A new structure on Khovanov’s homology

by

Eun Soo Lee

Bachelor of Science in Mathematics
Seoul National University, February 1998

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2003

© Eun Soo Lee, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author ...

Department of Mathematics
November 25, 2002

Certified by ...

Tomasz S. Mrowka
Professor of Mathematics
Thesis Supervisor

Accepted by ...

Pavel Etingof
Chairman, Department Committee on Graduate Students
A new structure on Khovanov’s homology

by

Eun Soo Lee

Submitted to the Department of Mathematics
on November 25, 2002, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

The purpose of this thesis is proving conjectures in [1] on the Khovanov invariant.

Khovanov invariant [6] is an invariant of (relatively) oriented links which is a cohomology theory over the cube of the resolutions of a link diagram. Khovanov invariant specializes to the Jones polynomial by taking graded Euler characteristic.

Bar-Natan [1][2] computed this invariant for the prime knots of up to 11 crossings. From the data, Bar-Natan, Garoufalidis, and Khovanov formulated two conjectures on the value of the Khovanov invariant of an alternating knot [1][4].

We prove those conjectures by constructing a new map on Khovanov’s chain complex which, with the original coboundary map, gives rise to a double complex structure on the chain complex.

Thesis Supervisor: Tomasz S. Mrowka
Title: Professor of Mathematics
Acknowledgments

I thank my advisor Tomasz Mrowka for encouragements and advices that he gave to me. Without his ’are you sure?’s, my thesis would not have been what it is now.

I thank my parents for always praying for me. I wish them the blessing of God.

My husband Donald was the biggest source of emotional support and practical help throughout my graduate school years. I thank a lot my ibbun aga.
Contents

1 Introduction .. 9
 1.1 Main theorems ... 9
 1.2 Direction for future work 11
 1.3 Organization ... 11

2 Khovanov Invariant .. 13
 2.1 Construction ... 13
 2.1.1 A Cube ... 13
 2.1.2 Modules over a cube 14
 2.1.3 A chain complex 14
 2.1.4 Categorification 15
 2.1.5 A grading on the chain groups 16
 2.1.6 An example ... 17
 2.2 Invariance ... 19
 2.2.1 Change of ordering 19
 2.2.2 Reidemeister moves 20
 2.3 Properties ... 23

3 Proof of Theorem 1.2 .. 25
 3.1 Exact sequences ... 25
 3.2 Properties of black and white coloring of alternating link diagrams 26
 3.3 Signature of an alternating link 31
 3.4 Proof of theorem 1.2 32
4 Proof of Theorem 1.3

4.1 The map \(\Phi \) ... 35
4.2 Invariance of \(\Phi \) ... 36
 4.2.1 Anticommutativity with \(d \) ... 36
 4.2.2 Invariance under the Reidemeister moves 37
 4.2.3 An example ... 39
4.3 \(\Phi + d \) and change of variables .. 39
 4.3.1 Change of variables .. 39
 4.3.2 Invariance of \(H(D) \) under the Reidemeister moves 40
4.4 Cohomology theory of \(\Phi + d \) ... 42
 4.4.1 Resolutions of oriented links in orientation preserving way 42
 4.4.2 Hodge theory .. 43
 4.4.3 Computation of \(H \) ... 43
4.5 Proof of theorem 1.3 .. 45
4.6 Extension of theorem 1.3 for alternating links 46
Chapter 1

Introduction

1.1 Main theorems

Khovanov invariant is a cohomology theory for (relatively) oriented links with its values in graded abelian groups, and specializes to the Jones polynomial by taking graded Euler characteristic of those cohomology groups (theorem 1.1). Khovanov [6] constructed the invariant in a search of connections between combinatorial invariants and differential geometric invariants of 3 and 4 dimensional manifolds. He interpreted his coboundary map as the image of a functor from the category of two dimensional cobordisms between one dimensional manifolds to the category of $\mathbb{Z}[c]$-modules.

The Khovanov invariant specialized by setting $c = 0$ and tensoring with \mathbb{Q} (will be just called the Khovanov invariant from now on) has been computed by Bar-Natan [1][2] for the prime knots with up to 11 crossings. From Bar-Natan’s data, two conjectures [1][4] on the values of Khovanov invariant for alternating knots were formulated by Bar-Natan, Garoufalidis, and Khovanov. The conjectures (theorems 1.2 and 1.3) are in some sense disappointing since they imply that the Khovanov invariant of an alternating knot determines and is determined by its Jones polynomial and signature.

The following is the theorem in [6] which states that Khovanov invariant specializes to Jones polynomial.

Theorem 1.1 ([6]). For an oriented link L, the graded Euler characteristic

$$
\sum_{i,j \in \mathbb{Z}} (-1)^i q^j \dim \mathcal{H}^{i,j}(L)
$$
of the Khovanov invariant \(\mathcal{H}(L) \) of \(L \) is equal to \((q^{-1} + q) \) times the Jones polynomial \(V(L) \) of \(L \).

\[
\sum_{i,j \in \mathbb{Z}} (-1)^i q^j \dim \mathcal{H}^{i,j}(L) = (q^{-1} + q)V(L)_{\sqrt{t}=-q}
\]

In terms of the associated polynomial \(Kh(L) \),

\[
Kh(L)(-1,q) = (q^{-1} + q)V(L)_{\sqrt{t}=-q}.
\]

The Khovanov invariant of a (relatively) oriented link \(L \) in rational coefficients is denoted by \(\mathcal{H}(L) \) following [6], and is defined in chapter 2. Its associated polynomial is denoted by \(Kh(L) \) as it is in [1].

\[
Kh(L)(t,q) \overset{\text{def}}{=} \sum t^i q^j \dim \mathcal{H}^{i,j}(L)
\]

The following two theorems are the conjectures in [1] proved in this thesis.

Theorem 1.2 (Conjecture 2 in [1] and [4]). For any alternating knot \(L \), the Khovanov invariants \(\mathcal{H}^{i,j}(L) \) of \(L \) are supported in two lines

\[
j = 2i - \sigma(L) \pm 1.
\]

In other words, the equality

\[
Kh(L)(t,q) = q^{-\sigma(L)}(q^{-1} \cdot A(tq^2) + q \cdot B(tq^2))
\]

holds for some polynomials \(A \) and \(B \), where \(\sigma(L) \) is the signature of \(L \).

Theorem 1.2, in fact, holds for any (relatively) oriented nonsplit alternating link \(L \). (See theorem 3.12.)

Theorem 1.3 (Conjecture 1 in [1] and [4]). For an alternating knot \(L \), its Khovanov invariants \(\mathcal{H}^{i,j}(L) \) of degree difference \((1,4) \) are paired except in the 0th cohomology group.

More precisely, in terms of the polynomial \(Kh(L) \), the equality

\[
Kh(L)(t,q) = q^{-s}(q^{-1} + q) + (q^{-1} + tq^2 \cdot q) \cdot C(t,q)
\]

holds for some integer \(s \) and some polynomial \(C \).

Theorem 1.3 was extended to (relatively) oriented nonsplit alternating links in theorem 4.6.
Combining theorems 1.2 and 1.3, we can write $K h(L)$ as

$$K h(L)(t,q) = q^{-\sigma(L)} \{ (q^{-1} + q) + (q^{-1} + tq^2 \cdot q) \cdot K h'(L)(tq^2) \}$$

for some polynomial $K h'(L)$.

As it is discussed in [1] and [4], theorems 1.2 and 1.3 with theorem 1.1 imply that the Khovanov invariant, or equivalently the associated polynomial $K h(L)$, of an alternating knot L is completely determined by the Jones polynomial and the signature of L.

Fortunately, that is not the case for nonalternating knots. A counterexample can be found in [2]: 10_{136} and 11_{92} both have signature -2 and the same Jones polynomial, but their Khovanov invariants do not agree.

1.2 Direction for future work

Khovanov invariant is new and has not been explored much. It is unknown how much more information Khovanov invariant with coefficients in $\mathbb{Z}[\xi]$, especially the torsion part, has.

Like the map Φ defined in chapter 4, one can try to define new multiplications and comultiplications on the $\mathbb{Z}[\xi]$-module A and see if they give rise to any interesting cohomology theories. There are not many axioms a multiplication and a comultiplication should satisfy, so it is likely that A can be endowed with other operations.

As Khovanov’s motivation was, we can also hope for more topological interpretations of the Khovanov invariant.

1.3 Organization

We follow [8] and [3] for basic notions in knot theory and graph theory, and [6] for notations and terminologies related to the Khovanov invariant. We only need a relative orientation to define the Khovanov invariant, so an orientation and oriented should be read as a relative orientation and relatively oriented.

Organization of the coming chapters is as follows. Chapter 2 consists of a brief summery of Khovanov’s construction of invariant. Chapter 3 is devoted to our proof of theorem 1.2. In chapter 4, a new automorphism of Khovanov invariant is defined and used to prove 1.3.
Chapter 2

Khovanov Invariant

In this chapter, the construction and some properties of Khovanov invariant in [6] are summarized. Khovanov’s original construction is more general, but we will concentrate on a specialized case with coefficients in \mathbb{Q}. The interested reader should read [6].

2.1 Construction

2.1.1 A Cube

Let L be an oriented link and D be its diagram, a regular projection of L together with the information of relative height at each double point. A double point of D can be resolved in two ways.

\[\begin{array}{ccc}
\text{ } & \text{0-resolution} & \text{1-resolution} \\
\text{ } & \text{C} & \rightarrow \text{X} & \text{C}
\end{array} \]

Let I be the set of double points of D. Each subset J of I corresponds to a complete resolution $D(J)$ of D in which points in J are resolved to their 1-resolutions, points not in J are to their 0-resolutions. Regard those subsets of I as vertices. For each pair of vertices J and J' satisfying $J \subset J'$ and $|J' - J| = 1$, there is a directed edge from J to J'. A directed cube is constructed.
2.1.2 Modules over a cube

Let $\mathbf{A} = \mathbb{Q} \mathbf{1} \oplus \mathbb{Q} \mathbf{x}$ be a two dimensional module over \mathbb{Q} with a multiplication m, a comultiplication Δ, a unit ι, and a counit ϵ defined as

$$m(1 \otimes 1) = 1$$

$$m(1 \otimes x) = m(x \otimes 1) = x$$

$$m(x \otimes x) = 0$$

$$\Delta(1) = 1 \otimes x + x \otimes 1$$

$$\Delta(x) = x \otimes x$$

$$\iota(1) = 1$$

$$\epsilon(1) = 0$$

$$\epsilon(x) = 1.$$

For each vertex \mathcal{J} of a cube, assign a tensor product of as many copies of \mathbf{A} as the number of components of $D(\mathcal{J})$, and denote it by $\mathbf{M}_\mathcal{J}(D)$. There is a one-to-one correspondence between those copies of \mathbf{A} and the components of $D(\mathcal{J})$.

2.1.3 A chain complex

A chain complex can be constructed from the modules over a cube. Its i-th chain group is a direct sum of all the modules over vertices of i elements.

$$\overline{C}^i(D) = \bigoplus_{|\mathcal{J}|=i} M_{\mathcal{J}}(D)$$

To define the coboundary map d, choose an ordering of \mathcal{I} - the set of crossings of D, and regard $\mathcal{J} \subset \mathcal{I}$ as an ordered $|\mathcal{J}|$-tuple of its elements in the chosen order instead of just a subset of \mathcal{I}. d is defined along directed edges of the cube in the way that $m : \mathbf{A} \otimes \mathbf{A} \to \mathbf{A}$ is applied to corresponding modules if two components merge into one, and $\Delta : \mathbf{A} \to \mathbf{A} \otimes \mathbf{A}$ is if one component splits to two. If the ordered $(|\mathcal{J}| + 1)$-tuple \mathcal{J} followed by the element in $\mathcal{J}' - \mathcal{J}$ is an odd permutation of the ordered $(|\mathcal{J}| + 1)$-tuple \mathcal{J}', $-m$ or $-\Delta$, instead of m or Δ, is used for $M_{\mathcal{J}}(D) \to M_{\mathcal{J}'}(D)$ component of d. d satisfies $d^2 = 0$.

14
2.1.4 Categorification

Khovanov interpreted his algebra A and operations $m, \Delta, \iota,$ and ϵ as the image of a functor from the category of two dimensional cobordisms between one dimensional manifolds to the category of $\mathbb{Z}[c]$-modules. We are concentrating on a special case $c = 0$ and \mathbb{Z} tensored with \mathbb{Q}, so let us say the category of \mathbb{Q}-modules.

The functor F maps one dimensional manifold consisting of n disjoint simple closed curves to $A^\otimes n$, and cobordisms in the following figure to

$$F(S_2^1) = m, F(S_1^2) = \Delta, F(S_0^1) = \iota, F(S_1^0) = \epsilon, F(S_2^2) = \text{(permutation)}, F(S_1^1) = \text{id}.$$

![Diagram](attachment:image.png)

The unit, counit, (co)associativity, (co)commutativity with the identity

$$\Delta \circ m = (m \otimes \text{id}) \circ (\text{id} \otimes \Delta)$$

ensures well:

![Diagram](attachment:image.png)

$$\Delta \circ m = (m \otimes \text{id}) \circ (\text{id} \otimes \Delta)$$

15
From the viewpoint of the previous sections, well-definedness of F implies $d^2 = 0$. The following figure tabulates all the possible relative locations of two crossings and the associated surfaces obtained by continuous change of resolutions of the two crossings one after the other.

For d^2 to be equal to 0, those in the first two columns from the left only require m and Δ to be (co)commutative, the top right one requires m to be associative, the middle right one requires Δ to be coassociative, and the bottom right one requires the identity $\Delta \circ m = (m \otimes id) \circ (id \otimes \Delta)$. The unit and counit can be dropped if we are concerned only about $d^2 = 0$.

2.1.5 A grading on the chain groups

A is a graded module, x is of degree -1, 1 is of degree 1. $M_J(D)$ has a grading induced from that of A. Note that m and Δ are maps of degree -1 with respect to these gradings.

The chain group $\mathcal{C}^i(D)$ above has a grading shifted from those of $M_J(D)$:

$$\mathcal{C}^i(D) = \bigoplus_{|J|=i} M_J(D)^{-i}.$$

$M\{k\}$ means a module identical to M with a shifted grading. An element of degree j in M is of degree $j - k$ in $M\{k\}$.

16
Define $\overline{C}^{i,j}(D)$ as the degree j component of $\overline{C}^i(D)$. Due to the shifts, d is now degree preserving, so that $\overline{\mathcal{H}}(D)$ is also decomposed as $\bigoplus_j \overline{\mathcal{H}}^{i,j}(D)$.

A chain complex $\mathcal{C}(D)$ is defined from $\overline{C}(D)$ with the orientation of D taken into account.

For each crossing of D, a sign is given as below (Note that this is opposite to the sign convention in [6].)

\[
\begin{array}{c|c}
+ & - \\
\hline
\end{array}
\]

Let $x(D)$ and $y(D)$ be the number of negative crossings and positive crossings of D, respectively. $\mathcal{C}(D)$ is defined as

\[\mathcal{C}(D) = \overline{C}(D)[x(D)]\{2x(D) - y(D)\}\]

with the same coboundary map d. Square brackets indicate a shift of the indices of chain groups, i.e.,

\[C^{i,j}(D) = \overline{C}^{i+x(D),j+2x(D)-y(D)}(D) .\]

2.1.6 An example

Here is an illustration of what had happened in the previous sections to the following diagram D of the lefthanded trefoil.

![Diagram of trefoil diagram](image)

Numbers for components of a resolution indicate which piece of A corresponds to which component, dotted edges indicate the places where $-m$ or $-\Delta$ should be used.
\[\mathcal{C}^0(D) = \mathbf{M}_0(D) = A \otimes A \otimes A \]
\[\mathcal{C}^1(D) = \mathbf{M}_{\{a\}}(D) \oplus \mathbf{M}_{\{b\}}(D) \oplus \mathbf{M}_{\{c\}}(D) = (A \otimes A) \oplus (A \otimes A) \oplus (A \otimes A) \]
\[\mathcal{C}^2(D) = \mathbf{M}_{\{a,b\}}(D) \oplus \mathbf{M}_{\{a,c\}}(D) \oplus \mathbf{M}_{\{b,c\}}(D) = A \oplus A \oplus A \]
\[\mathcal{C}^3(D) = \mathbf{M}_{\{a,b,c\}}(D) = A \oplus A \]

\[\begin{array}{c}
x \otimes x \otimes x \in \mathcal{C}^{0,-3}(D) \\
\xrightarrow{d} \\
0 \in \mathcal{C}^{1,-3}(D)
\end{array} \]
\[\begin{array}{c}
1 \otimes x \otimes 1 \in \mathcal{C}^{0,1}(D) \\
\xrightarrow{d} \\
x \otimes 1 \in \mathcal{C}^{1,1}(D)
\end{array} \]
\[\begin{array}{c}
\begin{bmatrix}
1 \otimes x \\
x \otimes 1 \\
0
\end{bmatrix} \in \mathcal{C}^{1,1}(D) \\
\xrightarrow{d} \\
\begin{bmatrix}
x \\
x
\end{bmatrix} \in \mathcal{C}^{2,1}(D)
\end{array} \]
\[\begin{array}{c}
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \in \mathcal{C}^{2,3}(D) \\
\xrightarrow{d} \\
-1 \otimes x - x \otimes 1 \in \mathcal{C}^{3,3}(D)
\end{array} \]
\(\mathcal{H}^{0,-3}(D) = \frac{\text{span}\{x \otimes x \otimes x\}}{\{0\}} \)

\(\mathcal{H}^{1,1}(D) = \frac{\text{span}\{\begin{bmatrix} 1 \otimes x \\ 1 \otimes x \\ x \otimes 1 \\ x \otimes 1 \end{bmatrix}, \begin{bmatrix} x \otimes 1 \\ 1 \otimes x \\ x \otimes 1 \\ x \otimes 1 \end{bmatrix}\}}{\text{span}\{\begin{bmatrix} 1 \otimes x \\ x \otimes 1 \\ x \otimes 1 \\ 1 \otimes x \end{bmatrix}\}} \)

\(\mathcal{H}^{3,3}(D) = \frac{\text{span}\{1 \otimes x, x \otimes 1\}}{\text{span}\{1 \otimes x + x \otimes 1\}} \)

\(\mathcal{H}^{3,5}(D) = \frac{\text{span}\{1 \otimes 1\}}{\{0\}} \)

\(\mathcal{H}^{i,j}(D) = \begin{cases} \mathbb{Q} & \text{for } (i,j) = (0,-3), (1,1), (3,3), \text{ or } (3,5) \\ 0 & \text{otherwise} \end{cases} \)

\(x(D) = 3 \) and \(y(D) = 0 \) for this diagram \(D \). (A knot or a knot diagram has only one relative orientation.) Hence,

\(\mathcal{H}^{i,j}(D) = \begin{cases} \mathbb{Q} & \text{for } (i,j) = (-3,-9), (-2,-5), (0,-3), \text{ or } (0,-1) \\ 0 & \text{otherwise} \end{cases} \)

2.2 Invariance

To define \(\mathcal{H}(I) \) as \(\mathcal{H}(D) \), we need to see invariance of \(\mathcal{H}(D) \) under a change of ordering of \(I \) and under the Reidemeister moves. We will just state isomorphisms. Detailed proofs can be found in chapter 5 of [6].

2.2.1 Change of ordering

If the \(|J|-\text{tuple } J \) with respect to one ordering of \(I \) is an even permutation of \(J \) with respect to the other ordering, \(M_J \) component of our isomorphism between them is the identity. Otherwise, it is minus identity.
2.2.2 Reidemeister moves

\[
\begin{array}{cccc}
\text{Type I} & \text{Type II} & \text{Type III} \\
\end{array}
\]

2.2.2.1 Type I

Let \(a\) be the crossing appear only in \(D'\). The set \(\mathcal{I}'\) of crossings of \(D'\) is \(\mathcal{I}\), the set of crossings of \(D\), followed by \(a\) as an ordered \(|\mathcal{I}'|\)-tuple. \(D'(\ast 0)\) and \(D'(\ast 1)\) denote \(D'\) with only its last crossing (that is \(a\)) resolved to its 0- and 1-resolutions, respectively.

As a group, \(\overline{\mathcal{C}}(D')\) is a direct sum of \(\overline{\mathcal{C}}(D'(\ast 0))\) and \(\overline{\mathcal{C}}(D'(\ast 1))\)\([-1]{-1}\). Denote the part of coboundary map \(d'\) on \(\overline{\mathcal{C}}(D')\) that maps from \(\overline{\mathcal{C}}(D'(\ast 0))\) to \(\overline{\mathcal{C}}(D'(\ast 1))\)\([-1]{-1}\) by \(d'_{0\rightarrow 1}\), and coboundary maps of \(\overline{\mathcal{C}}(D(\ast 0))\) and \(\overline{\mathcal{C}}(D(\ast 1))\) by \(d_0\) and \(d_1\), so that

\[
d'(y + z) = d_0(y) + d'_{0\rightarrow 1}(y) - d_1(z)
\]

for \(y \in \overline{\mathcal{C}}(D'(\ast 0))\) and \(z \in \overline{\mathcal{C}}(D'(\ast 1))\)\([-1]{-1}\). Similar notation should be comprehended similarly from now on.

Define

\[
X_1 = \text{Ker } d'_{0\rightarrow 1}
\]

and

\[
X_2 = \{y \otimes 1 + z | y \in \overline{\mathcal{C}}(D), z \in \overline{\mathcal{C}}(D'(\ast 1))\}.
\]

\(\overline{\mathcal{C}}(D'(\ast 0))\) was identified with \(\overline{\mathcal{C}}(D) \otimes \mathcal{A}\).

\(X_1\) and \(X_2\) are subcomplexes of \(\overline{\mathcal{C}}(D')\), \(\overline{\mathcal{C}}(D')\) is decomposed as \(X_1 \oplus X_2\) as a chain complex, \(X_2\) is acyclic, and

\[
\rho : \quad X_1 \quad \longrightarrow \overline{\mathcal{C}}(D)\{1\}
\]

\[
y \otimes 1 + z \otimes x \quad \longmapsto \quad z
\]

induces an isomorphism between \(\mathcal{H}(D')\) and \(\mathcal{H}(D)\).
As before, the set \mathcal{I}' of crossings of D' is \mathcal{I}, the set of crossings of D, followed by a, then b as an ordered $|\mathcal{I}'|$-tuple.

This time,

\[
X_1 = \{ z + \alpha(z) | z \in \overline{\mathcal{C}}(D'(\ast 01))[-1][-1] \}
\]
\[
X_2 = \{ z + d'y | y \in \overline{\mathcal{C}}(D'(\ast 00)) \}
\]
\[
X_3 = \{ z + y \otimes 1 | z, y \in \overline{\mathcal{C}}(D'(\ast 11))[-2][-2] \}
\]

where $\alpha(z) = -d'_{01\to 11}(z) \otimes 1 \in \overline{\mathcal{C}}(D'(\ast 10))[-1][-1] \approx \overline{\mathcal{C}}(D'(\ast 11))[-1][-1] \otimes A$.

Then, $\overline{\mathcal{C}}(D')$ is a direct sum of its subcomplexes X_1, X_2, and X_3, X_2 and X_3 are acyclic, and

\[
\rho : \overline{\mathcal{C}}(D)[-1][-1] \approx \overline{\mathcal{C}}(D'(\ast 01))[-1][-1] \longrightarrow X_1 \cap \overline{\mathcal{C}}(D')
\]

 induces an isomorphism between $\mathcal{H}(D)$ and $\mathcal{H}(D')$.
2.:

Again, \(a, b, c \) and \(a', b', c' \) are the last three elements in \(I \) and \(I' \), and the others are in
the same order.

Define \(\alpha, \beta, \alpha', \beta' \) as

\[
\begin{align*}
\alpha : & \quad \mathcal{C}(D(*110))[-2][-2] \rightarrow \mathcal{C}(D(*010))[-1][-1] \approx \mathcal{C}(D(*110))[-1][-1] \otimes A \\
& \quad z \quad \mapsto z \otimes 1 \\
\beta : & \quad \mathcal{C}(D(*100))[-1][-1] \rightarrow \mathcal{C}(D(*010))[-1][-1] \\
& \quad z \quad \mapsto \alpha d_{100 \rightarrow 110}(z) \\
\alpha' : & \quad \mathcal{C}(D'(*110))[-2][-2] \rightarrow \mathcal{C}(D'(*100))[-1][-1] \approx \mathcal{C}(D'(*110))[-1][-1] \otimes A \\
& \quad z \quad \mapsto z \otimes 1 \\
\beta' : & \quad \mathcal{C}(D'(*010))[-1][-1] \rightarrow \mathcal{C}(D'(*100))[-1][-1] \\
& \quad z \quad \mapsto -\alpha' d_{010 \rightarrow 110}(z) .
\end{align*}
\]
$\mathcal{C}(D)$ and $\mathcal{C}(D')$ can be decomposed into their subcomplexes as below.

$$
\mathcal{C}(D) = X_1 \oplus X_2 \oplus X_3 \\
X_1 = \{ x + \beta(x) + y | x \in \mathcal{C}(D(*100))[-1][-1], y \in \mathcal{C}(D(*1))[-1][-1] \} \\
X_2 = \{ x + dy | x, y \in \mathcal{C}(D(*000)) \} \\
X_3 = \{ \alpha(x) + d\alpha(y) | x, y \in \mathcal{C}(D(*110))[-2][-2] \}
$$

$$
\mathcal{C}(D') = Y_1 \oplus Y_2 \oplus Y_3 \\
Y_1 = \{ x + \beta'(x) + y | x \in \mathcal{C}(D'(*010))[-1][-1], y \in \mathcal{C}(D'(*1))[-1][-1] \} \\
Y_2 = \{ x + d' y | x, y \in \mathcal{C}(D'(*000)) \} \\
Y_3 = \{ \alpha'(x) + d' \alpha'(y) | x, y \in \mathcal{C}(D'(*110))[-2][-2] \}
$$

As before, X_2, X_3, Y_2, Y_3 are acyclic, $\mathcal{C}(D(*100))[-1][-1]$ and $\mathcal{C}(D'(*010))[-1][-1]$, $\mathcal{C}(D(*1))[-1][-1]$ and $\mathcal{C}(D'(*1))[-1][-1]$ are naturally isomorphic, and X_1 is isomorphic to Y_1 via

$$
\rho : x + \beta(x) + y \mapsto x + \beta'(x) + y .
$$

2.3 Properties

The following results are proved in [6] and will be used in the coming chapters.

Proposition 2.1. For an oriented n component link diagram D,

$$
\mathcal{C}^{i,j}(D) = 0 ,
$$

unless $j \equiv n(\mod 2)$.

Corollary 2.2. For an oriented n component link L,

$$
\mathcal{H}^{i,j}(L) = 0 ,
$$

unless $j \equiv n(\mod 2)$.

Proposition 2.3. For a disjoint union $D \sqcup D'$ of two oriented link diagrams D and D',

$$
\mathcal{C}(D \sqcup D') = \mathcal{C}(D) \otimes \mathcal{C}(D') .
$$

Corollary 2.4. For a disjoint union $L \sqcup L'$ of two oriented links L and L',

$$
\mathcal{H}(L \sqcup L') = \mathcal{H}(L) \otimes \mathcal{H}(L') .
$$
Proposition 2.5. Bialgebra \((A, m, \Delta, \iota, e)\) is isomorphic to its dual bialgebra \((A^*, \Delta^*, m^*, e^*, \iota^*)\).

Proposition 2.6. Let \(D^l\) be a mirror image of an oriented link diagram \(D\). The complex \(\mathcal{C}(D^l)\) is isomorphic to the dual of \(\mathcal{C}(D)\).

Corollary 2.7. For an oriented link \(L\) and its mirror image \(L^l\),

\[\mathcal{H}^{i,j}(L^l) = \mathcal{H}^{-i,-j}(L) \ . \]

Theorem 2.8 (Theorem 1.1). For an oriented link \(L\), the graded Euler characteristic

\[\sum_{i, j \in \mathbb{Z}} (-1)^i q^j \dim \mathcal{H}^{i,j}(L) \]

of the Khovanov invariant \(\mathcal{H}(L)\) of \(L\) is equal to \((q^{-1} + q)\) times the Jones polynomial \(V(L)\) of \(L\).

\[\sum_{i, j \in \mathbb{Z}} (-1)^i q^j \dim \mathcal{H}^{i,j}(L) = (q^{-1} + q)V(L)_{\sqrt{q} = -q} \]

In terms of the associated polynomial \(Kh(L)\),

\[Kh(L)(-1, q) = (q^{-1} + q)V(L)_{\sqrt{q} = -q} . \]
Chapter 3

Proof of Theorem 1.2

In this chapter, we prove theorem 1.2. The proof is based on induction on the number of crossings. We will show that the support of the Khovanov invariant of a nonsplit oriented alternating link is included in the union of the supports for two such links with fewer crossings, then that the two lines of the two supports agree.

3.1 Exact sequences

Theorem 3.1. The chain complexes \(\overline{C}(D), \overline{C}(D(\ast 0)), \) and \(\overline{C}(D(\ast 1))[-1][-1] \) form a short exact sequence

\[
0 \rightarrow \overline{C}(D(\ast 1))[-1][-1] \rightarrow \overline{C}(D) \rightarrow \overline{C}(D(\ast 0)) \rightarrow 0
\]

with degree preserving maps, so that \(\overline{H}(D) \) is an extension of the kernel and cokernel of the connecting map \(\delta \) as a bigraded \(\mathbb{Q} \)-module.

\[
\cdots \rightarrow \overline{H}^{-1}(D(\ast 0)) \xrightarrow{\delta} \overline{H}^{-1}(D(\ast 1))[-1] \rightarrow \overline{H}^0(D) \rightarrow \overline{H}^0(D(\ast 0)) \xrightarrow{\delta} \overline{H}^0(D(\ast 1))[-1] \rightarrow \cdots
\]

In particular, the support of \(\overline{H}(D) \) is included in the union of the support of \(\overline{H}(D(\ast 0)) \) and \(\overline{H}(D(\ast 1))[-1][-1] \).

Proof. We’ve already seen that \(\overline{C}(D) \) is decomposed as \(\overline{C}(D(\ast 0)) \oplus \overline{C}(D(\ast 1))[-1][-1] \), and the coboundary map \(d \) can be written as

\[
d(y + z) = d_0 y + d_{0 \rightarrow 1} y - d_1 z .
\]

Now, it is easy to see that

\[
0 \rightarrow \overline{C}(D(\ast 1))[-1][-1] \rightarrow \overline{C}(D) \rightarrow \overline{C}(D(\ast 0)) \rightarrow 0
\]
is a short exact sequence of chain complexes (after a little adjustment of sign), and that
\(\delta : H^*(D(*0)) \to H^{*+1}(D(*1))[{-1}][{-1}] \) is induced by \(d_{0\rightarrow1} \).

\[\square \]

3.2 Properties of black and white coloring of alternating link diagrams

Let \(D \) be a link diagram. For brevity of the statements to follow, let us think of diagrams
on \(S^2 \) rather than on \(\mathbb{R}^2 \). The regions of \(S^2 \) divided by \(D \) can be colored black and white
in checkerboard fashion.

At each crossing, a coloring of nearby regions falls into one of the two following patterns.

\[\begin{array}{c}
\text{A} \\
\text{B}
\end{array} \]

As it is shown above, adjacent alternating crossings have the same coloring pattern of
nearby regions. Hence, in a coloring of a nonsplit alternating diagram \(D \), only one of the
pattern A or B appears for every crossing. Reversion of a coloring changes that pattern.

Resolutions of a colored diagram have induced colorings.

\[\begin{array}{c}
\text{A} \\
\text{B}
\end{array} \]

Definition 3.2. For a nonsplit alternating diagram \(D \), the coloring of \(D \) is the coloring of
\(D \) in which only pattern A appears. The coloring of a resolution of \(D \) is the coloring of
that resolved diagram induced from the coloring of \(D \).

For the coloring of \(D(\emptyset) \) (0-resolutions of pattern A), the trace of each crossing lies in a
white region. Now, our claim is:

Proposition 3.3. For a reduced nonsplit alternating diagram \(D \), the components of \(D(\emptyset) \)
bound nonoverlapping black disks in the coloring of it. Each black disk corresponds to each of
the black regions in the coloring of D. Furthermore, every pair of black disks are connected by a chain of black disks, which are connected by the trace of the crossings of D. Also, no trace of crossing connects a black disk to itself.

Here is visualization of our claim for diagrams of the lefthanded trefoil and the figure 8 knot. (The unbounded black region shown below is a disk in S^2.)

![Diagram](image)

Proof. At each crossing, its 0-resolution separates incident black regions. That gives a correspondence between the black regions in the coloring of D and those in the coloring of $D(\emptyset)$. (While most white regions of D merge in the process.)

In the coloring of $D(\emptyset)$, there is no trace of crossing in black regions. That implies:

- if there is a black region which is not a disk, then D is split.
- if there is a pair of black disks which cannot be connected by any chain, then D is split.
- if there is a trace of crossing connecting a black disk to itself, that crossing is removable, so D is not reduced.

![Diagram](image)

\[\square\]

Definition 3.4. For a link diagram D, let $c(D)$ be the number of crossings of D, and $o(D)$ be the number of components of $D(\emptyset)$.

For D in proposition 3.3, $o(D)$ agrees with the number of black disks in the coloring of $D(\emptyset)$.

Let I be an ordered set of crossings of D. Note that $D(I)$ agrees with $D^I(\emptyset)$, and that $o(D) + o(D^I)$ equals the total number of black and white regions in the coloring of D, which is $c(D) + 2$.

27
We need one further step for the inductive argument to be used in our proof of theorem 1.2.

Proposition 3.5. Let \(D \) be a reduced nonsplit alternating link diagram with \(c(D) > 0 \). Then one of the following holds.

I. There is a pair of black disks in the coloring of \(D(\emptyset) \) connected by exactly one crossing.

II. There is a pair of black disks in the coloring of \(D^1(\emptyset) \) connected by exactly one crossing.

III. \(D \) is a connected sum of \(D' \) and the Hopf link, for another nonsplit alternating link diagram \(D' \) with \(c(D) = 2 \) crossings.

\[
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram1.png}
\end{array}
\]

Proof. Since \(o(D) + o(D^1) = c(D) + 2 \), one of the following holds.

i. \(o(D) > c(D)/2 + 1 \).

ii. \(o(D^1) > c(D)/2 + 1 \).

iii. \(o(D) = o(D^1) = c(D)/2 + 1 \).

\([i \Rightarrow I]\) For \(o(D) \) black disks to be connected to each other by chains of connected disks, there are at least \(o(D) - 1 \) different pairs that are connected by crossings. If \(2(o(D) - 1) > c(D) \), then at least one of those pairs is connected by exactly one crossing.

\([ii \Rightarrow II]\) Same as i \(\Rightarrow I \).

\([iii \& not I \& not II \Rightarrow III]\) To fail I, there are exactly \(o(D) - 1 \) different pairs that are connected by crossings and those pairs are connected by exactly two crossings.

Consider a graph consists of \(o(D) \) vertices and \(o(D) - 1 \) edges. Each vertex represents each black disk. For each pair of black disks connected by two crossings, there is an edge joining the corresponding pair of vertices. This graph is connected, so it is a tree.

For an edge \(\{a, b\} \), mark the \(a \)-end of it with arrow if the two crossings connecting the disk \(a \) and \(b \) is adjacent on the boundary of \(a \). For example,
A vertex of a tree is called a pendent vertex if it is incident with only one edge, and an edge is called a pendent edge if it is incident with a pendent vertex. If \(a \) is a pendent vertex, the unique edge incident with \(a \) is necessarily marked at the \(a \)-end. If \(b \) is not a pendent vertex, at least two edges have marked \(b \)-end, since the two crossings connecting disks \(b \) and \(c \) and those connecting disks \(b \) and \(d \) never alternate.

If \(o(D) = 2 \), then there is only one edge, that is a pendent edge, and both ends of that edge is marked. For \(o(D) > 2 \), let \(p \) be the number of the pendent vertices. The number of the pendent edges is also \(p \). There are at least \(p + 2(o(D) - p) \) marked ends, but the number of nonpendent edges is \(o(D) - 1 - p \), so there is at least one pendent edge with both ends marked. That implies III (up to relocation of \(\infty \)).

\[
\begin{array}{c}
\text{colored } D(\emptyset) \\
\downarrow
\end{array} \quad \begin{array}{c}
\text{colored } D
\end{array}
\]

\[\square\]

Lemma 3.6. For a reduced nonsplit alternating diagram \(D \), \(\overline{H}^{i,j}(D) \) is supported in the box \(0 \leq i \leq c(D) \) and \(-o(D) \leq j \leq 2c(D) - o(D) + 2 \), with \(\overline{H}^0,-o(D)(D) = \overline{H}^{c(D),2c(D) - o(D) + 2}(D) = \mathbb{Q} \).

Proof. First of all, it is clear from the construction of \(\overline{C}(D) \) that \(\overline{C}^{i,j}(D) = 0 \) unless \(0 \leq i \leq c(D) \).

When a resolution of \(D \) is changed to another resolution of \(D \) by replacing one 0-resolution by 1-resolution, the number of components either increases or decreases by one.
That insure $C_i^j(D)$ to be supported in $-o(D) \leq j \leq 2c(D) - o(D) + 2$.

Proposition 3.3 implies that $D(\emptyset)$ has one more component than any $D(a)$ has, because two black disks merge into one in the process. In terms of $C_i^j(D)$, this means

$$C_i^j(D) = \begin{cases} \mathbb{Q} & \text{if } i = 0, j = -o(D) \\ 0 & \text{if } i > 0, j = -o(D) \end{cases} ,$$

so the half of the result follows.

For the other half, look at the other end. $D(I) = D^I(\emptyset)$ also has one more component than any $D(I - \{a\}) = D^I(a)$ has, so that

$$C_i^j(D) = \begin{cases} \mathbb{Q} & \text{if } i = c(D), j = 2c(D) - o(D) + 2 \\ 0 & \text{if } i < c(D), j = 2c(D) - o(D) + 2 \end{cases} .$$

\[\square\]

Let D be a diagram satisfying I in proposition 3.5. Let a be a crossing of D connecting a pair of black disks that no other crossing connects. Choose an ordering of I in which a comes the last. Then, $D(*0)$ still has the property that $D(*0)(\emptyset)$ has one more component than any $D(*0)(b)$ has. The use of I is that it allows $D(*1)$ to have that property, too.

Corollary 3.7. In the above setting, $\overline{H}_{i,j}^D(D(*0))$ is supported in the box $0 \leq i \leq c(D(*0))$ and $-o(D(*0)) \leq j \leq 2c(D(*0)) - o(D(*0)) + 2$, with $\overline{H}_{-o(D(*0)),o(D(*0))}^D(D(*0)) = \mathbb{Q}$, and $\overline{H}_{i,j}^D(D(*1))$ is supported in the box $0 \leq i \leq c(D(*1))$ and $-o(D(*1)) \leq j \leq 2c(D(*1)) - o(D(*1)) + 2$, with $\overline{H}_{-o(D(*1)),o(D(*1))}^D(D(*1)) = \mathbb{Q}$.

Finally, to apply induction hypothesis to $D(*0)$ and $D(*1)$ later on, they need to be nonsplit alternating.

Proposition 3.8. In the above setting, $D(*0)$ and $D(*1)$ are nonsplit alternating.

Proof. Alternating property is easy to see.

To be nonsplit, their black disks in the induced coloring have to be connected. That is clear for $D(*1)$. For $D(*0)$, if the black disks of $D(\emptyset)$ are disconnected after removing a, then a was a removable crossing in D, contradiction to D being reduced. \[\square\]
3.3 Signature of an alternating link

This section consists of the result of [5] and an application to alternating links, to relate the shift with the signature in theorem 1.2.

Definition 3.9 (Goeritz matrix : following §1 of [5]). Let D be an oriented link diagram. Color the regions of \mathbb{R}^2 (or S^2) divided by D in checkerboard fashion. Denote the white regions by X_0, X_1, \cdots, X_n. Assume that each crossing is incident to two distinct white regions. Assign an incidence number $\eta(a) = \pm 1$ to each crossing a as in the figure below. For $0 \leq i, j \leq n$ define

$$
g_{ij} = \begin{cases}
- \sum_{a \text{ incident to both } X_i \text{ and } X_j} \eta(a) & \text{for } i \neq j \\
- \sum_{0 \leq k \leq n, k \neq i} g_{ik} & \text{for } i = j .
\end{cases}
$$

The Goeritz matrix $G(D)$ of D is the $n \times n$ (not $(n+1) \times (n+1)$!) symmetric matrix $G(D) = (g_{ij})_{1 \leq i, j \leq n}$.

\[\eta(a) = +1 \quad \eta(a) = +1 \quad \text{Type I} \quad \text{Type II} \]

The signature of an oriented link can be obtained from the signature of Goeritz matrix of its diagram by adding a correction term.

Theorem 3.10 (Theorem 6 in [5]). For an oriented link L,

$$
\sigma(L) = \text{sign } G(D) - \mu(D)
$$

for its diagram D, where $\mu(D) = \sum \eta(a)$, summed over all crossings a of type II. (See the figure above.)

Proposition 3.11. For an oriented nonsplit alternating link L and a reduced alternating diagram D of L, $\sigma(L) = o(D) - y(D) - 1$.

Proof. In the reversed coloring of D, $\eta(a) = 1$ for any crossing a, components of the resolution $D(\emptyset)$ bound nonoverlapping white disks, $+$ crossings are of the type II, and $-$ crossings are of the type I. Reducedness of D insures that each crossing is incident to two distinct white regions.
Then, $G(D)$ is a positive definite matrix of rank $\sigma(D) - 1$ and $\mu(D) = y(D)$, so that $\sigma(L) = \text{sign } G(D) - \mu(D) = \sigma(D) - 1 - y(D)$.

3.4 Proof of theorem 1.2

The proof is based on induction on the number of crossings of a link diagram. First, we prove the theorem for some number $s(L)$ instead of $\sigma(L)$, and then, show $s(L) = \sigma(L)$. For convenience of proof, we will restate theorem 1.2 in more detailed and extended form as follows.

Theorem 3.12. For any oriented nonsplit alternating link L, $Kh(L)(t, q)$ is supported in two lines $\deg(q) = 2 \deg(t) - \sigma(L) \pm 1$, its nonzero coefficient of the smallest degree in t is on the line $\deg(q) = 2 \deg(t) - \sigma(L) - 1$, its nonzero coefficient of the largest degree in t is on the line $\deg(q) = 2 \deg(t) - \sigma(L) + 1$, and those coefficients are 1.

In other words,

$$Kh(L)(t, q) = \sum_{i=p}^{m} (a_i t^i q^{2i-\sigma(L)-1} + b_i t^i q^{2i-\sigma(L)+1})$$

for some $p \leq m$ with $a_p = b_m = 1$.

The lines $\deg(q) = 2 \deg(t) - s(L) - 1$ and $\deg(q) = 2 \deg(t) - s(L) + 1$ will be called the upper diagonal, and the lower diagonal, respectively, and the positions of $a_p = 1$ and $b_m = 1$ will be referred to as the top at $(p, 2p - s(L) - 1)$ and the bottom at $(m, 2m - s(L) + 1)$, thinking of the table of coefficients in which the powers of t increase from left to right, and the powers of q increase from top to bottom. These terms will be applied to Khovanov's cohomology groups as well.

Theorem 3.13. For any nonsplit alternating link diagram D, $\bar{H}_j(D)$ is supported in two lines $j = 2i - s \pm 1$ for some integer s with the top and bottom on the upper diagonal and the lower diagonal, respectively.

Proof. For the base case, the theorem holds for the unknotted diagram of unknot.

Assume that the statement is true for all such diagrams with less than c crossings. Let D be a nonsplit alternating link diagram with c crossings. If D is not reduced, then $\bar{H}(D)$ is a shift of $\bar{H}(D')$ for some such diagram D' with less than c crossings, so the statement is true for D as well.

32
Let \(D \) be reduced. By corollary 2.7, it is enough to show for either \(D \) or \(D' \). So, we may assume that \(D \) has the property I or III in proposition 3.5.

[Case I] The induction hypothesis applies to \(D(\ast 0) \) and \(D(\ast 1) \). \(\overline{H}(D(\ast 0)) \) is supported in two lines with the top at \((0, -o(D(\ast 0))) \), and \(\overline{H}(D(\ast 1)) \) is also supported in two lines with the top at \((0, -o(D(\ast 1))) \).

Since \(o(D) = o(D(\ast 0)) = o(D(\ast 1)) + 1 \), the upper diagonal and the lower diagonal of \(\overline{H}(D(\ast 0)) \) agree with those of \(\overline{H}(D(\ast 1))[-1][-1] \). By theorem 3.1 and lemma 3.6, \(\overline{H}(D) \) is supported in two lines with the top at \((0, -o(D)) \) and the bottom at \((c, 2c - o(D) + 2) \).

[Case III] Our \(D(\ast 0) \) and \(D(\ast 1) \) are as below, and the induction hypothesis applies to \(D' \).

\[
\begin{array}{cccc}
\begin{array}{c}
\includegraphics{image1.png}
\end{array} & \begin{array}{c}
\includegraphics{image2.png}
\end{array} & \begin{array}{c}
\includegraphics{image3.png}
\end{array} & \begin{array}{c}
\includegraphics{image4.png}
\end{array}
\end{array}
\]

Choose orientations for \(D' \), \(D(\ast 0) \) and \(D(\ast 1) \) accordingly. \(\overline{H}(D') \), \(\overline{H}(D(\ast 0)) \) and \(\overline{H}(D(\ast 1))[-1][-1] \) are shift of each other as follows.

\[
\begin{align*}
\overline{H}(D(\ast 0)) &= \mathcal{H}(D(\ast 0))[-x(D(\ast 0))][-2x(D(\ast 0)) + y(D(\ast 0))] \\
&= \mathcal{H}(D')[-x(D')][-2x(D') + y(D') + 1] \\
&= \overline{H}(D')[0]{1} \\
\overline{H}(D(\ast 1))[-1][-1] &= \mathcal{H}(D(\ast 1))[-x(D(\ast 1))][-2x(D(\ast 1)) + y(D(\ast 1)) - 1] \\
&= \mathcal{H}(D')[-x(D') - 2][-2x(D') + y(D') - 3] \\
&= \overline{H}(D')[-2]{-3}
\end{align*}
\]

By induction hypothesis, \(\overline{H}(D(\ast 0)) \) is supported in two lines with the top at \((0, -o(D') - 1) \), and \(\overline{H}(D(\ast 1))[-1][-1] \) is also supported in two lines with the top at \((2, -o(D') + 3) \). Their upper diagonals and lower diagonals agree.

Again, by theorem 3.1 and lemma 3.6, \(\overline{H}(D) \) is supported in two lines with the top at \((0, -o(D)) = (0, -o(D') - 1) \) and the bottom at \((2c - o(D) + 2) \).

Let \(L \) be an oriented nonsplit alternating link and \(D \) be a reduced alternating diagram of \(L \). From theorem 3.13, we can conclude that \(\mathcal{H}(D) = \overline{H}(D)[x(D)][2x(D) - y(D)] \) has
the top at $(-x(D), -2x(D) + y(D) - o(D))$. Since the top is on the upper diagonal, our $s(L)$ equals $o(D) - y(D) - 1$.

In proposition 3.11, we saw that $\sigma(L) = o(D) - y(D) - 1$. That finishes the proof of theorem 1.2.
Chapter 4

Proof of Theorem 1.3

In this chapter, we prove theorem 1.3. The strategy of our proof is as follows. We define a map Φ of degree $(1,4)$ from the Khovanov invariant $\mathcal{H}(L)$ of any oriented link L to itself, which pairs most of $\mathcal{H}(L)$. This map Φ added to the coboundary map d gives rise to a new cohomology theory which can be computed explicitly. Then, we compare the cohomology groups of Φ on $\mathcal{H}(L)$ with the new cohomology groups of $\Phi + d$.

4.1 The map Φ

Theorem 1.3 states that there is an almost pairing of cohomology groups of degree difference $(1,4)$, so it is natural to think of a map of degree $(1,4)$ on the cohomology groups.

On chain level, the map Φ is defined in the same fashion as the coboundary map. Instead of

$$
\begin{align*}
1 \otimes 1 & \xrightarrow{m} 1 \\
1 \otimes x, x \otimes 1 & \xrightarrow{m} x \\
x \otimes x & \xrightarrow{m} 0 \\
1 & \xrightarrow{\Delta} 1 \otimes x + x \otimes 1 \\
x & \xrightarrow{\Delta} x \otimes x
\end{align*}
$$
\(\Phi\)'s assignment is as follows.

\[
\begin{align*}
1 \otimes 1, 1 \otimes x, x \otimes 1 & \xrightarrow{m_\Phi} 0 \\
1 \otimes x & \xrightarrow{m_\Phi} 1 \\
1 & \xrightarrow{\Delta_\Phi} 0 \\
x & \xrightarrow{\Delta_\Phi} 1 \otimes 1
\end{align*}
\]

This new multiplication \(m_\Phi\) is commutative and associative.

\[
m_\Phi(m_\Phi(x \otimes y) \otimes z) = m_\Phi(x \otimes m_\Phi(y \otimes z)) = 0 \text{ for any } x, y, z \in A
\]

Comultiplication \(\Delta_\Phi\) is also cocommutative and coassociative.

\[
(\Delta_\Phi \otimes \text{id}) \circ \Delta_\Phi(z) = (\text{id} \otimes \Delta_\Phi) \circ \Delta_\Phi(z) = 0 \text{ for any } z \in A
\]

They also satisfy

\[
\Delta_\Phi \circ m_\Phi = (m_\Phi \otimes \text{id}) \circ (\text{id} \otimes \Delta_\Phi),
\]

since

\[
\Delta_\Phi \circ m_\Phi(y \otimes z) = (m_\Phi \otimes \text{id})(y \otimes \Delta_\Phi(z)) = 0 \text{ for any } y, z \in A.
\]

As discussed in section 2.1.4, these properties are enough for ensuring \(\Phi^2 = 0\).

Although \(m_\Phi\) and \(\Delta_\Phi\) cannot have any compatible unit or counit, \((A, m_\Phi, \Delta_\Phi)\) is isomorphic to \((A^*, \Delta_\Phi^*, m_\Phi^*)\).

4.2 Invariance of \(\Phi\)

We would like to see \(\Phi\) is well defined on \(\mathcal{H}(L)\). For that, \(\Phi\) should (anti)commute with \(d\) and be invariant under the Reidemeister moves.

4.2.1 Anticommutativity with \(d\)

From the viewpoint of section 2.1.4, we only need to check the following identities.

1. \(m \circ (m_\Phi \otimes \text{id}) + m_\Phi \circ (m \otimes \text{id}) = m \circ (\text{id} \otimes m_\Phi) + m_\Phi \circ (\text{id} \otimes m)\)
2. \((\Delta \otimes \text{id}) \circ \Delta_\Phi + (\Delta_\Phi \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta_\Phi + (\text{id} \otimes \Delta_\Phi) \circ \Delta\)
3. \(\Delta \circ m_\Phi + \Delta_\Phi \circ m = (m \otimes \text{id}) \circ (\text{id} \otimes \Delta_\Phi) + (m_\Phi \otimes \text{id}) \circ (\text{id} \otimes \Delta)\)
Proof. (2) can be checked in the following table.

<table>
<thead>
<tr>
<th></th>
<th>$(\Delta \otimes id) \circ \Delta_\Phi$</th>
<th>$(\Delta_\Phi \otimes id) \circ \Delta$</th>
<th>$(id \otimes \Delta) \circ \Delta_\Phi$</th>
<th>$(id \otimes \Delta_\Phi) \circ \Delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \mapsto$</td>
<td>0</td>
<td>$1 \otimes 1 \otimes 1$</td>
<td>0</td>
<td>$1 \otimes 1 \otimes 1$</td>
</tr>
<tr>
<td>$x \mapsto$</td>
<td>$1 \otimes x \otimes 1 + x \otimes 1 \otimes 1$</td>
<td>$1 \otimes 1 \otimes x$</td>
<td>$1 \otimes 1 \otimes x + 1 \otimes x \otimes 1$</td>
<td>$x \otimes 1 \otimes 1$</td>
</tr>
</tbody>
</table>

(1) is deduced from (2) since both (A, m, Δ) and (A, m_Φ, Δ_Φ) are self-dual.

A table for (3) follows.

<table>
<thead>
<tr>
<th></th>
<th>$\Delta \circ m_\Phi$</th>
<th>$\Delta_\Phi \circ m$</th>
<th>$(m \otimes id) \circ (id \otimes \Delta_\Phi)$</th>
<th>$(m_\Phi \otimes id) \circ (id \otimes \Delta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \otimes 1$</td>
<td>$1 \otimes 1$</td>
<td>$1 \otimes 1$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$1 \otimes x$</td>
<td>$1 \otimes 1$</td>
<td>$1 \otimes 1$</td>
<td>$1 \otimes 1$</td>
<td>0</td>
</tr>
<tr>
<td>$x \otimes 1$</td>
<td>$1 \otimes 1$</td>
<td>0</td>
<td>$1 \otimes 1$</td>
<td>$1 \otimes 1$</td>
</tr>
<tr>
<td>$x \otimes x$</td>
<td>$1 \otimes x + x \otimes 1$</td>
<td>0</td>
<td>$x \otimes 1$</td>
<td>$1 \otimes x$</td>
</tr>
</tbody>
</table>

□

4.2.2 Invariance under the Reidemeister moves

We also want Φ to commute with the isomorphisms in section 2.2.2.

4.2.2.1 Type I

The isomorphism was given by

$$\rho : \overline{C}(D') \longrightarrow \overline{C}(D) \{1\}$$

$$y \otimes 1 + z \otimes x + x \longmapsto z$$

for $y \otimes 1 + z \otimes x \in \overline{C}(D'(\ast 0)) \approx \overline{C}(D) \otimes A$ and $x \in \overline{C}(D'(\ast 1))[-1]{-1}$.

Then,

$$(\rho \Phi - \Phi \rho)(y \otimes 1 + z \otimes x + x) = \rho(\Phi_0(y) \otimes 1 + \Phi_0(z) \otimes x + \Phi_{0+1}(y \otimes 1 + z \otimes x) - \Phi'(x)) - \Phi(z)$$

$$= \Phi(z) - \Phi(z) = 0.$$
4.2.2.2 Type II

Let $d(z) = 0$, $z \in \overline{C}(D)[-1] \{ -1 \}$.

$$(-1)^i (\rho \Phi - \Phi' \rho)(z) = (-1)^i \rho \Phi(z) - \Phi'(z + \alpha(z))$$

$$= - (\Phi'_{01}(z) + \alpha \Phi'_{01}(z)) - (-\Phi'_{01}(z) - \Phi'_{10} \alpha(z) + \Phi'_{01 \rightarrow 11}(z) + \Phi'_{10 \rightarrow 11} \alpha(z))$$

$$= d'_{01 \rightarrow 11} \Phi'_0(1) \otimes 1 - \Phi'_{11} d'_{01 \rightarrow 11}(z) \otimes 1 - \Phi'_{01 \rightarrow 11}(z)$$

$$= - d' (\Phi'_{01 \rightarrow 11}(1) \otimes 1)$$

$$\quad - (\overline{C}(D)'(1))[-2] \{ -2 \} \text{ component of } (d' \Phi' + \Phi'd')(z) \otimes 1$$

$$= - d' (\Phi'_{01 \rightarrow 11}(1) \otimes 1) .$$

4.2.2.3 Type III

If $d(x + \beta(x) + y) = 0$, then $\overline{C}(D(100))[-1] \{ -1 \}$ component of $d(x + \beta(x) + y)$, that is $-d_{100}(x)$, equals 0.

In $\overline{C}(D)$,

$$\Phi(x + \beta(x) + y) = -\Phi_{100}(x) + \Phi_{100 \rightarrow 110}(x) + \Phi_{100 \rightarrow 101}(x) - \Phi_{010}(d_{100 \rightarrow 110} x \otimes 1)$$

$$\quad + \Phi_{010 \rightarrow 110}(d_{100 \rightarrow 110} x \otimes 1) + \Phi_{010 \rightarrow 011}(d_{100 \rightarrow 110} x \otimes 1) - \Phi_1(y)$$

$$= -\Phi_{100}(x) + \Phi_{100 \rightarrow 110}(x) + \Phi_{100 \rightarrow 101}(x) - \Phi_{110} d_{100 \rightarrow 110} x \otimes 1 - \Phi_1(y)$$

$$(1) \quad -\Phi_{100}(x) + \beta(-\Phi_{100}(x)) + d_{110} \Phi_{100 \rightarrow 110}(x) \otimes 1 + \Phi_{100 \rightarrow 110}(x)$$

$$\quad + \Phi_{100 \rightarrow 101}(x) - \Phi_1(y)$$

$$(2) \quad -\Phi_{100}(x) + \beta(-\Phi_{100}(x)) + \Phi_{100 \rightarrow 110 \rightarrow 011} x + \Phi_{100 \rightarrow 101}(x) - \Phi_1(y) .$$

(1) is from

$$0 = (\overline{C}(D(\ast 110))[-2] \{ -2 \} \text{ component of } (d \Phi + \Phi d)(x))$$

$$= d_{100 \rightarrow 110}(-\Phi_{100}(x)) + d_{110} \Phi_{100 \rightarrow 110}(x) + \Phi_{100 \rightarrow 110}(d_{100 \rightarrow 110} x) + \Phi_{110} d_{100 \rightarrow 110} x$$

$$\beta(-\Phi_{100}(x)) = d_{100 \rightarrow 110}(-\Phi_{100}(x)) \otimes 1$$

$$= -(d_{110} \Phi_{100 \rightarrow 110} x + \Phi_{110} d_{100 \rightarrow 110} x) \otimes 1 .$$

(2) is from

$$d \alpha(\Phi_{100 \rightarrow 110}) = -d_{010}(\Phi_{100 \rightarrow 110} x \otimes 1) + d_{010 \rightarrow 110}(\Phi_{100 \rightarrow 110} x \otimes 1) + d_{010 \rightarrow 011}(\Phi_{100 \rightarrow 110} x \otimes 1)$$

$$= -d_{110}(\Phi_{100 \rightarrow 110} x) \otimes 1 - \Phi_{100 \rightarrow 110} x + \Phi_{100 \rightarrow 110 \rightarrow 011} x .$$
Similarly, in $\overline{C}(D')$,

$$
\Phi'(x + \beta(x) + y) \sim -\Phi_{010}'(x) + \beta'(\Phi_{010}'(x)) - \Phi_{010\rightarrow110\leq101}'(x) + \Phi_{010\rightarrow011}'(x) - \Phi_1'(y)
$$

$$
= \rho(-\Phi_{100}(x) + \beta(-\Phi_{100}(x)) + \Phi_{100\rightarrow101}(x) + \Phi_{100\rightarrow110\leq011}(x) - \Phi_1(y)) .
$$

4.2.3 An example

Let T be the lefthanded trefoil with the diagram D in section 2.1.6. We have computed $\mathcal{H}(T) = \mathcal{H}(D)$ in section 2.1.6.

Since Φ is of degree $(1, 4)$, the only possible place Φ can be nontrivial is from $\mathcal{H}^{-3,-9}(T)$ to $\mathcal{H}^{-2,-5}(T)$. The value of Φ at a generator $[x \otimes x \otimes x]$ of $\mathcal{H}^{-3,-9}(T) = \mathbb{Q}$ is

$$
\Phi([x \otimes x \otimes x]) = \begin{bmatrix}
1 \otimes x \\
1 \otimes x \\
1 \otimes x
\end{bmatrix},
$$

which is a generator of $\mathcal{H}^{-2,-5}(T) = \mathbb{Q}$, so Φ is nontrivial there.

<table>
<thead>
<tr>
<th>j</th>
<th>i</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-9</td>
<td>Φ</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>-7</td>
<td>Φ</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>-5</td>
<td>Φ</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>-3</td>
<td>Φ</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
</tr>
<tr>
<td>-1</td>
<td>Φ</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
<td>\mathbb{Q}</td>
</tr>
</tbody>
</table>

4.3 $\Phi + d$ and change of variables

4.3.1 Change of variables

Let us forget the grading and make a change of variables as follows.

$$
a = x + 1 \quad \quad b = x - 1
$$
Since \((\Phi + d)^2 = \Phi^2 + \Phi d + d \Phi + d^2 = 0\), we can regard \(\Phi + d\) as a new coboundary map.

\[
\begin{align*}
& a \otimes a \xrightarrow{m(\Phi + d)} 2a \\
& a \otimes b, b \otimes a \xrightarrow{m(\Phi + d)} 0 \\
& b \otimes b \xrightarrow{m(\Phi + d)} -2b \\
& a \xrightarrow{\Delta(\Phi + d)} a \otimes a \\
& b \xrightarrow{\Delta(\Phi + d)} b \otimes b
\end{align*}
\]

Denote the cohomology groups of an oriented diagram \(D\) arising from this new coboundary map \(\Phi + d\) by \(\tilde{H}(D)\) and \(H(D)\).

4.3.2 Invariance of \(H(D)\) under the Reidemeister moves

It would not be interesting if we can define only \(H(D)\), but not \(H(L)\). Our proof of invariance follows chapter 5 of [6] (summarized in section 2.2.2) with only the multiplication and comultiplication maps replaced by those of \(\Phi + d\). Details are left to the reader. See section 2.2.2 for figures.

4.3.2.1 Type I

Define

\[
\tilde{X}_1 = \text{Ker}(\Phi + d')_{0 \to 1}
\]

and

\[
\tilde{X}_2 = \{ y \otimes \frac{1}{2}(a - b) + z | y \in \overline{C}(D), z \in \overline{C}(D'(*1))[-1] \}.
\]

\(\overline{C}(D')\) is decomposed as \(\tilde{X}_1 \oplus \tilde{X}_2\) as chain complexes, \(\tilde{X}_2\) is acyclic, and

\[
\tilde{\rho} : \tilde{X}_1 \longrightarrow \overline{C}(D)
\]

\[
y \otimes a + z \otimes b \longrightarrow y + z
\]

induces an isomorphism between \(H(D')\) and \(H(D)\).
4.3.2.2 Type II

This time,
\[
\begin{align*}
\tilde{X}_1 &= \{ z + \alpha(z) | z \in \overline{C}(D'(\ast 01))[1] \} \\
\tilde{X}_2 &= \{ z + (\Phi' + d') y | z, y \in \overline{C}(D'(\ast 00)) \} \\
\tilde{X}_3 &= \{ z + y \otimes \frac{1}{2}(a - b) | z, y \in \overline{C}(D'(\ast 11))[1] \}
\end{align*}
\]
where \(\alpha(z) = -(\Phi' + d')_{01 \rightarrow 11}(z) \otimes \frac{1}{2}(a - b) \in \overline{C}(D'(\ast 11))[1] \otimes A \approx \overline{C}(D'(\ast 10))[1]. \)

Then, \(\overline{C}(D') = \tilde{X}_1 \oplus \tilde{X}_2 \oplus \tilde{X}_3 \) as chain complexes, \(\tilde{X}_2 \) and \(\tilde{X}_3 \) are acyclic, and
\[
\tilde{\rho} : \overline{C}(D)[1] \approx \overline{C}(D'(\ast 01))[1] \longrightarrow \tilde{X}_1 \cap \overline{C}(D')
\]
\[
z \quad \longmapsto \quad (-1)^{d}(z + \alpha(z))
\]
induces an isomorphism.

4.3.2.3 Type III

Let \(\tilde{\alpha}, \tilde{\beta}, \tilde{\alpha}', \tilde{\beta}' \) be maps of complexes given by
\[
\begin{align*}
\tilde{\alpha} : \overline{C}(D(\ast 110))[2] &\longrightarrow \overline{C}(D(\ast 010))[1] \approx \overline{C}(D(\ast 110))[1] \otimes A \\
z &\quad \longmapsto \quad z \otimes \frac{1}{2}(a - b) \\
\tilde{\beta} : \overline{C}(D(\ast 100))[1] &\longrightarrow \overline{C}(D(\ast 010))[1] \\
z &\quad \longmapsto \quad \tilde{\alpha}(\Phi + d)_{100 \rightarrow 110}(z) \\
\tilde{\alpha}' : \overline{C}(D'(\ast 110))[2] &\longrightarrow \overline{C}(D'(\ast 100))[1] \approx \overline{C}(D'(\ast 110))[1] \otimes A \\
z &\quad \longmapsto \quad z \otimes \frac{1}{2}(a - b) \\
\tilde{\beta}' : \overline{C}(D'(\ast 010))[1] &\longrightarrow \overline{C}(D'(\ast 100))[1] \\
z &\quad \longmapsto \quad -\tilde{\alpha}'(\Phi' + d')_{010 \rightarrow 110}(z).
\end{align*}
\]
\(\overline{C}(D) \) and \(\overline{C}(D') \) can be decomposed as below.

\[
\overline{C}(D) = \tilde{X}_1 \oplus \tilde{X}_2 \oplus \tilde{X}_3
\]

\[
\tilde{X}_1 = \{ x + \beta(x) + y | x \in \overline{C}(D(100))[-1], y \in \overline{C}(D(1))[-1] \}
\]

\[
\tilde{X}_2 = \{ x + (\Phi + d)y | x, y \in \overline{C}(D(000)) \}
\]

\[
\tilde{X}_3 = \{ \tilde{\alpha}(x) + (\Phi + d)\tilde{\alpha}(y) | x, y \in \overline{C}(D(110))[-2] \}
\]

\[
\overline{C}(D') = \tilde{Y}_1 \oplus \tilde{Y}_2 \oplus \tilde{Y}_3
\]

\[
\tilde{Y}_1 = \{ x + \beta'(x) + y | x \in \overline{C}(D'(010))[-1], y \in \overline{C}(D'(1))[-1] \}
\]

\[
\tilde{Y}_2 = \{ x + (\Phi' + d')y | x, y \in \overline{C}(D'(000)) \}
\]

\[
\tilde{Y}_3 = \{ \tilde{\alpha}'(x) + (\Phi' + d')\tilde{\alpha}'(y) | x, y \in \overline{C}(D'(110))[-2] \}
\]

As before, \(\tilde{X}_2, \tilde{X}_3, \tilde{Y}_2, \tilde{Y}_3 \) are acyclic, \(\overline{C}(D(100))[-1] \) and \(\overline{C}(D'(010))[-1], \overline{C}(D(1))[-1] \)
and \(\overline{C}(D'(1))[-1] \) are naturally isomorphic, and \(\tilde{X}_1 \) is isomorphic to \(\tilde{Y}_1 \) via

\[
\tilde{\rho} : x + \beta(x) + y \mapsto x + \beta'(x) + y.
\]

4.4 Cohomology theory of \(\Phi + d \)

4.4.1 Resolutions of oriented links in orientation preserving way

Consider the resolution of an oriented link diagram in orientation preserving way, that is, 0-resolutions for + crossings and 1-resolutions for − crossings. This is the standard way to get a Seifert surface from a diagram of an oriented link. In such a resolution, we can part the components of that resolution into two groups so that each crossing connects one in a group to another in the other group. More explicitly, front, back in back, back in front, etc. are grouped together, and back, front in front, front in back, etc. form the other group. This partition does not depend on the position of \(\infty \).
4.4.2 Hodge theory

We can give an inner product on a chain complex so that monomials in \(\mathbf{a}, \mathbf{b} \) form an orthonormal basis, then the adjoint \((\Phi + d)^*\) of \(\Phi + d\) is defined as follows.

\[
\begin{align*}
\mathbf{a} \otimes \mathbf{a} &\underleftrightarrow{m_{(\Phi + d)^*}} \mathbf{a} \\
\mathbf{a} \otimes \mathbf{b}, \mathbf{b} \otimes \mathbf{a} &\underleftrightarrow{m_{(\Phi + d)^*}} 0 \\
\mathbf{b} \otimes \mathbf{b} &\underleftrightarrow{m_{(\Phi + d)^*}} \mathbf{b} \\
\mathbf{a} &\underleftrightarrow{\Delta_{(\Phi + d)^*}} 2\mathbf{a} \otimes \mathbf{a} \\
\mathbf{b} &\underleftrightarrow{\Delta_{(\Phi + d)^*}} -2\mathbf{b} \otimes \mathbf{b}
\end{align*}
\]

By Hodge theory,

\[
\overline{H}^i(D) \approx \text{Ker}((\Phi + d) : \overline{C}^i(D) \to \overline{C}^{i+1}(D)) \cap \text{Ker}((\Phi + d)^* : \overline{C}^i(D) \to \overline{C}^{i-1}(D)).
\]

4.4.3 Computation of \(H\)

For an \(n\) component link, there are \(2^{n-1}\) different (relative) orientations. Each of them gives a distinct resolution when the link is resolved in orientation preserving way. Since no crossing connects components in the same group in such a resolution, two monomials consist of \(\mathbf{a}\) for the components in one group and \(\mathbf{b}\) for those in the other clearly belong to \(\text{Ker}(\Phi + d) \cap \text{Ker}(\Phi + d)^*\). The claim is that these are all, i.e., others are linear combinations of these.

Theorem 4.1. The dimension of \(H(L) = \bigoplus_{i \in \mathbb{Z}} H^i(L)\) for an oriented link \(L\) of \(n\) components equals to \(2^n\).

Proof. As is in theorem 3.1, we have a long exact sequence of cohomology groups.

\[
\cdots \to \overline{H}^{i-1}(D(*0)) \to \overline{H}^{i-1}(D(*1)) \to \overline{H}^i(D) \to \overline{H}^i(D(*0)) \to \overline{H}^i(D(*1)) \to \cdots
\]

So, \(\dim \overline{H}(D)\) does not exceed \(\dim \overline{H}(D(*0)) + \dim \overline{H}(D(*1))\).

Let us prove for knots and two component links first, using induction on the number of crossings.

It clearly holds for the unknot. If we have a knot with a minimal diagram \(D\) of \(c\) crossings, then one of \(D(*0), D(*1)\) is a knot, the other is a two component link, and they have one fewer crossings. We can choose a (relative) orientation for the two component link
according to the (relative) orientation of the knot among $D(*0)$ and $D(*1)$. Then those monomials coming from the chosen orientations kill each other. Hence,

$$2 \leq \dim H(D) \leq \dim H(D(*0)) + \dim H(D(*1)) - 4 = 2.$$

Let D be a minimal diagram for a two component link, of c crossings. If D is a disjoint union of two knot diagrams D_1 and D_2, then those have no greater than c crossings, and $H(D) = H(D_1) \otimes H(D_2)$, so that

$$4 \leq \dim H(D) \leq \dim H(D_1) \cdot \dim H(D_2) = 4.$$

If not, choose a crossing so that $D(*0)$ and $D(*1)$ are knot diagrams. Then,

$$4 \leq \dim H(D) \leq \dim H(D(*0)) + \dim H(D(*1)) = 4.$$

An n component link diagram D is either a disjoint union of link diagrams of fewer components or can be resolved to two link diagrams of $n-1$ components. Proof of $\dim H(D) = 2^n$ goes the same as above. □

We can tell exactly to which $H^r(L)$ those generating monomials belong.

Proposition 4.2. Let L be an oriented n component link, S_1, \cdots, S_n be its components, and ℓ_{jk} be the linking number of S_j and S_k. Then,

$$\dim H^r(L) = 2 \cdot \left| \left\{ E \subset \{2, \cdots, n\} \mid \left(\sum_{j \in E, k \notin E} 2\ell_{jk} \right) = i \right\} \right|$$

Proof. Let O be the given (relative) orientation of L with a diagram D, and O' be another (relative) orientation obtained by reversing the orientations of $S_j, j \in E \subset \{2, \cdots, n\}$. Let $x(D), y(D)$ be the numbers of positive crossings and negative crossings with respect to O, and $x'(D), y'(D)$ be those with respect to O'.

Since a resolution in orientation preserving way is resolving $+$ crossings to its 0-resolutions and $-$ crossings to its 1-resolutions, those two monomials corresponding to O' appear in $H^{x'(D) - x(D)}(D)$.

On the other hand, the number of negative crossings among the crossings between S_j and S_k does not change if none or both of the orientations of S_j and S_k are reversed, and if only one of them is reversed, the number is changed by

$$2 \cdot \ell_{jk} = \begin{cases} y - x \text{ among the crossings between } S_j \text{ and } S_k \\ x' - x \text{ among the crossings between } S_j \text{ and } S_k \end{cases}.$$

44
Therefore,
\[x'(D) - x(D) = \sum_{j \in E, k \notin E} 2\ell_{jk} . \]
\[\square \]

4.5 Proof of theorem 1.3

In the previous section, we have computed \(H(L) \). To prove theorem 1.3, we are going to relate \(H(L) \) to \(\frac{\text{Ker}(\Phi : \mathcal{H}(L) \to \mathcal{H}(L))}{\text{Im}(\Phi : \mathcal{H}(L) \to \mathcal{H}(L))} \) for oriented nonsplit alternating links \(L \).

Theorem 4.3. For any oriented nonsplit alternating link \(L \),
\[H(L) \cong \frac{\text{Ker}(\Phi : \mathcal{H}(L) \to \mathcal{H}(L))}{\text{Im}(\Phi : \mathcal{H}(L) \to \mathcal{H}(L))} . \]

Proof. An element \(z \) in the kernel of \((\Phi + d) : \overline{c}^{s}(D) \to \overline{c}^{s+1}(D) \) can be written as a finite sum of homogeneous elements, say \(z = z^0 + z^1 + \cdots + z^k \) where \(z^j \in \overline{c}^{s+2j}(D) \) for some \(s \).

Since \(z \) is in the kernel,
\[0 = (\Phi + d)z = dz^0 + dz^1 + (dz^2 + \Phi z^0) + \cdots + (dz^k + \Phi z^{k-2}) + \Phi z^{k-1} + \Phi z^k . \]

Let us say \(z^r \) and \(z^{r+1} \) are on the two lines where \(\overline{A} \) can possibly be nonzero. (We may assume \(r \) is even and \(4 \leq r \leq k - 1 \) by placing some zeros before and after.) We can choose \(y^j \in \overline{c}^{s+2j}(D) \) for \(j = 0, 1, \cdots, r - 1 \) so that
\[z^0 = dy^0 \]
\[z^2 = \Phi y^0 + dy^2 \]
\[\cdots \]
\[z^{r-2} = \Phi y^{r-4} + dy^{r-2} \]
\[z^1 = dy^1 \]
\[z^3 = \Phi y^1 + dy^3 \]
\[\cdots \]
\[z^{r-1} = \Phi y^{r-3} + dy^{r-1} . \]
An isomorphism is given by

\[
\overline{H}^i(D) = \frac{\text{Ker}(\Phi + d)}{\text{Im}(\Phi + d)} \rightarrow \frac{\text{Ker} d \cap \Phi^{-1}(\text{Im} d)}{\text{Im} d + \Phi(\text{Ker} d)} \approx \frac{\text{Ker}(\Phi : \overline{H}(D) \rightarrow \overline{H}^{i+1}(D))}{\text{Im}(\Phi : \overline{H}^{-1}(D) \rightarrow \overline{H}(D))}.
\]

\[z + \text{Im}(\Phi + d) \mapsto z - \Phi y^r - 2 + z^{r+1} - \Phi y^r + \text{Im} d + \Phi(\text{Ker} d).\]

Details are left to the reader. □

Therefore, the Khovanov invariants $H^{i,j}(L)$ of a non-split alternating oriented link L are paired except those coming from the generators found in section 4.4. If L is a knot, those belong to $H^0(L)$. Theorem 1.3 is proved.

Remark 4.4. In the proof of theorem 4.3, we only used the property that $H(L)$ is supported in two lines. So, it works for H-thin ($H^{i,j}$ being supported in two diagonal lines; see [7]) links as well.

Remark 4.5. As Haynes Miller and Dylan Thurston pointed out $\text{Ker}(\Phi_{\text{on } H}) / \text{Coker}(\Phi_{\text{on } H})$ is the E_2 term, H is the E_∞ term of the spectral sequence of a double complex (\mathcal{C}, d, Φ). For an H-thin link, d_2 collapses so that $E_2 = E_\infty$, but in general, E_2 is bigger than E_∞.

4.6 Extension of theorem 1.3 for alternating links

Theorems 1.2 and 1.3 imply that the Khovanov invariant of an alternating knot determines and is determined by its Jones polynomial and signature. This can be extended to oriented alternating links.

Let L be a link satisfying the hypothesis in proposition 4.2 and non-split alternating. We already know that two monomials corresponding to an orientation O' belong to $H^{\Sigma_{j=0}^k, k \in \mathbb{Z} 2j kh}(L)$.

To find out their degrees, consider $(a \otimes \cdots \otimes a \otimes b \otimes \cdots \otimes b) \pm (b \otimes \cdots \otimes b \otimes a \otimes \cdots \otimes a)$.

\[(a \otimes \cdots \otimes a \otimes b \otimes \cdots \otimes b) + (b \otimes \cdots \otimes b \otimes a \otimes \cdots \otimes a) = 2 \cdot \sum \text{(monomials in 1 and x with even number of 1)}\]

\[(a \otimes \cdots \otimes a \otimes b \otimes \cdots \otimes b) - (b \otimes \cdots \otimes b \otimes a \otimes \cdots \otimes a) = (-2) \cdot \sum \text{(monomials in 1 and x with odd number of 1)}\]

Degrees of monomials in 1 and x with even numbers of 1 are the same in (mod 4), degrees of monomials in 1 and x with odd numbers of 1 are also the same in (mod 4), and those
two differ by 2 in $\text{(mod } 4)$. Therefore, we can conclude that one of $(a \otimes \cdots \otimes a \otimes b \otimes \cdots \otimes b) \pm (b \otimes \cdots \otimes b \otimes a \otimes \cdots \otimes a)$ is mapped to upper diagonal, the other to lower diagonal.

Now, theorem 1.3 can be extended as follows.

Theorem 4.6. For an n component oriented nonsplit alternating link L with its components S_1, \cdots, S_n and linking numbers ℓ_{jk} of S_j and S_k,

$$Kh(L)(t, q) = q^{-\sigma(L)}\left\{(q^{-1} + q)\left(\sum_{E \subseteq \{2, \cdots, n\}} (tq^2)^{\sum_{j \in E, k \notin E} 2\ell_{jk}}\right) + (q^{-1} + tq^2 \cdot q)Kh'(L)(tq^2)\right\}$$

for some polynomial $Kh'(L)$.

Hence, with the linking numbers of pairs of components provided, the Khovanov invariant of an oriented nonsplit alternating link determines and is determined by its Jones polynomial and signature.
Bibliography

