 GHz [22]. In a configuration spanning kilometers, the array

will provide high angular resolution, while in a compact configuration, the telescopes act

like a single enormous dish and can observe very faint objects. In either configuration,

the local oscillator signal must be distributed to all of the telescopes. Distributing the LO

directly is prohibitively expensive, so the current plan is for photonic distribution, i.e. the

same LO signal is encoded in an optical signal which is split and propagates via optical

fiber to each telescope where it is converted back to RF2. Photonic LO distribution for THz

2Even though it is a misnomer, the signal and LO frequencies in a THz heterodyne receiver are called RF,
which stands for radio frequency, a holdover from the days when heterodyne receivers were used primarily
in radio astronomy.
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phased arrays is a natural application for photomixers because a photomixer is designed

specifically to produce a terahertz signal from an optical signal.

1.2 Enabling Terahertz Technology

Terahertz systems require various quasioptical elements (lenses, mirrors, polarizers, etc.),

waveguides, and signal processing techniques. The key enabling technologies, however,

are the sources and detectors. Detectors fall into two broad categories: mixers which can

be used for heterodyne detection and direct detectors which measure incident power [23].

Source technologies are varied since the terahertz frequency range falls in between the

regime of transit-time-based classical devices (e.g. diodes and transistors) and quantum-

transition-based devices (e.g. lasers).

1.2.1 Detectors

The three most successful types of terahertz heterodyne mixers are based on Schottky

diodes, superconductor-insulator-superconductor (SIS) junctions, and hot-electron bolome-

ters (HEBs). Each of these mixer technologies has been used or will be used on space-based

and ground-based observatories.

Schottky mixers generate mixing products through either the nonlinear capacitive or

resistive characteristic of a Schottky barrier formed at the interface of a metal and semi-

conductor (usually doped GaAs) [24]. Maturing from whisker-contacted devices to planar

devices has improved reliability, durability, and reproducibility. These mixers operate at

room temperature or cooled, have noise temperatures ( ��� ) in the range of 2000–5000 K,

and require LO power of a few milliwatts [1, 25].

SIS devices operate at cryogenic temperatures but have a very nonlinear current-voltage

characteristic which results in near-quantum-limited mixer noise temperatures of �¡ &¢�£�¤&¥+¦
(which yields �w�¨§ª©& [« K at 1 THz) [1, 26]. Because the LO-pumped current-voltage re-

lationship is caused by photon-assisted tunneling of quasi-particles across the insulator

barrier, SIS devices have a maximum operating frequency corresponding to twice the su-

perconducting gap ( ¬ ), which is proportional to the superconductor’s critical temperature
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( ­w® ), i.e. ¯0° ±³²+´$µ&¶.·¸­¸® [1, 27]. Niobium, the most successful superconductor for SIS

junctions has a ­¸®(¹»º#´$²G¼ and therefore a maximum frequency of 1.4 THz. Higher ­½®
superconductors have been used for SIS mixers but the maximum operating frequency re-

mains ¾¿¯ THz for good noise performance. The LO power requirement for optimum

operation is a few microwatts.

The most recently added member of the terahertz mixer family is the hot-electron

bolometer, a resistive mixer which relies on the heating of an electron gas by absorp-

tion of terahertz photons [26, 28, 29, 30]. The HEB is effective as a mixer because the

sub-micron-sized active area is cooled quickly enough to produce an IF signal up to several

GHz. While HEBs theoretically need much less than 100 nW of LO power for good perfor-

mance ( ­wÀÂÁ ÃÄ±ÆÅVÇ&ÈÊÉ¸Ë&¶ ), the few successful tests with well-calibrated low-power sources

indicate that they need at least Ç+´$µÍÌ W of LO power at the dewar window for frequencies

near 2 THz [31, 32]. The LO power requirement depends on the bolometer material, and

new materials (aluminum, niobium, tantalum) promise lower required LO power than the

proven niobium nitride HEBs but have yet to be consistently demonstrated in practical

mixers.

Direct detectors have been used in lab settings for spectroscopy or component char-

acterization and have been deployed for astronomical and atmospheric observations [1].

Uncooled detectors tend to be slow and low sensitivity, but can be useful at higher power

where cooled bolometers saturate. Cooled ( ¾ 5 K) detectors, such as silicon or indium

antiminide composite bolometers have much higher sensitivity but have the drawback of

requiring cryogenic cooling. A detector operating at 50 mK based on single electron tran-

sistor has recently shown single photon sensitivity from 1.4 to 1.7 THz, but the device has

a very large impedance [33].

1.2.2 Sources

Development of the coherent sources needed for operation of these heterodyne receivers

has lagged behind detector development. I will mention the major technologies, including

gas lasers, vacuum tube devices, quantum cascade lasers, three-wave mixing, Schottky-
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diode multipliers, and photonic downconverters. In the terahertz frequency regime, transit

time devices have decreasing performance with increasing frequency, while photonic, or

quantum-transition, based devices have improving performance with increasing frequency.

The highest power terahertz sources of any reasonable size (i.e. neglecting gyrotrons

and free-electron lasers) are molecular gas lasers. These optically-pumped lasers produce

tens to hundreds of milliwatts at discrete frequencies up to several terahertz. While gas

lasers tend to be fragile and bulky, Î�ÏÑÐ -pumped methanol lasers at 2.52 THz are planned

for both ground-based and space-based observatories [20, 34].

Vacuum tube devices, such as backward-wave oscillators (BWOs) and klystrons, supply

milliwatt power levels to nearly 1 THz [35]. However, these tubes are available almost

exclusively from Russia, require kilovolt power supplies and generally have short operating

lifetimes. A number of groups are working on miniature vacuum electronics for oscillators,

but no practical sources have been produced.

Quantum-cascade lasers (QCLs) based on intersubband transitions have been actively

investigated as a means of extending laser operating frequencies from optical and near-

infrared frequencies to longer wavelengths, especially the far-infrared [36, 37, 38, 39].

With the recent demonstration of a QCL operating at cryogenic temperatures producing a

few milliwatts at 4.4 THz [40], QCLs have moved from the mid and long-wave infrared to

the far-infrared with a projected lower frequency bound of 2 THz [41]. Though a number

of issues such as frequency stability need to be addressed before a successful LO is created,

the technology shows great potential as a compact, high-power, high-efficiency, coherent

solid-state terahertz source.

The other solid-state photonic technique that is used in terahertz generation is ÒÔÓ ÐÖÕ mix-

ing in nonlinear optical materials, such as ×ÂØÚÙ�ÛÜÏÄÝ , KTP, and DAST. Nonlinear optical

mixing is generally used in time-domain (i.e. short pulses with terahertz bandwidth) exper-

iments but the technique has been successfully used for cw terahertz generation [42, 43].

Because of the Manley-Rowe limit, efficiency improves with increasing frequency.

Schottky multiplier chains generate terahertz radiation by upconverting a lower fre-

quency (10–100 GHz) fundamental source, such as transistor or Gunn oscillators, through

a series of frequency doublers and/or triplers [44, 45]. The same nonlinear capacitive or re-
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sistive characteristic used in mixing an RF and LO signal to produce an IF signal generates

harmonics of a pump signal. Multiplier chains have produced 14 mW at 400 GHz [32],

3 mW at 600 GHz [46], 2 mW at 800 GHz [47], 100 Þ W at 1.2 THz [46], and 45 Þ W

at 1.5 THz [32]. Extensive fabrication and modeling work allow accurate production of

diodes for fixed-tuned waveguide designs on the first fabrication run, and multiplier-chain

operation up to 2 THz with power levels adequate for an LO in an HEB heterodyne mixer

is projected in the near future [32]. The drawback of multiplier chains is the narrow tuning

range ( ßáàVâ&ã ). Nonetheless, mixers with Schottky-diode-based LOs have been demon-

strated [48, 49] and multipliers are the baseline LO in Herschel [16].

Photomixers that generate coherent radiation through the downconversion of an optical

beat signal have only recently been used for the generation of terahertz radiation [2, 4],

though the photomixing effect itself has been investigated since the 1950’s and can even be

traced as far back as 1883 [50]. The key advantages of photomixers as terahertz sources

are that they operate at room temperature, can be made compactly from all-solid-state com-

ponents, and are frequency-agile. The main deficiency is that the output power is low (a

few microwatts up to ßäà&å$æ THz) because of low external quantum efficiency. Because

photomixers are the subject of this thesis, I will discuss them in more depth below.

1.3 Photomixers

1.3.1 Photomixing Theory

Assuming photon absorption by an ideal photodetector, two monochromatic plane waves

produce a count rate, or carrier generation rate,

ç!è!éBêÂëdé�ìíëïî#ð ñséXê
é5ì�ò5ó0ôXõyöGêø÷ùöøì�úÖû
, (1.1)

where
é

and
ö

are the intensity and radial frequency, respectively, of the two fields andñ
is a positive number less than one which describes the degree of spatial overlap and

copolarization [3]. Assuming incident photons generate free carriers which can be collected
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Figure 1-1: Equivalent circuit model for a lumped-element photomixer system.

with some non-zero probability, the current is given by

üþý�ÿ�������� ���
	��
��������� ���
	������������ � 	 � � �"!$#$%
, (1.2)

where �&� is the external quantum efficiency into which is lumped all carrier creation and

collection effects and
�

is the power incident on the detector area. The quantum efficiency

which gives the fraction of incident photons that induce an electron in the circuit depends on

the specifics of the photodetector design and involves effects such as the carrier lifetime,

transit time, applied electric field, and mobility. The photodetector responsivity can be

written in terms of �&� as ' ý �&� ÿ���� . (1.3)

The quantum efficiency and responsivity are discussed in greater detail in Section 4.3.

The photodetector type used almost exclusively in terahertz generation is the photocon-

ductive small-area, or lumped-element, photomixer which has the simple equivalent circuit

shown in Figure 1-1. The time-varying carrier generation is modeled as a time-varying

conductance. The applied dc-voltage induces time varying currents which couple to the

load (an antenna for quasioptical output or a coplanar waveguide for on-chip propagation)

but are partially shunted by the photomixer’s intrinsic capacitance. The frequency perfor-

mance of the system depends on two factors: the (*),+ product and the intrinsic frequency

response of the modulated conductance term, -/. �0#�! . The photoconductance can be written
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as 1*24305�6
781*9:3<;>=@?BA�CEDGF
5�6
, (1.4)

where

1,9
is the dc-photoconductance,

F
is the copolarized optical beat frequency H FGIKJLF M H

from equation (1.2), and

?
is the frequency-dependent modulation depth given by?N7 OQP R�S I S M3 S IT= S M"6 P ;U=VF MXWKM , (1.5)

where

W
is the carrier lifetime [51].

?
behaves as expected physically. For equal power

in the optical beams and perfect overlap and copolarization, the modulation depth is max-

imized for a given difference frequency. The
P ;U=VF M W MZY I

term models the effect that at

frequencies near or above the reciprocal of the carrier lifetime, the photoconductor fails to

“turn off and on” completely. At low power levels where saturation is not an issue,

1[9
is

given by 1*9G7]\ S�^`_baced , (1.6)

where
\

is the responsivity in amps per watt and
Sf^`_ba

is the absorbed optical power [51].

Equation (1.4) illustrates one of the great advantages of photomixing for RF generation:

the current and power modulation frequency is set by the difference frequency between two

lasers. Even terahertz frequencies are a small fraction of an optical laser’s frequency, so

the photomixer’s frequency can be quickly and easily tuned over a bandwidth of a few THz

by frequency tuning the optical pump lasers. This frequency-agility makes photomixers

attractive for spectroscopy applications.

In the small-signal approximation, i.e. when

1/9"gihkj ;
and the photomixer looks like

a current source, the power delivered to the load is given bySml 7 ;O 3 c�d 1,9"6 M gih3<;U=VF MXWKM 6fnZ;U=83oFUgph�qB6 Msr
, (1.7)

where the modulation depth is assumed to be maximized for the given frequency,

F
[51].

At low frequencies, equation (1.7) reduces to the expected dc result of

IM 3 ced 1*9"6 M gih
, while
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at high frequencies, the expression becomes

tmuLvxwypz|{�}�~*�"�<���p��
� zo���i�K�/� � . (1.8)

The next section describes material considerations and device designs to maximize this

terahertz power, including the distributed photomixer idea.

1.3.2 Terahertz Photomixers

For the generation of millimeter-wave and terahertz radiation, most photomixer designs

have been metal-semiconductor-metal (MSM) devices with the semiconductor being low-

temperature-grown gallium arsenide (LTG-GaAs) [5]. Interdigitated metal electrodes pro-

vide the dc voltage bias and collect the photocurrent and couple it to an antenna also de-

posited on the LTG-GaAs. When GaAs is grown by molecular beam epitaxy (MBE) at

low substrate temperatures (
v y&�&�&� � ) and with As overpressure, excess (up to w:� ) ar-

senic is incorporated, creating a nonstoichiometric material with a large number of defects

( w � � � cm ��� , mostly arsenic antisites) [52]. This as-grown material has a very low resistivity

(tens of � cm) and fast electron and hole trapping times [53]. Annealing (
v�� ��� � � for 10

minutes) reduces the number of defects to
v w �K��� cm ��� through the formation of As precip-

itates [54] which increases the resistivity dramatically to w ��� – w ��� � cm [52] while slightly

increasing the electron capture time (
v y��&�

fs [55]) and the electron mobility (reported

values vary between w � � cm ������� [56] and
y&�����

cm ������� [51]). Electrons are the dominant

carrier in annealed LTG-GaAs, so discussion centers on their properties. The defects in

both as-grown and annealed LTG-GaAs have energy near midgap [52] pinning the Fermi

level there and allowing many as-deposited metals to form ohmic contacts. These material

characteristics, along with a high electric breakdown field (
v wB ¡w � � V � cm), make LTG-

GaAs an ideal material for photoconductive mixing of optical signals with photons above

the 1.42 eV ( ¢¤£¦¥�§�¨ nm) bandgap.

Early work on LTG-GaAs photomixers focused on reducing the electron lifetime to

reduce the � -dependent high-frequency roll-off term in equation (1.7) [55]. Even though

the output power for photomixers operating at frequencies for which � �¦© w does not
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depend on carrier lifetime, shorter lifetimes lead to improved device performance due to

higher efficiency modulation of the LTG-GaAs conductance [5]. Two photomixers with

different ª but the same illumination will produce the same THz power as long as the

operating frequency is beyond the “knee” of the lifetime response, i.e. «
ª­¬ ® ; however,

the total dc photocurrent will be higher in the longer lifetime material by the ratio of the

lifetimes. Higher dc photocurrent leads to a higher heat load and device failure at lower THz

output power (compared to the short lifetime material which generates less dc photocurrent

for the same THz power). In most LTG-GaAs photomixer work, carrier transit times are

neglected because the transit time even for electrode gaps ¯ 1 ° m are much larger than

the carrier lifetime. This difference means that the LTG-GaAs photomixer is a lifetime

dominated device and also leads to very low photoconductive gain (typically ±³²K´µ²K® ).
Because the failure mode of photomixers has been burnout due to heating from a com-

bination of absorbed optical power and ohmic heating, continuing material work includes

the growth of LTG-GaAs on silicon for better thermal conductivity [3] and the growth of

high-thermal-conductivity layers (e.g. AlAs) beneath the LTG-GaAs layer [57]. Jackson

quantified the importance of thermal considerations by demonstrating that the maximum

output power at a certain frequency and given a circuit design and carrier lifetime is

¶�·m¸|¹»º ¼�½¾¿ ½fÀ0Á¡Â�Ã�Ä ¼ ¾ À�Å&Æ�ÇÈ «>ÉXÉ ½ , (1.9)

where
¿

is the thermal impedance, Á is the device area, and the terms in the denominator

account for conduction of the optical-power-induced heating and ohmic heating, respec-

tively [57]. The work of Jackson emphasizes the importance of photomixer designs which

both increase ¼ ¾ and distribute the optical and ohmic heat load. A technique which in-

creases ¼ ¾ by increasing carrier collection efficiency is the use of Bragg reflectors beneath

the LTG-GaAs to create a multiple-pass cavity [58]. The applied electric field which col-

lects photo-generated carriers decreases with depth into the LTG-GaAs, so even though a

thick LTG-GaAs layer will absorb all optical power, collection is not efficient deep within

the LTG-GaAs. For a thin layer backed by a mirror, higher responsivity is achieved for

the same absorbed power. The field dependence of carrier collection efficiency is dis-
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cussed in more detail in Section 4.3. In a material technique that is a slight departure from

LTG-GaAs, self-assembled erbium arsenide (ErAs) islands grown in GaAs act in a manner

similar to the As precipitates, and the GaAs:ErAs material has been used as the photocon-

ductor in THz generation [59]. The advantage of this technique is that the size and density

of the ErAs islands can be controlled; however, the material has not yet shown improve-

ment over LTG-GaAs. Finally, the work of Zamdmer, et al. demonstrated that the electron

lifetime increases with applied electric field, which is important because it means that there

is a maximum operating ÊeË for a given frequency [56]. This electron-lifetime effect is

discussed in more detail in Section 4.1.2.

In addition to material improvements, new device and circuit configurations seek to

optimize Ì , ÍiÎ , and Ï,Ð from the standpoint of the metal structure deposited on the LTG-

GaAs. From equation (1.8), high-frequency photomixer operation is improved by min-

imizing the photomixer capacitance (to avoid the ÑÓÒUÍ*Î�Ì/ÔbÕ�Ö pole) and maximizing ÏBÐ
(to increase the power at all frequencies). Minimizing Ì and maximizing Ï×Ð , however,

are generally competing goals for a lumped-element photomixer, because both are propor-

tional to the device area. A larger area means not only a larger area over which to distribute

optical power absorption but also more capacitance between the electrodes which collect

the current. Reducing the electrode width and the distance between electrodes does allow

an increase Ï,Ð without a corresponding penalty in Ì ; however, a lower limit to electrode

width of ØKÙÛÚfÜ m determined by fabrication practicality sets a corresponding limit on the

extent to which this tradeoff can be made [58]. A successful technique for avoiding theÍiÎ�Ì pole has been the design of antennas with inductive elements to resonate out the pho-

tomixer intrinsic capacitance and allow the benefits of a higher Í,Î to be realized over a

narrow frequency band [60]. Dipole, double dipole, and double slot antennas have been

designed using this technique [57, 60].

While resonant antennas with inductive tuning elements achieve narrowband elimina-

tion of Ì , these designs sacrifice one of the major benefits of photomixing, the frequency

agility. By creating a photomixer for which the active area is large relative to the THz

frequency and operates in the traveling-wave mode, the ÑÓÒUÍ*ÎKÌBÔsÕ�Ö pole can be eliminated

over the entire operating range. In the resonant-tuning picture, the distributed inductance
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of a traveling-wave structure exactly resonates out the distributed capacitance leading to

the well-known result that a transmission line has a frequency independent impedance. In

addition to eliminating the deleterious effect of intrinsic capacitance, a distributed struc-

ture allows for higher ÝBÞ because the maximum optical power that can be absorbed be-

fore device failure is increased by distributing the optical and ohmic heat load over a

larger area/volume. A surface-illuminated traveling-wave photomixer has been demon-

strated by Matsuura, et al. and it produced 200 nW at 2.5 THz [61]. The drawback of this

surface-illuminated design is that the optical signal must be free-space coupled because

the traveling wave of photogenerated carriers is tuned by varying the incidence angles of

the two lasers. In this thesis, I describe the design, fabrication and characterization of

a waveguide-coupled distributed photomixer. In a waveguide-coupled distributed photo-

mixer, the optical beat signal is guided by an optical waveguide and coupled weakly to

a terahertz waveguide by a LTG-GaAs absorber layer [62]. Power is gradually converted

from the optical beat signal through generation of a conductance wave which leads to a cur-

rent wave and an electromagnetic (THz) wave at the beat frequency. The terahertz power

can be confined on-chip or radiated for quasi-optical propagation and collection by a re-

ceiver. In addressing a number of concerns related to traveling-wave photodetectors, I draw

on extensive work done on traveling-wave photodetectors designed for lower frequency op-

eration [63, 64, 65, 66, 67, 68, 69].

A few comments on traveling-wave photodetector theory provide insight into the oper-

ation of these devices and the design considerations involved. For the purposes of consid-

ering a distributed photomixer, the two main effects of operating in traveling-wave mode

are: 1) the 6 dB reduction in RF power compared to a lumped-element device with the

same photocurrent and 2) the need to match the optical and THz (RF) wave velocities. To

understand the 6 dB reduction in power for a device in traveling-wave mode, consider a

photomixer which consists of an active area modeled as a current source delivering power

to a load. When the optical beat frequency is small compared to the size (length) of the

active area, all of the current produced will be in phase. Thus, if we neglect carrier lifetime

effects, all of the RF current generated delivers RF power to the load. Once the beat fre-

quency becomes comparable to the length of the active area, the current source becomes
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distributed. Half of the current produced at any point along the active area flows toward

the load, and half flows in the opposite direction. The portion of current that flows toward

the load combines in phase with other current produced (by absorption of the propagating

optical beat) in the active area and delivers RF power to the load. Current flowing in the

opposite direction; however, is completely out of phase with the counter-propagating opti-

cal beat signal and thus is not phase matched and generates no RF power. Therefore, with

half of the current delivered to the load, one quarter (-6 dB) of the power is delivered.

From an intuitive perspective, the need for velocity match can be understood by consid-

ering co-propagating optical and RF waves. The photomixing process can be considered

as a transfer of power from the optical to the RF, as in ßáàÛâ<ã mixing. Power transfer will be

more efficient the closer the waves are velocity matched. The aspect of this velocity match-

ing that is less clear is which velocities need to be matched. The fundamental requirement

that must be met is the phase matching condition,

ä�åçæ è¡ä�å â>é ä�ê�ë
, (1.10)

where
ä�å�æ

and
ä�å â are the optical propagation constants and

ä�ê�ë
is the RF propagation

constant. Dividing this equation by the optical difference frequency, which is also the RF

frequency yields ä�åçæ è¡ä�å âì ê�ë é ä�ê�ëì ê�ë , (1.11)

where ì ê�ë is the optical beat and RF frequency. If the dispersion relation of the opti-

cal waveguide is well behaved (linear over the frequency range between the two optical

frequencies), the relation becomesí ä�åí ì å é îï ì>ð ï�ä é äQê�ëì ê�ë , (1.12)

which reduces to ñ0ò å�ó ô�õbö æ é
ñ�ò ê�ë�ó ÷�ø�õsö æ

, (1.13)

where

ò å�ó ô
is the optical group velocity and

ò ê�ë�ó ÷"ø
is the RF phase velocity.

Figure 1-2 illustrates these two effects. The 6 dB roll-off occurs at a frequency cor-
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Figure 1-2: Bandwidth plots of lumped-element and distributed (both velocity-matched
and velocity-mismatched) photomixers operating at the same photocurrent and neglecting
carrier lifetime and parasitic (e.g. ohmic) losses.

responding to a optical beat wavelength (in the dielectric) of approximately ù�ú�û:üoýçþ , whereû�üoý�þ is the extinction length of the optical mode. The relevant length is û�üoýçþ and not û�ÿ������
(the physical device length) because the extinction length sets the effective device length,

or interaction length. Note that most sources which discuss traveling-wave photodetector

theory (e.g. [64, 68]) incorrectly describe this frequency as the 3 dB bandwidth set by

velocity mismatch. This roll-off has nothing to do with velocity-mismatch and is simply

due to the device entering traveling-wave mode. Velocity-mismatch does have a role and is

considered next.

By considering various combinations of device length and extinction length, a number

of aspects of traveling-wave photodetector theory can be elucidated. Using the formulation

of Chiu [70] given in [68] as���
	���
������������������ �"!$# 	 � 	&%(' � %
)*
,+-
%$' � %
) . �/� �0!$# 	 � 	&%(' . %()�
,+1
%(' . %
) 2 , (1.14)

where
%()

is the microwave (RF) propagation constant (
%3)4�657�98 :�; ü�<>= for a quasi-TEM

mode),
%$'

is the optical propagation constant (
%?'@�BADCE' . 57� <GF ' where

ADCE'@� �H<:û�üoý�þ
and F ' is the optical group velocity) and

+I� ûZÿ��,��� , the RF response of traveling-wave
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photodetectors can be predicted for combinations of JLK�M�N and J0O�P�QSR . Figure 1-3 shows three

combinations. Note that even though absolute frequency is given as the T axis, the plots

can be scaled. For example, increasing the extinction length by a factor of 10, scales all the

frequencies down by a factor of 10. In the figures, velocity mismatch has been defined asUWV@X�Y�Z�XG[
. Figure 1-3(a) shows the response of a device for which J\O�P�Q�R^]_J0K�M,N . The smooth

curves are for a device for infinite J�OSP,Q�R and are provided to show the asymptotic behavior

of the response. The small scale ripples are due to reflections from the un-terminated input

port of the RF waveguide. In understanding the other features, it is helpful to rewrite the

expression of Chiu describing the magnitude of the forward going current wave asU/V `0a$bEc,Ved>fDgEYSh-i�V d�`"a$bEc,VjfEgDY�h-i3kml7nHc1oqp3h-ic,UHZ J0K�M,N i�rWstc1oqp?i�r , (1.15)

where I have used
oqpvu wec-XyxyzY V{X?xyz[ i to denote to the phase mismatch. The larger

scale ripples occur as
kml7n\c-oqp3h-i

and correspond to the fact that even as phase mismatch

accumulates, there are discrete frequencies for which the accumulated mismatch will be

destructive or constructive for a finite length device. These cases correspond to having

accumulated either | or
d | phase mismatch over the length of the device. The velocity

mismatch roll-off has an onset at
oqp J�K�M�N u}U because this is the point at which appreciable

phase mismatch accumulates by the effecitive end of the device (rather than the physical

end of the device). Figure 1-3(a) shows the response of a device for the same JHK�M,N but

longer JmOSP,Q�R , while Figure 1-3(c) shows the response of a device for the same J\O�P�QSR (as

Figure 1-3(a)) but shorter JmK�M�N . These figures show the asymptotic behavior of devices asJ0O�P�QSR becomes long relative to J�K�M�N .
The basic photomixing effect is the same for a distributed photomixer as for a lumped-

element photomixer. The equivalent circuit, however, is completely different. In Figure 1-

4, a differential element of the distributed photomixer equivalent circuit is shown. An

optical waveguide (transmission line) guides the optical signal which is coupled to the

THz waveguide through the current source which models the photoconductive element.

The other two lumped elements ~9�"� and � [1��[ � model the photoconductor series resistance

and the distributed capacitance of the electrodes which collect the photocurrent and are
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(c) � �,����� �����"�y� m �S� ����� �����?� m �
Figure 1-3: Response of traveling-wave photomixers with different �\�&�,� and �0���� S¡ values.
The smooth (dashed) lines represent the response of an infinitely long device and are pro-
vided as symptotes for the behavior of the finite length devices.
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Figure 1-4: Equivalent circuit model for a distributed photomixer system.

explained in Section 2.2. A SPICE circuit using this differential element model for the

distributed photomixer is explained in Section 5.1. The traveling-wave nature of the active

area is accounted for in the SPICE model accounts. If this velocity-match problem is

addressed and other losses are low, the distributed photomixer’s bandwidth is set solely by

the LTG-GaAs carrier lifetime, which means this distributed design has the largest possible

bandwidth for a photomixer. If the optical and terahertz waveguides are coupled properly

to achieve efficient conversion of optical to terahertz power, the distributed photomixer can

also produce high power over this bandwidth.

This thesis describes waveguide-coupled distributed photomixers designed to capture

the benefits of the distributed photomixing idea for coherent terahertz generation. In Chap-

ter 2, I discuss the design trade-offs involved in the design of the optical waveguide, tera-

hertz waveguide and radiating element. I present a general methodology through develop-

ment of a specific design which, together with the details in Appendix A, allows others to

understand and use the design process. Chapter 3 contains fabrication and post-processing

steps for making distributed photomixers. Again, I provide general considerations as well

as specific recipes for fabrication steps. In Chapter 4, I describe a number of different

measurements which characterize various aspects of the distributed photomixer. Because

distributed photomixer performance depends on many different material and device char-

acteristics, I measure as many as possible to be able to accurately model and predict device

performance. In Chapter 5, the results from Chapter 4 are used to predict the distributed

photomixer performance, which is compared with THz photomixing measurements.
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Chapter 2

Distributed Photomixer Design

This chapter contains the design of each of the three major components of the distributed

photomixer structure. The structure consists of a waveguide to confine the optical beat

signal and couple it to the absorber, a waveguide to guide the terahertz (THz) signal, and a

radiating element to couple the THz power off of the chip. For each component, I describe

performance considerations, design methodology, and analysis techniques.

In order to provide a complete, self-contained explanation of the design process, I

present the design flow with as few preconceived assumptions or constraints as possible;

however, some external influences are inevitable and desirable. Some design choices are

informed by other work in the field, and some choices are informed by our own previous

experience. In addition, certain design choices are shown to be reasonable only in an a

posteriori sense — either from simulation or device testing — but are presented in the flow

of the design and not afterwards for the sake of the chapter’s coherence and usefulness.

2.1 Optical Waveguide Design

Three primary considerations influence the design of the optical waveguide for a distributed

photomixer. The optical beat signal needs to:

a) be coupled into the waveguide efficiently and over as large an area as possible,

b) be coupled to the absorbing, photomixing material sufficiently to give the de-
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corecladding

Figure 2-1: Schematics of etched dielectric waveguides.

sired mode extinction length (the distance a mode propagates before its power

is ¢�£y¤ of its original value), and

c) propagate in a single mode so that it can be described by a single phase velocity.

After choosing a general type of optical waveguide, I use these design considerations to

specify a specific geometry.

The absorption of the optical beat signal and resulting photomixing occurs in a low-

temperature-grown gallium arsenide (LTG-GaAs) layer; therefore, the optical waveguide

must be compatible with growth and fabrication of LTG-GaAs. The natural choice for

the waveguide, then, is a dielectric waveguide composed of layers of aluminum gallium

arsenide (Al ¥ Ga ¤�£ ¥ As) grown on GaAs. Choosing a large enough aluminum fraction, ¦ ,
of the Al ¥ Ga ¤�£ ¥ As layers prevents absorption of the optical pump signal in any layer but

the LTG-GaAs absorber. The index-of-refraction contrast between low index cladding lay-

ers and a higher index core layer provides confinement of the optical mode in the vertical

(growth) direction, and patterning of the layers provides confinement in the lateral direc-

tion.

Several different etched layer geometries, including ridge, rib, and strip-loaded guides,

provide lateral confinement. In a ridge waveguide (Figure 2-1(a)), cladding layers provide

vertical confinement while the index contrast between the core region and air provides hor-

izontal confinement. A rib waveguide (Figure 2-1(b)) is similar to a ridge waveguide, but

the upper cladding layer is not present and the guide layer is not usually etched completely.

In a strip-loaded waveguide (Figure 2-1(c)), patterning of the upper cladding layer laterally

from a central strip confines the mode. In the ridge and rib waveguide designs, the high

index contrast between the core region and air provides strong confinement, meaning that

the core region must be narrow laterally to ensure single mode operation. This narrowness
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Figure 2-2: Schematic of strip-loaded waveguide.

means that comparatively little optical signal can be coupled into the guide for a given

power density, dictated by the facet damage threshold. The strong confinement also results

in high optical field strength on the etched sidewalls, which leads to loss. Creating a buried

ridge waveguide through regrowth after etching eliminates the problems associated with

high index contrast in the ridge and rib waveguide geometries; however, a regrowth step

adds complication to the fabrication process without any gains for this particular applica-

tion. Therefore, we choose a strip-loaded dielectric waveguide as the optical waveguide,

as depicted in Figure 2-2. While the LTG-GaAs layer could theoretically be grown at any

position in the layer stack, for ease of integration with the THz waveguide, the LTG-GaAs

layer is grown on top.

2.1.1 Optical Waveguide Modeling

To analyze and design specific waveguide structures, I wrote codes to calculate dielec-

tric waveguide modes based on the method of field shadows [71]. This technique uses a

combination of one-dimensional (1-D) multilayer dielectric stack analysis and the effec-

tive index method to calculate the fields in a two-dimensional (2-D) dielectric waveguide.

The method of field shadows accurately predicts the lowest order modes in a variety of
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waveguides when the mode is far from cutoff [71]. In Section 2.1.2, I provide compari-

son between my code and a commercial full-wave analysis package for two-dimensional

waveguides. Appendix A contains the detailed equations for my formalism. By writing

my own code, I have access to the material parameters as well as the the equations for the

mode profile. This access gives the abilities to change the material parameters arbitrarily

and to perform calculations directly on the mode, such as finding the waist and finding the

coupling to a circular Gaussian beam.

Enforcing the boundary conditions on the electric and magnetic fields at the layer

boundaries gives exact solutions to the modes in a one-dimensional multilayer dielectric

slab waveguide. For a strip-loaded guide, one of the layers which has a higher index of re-

fraction than the surrounding layers is the core and contains most of the optical mode. The

surrounding, lower-index layers function as cladding. Solving the coupled linear equations

that enforce the boundary conditions yields the mode profile as well as propagation con-

stant of the mode. The propagation constant is related to the effective index for the mode,

using the following relations §©¨ ª
«

eff
and ¬ ¨�­7® « eff , (2.1)

where

ª
is the speed of light,

­
®�¨°¯�±\²³ , ´ is the optical frequency, and « eff is the effective

index. To solve the two-dimensional problem, the effective index method treats the central,

strip region as a 1-D slab waveguide (in the µ direction) and solves for an effective index.

The lateral, etched regions are also solved as slab waveguides with corresponding effective

indices. As shown in Figure 2-3, the effective indices of the strip and etched regions form an

effective dielectric stack in the direction orthogonal to growth (the ¶ direction). Solving this

1-D dielectric stack yields the effective index for the two-dimensional mode as well as the

lateral mode profile. The group velocity of the optical wave can be found by solving for the

effective index over a range of frequencies and then taking ·&¸ ­?¹ ¸(º�»�¼y½ . The final 2-D mode

field profile is a product of the fields in the orthogonal directions. The power distribution of

the mode is calculated as explained in Appendix A. The fill factor, or fraction of the total

power in a certain portion of the waveguide is calculated from the power distribution. For
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Figure 2-3: Schematic showing the treatment of a two-dimensional waveguide as the
combination of orthogonal one-dimensional waveguides using the effective index method.
Propagation in the strip-loaded waveguide is in the ¾ direction.

a detailed discussion of this procedure, see Appendix A.

2.1.2 Comparison of Modeling Techniques

To estimate the accuracy of my effective index code, I compared the effective index and fill

factor calculations for a nominal structure with calculations of the same structure analyzed

with a commercial full-wave analysis code for dielectric waveguides, FIMMWAVE [72].

The structure analyzed supports two TE and two TM modes. The effective indices of the

modes are compared in Table 2.1, which shows that my code predicts the effective index of

each mode quite accurately. As expected, the effective index method is more accurate for

the lower order modes. Fill factor calculations for the absorber layer and for the core of the

strip-loaded waveguide are compared. The results of the absorber fill factor comparison are

tabulated in Table 2.2, while the core fill factor results are shown in Table 2.3. As explained

in Section 2.1.3, the more important factor of these two is the absorber fill factor, which the

effective index method calculates to within about ten percent accuracy for all of the modes

considered.

Because measured dielectric constants are not available for all Al ¿ Ga À�Á
¿ As composi-

tions at all wavelengths, we must employ an interpolation or modeling to fill in missing

data. Thus, in addition to differences arising from the choice of numerical technique, this
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Table 2.1: Comparison of modeling techniques: effective index

Strip-Loaded Waveguide Mode Effective Index Calculation
Waveguide Technique Fractional
Mode Field Shadows FIMMWAVE Difference
TE 1st order 3.42961 3.42939 Â3Ã�ÄqÅÇÆ\È$É(Ê
TE 2nd order 3.42503 3.42424 Ë$ÃÍÌÎÅÇÆ\È É
Ï
TM 1st order 3.42784 3.42767 Ð$ÃÍÈÎÅÇÆ\È$É(Ê
TM 2nd order 3.42296 3.42232 Æ7ÃÍÑÎÅÇÆ\È$É
Ï

Table 2.2: Comparison of modeling techniques: absorber fill factor

Strip-Loaded Waveguide Absorber Fill Factor Calculation
Waveguide Technique Fractional
Mode Field Shadows FIMMWAVE Difference
TE 1st order 0.005862 0.005713 0.026
TE 2nd order 0.005336 0.004683 0.14
TM 1st order 0.002086 0.002281 0.085
TM 2nd order 0.001954 0.001995 0.021

Table 2.3: Comparison of modeling techniques: core fill factor

Strip-Loaded Waveguide Core Fill Factor Calculation
Waveguide Technique Fractional
Mode Field Shadows FIMMWAVE Difference
TE 1st order 0.8012 0.7998 0.0018
TE 2nd order 0.7293 0.7375 0.011
TM 1st order 0.8126 0.8083 0.0053
TM 2nd order 0.7649 0.7608 0.0054
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model choice affects the mode calculation. A simple interpolation for the real part of the

the dielectric function of Al Ò Ga Ó�Ô
Ò As is the Sellmeier equation1,Õ×Ö\Ø&ÙDÚ"ÛÝÜßÞvà\á3â�ã7á7äæåèç(âÍã�çHÙ©é á3âÍã7ê7ë>á3àÛ Ö åèì åèá3â�á7á�çGí�ä�ê?Ø�à7â�í3à�ÙîéïàHÜ�ÛðÖ , (2.2)

where ì Þ Ø-á3âÍë7ç>ñ7ñ7äòåèá$âóê>ô7ëGÙ^Ü,Ö for Ùöõ÷á$âÍô7ä (2.3)ì Þ Ø-á3â�ô7á7ô7ñ7äòåèá$âøà\á7ëGÙ^Ü,Ö for Ùöù÷á$âÍô7ä , (2.4)

and where Õ is the index of refraction, Ù is the aluminum mole fraction, and Û is the

wavelength in microns Ø1á3â�ä7ãûú4Ûüú}à7â�á�Ü [73]. Another commonly used set of relations is

the semi-analytical model proposed by Adachi [74]. These relations are given asý Ó Ø�þ�ÜÿÞ ��� ��� Ø�� Ü é àç	� 
 �
 ��é��
������� Ö � Ø������SÜ��qé���� (2.5)� Ø�� Ü Þ � Ô Ö�� çòåïØ,à é�� Ü Ó � Ö å÷Ø�à�å�� Ü Ó � Ö! (2.6)� Þ "# þ
 � (2.7)����� Þ "# þ
 �Wé��$� , (2.8)

where ��� and ��� are fitting parameters, 
 � is the lowest direct gap energy, and "# þ is the

photon energy. By fitting to data, Adachi arrived at the expressions

���HØ�Ù^Ü Þ ä3âÍô/é÷à\ã3â�á�Ù (2.9)���HØ�Ù^Ü Þ ã3â�íæå àLá3âóçHÙ , (2.10)

where Ù is the aluminum fraction. Djurišić, et al. proposed an extension to Adachi’s model

which retains some of the simplicity but improves agreement with measurement [75]. The

model only applies, however, over the range from 1.5 to 6.0 eV.

For Al Ò Ga Ó�Ô
Ò As compositions with Ù ú}á3â í�á and in the wavelength range 840 nm ú
1Note that the denominator is incorrectly written as %'&)(+* in [71].
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Table 2.4: Indices of refraction for Al , Ga -/.0, As with 132547698:4 and index contrasts for
selected core and cladding layers according to the Sellmeier equation and at ;=< 850 nm.

Al fraction Index
0.00 3.620
0.05 3.576
0.10 3.536
0.15 3.500
0.20 3.466
0.25 3.434
0.30 3.403
0.35 3.374
0.40 3.351

(a) Index of
Al > Ga ?/@A> As
compositions atBDC

850 nm.

Core Al fraction Cladding Al fraction E$F
0.30 0.35 0.029
0.20 0.25 0.032
0.10 0.15 0.037
0.30 0.40 0.053
0.20 0.30 0.062
0.10 0.20 0.071
0.20 0.35 0.092
0.20 0.40 0.115
0.10 0.30 0.133
0.10 0.35 0.162
0.10 0.40 0.186

(b) Index contrasts ( GIH ) between layers with different
Al > Ga ?/@A> As compositions at

BDC
850 nm.

;J2 860 nm, the Sellmeier and Adachi expressions vary on the order of a percent. While

the effective index of the mode varies by a correspondingly small amount, the absorber

fill factor and mode extinction length can vary by up to 30%. As evidenced by the degree

of agreement between my code and FIMMWAVE, that package must use the Sellmeier

equation. To duplicate the results of Lin, et al. [66], I used Adachi’s expressions for the

Al , Ga -/.0, As (and the non-standard value of KL-�<NM�OP6RQPM for GaAs at ;S< 860 nm.) Thus,

prior work indicates evidence of dielectric waveguide design using both formulations. The

values predicted by Sellmeier agree better with the data [76] at 1.5 eV, while Adachi’s

formulation agrees more closely with the data at 1.4 eV. Because my design wavelength,

850 nm, is slightly closer to 1.5 eV, the Sellmeier equation is appropriate. Table 2.4(a)

contains indices of refraction for different Al fractions in Al , Ga -/.0, As at ;T< 850 nm

using the Sellmeier equation.
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2.1.3 Dielectric Waveguide Design

Based on the performance considerations described in Section 2.1 and the analysis tool and

material data described in Sections 2.1.1 and 2.1.2, I present the design methodology for

the distributed photomixer optical waveguide. The three primary design considerations for

the design of the optical waveguide are that the optical power be coupled into the wave-

guide efficiently over a relatively large area, that the power then be coupled to the absorber,

and that the waveguide support a single mode. Each of these design considerations can be

linked both to a performance metric and a characteristic of the waveguide. The input cou-

pling determines the amount of power that can be coupled into the guide for a given power

density threshold and is determined by the mode shape. The coupling of the guided mode

to the absorber layer determines the length of guide along which the optical power will be

absorbed and thus the area over which photomixing occurs. This coupling to the absorber

depends primarily on the thickness of the upper cladding layer. Finally, a good velocity

match between the terahertz and optical signals can only be achieved if the optical signal

propagates with a single phase velocity, i.e. in a single mode. The single mode nature of

the guide depends on the thickness of the core, width of the strip as well as the strength

of confinement in both the vertical and lateral directions. In addition to the primary con-

siderations, a wider strip will give more absorber area (and therefore volume) over which

to distribute the heat load from optical power and ohmic heating in the photoconductor.

This constraint is not independent of the input coupling efficiency consideration. Finally,

the only absorption of the optical power should occur in the absorber layer. This require-

ment maximizes device efficiency and constrains the possible aluminum fractions for the

Al U Ga V/W0U As layers and requires the lower cladding to prevent interaction of the mode with

the absorbing GaAs substrate. Thus, four layers are required: lower cladding, core, upper

cladding, and absorber.

A schematic cross-section of the strip-loaded waveguide with the design variables is

shown in Figure 2-4. The variables are the height (or thickness) of the lower cladding,

core, upper cladding, and absorber layers, the aluminum fraction in the core and cladding

regions, the strip width and the etch depth. With only four independent constraints or
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Figure 2-4: Cross-section of a distributed ridge waveguide showing the design variables.

performance metrics and nine design variables, a rigorous mathematical optimization pro-

cedure cannot be performed. However, by making an investigation of the design space, a

heuristic approach gives reasonable results and allows one to focus on the physics of the

device operation.

A few initial design choices need to be made to reduce the number of degrees of free-

dom so that the design space is manageable. The requirement for all absorption to oc-

cur in the absorber layer means that the lower cladding layer must be sufficiently thick

to prevent interaction of the mode with the substrate. For modeling purposes, then, the

lower cladding layer is assumed to be effectively infinitely thick. In practice, a lower

cladding layer with thickness of XZY m effectively isolates the mode from the substrate.

The other layer-thickness assumption is that the LTG-GaAs absorber layer should be thin

( []\7^`_�Y m). This assumption is partly based on other work with traveling-wave photode-

tectors [65] and partly on the fact that the responsivity of LTG-GaAs photomixers is larger

per unit length for thin LTG-GaAs layers because the carrier collection efficiency decreases

(approximately exponentially) with depth into the LTG-GaAs [57, 58]. The final designs

iterate over the LTG-GaAs layer thickness to bracket the desired extinction length.

Simplifications and constraints are also made concerning the layers’ compositions. The

absorption requirement sets a minimum Al fraction in the waveguide layers to prevent

band-to-band absorption from tails of the band edge. The band gap of Al a!bdc�a Ga a!b e/a As
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corresponds to a photon wavelength of 800 nm, which is far enough from the operating

wavelength of 850 nm that absorption is negligible over the millimeter lengths of wave-

guide involved in this device. Therefore, ten percent (10%) will be a lower limit on the Al

concentration in core and cladding layers. No design requirement sets an upper limit on Al

concentration; however, higher Al concentration alloys oxidize more and are less desirable

from a device lifetime perspective. Also, any desirable index contrast can be achieved with

Al fractions limited to less than f7g9h . No compelling reason exists to choose different Al

fractions for the upper and lower cladding, and choosing the cladding indices to be the same

simplifies the analysis and make the guide easier to understand. Finally, the three variables

related to Al fraction can be collapsed into one variable, because simulations indicate that

the mode profile depends on the index contrast between the core and the cladding and not

the absolute indices of the layers. The index contrast is given by

i
jlkmjon�pJjoq9nZkrjonsptj)uvn
, (2.11)

where
jon

,
j)qwn

, and
j)uvn

are in the indices of refraction of the core, lower cladding and upper

cladding, respectively. The mode depends only on
i
j

, because it is contained almost en-

tirely in the core and cladding layers, i.e. different index steps between the upper cladding

layer and the absorber and/or air do not affect the mode profile.

The design variables and initial constraints are given in Table 2.5. The method of field

shadows requires analysis of the vertical (growth) direction first; therefore, I explore that

portion of the design space before the design space of two variables related to the lateral

behavior of the guide.

Design in Vertical Dimension

Pairs of core and cladding indices which sample the achievable index contrasts within the

constraints are given in Table 2.4(b) along with the corresponding index contrasts. For

each value of index contrast, I calculate the mode waist and absorber fill factor for a matrix

of core and upper cladding thicknesses. Keeping the guide single mode sets the upper

limit on core thickness, and requiring the mode to be “well confined,” which I have chosen
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Table 2.5: Dielectric waveguide design variables with initial constraints.

Description Variable Constraints
Lower cladding thickness xzyd{ effectively infinite
Core thickness x7{ none
Upper cladding thickness xz|}{ none
Absorber thickness x�~��}� ���7����� m
Core/cladding �$�����P{v����yd{v����|}{!� ��yd{��r��|}{

index contrast �7�`�����P{����P|!{�� yd{����7�9�
Strip width � none
Etch depth  z¡�¢�{¤£ none

to mean more than approximately sixty percent of the power in the core layer, sets the

lower limit. The constraints on the cladding thickness are somewhat more arbitrary. A

minimum �7�`��� m thickness was shown to allow any desired absorber fill factor, and below

that thickness, fill factor varies quickly, making those designs more sensitive to growth

tolerances. The maximum cladding thickness was that which gave an absorber fill factor of�7�w�'�:¥ or less, which was smaller than needed for any device design.

As explained in Appendix Section A.2, the absorber fill factor, ¦ , calculated using real

dielectric constants for all layers provides a good approximation for the mode absorption

length by multiplying the fill factor by the bulk absorption coefficient of the absorbing

material. The absorber fill factor calculated with one-dimensional analysis is always an

upper limit on the achievable fill factor in a complete strip-loaded waveguide structure for

a given stack of dielectric layers. This limiting nature arises because etching a strip in the

top of the stack will cause the mode to curve downward thereby “pushing” part of the mode

out of the absorber. As discussed in Section 4.1.1, the reported values for the absorption

coefficient of LTG-GaAs, §�¨!©Pª)«Pªz~�¬7� , vary from �®­¯���A°}±³² «�´ to ¥�­¯����°µ±³² «�´ . At the outset

of this thesis, the latter value was assumed; therefore, discussion in this chapter focuses

on designs for which that assumption is made. Designing a waveguide for a different§¶¨!©Pª)«Pªz~�¬7� requires simply using the same design curves to choose an alternate absorber

fill factor.

The mode waist in the growth direction is the waist of the best-fit Gaussian to a mode’s

field profile. The Gaussicity, or normalized overlap between the field and its best-fit Gaus-
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Figure 2-5: Absorber fill factor for core of Al ·!¸ ¹/· Ga ·!¸ º/· As and cladding of Al ·!¸ »/· Ga ·!¸ ¼�· As
yielding ½
¾l¿ÁÀ7ÂwÀ'Ã:Ä .
sian, is defined by Å Æ ¿ÈÇÇÇdÉ�ÊË ÊÍÌÏÎ7Ð

ÑLÒ=ÓÕÔ Ë Ô�ÖØ×�ÙÚ ÙÜÛIÝßÞ�à�á:â7ã�á ÇÇÇÑ�ä Ú Ù¹ Û Ë�å�æèçêé É ÊË Ê
ë Ýìà�á:â ë ¹ ã�á , (2.12)

where á�í is the mode center and î is the waist. While the modes’ shapes are not exactly

Gaussian, the Gaussicity for all the designs presented is greater than À7Âwï'ð'Ã .
Simulation results of absorber fill factor as a function of upper cladding thickness

parameterized by core thickness are presented in Appendix A in Figures A-5, A-6, and

A-7. An representative plot is given in Figure 2-5 for a slab waveguide with core of

Al ·!¸ ¹/· Ga ·!¸ º/· As and cladding of Al ·!¸ »/ñ Ga ·!¸ ò/ñ As. Absorber fill factors up to a few percent

can be achieved for many different index contrast and thickness values. The design space

itself can be more easily visualized in Figure 2-6, which presents the mode waist as a func-

tion of core thickness, parameterized by index contrast. Upper cladding thickness is not

included in this plot because mode waist is almost invariant with respect to it. The regions

of the design space for which the guide is either multimode or poorly confined are noted in

the figure. As expected, smaller index contrasts allow thicker core layers before the guide

goes multimode. Interestingly and counter-intuitively, mode waist varies quite slowly with

core layer thickness. The physical reason behind this effect is that the curvature of the mode
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Figure 2-6: Mode waist as a function of core layer thickness parameterized by ó
ô between
the core and cladding layers.

is set primarily by the index contrast between the core and cladding layers. The boundary

conditions which require the slope of the field profile to be continuous for TE modes de-

termine the mode shape. Thus, if the mode is well-confined, the width of the mode is

relatively invariant to the distance between the core/cladding boundaries. The value that

changes is the fraction of the mode in the core layer.

Of the approximately 40 combinations of ó
ô and core thickness, the four noted in

Figure 2-6 bracket both degrees of freedom. The fraction of optical power absorbed is

given by õÁöø÷úù�û�ü¶ý�þ�ÿ�� � ���ý ��� � , (2.13)

where
�
	���
�� ���

is the length of the active area and
������


is the mode extinction length. There-

fore, for a

÷ ���
- � m-long active area,

������
 ö ��� � m is a good compromise between high

efficiency and distributing the power absorption over a large area. Assuming � LTG-GaAs

ö
�! ÷ �#"%$'& ü)(

, an absorber fill factor of * �,+-���.�
yields the desired mode extinction length

of as calculated by equation (A.37). For each ó
ô and / � combination, I choose the /10 �
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Table 2.6: Designs modeled as full two-dimensional strip-loaded waveguides.243 576 57896 :,6 :,896
1-D ; 3

eff
0.032 0.20 0.25 0.7 0.25 0.00649 3.45041
0.062 0.20 0.30 0.6 0.25 0.00593 3.44174
0.092 0.20 0.35 0.5 0.25 0.00600 3.43120
0.133 0.10 0.30 0.4 0.22 0.00571 3.48461

value from Figure A-5(b), A-6(a), A-6(c), or A-7(a) which corresponds to and absorber fill

factor slightly larger than that which is ultimately desired. These four designs are detailed

in Table 2.6.

Design in Lateral Dimension

For each one-dimensional dielectric stack design in Table 2.6, a matrix of etch depths and

strip widths are chosen. The mode waist in the lateral direction is calculated for each

design. The absorber fill factor is not calculated, because the computation time is long and

the 1-D fill factor will be a good approximation, especially for wider strips. The lateral

mode waist values are shown in Figure 2-7.

From the designs in Figure 2-7, I simulate — in 2-D and with a complex dielectric

constant for the absorber — the designs which allow the widest single mode strip for each243
. A wider strip permits both more power coupled into the guide and a larger absorber

region which distributes the thermal load in the absorber. For the full simulations, the

Sellmeier equation gives the AlGaAs indices, while for LTG-GaAs, <%=?>A@CB,DFE�EHGJI7KLDFM�N#O ,

where @CBLDPE�E is the accepted value for <�Q of GaAs and <9RS>TK,D-M�N�O yields the assumed bulk

absorption coefficient of UV>WEYXZ@CK�[ cm \ Q . Achieving the desired extinction length for

the complete structure requires tweaking of the upper cladding thicknesses for a couple of

the designs. The dimensions and characteristics of the final designs are presented in Ta-

ble 2.8. The
243 >]KLD�@CB�B design is less desirable than the others, because the fabrication

tolerances are higher with a E�K�K Å etch into the upper cladding versus a ^�K�K Å etch. The

other designs are essentially equivalent with the same extinction lengths and similar mode

sizes. The
243 >_K,D-K�M.E design was grown and fabricated as described in Chapter 3. The
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Table 2.7: `badc�e ’s for varying etch depths.`ba fLc�g�hjiLk Å l `ba eff
0.032 500 0.00227
0.062 500 0.00238
0.133 200 0.00243
0.092 500 0.00258
0.032 1000 0.00311
0.133 500 0.00330
0.062 1000 0.00348
0.092 1000 0.00393
0.032 1500 0.00419
0.062 1500 0.00508
0.032 2000 0.00554
0.133 1000 0.00563
0.092 1500 0.00610
0.032 2500 0.00713
0.062 2000 0.00736
0.092 2000 0.00948
0.133 1500 0.00971
0.062 2500 0.01040
0.092 2500 0.01445
0.133 2000 0.01662

58



0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

Strip width (µµm)

M
od

e 
w

ai
st

 ( µµ
m

)

0.00227
0.00238
0.00243
0.00258
0.00311
0.00330
0.00348
0.00393
0.00419
0.00508
0.00554
0.00563
0.00610
0.00713
0.00736
0.00948
0.00971
0.01040
0.01445
0.01662
0.00283
0.00255

multimode regime

simulated with complex
dielectric constant

Figure 2-7: Mode waist as a function of strip width parameterized by m4n eff between the
strip and etched sides.

59



Table 2.8: Dielectric waveguide designs: structure and characteristics.o4p q7r q7s9r t,r t,s9r t,uvr
w w.x�y rjz

( { m) ( { m) ( { m) ( { m) (Å)
0.032 0.20 0.25 0.7 0.23 3 3 500
0.062 0.20 0.30 0.6 0.23 3 3 500
0.092 0.20 0.35 0.5 0.24 3 3 500
0.133 0.10 0.30 0.4 0.21 3 3 200

(a) Dielectric waveguide designs: structure.

o4p o4p
eff Vert. Lateral | }
x�~�y � eff��� ( { m) ��� ( { m) ( { m)

0.032 0.00217 0.55 2.41 0.00513 92 3.44907
0.062 0.00247 0.44 2.29 0.00517 91 3.44046
0.092 0.00255 0.38 2.27 0.00500 94 3.42995
0.133 0.00252 0.31 2.27 0.00509 94 3.48346

(b) Dielectric waveguide designs: characteristics.

higher index contrast between layers allows slightly more leeway in growth, i.e. the closer

the Al fractions in the core and cladding are, the more sensitive the confinement will be

to variations in the fraction of one or the other. By decreasing the LTG-GaAs layer thick-

ness to �,�-����{ m, the extinction length is almost doubled to �C����{ m, and by increasing the

thickness to �,���C��{ m, }
x�~�y is halved to �.��{ m. A contour plot of the power distribution in

a waveguide with this design is given in Figure 2-8. The �,�F� - { m width of the design in the

contour plot is the widest strip that supports a single mode.

Before investigating the terahertz waveguide design, a few comments on the depen-

dence of mode extinction length on AlGaAs indices, � LTG-GaAs, and strip width are in

order. Using the Adachi expression for AlGaAs indices on the nominal
o4p�� �,�-���.� struc-

ture yields a ����� increase in extinction length relative to the same structure modeled using

Sellmeier, because the absorber fill factor decreases by a corresponding amount. The ex-

tinction length is most sensitive to the value of ��� used for LTG-GaAs. A change from

�C�,����� given by Sellmeier to the �C�,�F��� literature value for GaAs (a change of only �L�F�.� )

leads to a ���.� change in the extinction length. This sensitivity is understood heuristically

60



4·10
-6
5·10

-6
6·10

-6
7·10

-6
8·10

-6
9·10

-60.00001
1·10

-61.25·10
-61.5·10
-61.75·10
-62·10
-62.25·10
-62.5·10
-6

LTG-GaAs
Al     Ga     As

0.35     0.65

Al     Ga     As
0.35     0.65

Al     Ga     As
0.20     0.80

width (µµm)
0 1 2 3 4 5

0

0.5

1.0

1.5
he

ig
ht

 (µµ
m

)

6 7

Figure 2-8: Mode in �4���V�,�-���.� and �4� eff ���,�-���.����� waveguide.

as the higher index of the LTG-GaAs layer drawing the mode into the absorber layer. Be-

cause only the tail of the mode couples into the absorber, a small shift of the mode “up”

leads to a large fractional change in the absorber fill factor. This change in � produces a

change in �
����  of the same magnitude. The ¡9¢ value for LTG-GaAs has a more intuitive

effect on �'����  , in that a change in ¡9¢ produces almost exactly the same fractional change in

�'����  . The change is not exactly the same because ¡%¢ does affect the mode profile. Finally,

the absorber fill factor increases as the strip width is increased, asymptotically approaching

the 1-D value.

All of these effects are illustrated in Figure 2-9. The nominal �4�£�¤�,�-���.� design was

simulated for different values of ¡9¥�¦,§d¨L§1©�ªL« and the mode extinction length and absorber fill

factor plotted. The lateral mode waist values from these simulations are included in Fig-

ure 2-7. Note that the �4� eff values of these two designs analyzed with complex dielectric

constants in Figure 2-7 are different even though the ¡�¬ values are the same. The square

root relationship between ¡ and ­� means that changes in ¡®¢ affect � as well as ¯ .

2.2 Terahertz Waveguide Design

The choice and design of terahertz (THz) waveguide is much simpler than for the optical

waveguide. Metal is the waveguiding material of choice in the millimeter and THz regimes.

If the waveguide is metal, it can also apply the dc-bias to the absorbing, photomixing

layer. In order to confine the THz signal close to the substrate and maximize coupling
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Figure 2-9: Absorber fill factor and mode extinction length as a function of strip width for
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Figure 2-10: Schematic of coplanar strips with infinite substrate.

to the photomixing layer, the waveguide should be coplanar. Of the three most common

coplanar metal waveguides, coplanar strips, coplanar waveguide, and slotline; coplanar

strips (CPS) and coplanar waveguide (CPW) have much lower dispersion than slotline for

similar dimensions and frequencies. Traveling-wave photodetectors have been reported in

which the photo-excited layer is under the central strip of CPW [63, 64]. In these designs,

based on p-i-n diodes, the entire optical mode is contained in the diode layer under the

central CPW strip. A conducting layer under the diode allows the photocurrent to flow to

the finite ground planes. For a photoconducting detector with an absorbing layer weakly

coupled to the optical mode, this geometry is not appropriate. Therefore, CPS are used to

guide the THz signal. The CPS can be ignored in modeling the optical mode because the

optical intensity is very small ( ³ ´LµF´,¶ ) at the top of the dielectric waveguide where the

CPS are fabricated.

2.2.1 Coplanar Strips

The design variables for CPS are the gap between the strips, · , and the width of the strips, ¸ ,

as shown in Figure 2-10, and the overall length of the active area. Coplanar strips have been

extensively studied and characterized, and for the relative dimensions in the distributed

photomixer, quasi-static models work well. Because the distributed photomixer will be

mounted on a Si hyperhemispherical lens, the substrate can be assumed to be infinitely
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thick. For symmetric CPS on an infinitely thick substrate, the impedance is given by

¹»º½¼ ¾�¿9ÀÂÁWÃÅÄ�Æ#ÇÈ É�Ê�Ë ÌÎÍÐÏLÑ�ÒÌÔÓÕÍÖÏLÑ�Ò , (2.14)

where

É�Ê�Ë×Á É�ÊÙØ ÃÄ (2.15)ÏLÑ×Á ÚÚ Ø Ä#Û ÁAÜ Ý
, (2.16)

where
É�Ê

is the relative dielectric constant of the substrate and
ÌÎÍÐÒ

and
Ì Ó ÍÖÒ

are the com-

plete and complementary complete elliptic integrals of the first kind, respectively [77].

Because the LTG-GaAs is very high impedance under constant wave (cw) illumination, the

photoconductor can be considered a current source. Therefore, the power developed on the

CPS is linearly related to the CPS impedance. However, for high values of CPS impedance

the lines become very narrow, which means their current carrying capacity decreases and

ohmic loss increases. Figure 2-11 shows the variation of CPS impedance with structure

parameter as given by equation (2.14).

The width of the absorber on top of the strip of the optical waveguide dictates the choice

of CPS gap, Ú . For a Ú narrower than the strip, the absorber collection area is less than the

maximum available. Even though a value of Ú wider than the strip can be used as long as dc-

bias is applied to the photomixing layer, no compelling reason exists to do so. Therefore, a

CPS gap of Þ»ß m is reasonable. This width will put the inside edges of the coplanar strips

on top of the raised strip of the optical waveguide. This geometry makes the fabrication of

the CPS easier because the thin electrode described in Section 2.2.2 will lie completely on

top of the strip.

Literature describing propagation of THz signals on CPS and CPW focuses a lot of at-

tention on radiation loss [78, 79, 80, 81]. However, the radiation loss is only high in these

structures because the dimensions of the waveguide are so large compared to the wave-

length of the THz radiation and the substrates are so small compared to the wavelength.

Using the semiempirical formulation of Frankel, et al., I plot in Figure 2-12 the radiation

64



0.2 0.4 0.6 0.8

60

80

100

120

140

160

180

200

0.2k

C
P

S
 im

pe
da

nc
e 

( ΩΩ
)

80

100

60

0.4 0.6 0.8

200

180

160

140

120

if s = 3 µµm
6.0 2.25 1.0 0.4

0.1
13.5

0.3
3.5w (µµm)

1

Figure 2-11: CPS impedance as a function of structure parameter. Impedance is also shown
for a gap of à�á m.

loss as a function of frequency for CPS with a gap of à�á m for different strip widths [82].

Even for widths up to âCã�á m the total radiation loss at 3 THz is relatively low for a âÅä�ã -
á m-long active area. A width near à�á m, however, is a good compromise between narrow

strips with their higher impedance and lower radiation loss and wider strips with their larger

current capacity. From Figure 2-11, a width of à,åPæçá m yields an impedance of è�ãêé .

2.2.2 Quasistatic Calculation for Electrode Design

The quasi-TEM mode propagating on the CPS sees an effective index given by ëíì,îðïYñò ó�ôöõ ñ ÷ ø ó�ôúù âÅû�ü�æ , where
ó½ô

is the relative dielectric constant of the substrate at THz

frequencies (
ó½ôþý âÅæLå-è ). As previously discussed, the optical beat signal propagates at a

group velocity for which the group index is approximately the effective index of the guide

( ëdÿ�� � ý ë õ��!ý ò ó�� � ÿ ), where
ó�� � ÿ is the relative dielectric constant of the waveguide material

at optical frequencies (
ó�� � ÿ ý à,åFà�� à,å 	 for Al 
 Ga �
��
 As with ãLå�â������ ãLåFà.ä ). Therefore,

because the velocity of the THz signal is higher than the velocity of the optical signal, the

CPS must be modified to slow the THz signal and velocity match it to the optical signal for
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Figure 2-12: Radiation loss for different CPS strip widths.

optimum power transfer. The velocity of the THz wave on the CPS is given by

����������� � !#"%$'&
()"%$'&+*-,/. , (2.17)

where !#"%$'& and ()"%$'& are the intrinsic, distributed inductance and capacitance, respectively,

of the CPS. The velocity on the CPS is reduced when capacitance is added, and this is the

most straightforward and common way of achieving velocity match. Solving

�10
$�23���1�������54 � !#"%$'&76+()"%$'&98:(<;>='=1?A@ ,/.
(2.18)

for (<;>='= , the added, distributed capacitance yields the required capacitance to match the

velocity of the THz wave to the optical wave. Note that the units of (B;>='= are CEDGF , so

that if the capacitance is added in lumped amounts the added capacitance should be aver-

aged over the pitch of the lumped capacitors. Adding thin electrodes that bridge part of the

gap between the coplanar strips will add a small amount of capacitance, forming what is

called a balanced interdigital line, as shown in Figure 2-13. Lim and Moore [83] calculate

the capacitance between electrodes in a series of equally-spaced, infinitely-long, thin elec-
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Figure 2-13: Schematic of interdigitated electrodes periodically loading CPS.

trodes. Through a series of conformal mappings, they calculate the capacitance between

two electrodes to be HJILK�M�NPORQSKPT
UPVWNYXZUV\[%NYXZU , (2.19)

where
VWN+U

and
V [ NYU

are the complete and complementary complete elliptic integrals of the

first kind, where X I�]7^G_Z`badcedf , (2.20)

and where
a

and
f

defined as in Figure 2-13. The capacitance calculated using equa-

tion (2.19) is per unit length but the length is the length by which two electrodes overlap as

in Figure 2-13. While the electrodes periodically loading the CPS are neither infinitely long

nor thin (relative to their width), this expression gives a good starting point for choosing

electrode geometries to simulate in Momentum [84], as explained in Section 2.2.3. These

electrodes are similar to those used in the standard lumped-element photomixers devel-

oped at MIT Lincoln Laboratory [60], and they have been shown to efficiently collect THz

current.
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Figure 2-14: Schematic of loaded CPS circuit modeled in Momentum.

2.2.3 Method-of-Moments Calculation for Electrode Design

Using Hewlett Packard’s method-of-moments electromagnetic field solver for planar cir-

cuits, Momentum, the phase velocity of the THz signal, impedance of the CPS, and radi-

ation loss can all be accurately calculated. Method-of-moments codes solve the integral

form of Maxwell’s equations by solving for a Green’s function for the current. This type

of code is much efficient for planar structures than for three-dimensional structures. The

circuit modeled in Momentum is shown in schematic in Figure 2-14. All of the simulations

assume g�hji - k m-wide electrodes, because this width is the standard photomixer electrode

width and is achievable using the electron-beam lithography equipment at Lincoln Lab.

Momentum assumes the metal lines are perfect conductors. Impedance and phase veloc-

ity is extracted from the lnm
m values returned by Momentum. The impedance looking into

reference port 1 is given byo m
p qsrBt o#u qsr'v o#w x
y{z}|�~�o#u qsr'v��7�����Y�����o#u qsr'v |�~�o�w�x
y�z �7�����Y����� , (2.21)

where
o#u qsr'v and

o#w�x
y�z
are the impedances of the line and port, respectively, � is the propa-

gation constant of the signal on the CPS, and � is the physical length. For ����� � � |����
,�7�G���Y������� � and therefore, o m
p qsrB� o �u qsr'vo#w x
y{z . (2.22)
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Figure 2-15: Smith chart showing zero-crossing for a through line.

For this value of �d� , the propagation constant, or effective index, can be calculated by

���B��� ���:� � � � �� ¢¡£ � , (2.23)

where ¡ is the frequency for which this occurs. Thus, by finding the frequency for which

a given length of line has a real input impedance — equivalently ¤�¥
¥ crosses the real axis

on a Smith chart as in Figure 2-15 — ¦�§s¨s©'ª can be computed from equation (2.22), while«�¬�­�® � £°¯   can be computed from equation (2.23). The added capacitance of the electrodes

can then be deduced using equation (2.18). The impedance of the CPS is slightly higher

than predicted from ¦E±²%³'´ �¶µ · ²%³'´¸ ²%³'´ � ¸<¹>º'º , (2.24)

because the electrodes add a small amount of inductance as well. For the »½¼¿¾ÁÀ CPS

described in Section 2.2.1, a gap between electrodes of ¼-ÂÄÃ�Å m and an overlap of Æ½ÂÄ¼�Å m

adds enough capacitance to slow the THz wave to match the optical signal. The quasi-static

calculations predicted a gap of ¼-ÂÄÇ½È�Å m and overlap of Æ�Â � Å m. The results of a number of

simulations are plotted in Figure 2-16 along with the quasi-static prediction of Lim and

Moore from Section 2.2.2. The capacitance added to the line for a given electrode structure

is generally ÉËÊ�¼dÌ higher than predicted by quasi-static analysis. This underestimate is

expected, because fringing fields off the end of the electrodes make them effectively longer
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Figure 2-16: Capacitance added per length of overlap between the electrodes.

than they are physically.

To calculate the radiation loss, the structure depicted in Figure 2-14 is considered in

two different representations, using voltage waves and Í -parameters, as shown in Figure 2-

17. The radiation loss is extracted by considering the fraction of power lost from both

perspectives. In terms of voltage waves, the power at the input port is given byÎÐÏPÑÓÒ�ÔÖÕ ×ØÚÙ�Û�Ü ÏPÑÓÒ�ÔPÝ�Þ�ÏPÑÓÒ�Ô�ßÕ ×ØÚÙSà<á'Üãâäæå°ç'è¢é ÜëêäÐå ê ç'è
ìÐí Ï Ü âä Ô Þî Þïsðsñ'ò å°çôóõè Ñ Ï Ü êä Ô Þî Þïsðsñ'ò å ê çôóõè
ö�÷Õ ×Ø Ù à�ø Ü âä ø ùî Þïsðsñ'ò å ù
ú è é Ï Ü âä Ô Þ Ü êäî Þïsðsñ�ò å êGû ù>ü è Ñ Ü âä Ï Ü êä Ô Þî Þïsðsñ'ò å û ù>ü è Ñ ø Ü êä ø ùî Þïsðsñ'ò å ê ù
ú è�÷Õ ×Ø ø Ü âä ø ùÙýÛ î Þïsðsñ�ò ß á å ù
ú è Ñ ø þ ä ø ù å ê ù
ú èAì , (2.25)

where the propagation constant is ÿ Õ�� é���� and þ ä , the reflection coefficient at port 2, is

given by þ ä Õ î��	��

��ÑWî ïsðsñ'òî�����
�� é î ïsðsñ'ò . (2.26)
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The power at the load (port 2) is given by

��������� ������ � �!���#"%$&�!���	'
� �� ( �*)+ ( ,�-�/. $0212354 '76 �98 (2: + ( ,5; . (2.27)

Therefore, the power lost on the line is given by

� 02<�=�> �?�� ( �*)+ ( ,�-�/. $0212354 '@6 ��A ,�BDC 8E� �GF (2: + ( , � �98 A/H ,�BDC � ;
. (2.28)

The CPS is low loss enough that . 0212354 can be used for �-�/. $0212354 ' . The fraction of power lost,I
, is the ratio of

� 02<�=�> to the power at the input,
��� 8KJ � , i.e.

IL� �!A ,�BDC 8E� �GF (2: + ( , � �98 A H ,�BDC �A ,�BDC 8 (2: + ( , A H ,�BDC . (2.29)

From a scattering matrix perspective, the fraction of power lost is the fraction that is not
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Figure 2-18: Calculated radiation loss for CPS with and without interdigitated electrodes.

either reflected back to port 1 or transmitted to port 2, i.e.

MONQP9RTSVUXW�WYS Z[RTSVU Z W&S Z . (2.30)

Equating the two expressions for
M

, using the
U\W�W

and
U Z W values from Momentum, and

solving the transcendental equation for ] yields the radiation loss of the CPS. The results

for an unloaded CPS line and for a CPS line loaded with electrodes for velocity matching

are shown in Figure 2-18. The radiation loss remains less than 2 dB/mm up to 3 THz and

is cubic with frequency, agreeing quite closely to the semiempirical prediction of Frankel,

et al. [82]. The interdigitated electrodes do not introduce significant loss. Oscillations in

the data can be attributed to standing wave effects that are significant in the short length of

line used in the calculations.
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2.3 Antenna Design

The final component of the distributed photomixer is the radiating element. After the op-

tical signal has been absorbed, generating a conductance wave, which gives rise to a THz

electromagnetic wave guided by the CPS, the THz signal must be coupled off of the chip.

A frequency independent antenna preserves the frequency dependence of the transmission

line. A narrowband antenna such as a dipole produces a pure polarization state, which is

needed for some applications.

2.3.1 Bowtie Antenna

θθ

Figure 2-19:

Bow-tie antenna

schematic.

The standard frequency-independent antenna for photomixers has

been the log-spiral [2], but that geometry is not compatible with the

large active area of the distributed photomixer. A log-periodic an-

tenna is a commonly used self-complementary antenna, but it is not

truly frequency independent, only periodic, as its name implies. The

bowtie antenna which is a projection of a biconical antenna [85], is

commonly used in millimeter and sub-millimeter wave applications.

The drawbacks of the bowtie are the lack of polarization purity and

the a multiple lobed far-field pattern at high frequencies (relative to

the bow-length) [85, 86]. For coupling power to a bolometer, these deficiencies can be over-

come through proper choice of focusing elements. Compton, et al. [86] give the radiation

resistance of a bowtie antenna on a substrate as

^`_	a�bdc
e2f[g hjik lnm[oOprqtso�uvprqws , (2.31)

where hji is the impedance of vacuum,
l5m

is the dielectric constant of the substrate, oOprs ando u p�s are the complete and complementary complete elliptic integrals of the first kind, andq is given by2

q gExzy|{w}`~��d� a������� , (2.32)

2Note that the definition of � is incorrectly listed as ���	�`�
���	�������� in [78].
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where � is the bow angle as indicated in Figure 2-19. This structure is too large to simulate

in Momentum in a reasonable amount of time. The bow angle of �|�d� yields an impedance

of �/��� to match the loaded CPS impedance. A bowtie terminated at an arm length  |¡£¢ ,
where ¡¤¢ is the wavelength in the dielectric substrate of the lowest frequency of interest,

has an impedance which is not frequency dependent [78]. A bow arm length of �|¥|¦j§ m cor-

responds to a minimum frequency of 62 GHz, according to this convention, which allows

some margin below the minimum desired frequency of operation of ¨ 200 GHz.

2.3.2 Dipole Antennas

~30 µµm

reference
port 1

reference
port 1

0.1 µµm

Figure 2-20: Dipole

modeling in Momen-

tum.

Printed dipoles on substrates have been extensively studied.

In a standard reference, Kominami, et al. analyze printed dipoles

and slots on a semi-infinite substrate [87]. The moment method

they use does not produce closed form expressions for dipole im-

pedance. However, they do give an expression for first resonance

length of ©!ª¬«
­®	¯±° ²³ ª´« ¦tµ·¶��¹¸�º¼»¾½ ¿ÁÀÃÂ ² , where ÄÆÅ
Ç ° ¦tµ¬¥wÈ�Ä#Å�»Éº&Ê ,¡ÌË is the wavelength in vacuum, and Í and Î are the width

and length, respectively, of the dipole. They assumed a delta

gap excitation and no feed structure, but the work of Carver

and Mink [88] suggests that as long as the excitation gap is less

than ¦Ãµ
º�¡ÌË the dipole behavior is not significantly affected. Mo-

mentum has accurately predicted the center frequency and band-

width of photomixer antenna designs in the past [60]; therefore,

as with design of the CPS, Momentum is used to refine the initial

designs. I consider three dipole designs, resonant at 850 GHz,

1.6 THz, and 2.5 THz. Using a structure like that in the upper

portion of Figure 2-20, the dipoles are modeled in a similar way

to the CPS modeling in Section 2.2.3, using equations (2.21),

(2.22), and (2.23), except that Ï�Ð � Å�Ñ is replaced by Ï�Ò�ÓÔÑ , the

dipole impedance to be calculated. Alternately, the length of
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Figure 2-21: Variation of dipole impedance with dipole length. Solid curves from Komi-
nami, et al.

CPS can be dispensed with as shown in the lower part of Figure 2-20, and Õ×Ö�ØÔÙ can be

found directly from the Momentum-calculated Ú�Û�Û values. The dipole impedance for vari-

ous lengths for each design frequency are plotted in Figure 2-21. The prediction of Kom-

inami, et al. are shown for comparison, and excitation gap makes a noticeable difference.

The real part of the impedance varies in a manner similar to that described by Zhu and

Wu [89]. Final dimensions are in Table 2.9.

In this chapter, I presented accurate modeling techniques and a design procedure for

each of the 3 major components of the distributed photomixer: optical waveguide, tera-

hertz waveguide, and antenna. Specific designs have been detailed, and these designs were

fabricated as described in Chapter 3. The design methodology, design curves and data

are general, however, and allow the design of other distributed photomixers with different

characteristics.
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Table 2.9: Dipole designs.

Design Ü Full length ( Ý ) Width ( Þ )
(THz) ( ß m) ( ß m)
0.85 70.0 2.0
1.6 41.0 1.5
2.5 29.2 1.5
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Chapter 3

Distributed Photomixer Fabrication

This chapter describes the fabrication of the distributed photomixer, including mask design,

growth, and processing for the the optical waveguide, terahertz waveguide, and radiating

element. The aluminum gallium arsenide (AlGaAs) and low-temperature-grown gallium

arsenide (LTG-GaAs) layers for the optical waveguide are grown using Molecular Beam

Epitaxy (MBE). A combination of optical and electron-beam (e-beam) lithography define

features for etching and metal deposition. Partial etching of the top AlGaAs layer creates

the strip for the strip-loaded waveguide, while metal evaporation and liftoff produce the

terahertz waveguide and antenna. Section 3.1 details design of the masks for both optical

and e-beam lithography. Section 3.2.1 contains layer growth parameters, and Section 3.2.2

includes processing steps for photolithography, etching and metal deposition. Section 3.3

provides photographs and micrographs of fabricated devices.

3.1 Mask Design

Lithography defines features on the surface of a wafer by patterning a coating of photore-

sist, a photosensitive polymer, using a mask which causes parts of the photoresist to be

exposed while protecting other portions. Depending on the polarity of the resist, devel-

opment removes the exposed (positive) or unexposed (negative) photoresist, which allows

selective processing of the now uncovered portions of the wafer. For optical lithography, or

photolithography, masks are physical objects made from transparent and opaque materials,
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beam
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with coarse

beam

Figure 3-1: Bowtie-coupled photomixer SEBL masks. The etch and metal deposition
masks are superimposed. A wire bond to the middle of the antenna provides bias con-
tact to the bowtie-coupled devices. Different colors denote different e-beam doses.

which allow light to pass unimpeded in certain areas while occluding other areas. For scan-

ning electron-beam lithography (SEBL), the mask is a series of commands that move an

electron beam across the surface of the photoresist-coated wafer. Distributed photomixer

processing requires design of both types of masks.

The obvious requirements of mask design are accurate definition of the features of in-

terest and proper registration of patterns from one processing step to the next. For a new

type of device, a mask allows parameterization of particular design features to bracket

design choices in order to account for unknowns and verify models. The distributed photo-

mixer masks accomplish these goals as well as defining a manageable device chip size and

providing test structures for independent measurement of various device characteristics.

Except for the bowtie antennas ( à á&â�ã|ã[ä m by à á�å/ã�ãjä m), the distributed photo-

mixer designs from Chapter 2 fit in an area approximately á&å|ãjä m by æ�å�ä m. On its own
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bias padoptical 
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Figure 3-2: Dipole-coupled distributed photomixer SEBL masks. The e-beam alignment
mark, etch, and metal deposition masks are all superimposed. Different colors denote
different e-beam doses.

merit, the benefit of a standard chip size dictates a larger chip for all the distributed pho-

tomixer designs. A large chip also allows test structures with dc-bias pads large enough

for wire-bonding and allows for manageable handling. A chip size of ç%è¬é mm by ê�è¬ë mm

accomplishes these objectives. Centering the active area avoids damage to the active area

resulting from handling near the edges of the wafer. The SEBL masks which define the

bowtie-coupled distributed photomixer are shown in Figure 3-1.

Distributed photomixer processing involves a minimum of two processing steps, etch-

ing to define the strip-loaded dielectric waveguide and metal deposition to create the tera-

hertz waveguide and antenna. Because the éÃè´ç - ì m-wide electrodes that periodically load

the coplanar strips (CPS) are narrower than achievable using standard optical photolithog-

raphy, patterning of the CPS requires e-beam lithography. The use of SEBL requires an

initial e-beam mask for alignment marks, which are used for all subsequent SEBL steps

and are shown in Figure 3-4. The critical alignment of the CPS to the dielectric strip is
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Figure 3-3: Detail of the device active area in SEBL masks. The etch and metal deposition
masks are superimposed. Different colors denote different doses.

more accurate and reliable if both processing steps use e-beam lithography, because the

SEBL alignment marks are more easily located in subsequent processing steps [90]. Thus,

SEBL defines the optical waveguide, even though the dimensional tolerances on the strip

itself do not require it. Because the active area is í?î mm from the input facet, the LTG-

GaAs layer must be etched from the majority of the chip to prevent the optical signal from

being absorbed before it reaches the active area. The alignment and dimensional tolerances

are large enough that an optical mask is sufficient. The waveguide etch and metal deposi-

tion masks for the active area of a dipole-coupled photomixer are shown in Figure 3-3. The

active area protected during the field etch of LTG-GaAs is noted in Figure 3-3. Alignment

marks for this step are written during the waveguide etch step, and an example is shown in

Figure 3-4.

Different electrode lengths and spacings on the CPS bracket added capacitance which

determines the velocity of the terahertz signal. Together with the frequency-independent

bowtie antenna, active areas with different added capacitance are used to investigate the

effect of velocity match between the optical and terahertz signals. The design electrode

gap1 of ïtðòñ[ó m and overlap of î�ð¬ïjó m adds ïÃð¬ï�ô�õ!öj÷ ó£ø . For greater capacitance, a ïtðòù[ó m

1For definition of the dimension terms, see Figure 2-13.
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Figure 3-4: Detail of test structure area in SEBL masks. The e-beam alignment mark, etch,
and metal deposition masks are all superimposed. Different colors denote different doses.

gap and ú�ûòüjý m overlap adds þtû¬ÿ|þ������/ý�� , when accounting for the þtû�ú	��ý m height of the

electrodes by modeling them as zero height electrodes with width þÃû´ÿ�
[ý m [91]. For lower

added capacitance, the gap is increased; however, the electrode overlap must be reduced

as the gap is increased to keep the distance between the end of an electrode and the CPS

greater than the gap. Fields are higher at the tip of the electrode, so the distance between

the end of the electrode and opposite coplanar strip must be greater than the inter-electrode

gap to prevent unwanted breakdown. Thus, the only practical design with capacitance

lower than the design electrode geometry is one with no interdigitated electrodes. For

the dipole-coupled distributed photomixers, instead of varying the electrode geometry, the

three antenna designs from Section 2.3.2 vary the resonant frequency of the dipole.

In addition to the distributed photomixer device, the masks contain test structures which

allow independent measurement of the LTG-GaAs responsivity, the carrier lifetime in the

LTG-GaAs, and the optical mode’s coupling to the LTG-GaAs layer. A dielectric wave-

guide, which is identical to the one used for the device, guides the optical beat signal;

however, instead of CPS along the length of the active region, � - ý m-wide taps provide bias

to five discrete points along the waveguide. The photocurrent at these points measures the

optical intensity at the point along the optical waveguide. The SEBL masks for defining

the test structures are shown in Figure 3-4. By surface illuminating these structures in-
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stead of waveguide coupling, these test structures can be used for measuring responsivity

or carrier lifetime. Continuous-wave (cw) illumination and measurement of the resulting

dc photocurrent determines the LTG-GaAs responsivity. Using an ultrafast pulsed laser and

an autocorrelation technique [92], the carrier lifetime in the LTG-GaAs layer is measured.

3.2 Fabrication

3.2.1 Layer Growth

The LTG-GaAs and AlGaAs layers comprising the dielectric guide are grown using Molec-

ular Beam Epitaxy (MBE) with a Intevac Modular Gen II solid source MBE reactor on a

semi-insulating GaAs substrate. Surface quality and layer growth are monitored using Re-

flection High Energy Electron Diffraction (RHEED), in which a high-energy electron beam

is bounced off the surface of the sample at a grazing angle. Diffraction of the electrons by

the sample’s lattice creates a series of streaks, the sharpness of which indicate the surface’s

flatness. A RHEED oscillation, or the change from a sharp pattern to diffuse and back to

sharp, occurs as growth progresses from a completed layer to an incomplete monolayer

with islands and back to a completed surface and thus marks the growth of a layer. The

RHEED patterns for all layers up to the LTG-GaAs were good on all the growth runs in-

dicating high quality layers. RHEED oscillations are not seen when growing LTG-GaAs

because even though crystalline material is grown, the surface never forms perfectly flat

sheets due to the reduced surface mobility of the constituent atoms at low temperatures.

The epitaxial layers are given in Table 3.1, while a not-to-scale schematic of the layers is

shown in Figure 3-5. The same schematic convention is used in Section 3.2.2: Figure 3-7

for detailing the processing steps. All Al 
 Ga ����
 As layers as well as the buffer GaAs layer

are grown at a substrate temperature of ������� C. The LTG-GaAs is grown at a substrate tem-

perature of ������� C and then annealed for 10 minutes at ������� C, because these conditions

have produced short carrier lifetimes [55].
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Table 3.1: Epitaxial layer structure.

Thickness Material Doping��������� Å LTG-GaAs undoped �! ��� Å Al "$# %�& Ga "$# '�& As undoped! ����� Å Al "$# (�" Ga "$# )�" As undoped*,+ ��- m Al "$# %�& Ga "$# '�& As undoped������� Å GaAs undoped
SI-GaAs substrate

Al     Ga      As
0.35      0.65

Al     Ga      As
0.35      0.65

Al     Ga      As
0.20      0.80

LTG-GaAs

GaAs

Figure 3-5: Schematic of the distributed photomixer epitaxial layer structure.

3.2.2 Processing

Processing of the distributed photomixer comprises four steps: SEBL alignment mark def-

inition, waveguide etch, device metal deposition, field etch of LTG-GaAs. Each step uses

the appropriate mask described in Section 3.1.

The SEBL system requires cross-shaped wafer level alignment marks as well as the

L-shaped die alignment marks shown in Figure 3-4. The standard SEBL photoresist,

ZEP 520, is spun on at 4000 revolutions per minute (4k rpm) to a thickness of � *�. ��� Å

( � *,+/.
kÅ). After a 15 minute pre-bake at ������0 C, the photoresist is exposed and devel-

oped for 30 seconds in n-butyl acetate. The wafer is ashed in a LFE-118 plasma asher

with a helium-oxygen ( 132�45( ) plasma at fifty watts (50 W) and one torr for 30 seconds to

ensure that the exposed wafer surface is free of organics. Four-hundred angstroms ( 6 ��� Å)

of titanium (Ti) are evaporated followed by ���7��� Å of gold (Au) in an Airco electron-beam

evaporator. The metal layer is this thin because a liftoff must be performed and the e-beam

resist is thin. Subsequent rinses of acetone and chlorobenzene dissolves the remaining pho-

toresist and lifts off any metal not on the wafer surface. A final ashing at 100 W for 1 minute

cleans the wafer surface. The key steps in this process are illustrated in Figure 3-7(a).
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waveguide strip

photoresist undercut
and peeling

(a) Undercut during PA-11
etching as a result of ZEP 520
peeling.

waveguide strip

photoresist undercut
and peeling

(b) Undercut during PA-11 etch-
ing as a result of SEBL developer
interaction with PPAP.

Figure 3-6: Photographs of undercut during PA-11 etching.

For the waveguide etch, the standard SEBL photoresist, does not adhere to the wafer

during a wet etch of 8:9�; seconds using PA-11 and either allows the etchant to undercut

the pattern or lifts off the wafer entirely as shown in Figure 3-6(a). A thin layer of PPAP

applied to the wafer before coating allows the photoresist to maintain adhesion, but the

standard SEBL developer (n-butyl acetate) reacts with the PPAP causing undercut as shown

in Figure 3-6(b). The developer, MIBK, however, does not react with the PPAP. The etch

rate of LTG-GaAs using PA-11 varied between <>= Å ?�@$ACB and <�D Å ?�@$ACB , while the etch rate

of the Al E$F G�H Ga E$F I�H As varied between J�9 Å ?�@KALB and 9�M Å ?�@$ACB . Etch depths are measured

with a Tencor Instruments Dectak. Table 3.2 details the successful waveguide etching

process flow, while Figure 3-7(b) illustrates the major steps.

The process steps for device metal are nearly identical to the steps for the SEBL align-

ment mark deposition. The lithography is more difficult on this step, because of the small

dimensions of the electrodes ( 8N;,OPM�Q m). The dose levels for each feature are set sepa-

rately to avoid over-exposure from scattered electrons (the proximity effect). A two-step

process in which the fine features are written in one run and the large features written in

a subsequent run after increasing the diameter of the electron beam reduces e-beam write
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Table 3.2: Process steps for waveguide etch.

Step Processing
1. Spin PPAP (diluted 35:1 with 1512 thinner) at 3k rpm.
2. Bake at R�S�T�U C for 30 minutes.
3. Apply VXW,Y/Z kÅ ZEP 520 by spinning at 3.6k rpm.
4. Bake at R�R�T�U C for 15 minutes.
5. Expose and develop using MIBK for 45 seconds.
6. Bake at R�R�T U C for 2 minutes.
7. Ash for VXW�T seconds at 100 W to remove PPAP.
8. Etch using PA-11.

time but increases total processing time because it requires two complete lithography and

liftoff steps. Adjusting the beam characteristics and dose levels “on-the-fly” and writing

the entire three inch wafer at one time results in a twenty-two hour write time but only one

lithography and liftoff step, as described at the beginning of Section 3.2.2. Figure 3-7(c)

shows a cross-section view of the key steps of this processing. As a result of the end-on

perspective, the gold is shown both on top of the photoresist and on top of the LTG-GaAs

layer. The gold of the electrodes directly contacts the LTG-GaAs layer, but between the

electrodes, the gold is on top of the photoresist.

Etching of the LTG-GaAs from most of the wafer is the final processing step. Fig-

ure 3-4 and Figure 3-3 note the relevant area where LTG-GaAs is not etched away. The

alignment mark for this layer is shown in Figure 3-4 and is defined during the waveguide

etch. Dimensions and tolerances for this step allow the use of optical lithography. For the

positive resists that we use, etch masks are bright field, meaning that the areas to be etched

are transparent on the mask. A C-shaped feature on the optical photomask abuts one end

of the strip alignment mark providing alignment in both directions. AZ photoresist 1512

is spun on the wafer at 4k rpm and baked at [�T�U C for 20 minutes. Exposure using a Karl

Suss MJB-3 contact aligner is for 0.6 minutes and is followed by a 5 second develop in Mi-

croposite 303A developer diluted 9:1 with de-ionized water. The wafer with the remaining

resist is baked for 30 minutes at R	\�T�U C and then ashed for 30 seconds at 100 W. Etching

and step height measurement proceeds as in the waveguide etch processing using PA-11.

The standard AZ photoresist used in the optical lithography does not delaminate in etching.
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liftoff
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ZEP 520
coating

Ti/Au
evaporation

(a) Processing
steps for e-beam
alignment marks.

etching

exposure &
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ZEP 520
coating

PPAP
coating

(b) Process-
ing steps for
waveguide etch.
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Ti/Au
evaporation

ZEP 520
coating

(c) Processing
steps for tera-
hertz waveguide
and antenna
metal deposition.

Figure 3-7: Distributed photomixer processing steps.
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3.2.3 Post-Processing

After processing, the distributed photomixer wafers undergo an optional passivation step to

prevent further oxidation of the exposed Al ]$^ _�` Ga ]$^ a�` As layer and a mandatory scribe and

cleave step to create individual device chips. Either silicon nitride or polyimide passivates

the surface. The silicon nitride is deposited using a Plasmatherm nitride deposition system.

The polyimide is spun at 6000 rpm to create a bdc�e�e�e Å layer and then soft-baked. For

either passivation, an optical lithography step opens access to the bias pads by patterning

1512 photoresist. The optical photomask for this step contains squares for every bias pad.

The silicon nitride layer is etched with a Semi-Group reactive ion etcher (RIE) using fhgji .
For the polyimide, the photoresist developer removes the exposed polyimide as well as the

developed photoresist. The remaining resist is removed with acetone, and the polyimide

is hard-baked at k�l�e�m C for one hour. Cleaving for an optical-quality facet requires that

the wafers be thinned and polished. The wafers are lapped and polished to a maximum

thickness of 7 mils (175 n m) and minimum of 4 mils (100 n m). Wafer thickness greater

than 7 mils makes an optical-quality facet difficult to achieve, while thickness less than

4 mils causes the wafers to be very difficult to handle. The standard procedures for the

scribing and cleaving the distributed photomixer chips are detailed in Appendix B. For

cleaving a large number of devices at once, standard scribing and cleaving is performed

along the planes of the facets, while long scribes are made along the orthogonal direction.

In long-scribe mode, the scribe tip drags along the surface of the wafer scoring the entire

length. Cleaving is performed for the optical facets first, then the wafer is rotated o�e�m and

cleaved along the other scribes.

3.3 Photographs and Micrographs

This section contains photographs and micrographs from a scanning electron microscope

(SEM) of fabricated distributed photomixers. The view of a bowtie-coupled photomixer

in Figure 3-8 includes the entire active area as well as the bowtie antenna and the dc-bias

lines. The interdigitated electrodes can barely be resolved in this micrograph. Figure 3-9

shows a close-up of part of a dipole-coupled distributed photomixer’s active area, including
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active area

interdigitated 
electrodes

CPS

bowtie antenna

bias line

Figure 3-8: SEM micrograph of bowtie-coupled distributed photomixer showing the active
area, bias lines, and bowtie antenna.

the top of the strip-loaded waveguide, the coplanar strips with interdigitated electrodes and

the dipole antenna. Figure 3-10 provides an oblique view of the same portion of the active

area including the LTG-GaAs field etch step. Figure 3-11 includes SEM micrographs of

the strip-loaded waveguide overlayed with CPS and interdigitated electrodes of p,qsrjt m and

p,q/u�t m gaps.
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interdigitated 
electrodes

CPS

strip-loaded
waveguide

dipole antenna

Figure 3-9: SEM micrograph of end of the active area of a dipole-coupled distributed
photomixer. The strips in the dielectric away from the CPS are the edges of the region from
which LTG-GaAs has been preserved.

AlGaAs

LTG-GaAs

Ti/Au

interdigitated 
electrodes

CPS

Figure 3-10: SEM micrograph at an oblique angle of a distributed photomixer’s active area.
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(a) Interdigitated electrodes with
design gap of v	w xzy m.

(b) Interdigitated electrodes
with v	w {|y m gap.

Figure 3-11: Distributed photomixer interdigitated electrode SEM micrographs.
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Chapter 4

Device and Material Characterization

This chapter describes the measurement and analysis of the material and device parameters

that determine distributed photomixer performance. Accurately predicting and understand-

ing the terahertz performance of the photomixers requires the independent measurement of

the low-temperature-grown gallium arsenide (LTG-GaAs) absorption coefficient and car-

rier lifetime, the extinction length in the optical waveguide, and the responsivity of the

electrode geometries. The test structures described in Section 3.1 allow for experiments

measuring the LTG-GaAs carrier lifetime, the mode extinction length and responsivity.

The results of these measurements are compared with theory and physical intuition and the

impact on device performance is considered.

4.1 LTG-GaAs Characterization

4.1.1 Absorption Coefficient Measurement

A material’s bulk absorption coefficient, } , describes the power decay with propagation

of an electromagnetic plane wave in the material according to ~:�������7� . For the distrib-

uted photomixers, the bulk absorption coefficient of the LTG-GaAs in the absorber layer

together with the fraction of the optical mode in the absorber determine the mode extinc-

tion length as explained in Section A.2. A few measurements of }��$�>� � �����>� have been

published, but the data is scattered between ���/��������� cm �z� and �>�/��������� cm �z� at my oper-
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ating wavelength of 850 nm [93, 94, 95, 96, 97]. Studies indicate that ���K�,���>�����>  is system

and growth dependent. Absorption coefficient measurement is performed therefore on the

specific device wafers. Conceptually, the most straightforward method of determining the

absorption, or loss, is to measure the fraction of incident power reflected and transmit-

ted through the layer. With appropriate data analysis, this method yields ���$�>���>�����,  as

described below. Two other methods, reflectometry and ellipsometry, were attempted for

measuring the absorption coefficient. These measurements were not successful, and their

limitations are discussed.

Transmission/Reflection Measurement

Incident power that is neither reflected from nor transmitted through a sample must be ab-

sorbed; therefore, the absorption coefficient is calculated by solving ¡X¢:£ ��¤C¥�¦�§©¨ª¦ , where

¡ is the fraction of absorbed power and «L¬®­°¯�¬ is the the total propagation distance. Given

the distributed photomixer samples’ optical waveguide structure, several factors compli-

cate this technique for the measurement of �±�$�>���>�����>  . The GaAs substrate has optical

properties very similar to LTG-GaAs, i.e. it is highly absorbing at the wavelength of in-

terest, ²³¢µ´�¶�· nm, so characterization of the thin LTG-GaAs layer requires removal of

the substrate. Though the LTG-GaAs layer is too thin ( ¸º¹7·�·�· Å) to be free standing, the

AlGaAs layers ( ¸¼»j½ m) form a membrane strong enough to be free standing over several

millimeters and can support the LTG-GaAs layer. In addition to providing support for the

LTG-GaAs layer, the AlGaAs layers form a resonator. While this resonator complicates the

analysis of the transmission and reflection coefficients, it allows for more accurate determi-

nation of the absorption coefficient. Even though LTG-GaAs is strongly absorbing at these

wavelengths, the thinness of the layer makes it a weak absorber. A standard technique for

accurately measuring weak absorbers is to place them in a resonant cavity, and the AlGaAs

layers create this type of environment.

To prepare a sample for measurement, a device wafer piece is mounted with LTG-GaAs

and AlGaAs layers down on a glass slide with black wax and fast etched with a 50:50

mixture of ammonium hydroxide and hydrogen peroxide (NH ¾ OH and H ¿ O ¿ ) to within

50 ½ m of the bottom Al À$Á Â�Ã Ga À$Á Ä�Ã As layer. A selective etch, citric acid (C Ä H Å O Æ ), which

92



Optical
Isolator

Dielectric mirrors

Optical
Power
Meter

Sample of photomixer
wafer with substrate
removed

Diode
Laser

Collimating
Lens

Long focal length
focusing lens

Figure 4-1: Transmission and reflection experimental setup.

etches GaAs preferentially over AlGaAs is subsequently used to remove the remainder of

the substrate and leave the AlGaAs and LTG-GaAs membrane. The selectivity of this etch

is approximately 30:1. The membrane is fragile but remains intact with careful handling.

Resonator response can be measured using an incoherent technique such as a trans-

mission spectrometer or a coherent technique such as transmission/reflection measurement

using laser sources. While an incoherent technique gives a good indication of the variation

of absorption with wavelength and is immune to standing-wave issues, it is often difficult

to determine accurately the absolute value of the absorption at any given wavelength. I am

more confident of accurately coupling and collecting all of the light from laser sources;

therefore, I chose to measure the transmission and reflection of light from diode lasers.

The lasing wavelength of these lasers can be temperature tuned to cover a total range of

approximately 7 nm. The experimental setup for the measurement is shown in Figure 4-1.

Mounted on a translation stage (not shown in the figure), the etched sample is moved in the

beam path of diode lasers such as those used to perform the terahertz device testing. Four

different lasers can be switched into the beam path using beamsplitters and moveable mir-

rors. A long-working-distance lens focuses the beam into a spot on the sample. (Specifics

of the lens are contained later in the paragraph.) The profile of the input beam taken with

a Ç - È m pinhole before the lens is shown in Figure 4-2. The profile was taken by moving

the pinhole through the beam path and recording the transmitted power. Fitting the data to
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Figure 4-2: Beam profile from Transmission/Reflection experiment taken with 5- É m pin-
hole mounted on translation stage.

a function of the form Ê�Ë Ì�ÍjÎ Ê
Ï®Ð�Ñ

Ê
ÒÔÓ�Õ�ÖØ×$Ù�×�Ú�Û ÜÜÞÝ ÜÚ , (4.1)

where

Ê
is light intensity,

Ê
Ï®Ð is the background intensity from scattered light, and ß Ò is the

waist yields ß Ò Îáà�â,ãåä mils Î�ä�ãPæ�æ mm. Therefore, the beam diameter is æ ß Ò Îçæ>ãsà�à mm,

which together with the ä�ä�è mm focal length, é , of the focusing lens gives a system f-

number of éëê�ì Îºà�í>ãPî . The waist diameter on the wafer is then æ ß Ò$ï ðLñóò Î ôöõ÷
Ë
f-# ÍøÎî>ä É m. While the membrane exhibits some warping, this size spot fits on one of the smooth

sections of the sample. The focused spot is aligned by observing the reflected light and

finding a clean reflected beam. By making the beam incident on the sample at a slight

angle, the reflected beam can be measured before it passes back through the focusing lens.

A Newport Power Meter [98] records the optical power levels. An optical isolator

prevents power fluctuations due to feedback into the laser diodes. Standing waves in the

power meter, however, cause interference with the measurement. To account for this effect,

the power head is mounted on a miniature rotation stage and rotated through small angles

to trace out the ripple in measured power. The peak value in this ripple is recorded for each

measurement condition.

Extracting ùûúKü,ý Õ ý�þ�ÿ�� from the data requires modeling the dielectric resonator structure

formed by the AlGaAs layers. The transmission matrix technique of propagating a plane
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wave through dielectric layers described in Appendix A describes the interaction of the

incident optical field and the dielectric stack. In Appendix A, the normalization condition

which leads to a solution is the exponential decay of the fields in the uppermost and low-

ermost layers, as given in equations (A.17) and (A.18). In the present case, the equation

analogous to (A.17) is ������ �
	�
� ��������������������������
�
	� ������ �
	� , (4.2)

where � is the composite transmission matrix and � and � are the field reflection and

transmission coefficients. In terms of the measured quantities, the two equations to be

solved are

� � � � � ������ �!� � "$# �%����%���
& � and (4.3)' � � � � ��(��� �!� � " ����� # ���������� ����� & � , (4.4)

where �)� , ��( , and ���*�!� are the reflected, transmitted, and total powers, respectively. These

two equations are solved for the two unknowns, the real and imaginary parts of the relative

dielectric constant of LTG-GaAs.

Solving these equations for + �!, -�.�/10�/32!465 � + �)798 + � , however, requires knowing the di-

electric function of the Al : Ga � 0 : As layers over the wavelength range of the measurements

and the thickness of each layer. The Sellmeier equation discussed in Section 2.1.2 gives the

index of refraction for the Al : Ga � 0 : As layers. The extinction coefficient for Al ;�< � ; Ga ;�< =�; As

and Al ;�< >�? Ga ;�< @�? As is negligible at the wavelengths of interest [76]. The thickness of lay-

ers grown using Molecular Beam Epitaxy can be predicted from the growth parameters

and are shown in Table 3.1. Non-physical values for + �!, -A.6/10�/32!4�5 are extracted at the ex-

act predicted thickness because the actual thickness is not precisely this value. In order to

duplicate the actual resonator response which depends on the effective thickness, i.e. the+ � -physical thickness product, the error in physical thickness is transferred to an error in + � .
By stepping through actual thickness values within a narrow range of the expected thick-

ness and solving for + �!, -�.�/10�/32!465 at each point, I conclude that the most plausible thickness

for the dielectric stack is BCB6DFECBHGJI � D � EHG of the expected thickness. Using this thickness
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Figure 4-3: Transmission and reflection coefficient of dielectric stack.

fraction and the extracted K�L!M NAO6P1Q�P3R!S�T values, the transmitted and reflected power for the

dielectric stack are calculated and shown in Figure 4-3 along with the data. The close fit

between the calculation and measurement indicates that the extracted KUL!M N�O�P1Q�P3R!S�T values

correspond to the actual values of the layer.

The sensitivity to experimental uncertainties is investigated next. In Figure 4-4, the

extracted KWV and K�X values are shown for each measured wavelength along with the linear

fit to the extracted points, which are given by

KUVZY []\6^F_C` (4.5)KAXaY b�^dcecgf�hib6^FbCbef6[$jlkmh�_CnHbeo , (4.6)

where k is the wavelength in nm and jl_gnHbqprkJps_CfebHo . The figure also shows the the

uncertainty in K values that the uncertainties in physical thickness and measured power

produce. The thickness uncertainty ( t�b6^ubefHv ) leads to variation primarily in the extractedKwV ’s, because KWV determines the effective thickness of the resonator. Uncertainty in measured

power levels affects the extracted KxX and is estimated at two percent for each power.

96



Measured εεr for LTG-GaAs

0

2

4

6

8

10

12

14

16

840 845 850 855 860

Wavelength (nm)

εε1

0

0.4

0.8

1.2

1.6

2

2.4

2.8

εε2

Real: thin Real: nominal Real: thick
Imag.: more absorbed P Imag.: nominal Imag.: less absorbed P

Extracted values
Literature Data
for GaAs

Figure 4-4: Extracted y�z values showing the effect of an uncertainty in thickness on y]{ and
an uncertainty in measured power on y}| .

I verify that the measurement is sensitive to the LTG-GaAs material parameters by

comparing absorbed power data to predictions based on different yUz!~ �����1���3�!�6� values. As

expected, this transmission and reflection measurement is sensitive to yw| of the LTG-GaAs

layer as demonstrated in Figure 4-5. Even with scatter in the data, the value for yw| can

be predicted within thirty percent. However, this measurement is not sensitive to y�{ of the

LTG-GaAs layer, because the AlGaAs layers dominate the cavity’s effective length, i.e.

the resonant period. Small variations in y�{ of LTG-GaAs produce unnoticeable changes in

the transmitted, reflected, and absorbed powers. This insensitivity combined with the large

scatter in the extracted values for yW{ and the fact that the average extracted value is so much

higher than the literature values, I decided it was more prudent to use the literature values

for yw{ in the optical waveguide modeling.

The absorption coefficient is calculated by

� �����1���3�!�6�����g����$� yw{�������� y | { � y ||x���� . (4.7)
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Figure 4-5: Fraction of power absorbed in dielectric stack.

For the design wavelength of 850 nm, �)�����1���3 !¡6¢¤£¦¥e§u¨ª©«¥�¨g¬ cm �®­ which is within the

range of reported absorption coefficients. Therefore, the transmission/reflection measure-

ment successfully accomplished goal of determining ���A�6�1���3 !¡�¢ . Interpreting the data re-

quires careful consideration of the unknowns and their effect on the extracted material

parameters.

Ellipsometry

The standard technique for characterizing thin films on the top of a wafer is ellipsome-

try. While there are several different flavors of ellipsometry, the basic principle is that the

amplitude and phase of an incident TE (s, or perpendicular to the plane of incidence) and

TM (p, or parallel to the place of incidence) wave are compared and used to calculate the

characteristics of the material under test. The ratio of the complex reflectances is

¯ £±°³²°¤´ £�µ °³²3µµ¶°·´¸µº¹�» ¼d½*¾ � ½�¿!À £ÂÁ}ÃgÄÆÅÈÇ�É ¹�»ËÊ , (4.8)

where Á}ÃCÄÌÅÈÇ�É is the amplitude ratio and Í is the phase difference. With two measured

quantities, two material unknowns can be calculated. For example, for a bare substrate, the
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real and imaginary part of the dielectric constant can be found. For a thin film on top of

a known substrate, the thickness and Î�Ï can be calculated, or if the thickness is known, Î]Ï
and Î�Ð can be found.

Using a Gaertner Scientific Variable Angle Ellipsometer, I measured Ñ and Ò at Ó9ÔÕeÖe×
nm for device wafers as well as test wafers of a GaAs substrate with a thick layer of

LTG-GaAs grown on top. With the best guess for the Al Ø Ga Ï�Ù$Ø As and LTG-GaAs indices

of refraction, the extracted thickness and absorption coefficient of the LTG-GaAs layer on

the device wafer are not reasonable, e.g. ÚÛÔÝÜ ×e×
Å and ÞßÔ ×6àuá

. While extracted properties

of the LTG-GaAs layer on the device wafer depends on characteristics of the Al Ø Ga Ï�Ù$Ø As

layers underneath which are not known with great certainty, characterization of the test

substrates indicates similar non-physical behavior, e.g. an extracted index of refraction ofâ�àFã
for a thick layer of LTG-GaAs on GaAs. A Brewster’s angle measurement, however,

yields a Brewster’s angle of
ã Ügä , which corresponds to an index of refraction of

Ö6àdã
which

is expected.

Physically, the discrepancy arises because ellipsometry is very sensitive to thin lay-

ers on the surface of the layer in question; whereas, the Brewster’s angle measurement is

not. The origin of this sensitivity is the dependence on the phase of the reflected waves.

The most plausible explanation is that an oxide of gallium oxide and aluminum oxide of un-

known thickness grows on the surface of the LTG-GaAs after being exposed to atmosphere.

Sources report oxide thicknesses from å¸Ü Å to å ×e×
Å [99, 100]. Therefore, ellipsometry is

unsuited to characterize the LTG-GaAs layer on top of the optical waveguide, because the

method is too sensitive to parameters that are not known with great accuracy

Spectroscopic Reflectance

Spectroscopic reflectance is a thin film measurement technique that is less sensitive than

ellipsometry to very thin films on the surface of the sample under test. The reflectance of a

sample is measured over a broad wavelength range, e.g. 200 nm to 1020 nm, and matched to

a predicted reflectance spectrum generated with models of the materials’ optical constants

which have a small number of adjustable parameters [75]. Both the index of refraction,æ , and the extinction coefficient, Þ , can be extracted from a reflectance-only measurement
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through the use of the Kramers-Kronig relations. A Filmetrics F20 Fixed Czerny-Turner

spectrometer is used for the reflectance data acquisition, but the data analysis software is not

sufficiently adaptable to model the complicated dielectric stack on the distributed photo-

mixer device wafers. With code similar to that which I wrote for the transmission/reflection

measurement, the reflectance of the dielectric stack can be predicted over a wide range of

wavelengths using a model for the optical constant of LTG-GaAs which includes adjustable

parameters. However, the spectroscopic reflectance technique is ultimately unsuited to

characterization of the LTG-GaAs layer because it is not sensitive enough to thin films if

the index contrast is very small. Changes in the characteristics of the LTG-GaAs layer do

not measurably affect the reflectance spectrum given the accuracy with which the measure-

ment can be made. Also, because the substrate has very similar optical properties to the

thin film, separating the effects of the substrate and film is not possible.

4.1.2 Carrier Lifetime Measurement

The ultrashort ( çéèCêCê fs) carrier lifetime in LTG-GaAs is one of the material properties that

make it popular for use in terahertz frequency devices. Photomixer performance depends

on carrier lifetime because the photocurrent must be able to follow the optical beat signal,

i.e. the photoconductor must turn on and off along with the optical signal. As explained in

Section 1.3, small-signal optical heterodyne theory predicts

ë)ìîíîïñð òòôóöõø÷Ûù�ú�ûýü . (4.9)

The carrier lifetime in LTG-GaAs films is typically characterized through an optical re-

flectance technique [55] or an optoelectronic autocorrelation technique [92]. The opto-

electronic autocorrelation technique uses the fact that the photocurrent produced by two

cross-polarized pulses is nonlinear in illumination intensity, because þ ÿ � õ � û������
	���
��3õ����ñó� õ � û����ýû , where ���
	���
 is the constant bias voltage, ��� is the embedding impedance of the

photoconductor, and
� õ � û ��� is the photoconductance of the illuminated photoconductor.

The second-order nonlinear term gives rise to a contribution to the time-averaged pho-

tocurrent which depends on the delay, ù , between the pulses. If the photoconductor is fast
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enough to follow the optical pulse, then the contribution is

����� �"!$#�%'&)(+*-,/.1032546 �879!;:<%)7=!$:9>?#@%'&5(�>
constant , (4.10)

where
.A032546 is the second-order responsivity,

7=!�%
denotes the intensity of an optical pulse,

and the subscript
:

denotes a time average. If the response of the photoconductor is slow

compared to the duration of the optical pulse, e.g. for a photoconductor with a long carrier

lifetime, then the photocurrent is given by

�8��� � !$#�%'&)(B*DCE����!;:<%)��!;:F>?#@%'&5(�>
constant , (4.11)

where
CHGI.A032546 ,

��!;:<%JGIK��MLON (QP�R8S
,
K��

is the optical pulse energy, and
#UT

is the carrier1

lifetime. In the limit of the optical pulse much shorter than the carrier lifetime,
��!�%

is the

current impulse response of the photoconductor; therefore, measuring the delay-dependent

term in the photocurrent yields the autocorrelation of the impulse response. The width

of the autocorrelation is determined by the carrier lifetime. Test structures described in

Section 3.1 allow for this autocorrelation measurement of carrier lifetimes.

Experimental Setup

Generating cross-polarized, ultrashort ( V�WYX/X fs) optical pulses is the key to the autocorre-

lation measurement. As shown in Figure 4-6, a Tsunami Argon-Ion laser pumps a Schwartz

Electro-Optics Titan-ML self-modelocked titanium:sapphire laser. In the self-modelocked

regime, the pulses from the Ti:sapph are 80–100 fs long. This pulsed beam is split and

sent to two corner cube reflectors. One corner cube reflector is mounted on a computer

controlled translation stage, while the other is mounted at the center of an audio speaker.

The computer-controlled translation stage is adjusted so that the lengths of the two legs are

approximately equal. By driving the speaker, the time delay provided by this leg of the

autocorrelator is dithered sweeping out the zero path difference (ZPD) point in distance. A

half-wave plate rotates the polarization of one of the beams by Z/X\[ , and polarizers are used

1In the case of LTG-GaAs, electrons are the dominant charge carrier, hence the subscript ] .
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Figure 4-6: Experimental setup for autocorrelation lifetime measurement.
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Figure 4-7: Autocorrelation trace with fit.

to clean up the polarization states of the two beams to reduce their co-polarization at the

sample. A high numerical aperture lens (NA ^`_ba3c ) focuses the combined beams onto the

sample. An oscilloscope triggered by the speaker drive displays the photocurrent from the

test structure induced by the pulse trains. When the translation stage is adjusted correctly,

the oscilloscope trace includes the delay-dependent autocorrelation signal.

Measurements

An example autocorrelation measurement is shown in Figure 4-7. The time base is true

time delay, d , calculated by taking consecutive traces before and after moving the fixed

delay line a known distance. Knowing the time of flight difference between the two fixed

delay leg lengths, the time base on the oscilloscope is calibrated. The trace is the result of

averaging 256 scans on the digital oscilloscope ( ^fe/_ seconds).

Post-collection data processing occasionally includes subtraction of a sine wave “base-

line” that is locked to the speaker frequency but does not change with a change in length

of the fixed delay line. A slight change in beam position with motion of the speaker causes

this background. Off-normal incidence of the beam on the speaker-mounted corner cube

will cause the beam to translate slightly changing the overlap with the translation-stage-
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mounted corner cube beam on the sample. This variation in overlap results in a variation of

background photocurrent. I used optical autocorrelation in a nonlinear crystal to measure

the laser pulse width. The same laser pulse train used for the optoelectronic autocorrelation

is diverted to a nonlinear crystal in which pulses overlapping in time undergo g1hji5k mixing.

The same type of Michelson interferometer setup shown in Figure 4-6 is used to vary the

arrival of the pulses at the crystal, resulting in output pulses with duration equal to the con-

volved width of the laser pulses. Assuming a sech i shape and the resulting deconvolution

factor of lbm3nOo\p , the deconvolved laser pulse width is 100 ps.

Distinguishing between the first-order correlation, or electric field coherence, and the

second-order correlation, or intensity autocorrelation, signals is difficult for short carrier

lifetimes. Even with the cross-polar power down by qsr/l�t�u , the coherence signal can

have magnitude comparable to the intensity autocorrelation signal. The intensity correla-

tion signal is proportional to the product of the intensities of the incident optical pulses,

while the first-order correlation is proportional to the product of the electric fields of the

optical pulses. Therefore, it is tempting to use the power dependence of the pulse height to

discriminate between intensity and electric field correlation. However, as noted by Vergh-

ese, et al. in [92] the coherence peak measured in this type of autocorrelation experiment

is proportional to the square of the first-order correlation function. Thus, the electric field

coherence signal and the intensity autocorrelation both depend quadratically on the inci-

dent optical power. Another technique for detecting coherence is to resolve the individual

coherence fringes, which have a period corresponding to the wavelength of the optical radi-

ation. By reducing the speaker throw and oscilloscope sampling window, these fringes can

be resolved. Care must be taken, however, that the frequency of these photocurrent fringes

is within the passband of the transimpedance amplifier feeding the oscilloscope. Finally,

the shape and width of the coherence peak is determined by the optical spectrum. Using an

optical spectrum analyzer, the optical spectrum shown in Figure 4-8 is measured and fit to

vxwzyA{}|�~��O�����Y�U�����3���� � , (4.12)
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Figure 4-8: Optical spectrum of self-modelocked Ti:sapphire laser with Gaussian lineshape
fit.

which corresponds to a first-order correlation function of the form [101]

�������)�$�������E�O����
� ��� � . (4.13)

The extracted coherence peak shape is shown in Figure 4-7 along with the intensity auto-

correlation signal in a regime in which the two are easily distinguishable.

Zamdmer, et al. demonstrated an increase in carrier lifetime with applied electric field

by measuring autocorrelation signals at different applied bias voltages. This effect is sig-

nificant for the performance of photomixers, because photomixers are often operated at rel-

atively high voltages to increase photocurrent and terahertz power. However, an increase in

carrier lifetime with field causes a corresponding decrease in terahertz power as given by

equation (4.9).

The mechanism proposed by Zamdmer, et al. is Coulomb barrier lowering of deep

donor states that act as electron capture sites [56, 102]. As the applied field is increased,

the effective capture cross-section is reduced as illustrated in a one-dimensional (1-D) sim-
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Figure 4-9: One-dimensional illustration showing the effect of applied electric field on the
capture cross-section of a Coulomb well. The well to the right models the effect of the
nearest neighbor and is a distance �M� from the donor site in question.

plification in Figure 4-9. The capture radius is defined as the radius,  ¢¡�� , which satisfies

£�¤F¥�¦A§©¨/ª\«9¬­ ¡ § ­®O¯F°O± � ± §³² � § ­®´¯F°O± � § �U� ± , (4.14)

where
£�¤F¥�¦

is the peak voltage between the wells, �µ� is the distance between the wells, and°
is the static dielectric constant of the material. Using this 1-D model and a model for

electron heating of ¬+¶ ¡ ¬?·¹¸ ² ­Mº ª\« , where ¸ is the optical phonon mean free path, they

obtain good agreement with autocorrelation measured carrier lifetime and the dc current-

voltage characteristic2 by using �Y� and ¸ as fitting parameters. The field-dependent electron

lifetime is then given by

» ¶½¼ ²¿¾ ¡ » ¶½¼ ² ¡�À ¾ÂÁ�Ã ¬9¶¬ÅÄ�Æ�Ç È ÁÊÉ   ¼ ² ¡DÀ ¾  ¼ ²¿¾ Ë�Ì . (4.15)

Carrier lifetime values are extracted from autocorrelation measurements performed on

distributed photomixer test structures. The data are shown in Figure 4-10 along with a fit

using the electric-field-dependent carrier lifetime. The fitting parameters, �O�Í¡ÏÎbÐ3À nm,¸ ¡ÑÀÒÐjÓ nm, and » ¶Y¼ ² ¡ÔÀ ¾ ¡sÕYÎ/À fs are comparable to those used by Zamdmer, et al.

These lifetime values are used in Section 4.3.2 in modeling the dc responsivity and in

2The current-voltage characteristic of LTG-GaAs devices is discussed in Section 4.3.
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Section 5.1 in modeling the distributed photomixer terahertz performance.

4.2 Dielectric Waveguide Characterization

In addition to characterizing the material composing the distributed photomixers, the de-

vice structures themselves are characterized. As described in Chapter 2, the dielectric

waveguide is a very important component of the distributed photomixer. Dielectric wave-

guide characterization comprises two steps: verifying that the optical signal can be coupled

into the waveguide and measuring the mode extinction length in the waveguide. The mode

extinction length, which determines the propagation distance over which the optical signal

is absorbed, is a key feature of the dielectric waveguide design discussed in Section 2.1.3.

If the extinction length is too short, the optical signal is absorbed in a small distance and the

heat load is not effectively distributed. If the extinction length is too long, then the quantum

efficiency of the photomixer is lowered because a small fraction of the power is absorbed

and transformed to photocurrent. Test structures (discussed in Section 3.1 and shown in

Figure 3-4) allow the measurement of the extinction length. A schematic of the extinc-
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Figure 4-11: Schematic of test structure measurement.

tion length measurement is shown in Figure 4-11. The optical signal is coupled into the

waveguide, and the test structures provide bias to the photoconductor at five discrete points

along the waveguide. Assuming a linear current-power relationship, the dc photocurrent at

each test structure, or tap, is a measurement of the relative optical intensity at that point in

the waveguide. Fitting an exponential to these current values yields the extinction length.

4.2.1 Experimental Setup

The experimental apparatus for waveguide measurements is shown in Figure 4-12. Cou-

pling into the waveguide is achieved with a Û mm focal length lens with a numerical aper-

ture of ÜbÝjÞ . Because of the small size of the waveguide mode ( ß à�á m â as calculated

from the mode waists in Section 2.1.3) and focused laser spot, coupling in the waveguide is

difficult and highly sensitive to the position and orientation of the photomixer chip. A New-

port ULTRAlign three-axis translation stage [98] provides translational positioning, while

a rotation stage and two crossed-axis goniometers provide rotational positioning. The go-

niometers and rotation stage are chosen and positioned such that the center of rotation for

all three axes is at the photomixer chip.

The output coupling lens is a ãYä mm focal length lens with a numerical aperture ofÜbÝ3Þ´å (Newport part number KBX043), chosen to collect æçÛ/Ü/è of the light exiting the

waveguide. The other two lenses in the telescope have ãYÜ/Ü mm focal length ( éëê�ì-ÜbÝQãMí´å )
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Figure 4-12: Waveguide coupling experimental setup.

and î/ïÒðòñ mm focal length ( óëôsõ÷öbðòñøï ) (Newport part numbers KBX064 and KBX046,

respectively) and are placed ù�úYû´ö mm apart, while the î/ïüðÙñ mm lens is ù-û/ö mm from the

focal plane of the CCD camera. Gaussian beam analysis of the system indicates a system

magnification of ù-û/ö .

4.2.2 Measurements

The initial challenge of waveguide measurements involves coupling the invisible optical

signal into the optical waveguide. Examining the chip and optical beam using an infrared

viewer allows for rough positioning of the chip using the translation stage. A glass slide is

used to couple white light into the telescope beam path so that the reflection off the back

of the chip is seen on the CCD camera. This reflected image and the optical beam imaged

on the CCD camera allow for precise positioning. For each measurement, the rotational

degrees of freedom are set followed by the translation degrees of freedom. Defined relative

to the axis of propagation of the optical signal, the pitch and yaw of the photomixer chip are

usually set by eye. The roll is set by observing the spillover optical input on the CCD while

translating the chip horizontal to the optical table top. The position of the chip relative to

the focus of the input beam is set by translating the chip in the direction of the input lens
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Figure 4-13: Photographs of a slab mode and waveguide mode from distributed photomixer
chips.

while slowly dithering the chip’s vertical position. The waist is at the smallest height off the

table for which there is a minimum in spillover. When a slab guided mode can be observed,

as in Figure 4-13(a), the chip can be translated laterally to find a waveguide mode as shown

in Figure 4-13(b)3.

In order for the test structure extinction length to provide meaningful information, the

photocurrent must be linear in absorbed optical power. At low illumination levels, some ev-

idence exists of photovoltaic behavior [3]. Also, no one has ever used an optical waveguide

to couple the optical signal to a photomixer, so this measurement verifies that a waveguide-

coupled photomixer acts as a photoconductor. Photocurrent as a function of voltage for

different input optical power levels is shown in Figure 4-14. The photocurrent is nearly

linear over an order of magnitude in incident optical power. Therefore, we conclude that

the photocurrent is photoconductive in origin and thus is an accurate measure of the optical

intensity at a given point along the optical waveguide. Discussion of the current-voltage

characteristic and further examination of the optical power dependence of the photocurrent

is contained in Section 4.3.

3The horizontal striations in Figure 4-13(b) are a Moiré pattern from the interference between the lines on
the CRT that was photographed and the digital sampling in scanning.
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Figure 4-15: Example fit to photocurrent in extinction length measurement.
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The data from an extinction length measurement are shown in Figure 4-15. The pho-

tocurrent in each test structure is associated with a distance down the waveguide from the

beginning of the absorber layer. The nonlinear fit routine in Mathematica is used to fit an

exponential to the data, and that fit is also shown in Figure 4-15. The extinction length for

the devices with a ������� Å LTG-GaAs absorber layer are centered at �����
	 m with a scat-

ter of �
�����
	 m for different devices, different bias voltages, and different illumination

conditions. The devices from the wafer with a ����� Å LTG-GaAs layer exhibit extinction

lengths centered at ������	 m with a variation of �������
	 m.

The scatter in the fits is likely due to a fabrication variations. For example, slight

changes in electrode width change the field in the LTG-GaAs for a given applied volt-

age. A representative sampling of test structure responsivities for different chips, different

test structures on a chip and different measurement conditions of the same test structure is

shown in Figure 4-18(b). While any one test structure is linear in power, structure to struc-

ture responsivity variations exist. The sensitivity of the fit to variations in the photocurrent

values is consistent with this variation in device responsivity.

For the as-fabricated structure with a ������� Å absorber layer and measured �������������! �" ,
the extinction length is expected to be �#�%$���	 m, while for the as-fabricated structure with����� Å absorber layer, the length is expected to be ����$���	 m. This value is not quite double

the extinction length of the thicker LTG-GaAs structure, because of surface passivation

with silicon nitride, SiN. The higher index (than air) of the nitride pulls the mode up into

the absorber slightly thereby reducing the extinction length by � ��$�& . Both extinction

lengths are longer than the design value, because the measured value of �'�����������! (" for the

device wafers is different from that assumed during the design.

4.3 Responsivity

The terahertz output power of a photomixer given in equation (1.7) depends quadratically

on the photoconductance, )+* . This photoconductance can be thought of in terms of the

responsivity, , , of the photomixer as in equation (1.6) or equivalently in terms of the exter-

nal quantum efficiency, -�.0/1,324�536�7 . At 89/:�;$�� nm, -�.</=��>?�;$�@;, . Physically, -�. can be
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thought of as a product of the carrier collection efficiency ( A;BDCEBDF ) and the photon absorption

efficiency ( A�GIH�J ).
For a photoconductive device, A�BDCEBDF is more frequently called the photoconductive gain

( K ) and for a semiconductor device, is expressed as

K L MONP N
Q MSRP R (4.16)

L T NUMSNV Q T R�MORV , (4.17)

where M is the carrier lifetime,
P

is the transit time, T is the velocity,
V

is the path length,

and the subscripts W and X refer to electrons and holes, respectively. From equation (4.16),

a photoconductor with a carrier lifetime longer than the transit time can exhibit photocon-

ductive gain, in which a single photo-generated carrier can induce multiple carriers in the

external circuit. For LTG-GaAs the carrier lifetime is so short that even for submicron elec-

trode gaps KZY [ . In the most general terms, A�GIH�J and K are both position dependent within

the photoconductor so the expression for \ should be an integral over the photoconductor

volume \]L ^_X(`
abdc%e+f W�gih�jkKml T . (4.18)

As discussed in Section 4.3.2, the terms in K given in equation (4.17) are electric field

dependent, so inasmuch as the field varies with depth, carriers created at different locations

within the active area have different contributions to the responsivity. For my photomixer

structure, I treat K as constant over the volume of the device, because the LTG-GaAs layer is

so thin. The field does not drop much by the bottom of the active volume, unlike in lumped-

element photomixers. This high level of electric field throughout the active volume means

that the carrier collection efficiency is higher on average than it is for devices with thicker

LTG-GaAs layers.

The photon absorption efficiency simply quantifies the fraction of the incident photons

which produce photogenerated carriers. For lumped-element photomixers and for my re-

sponsivity measurements, the active area is surface-illuminated; therefore, AnGIH�J includes

reflection at the dielectric interface, shadowing/diffraction from metal electrodes, and bulk
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absorption of the optical signal that enters the photoconductor. For a material characterized

by a bulk absorption coefficient o and for an optical signal propagating in the p direction,

the amount of power absorbed in an incremental q�p is

r3s�t ouqvpuw r o syx w rOz|{�}i~�� o syx ,

where
r

is the optical intensity at p and
r�z

is the initial ( p�w�� ) intensity. If all transmission

effects are lumped into � , the expression for ���I��� becomes

�v�I���'w�� o rOz�{ }i~����z w�� o { }i~��t , (4.19)

where
��z

is the incident power and
t

is the detector active area.

The bulk absorption coefficient of LTG-GaAs was measured in Section 4.1.1, but the

missing piece of ���I��� is � , the coupling of the optical signal into the LTG-GaAs for the

case of surface illumination. Calculating � requires modeling of the interaction of the

incident field with the interdigitated electrodes that are part of the test structure and form

a grating on the surface of the wafer. Marcuvitz [103] proposed treating gratings in free

space as lumped circuit elements with transmission lines on either side with � z w�� � z�����z .
If the electric field is perpendicular to the thin grating strips, the grid is modeled as a shunt

capacitances because the stored energy is electric. For a parallel electric field, the effect of

stored magnetic energy is modeled as an inductance. Gratings which are thick compared

to the wavelength are modeled as T or � combinations of inductors and capacitors.

Blanco, et al. treat thick gratings near resonance with a circuit model by introduc-

ing a dissipative component to the impedance of the lumped elements representing the

grid [104]. The power dissipation models power converted from the zero-order mode to

higher order modes beginning at the first Wood’s anomaly, which occurs at �� w�� in free

space, where � is the period of the grating.4 The treatment is verified by comparison to

measurement and to full-wave analysis [105]. For my structure, however, the grating be-

havior is affected by a substrate [106, 107]. The capacitive part impedance is modified by

4The regime ����� is typically called the non-diffraction regime, though that term is somewhat misleading
since even the zero-order mode is a diffracted mode [105].
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Figure 4-16: Experimental setup for responsivity measurement.

the average dielectric constant (i.e. �%���<�¡ £¢ ¤£¥¦ §¢¢©¨ ) as in quasi-static analysis. The induc-

tive component of the grating reactance is not affected by the presence of the substrate,

because the stored energy is magnetic and thus not affected by the dielectric constant. We

make these enhancements to the model of Blanco and derive an expression for reflection.

We present them in Appendix C along with an alternate expression for transmission which

is algebraically equivalent to that used by Blanco, et al. but involves an order of magnitude

fewer terms.

4.3.1 Experimental Setup

A schematic of the responsivity experimental apparatus is shown in Figure 4-16. The setup

is a combination of the laser system used for the transmission/reflection measurement and

the chip mounting and positioning system used for the autocorrelation measurement. The

important feature of the apparatus is that the optical signal is coupled in a known manner

into the test structure area. For the input beam diameter of ª mm, the 0.5-NA input coupling

lens focuses the beam to a diameter of ��«­¬�® m, which fills the ª�® m ¯°ª(«­��® m test structure

active area. The sensitivity of the photocurrent to chip position is consistent with this

calculation.
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4.3.2 Voltage Dependence

While a number of mechanisms (space-charge effects, avalanche, etc.) have been pro-

posed [108] to explain the super-linear current-voltage characteristic of LTG-GaAs at high

fields, Zamdmer, et al. convincingly demonstrated that electron lifetime increase is the

most plausible explanation [56, 109]. Because the capture sites for holes (filled donor

states) are neutral and thus not associated with Coulombic potentials, their lifetime does

not increase in the same field-dependent manner described in Section 4.1.2 that ±v² does.

With this model, the current in an LTG-GaAs photoconductor under a given electric field,³
, and illumination power, ´ , is given

µ·¶|¸|¹ ´»º ³u¼�½¿¾ ´ÀyÁ!Â¡ÃÅÄÆÇ�È ¹ ±O² ¹ ³�¼ÊÉ ² ¹ ³u¼£Ë ±OÌ�ÍÎÌ ³�¼ÊÏÑÐ , (4.20)

where ´ is the optical power incident on the photomixer,
À�Á!Â¡Ã

is the volume of the active

area,
È

is the radial frequency of the optical signal, ±�² ¹ ³u¼ and
É ² ¹ ³u¼ are respectively the

field-dependent electron lifetime and velocity, ±�Ì and ÍÎÌ are the hole lifetime and mobility,Ï
is the width of the device5 and

Ð
is the depth of the absorber. Electron velocity saturation

is modeled as É ² ¹ ³u¼
½ É%ÒÓÁÔÃÖÕ ×Ø Ë�Ù!ÚÜÛÓÝ·Þ ßàSá!â . (4.21)

The field-dependent electron lifetime is as described in Section 4.1.2.

Sublinear behavior at low fields is attributed to velocity saturation of the electrons.

The hole mobility ( ãåä cm æ|ç Àuè ) in LTG-GaAs is so much lower than that for electrons

( ã�é�ê�ê cm æ�ç Àuè ) that they do not contribute appreciably to the current [109].

Using this grating model for coupling of the optical signal into the LTG-GaAs, we

calculate ë�ìIí Ã . Using equation (4.20), the current is calculated for four different cases:

uncoated test structure with ê(î?ï�Í m gap between the interdigitated electrodes, uncoated test

structure with ê(î?ð
Í m gap, and versions of both with a é�ä�ê�ê Å silicon nitride passivation

coating. The close match between prediction and model for three of the four cases suggests

5For my device with interdigitated electrodes, the width is more easily thought of as the length of the
meander gap.

116



0.1 0.5 1 5 10 50 100
0.01

0.05

0.1

0.5

1

5

10

501 5 10 1000.5
Bias voltage (V)

D
C

 p
ho

to
cu

rr
en

t (
µµA

)

0.01

0.1

1

10

0.1

ivunc08.eps

(a)ñvòóõôm
electrode

gap.

0.1 0.5 1 5 10 50 100
0.01

0.05

0.1

0.5

1

5

10

501 5 10 1000.5
Bias voltage (V)

D
C

 p
ho

to
cu

rr
en

t (
µµA

)
0.01

0.1

1

10

0.1

ivunc04.eps

(b)ñvòöõôm
electrode

gap.

0.1 0.5 1 5 10 50 100
0.01

0.05

0.1

0.5

1

5

10

501 5 10 1000.5
Bias voltage (V)

D
C

 p
ho

to
cu

rr
en

t (
µµA

)

0.01

0.1

1

10

0.1

ivc08.eps

(c)ñ%òóyôm
electrode

gap.
SiN

coat-
ing.

0.1 0.5 1 5 10 50 100
0.01

0.05

0.1

0.5

1

5

10

501 5 10 1000.5
Bias voltage (V)

D
C

 p
ho

to
cu

rr
en

t (
µµA

)

0.01

0.1

1

10

0.1

ivc04.eps

(d)ñ%òöõôm
electrode

gap.
SiN

coat-
ing.

Figure
4-17:

Surface-illum
inated

teststructure
current-voltage

characteristics.
Solid

lines
are

m
odeland

circles
are

data.

117



that not only is the current model correct, but the grating coupling calculation is accurate

as well. The values for mobility and lifetime are comparable to those used by Zamdmer,

et al. : ÷vøÓùÔúÖû üþý ÿ � �������	�
cm 
�� , 
�� ý�� ��� cm ��
���� , 
�� ý ������� ��
���� , ����� �! ý ��"��

fs,

and ���°ý$# ��� fs. With these same models, absolute responsivities are calculated for the

test structures as shown in Figure 4-18 and compared with the prediction of the model

described in Section 4.3. The absolute value of responsivity agrees well with the work of

Jackson [57] and Brown [58]. The higher responsivity of the coated
� �&% 
 m-gap device is

consistent with Figure 4-17(c) and almost certainly indicates an improperly predicted value

of ' . This discrepancy is to be expected because the coating is not modeled rigorously, as

explained in Appendix C. This approximation of treating it as a modification to the effective

dielectric constant is more valid for the
� �)( 
 m-gap devices where the fields are confined

more to the area of the electrodes. Thus, we have verified that the responsivity model can

be used in calculating the photoconductance *,+ according to equation (1.6) and then the

terahertz power according to the traveling-wave analog of equation (1.7).

4.3.3 Optical Power Dependence

LTG-GaAs has been observed to be a photoconductor in previous work, so linearity in op-

tical power is expected. Also, in these distributed photomixer devices, linearity in optical

power was demonstrated in waveguide-coupled test structures in Section 4.2. For the sake

of completeness, the linearity of photocurrent with optical power (a constant responsivity)

is verified for surface illumination and the results presented in Figure 4-19. The mea-

surement conditions including alignment were the same for each power level. The optical

power was measured at the same place in the beam path.

The slight nonlinearity ( -.��ÿ	/ over more than an order of magnitude in optical power)

is attributed to the existence of a small number of long-lived states [3]. At low absorbed

powers, however, electrons with long ��� can measurably affect the current even if there are

relatively few states, because the ÷��0�1� product will be so large. At high illumination levels,

however, the behavior of the LTG-GaAs photoconductor is dominated by electrons with

short lifetime, because so many more of these states are excited.
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trodes.

Test Structure Responsivity for E Field perpendicular to electrodes

0.1

1

10

100

1000

0.1 1 10 100
Bias Voltage (V)

R
es

po
ns

iv
ity

 ( µµ
A

/m
W

)

uncoated Dev. 8.2.b, 9mW
uncoated Dev. 8.2.b, 1mW
uncoated Dev. 14.5.b, 1mW
uncoated Dev. 14.4.b, 1mW
uncoated Dev. 14.1.b, 2mW
uncoated Dev. 14.1.b, 1mW
uncoated Dev. 14.1.b, 9mW
coated Dev. 2.1.b.2, 1mW
coated Dev. 2.4.b.2, 1mW
coated Dev. 2.2.b.2, 1mW

In the legend, power levels refer to 
nominal input optical power.

0.8 µµm electrode gap

model

(b) Responsivity of 273 895 m gap test structure with E field perpendicular to the elec-
trodes.

Figure 4-18: Responsivity of test structures for E field perpendicular to the interdigitated
electrodes.
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4.3.4 Polarization Dependence

In measuring the device responsivity, I varied the polarization of the electric field of the

incident optical field. The photocurrent varied with polarization of the optical field. Part

of this variation is understood as polarization-dependent coupling through the grating as

discussed in Section 4.3.2 and Appendix C. However, as demonstrated in Section 4.3.3,

the photocurrent is linear in absorbed power. Therefore, even if the grating calculations did

not predict the correct absorbed power and lead to a discrepancy in responsivity between

two nominally identical designs, the offset should be constant with voltage as in Figure 4-

18(b). Plotting the ratio of the responsivity for optical field perpendicular and parallel to

the electrodes (grating) reveals the voltage dependence shown in Figure 4-20.

The most plausible explanation for this voltage dependence is that carriers are not gen-

erated uniformly across the electrode gap. This non-uniform carrier generation leads to a

voltage dependent responsivity, because the assumption that the electric field and therefore

the carrier velocity are constant across the width of the electrode gap is an oversimplifica-
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Figure 4-20: Responsivity ratio for a :<;&=?> m-gap test structure.

tion [57, 58]. The electric field is higher near the electrodes, so the carriers created near

the electrodes contribute more to the current than carriers created midway between the

electrodes [57]. There are two physical reasons for the field nonuniformity. The first and

simplest reason is that the interdigitated electrodes do not form a parallel plate configura-

tion. Therefore, the field is higher near the edge of the electrode. The second reason for this

field non-uniformity is that LTG-GaAs is a highly compensated material and thus much of

the field drops at the contacts due to screening by charged trap sites. As the applied field

increases, the high field region near the electrodes grows toward the opposite electrode.

Photo-excited carriers will be generated where there is incident optical power. There-

fore, because the optical field has to obey boundary conditions at the metal electrodes, the

power density profile at the LTG-GaAs surface will be different depending on the orienta-

tion of the optical electric field relative to the electrodes. In a simple approximation, the

interaction can be modeled as a parallel plate waveguide as shown in Figure 4-21. The

power in a parallel plate waveguide is @BA�C�DFE1G�HIKJ for a TM mode with n = 0 being the TEM

case and for a TE mode, the power is @BDMLON E�G�HI J . While this model is an oversimplification,
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Figure 4-21: Depiction of electric field and power distribution between parallel plates.

it is illustrative of the situation and consistent with the observations. For the electric field

parallel to the electrodes (TE mode), the photo-excited carriers have the highest density

midway between the electrodes where the electric field is weakest. Thus, higher voltages

are needed to reach the same responsivity as for a perpendicular electric field (TM mode)

for which the carrier are created preferentially where the field is high. This explanation

is consistent with the fact that the responsivity ratio of the test structures with P<Q&R?S m gap

varies little with applied bias.

Many of the photomixer’s material and device characteristics have been independently

measured and analyzed. The LTG-GaAs absorption coefficient was a factor of two lower

than was assumed in the design process but is within the range of previously reported

values. The other material characteristics are also consistent with previous photomixer

work. The mode extinction length is measured to be slightly longer than predicted by this

measured value of TVUMWYX[ZYX]\_^<` , and the difference is attributed to fabrication tolerances. The

dc responsivity of the structures is consistent with the relatively new theory of Zamdmer, et

al. In Chapter 5, I use the device and material measurements and analysis from this chapter

to formulate a predictive model for the distributed photomixer’s performance.
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Chapter 5

Photomixing Performance

This chapter contains a detailed model for distributed photomixer terahertz performance as

well as measurements which characterize the terahertz operation of these photomixers. By

combining the results of the measurements and analyses in Chapter 4 into an equivalent

circuit model and accounting for sources of loss and coupling efficiencies, the distributed

photomixer’s terahertz performance is quantitatively predicted. I describe the design and

analysis of an experimental apparatus for photomixing measurements. Measurements of

the output power of the photomixers as a function of frequency, optical illumination and

applied bias voltage are compared to theory. In the final section, I consider the distributed

photomixer’s performance in light of other photomixers and delineate the technical chal-

lenges that would need to be overcome to produce higher power from this type of device.

5.1 Performance Estimation

Terahertz power generation in the distributed photomixer’s active area is modeled in a

SPICE circuit. The predictions of the circuit model are modified using estimations of loss

mechanisms and coupling efficiencies.
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Figure 5-1: One segment of a SPICE circuit model for the distributed photomixer. The
upper section is the optical guide model. The lower section is the THz CPS model.

5.1.1 Distributed Photomixer Circuit Model

In Chapter 1, I presented an equivalent circuit model for a distributed photomixer in Fig-

ure 1-4. The measurements of Chapter 4 allow the elements of that general model to be

quantified. A SPICE circuit model is created in which the optical and terahertz waveguides

are represented in a discretized manner. Each segment in the discrete circuit represents an

incremental distance along the distributed photomixer active area. Figure 5-1 shows a seg-

ment in this model along with the measurement and analysis that enables the prediction of

a given circuit element. The optical waveguide is modeled by a lossless transmission line

where the voltage on the line corresponds to the optical power in the dielectric waveguide.

Each segment of the terahertz guide consists of: a transmission line segment to model the

coplanar strips (CPS), a lumped capacitor to model the interdigitated electrodes, a resistor

to model resistive losses in the photoconductor, and a voltage-dependent current source to

model the current generated by the biased LTG-GaAs photoconductor. The current source

depends on the voltage at the corresponding segment on the model of the optical guide.

Therefore, the current source couples the two waveguides in the circuit model as the LTG-

GaAs layer couples the waveguides in the device.

In each segment of the circuit model, the transmission line for the optical waveguide

is longer than the transmission line for the CPS to account for the higher velocity of the
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THz wave on an unloaded CPS. The ratio of the lengths is the inverse of the ratio of the

velocities, where a�bdcMegfih1j	k<l)m!k and a7nYoqprfih1j�sYl&t	m . The slowing of the terahertz wave

by the interdigitated electrodes is modeled in the capacitance, uwvyxzv|{ , where the value is

computed as in Section 2.2.3 for a given electrode geometry. These two transmission lines

and the lumped capacitance together predict the quality of velocity match between the

optical wave and the terahertz wave and determine the efficiency of power transfer from

the optical to the terahertz.

The generation of the terahertz current wave is governed by the dependent current

source. The responsivity for a given electrode geometry measured in Section 4.3 is mul-

tiplied by the optical power absorbed in the segment. The power in the } eO~ segment of

the optical guide is �	�q�����]bdcMe����!� , where ��f�� �9�v���e , ��vy��e is the measured extinction length,� is the position of the segment along the active guide given by ��}i���7����� , and ��� is the

incremental length of one segment. The fraction of that power absorbed in the segment is� �������q������� . The shunt resistor ��c�{ models ohmic loss in the on-state of the LTG-GaAs

layer.

A number of loss mechanisms and practical power coupling issues are not included in

this model and are considered in the next section.

5.1.2 Loss and Coupling Efficiencies

The intrinsic loss mechanisms associated with distributed photomixer’s active area are:

conductor loss in the CPS, radiation loss of the propagating terahertz wave, and dielectric

loss in the substrate. The coupling efficiencies I take into account are coupling of the optical

signal into the dielectric waveguide and coupling of the terahertz signal off chip.

The most significant loss associated with the distributed photomixer active area is ohmic

loss in the metal coplanar strips. Gupta, et al. provide expressions for conductor loss in

CPS [77]. The most accurate closed form expression for conductor loss is given in dB per

unit length by

� {yc��  f ¡ l&t ¡ ��¢M£ ¤�¥¦vm ¡�§�¨V© ��ª � � ©�« ��ª � �¬���w��ªq­� �g®
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¯7°±³²	´¶µ¸·O¹»º ´ ±½¼ °w¾�¿YÀMÁÂ ¼ ° µ ¿YÀ�ÁÄÃ µ °Å ²�´¶µ�·¦¹»º ´
Å ¼ °Æ¾¸¿YÀ�ÁÂ ¼ ° µ ¿YÀ�ÁBÃÈÇ , (5.1)

where É�Ê is the surface resistivity, ± and

Å
are defined as in Figure 2-10,

¿9À
is given in

equation (2.16), ËMÌOÍ is the effective relative dielectric constant given in equation (2.15),
Â

is

the thickness of the CPS, and Î ¼ Á and ÎKÏ ¼ Á are the complete and complementary complete

elliptic integrals of the first kind, respectively [77]. The surface resistivity due to the normal

skin effect is given by É�Ê?Ð °Ñ¬Ò ÐÄÓ ÔFÕÖ Ñ , (5.2)

where Ò is the skin depth, Ñ is the material’s electrical conductivity, Ô Ð Ö ´Ø× is the radial

frequency of the radiation, and Õ is the material’s permeability [110]. The CPS in my

distributed photomixer structures are
°�Ù	Ú�Ú

–
Ö Ú�Ú�Ú

Å thick, consisting of Û Ú�Ú Å of titanium

(Ti) and the remainder of the thickness gold (Au). An effective conductivity is estimated

by Ñ ÍyÜ�Ð ¼ ×7ÝYÞ Á Ñ ÝYÞ�µ ¼ °ß¾ ×7ÝYÞ Á Ñ]àqá , where ×7Ý<Þ is the fraction of the CPS thickness that

is Au, Ñ Ý<Þ is the conductivity of Au, Û]â ÙäãB°�Ú!å ¼|æèç Á�é À , and Ñ]àêá is the conductivity of

titanium,
Ö â)Û ãë°�Ú�ì ¼�æèç Á�é À . The calculation with a linear combination of conductivities

predicts a conductor loss of
°�Ú â Öqí × dB/mm, where × is in THz, which is very close to theº â º í × dB/mm for the same structure made entirely of Au. However, if the current crowds

along the bottom of the CPS [111], the loss would be higher.

The radiation loss of the CPS with and without interdigitated electrodes was calculated

in Section 2.2.3. As shown in Figure 2-18, the radiation loss for either type of structure is

approximately
Ú â °�î ×ðï dB/mm, where × is in THz.

The final source of loss in the active area is absorption of the terahertz wave in the

dielectric waveguide. In the parlance of the microwave engineer, this effect is related

to the loss tangent of the dielectric, while for the optical engineer, it’s simply the bulk

absorption coefficient. Reported loss values for semi-insulating GaAs in the frequency

range of interest are 4.5–5 cm
é À

at 3 THz, 2.4–2.7 cm
é À

at 2 THz, and 0.5–1.5 cm
é À

at

1 THz [61, 112, 113]. Absorption values in undoped Al ñ Ga
À é ñ As compounds are available

down to 3 THz. While the loss in AlAs is lower than that in GaAs at 3 THz, the loss in

Al òMó À|ô Ga òMó ôdõ As and Al òMó ï ì Ga òMó ì_ö As (the closest compositions to my layers for which data
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are available) are significantly higher, 24 cm ÷9ø and 30 cm ÷9ø , respectively [114]. In the

absence of data below 3 THz, I make the reasonable assumption that these coefficients have

similar variation with decreasing frequency. Exact calculation of the absorption involves

integration of the half of the THz field in the dielectric waveguide and substrate over the

GaAs and Al ù Ga ød÷ ù As layers. The uncertainty in absorption coefficients does not war-

rant this sort of calculation, so the fraction of the mode in each layer is estimated. For CPS

with a gap ú�û ü , the fields extend a distance from the strips approximately equal to ú [77].

Thus, I estimate the dielectric loss as a linear combination of the losses for the Al ù Ga ød÷ ù As

layers with a quarter of the mode in Al ýMþ ÿdý Ga ýMþ �dý As and the rest in Al ýMþ ��� Ga ýMþ ��� As. These

assumptions lead to a dielectric loss that varies from
�

cm ÷9ø��	��
 �
����� mm at 1 THz to��� cm ÷9ø
����� ����� mm at 3 THz.

Calculating the coupling efficiency of the optical signal involves calculating the frac-

tion of the free-space input optical signal that is coupled into the active area of the device.

I estimate the coupling efficiency of the free-space signal into the passive dielectric wave-

guide facet and of the passive waveguide mode to the active waveguide mode. Coupling

into the facet is calculated as �������! !" � �$#&%(') ���'+*, .-, !� , where ��#&%(') is the power coupling due

to overlap of the free-space optical mode and the waveguide mode, and �/')*, !-, !� is the trans-

mission of a plane wave into a dielectric. Because the waveguide mode and optical signal

are both Gaussian to a very good approximation, the total overlap can be performed as the

product of two one-dimensional integrals, i.e. ,

�$#&%0') � 111,2�3÷ 3 46587:9<;�=04�>?A@ 9!;�= � ; 111 ÿ111 2�3÷ 3 4B587C9!;�= � ; 111 ÿ 111 2D3÷ 3 4 ?�@ 9!;�= � ; 111 ÿ6E
111 2D3÷ 3 46587:9.FG=04H>?A@ 9.FG= � F 111 ÿ111,2�3÷ 3 465I7C9JFK= � F 111 ÿ 111,2�3÷ 3 4 ?A@ 9.FG= � F 111 ÿ , (5.3)

where L�ú and M6N denote the free-space and waveguide modes, respectively. The compo-

nent of the electric field used in the integration depends on the polarization of the incident

field and the type of waveguide mode. For the TE modes used in my structures and ap-

propriate linear polarization of the incident field, this corresponds to the O; component, in

the formalism of Appendix A. Considering the total transmission as a product of the mode

overlap and dielectric transmission of a plane wave is an approximation, but it gives accu-

rate results [115]. For typical test conditions (a 3-mm-width collimated laser spot focused
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Figure 5-2: Illustration of coupling the optical signal into the distributed photomixer di-
electric waveguide.

by a 0.5-NA lens), the overlap with a waveguide mode in one of my distributed structures

is P�QSR . This case is illustrated in Figure 5-2, where the calculated T and U slices of the two

modes are shown in the inset, superimposed on the dielectric waveguide structure. VXW+Y,Z.[,Z!\
is given by the well-known formula

V�W)Y,Z![,Z!\^]�_6` aDb�c `d_becgf _�h
c

(5.4)

where bec is the index of refraction of the dielectric. For my structures, b/c ]ji�QlkGi which

yields V�W)Y,Z![,Z!\m]nPAQSo . Propagation of the optical signal from the facet to the active portion

of the device is assumed to be lossless since the photon energy is far below the bandgap

of any of the Al p Ga q�rsp As layers and the mode is tightly confined enough to be isolated

from the substrate. The step in strip height from the passive to active guide caused by

the presence of the LTG-GaAs layer results in a very small loss of optical power due to

reflection and conversion to higher order modes. The mode overlap between the passive

and active guides results in greater than tGRKu power transfer for all the designs. Thus, the

total optical coupling efficiency is approximately P�Q�iKi .
Finally, the coupling efficiency of terahertz power off-chip involves both loss mecha-

nisms and quasioptical coupling efficiency. One of the primary means of coupling power

off-chip at millimeter and terahertz (submillimeter) frequencies is through the use of a pla-
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nar antenna and dielectric lens attached the the substrate [78, 116]. By using a low-loss

dielectric with index close to that of the substrate, much of the terahertz power can be cou-

pled into free-space. Silicon is the typical dielectric lens material of choice for GaAs-based

devices. The radiation pattern for an antenna on a hemisphere is the same as for an antenna

on a dielectric half space. As the hemisphere is extended to the synthesized ellipse position

(moving the antenna back from the hemisphere plane), the lens narrows the pattern. Thus,

the radiation pattern can be matched to a collimated or diverging beam through appropriate

choice of extension length [117]. My specific lens design is discussed in more detailed in

Section 5.2.1. For the purposes of this section, I consider four sources of loss in the planar

antenna and silicon lens system: backside loss, absorption loss in the Si, reflection loss, and

Gaussicity [118]. Planar antennas on a dielectric radiate more power into the substrate than

into the air [78]. For the v+wgxzy�{ appropriate for the GaAs substrate and Si lens, this effect

results in |K}K~ of the power being radiated into the lens, and only y�}G~ backside loss [118].

For float-zone high-resistivity silicon, absorption loss is measured to be }A�S{�} dB/mm from

approximately 0.5 to 2 THz [112], which results in }���� dB loss for the 4 mm lens designed

in Section 5.2.1. Calculated using equation (5.4), transmission through the Si-air interface

is }A�l�G� . Gaussicity quantifies how well the antenna pattern couples to a Gaussian beam at

the aperture of the lens. For my lens design, a Gaussicity of }A��| is predicted for a variety

of planar antenna designs [117]. The performance of the specific antennas I used will be

discussed in Section 5.2.2 as will the coupling of this Gaussian beam into a detector. The

total quasioptical coupling efficiency to the exit aperture of the dielectric lens is }A���G� .
5.1.3 Performance Prediction

Using the SPICE model of Section 5.1.1 and the loss calculations of Section 5.1.2, the

terahertz power at the aperture of the dielectric lens is predicted. The two distributed pho-

tomixer structures modeled are: the structure for which the interdigitated electrodes should

add an amount of distributed capacitance sufficient to match the terahertz and optical ve-

locities ( }A��� - � m gap), and the structure for which the electrodes should add slightly more

capacitance ( }A��� - � m gap) making the THz wave slower than the optical. For typical mea-
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surement conditions (bias field of �e�����G� V/cm and optical power of 160 mW), the predicted

power-bandwidth curves are shown in Figure 5-3. The total predicted dc-photocurrent for

each design is �A�l� mA. The roll-off in the velocity-match design’s power is primarily due to

carrier lifetime effect discussed in Sections 1.3 and 4.1.2. The oscillation in the prediction

is due to reflections from the open input end of the CPS. For comparison, lumped-element

photomixers using resonant have produced 2 � W at 1 THz, 0.9 � W at 1.7 THz, and �
0.2 � W at 2.5 THz over � 20% bandwidths. The following section describes an apparatus

to measure the terahertz performance.

5.2 Terahertz Characterization

5.2.1 Experimental Setup

The experimental apparatus for distributed photomixer testing must couple the optical beat

signal to the photomixer and couple the terahertz beam to a detector. The main compo-
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nents of this apparatus are shown in a schematic in Figure 5-4. Two diode lasers generate

an optical beat signal by combining on a beamsplitter. This beat signal passes through an

optical isolator which prevents feedback into the laser cavities and then through a semi-

conductor optical amplifier which provides 20 dB of gain up to ���G��� mW. The amplified

signal passes through another isolation stage and then is coupled into the optical waveguide

of the photomixer. The terahertz signal is radiated by the planar antenna at the end of the

active area, focused by the Si and TPX lenses, and detected in a helium-cooled bolome-

ter. This technique of amplifying a reference signal is known as MOPA (master-oscillator

power-amplifier) and has been used for photomixing [119, 120].

Two 850-nm distributed-Bragg-reflector laser diodes are used to generate the optical

beat signal. By temperature or current tuning these seed lasers, the frequency of the beat

signal (the difference between the lasing frequencies) can be varied from 0 to 1.9 THz.

Changing the laser temperature changes the cavity length by a small amount which changes

the lasing frequency. Temperature-tuning changes the lasing frequency by approximately
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30 GHz/ � C. Fine tuning of the frequency is achieved through current-tuning at the rate

of approximately 1 GHz/mA. Temperature and current control are provided by an ILX

Lightwave LDC-3900 Modular Laser Diode Controller.

Beam-combining occurs between the two free-space-propagating beams incident on the

beamsplitter. The reflected light from one of the seed lasers combines with the transmitted

light from the other laser. The beat signal is tuned by tuning either laser. The laser spots

must be coincident not only on the beamsplitter but also at some point in the far field.

Therefore, efficient beam-combining requires the ability to position the collimated output

of the diodes precisely on the beamsplitter and the ability to precisely control the orientation

of the beamsplitter. A rail system from ThorLabs, Inc. [121] (Ø6 mm rails (6 mm diameter)

on 30 mm centers) provides stable, paraxial locating of optical components. Each leg of

the rail system houses one laser with positioning hardware and collimating lens. These two

legs meet at a right angle at a mounting cube which houses the beamsplitter. The entire

assembled system is approximately ��� cm ����� cm ��� cm. An expanded view of the

beam-combiner hardware is shown in Figure 5-5. The FL20B collimating lenses are from

Newport Corporation [98]. The 07TRT504 rotation stage is from Melles Griot [122]. The

123-2450 goniometer is from OptoSigma [123]. The thin beamsplitter (suitable for use

with femtosecond laser systems) is from CVI [124]. All other hardware with part numbers

is from ThorLabs, Inc. I designed and drew all of the custom hardware, and technical

drawings of these pieces are contained in Appendix D.

The beamsplitter positioning hardware consists of a rotation stage and goniometer

which together provide the necessary two degrees of rotational freedom. The beamsplitter

is mounted so that the axes of rotation of both stages coincide at its center. Two close-up

views of this hardware in assembled configuration are contained in Figure 5-6. The three

dimensional modeling allowed me to verify before fabrication that hardware was the proper

size and shape.

The air-path optical isolators which prevent feedback to the seed lasers have an input

polarizer and a powerful permanent magnet to provide �s� � of Faraday rotation to the input

optical field. Reflected light is rotated another �s� � in the same direction and rejected on the

input polarizer. Two consecutive isolators provide 60-dB of isolation and a linear polariza-
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Figure 5-6: (a) View of beamsplitter positioning hardware. (b) View of positioning hard-
ware with rotated goniometer.

tion �K �¡ from the initial polarization. Typically, photomixing experiments have used 30-dB

of isolation, but with careful alignment of the 60 dB isolator, I achieved the best long-term

frequency stability we have ever observed (50 MHz over 10 minutes) for temperature-tuned

diode lasers without active optical-feedback control. The instantaneous linewidth of these

lasers is on the order of 1 MHz, but significant effort is required to produce long-term

linewidths on that order [120].

The optical amplifier is a Semiconductor Device Laboratories [125] SDL-8630 tunable

cw laser diode, which has had the rear cavity assembly removed. With this modification

the diode operates as a single pass optical amplifier providing approximately 20 dB of gain.

In place of the external tuning cavity, a dielectric mirror directs the optical beat signal to a

lens which focuses the light onto the anti-reflection-coated input facet. The amplifier chip

has a tapered gain region that is much narrower at the input facet than the exit facet. This

tapering allows the amplifier to produce high powers by reducing the power density at the

exit facet, but it also means the amplifier can be easily damaged by optical feedback. The

60 dB of isolation after the amplifier provides this protection.
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Figure 5-7: Views of hyperhemispherical lens mount. View on left includes 6 mm diameter
extended hyperhemisphere lens with ¢G£K¤ flat.

The apparatus to couple the optical signal into the photomixer chip is similar to that

shown in Figure 4-12. The mount for the photomixer chip is designed to allow for accu-

rate placement of the chip relative to the Si extended hyperhemisphere lens. Because the

photomixer chips are scribed and cleaved using the procedure described in Chapter 3 and

Appendix B, the size of the chips is accurate and repeatable to within a few microns. By

designing the lens and chip mount shown in Figure 5-7 so that the chip is constrained in the

two lateral dimensions (i.e. by pushing it into a corner), the position relative to the lens is

accurate and repeatable to within the machining tolerances as mentioned below. The radius

of the extended hyperhemisphere ( ¥z¦¨§ mm) used to collect the terahertz radiation from

the photomixer was chosen so that the ¥m©Kª ratio provides a good compromise between

a pattern that couples well to a Gaussian beam and a highly directive beam [117]. The

extension length of the lens itself ( £A«�¬K­ mm) was chosen so that with the 0.12-mm thick

photomixer chip, the total extension length falls within the range ( £�«�§G­�¥ – £A«l§G®�¥ ) that also

provides this compromise [117]. The antenna is centered on the cleaved photomixer chip,

so the chip must be centered on the lens. Since the lens is larger than the chip, the Si lens
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was ground and polished to provide optical access for the input laser signal. The calculated

mode waist at the input facet of the distributed photomixer’s strip-loaded waveguide pre-

dicts a mode exit/entrance half angle of ¯G°�± in the vertical dimension. To provide tolerance,

a ²K³�± flat was machined off the lens. The dimensioned lens is shown in Figure D-4. With a

small radius lens, misalignments of the planar antenna from the center of the lens can lead

to deteriorated beam patterns and quasioptical coupling. Therefore, the mount that holds

the photomixer chip and lens needs to locate them accurately and repeatably. I designed a

mount which constrains the lens and chip to within 0.001” in position. Two views of the

mount, lens, and retaining ring are shown in Figure 5-7, while the dimensioned hardware

drawings are in Figures D-5, D-6 and D-7.

A 5.7-cm-focal-length and 4.8-cm-diameter TPX lens provides additional focusing to

couple the THz radiation into an Infrared Labs helium-cooled silicon-composite bolometer.

This particular bolometer has been calibrated over a range of frequencies [3] including a

calibration I performed at the Harvard-Smithsonian Center for Astrophysics at 1.26 THz.

The bolometer signal was recorded for power coupled into the bolometer from a calibrated

source (multiplied Gunn which had been calibrated using a Golay cell) at 1.26 THz. The

fraction of power coupled into the bolometer was calculated using Gaussian beam optics.

The responsivity from that calibration ( ´¶µ$·¹¸»º0¼»½ W) is used in these power measurements

presented in the next section. The loss in the TPX lens of ³�¾�¯G¿ was also verified during this

calibration.

The final issue with the experimental apparatus is the analysis of the quasioptical cou-

pling of the terahertz signal from the Si lens aperture into the bolometer element. This

coupling involves focusing by the TPX lens through a 1.25-cm window into a 2-mm aper-

ture in the bolometer cavity. An effective waist at the Si lens was deduced by measuring

the Si lens, TPX lens and bolometer positions, which gave maximum power coupled to

the bolometer at approximately 1 THz. Coupling was calculated using Gaussian beam

analysis, and the beam waist at the Si lens was varied to achieve the maximum coupling

case ( À�ÁK³KÂ ) shown in Figure 5-8. The waist for maximum coupling was 1.2 mm, and

knowledge of this waist allows the calculation of frequency dependent coupling into the

bolometer through Gaussian beam analysis [126].
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Figure 5-8: Illustration of coupling the terahertz signal into the bolometer.

5.2.2 Measurements

This section describes the measurement of the terahertz performance of the distributed

photomixers. Specifically, I discuss the dependence of terahertz output power on frequency,

input optical power, and bias voltage. Optical power and bias voltage are the two inputs

that affect photomixer performance during testing. Therefore, it is important to verify that

terahertz output power varies with these inputs as predicted by the distributed photomixer

model.

Under typical test conditions, the voltage bias on the distributed photomixer was set

so that the applied electric field was between ÃKÄSÅ and Æ�ÄlÇÉÈÊÃ�ÇGË V/cm. An optical power

of approximately 160 mW was incident on the waveguide facet. The CCD camera and

telescope described in Section 4.2.1 were used to align the optical signal to the photomixer

chip using a procedure similar to the one in that section. Once a waveguide mode was

found, the photomixer chip position and orientation was optimized by maximizing the dc

photocurrent. Typical photocurrent magnitudes were in the range of 350–550 Ì A. These

values are 45–60% of the predicted photocurrent. Since the current model predicted the

surface-illuminated test structure accurately, it is unlikely that there are significant errors in

it. One plausible explanation for the discrepancy is that the predicted input optical coupling
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efficiency is too high. The optical coupling efficiency calculated in Section 5.1.2 assumes

a diffraction-limited laser spot and optics as well as perfect alignment of the signal to the

waveguide facet. In talking with an experienced laser and waveguide designer, coupling

better than 75% of the maximum is rarely achieved [115]. The source of the remainder of

the discrepancy is not known, but it is plausibly due to a combination of device-to-device

variations in responsivity and extinction length and small errors in the models for carrier

lifetime and photocurrent.

For detection of terahertz power, the optical signal was chopped at ÍÏÎGÐ Hz with a

mechanical chopper, and the bolometer voltage was amplified and detected on a EG&G

Princeton Applied Research Model 5209 Lock-in Amplifier. The bolometer signal was

maximized by moving the bolometer and micrometer-mounted TPX lens to increase cou-

pling of the THz signal into the bolometer. By temperature tuning the seed lasers, the

operating frequency of the photomixer was changed, and the corresponding bolometer volt-

age recorded. Usually, the laser pair is chosen so that at room temperature, the difference

frequency is Í 0.9 THz, so that by tuning one laser to the hot extreme of its operating

condition and the other to the cold extreme dc can be reached (as well as 1.8 THz by tuning

the temperatures in the opposite sense.)

Examples of typical bandwidth plots for bowtie-coupled velocity-matched ( ÑAÒlÓ - Ô m

electrode gap) and slow-THz-wave ( ÑAÒlÕ - Ô m electrode gap) distributed photomixers are

given in Figure 5-9. For the purposes of comparison with predicted power, the bolome-

ter voltage is scaled by the responsivity calibration from Section 5.2.1 and the Gaussian

coupling efficiency discussed in the same section. The structure in the bandwidth plots

is associated with atmospheric absorption as well as standing wave effects in the optical

and terahertz systems. The output power is shown out to approximately 1.8 THz where

the photomixer power dropped below the noise floor of the measurement system. The

velocity-matched device shows the expected 6 dB/octave roll-off with frequency due to

carrier lifetime up to Í¨ÖKÒ�Õ THz, when the power drops by approximately 7 dB in 0.2 THz.

The slow-THz-wave structure rolls off slightly faster than expected, so the drop in power

from 1.4 to 1.6 THz is less obvious. The reason for this faster-than-expected roll-off is not

known.
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Figure 5-9: Comparison of measured at predicted distributed photomixer bandwidth plots.
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Figure 5-10: Bandwidth comparison between a bowtie-coupled distributed photomixer (—)
and a log-spiral coupled lumped-element photomixer (- - -). The lumped-element photo-
mixer data has been scaled down by about a factor of 50.

The absolute difference between predicted and measured terahertz power of approxi-

mately 10 dB is not surprising. The lower dc photocurrent mentioned earlier explains part

of the discrepancy. The quasioptical coupling losses and a non-Gaussian antenna pattern

are plausible explanations for the remainder of the discrepancy. The closest that lumped-

element photomixer power predictions have ever been to measurements has been about

7 dB [127].

The dramatic drop in power near 1.4 THz can be understood by comparison with a

scaled power-bandwidth curve of a log-spiral-coupled lumped-element photomixer. Fig-

ure 5-10 shows two high-frequency-resolution bandwidth curves for a bowtie-coupled and

log-spiral coupled photomixer. Both photomixers show the same steep roll-off at that

frequency. Therefore, I can rule out that it is intrinsic to either the distributed photo-

mixer structure or the bowtie antenna. The only common elements between the two mea-

surements are the bolometer and the TPX lens. Either element could plausibly have a

frequency-dependent coupling or absorption characteristic.
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Figure 5-11: Bandwidth comparison between a dipole-coupled distributed photomixer (—)
and a bowtie-coupled distributed photomixer (- - -).

The effect of antenna pattern on coupling to the bolometer is investigated through com-

parison of the bandwidth of a dipole-coupled and bowtie-coupled distributed photomixer.

The dipole-coupled photomixer shows 3 to 5 dB higher power than the bowtie-coupled

device near the half-wave resonant frequency of the dipole. For the bowtie antenna di-

mensions and frequencies of operation, the bowtie impedance is constant at ×ÙØKÚ�Û , which

matches it to the impedance of the loaded CPS transmission line. Therefore, the higher

power output is due to improved Gaussian coupling efficiency rather than improved imped-

ance match (as is the case for lumped-element photomixers).

Having characterized the frequency performance of the distributed photomixer, the de-

pendence on the control variable of optical power is investigated and compared with theory.

According to the photomixer theory in Section 1.3, the dc-photocurrent should vary linearly

with optical power as long as no saturation effects are seen. The terahertz power should

increase quadratically with optical power. These assumptions are confirmed by Figure 5-12

which shows the photocurrent and bolometer voltage for a distributed photomixer operat-

ing at 0.3 THz. In addition to verifying the photoconductive nature of the LTG-GaAs, the
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Figure 5-12: Distributed photomixer dc photocurrent and bolometer voltage as a function
of incident optical power at constant bias voltage of 16 V across a ÜAÝ�Þ - ß m-gap. The optical
signal was chopped for lock-in detection of the THz signal. Recorded optical power and
photocurrent values are half their unchopped values.

measurement of current and terahertz power as a function of optical power also confirms

that there are no coupling effects which depend on the magnitude of the optical signal up to

incident powers which result in facet damage. Note that the optical power was chopped for

terahertz measurements to permit lock-in detection of the bolometer voltage. Therefore,

the power and photocurrent values are half of the constant illumination values discussed at

the beginning of this section.

The second control for photomixer performance is applied bias voltage. As discussed in

Section 4.3, a LTG-GaAs photomixer’s responsivity increases with applied field; therefore,

an accompanying increase in both photocurrent and terahertz power is expected. How-

ever, the carrier lifetime also increases with electric field so the terahertz power will not

increase without bound. Distributed photomixer dc-photocurrent and bolometer signal as

a function of applied electric field is shown in Figure 5-13 for operating frequencies of

0.3 THz, 0.6 THz, and 1.4 THz. For similar illumination and alignment conditions, the

dc-photocurrent at any terahertz difference frequency should have the same voltage depen-

dence as the current-voltage characteristic of the test structures in Section 4.3. The solid

photocurrent line is predicted using equation (4.20), where à is the computed optical cou-
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pling efficiency into the dielectric waveguide and an additional factor á(âBãåäGæKç.è<éëêSì í!îJï.ç îëð.êòñ is

used to account for the fraction of optical power absorbed. The predicted IV curves re-

quired a scaling factor of approximately óAôlõ to fit the data. This factor is consistent with the

photocurrent discrepancy due to imperfect optical coupling mentioned previously. These

measurements verify that the full 150- ö m-long active area has the same dc current-voltage

relationship as the surface and waveguide-illuminated test structures in Figures 4-14 and

4-17.

Figure 5-13 also demonstrates the dependence of distributed photomixer terahertz power

on bias voltage. As expected, the terahertz power does not scale with the square of the dc-

photocurrent at high bias. The full expression for predicted power differs functionally from

the square of the photocurrent by a factor of á(âø÷ùáûú
ü/á.ý ñ+ñ+þ8ñ æ�ÿ , where ü is the carrier life-

time, which is a function of ý the applied electric field. Therefore, this measurement is

consistent with a carrier-lifetime increase with electric field. Thus, the increase in terahertz

power with field is smaller as the operating frequency increases.

Distributed photomixer performance has been measured and compares well with the

theory used to design the photomixers and predict their terahertz performance.

5.3 Discussion and Conclusions

Distributed photomixers operating at terahertz frequencies have been demonstrated. Qual-

itative and quantitative agreement between measured performance and predictions verify

the distributed photomixer model. The output power of these distributed photomixers, how-

ever, is lower than that produced by lumped-element photomixers operating at the same

frequency. Operation in traveling-wave mode incurs a fundamental 6-dB reduction in ter-

ahertz power over a lumped-element photomixer with the same dc-photocurrent. This loss

can be understood phenomenologically by realizing that in traveling-wave mode, only half

of the terahertz-frequency current (and thus one quarter of the power) generated at any

point along the active area propagates in the direction of the antenna. This current does not

contribute detrimentally to the performance of the device because no reverse-propagating

current wave builds up because it is not phase-matched to the optical wave propagating
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(a) Distributed photomixer operating at 0.3 THz.
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(b) Distributed photomixer operating at 0.6 THz.
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(c) Distributed photomixer operating at 1.4 THz.

Figure 5-13: Photomixer dc photocurrent and bolometer voltage illustrating the effect of
field dependent carrier lifetime at different frequencies.
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in the opposite direction. Thus, distributed photomixers are only expected to outperform

lumped-element photomixers if they generate more than twice as much photocurrent or

operate at frequencies far enough past the ��� roll-off of lumped-element photomixers for

their 6 dB/octave characteristic power roll-off to cross over the 12 dB/octave roll-off of

lumped-element devices [65]. The devices tested in this thesis did not generate enough

power to operate beyond this crossover frequency of ��� THz. One of the primary reasons

for the low output power is that insufficient optical power was absorbed in the active re-

gion. Facet failure typically occurred for incident power levels of about 180 mW. Runaway

of dc-photocurrent accompanied by a corresponding drop in THz output power, a failure

mode common to all LTG-GaAs photomixers, occurred for currents in the range of 0.8–

0.9 mA. To reach the ��� mA of photocurrent needed for 10–20 � W of power at 1 THz,

the absorbed optical power and current-handling capability of the devices would need to be

increased substantially. Additional measures for increasing THz power include the use of

higher gain planar antennas and the deposition of thicker metal for the terahertz waveguide.

Three techniques could increase the amount of optical power absorbed in the active

area: increasing the size of the optical waveguide mode at the input facet, increasing trans-

mission into the waveguide, and increasing the fraction of power absorbed in the active

region. High-power semiconductor lasers either employ wide, thin exit facets such as that

used in the SDL tapered semiconductor optical amplifier in these experiments [125] or

symmetrical exit facets which are a few microns in both width and height [128]. The thin,

tapered waveguide design would greatly increase the required accuracy of alignment of the

input beam to prevent excitation of higher order modes in the over-moded waveguide. Ei-

ther design requires tight fabrication tolerances in order to produce a waveguide that only

supports one mode. While these techniques are engineering challenges, they are not physi-

cal impossibilities and could result in devices which could handle 3–5 times more incident

optical power. An antireflection (AR) coating would increase the fraction of that incident

optical power transmitted into the dielectric waveguide. The difficulty in AR coating these

Al 	 Ga 
��
	 As-based devices is that the coating must be non-oxidizing, stable, and capable

of withstanding high power densities. Proprietary AR coatings have been developed for

Al 	 Ga 
��
	 As based lasers, but applying them is a very challenging engineering problem,
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involving exotic surface treatments or cleaving and coating-deposition in vacuum. Increas-

ing the fraction of the waveguide-coupled optical power which gets absorbed in the active

waveguide involves either decreasing the extinction length or increasing the length of the

active region in a predictable, repeatable way. The discrepancies between the desired, pre-

dicted, and measured values for extinction lengths in my structures are due to variations in

growth and fabrication dependent material and geometry parameters. The associated tech-

nical challenge involves repeated growth and fabrication runs to determine and reduce the

unknowns and variations in these parameters. The option of increasing the active region

length is discussed in the next section.

Two proposed mechanisms for the thermal failure of LTG-GaAs photomixer struc-

tures are localized heating near the electrodes leading to stress-induced material failure

and a thermally-induced increase of defects and dislocations in the LTG-GaAs. For ei-

ther mechanism, increasing the maximum sustainable photocurrent requires the thermal

load in the active area to be reduced, either by decreasing the active region’s thermal im-

pedance or increasing its volume. The Al ��� ��� Ga ��� ��� As layer beneath the LTG-GaAs has

a thermal conductivity approximately half that of annealed LTG-GaAs [57, 74]. The re-

sulting decrease in heat-sinking capability depends on the exact details of the device ge-

ometry, but thermal modeling of lumped-element LTG-GaAs photomixers indicates that a

decrease of ������� would be expected [57]. This decrease corresponds roughly to the fact

that the distributed photomixers failed at a current ������� lower than that of a standard���
m  "! � m lumped-element photomixer, which has roughly the same active volume, i.e.#%$'&)(+*+,-&).0/2143 � � m  65 � m  6�87 1 � m

/ � 3 � � m � and
#:9);'<>=?/ ���

m  @! � m  1 �
m
/

� � � � m � ). A waveguide design with smaller aluminum fraction in the cladding would im-

prove the thermal conductivity. (While very high Al fractions would also lead to higher

thermal conductivity, device lifetime would suffer because of the rapid oxidation of high-

Al-fraction Al A Ga B�C
A As layers.) The increase in thermal conductivity from Al ��� ��� Ga ��� ��� As

to Al ���)BD� Ga ��� E�� As is a factor 2, which would not provide the necessary increase in current-

handling. Therefore, in addition to a modification of the dielectric waveguide structure, the

LTG-GaAs layer dimensions would need to be changed.

Increasing the active region volume involves either an increase in thickness or length.
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(Figure 2-7 indicates that the F - G m-width of the active area strip is near the limit for single

mode optical waveguide operation.) The problems with a thicker LTG-GaAs layer are that

it competes directly with the desire for a long extinction length and the desire for the higher

photoconductive gain resulting from a thin LTG-GaAs layer. For a waveguide-coupled dis-

tributed photomixer, the optical intensity peaks at the bottom of the LTG-GaAs layer while

the electric field is highest at the top where the electrodes are. The LTG-GaAs layers used

in this thesis are thin enough that this effect was not significant; however, for layer thick-

nesses much greater than H8IKJLG m, the effect would become important and detrimental. Also,

if the more important thermal failure mechanism is localized heating near the electrodes,

then increasing the length of the active region would be more effective than increasing the

volume. Therefore, a longer active region would be preferred over a much thicker LTG-

GaAs layer; however, that choice comes with its own difficulties. Longer active areas place

more stringent limits on the quality of the velocity match between the optical and terahertz

wave. Also, the conductor and dielectric loss mechanisms from Section 5.1.2 start to be-

come important, especially at frequencies approaching 3 THz. Thicker metal could address

both of these issues, but more accurate modeling would be required to determine the effect

of metal thickness on CPS and electrode impedance and current distribution.

Finally, higher gain planar antenna structures could lead to an increase of 3 to 5 dB in

coupled terahertz power. The bowtie coupling was similar to that of a dipole so it was not

extremely poor; however, more directive antenna configurations such as double dipoles or

endfire antennas would couple better than either of these designs.

Of these considerations, the primary challenges that must be met for distributed pho-

tomixers to outperform lumped-element photomixers are: 1) coupling more optical signal

into the device and 2) handling more current. Both of these steps are required to increase

the photocurrent to compensate for the 6 dB drop in THz power relative to lumped-element

designs, for frequencies less than the M 2 THz crossover.

In this thesis, I have described the design, fabrication, and characterization of LTG-

GaAs waveguide-coupled distributed photomixers designed for terahertz operation. A de-

sign methodology and design curves were presented for all of the main elements of the

distributed photomixer: the optical waveguide, the terahertz waveguide, and the radiating
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element. The fabrication process was described. Material and device characteristics were

independently measured, and used to create a model of the distributed photomixer perfor-

mance at terahertz frequencies. Photomixing measurements verified that the model predicts

with good accuracy the dependence of output power on frequency, optical power and ap-

plied voltage bias. I have discussed the limitations of the LTG-GaAs distributed photomixer

design and possible routes to increasing its output power at terahertz frequencies.
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Appendix A

Electromagnetic Model for the Dielectric

Waveguide

A.1 Method of Field Shadows

An overview of the method of field shadows was given in Section 2.1.1. This appendix

provides a more in-depth explanation and the details equations in the formalism I used.

Solving the electromagnetic modes in a one-dimensional slab waveguide is the initial

and key component to the method of field shadows. The electromagnetic field in each layer

of a slab waveguide can be represented as the sum of two counter-propagating plane waves

with complex exponential spatial and temporal dependence. For a guided mode in the slab

waveguide, the fields must be a real exponential in the topmost and bottommost layers, and

for normalizability, the field magnitude must decay exponentially away from the topmost

and bottommost boundary. The boundary conditions require continuous electric and mag-

netic fields tangential to all the boundaries. The technique is rigorously correct inasmuch

as all the layers can be represented by scalar dielectric constants with abrupt junctions

between layers. Benjamin Williams [41] suggested the use of the transmission matrix tech-

nique described in [129] for setting up and solving the boundary condition equations.

Consider a plane wave incident on the bottommost layer boundary as shown in Fig-

ure A-1. The reflection at the boundary can be described by a transmission matrix, relating

the field magnitudes on one side of the boundary to those on the other. A propagation
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Figure A-1: Plane wave representation of a mode in a dielectric slab waveguide.

matrix can then account for the phase change of the fields propagating in the second layer.

Another reflection matrix accounts for the next boundary and so on. Cascading reflection

and propagation matrices provides a flexible way of modelling a slab waveguide with an

arbitrary number of layers. The continuity equations determine the form of the reflection

matrices, and the normalizability constraint requires that only one field component exists

in the topmost and bottommost layers. An example profile of the tangential electric field is

also shown in Figure A-1.

It should be noted that the propagation of the incident plane wave through the layers

is not the propagation of the mode in the slab waveguide. This model simply provides a

useful technique for determining the transverse dependence of the field in the waveguide.

However, the effective index calulated by this technique is the index for the mode that

would propagate in the slab waveguide. Figure A-2 illustrates the relationship between

the slab waveguide and the plane wave reflection at a boundary. In this figure, the mode

depicted is a transverse electric (TE) mode, and it propagates in the N direction. The electric

field in the slab waveguide is O -directed and varies along the P direction. The electric
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Figure A-2: TE mode in a dielectric waveguide views as a plane wave reflection at a bound-
ary.

field in the effective slab waveguide of Figure 2-3 is also Q -directed but varies along the Q
direction. Expressed in the sign and coordinate conventions of Figure A-2, field continuity

requires RTSVU)WLXYRTSVU Z
and [?\ U)W]X [0\ U Z , where (A.1)

RTSVU)W^X R`_SVU)Wbadcdegfihbj kmlnadcdegfiogj k \qp R cSVU)Wianegfih�j kmlradcdeifgogj k \ (A.2)RTSVU ZsX R`_SVU Z adcdegfihbj tulnadcdegfiogj t \qp R cSVU Z anegfih�j tulradcdeifgogj t \ (A.3)

and

[0\ U)W^X viwyx�zq{|Wg} c W�~ RTSVU)W~�� X�R`_SVU)W adcdegfihbj k�lradcdegfiogj k \qp R cSVU)W anegfih�j kmlradcdeifgogj k \ (A.4)

[0\ U ZsX viwyx�zq{�Zr} c W ~ RTSVU Z~�� X�R`_SVU Z'adcdegfihbj tDlradcdegfiogj t \qp R cSVU Znanegfih�j tulradcdeifgogj t \ , (A.5)

and where the superscript p and
w

refer to the field components traveling in the positive
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and negative � directions, respectively. If the boundary conditions are enforced at �����
and �0��� , and impedances are defined as

� TE� �6�q� ����'� � and
� TE� �@�q� ����'� � , (A.6)

then the boundary condition equations can be written as

�`�� � ��� ���� � � � �`�� � ��� ���� � � (A.7)� TE� �`�� � ��� � TE� ���� � � � � TE� �`�� � �q� � TE� ���� � � . (A.8)

These equations can be rewritten in a single matrix equation��� � �� � ��0�� � �
¡£¢¤¥� ¦§ � TE�

���©¨ � TE� � � TE��ª ¨ � TE� � � TE��ª
¨ � TE� � � TE��ª ¨ � TE� � � TE��ª

¡£¢¤« ¬b­ ®¯ TE
refln

��� �`�� � ����� � �
¡£¢¤ . (A.9)
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E
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E2
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H1E1 H2
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k2

k2

Figure A-3: TM reflection at a dielectric in-

terface.

The sign convention and coordinate con-

ventions for a transverse magnetic (TM) mode

are shown in Figure A-3. As the TE mode

does, the TM mode propagates in the � di-

rection. The electric field in the slab wave-

guide has � and ° -directed component and

varies along the � direction. The electric

field in the effective slab waveguide of Fig-

ure 2-3 also had � and ° -directed compo-

nents but varies along the ° direction. The

magnetic field of the TM mode is analogous to the electric field of the TE mode in terms

of its vector component directions.

For a TM mode, the boundary condition equations are expressed more directly in terms
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Figure A-4: Schematic showing the relationship between field components propagating
through a layer of thickness, d.

of the magnetic field,

±�²³V´)µ�¶ ±¸·³V´)µº¹ ±�²³V´ »|¶ ±¸·³V´ » (A.10)¼¾½ TMµ ±�²³V´)µ>¶ ½ TMµ ±¸·³V´)µº¹ ¼¿½ TM» ±�²³V´ »|¶ ½ TM» ±À·³V´ » , (A.11)

which can be expressed in matrix form asÁÂÃ ±�²³V´ »± ·³V´ »
Ä£ÅÆ ¹ ÇÈ ½ TM»

ÁÂÃ©É ½ TM» ¶ ½ TMµ Ê É ½ TM» ¼Ë½ TMµ Ê
É ½ TM» ¼Ì½ TMµ Ê É ½ TM» ¶ ½ TMµ Ê

Ä£ÅÆ ÁÂÃ ±�²³V´)µ± ·³V´)µ
Ä£ÅÆ . (A.12)

This matrix equation is converted to one relating the electric field components by observing

from Figure A-3 that ±¸·³V´)µ±�²³V´)µ ¹ ¼ÎÍ ·ÏÐ´)µÍ ²ÏÐ´)µ . (A.13)

The resulting matrix equation comparable to the TE equation isÁÂÃ Í ²Ïr´ »Í ·Ïr´ »
Ä ÅÆ ¹ ÇÈ ½ TM»

ÁÂÃ É ½ TMµ ¶ ½ TM» Ê É ½ TMµ ¼Ë½ TM» Ê
É ½ TMµ ¼Ì½ TM» Ê É ½ TMµ ¶ ½ TM» Ê

Ä ÅÆÑ Ò�Ó ÔÕ TM
refln

ÁÂÃ Í ²ÏÐ´)µÍ ·ÏÐ´)µ
Ä ÅÆ . (A.14)

The translation, or propagation, matrix is common to both TE and TM modes. The
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matrix can be formulated by inspection of Figure A-4. The matrix equation relating the

fields on the left and right side of the layer isÖ×Ø¾Ù`ÚÛÙ�ÜÛ
Ý£Þß¥à Ö×Ø�ádÜdâiãgä�å ææ ánâgãiä�å

Ý£Þßç èbé êë
prop

Ö×Ø�Ù ÚìÙ Üì
Ý£Þß . (A.15)

To solve for the propagation constant, or effective index, of the mode of a slab wave-

guide, the appropriate reflection and propagation matrices need to be cascaded. For the

four layer slab waveguide in Figure A-1, the complete matrix equation enforcing all of the

boundary conditions is given byÖ×ØíæÙ Üî
Ý£Þß à ë

refln,3-4
ë

prop,3
ë

refln,2-3
ë

prop,2
ë

refln,1-2

Ö×Ø¿Ù Úïæ
Ý£Þß , (A.16)

where one field component in each outermost layer is not supported1 as shown in Figure A-

1. If the incident field is normalized to unit magnitude, then the matrix equation simplifies

to Ö×Ø æÙ ÜðVñ î
Ý Þß à Ö×Ø ë ï�ï ë ïDòë ò�ï ë ò�ò

Ý Þß Ö×Ø`óæ
Ý Þß . (A.17)

Finally, the equation that must be solved to satisfy all the boundary conditions is simply

ë ï�ï à æ . (A.18)

As written, there are as many unknowns in equation (A.18) as there are layers, i.e. ô8õ ñ ï , ô�õ ñ ò ,
etc. However, by rewriting ô
õ as ô�õ�à ö ô òq÷ ô òø , where ô ò àúù ò�û>ü à�ù ò'û�ýnügýnû Û ü Û àô òý û Û ü Û and

û Û and
ü Û are the relative dielectric permeability and permittivity, respectively,

the number of unknowns can be reduced to one. Phase matching requires ô ø to be the

same in all layers; therefore, the ô
õ ’s differ only in the material constants,
û

and
ü
, which

are known for each layer. Finally, a reduced, or relative, ô ø can be defined ôÿþø à ô øô ý , and

1Its magnitude is set to � .
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because the mode in the waveguide propagates in the � direction, ������ ��
	 is the effective

index of the slab waveguide mode. All of the elements of �
��� can be rewritten using this

notation �
� � �
	 � ����������� � ������ (A.19)� TE � � 	 ���� � ������� � � ���� � (A.20)

� TM � � 	 � � ������� � � ���� ����
, (A.21)

where
� 	 ��! � 	� 	 is the impedance of free space, "$#�%
%'& . This effective index, � �� , be-

comes the single unknown in equation (A.18).

The effective index for the central strip region and the side etched regions are found by

treating them as infinite slab waveguides and using the effective index technique described

above. The etched regions will have lower effective indices than the strip region; therefore,

they will act as cladding around a central core region. Thus, confinement, or guiding, is

achieved in the lateral direction. Each of the three regions is treated as a material with���)( *
and

���+( � � ����
� , (A.22)

where � �� is the effective index, or reduced propagation constant, for the particular region.

As shown in Figure 2-3, this treatment leads to a “sideways effective slab waveguide.” If

one is solving for a TE mode of the strip-loaded waveguide, then one first solves for a TE

mode in the strip and etch regions and for a TM mode in the effective slab waveguide.

This change is required because the effective slab waveguide is rotated ninety (90) degrees

relative to the other slab waveguides.

After determining the effective index of the mode, the field and power profiles can be

calculated using the now completely determined reflection and propagation matrices. For

the example depicted in Figure A-1 and described by equation (A.16) and equation (A.17),

the incident plane wave in layer 1 is normalized to unit magnitude, which means that for a
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TE mode, the , component of the electric field in layer 1 evaluated at -/.10 is2436587 . 2:936587<;'='><?�@�A BDC . ;'='><?�@�A BEC , (A.23)

where F C can be determined using equation (A.19). The coefficient vector in equation A.16

and equation A.17 can therefore be interpreted asGHI 2:9365872 =36587KJMLNO. GHI:P0 JMLN . (A.24)

The implicit assumption is that QR.S0 occurs at the layer 1-layer 2 boundary. The functional

form of the electric field in layer 2 at an arbitrary - location is given in equation A.3. The

coefficients can be determined byGHI 2 9365 T2 =365 T JMLN . U refln,1-2

GHI 2 9365872 =36587 JMLN . U refln,1-2

GHIVP0 JMLN . (A.25)

Evaluating equation A.3 at -W.X0 with the coefficients found above yield the field profile

in layer 2. Using the next propagation matrix and reflection matrix, the coefficients for

the next layer can be found. In this manner, the matrices transfer the initial field coef-

ficients through all of the layers. As in calculating the effective index in the orthogonal

direction, calculating the field profile in that direction involves the same procedure with

material properties for the layers as in equation A.22. The total two-dimensional profiles

are obtained by multiplying the field expressions with , and with Q variation. For a TE

mode, the , directed electric field is sought, while for a TM mode, the Q directed electric

field is sought.

The power profile, or distribution, of the mode is directly related to the electric field

profile. By calculating the power distribution, the fill factor of the mode in the absorber

layer can be calculated. For an electromagnetic wave, time averaged power flowing through

a closed surface is [130] Y . PZ�[]\�^`_ 2ba cWd�egf hji
, (A.26)
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where k is the surface in question and l k is normal to that surface. For a TE mode, which

in my formalism and coordinate convention only has components mon , pVq , and p/r , the

power expression becomessut$vw xzy|{}{`~ n6� r���� m4n�p��r l��jl�� � . (A.27)

because the surface in question is the ��� plane that represents a slice through the strip-

loaded waveguide orthogonal to the direction of propagation of the mode. Recognizing

that p�r t �}� q��� m�n , the TE mode power expression can further be rewritten ass�t xzy � qw � � � {}{ ~ n6� r���� m�n � � l��ol��
t vw�����x�y ���q� � � {�{ ~ n6� r���� m4n � � l��ol�� (A.28)

For a TM mode, equation A.26 reduces tos�t$vw�x�y|{}{ ~ n6� r�� m�r�p��n l��ol�� � (A.29)

Recognizing that for a TM mode, mjr t � q� � pVn , the expression can further be rewritten ass�t xzy � qw �<� � {�{ ~ n6� r¡� � pVn � � l��jl��
t �¢�w xzy � �q��� � {}{ ~ n6� r�� � p�n � � l��jl�� (A.30)

A.2 Modeling Absorption

All of the dielectric layers are assumed to be lossless; therefore, they all have real per-

mittivity, � , and permeability, � . The top LTG-GaAs absorber layer is lossy, but such a

small fraction of the mode is coupled into that layer that it can be assumed lossless without

affecting the calculations.

For a material with complex dielectric constant, the expression for power in a TE mode

becomes
sut$vw x�£ � �q����¤¦¥ ��§<¨�© ª q {
{ ~ n6� r���� m�n � � l��jl�� , (A.31)

where � q�� «
t­¬

� q , the imaginary part of the reduced propagation constant, or effective
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index. Therefore, the power absorption coefficient, ® , is, as expected, double the field at-

tentuation coefficient. At least two approaches exist to calculate ¯�°�± ² for the strip-loaded

waveguide structure. The more rigorous technique is to use an complex dielectric permit-

tivity for the LTG-GaAs layer and solve the effective index problem with complex numbers.

An interesting and general approximation is derived by considering the power in the dif-

ferent regions of the guide. For illustration, consider a mode propagating in the ³ direction

and varying only in the ´ direction. The mode is partly in an absorbing region and partly in

a (non-absorbing) guiding region. If the absorption is small (mathematically, µ¶¯�²¡µ�· µ8¯�¸'µ ),
the field propagates in the guide region according to ¹�º'»�¼<½ ° and in the absorbing region ac-

cording to ¹'º'»�¼<½ ° ¹6¼�¾ ° . Then, if ¿ÁÀÂ³�Ã denotes the power at position ³ , Ä denotes the fraction

of the total power in the absorbing region, and Å�³ denotes a small increment of distance,¿ tot ÀE³�ÃÇÆ ¿ a ÀÂ³�Ã|Èz¿ g ÀE³�Ã (A.32)¿ tot ÀE³ÉÈ
Å`³�ÃÊÆ ÄË¿ tot ÀÂ³�Ã�¹ º�Ì�Í ¼<¾ÎÍ Ï ° ÈSÀÑÐ�Ò]Ä�Ã�¿ tot ÀE³�Ã , (A.33)

where the subscripts tot, a, and g label power in total, in the absorber and in the guide,

respectively. Rearranging terms yields the difference equation,¿ tot ÀÓÈÉÅ`³�Ã�Ò]¿ tot ÀE³�ÃÅ�³ Æ1Ä�¿ tot ÀE³�Ã Ô ¹'º�Ì�Í ¼<¾EÍ Ï ° Ò}ÐÅ�³ Õ . (A.34)

Taking the limit as Å`³/Ö × yields the differential equation,Ø ¿ tot ÀÂ³�ÃØ ³ Æ�ÒoÙoµ¶¯�²¡µ�Ä�¿ tot ÀÂ³�Ã , (A.35)

which assuming a known amount of total power at ³/ÆÚ× yields¿ tot ÀÂ³�Ã¢ÆS¿ tot ÀÂ×�Ã�¹ º�Ì�Í ¼<¾EÍ Û ° . (A.36)

Therefore, if a mode is partially an absorbing region, the mode absorption coefficient can

be determined by multiplying the absorbing region’s bulk absorption coefficient, Ùoµ8¯�²<µ , by

the mode’s fill factor in the absorber, Ä . The mode extinction length is the inverse of the
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absorption coefficient and can then be calculated byÜ
ext Ý Þßáà¶â�ã�à ä Ý$åçæ'èêéë â�ä
ì+í�î

(A.37)

where due to an unfortunate overlap of naming conventions,
â�ã

is the imaginary part of the

mode propagation constant and
â

is the imaginary part of the complex index of refraction

( ïð Ý ðOñ�ò â ). This approximation will hold as long as the mode distribution calculated

assuming non-absorbing regions does not change when absorption is considered. This qual-

ification is equivalent to the initial qualification that the absorption be slight. The practical

meaning is that the mode profile can be calculated with all real dielectric coefficients and

the extinction length can be approximated to good accuracy using the absorber fill factor.

Finding real roots is much simpler and faster than finding complex roots, so this saves a

lot of time when performing numerous iterations. For final refinement of a design, the

full complex dielectric constant can be used. The quantitative difference between these

approaches is discussed in Section 2.1.3.

A.3 Fill Factor Calculations using the Method of Shadows

Figures A-5, A-6, and A-7 present calculations of the fill factor in a Þgó
ó�ó Å LTG-GaAs

absorber layer on top of a slab waveguide with given dimensions and layers compositions.

These figures are mentioned in Section 2.1.3.
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Appendix B

Scriber Operation

This appendix contains operating procedures for the Loomis Scriber in C-400 of MIT Lin-

coln Laboratory.

B.1 Startup

These startup procedures are performed once per scribing session.

1. Turn on the air flow valve to 50 pounds per square inch (psi).

2. Turn on the vacuum pump used to hold samples to the vacuum stage.

3. Lower hook located near the back of the scribing mechanism (ram), and pull

the ram forward to the end of its range of motion. Push the ram back to its

original position and raise the hook.

4. Flip the power switch (labelled “MASTER”) to the left. The scriber will run

through a limit check in which it moves the ram and the vacuum stage. If the

ram stops moving in the middle of this limit check and red LEDs flash, the hook

has lost electrical contact with the metal cylinder it should be touching. Hold

the hook to the cylinder and toggle the MASTER switch, while continuing to

hold the hook to the cylinder.
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B.2 Scriber Adjustment

These adjustment procedures are performed once per scribing session, unless the wafer

height is changed in which case the ram height must be adjusted.

1. Place a piece of scrap wafer on the vacuum stage and turn on the vacuum,

verifying that the gauge shows at least 20 inches of Hg.

2. Focus on the surface of the wafer using the metal knob at the bottom of the

scope tube.

3. Make a test scribe by flipping the switch on the left of the scriber from INDEX

to AUTO and then flipping the ACTUATE switch to the left or right. While

the ram is in motion, return the switch from AUTO to INDEX so that only one

scribe is made.

4. Set the force of the scribe on the pressure meter, which is above and to the left

of the ram. The gauge should show FHG0I as read on the inner dial. The knob

near the gauge is used to adjust the pressure.

5. Set the air flow so that the meter reads between 2 and 3. Note that the setting

of the air flow is coupled to the force of the ram so these two settings must be

iterated.

6. Set the height of the ram so that the scribe is F G0I divisions long as seen

through the scope. Turning the height adjustment knob counterclockwise raises

the stage and makes the scribe shorter.

7. Move to a new spot on the wafer by flipping the switch on the left of the scriber

from INDEX to TRAVEL. This mode allows the ACTUATE switch to move

the vacuum stage freely left or right, while the switch on the separate control

box moves the stage forwards and backwards.

8. Make another single scribe and adjust the cross-shaped reticle seen through

the scope so that the scribe is centered left-to-right on it and the end of the
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scribe is at the top of the cross. The small, vertically-mounted knob adjusts the

stage forwards and backwards (up and down as seen through the scope) and

the large, metallic, horizontally mounted knob adjusts the scope left and right.

The small, anodized knob next to the left-right adjuster is a locking screw and

should not be touched.

9. Move to a new place on the wafer and make a new scribe to verify that the

scope placement settings are correct.

10. Move to a new place on the wafer and make a series of scribes by flipping the

switch on the left from INDEX to AUTO and then flipping the ACTUATE

switch to the left or right. The scriber will make scribes separated by the

distance set by the thumb wheels on the front of the scriber until the switch

is returned to INDEX. Verify that the scribes are uniform and evenly spaced.

B.3 Scribing and Cleaving the Device Wafer

After performing the steps in Section B.1 and Section B.2, the following steps are used

to scribe the device wafer. After thinning and polishing, the edges of the wafer will be

rounded, and an optical quality facet is not achievable. The facets of interest should be

third-generation cleaves. The initial edge should be scribed and cleaved, yielding a sharp,

but probably not flat edge. This new edge is scribed and cleaved, and then this second-

generation edge is scribed for the device facets’ cleaving. The steps in this section are

generic for any of these scribe and cleave steps. For the initial scribe and cleave, the

initial alignment will be more difficult because of the rounded edges, but it is also less

critical. The initial cleave should be JLK�M�MON m from the edge, if possible. To perform

multiple cleaves at the same time, use the AUTO/ACTUATE switch combination and set

the increment distance using the thumbwheels as when using INDEX/ACTUATE. Stop the

scriber by flipping the AUTO switch back to INDEX during the ram movement for the final

scribe.

1. Place the wafer on the vacuum stage, and align the edge so that it is perpen-
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dicular to the direction of the scribe. Rotating the vacuum stage by hand sets

coarse angle before the vacuum is activated. For finer movements, the knob on

the left side of the stage moves the stage left and right, while the knob on the

right side rotates the stage. Alignment is determined by translating the wafer

left and right (using the TRAVEL/ACTUATE switch combination) and watch-

ing it pass by a fixed spot on the scope reticle. Rotate the vacuum stage such

that the entire edge of the wafer passes the same spot on the reticle as it moves

from one extreme to the other.

2. Move the wafer so that the scribe will be the desired distance from the edge.

The wafer can be translated by fixed amounts by setting the thumbwheels

on the front of the scriber to the distance in microns and then using the IN-

DEX/ACTUATE switch combination.

3. Align the reticle so that the horizontal part of the cross is centered on the wafer

edge.

4. Make a single scribe mark or multiple scribe marks if multiple cleaves are to

be performed simultaneously. If the edge is good, the scribe ends in a V-shaped

notch at the edge of the wafer.

5. Turn off the vacuum by flipping the switch to the right.

6. Place the wafer scribed side up on the thin plastic available in a large roll near

the scriber.

7. Cover the wafer with the square, thick “cleaving plastic,” pressing the two

pieces of plastic together firmly to ensure good adhesion.

8. The cleaving apparatus is simply a thick, wide piece of metal curved like a

bow with a thinner aluminum sheet between the ends. The slight bowing in of

this thin sheet allows the wafer to flex and the scribes to propagate. Align the

wafer so that the scribes are parallel to the bowing of the aluminum sheet and

facing down, into the sheet.
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9. Roll a steel rod over the back of the wafer, guiding the rod either with a finger

of another steel rod. The cracks as the wafer cleaves are audible.

10. Inspect the cleaved facets.

B.4 Turning off the Scriber

These shutdown procedures are performed once per scribing session.

1. Turn off the vacuum pump.

2. Turn off the air-flow valve.

3. Flip the MASTER power switch to the right.
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Appendix C

Gratings near resonance

Modelling of gratings (periodic arrangements of infinitely-long metal structures) has been

the subject of extensive work over many years [131]. To calculate accurately the optical

power absorbed in my test structures which have parallel metal electrodes that form a grat-

ing, I need to calculate total power transmission through a grating on a substrate for which

the wire diameter ( P ) and the grating period (Q ) are both comparable to a wavelength ( R ) of

the incident radiation. To my knowledge, a closed-form expression for this geometry does

not exist.

Gratings for which QTS R can be accurately and simply modeled using transmission

line analysis with equivalent circuit models. A grating for which the incident electric field

is perpendicular to the wires is modeled as a capacitive obstacle, because most of the stored

energy is electric. Conversely, with electric field parallel to the wires, the obstacle is induc-

tive. When the wires on the same order as the wavelength ( PVUWR ), the model is modified to

a X or T circuit as in Figure C-1, where the new elements introduce reactance of the other

type [104]. This modification can be understood by considering that for a capacitive grating

with PYUZR , inductive elements accounts for inductance arising from the field’s traversing

of the wire’s diameter while passing throught the grating. Near resonance, where more than

one mode is transmitted and reflected from the grating, these models break down because

they are single mode by nature. To solve the problem of accounting for power lost to higher

order modes, Blanco, et al. derived equivalent circuit models which incorporate resistive

elements, thus reducing the transmission coefficient of the lowest order mode [104]. I
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Figure C-1: Equivalent circuits for gratings in free space.

present transmission coefficient expressions which are simpler but algebraically equivalent

to theirs in Section C.2. I also present an expression for the reflection coefficient.

The final piece of this analysis is accounting for the effect of the substrate on the grating.

From the work of [107], the effect of a substrate on the equivalent circuit of a grating is to

scale the capacitive components by the average of the real part of the dielectric constant,

i.e. [#\�]_^a`bdce^f``g [
or h \i ] g^ ` b ce^ `` h i , (C.1)

where ^ b and ^ ` are the indices of refraction of the materials on either side of the grating

and
[

denotes a capacitance in the free-space grating equivalent circuit, while h i is the

corresponding impedance. The capacitive parts of the circuits in Figure C-1 were modified

accordingly. The model predictions shown in Figure C-2 and Figure C-3 for grating ge-

ometries that correspond to my test structure electrode geometries values of j�kml . For my

test structures, n ]po�q�rOs
m, j ]po�q g s

m, and l ]po�q�rts
m or l ]uo�q�vts

m.

C.1 Predictions of the Grating Circuit Model

The intermediate cases for which the grating and substrate are considered separately corre-

spond to wyx{z|x ] wy}�~���x����*}�� ����wy�{�*�:� . The coating was accounted for by adjusting ^ b . For the
o�q�v

-s
m-gap structure, ^ b ] g q�o

, while for the
o�q�r

-
s

m-gap structure, ^ b ]po�q��
������� c o�q��
��� g q�o
� .
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Figure C-2: Transmission through a grating on a substrate with  W¡£¢�¤�¥�¢ as a function
of the grating period to wavelength ratio. The traces are transmission through: the grid in
free space ( ¦�¦�¦ ), a grid and into the substrate as separate effects ( §¨§©§ ), and the complete
model of a grid modified by the substrate (—).
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Figure C-3: Transmission through a grating on a substrate with ³u´¶µ�·�¸
µ and a coating
with ³¹´»º as a function of the ratio the grating period to incident wavelength ratio. The
traces are: transmission through: the grid in free space ( ¼�¼�¼ ), a grid and into the substrate as
separate effects ( ½¾½¾½ ), and the complete model of a grid modified by the substrate (—).
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C.2 Expressions for the Grating Circuit Model

The reflection ( ¿ÁÀ�À ) and transmission ( ¿dÂ:À ) coefficients for a capacitive grating modeled by

Figure C-1(a) are given by

¿ÃÀ�ÀÅÄ Æ ÂÇÉÈ ÆËÊ
Ì�ÆËÊOÍÏÎ�ÆyÐ�ÑÌÒÆ Ç ÍÏÆËÊ!Ñ�ÌÒÆ Ç ÍÏÆËÊtÍÏÎ�ÆyÐ�Ñ (C.2)

¿aÂ:ÀÅÄ Î�Æ Ç ÆyÐÌÒÆ Ç ÍÏÆËÊ!Ñ�ÌÒÆ Ç ÍÏÆËÊtÍÏÎ�ÆyÐ�Ñ , (C.3)

where in terms of quantities given in [104],
Æ Ç ÄÔÓ�Õ ÀÇ Ä×Ö Ø�Ù
Ú ,

ÆyÊ ÄWÓ Õ ÀÊ , and
ÆyÐ ÄWÓ�Õ ÀÐ .

The corresponding expression for the inductive grating in Figure C-1(b) are

¿ÃÀ�ÀÛÄ È Ó ÂÇ Í ÓOÜ Ì ÓOÜ ÍÏÎ ÓtÝ ÑÌ Ó Ç Í ÓOÜ Ñ�Ì Ó Ç Í ÓOÜ ÍÏÎ ÓOÝ Ñ (C.4)

¿aÂ:ÀÛÄ Î Ó Ç ÓtÝÌ Ó Ç Í ÓOÜ Ñ�Ì Ó Ç Í ÓOÜ ÍÏÎ ÓOÝ Ñ , (C.5)

where in the impedances are all as given in [104]. The power reflection and transmission

coefficients are Þ�¿ÁÀ�À�Þ Â and Þß¿aÂ:À�Þ Â , respectively.

As a convenience to the interested reader, the expressions for Ó Ê , Ó Ð , ÓtÝ , and ÓtÜ are

reproduced here taken directly from Blanco, et al. [104].ÆyÊÆ Ç Ä Ó ÇÓ Ê Ä à�á Ê�Ìãâåä�æçämèyÑ (C.6)ÆËÐÆ Ç Ä Ó ÇÓ Ð Ä à�á Ð(Ìéâåä�æçämèyÑ (C.7)

á Ê�Ìãâåä�æçämèyÑ Ä âÎ�è©êaë æâíì Âuîï Â (C.8)

á ÐmÌãâåä�æçämèyÑ Ä Î�èâñð âë ædò
Â ï À È âó èÏêdë æâTì Â îï Â (C.9)ï ÀtÄ î Í îÎ ê ë æè ì Â ð�ô{õ â

ë æ Í÷öó ò Í îÎ ð ë æ ò Â©øùúüû À ð îý ú È îþ ò (C.10)

ï ÂÿÄ î Í îÎ ê ë æè�ì Â ð î�îó È ô{õ â
ë æåò Í îÎ ó ê ë æâíì Â È

êaë æâíì Â øùúüû À
� þ È îÎ þ ð â è ò Â È ý ú�� (C.11)
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(C.12)������ � �! �#" �%$'&�$ �)( (C.13)�+*��� � 
,�- *." �/$'&�$ �0( (C.14) �#" �%$'&�$ �)( � � � �2143 �5 &76 89�;: � �=<��� 
 <	 � � (C.15) *>" �%$'&�$ �)( � � �@? 5 &�BA � , (C.16)

where � is the grating period, & is the diameter of the grating wires,
�

is the wavelength of

the incident radiation,
�C�ED 
 < and

���
is the impedance of free space ( F GIHKJ ). Empirically,LKM

is a good approximation for N in the summations.
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Appendix D

Hardware Drawings

This appendix contains dimensioned drawings of all the custom hardware for distributed

photomixer testing.
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M2 screw

threaded
4-40

Figure D-1: Adapter between goniometer and beamsplitter. Dimensions are in inches.
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Figure D-2: Dimensioned adapter for TO3 laser package. Dimensions are in inches.
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Figure D-3: Dimensioned adapter for TO3 laser package. Dimensions are in inches.
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Figure D-4: Dimensioned Silicon hyperhemispherical lens. Dimensions are in millimeters.
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Figure D-6: Dimensioned base of mount for hyperhemispherical lens. Dimensions are in
inches.
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Figure D-7: Dimensioned holder for hyperhemispherical lens. Dimensions are in inches.
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Figure D-8: Views of bracket for beamsplitter positioning hardware.
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Figure D-10: Dimensioned bracket for beamsplitter positioning hardware (short side). Di-
mensions are in inches.
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Figure D-11: Views of beam combiner assembly.
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