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Abstract

Our research focuses on developing design-oriented analytical tools that enable us to bet-
ter understand how a network comprising dynamic and static elements behaves when it
is set in oscillatory motion, and how the interconnection topology relates to the spectral
properties of the system. Such oscillatory networks are ubiquitous, extending from minia-
ture electronic circuits to large-scale power networks.

We tap into the rich mathematical literature on graph spectra, and develop theoretical ex-
tensions applicable to networks containing nodes that have finite nonnegative weights—
including nodes of zero weight, which occur naturally in the context of power networks.
We develop new spectral graph-theoretic results spawned by our engineering interests, in-
cluding generalizations (to node-weighted graphs) of various structure-based eigenvalue
bounds.

The central results of this thesis concern the phenomenon of dynamic coherency, in which
clusters of vertices move in unison relative to each other. Our research exposes the relation
between coherency and network structure and parameters. We study both approximate
and exact dynamic coherency. Our new understanding of coherency leads to a number of
results. We expose a conceptual link between theoretical coherency and the confinement
of an oscillatory mode to a node cluster. We show how the eigenvalues of a coherent
graph relate to those of its constituent clusters. We use our eigenvalue expressions to
devise a novel graph design algorithm; given a set of vertices (of finite positive weight)
and a desired set of eigenvalues, we construct a graph that meets the specifications. Our
novel graph design algorithm has two interesting corollaries: the graph eigenvectors have
regions of support that monotonically decrease toward faster modes, and we can construct
graphs that exactly meet our generalized eigenvalue bounds.

It is our hope that the results of this thesis will contribute to a better understanding of the
links between structure and dynamics in oscillatory networks.

Thesis Supervisor: George C. Verghese
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction and Contributions

Had John Steinbeck been commissioned to the task, he may have titled this document

Of Modes and Matrices: the Confluence of the Graph Structure,
Spectrum, and Dynamics of Oscillatory Networks.

The goal of the research culminating in this dissertation has been to understand how a
network of dynamic elements behaves when it is set in oscillatory motion, and how the in-
terconnection topology influences (or, conversely, is inferred from) the spectral properties
of the underlying graph model. Along the way, we study the mutual influence of network
structure and its spectrum, and develop a set of tools geared toward a design-oriented
analysis of lumped-parameter oscillatory dynamic systems.

Broadly speaking, the overall contribution of our work is twofold:

• We establish a connection—previously more or less overlooked—between the mathe-
matical theory of graphs and the dynamic analysis of oscillatory networks. Seaming
the gap between algebraic graph theory [6, 14, 17, 18, 16, 38] and oscillatory networks
allows us to tap into the rich corpus of results already known to mathematicians, and
to apply, adapt, and extend those results to the study of network dynamics. For their
share, it is expected that engineering applications stimulate new graph-theoretic prob-
lems toward the solution of which novel theory needs to be developed.

There is a plethora of theorems about graphs and their spectra; by modeling physical
dynamic networks with graphs, we allow ourselves access to a vast arsenal of tools with
which to study their oscillatory behavior. This is a resource that engineers interested in
power-systems or mechanical structural-dynamics (to cite just two research communi-
ties), by and large, have yet to tap into. The applications of interest to us, such as electric
power networks or mechanical vibrational systems that have lumped mass-spring rep-
resentations, provide a physical motivation and an intuitive backbone for the study of
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graph dynamics.

• The second aspect of our overall contribution relates to the historical development of
spectral graph theory to date. Undoubtedly, mathematicians have displayed tremen-
dous intuition in developing theoretical results about graphs and their spectra; in fact,
at times one is astounded as to how (or, more important, why) they even thought of
certain problems that they tackled or theorems that they set out to prove. What makes
their work impressive is that, by and large, graph theorists have been motivated to de-
velop the subject matter, not by the types of physical systems of interest to applications-
oriented engineers, but, rather, out of pure mathematical curiosity or by other very the-
oretical fields outside of mathematics. There is a large body of spectral graph-theoretic
literature inspired, for example, by combinatorial problems and interests; the field of
algebraic combinatorics is a case in point [37].

That said, spectral graph theory has had applications in chemistry (in particular, molec-
ular dynamics), theoretical physics and quantum mechanics, and—in recent times—
communications networks and theoretical computer science. However, engineers in
such research fields as systems and control, power networks, or structural dynamics
have not seen their problems of interest motivate spectral graph theoretic investiga-
tions. We set out to effect a change in this regard, insofar as it is possible to do so within
the confines of a Ph.D. dissertation.

As a result of the emphasis and flavor of interests in spectral graph theory thus far,
studies conducted over the past few decades usually have dealt with graphs with very
strong ”uniformity” features, such as unity-weighted nodes. The overwhelming major-
ity of papers in the field also consider graph edges to be uniformly valuated at unity,
although prominent exceptions do exist, such as the papers by Mohar [59, 60, 61, 63], the
outstanding monograph Spectral Graph Theory by Chung [14], and some others. There
is, however, a dearth of material in the literature about node-weighted graphs; the few
exceptions that we have seen relate predominantly to spectral graph partitioning, e.g.,
Bolla and Tusnády [7] and Zien, et al. [76]. We are aware of no prior work that has
tackled graphs containing nodes of zero weight.

We have thus inherited not only a fertile research field to till and to cultivate, but also a
prolific breeding ground in which to develop new theory and to extend many results—
already known to graph theorists—and apply them to networks that contain weighted
nodes and edges. Some of these extensions, albeit straightforward, are, nevertheless, in-
tuitively illuminating, especially from an engineering viewpoint: in particular, results
for weighted graphs in which the node weights are strictly positive and finite (but oth-
erwise arbitrary) have immediate engineering applications (such as in stability analysis
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and mode shape studies) that we shall expound on as the thesis unfolds. When nodes
of zero weight are introduced, the theory oft becomes quite nontrivial. Dealing with
graphs that contain zero-weighted nodes is an important contribution of our research.

Devising fresh nomenclature to facilitate our coverage, we distinguish between two
types of nodes, and give each a name: Gravis nodes (equivalently, G-nodes or G-type
nodes), inspired from the Latin word meaning ”weighty,” have strictly positive (but
finite) weights, whereas levis nodes (equivalently, L-nodes or L-type nodes), from the
Latin meaning ”light,” have zero weight. These two types of graph vertices are quali-
tatively different, and graphs that contain L-nodes have quirks that require special care
in handling, as well as interesting features that we can exploit to advantage; we shall
point these out along the way.

Furthermore, the physical systems that are amenable to graph models motivate theo-
retical problems that the mathematics and the computer-science communities have not
focused on before. Our discussion of graphs with zero node weights (arising in power
networks that contain load nodes), of dynamic coherency (arising, again, in power sys-
tems), or of modes confined to subnetworks (which is of interest to structural engineers
who have studied mode localization, as well as to engineers with interests in network
partitioning) are examples of phenomena that graph theorists either have not studied,
or have studied without realizing the potential impact of graph dynamics on their work
on such physical applications. Dynamic coherency is an example of an engineering phe-
nomenon whose investigation (and underlying theory) is closely related to the graph-
theoretic work on equitable partitions; yet, the connection between the two has not been
made to date. In a sense, therefore, our contribution can be thought of as being directed
at both the engineering and the mathematics communities. We hope that bridging the
gap between the two fields will spawn a new and exciting genre of problems, and gen-
erate equally interesting theory to accompany the new developments.

1.1 Organization of this Thesis

This dissertation consists of seven chapters and three appendices.

Chapter 2 motivates the introduction of spectral graph theory—in particular, the Laplacian
matrix paradigm—to the study of oscillatory networks. We derive the dynamic equations
governing applications such as circuit theory, mass-spring systems, and power networks,
showing how in each case a matrix of ”admittances” emerges, whose spectral properties
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(taking into account the diagonal node-weight matrix of the system) determine the dy-
namic behavior of the overall network.

Chapter 3 lays out the symmetric generalized eigenvalue problem (SGEP) for weighted
graphs, and covers some of the matrix-theoretic background critical to understanding the
remainder of the thesis; our brief survey includes a discussion on M-matrices and Lapla-
cian matrices, and their spectral properties. We set up the problem as Ax = λBx, a form
that involves a semi-definite, diagonal node-weight matrix B whose diagonal elements are
nonnegative (including possibly zero, if the corresponding node is L-type). This SGEP has
as many eigenvalues at infinity as there are L-nodes in the graph. We describe under what
conditions the SGEP for a graph is well-posed, and show how avoiding those conditions
imposes no unreasonable restriction on the actual physical systems of interest to us. In par-
ticular, we show that for the SGEP to be well-posed, every connected subgraph of L-nodes
must have at least one connection to a G-type node; in power networks, for example, this
is always case, for it makes no physical sense for a connected set of load nodes (L-nodes)
to operate without being connected to at least one driving generator (a G-node).

Chapter 4 introduces the notion of the Schur contraction of graphs, which is a method
to collapse a graph with respect to any subset of its L-nodes. This has been done in the
power-system area for years, but the exact relationship between the contracted graph and
the parent graph, or the dependence of the eigenvector components of the L-nodes on those
of the G-nodes, was not well-understood until now. We show how the eigenvector com-
ponent corresponding to any L-node is a convex combination of those associated with its
neighboring nodes in the graph (regardless of the types of neighbors involved). Further-
more, we prove that when we contract the graph with respect to a subset of the L-nodes,
all the vertices that initially neighbored the contracted L-nodes become fully connected.
This result is obtained through properties of nonsingular M-matrices.

Chapter 5 takes a novel look at dynamic coherency theory. Coherency is a feature of certain
oscillatory networks (such as power systems) in which groups of nodes oscillate in tandem,
at a constant level with respect to each other. For over two decades, the approximate form
of this phenomenon has been studied in networks that comprise q clusters of nodes that are
weakly connected with each other, but that internally have strong links. It is observed in
such networks that the slowest q modes of the overall network exhibit approximate, slow
coherency. Power system engineers have even studied exact (theoretical) coherency [21],
albeit far less extensively than the approximate, slow coherency.

– 22 –



Chapter 1 Introduction and Contributions

From a high-level vantage point, our contributions in this chapter are twofold: (1) We
provide a new, much simpler, proof for approximate slow coherency; and (2) We develop
necessary and sufficient conditions for theoretical (exact) coherency. We show under what
conditions a graph exhibits exact coherency. It turns out that the theory we develop in this
chapter has other interesting ramifications. Suppose we are given a set of q disjoint, but
internally connected, clusters (subgraphs) of nodes, and we are asked to interconnect these
clusters, so that (1) the overall network will exhibit exact coherency in q of its modes (not
necessarily the q slowest ones), and (2) all the oscillatory modes of the individual clusters
will be confined to their respective clusters even after they are interconnected. We solve this
problem, and make several design-oriented observations that we then illustrate through
example networks.

One of the interesting side effects of our coherency theory is that we get a clue as to how
to tackle mode localization problems in graph-theoretic terms. Mode localization is a phe-
nomenon long observed and studied in the physics and structural mechanics communi-
ties. Consider a structure that has uniformity of features (e.g., it may consist of a cascade
of identical subsystems). It is generally easy to show, using symmetry arguments and
the like, that the mode shapes of such a system are extensive, i.e., its region of support
physically spans the entire structure. However, if a parameter of the same structure is
slightly perturbed in one of its subsystems (say, a mass in the chain is slightly perturbed to
something different from the other masses), then the modes of the resulting system exhibit
localization around the point of perturbation, especially as the mode number increases
(i.e., faster mode shapes are more geographically confined than slower modes). We look at
one example where our study unveils why this happens.

Chapter 6 covers other interesting consequences of our investigation into exact coherency
with mode confinement. We develop a technique to design completely connected G-type
graphs, with pre-specified, positive, finite node weights and a set of desired eigenval-
ues. In other words, given a set of n node weights, and a set of n − 1 desired, oscilla-
tory (strictly positive) eigenvalues, our backward-recursive algorithm constructs a fully-
connected graph1 such that the Laplacian spectrum has the desired oscillatory eigenvalues
(plus the ubiquitous zero eigenvalue). In addition, our design technique results in mode
shapes that progressively have more and more zero components, i.e., they are increasingly
confined to smaller regions in the graph, as we index toward the fastest mode (which has
a region of support of only two vertices).

1A fully-connected graph is one in which every node is adjacent to every other node.

– 23 –



Chapter 1 Introduction and Contributions

Also in this chapter generalize (to node-weighted graphs) some eigenvalue bounds that are
based on the physical features of the graph, such as node (or cluster) degrees and weights.
One of our contributions here is that we show how graphs can be designed that meet some
of the eigenvalue bounds exactly.

Chapter 7 draws conclusions and suggests future research.

Appendix A specifies the basic notation that we will follow throughout our presentation.

Appendix B introduces the rudiments of graph-theoretic terminology.

Appendix C gives a tutorial overview of first-order perturbation theory for the class of
symmetric generalized eigenvalue problems (SGEPs) of interest to us. We cover, in par-
ticular, multiple eigenvalue perturbation theory. Our novel proof of approximate, slow
coherency makes direct use of the rudimentary material in this appendix. The material
in this appendix is a straightforward extension of the ordinary eigenvalue problem, as
covered in the classic textbook titled, Mathematical Physics, by Butkov [10].

1.2 The Intended Audience

This thesis is intended for anyone with a serious interest in spectral graph theory and os-
cillatory networks. The intended reader spans the gamut from the applied mathematician
with an eye to expand graph-theoretic results beyond the traditional combinatorial (opti-
mization) context; to the chemist or chemical engineer who studies molecular dynamics
and would like to incorporate the extended results in this dissertation into his or her arse-
nal of analysis tools; to the structural engineer who wants to better understand vibrational
systems, such as large space structures, that lend themselves well to a lumped mass-spring
network model; to the investigator who employs finite-element methods to convert con-
tinuous vibrational system models into lumped-parameter representations; to the electric
power network engineer who wants to get a better feel for how network structure affects
modal behavior; to the network designer and analyst who wishes to explore new ways of
partitioning large-scale networks into smaller, more analytically tractable subsystems; to
the circuit designer who wants to adopt new techniques for devising systems with pre-
specified natural frequencies: or to any engineer who deals with oscillatory networks and
wishes to deepen his or her understanding of how such systems can be analyzed or de-
signed.
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1.3 A Useful Bibliography

To assist the you, and to prevent you from having to reinvent the wheel in finding the
necessary background material, we review some of the matrix-theoretic concepts that nor-
mally are not covered in traditional undergraduate linear algebra or first-year graduate
matrix analysis courses (e.g., M-matrices, the Schur complement, extremal properties of
eigenvalues, majorization, etc.); however, our coverage of matrix theory is anything but
self-contained.

What we found helpful throughout our investigations was having the useful references
at hand, and to become gradually (if not already) familiar with them. A matrix analy-
sis text at the level of Horn and Johnson [47, 48]) is essential. So is developing maturity
in understanding linear vector-space concepts (some good companion books, although
by no means prerequisites, are Halmos [43], Naylor and Sell [64], and Luenberger [53]).
You may find the very well-written books by Parlett [67] and Stewart [73] to be invalu-
able companions for understanding issues related to symmetric matrices and perturbation
problems, respectively. Lancaster and Tismenetsky [52] also provide a well-written ref-
erence textbook on matrix theory, but their work contains far more than is needed for a
proper understanding and appreciation of this thesis. We have found Harville [44] and
Lütkepohl to be valuable handbook-style references for matrix identities and properties;
the former contains many proofs not readily found in one place. Our discovery of the
title by Fiedler, Special Matrices and their Applications in Numerical Mathematics [28], was
akin to stumbling across a hidden treasure. Fiedler, whose publications have tremen-
dously influenced the development of this research, has summarized some of the im-
portant graph-related matrix-theoretic concepts in his outstanding—but regrettably little
known and expensive—book.

This being a research area that involves dynamic systems, a basic understanding of linear
system theory, at the level of an intermediate undergraduate course that covers state-space
representations would be very helpful, although, naturally, exposure to an introductory
graduate subject in dynamic systems—at the level of Kailath [50] or Luenberger [54]—
would enhance your appreciation for graph dynamics.

For a basic study of graph theory, a very readable textbook (although it does not cover
spectral issues) is by Diestel [22], which can be found in electronic form on the world-wide
web (in downloadable PDF format) at the following URL:
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http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/ .

Another readable textbook on general graph theory is by Bollobás [8].

For spectral graph theory, there are several excellent references. The classic title, Algebraic
Graph Theory, by Biggs [6] and its modern sequel and namesake by Godsil and Royle [38]
are very useful; the latter has an entire chapter devoted to the Laplacian matrix—the matrix
that is our epic hero as we tell the tale in this dissertation. The classic works by Cvetkovic,
et al., namely [17, 18, 16] are indispensable (even though they do not place much emphasis
on the Laplacian matrix), as is the title by Chung, Spectral Graph Theory [14]; Chung’s mono-
graph has an extensive coverage of Laplacian matrices, and deals with extremal properties
of eigenvalues that we have found useful and extensible to the cases of interest to us.
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Chapter 2

Graphs and Linear Dynamic Models of
Oscillatory Networks

In this chapter, we look at a few examples of non-dissipative, linear (or linearizable) dy-
namic networks, and illustrate how naturally we may use graph models to study their os-
cillatory behavior. A survey of basic graph-theoretic definitions and terminology—setting
our language for the remainder of the thesis—appears in Appendix B. Regardless of your
prior experience with graph theory, this is a good time to at least skim through the ap-
pendix and get acquainted with the particular notation that we will use throughout our
presentation.

For each example system that we introduce in this chapter, we set up the governing dy-
namic equations using basic laws of Newtonian mechanics or electric circuit theory (Kirch-
hoff’s current and voltage laws). The equations—involving the Laplacian matrices associ-
ated with graphs—illustrate how closely spectral graph theory and the study of network
dynamics are related. We conclude the chapter by illustrating how the modes of a state-
space representation of an oscillatory network relate to those of its graph model; in particu-
lar, we show how the generalized eigenvalues and eigenvectors of the Laplacian and node-
weight matrix pairs relate to the modes of a state-space representation of the network. By
the end of this chapter, the motivation for employing a graph-theoretic paradigm to study
oscillatory networks will be established. This chapter, in a sense, broadly highlights one
of the main contributions of the thesis, which is the bridging of the gap between spectral
graph theory (wherein much is known about the eigenvalues and eigenvectors of graphs)
and the engineering study the modal dynamics of linear oscillatory networks.
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2.1 Oscillatory Networks with Graph Representations

Graph models can be used to describe any linear (or linearizable) lumped-parameter sys-
tem that has a direct network model (comprising nodes and edges). By way of example,
we will cite a lumped-parameter LC-circuit, two vibrational mass-spring systems, and the
swing-equation model for a power network. Graph also may be used to study distributed-
parameter systems that have lumped-network discretized models. However, this latter
category is outside the scope of the thesis.

2.1.1 Dynamic Model of an LC Circuit

Undriven, linear (or linearizable) electrical networks—containing no dissipative elements
and no dependent sources—are good examples for our graph-theoretic modelling. Con-
sider the circuit of Figure 2.1 which has neither independent nor dependent sources, con-
tains linear dynamic elements (capacitors and inductors), but no dissipative elements (re-
sistors); all the dynamics are due to the initial state of the capacitors and inductors. Our
particular example has the topology of a ring with an additional node in the center. Ev-
ery node has associated with it a shunt capacitance, except for Node 6. In graph-theoretic
terms, we say that node 6 has a weight of zero. We shall deal with nodes of this type in
subsequent chapters, where we call them L-nodes (or Levis nodes).

Let us write down the dynamic equations of the circuit by applying KCL for each node.
We know that the constitutive equation governing the current for a capacitor is

iC(t) = C
dvC(t)

dt
(2.1)

and that for an inductor is

iL(t) =
1
L

∫ t

0
vL(τ)dτ . (2.2)

– 28 –



Chapter 2 Graphs and Linear Dynamic Models of Oscillatory Networks

2C

3C

C6

L12

L23L34

45L

L15

L16L56

L26L46

L36

C4

1C5C

Figure 2.1: An LC-circuit that represents an undamped oscillatory network.

With that in mind, we can write the equations for nodes 1 through 5 as follows:

C1
dv1

dt
+

1
L15

∫
(v1 − v5) dτ +

1
L12

∫
(v1 − v2) dτ +

1
L16

∫
(v1 − v6) dτ = 0 (2.3a)

C2
dv2

dt
+

1
L12

∫
(v2 − v1) dτ +

1
L23

∫
(v2 − v3) dτ +

1
L26

∫
(v2 − v6) dτ = 0 (2.3b)

C3
dv3

dt
+

1
L23

∫
(v3 − v2) dτ +

1
L34

∫
(v3 − v4) dτ +

1
L36

∫
(v3 − v6) dτ = 0 (2.3c)

C4
dv4

dt
+

1
L34

∫
(v4 − v3) dτ +

1
L45

∫
(v4 − v5) dτ +

1
L46

∫
(v4 − v6) dτ = 0 (2.3d)

C5
dv5

dt
+

1
L45

∫
(v5 − v4) dτ +

1
L45

∫
(v5 − v4) dτ +

1
L56

∫
(v5 − v6) dτ = 0 (2.3e)

and the one for the center node 6 as:

1
L16

∫
(v6 − v1) dτ +

1
L26

∫
(v6 − v2) dτ +

1
L36

∫
(v6 − v3) dτ

+
1

L46

∫
(v6 − v4) dτ +

1
L56

∫
(v6 − v5) dτ = 0 . (2.3f)
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Differentiating both sides of Equations (2.3), and rewriting the result in matrix-vector form,
we arrive at the following differential-algebraic equation:

B v̈(t) + Lv(t) = 0 , (2.4)

which, written in greater detail, is as follows:
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          C
1

C
2

C
3

C
4

C
5

0          

︸
︷︷

︸
B

          v̈ 1 v̈ 2 v̈ 3 v̈ 4 v̈ 5 v̈ 6

          

︸︷
︷︸
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(t
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−
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−
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+
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+
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+
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1
6

+
1

L
2
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+
1

L
3
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+
1

L
4
6

+
1

L
5
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︸
︷︷

︸
L

          v 1 v 2 v 3 v 4 v 5 v 6

          

︸︷
︷︸

v
(t

)

=

          0 0 0 0 0 0          

︸ ︷
︷︸ 0

.
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2.1.2 Undamped, Linear Mass-Spring Chain with Rigid-Body Motion

In this and in the next section, we look at mass-spring networks—prototypical lumped-
parameter mechanical vibration systems. Mass-spring networks not only are worthy of
study in their own right, but also model other types of systems, such as linearized power
networks, quite well. This further adds to their importance. Here, we consider a simple
linear chain of masses and springs; we will make the connection to power networks later
in the chapter.

Consider a set of n masses connected as in Figure 2.2. There is no damping (no friction).
The masses can move only horizontally, back and forth, as shown in the figure.

Mn
M3M2M1

k12 k23 k34 k n-1,n

yn

y
1 y

2 y
3

���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

Figure 2.2: Undamped, unforced mass-spring network.

Let Mi and yi(t), i = 1, . . . , n denote the vertex weights and displacements, respectively.
The springs are initially at rest. We formulate the dynamic equations through a straight-
forward application of Newton’s second law of motion and Hooke’s law for linear springs:

M1ÿ1 = k12(y2 − y1) (2.5)
...

Miÿi = ki+1,i(yi+1 − yi)− ki−1,i(yi − yi−1) (2.6)
...

Mnÿn = −kn−1,n(yn − yn−1) . (2.7)
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Rewriting in matrix-vector form, we have:




M1

. . .

Mi

. . .

Mn




︸ ︷︷ ︸
B




ÿ1(t)
...

ÿi(t)
...

ÿn(t)




︸ ︷︷ ︸
ÿ(t)

+




k12 −k12

−k12 k12 + k23 −k23

−k23
. . . −kn−1,n

−kn−1,n kn−1,n




︸ ︷︷ ︸
L




y1(t)
...

yi(t)
...

yn(t)




︸ ︷︷ ︸
y(t)

= 0 .

(2.8)

In other words, the equation governing the dynamics of this linear chain of masses and
springs is given by the second-order differential (or differential-algebraic) equation

B ÿ(t) + Ly(t) = 0 . (2.9)

2.1.3 Vibrational Mass-Spring Grid Capable of Rigid-Body Motion

One of the most widely-used linear models for the dynamics of electric power networks is
that of a mass-spring grid, which is a topological generalization of the linear chain that we
considered in the previous section. The mass-spring grid well illustrates how graphs can
be used to model dynamic networks, such as power systems.

Consider an imaginary horizontal plane on which we place n point masses, serving as our
graph vertices and with respective weights given by (M1, . . . ,Mn. The movement of each
node is restricted to be along an imaginary, thin, rigid rod, oriented perpendicularly with
respect to the plane. The nodes are connected to each other through a set of ideal linear
springs that serve as graph edges, with respective weights aij connecting nodes i and j.
Each spring exerts zero vertical force when the two mass nodes at its terminal ends are at
the same vertical position, i.e., zj(t) = zi(t). We shall ignore the effects of gravity.

Let

A = (aij)
4
= Adjacency matrix of spring constants.

We consider only networks with no self-loops, aii = 0 ∀i,
and, by convention, aij = 0 if nodes i and j are not connected.
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D
4
= diag (d1, . . . , di, . . . , dn)

4
= Diagonal matrix of node degrees


di =

n∑

j=1

aij




L
4
= D−A

4
= Laplacian matrix for the mass-spring grid

B
4
= diag (M1, . . . ,Mn)
4
= Diagonal matrix of node weights

hij
4
= Constant horizontal separation between nodes i and j.

rij(t)
4
=

√
h2

ij + [zj(t)− zi(t)]2

4
= Extended separation between nodes i and j,

when the spring connecting them is stretched.

z(t)
4
=




z1(t)
...

zi(t)
...

zn(t)




4
= Vertical node displacement vector (at time t)

f(t)
4
=




f1(t)
...

fi(t)
...

fn(t)




4
= Vertical force vector (at time t)

Consider two nodes i and j, at vertical positions zi and zj , respectively, which are con-
nected by a spring of elasticity aij . We have dropped the time dependence for notational
simplicity, although it should be understood that the position and force terms have a de-
pendence on time t. Looking at Figure (2.3), we note that the force acting on node i, along
the positive z−axis and due to node j, is given by:

f
(j)
i = aijrij sin(αij) = aijrij

zj − zi

rij
= aij(zj − zi) . (2.10)

Note that f
(i)
i = 0 for obvious reasons, and f

(j)
i = 0 if nodes i and j are not adjacent, i.e., if

there is no edge connecting them. The total vertical force acting on node i, due to all other
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z j z i-

z j

h ij

vj

a ij

r ij

f
i
(  )j

z i

v
i

αij

Figure 2.3: Adjacent nodes i and j, at vertical positions zi and zj , respectively. Force f
(j)
i is

the vertical component of the force that acts on node i, due to its connection with node j.

nodes in the graph, is therefore given by

fi =
n∑

j=1

f
(j)
i =

n∑

j=1

aij(zj − zi) . (2.11)

Stacking up these equations (one equation for every node), we obtain the force vector:

f =




f1

...
fi

...
fn




=




∑n
j=1 a1j(zj − z1)

...∑n
j=1 aij(zj − zi)

...∑n
j=1 anj(zj − zn)




= −




∑n
j=1 a1j(z1 − zj)

...∑n
j=1 aij(zi − zj)

...∑n
j=1 anj(zn − zj)




= −




(∑n
j=1 a1j

)
z1 −

∑n
j=1 a1jzj

...(∑n
j=1 aij

)
zi −

∑n
j=1 aijzj

...(∑n
j=1 anj

)
zn −

∑n
j=1 anjzj




= −




d1z1 −
∑n

j=1 a1jzj

...
dizi −

∑n
j=1 aijzj

...
dnzn −

∑n
j=1 anjzj




We note that
f = − (Dz −Az) = −(D−A)z = −Lz . (2.12)
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From Newton’s Law, we know that f = B z̈. We now can readily obtain the equation
governing the dynamic behavior of the mass-spring grid. Noting that B z̈ = −Lz, we
arrive at the dynamic equation of the undamped mass-spring grid:

B z̈ + Lz = 0 . (2.13)

Equations (2.13) and (2.9) are identical in general form. The distinction between them lies
in the Laplacian matrix L that represents the topology and interconnection weights of each
network. For the linear chain example the Laplacian matrix is tridiagonal, whereas in the
mass-spring grid it has a more general structure that depends on the particular way in
which the network vertices are interconnected. We can further generalize our mass-spring
example by not insisting that the network correspond to a planar structure. Non-planar
oscillatory networks can be found in applications such as power systems.

2.1.4 Electric Power Networks

Electromechanical models of large-scale multi-machine power systems constitute another
important class of networks with second-order dynamics. The importance of understand-
ing the behavior of these large-scale systems was highlighted by the repeated failures of
the power grid, resulting in extensive blackouts in the western United States, in the sum-
mer of 1996. From a purely theoretical standpoint, too, power systems motivate a rich set
of problems in analysis, model reduction, and control.

We are concerned with a particular type of power-system representation, namely, the un-
damped, linearized, swing-equation model.1 This simple representation is one that cuts
through the clutter of unnecessary details, and facilitates an understanding of the salient
dynamic features of the system. In particular, we can learn much about a power network’s
behavior by linearizing its governing dynamic equation about an equilibrium operating
position. This linearized model is a natural analogue of the mechanical vibration networks
of the previous sections, and it has a straightforward graph representation. Figure 2.4
shows a simple power network comprising three machines (generators) and two loads [2].

Each bus (represented by a thick horizontal line segment) constitutes a node in the net-
work. A graph representation of this system is shown in Figure 2.5. Generator nodes (or

1The presentation here very closely follows that given in [41].
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G-nodes, as we shall call them) are shown in solid color whereas load nodes (or L-nodes)
are depicted with hollow circles. This will be our convention throughout the thesis.

1 G2 G3

L5 L4

G

Figure 2.4: A seven-node power network with three generator and two load buses.

2

G1

L5 L4

G3

G

Figure 2.5: The graph representation of the three-machine, two-load power network.

We first set our notation. Let

J = diag (M1, . . . ,MnG
)
4
= Real diagonal

matrix of normalized generator inertias

S
4
= Network susceptance matrix (∈ Rn×n)
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v =

[
vG

vL

]
4
= Bus voltage magnitudes (∈ Rn)

δ =

[
δG

δL

]
4
= Bus voltage phase angles (∈ Rn)

pI
G

4
= Mechanical power injection at

generators(∈ RnG)

pI
L(v)

4
= Injected active power at load

buses (∈ RnL)

pI(v) =




pI
G

pI
L


 (∈ Rn)

pN(δ,v) =




pN
G (δ, v)

pN
L (δ, v)


 4

= Active power absorbed by

the network at buses (∈ Rn)

2.1.4.1 Structure-Preserving Swing Model

Representing the generators in classical undamped form, the electromechanical power bal-
ance laws lead to the following nonlinear differential-algebraic equation (DAE) that governs
the power system:

Jδ̈G = pI
G − pN

G (δ, v) (2.14a)

0 = pI
L(v)− pN

L (δ, v) . (2.14b)

The ith component of pN(δ,v) is given by

pN
i (δ, v) = vi

n∑

j=1

[S]ij vj sin(δi − δj) . (2.15)

The factor [S]ij denotes the transmission line susceptance between buses i and j. We have
omitted writing the algebraic balance equations for the reactive power q as these are not
explicitly needed for what follows, although they are important in completing the model
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(2.14).

Linearizing (2.14) about an equilibrium (δ0, v0) (whose computation requires the algebraic
balance equations for q along with the equations in (2.14) above) and assuming approxi-
mate (p,δ) and (q,v) decoupling, we have, in matrix form,



J 0

0 0




︸ ︷︷ ︸
B




∆δ̈G

∆δ̈L


 = −




∂
∂δ

pN
G (δ0, v0)

∂
∂δ

pN
L (δ0, v0)







∆δG

∆δL




= −




LG LGL

LLG LL




︸ ︷︷ ︸
L




∆δG

∆δL




(2.16)

or more compactly,
B∆δ̈ + L∆δ = 0 . (2.17)

The vector ∆δ ∈ Rn denotes the perturbation from the operating point (δ0, v0), and the
matrices B ∈ Rn×n and L ∈ Rn×n are defined as in (2.16). Note that [L]ij , the (ij)th entry
in L, is

[L]ij =





−vi vj [S]ij cos(δi − δj) if i 6= j

−
n∑

`=1, 6̀=i

[L]i` if i = j

(2.18)

Equation (2.17) has the same general form as the dynamic equations (2.13), (2.9), and (2.4)
for the previous cases that we studied. In terms of its analogy with the mass-spring me-
chanical vibration network, it is easily seen that the generator inertias denoted by Ji cor-
respond to positive masses Mi, loads (having no inertia) correspond to weightless masses,
and ∆δ corresponds to the mass displacement vector y(t) (or z(t)) in the mechanical sys-
tems. The same underlying structure describes the systems that we have looked at in this
chapter, by way of examples of oscillatory networks. There must, therefore, be a unifying
theory that can describe all these systems simultaneously. It is a number of the various
facets of that unifying theory that we have investigated in our research and that we will
articulate in this thesis.
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2.2 What’s the Link to Graph Theory?

In all the systems that we have considered so far, there are striking resemblances beyond
the mere general form of the dynamic equations (2.4), (2.9), (2.13), and (2.17), or the diag-
onal form of the node-weight matrix B. Of great significance—and one that we will study
in detail—is the structure of the matrix L and its effects on the modal behavior (natural
frequencies and mode shapes) of the oscillatory network that it represents. The spectral
properties of the matrix pair (L,B) will be our main object of study throughout this thesis.

So far, it is important to notice the following properties of the L matrix:

1. It is symmetric.

2. When there is no isolated node (i.e., when the network is ”connected”), L has positive
diagonal elements.

3. It has non-positive off-diagonal elements.

4. The sum of the entries in each row (and by symmetry, in each column) of L is zero. So
the vector 1 and the eigenvalue λ = 0 form an eigenpair of the network. This corre-
sponds to rigid-body motion wherein the entire network moves as a whole.

5. The structure of L tells us immediately how the network is interconnected. In other
words, we can extract every information about the network topology (including edge
weights) from L. Together with the node-weight matrix B, it is all that we need to find
the dynamic behavior of the network.

The matrix L—which, as noted earlier, in graph-theoretic language is called the Lapla-
cian matrix—plays a crucial role in determining how the system behaves. We will see in
the course of our discussions that if L has, say, acyclic structure (i.e., if the underlying
network has a tree graph representation), then the eigenvectors exhibit sign-alternation
properties in their entries, patterns that are dependent on the index number of the mode
they correspond to; for example, the number of sign alternations in the eigenvector entries,
corresponding to adjacent nodes, increases as the mode number increases.

The Laplacian matrix L falls under the category of M-matrices, which we will describe
later in the thesis. Such matrices have properties that can be exploited in learning more
about how the eigenvector components relate to each other. For example, we will show in
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Chapter 4 that each eigenvector component corresponding to a weightless node (L-node)
is a convex combination of the components corresponding to all its immediate neighbors,
and also a convex combination of all the eigenvector entries in the G-nodes that surround
it (whether or not they are its immediate neighbors).

These insights all are obtained from the properties of the L matrix. It is the fact that the
general structure of this matrix is common among all the oscillatory networks of inter-
est to us—including the sample networks that we have touched on in this chapter—that
makes the study of the Laplacian matrix and its connection to spectral graph theory very
important.

2.3 State-Space Models and Spectral Graph Theory

The undriven, conservative oscillatory networks that we consider in this thesis, some ex-
amples of which we have presented in this chapter, are governed by a dynamic equation
with a second-order differential form,2 as in the following:

B ÿ(t) + Ly(t) = 0 . (2.19)

Here, B
4
= diag (M1, . . . , Mn) is the diagonal matrix of nonnegative node weights, L is the

Laplacian matrix of network admittances (containing topological and edge-weight infor-
mation about the network), and y(t) is the node displacement vector. With a substitution
of variables, we can find a generalized state-space representation for any nondissipative
dynamic network that is governed by (2.19). Simply let x1(t) = y(t) and x2(t) = ẏ(t). The

two portions of the state vector x(t)
4
= [x1(t) x2(t)]

T are related according to the following:

ẋ1(t) = ẏ(t) = x2(t) (2.20)

ẋ2(t) = ÿ(t) =⇒ B ẋ2(t) = B ÿ(t) = −Ly(t) = −Lx1(t) . (2.21)

As expected, the state vector for the system comprises node displacements y(t) and node
velocities ẏ(t). A generalized state-space representation for the system is given by the

2Equation (2.19) has a differential-algebraic form if B has diagonal entries that are zero, corresponding to
weightless nodes
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evolution equation [
I 0
0 B

]

︸ ︷︷ ︸
E

[
ẋ1(t)
ẋ2(t)

]

︸ ︷︷ ︸
ẋ(t)

=

[
0 I
−L 0

]

︸ ︷︷ ︸
F

[
x1(t)
x2(t)

]

︸ ︷︷ ︸
x(t)

. (2.22)

Naturally, for a network with n nodes, the system will have 2n state variables, and hence
2n eigenvalues (including multiplicities) and 2n eigenvectors.3 We have kept (2.22) in the
generalized state-space form

E ẋ(t) = Fx(t)

to accommodate cases in which the network has weightless nodes. If each node has a
strictly positive weight, then B is invertible (and hence so is E), and the generalized state-
space representation (2.22) may be converted to the standard form ẋ(t) = Ax(t). The
ordinary state-transition matrix A can be written as

A =

[
0 I

−B−1 L 0

]
.

The natural frequencies and modal vectors of the oscillatory network are the general-
ized eigenvalues and eigenvectors of the matrix pair (F,E), and are closely related to the
eigenvalues and eigenvectors of (L,B) in (2.19). One way to show this is to apply the
standard technique for finding the solutions of linear, constant-coefficient differential (or
differential-algebraic) equations. That is, let the displacement vector y(t) have the form

y(t) = v ejωt . (2.23)

Inserting (2.23) in (2.19) leads to

(−ω2Bv + Lv
)

ejωt = 0 ,

which further simplifies to the symmetric, generalized eigenproblem

Lv = ω2 Bv . (2.24)

Clearly, v is a generalized eigenvector of the matrix pair (L,B). Moreover, if we let λ

denote the generalized eigenvalue corresponding to v, then ω and λ are related by λ = ω2.

3We are guaranteed to have 2n eigenvectors because of the symmetry of (L,B); in other words, the matrix
pair is non-defective.
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In other words, we are interested in the eigenproblem:

Lv = λBv . (2.25)

The network’s 2n natural frequencies ω are obtained from the n generalized eigenvalues λ

of (L,B) as follows:
ω = ±

√
λ .

It is straightforward to verify that jωi and −jωi, i = 1, . . . , n, are generalized eigenvalues
of the pair (F,E), with respective generalized eigenvectors

[
vi

jωi vi

]
and

[
vi

−jωi vi

]
.

Clearly, the graph model of a conservative oscillatory network ties directly with the state-
space representation of the system, and hence with the network’s dynamic behavior. Know-
ing the eigenvalues and eigenvectors of the Laplacian/node-weight matrix pair (L,B) is
tantamount to knowing the natural frequencies and mode shapes of the network’s oscil-
lations. It is this transparency between the graph and state-space models that motivated
us to undertake the study culminating in this thesis. Our aim has been to bridge the gap
between graph theory (which provides a wealth information about network spectra) and
the traditional state-space analysis, which describes the dynamics of the system.
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Chapter 3

M-Matrices, Laplacian Matrices, and a
Symmetric Generalized Eigenproblem

In Chapter 2, we saw how the Laplacian matrix arose in every one of the dynamic networks
that we surveyed. It was there, too, that we outlined some of the more visible features
of the matrix pair (L,B). This chapter, and the early part of the next, form the matrix-
theoretic backbone of the thesis. Here, we shall focus on the details of the transparent
features of the Laplacian matrix that we identified previously. We also will delve into
other, less apparent, properties of Laplacian matrices, and use them to develop new results
governing the modal behavior of dynamic graphs.

There are many excellent review articles and book chapters that deal with Laplacian matri-
ces [59, 60, 61, 63, 62, 29, 57] and even a book that focuses on their properties [14]. Indeed,
much is known about them. In this chapter, we will cover the essentials that we need for
our study of oscillatory networks.

Laplacian matrices form a subset of a broader class of matrices known as M-matrices; to be
more precise, Laplacian matrices are a subset of singular M-matrices (also termed matrices
of class K0 by Fiedler and Pták [31]). We will survey some of the important properties of
M-matrices, and use them to establish certain features of Laplacian matrices that we will
need in our subsequent discussion.

In this chapter, too, we describe the eigenproblem that lies at the heart of the dynamic
analysis of linear oscillatory networks. To set our language and notation, we recall the
eigenproblem (2.25), written below for the ith mode of a linear oscillatory network:

Lvi = λi Bvi , i = 1, . . . , n . (3.1)

We will consider a symmetric generalized eigenproblem (SGEP), as depicted by (3.1),
where B is a diagonal matrix of nonnegative entries, and L is the Laplacian matrix of the
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underlying network graph. First, we define the two types of graph vertices that appear in
the oscillatory networks that we study.

Definition 3.1 (Gravis Node)
A gravis node (or equivalently, a G-node or a G-type node), is one whose weight is strictly positive,
but finite. The name is inspired from the Latin word, meaning ”weighty.”

Definition 3.2 (Levis Node)
A levis node (or equivalently, an L-node or an L-type node), is one whose weight is zero. The name
is inspired from the Latin word, meaning ”light-weight.”

You already have seen examples of these two types of nodes. As a mnemonic, think of G-
nodes as ”generators” in a power system, and L-nodes as ”loads.” A generator has inertia
(hence a positive node weight) whereas a load does not. Node 6 in Example 2.1.1 and
nodes 4–7 in Example 2.1.4 are L-nodes.

These two types of nodes are qualitatively different; the presence of even one L-node
changes the dynamic equation governing the network, from a second-order differential
equation to a second-order differential-algebraic (DAE) equation. As we shall see in this
chapter, the presence of L-nodes also introduces eigenvalues at infinity in the SGEP (3.1),
because the presence of such nodes makes the node-weight matrix B singular. It is our task
in this chapter, and in the early part of the next, to sort out this and other matrix-theoretic
issues, and set the stage for our analysis of the dynamics of linear oscillatory networks.

3.1 M-Matrices and Some of Their Salient Features

In many applications, matrices arise that have nonpositive off-diagonal and nonnegative
diagonal entries, as in

Q =




+q11 −f12 −f13 · · · −f1,n−1 −f1n

−f21 +q22 −f23 · · · −f2,n−1 −f2n

...
...

−fn1 −fn2 −fn3 · · · −fn,n−1 +qnn




, (3.2)
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where the fij and qii are nonnegative. These matrices can be expressed as

Q = sI− F , where s > 0 and F º 0 . (3.3)

Naturally, from (3.3) we expect that there is a strong connection between nonnegative ma-
trices and matrices with structure (3.2). Indeed, this is the case, and we shall make occa-
sional use of one of the most celebrated results in the theory of nonnegative matrices, the
Perron-Frobenius theorem.

M-matrices, which are a subset of those depicted by (3.2), arise in many different contexts,
including graph-theoretic settings; see, for example, Fiedler and Pták [31], or Fiedler [28],
where the terms ”class K” and ”class K0” are coined, in reference to nonsingular and sin-
gular M-matrices, respectively.

Laplacian matrices, as we will show, fall under singular M-matrices (class K0). It is also
known that any principal submatrix of an irreducible Laplacian matrix is nonsingular—a
property that will play an important role in our subsequent work. In fact, this property
is known to hold for all irreducible singular M-matrices; we will go over the proof later
in this chapter. Principal submatrices of Laplacian matrices are also called ”grounded”
Laplacian matrices, a term that almost certainly is inspired from applications in electronic
circuit theory, where one or more nodes of the network are grounded. Grounded Laplacian
matrices for connected networks are nonsingular M-matrices (class K).

There are several excellent references that discuss the properties of M-matrices in detail.
For example, see the seminal paper by Fiedler and Pták [31], the indispensable book by
Fiedler [28], the classic text by Berman and Plemmons [3], the ubiquitous reference volume
by Horn and Johnson [48], and a readable textbook by Graham [40]. Although its coverage
of M-matrices is scant, the textbook by Bapat and Raghavan [1] is a valuable resource for
nonnegative matrices.

We begin with a few preliminary definitions, lemmas, and theorems, the proofs for some
of which we relegate to the reference texts mentioned above.

Definition 3.3 (Cogredient Matrices)
Two n× n matrices A and G are cogredient, if G = PAPT for some permutation matrix P.
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Definition 3.4 (Reducibility)
An n× n matrix A is reducible if it is cogredient with

G =

[
C 0
D E

]
,

where C and E are square matrices. Naturally, a symmetric matrix A is reducible if it is cogredient
with

G =

[
C 0
0 E

]
,

where C and E are symmetric. A matrix is irreducible if it is not reducible.

Theorem 3.5 (The Perron-Frobenius Theorem)

(a) (Perron) Let A Â 0 be an n× n matrix. Then there exists x Â 0 such that Ax = %(A) x; the
spectral radius %(A) is an algebraically (and hence geometrically) simple eigenvalue of A; and any
other eigenvalue λ(A) satisfies |λ(A)| < %(A).

(b) (Frobenius) Let A < 0 be an irreducible n× n matrix. Then Ax = %(A) x for some x Â 0;
any eigenvalue λ(A) other than %(A) satisfies |λ(A)| ≤ %(A); the eigenvalue %(A) is simple
(algebraically and hence geometrically); and any other eigenvalue λ(A) whose modulus satisfies
|λ(A)| = %(A), is also simple.

Lemma 3.6
A nonnegative matrix F is irreducible if, and only if, for every (i, j), there exists a natural number
q such that f

(l)
ij > 0. 1

Proof: See Berman and Plemmons [3, Theorem 2.1, p. 29].

Corollary 3.7
Let F and f

(k)
ij be as defined in Lemma 3.6. Then, for some r ≥ 1,

r∑

i=0

Fi = F + F2 + · · ·+ Fr Â 0 .

1By f
(l)
ij we mean the (i, j)th entry of Fl.
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Definition 3.8 (Z-Matrices)
Matrices of class Zn (or Zn-matrices) are real, square matrices of size n ≥ 1, whose off-diagonal
entries are nonpositive. That is,

Zn =
{
Z = (zij) ∈ Rn×n | zij ≤ 0 , i 6= j

}
. (3.4)

The union of all Zn is

Z =
∞⋃

n=1

Zn .

Where the size of a Zn-matrix is unambiguous, or somehow not pertinent to the context, we simply
refer to it as a Z-matrix, or as a matrix of class Z.

Theorem 3.9 (Equivalence Properties of Z-Matrices)
Let A ∈ Z. Then the following conditions are equivalent to each other:
(a) Each real eigenvalue of A is positive;
(b) All principal minors of A are positive.

Proof: See Fiedler and Pták [31, Theorem 4.3] for the proof of this equivalence pair as well
as others.

Next, we give a simple definition of an M-matrix:

Definition 3.10 (M-Matrices)
A matrix Q is said to be an M-matrix if it is expressible in the form Q = sI− F, with F º 0 and
s ≥ %(F), the spectral radius of F. More specifically,

1. s > %(F) means Q is a nonsingular M-matrix, also referred to as a matrix of class K.

2. s = %(F), i.e., if Q = %(F) I − F means Q is a singular M-matrix, also known as a matrix of
class K0. Furthermore, if Q ∈ K0, then Q̂ = Q + εI ∈ K for any ε > 0.

Lemma 3.11 (Convergent Nonnegative Matrices)
The n × n nonnegative matrix H is convergent, i.e., %(H) < 1, if, and only if, (I −H)−1 exists
and

(I−H)−1 =
∞∑

k=0

Hk < 0 .

Proof: See Berman and Plemmons [3, p. 133].
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We now have all the necessary ingredients to prove the following well-known theorem for
nonsingular M-matrices.

Theorem 3.12 (Inverse Positivity of Irreducible, Nonsingular M-Matrices)
Let A be a nonsingular M-matrix. Then A−1 < 0. If, in addition, A is irreducible, then A−1 Â 0.

Proof: From the definition of a nonsingular M-matrix, we know that for s > %(F),

A = sI− F = s

(
I− F

s

)
.

Therefore,

A−1 =
1
s

(
I− F

s

)−1

.

We know that %(F
s ) < 1, because s > %(F). Therefore, according to Lemma 3.11, A−1 can

be rewritten as follows:

A−1 =
1
s

∞∑

k=0

Fk

sk
. (3.5)

Each term in the summation is nonnegative, so A−1 < 0.

If A is irreducible, then so is F
s . Corollary 3.7, then, states that the right-hand side of (3.5)

is strictly positive, i.e., A−1 Â 0. The proof is complete. ¤

Corollary 3.13
Let A be a symmetric, reducible, nonsingular M-matrix, with degree of reducibility r − 1; without
loss of generality, we can assume that A is in block diagonal form

A =



A1 0

. . .

0 Ar


 , (3.6)

where each Ai , i = 1, . . . , r, is irreducible. Then A−1 < 0, and is of the form

A−1 =



A−1

1 0
. . .

0 A−1
r


 , (3.7)
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where each A−1
i Â 0. The diagonal entries are positive, i.e.,

[
A−1

]
ii

> 0, whether or not A is
irreducible.

Before proving the next important theorem—on proper principal submatrices of irreducible
singular M-matrices—we need the following two lemmas.

Lemma 3.14 (Two Properties of Non-singular M-Matrices)
Let A ∈ Z. Then each of the following two properties is equivalent to the statement: ”A is a non-
singular M-matrix.”
(a) Every real eigenvalue of A is positive;
(b) All principal minors of A are positive.

Proof: See Fiedler [28, Theorem 5.1].

Lemma 3.15 (Rank of an Adjugate Matrix)
Let A be an n× n matrix (n ≥ 2), and denote its adjugate matrix by adj (A). Then

rank (adj (A)) =





n if rank (A) = n

1 if rank (A) = n− 1

0 if rank (A) ≤ n− 2 .

(3.8)

In particular, if A has a simple eigenvalue at 0, then

adj (A) =
µ(A)
yTx

xyT , (3.9)

where µ(A) is the product of the n − 1 non-zero eigenvalues of A, and x and y are such that
Ax = 0, and yTA = 0. If, further, A is known to be symmetric—as is the case with the Laplacian
matrix of a connected graph—then

adj (A) =
µ(A)
‖x‖2

xxT . (3.10)

Proof: See Magnus and Neudecker [56, p. 41].

The following theorem establishes two important properties of irreducible singular M-
matrices. We will make use of this theorem when we discuss the properties of the Lapla-
cian matrix of a connected graph, as well as in the context of Schur contraction of graphs
in Chapter 4.
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Theorem 3.16 (Fiedler and Pták [31, Theorems 5.6 and 5.7])
Let A be an irreducible, singular M-matrix of order n. Then
(a) rank (A) = n− 1;
(b) there exists a vector x Â 0 such that Ax = 0;
(c) each proper principal submatrix of A (i.e., each principal submatrix of A other than A itself) is
a non-singular M-matrix.

Proof: (a) Let A = αI−F, with α > 0 and F º 0. According to Definition 3.10, A is a singu-
lar M-matrix when α = %(F). Also, if A is irreducible, then so is F. The Perron-Frobenius
theorem 3.5 establishes that %(F) is a simple eigenvalue with an associated eigenvector
x Â 0. We know, however, that the smallest eigenvalue of A is given by

λmin(A) = α− %(F) = 0 .

It must, therefore, be algebraically simple, so rank (A) = n− 1.

(b) Clearly,
Ax = (α− %(F))x = 0 · x = 0 .

(c) To prove that each proper principal submatrix of A is a nonsingular M-matrix, we recall
the Cauchy-Binet identity:

A adj(A) = det(A) I . (3.11)

Since A is singular, det (A) = 0, and thus (3.11) becomes:

A adj (A) = 0 .

Based on Lemma 3.15, we can write adj (A) = ζyxT, where the positive vectors x and y are
such that Ax = 0 and yTA = 0, respectively. We know ζ 6= 0 because rank (adj (A)) = 1.
We need to show that ζ > 0. The proof of this is by contradiction. Suppose ζ < 0. Then by
the continuity of the determinant, there would exist an ε > 0 such that adj (A + εI) ≺ 0.
But this cannot be, because according to Definition 3.10, we know that A + εI ∈ K, and
every one of its principal submatrices must have a positive determinant. Hence, we must
have ζ > 0. We have thus shown that every entry in adj (A)—equivalently, every order-
(n − 1) principal minor of A—is positive. Clearly, all principal minors of order less than
n− 1, too, will be positive. This completes the proof (see Theorem 3.9 and Lemma 3.14). ¤
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Before we proceed to discuss Laplacian matrices, we present a few more preliminaries.

Theorem 3.17
Let A ∈ Z be a symmetric matrix. Then
(a) A ∈ K, i.e., A is a nonsingular M-matrix, if, and only if, it is positive definite. A symmetric,
nonsingular M-matrix is also known as a Stieltjes matrix.
(b) A ∈ K0, i.e., A is a singular M-matrix, if, and only if, it is positive semi-definite.

Proof: See Fiedler [28, Theorems 5.2 and 5.5, pp. 121, 123].

Theorem 3.18
Consider an n× n matrix A ∈ Z. If there exists a vector x Â 0 such that Ax º 0, then A ∈ K0.

Proof: See Fiedler [28, Theorem 5.11, p. 124].

3.2 Salient Features of the Laplacian Matrix

We are now in a position to enumerate some of the important properties of the Laplacian
matrix. From Appendix B we know that the Laplacian matrix is defined as L = D − A,
where D is the matrix of node degrees and A is the adjacency matrix of the graph.

Property 1. The Laplacian matrix L associated with an undirected graph is symmetric. Therefore,
all its eigenvalues are real.

Property 2. Let F be the oriented node-edge incidence matrix for a graph G with n nodes and m

edges. Let E = diag (e1, . . . , em) denote the diagonal matrix of the m edge weights (each el > 0 by
definition). Then

L = FEFT . (3.12)

Proof: See Mohar [61], where he uses slightly different notation.

In Property 2, FEFT is independent of the orientation that is chosen for each of the graph
edges.

Property 3. Let x denote an arbitrary vector in Rn. Then

〈x, x〉L
4
= xTLx =

∑

(i,j)∈E

aij(xi − xj)2 =
n−1∑

i=1

n∑

j=i+1

aij(xi − xj)2 . (3.13)
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Proof: Since L = FEFT, we have:

xTLx = (xTF)E(FTx) .

However, FTx is a vector, each of whose entries is indexed by the edges of the graph, with
its `th entry equal to xi − xj , where nodes i and j are the terminal nodes of the `th-edge.2

The result follows directly from this observation.

Corollary 3.19
The Laplacian matrix L is positive semi-definite.

Proof: This follows directly from the nonnegativity of the right-hand side of (3.13) in Prop-
erty 3. Another method, which we mention only in passing, uses the Gershgorin eigenvalue
disk theorem to show that the Gershgorin disks corresponding to L all lie in the closed
right-half complex plane. Therefore, the eigenvalues are all non-negative, and L is posi-
tive semi-definite.

Property 4. The Laplacian matrix L is singular. The multiplicity of the eigenvalue 0 of L is equal
to the number of connected components of the graph G. Hence, if G is a connected, then L is
irreducible, and has rank n− 1.

Proof: Singularity of L is proven by noting that every row (and column, for that mat-
ter) of L sums to zero. Hence, the matrix is singular. To prove that the zero eigenvalue
has multiplicity equal to the number of components of the underlying graph G, we sim-
ply re-number the vertices of G, so that the vertices corresponding to each component are
stacked together—we can do this without loss of generality, as this renumbering is equiv-
alent to pre- and post-multiplying the original Laplacian matrix by a permutation matrix.
Let G(1), . . . ,G(`) be the components of G, with respective sizes p1, . . . , p`. The adjacency
matrix (and hence also the Laplacian matrix) of G will be block diagonal, because there are
no edges connecting any of the nodes of one component to any node in another compo-
nent. Furthermore, the number of blocks will be `, equal to the number of components.
The Laplacian matrix L will then have the following block-diagonal form:

L =



L1 0

. . .

0 L`


 .

2If we think of the components of x as the potentials at the nodes of a graph, then each entry of the vector
FTx is the potential difference across the corresponding edge of the graph.
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Clearly, since each row (and column) of L sums to zero, then so does every row (and
column) of Li , i = 1, . . . , `. This means that each of L1, . . . ,L` is singular. Now, we
also know that each of the subgraphs G(1), . . . ,G(`) is maximally connected, by definition;
therefore, there is no permutation pre- and post-multiplication that can transform any of
the Li’s into a block diagonal form. So each Li has exactly one zero eigenvalue. Given that
L is block diagonal, we know that λ(L) =

⋃`
i=1 λ(Li), where λ(Li) denotes the spectrum of

matrix Li. Hence, L has exactly ` zero eigenvalues, equal to the number of its components.
Also see Mohar [61, Proposition 2.3].

Corollary 3.20
The eigenvalue of L at 0 is simple if, and only if, L is irreducible.

Property 5. The vector 1 is always an eigenvector of the Laplacian matrix L associated with the
eigenvalue at 0. If the graph is connected, i.e., if L is irreducible, then 1 is the only eigenvector
associated with the eigenvalue 0.

Proof: As mentioned earlier, each diagonal entry in L is the negative of the sum of the
diagonal entries of its corresponding row (and, by symmetry, its column). Therefore, L1 =
0. When L is irreducible, the eigenvalue at 0 is simple, and hence 1 becomes the only
eigenvector associated with it.

Property 6. The Laplacian matrix L belongs to the class K0.

Proof: From the definition of the Laplacian matrix, we know that L ∈ Z. From Property 5
and Theorem 3.18, it follows that L ∈ K0.

3.3 Grounded Laplacian Matrices and Their Properties

A grounded Laplacian matrix is a principal submatrix of an ordinary Laplacian matrix.
As such, it has a few salient features that we summarily describe below, and prove the
important ones among which, in the sequel.

1. A grounded Laplacian matrix is symmetric, as is the ordinary Laplacian matrix from
which it was obtained.
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2. A grounded Laplacian matrix is nonsingular, i.e., any principal submatrix of an ordinary
Laplacian matrix is invertible (proper principal submatrix, i.e., of size strictly smaller
than the original). As the ordinary Laplacian matrix is positive semi-definite, it must be
that any principle submatrix of it is positive definite.

3. We know that the ordinary Laplacian matrix is an M-matrix, and that any principal
submatrix of an M-matrix must also be an M-matrix. Therefore, the second property
implies that a grounded Laplacian matrix must be a nonsingular M-matrix; we know
already that the ordinary Laplacian matrix is a singular M-matrix.

4. As a nonsingular M-matrix, the following can be said of a grounded Laplacian:

(i) If the grounded Laplacian matrix is irreducible, then its inverse is strictly positive
in all its entries.

(ii) If the grounded Laplacian matrix is reducible, then—without loss of generality,
and based on its symmetry—we can consider it to be block diagonal. Each di-
agonal block of the grounded Laplacian can then be considered to be irreducible.
Hence, the inverse of such a grounded Laplacian would be block diagonal as well,
with each diagonal block being strictly positive in all its entries.

(iii) The Schur complement of any principal submatrix of a grounded Laplacian is a
non-singular M-matrix, is positive definite, and is in fact a grounded Laplacian
matrix in its own right.

3.4 A Symmetric Generalized Eigenvalue Problem (SGEP)

In the cases of interest to us, matrix L is real, symmetric, positive semi-definite, and, in fact,
a Laplacian matrix. The matrix of node weights B is diagonal, positive semi-definite, and
possibly singular, with rank nG equal to the number of G-nodes in the network. Letting nL

denote the number of L-nodes, it must be that nG + nL = n. In the power-network context,
n is the total number of nodes in the power grid and nG the number of generators; the rank
deficiency n− nG is simply nL, the number of load nodes in the network.

The symmetric generalized eigenproblem (SGEP) that we consider in this thesis can be
written as follows:

Lvi = λi Bvi i = 1, . . . , nG (Finite eigenvalues) (3.14)

Bvi = 0 i = nG + 1, . . . , n (Infinite eigenvalues) (3.15)
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where the eigenvectors corresponding to the finite eigenvalues are B-orthonormal, i.e.,
〈vi,vj〉B = vT

i Bvj = δij for i, j = 1, . . . , nG, as we will show.

Since we have mentioned ”finite” eigenvalues, it is worthwhile to describe why and how
the SGEP of interest to us can have both finite and infinite eigenvalues. Without loss of
generality, let the node-weight matrix be given by B = diag (M,0), where the number of
zeros on the diagonal correspond to the L-nodes in the graph, and M is the diagonal matrix
of G-node weights. Partitioning the Laplacian matrix and the eigenvector v accordingly,
we can write our SGEP as

β

[
LG LGL

LT
GL LL

][
vG

vL

]
= α

[
M 0
0 0

][
vG

vL

]
. (3.16)

Rewriting (3.16) by collecting terms to one side, we obtain the following equation:

[
βLG − αM βLGL

βLT
GL βLL

][
vG

vL

]
=

[
0
0

]
. (3.17)

The characteristic polynomial for (L,B) is obtained by setting the determinant of the par-
titioned matrix on the left-hand side of (3.17) equal to zero. That determinant, according
to Theorem 4.4 (to appear in Chapter 4), is:

det

[
βLG − αM βLGL

βLT
GL βLL

]
= det (βLL) det

(
βLG − αM− βLGL

(
1
β
L−1

L

)
βLT

GL

)

= βnL det (LL) det
(
β

(
LG − LGLL−1

L LT
GL

)
− αM

)

= βnL det (LL) det
(
βL[L] − αM

)
, (3.18)

where L[L]
4
= LG − LGLL−1

L LT
GL is the Schur complement of LL in L, a matrix that we will

discuss in great detail in Chapter 4.
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3.4.1 Irreducibility, Regularity, and Definiteness

Definition 3.21 (Joint Reducibility of Symmetric Matrix Pairs)
A symmetric matrix pair (F,G) is called jointly reducible—alternatively, F is said be reducible
relative to G—if a permutation matrix P exists such that

PFPT = diag (F1,F2, . . . ,Fr)

and

PGPT = diag (G1,G2, . . . ,Gr) ,

where r ≥ 2, and
size (Fi) = size (Gi) = ni ≥ 1 , i = 1, . . . , r .

A symmetric matrix pair is said to be jointly irreducible if it is not reducible. If r is the largest
integer for which each matrix pair ((Fi,Gi)), i = 1, . . . , r, is jointly irreducible, then we say that
the degree of reducibility of (F,G) is r − 1; an irreducible matrix pair has degree or reducibility 0.

Furthermore, if one of the two matrices, say G, is the identity matrix BI , then we only talk about
the reducibility (or irreducibility) of F, without the burden of specifying a matrix pair.

For cases of interest to us (where G
4
= B is a diagonal matrix), joint irreducibility of the

matrix pair (L,B) is equivalent to the irreducibility of L alone. This is because for every
permutation matrix P and diagonal matrix B, it is always the case that PBPT is a di-
agonal matrix. We know, also, that L is irreducible if, and only if, the graph to which it
corresponds is connected. In this thesis, unless otherwise specifically noted, the graphs
that we consider are connected, and hence their Laplacian matrices are irreducible. In
other words, by and large, we will consider jointly irreducible matrix pairs (L,B).

Definition 3.22 (Singular and Regular Matrix Pairs)
A square matrix pair (F,G) is said to be SINGULAR if for all λ,

det (F− λG) = 0 .

Otherwise, it is called REGULAR.
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Often, but not always, a matrix pair (F,G) is singular because the null spaces of F and G
have a non-trivial intersection. In that case, det (F− λG) = 0 for all values of λ, because
any vector in the joint null space of F and G will also be in the null space of (F− λG). An
example where two matrices F and G do not have overlapping null spaces, but for which
the matrix pair (F,G) is singular, is given by Saad [70]:

Example 3.23

F =

[
1 0
1 0

]
G =

[
0 2
0 2

]
.

Clearly,

det (F− λG) = det

[
1 −2λ

1 −2λ

]
= 0 ,

for all values of λ.

Note that neither F nor G is symmetric. In this example, F and G, although having disjoint

right null spaces, do have overlapping left null spaces; in fact, the vector
[
1 − 1

]T
lies in

the joint left null space of F and G. The following example comprises a matrix pair having
neither left nor right overlapping null spaces; yet, they make for a singular pair.

Example 3.24

F =




1 0 0
0 0 1
0 0 0


 G =




0 −1 0
0 0 0
0 0 −1


 .

We have

det (F− λG) = det




1 λ 0
0 0 1
0 0 λ


 = 0 , ∀λ . (3.19)
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In the cases of interest to us, we need not worry about the Laplacian/node-weight matrix
pair (L,B) being singular. To see this, partition the matrix pair as follows:

L =

[
LG LGL

LT
GL LL

]
B =

[
M 0
0 0

]
,

where the subscripts G and L refer to G-nodes and L-nodes, respectively, and GL refers to
coupling terms between the two types of nodes. The matrix of G-node weights is M =
diag (M1, . . . , Mr), where r = nG is the number of G-nodes in the graph. Constructing
det (F− λG), we have:

det (F− λG) =

[
LG − λM LGL

LT
GL LL

]
. (3.20)

From Theorem 4.4 (yet to come), so long as LL is nonsingular (and this is the critical re-
quirement) we can write the determinant of the partitioned matrix in (3.20) as follows:

det (F− λG) = det (LL) det (LG − λM− LGLL−1
L LT

GL) . (3.21)

When LL is nonsingular, the first factor det (LL) is nonzero, and the second, ”Schur com-
plement” determinant is not identically zero for all λ, because M is nonsingular; that is,
the matrix pair (LG − LGLL−1

L LT
GL,M) is a regular pair because M is nonsingular. As we

stated earlier, the critical requirement here is that LL be nonsingular. In terms of graph
interconnections, this means that there should be no isolated cluster of L-nodes (not even
a cluster of size 1). This is the case for all the oscillatory networks of interest to us, because
a cluster of isolated L-nodes has no dynamics of its own; here, we may think of a group
of load nodes in a power network. By themselves, load nodes do not have dynamics.
The generators in the power network are the nodes that have inertia, and hence introduce
dynamics into the network.

Definition 3.25 (Definite Matrix Pairs)
The symmetric pair (F,G) is called DEFINITE if

µ(F,G)
4
= min

x∈Rn

‖x‖2=1

√
(xT Fx)2 + (xT Gx)2 > 0 . (3.22)

For the pair (F,G) to be definite, it is not necessary for either F or G to be nonsingular.
Uhlig [75] showed that so long as µ(F,G) > 0, there is a pair (γ, σ) such that Ĝ = γG−σF
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is positive definite, provided n > 2. In the cases of interest to us, the symmetry and
regularity of the matrix pair guarantee that µ(L,B) > 0, because the only way it could
be zero is if L and B have null spaces (left of right) which nontrivially overlap. We know
this to be not the case with the matrix pairs involving irreducible L and diagonal positive
semi-definite B.

Definiteness of a symmetric matrix pair is a generalization of the same concept in the ordi-
nary symmetric eigenproblem. Among other things, Inequality 3.22 guarantees that even if
neither F nor G is invertible, the pair can always be transformed into another pair (F̂, Ĝ),
where Ĝ is positive definite. However, we will not be performing this kind of transforma-
tion, because we lose the physical meanings of the entries in the matrices (and their graph
interpretations) if we were to do so.
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Chapter 4

Schur Contractions and Other Structural
Metastases of Graphs

4.1 Introduction and Contributions

This chapter marks the beginning of our coverage of the modal properties of graphs. After
going over some additional matrix-theoretic essentials, we start to collect on the invest-
ment we made in Chapter 3, where we learnt about M-matrices and their salient features.
We will develop a few interesting results about the structural properties of graphs, and
discuss how they relate to the graph’s modal behavior.

In a latter part of the chapter we examine certain rank-one perturbations to graphs, de-
velop expressions for the error introduced into the governing Laplacian matrices, and de-
rive first-order eigenvalue sensitivity expressions that bring out, in a transparent manner,
the dependence of the eigenvalue sensitivity expression on the parameter the rank-one
perturbation (such as the weight of the edge that has been added to the graph).

It has long been known, at least in the power-system community, that to study the modes
of oscillation of a power network (subject to the linearization and negligible damping as-
sumptions that we mentioned in Chapter 2) the matrix pair (L,B) is best converted to a
smaller-sized (but dynamically equivalent) one that includes only generators (G-nodes),
and no loads (L-nodes). We call this process the ”Schur contraction” of a graph with re-
spect to its L-nodes. The smaller sized matrices that we mentioned are precisely the Schur
complements of L and B with respect to their entries that correspond to the L-nodes. This
is why we study Schur complements in this chapter; the transformation is at the heart of
what is done to deal with the presence of L-nodes in a graph.

One main problem with Schur contraction is that physical intuition about the original net-
work topology is all but lost when the Laplacian matrix for the graph (which contains the
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topological information in a very accessible and transparent form) is converted to a Schur
complement matrix. The results we discuss in this chapter—regarding the way L-nodes
contract, as well as what happens to their neighboring nodes—is intended to assuage that
loss of topological intuition when we Schur-contract a graph with respect to any subset of
its L-nodes. We have sprinkled the chapter with examples that illustrate the main points
that we make about Schur contraction, and the topological changes that such a contraction
brings about to a dynamically-equivalent graph that has fewer nodes.

Our contributions in this chapter can be summarized as follows:

• We collect under the proverbial one roof, the essential matrix theory related to Schur
complements and partitioned matrices. This material, with the notable exception of
the outstanding survey article by Ouéllette [66] (which contains far more than what we
need here) is scattered in the literature. It is hoped that our succinct coverage assists
future research in this area and prevents unnecessary time spent fishing for the same
results that have long been known to the applied mathematics community.

• Using properties of Laplacian matrices and the inverse-nonnegativity of nonsingular
M-matrices, we show that the eigenvector components (also known as characteristic
valuations) associated with the L-nodes in a graph are obtained through a convex com-
bination of nodes that border them. These same characteristic valuations can be ob-
tained, as we will show, from the G-nodes that ”surround” any connected subgraph
of L-nodes—even if those G-nodes are not adjacent to a particular set of L-nodes in
that subgraph. By ”surround” here we have a particular meaning in mind. Consider
an L-node whose eigenvector component we want to compute (for any finite oscilla-
tory mode). Then the G-nodes whose characteristic valuations must enter into a convex
combination to give the valuation for the L-node, are all those that satisfy one of the
following two conditions:

1. every G-node that is adjacent to the L-node.

2. every G-node between which and the L-node exists a path consisting entirely of
L-nodes.

This result—albeit proven using a very elementary property of M-matrices—is impor-
tant because it enables us to understand several things about the dynamics of graphs
more meaningfully. Through examples in this chapter, we illustrate some of these
points. In a subsequent chapter, where we discuss properties of the mode shapes of
graphs (as well as tree graphs), we will make use of the result concerning the con-
vex combination dependence of L-node eigenvector components on their surrounding

– 62 –



Chapter 4 Schur Contractions and Other Structural Metastases of Graphs

nodes. The convex-combination result that we develop here will turn out to be critical in
extending—to graphs with L-nodes—the proof of an important theorem by Fiedler [27]
concerning the number of components induced on a graph by the nonnegative compo-
nents of each of its eigenvectors.

• Using the inverse-positivity property of irreducible, nonsingular M-matrices, we prove
that when a graph is Schur contracted with respect to any subset of its L-nodes, the
nodes adjacent to any of the Schur-contracted L-nodes become fully connected. This
feature has been empirically observed by, especially by those who study power systems.
However, so far as we know, the precise mathematical formulation that we develop in
this chapter—a formulation that explains the very phenomenon of fully-connectedness
after Schur contraction—is new; it puts a mathematical justification over what has been
observed by engineers in the past.

• In the latter part of this chapter, we discuss a class of dynamic order-preserving metas-
tases of a graph (i.e., mutations of a graph that leave the number of G-nodes intact). In
particular, we study a rank-one perturbation that results from a single edge addition.
We will also look at the addition of L-nodes to a graph (which leaves the dynamic order
intact, after Schur contraction). Interesting conclusions can be reached about the modal
properties after, say, L-node addition, if it is done in certain specific ways. We will use
the convex-combination results from the earlier part of the chapter to show (and illus-
trate by example) how a cluster of L-nodes connected to only one G-node will have
constant eigenvector valuations equal to that of the G-node. We also show how if an
L-node is added as a pendant node to any graph, it will not alter the dynamics of that
graph. Corollaries of this type, to the results we prove early in the chapter, are plenty.

4.2 The Schur Complement

Definition 4.1 (Schur Complement)
Consider a square partitioned matrix

H =

[
Q R
S T

]
, (4.1)
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where Q and T are principal submatrices of H. If Q is nonsingular, then we denote by H〈Q〉 (or
(H/Q)) the Schur complement of Q in H, defined as follows:

H〈Q〉
4
= (H/Q)

4
= T− SQ−1R . (4.2)

Similarly, if T is nonsingular, then the Schur complement of T in H is

H〈T〉
4
= (H/T)

4
= Q−RT−1S . (4.3)

Theorem 4.2
Consider an n × n matrix H ∈ K, and let Q be a principal submatrix of H, as in (4.1). Then
H〈Q〉 ∈ K, i.e., the Schur complement of Q in H is of class K.

Proof: See Fiedler [28, Theorem 5.13, pp. 125–126]

The following theorem, which we need for our purposes, is one that we have not seen
stated or proven anywhere, although it is very straightforward to show, and must already
be known:

Theorem 4.3
Consider a singular M-matrix H, and let T be a nonsingular principal submatrix of H. Then
H〈T〉, the Schur complement of T in H, is a singular M-matrix.

Proof: Without loss of generality, let H be partitioned as in (4.1). From Theorem 3.16, we
know that

• rank (H) = n− 1;

• 0 is a simple eigenvalue of H; and

• Ax = 0 for some x Â 0.

Partitioning x conformally with H, we have

[
Q R
S T

][
x1

x2

]
=

[
0
0

]
. (4.4)

We rewrite the bottom portion, and solve for x2:

Sx1 + Tx2 = 0 =⇒ x2 = −T−1Sx1 .
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Inserting the expression for x2 into the top portion of (4.4), we obtain:

(
Q−RT−1S

)
︸ ︷︷ ︸

H〈T〉

x1 = 0 =⇒ H〈T〉 x1 = 0 . (4.5)

The Schur complement matrix H〈T〉 is a Z-matrix, because Q ∈ Z, R ¹ 0, S ¹ 0, and
T−1 < 0 (since T ∈ K). We have shown that H〈T〉 ∈ Z and that H〈T〉x1 º 0 for some
x1 Â 0. According to Theorem 3.18, H〈T〉 ∈ K0. In fact, (4.5) shows that H〈T〉 is a singular
M-matrix. The proof is complete. ¤

Note that in Theorem 4.3, if we H is irreducible to begin with, then we need not impose
nonsingularity on T, because that is implied already by Theorem 3.16.

Theorem 4.4 (Determinants of Partitioned Matrices and the Schur Complement)
Consider the partitioned matrix H of (4.1). If Q is nonsingular, then

det (H)
4
=

∣∣∣∣∣
Q R
S T

∣∣∣∣∣ (4.6)

= |Q| · ∣∣T− SQ−1R
∣∣ = |Q| · ∣∣H〈Q〉

∣∣ . (4.7)

Similarly, if T is nonsingular, then

det (H) = |T| · ∣∣Q−RT−1S
∣∣ = |T| · ∣∣H〈T〉

∣∣ . (4.8)

Corollary 4.5 (Invertibility of the Schur Complement)
If H is a singular matrix, but Q is nonsingular, then it must be that H〈Q〉 = T − SQ−1R
is singular, because its determinant is zero. An identical statement can be made about H〈T〉 =
Q−RT−1S. Along the same lines, if both H and Q are nonsingular, then so is H〈Q〉. An identical
statement can be made about H〈T〉, if both H and T are nonsingular.

Note that Corollary 4.5 could have been used in the proofs of Theorems 4.2 and 4.3.

Theorem 4.6 (Rank Additivity of the Schur Complement)
If the principal submatrix Q is nonsingular, then

rank (H) = rank

[
Q R
S T

]
(4.9)

= rank (Q) + rank (T− SQ−1R) = rank (Q) + rank (H〈Q〉) . (4.10)
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Similarly, if T is nonsingular, then

rank (H) = rank (T) + rank (Q−RT−1S) = rank (T) + rank (H〈T〉) . (4.11)

Corollary 4.7 (Invertibility of the Schur Complement Revisited)
If H and Q are both nonsingular, then so is H〈Q〉 = T− SQ−1R. Similarly, if H and T are both
nonsingular, then so is H〈T〉 = Q−RT−1S.

This confirms the same result we obtained from the determinantal expression for the par-
titioned matrix H. Corollary 4.7 can also be used for a quick proof of Theorem 4.2.

The next theorem illustrates how the Schur complement enters the various expressions for
the inverse of a partitioned matrix. According to the extensive survey by Ouéllette [66],
evidently Banachiewicz was the first researcher to express the inverse of a partitioned ma-
trix in terms of Schur complements; others, such as Hotelling, rewrote some of the results
a few years later.

Theorem 4.8 (Inverse of a Partitioned Matrix)
Consider the partitioned matrix H as in (4.1), which we repeat here for convenience:

H =

[
Q R
S T

]
. (4.12)

Let H be nonsingular, and recall the Schur complements

H〈Q〉 = T− SQ−1R and H〈T〉 = Q−RT−1S ,

each properly defined whenever Q and T is nonsingular, respectively. If Q is nonsingular, then:

H−1 =

[
Q−1 + Q−1RH−1

〈Q〉SQ−1
∣∣ −Q−1RH−1

〈Q〉
−H−1

〈Q〉SQ−1
∣∣ H−1

〈Q〉

]
(4.13)

=

[
Q−1

∣∣ 0

0
∣∣ 0

]
+

[
Q−1R

−Ir

]
H−1
〈Q〉

[
SQ−1

∣∣ −Ir

]
. (4.14)
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If T is nonsingular, then

H−1 =

[
H−1
〈T〉

∣∣ −H−1
〈T〉RT−1

−T−1SH−1
〈T〉

∣∣ T−1 + T−1SH−1
〈T〉RT−1

]
(4.15)

=

[
0

∣∣ 0

0
∣∣ T−1

]
+

[
−In

T−1S

]
H−1
〈T〉

[
−In

∣∣ RT−1
]

. (4.16)

If both Q, and T are nonsingular, then

H−1 =

[
H−1
〈T〉

∣∣ −Q−1RH−1
〈Q〉

−T−1SH−1
〈T〉

∣∣ H−1
〈Q〉

]
. (4.17)

Corollary 4.9 (Matrix Inversion Lemma)
Consider a nonsingular matrix A ∈ Rn×n with a known inverse A−1. Then

(A + BCD)−1 = A−1 −A−1B
(
C−1 + DA−1B

)−1 DA−1 , (4.18)

where C ∈ Rr×r is nonsingular, B ∈ Rn×r, and D ∈ Rr×n.

Proof: Consider the partitioned matrix

H =

[
A B
D −C−1

]
. (4.19)

Clearly, the Schur complement H〈−C−1〉
4
=

(
H/(−C−1)

)
= A + BCD. Equating the top-

left blocks of (4.13) and (4.15), and letting Q = A, R = B, S = D, and T = −C−1, we
obtain the expression on the right-hand side of (4.18). ¤

Corollary 4.10 (Inversion After a Rank-One Perturbation)
Consider a nonsingular matrix A ∈ Rn×n with a known inverse A−1. Then

(
A + pqT

)−1
= A−1 − 1

1 + qTA−1p
A−1pqTA−1 , (4.20)

where it is assumed that qTA−1p 6= −1.

Proof: In (4.18) let C = 1 be a scalar, B = p ∈ Rn, and D = qT, where q ∈ Rn. The result
then follows. ¤
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The expression on the right-hand side of (4.20) takes on a special structure if both A and
the perturbation matrix pqT are symmetric. For the perturbation matrix to be symmetric,
we must have p = q. In this case, (4.20) becomes:

(
A + ppT

)−1
= A−1 − 1

1 + pTA−1p

(
A−1p

) (
A−1p

)T
. (4.21)

Theorem 4.11 (Inertia Additivity of the Schur Complement)
Consider the symmetric, partitioned matrix

H =

[
Q R
RT T

]
. (4.22)

If Q is nonsingular, then

In H = In Q + In H〈Q〉 , (4.23)

where H〈Q〉 = T−RTQ−1R.

Similarly, if T is nonsingular, then

In H = In T + In H〈T〉 , (4.24)

where H〈T〉 = Q−RT−1RT.

(4.25)

Theorem 4.12 (Quotient Property of the Schur Complement)
Consider the matrix

H =

[
Q

∣∣ R

S
∣∣ T

]
(4.26)

=




E F
∣∣ R1

G H
∣∣ R2

S1 S2

∣∣ T


 , (4.27)

where Q, R, and S are conformably partitioned, and Q and E are nonsingular.
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1. Then the Schur complement Q〈E〉 = H−GE−1F is a nonsingular leading principal submatrix
of the Schur complement

H〈E〉 =

[
H

∣∣ R2

S2

∣∣ T

]
−

[
G

S1

]
E−1

[
F

∣∣ R1

]
(4.28)

=

[
H−GE−1F

∣∣ R2 −GE−1R1

S2 − S1E−1F
∣∣ T− S1E−1R1

]
(4.29)

=

[
Q〈E〉

∣∣ R2 −GE−1R1

S2 − S1E−1F
∣∣ T− S1E−1R1

]
. (4.30)

2. Furthermore, the following ”quotient property” holds:

H〈Q〉 =
(
H〈E〉

/
Q〈E〉

)
. (4.31)

Theorem 4.13 (The Schur Complement and the Laplacian Matrix)
Let H ⊂ G be a proper, induced subgraph of G, and let H be the complementary induced subgraph
ofH, with node set V (H) = V (G)\V (H). The Laplacian matrix of G can be partitioned as follows:

L =

[
LH LHH
LHH LH

]
, (4.32)

where LHH = LT
HH 4 0. (Note that this means H is not disjoint from H, the rest of the graph.)

Denote by
L〈H〉 =

(
L\LH

)
= LH − LHHL−1

H LHH , (4.33)

the Schur complement of H in G. Then L〈H〉 is a Laplacian matrix.

Proof: We know that the Laplacian matrix L is a singular M-matrix. As H is not a disjoint
subgraph of G, it must be that LH is nonsingular. Therefore, according to Theorem 4.3,
the Schur complement matrix L〈H〉 must be a singular M-matrix. It is easy to show that

L〈H〉1H = 0, where 1H is the vector of all-ones, the size ofH. Therefore, L〈H〉 is a Laplacian
matrix. The proof is complete. ¤
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4.3 Convex Combination Dependence of Levis-Node Eigenvector
Components on Those of Their Neighboring-Nodes

In this section, we prove an important result governing the mode shapes of L-nodes in an
oscillatory network. To our best assessment, this result is novel, and has not been shown
previously.

In a nutshell, we will show that in every single mode, the eigenvector component associ-
ated with an L-node (i.e., the characteristic valuation of that L-node) is a convex combina-
tion of the eigenvector components (characteristic valuations) of all its immediate neigh-
bors. Carrying the discussion further, we will show, as well, that the characteristic valua-
tion of any L-node is a convex combination of those belonging to the G-nodes that border
the connected L-node cluster to which it belongs, even if those G-nodes are not its immediate
neighbors.

This convex-combination dependence of L-node eigenvector components on those of their
neighbors and G-node counterparts is a striking result, yet one that follows directly from
the inverse-positivity property of irreducible M-matrices (Theorem 3.12).

Theorem 4.14
Consider the partitioned Laplacian matrix

L =

[
LH LHH
LHH LH

]
, (4.34)

where the induced subgraphs H and H are defined as in Theorem 4.13. If LH is nonsingular (that
is, if H is not disconnected from the rest of the graph), then −L−1

H LHH is a row-stochastic matrix,
i.e.,

0 4 −L−1
H LHH (4.35)

and

1H = −L−1
H LHH 1H , (4.36)

where we have denoted by 1H the all-ones vector of size equal to the cardinality ofH, and
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defined 1H in a similar fashion.

Proof: We know that

1n =

[
1H
1H

]

is a null vector of the Laplacian matrix L. That is,

[
LH LHH
LHH LH

][
1H
1H

]
=

[
0
0

]
. (4.37)

Writing the lower-block row of (4.37) and solving for 1H (knowing that LH is nonsingu-
lar), we obtain (4.36). That the matrix −L−1

H LHH is nonnegative follows from the fact that
LHH 4 0, and also that LH is a nonsingular M-matrix, and hence L−1

H < 0 according to
Theorem 3.12. The proof is complete. ¤

Corollary 4.15
Consider y ∈ R|H| and x ∈ R|H| related by

y = −L−1
H LHHx . (4.38)

Each entry of y is a convex combination of the entries in x, where the coefficients of the combination
are the entries on the ith row of −L−1

H LHH. Furthermore, for any arbitrary finite constant α,

y + α1H = −L−1
H LHH (x + α1H) . (4.39)

Theorem 4.16
Consider the SGEP [

LG LGL

LT
GL LL

] [
vG

vL

]
= λ

[
M 0
0 0

][
vG

vL

]
. (4.40)

Each L-node eigenvector component is a convex combination of the eigenvector components of the
G-nodes in the graph.

Proof: Rewriting the lower-block equations, LT
GLvG + LLvL = 0, and solving for vL, we

have:
vL = −L−1

L LT
GLvG . (4.41)

The rest follows immediately from Corollary 4.15, where LH is analogous to LG, and LH is
akin to LL. A few points are worth mentioning here:
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• Only those G-nodes that border a connected L-node cluster contribute to the eigenvector
components of every L-node in that cluster (whether or not the G-node is an immediate
neighbor of a given L-node, so long as the G-node borders the cluster of L-nodes to
which any particular L-node belongs, it will influence the eigenvector component of
that L-node). If a G-node does not border the cluster of L-nodes in question, then its
eigenvector component does not come into the computation of those of the L-nodes in
that cluster. This is readily seen from (4.41). If a particular G-node does not border
the L-node cluster, then the corresponding row of LGL (and column of LT

GL) is entirely
zero. It is clear, then, from (4.41), that the corresponding entry in vG does not enter into
the computation of any of the L-nodes under study. In other words, all the G-nodes
to which a given L-node has a path, that consists entirely of L-nodes, will affect the
computation of the eigenvector component corresponding to that L-node; otherwise, it
does not. So if there is no path from an L-node νL to a G-node νG that comprises only
L-node intermediate vertices, then the characteristic valuation of νG does not enter into
the convex combination relation governing the valuation of νL.

• If, on the other hand, a particular G-node is the neighbor to even one L-node in a given
cluster, then the corresponding column of LT

LG will have at least one nonzero entry,
which then will be picked up by the strictly positive L−1

L ; that means, a G-node that
borders any L-node in the connected subgraph (cluster) of L-nodes will affect the values
of the eigenvector components of every L-node in that cluster.

• The cluster of L-nodes that we consider asH need not include every L-node in the graph.
The subgraphH need only be a connected subgraph induced by a subset of the L-nodes;
in other words, we are allowed to include L-nodes in H.

Example 4.17
Consider the six-node graph shown in Figure 4.1. In this example, we verify that the eigenvector
components associated with the L-nodes ν5 and ν6 depend on the G-nodes through a convex com-
bination relation. We also verify that node 3 does not enter into the convex combination relation
governing the valuation of node 5, and that, similarly, node 1 does not enter into the convex com-
bination relation governing the eigenvector component of node 6. This is because there is no L-only
path that joins ν5 with ν3, nor is there one that joins ν6 with ν1.
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Figure 4.1: A six-node graph with two L-nodes. According to Theorem 4.16, the character-
istic valuations of ν5 and ν6 are given by a convex combination of those corresponding to
the G-nodes surrounding them.

The Laplacian matrix for the graph is given below:

L =




3.6 −1.1 0 −1.3 −1.2 0
−1.1 5.6 −1.4 0 −1.5 −1.6

0 −1.4 4.9 −1.7 0 −1.8
−1.3 0 −1.7 6.9 −1.9 −2.0
−1.2 −1.5 0 −1.9 4.6 0

0 −1.6 −1.8 −2.0 0 5.4




. (4.42)

The diagonal matrix of node weights is B
4
= diag (M, 0, 0) = diag (1.1, 2.2, 3.2, 4.5, 0, 0). An

eigenanalysis of the matrix pair (L,M) reveals that the four finite eigenvalues, and corresponding
eigenvectors, are as shown in Table 4.17.

Theorem 4.16, in particular Equation (4.41), specifies the convex combination dependence of the

L-nodes on the G-nodes. Let Q
4
= −L−1

L LT
GL. For our graph, Q is given by:

Q = −
[
4.6 0
0 5.4

]−1

︸ ︷︷ ︸
L−1

L

[
−1.2 −1.5 0 −1.9

0 −1.6 −1.8 −2.0

]

︸ ︷︷ ︸
LT

GL

=

[
0.2609 0.3261 0 0.4130

0 0.2963 0.3333 0.3704

]
. (4.43)

– 73 –



Chapter 4 Schur Contractions and Other Structural Metastases of Graphs

λ1 = 0.0000 λ2 = 1.7034 λ3 = 2.1304 λ4 = 3.8001
1.0000 -0.6139 0.7944 1.0000
1.0000 0.2279 1.0000 -0.4323
1.0000 1.0000 -0.3796 0.1480
1.0000 -0.6724 -0.4131 -0.1383
1.0000 -0.3636 0.3627 0.0628
1.0000 0.1518 0.0167 -0.1300

Table 4.1: Eigenvalues and eigenvectors of the six-node graph of Figure 4.1, containing two L-nodes.
In the table, we have demarcated the eigenvector components corresponding to the L-nodes ν5 and
ν6.

Clearly, Q º 0. Also, note the positions of the zero entries in Q. The zeros appear exactly at the
positions where the theory predicts they would be. In other words, looking at the 0 in the (1, 3)
position of Q means that ν5 has no dependence on ν3. Similarly, the 0 at position (2, 1) in Q means
that the characteristic valuation of ν1 does not enter into the computation of the valuation for ν6.
Furthermore, it is straightforward to verify that Q is row-stochastic, i.e., that it is nonnegative each
of its rows sums to 1. Last, we verify that Q actually maps the G-node eigenvector matrix VG into
its L-node counterpart VL:

VL = QVG . (4.44)

[
1.0000 −0.3636 0.3627 0.0628
1.0000 0.1518 0.0167 −0.1300

]

︸ ︷︷ ︸
VL

= Q




1.0000 −0.6139 0.7944 1.0000
1.0000 0.2279 1.0000 −0.4323
1.0000 1.0000 −0.3796 0.1480
1.0000 −0.6724 −0.4131 −0.1383




︸ ︷︷ ︸
VG

.

(4.45)

Another direct corollary of the convex-combination dependence of L-node eigenvector
components on their G-node counterparts is that if a subgraph of L-nodes has no path
to the rest of the graph except through one G-node, then all the eigenvector components of
those L-nodes will be constant, and equal to the characteristic valuation of the ”gateway”
G-node. The following example illustrates this point.
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1.2

2 ν1

ν4ν5

ν6

ν3

1.1

1.41.5

1.6

1.71.8

1.3

ν

Figure 4.2: A six-node graph with three L-nodes that have only one gateway G-node. Ac-
cording to Theorem 4.16, the characteristic valuations of ν4, ν5, and ν6 are constant, and
equal to that of the G-node ν3.

Example 4.18
Consider the graph of Figure 4.2. The three nodes do not have L-only path to any of the G-nodes
in the graph, except ν3. Given that their characteristic valuations must be a convex combination
of those corresponding to their surrounding G-nodes, it must be that there is only one coefficient in
that convex combination, namely 1. Clearly, then, the eigenvector components of the three L-nodes
must all equal the value of ν3. The Laplacian matrix for the graph in Figure 4.2 is given below:

L =




2.3 −1.1 −1.2 0 0 0
−1.1 2.4 −1.3 0 0 0
−1.2 −1.3 5.4 −1.4 −1.5 0

0 0 −1.4 4.7 −1.6 −1.7
0 0 −1.5 −1.6 4.9 −1.8
0 0 0 −1.7 −1.8 3.5




. (4.46)

The node-weight matrix is given by B = diag (1.1, 1.2, 1.3, 0, 0, 0). An eigenanalysis of the (L,B)
confirms the theoretical assertion that the eigenvector components corresponding to the ν4, ν5, and
ν6 are equal to that of ν3, the gateway G-node through which the three L-nodes connect to the
remainder of the graph.
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λ1 = 0.0000 λ2 = 3.0000 λ3 = 3.0140
1.0000 -0.5000 -1.0000
1.0000 1.0000 0.0000
1.0000 -0.5000 0.8462
1.0000 -0.5000 0.8462
1.0000 -0.5000 0.8462
1.0000 -0.5000 0.8462

Table 4.2: Eigenvalues and eigenvectors of the six-node graph of Figure 4.2. In the table, we have
demarcated the eigenvector components corresponding to the three L-nodes ν4, ν5, and ν6. Clearly,
the eigenvector components of the three L-nodes are identical to the only gateway G-node which
they have access to.

4.4 Schur Contraction of a Graph with Respect to a Subset of Its
L-Nodes

Definition 4.19
Consider a graph G and two complementary subgraphs H and H, where the latter consists of a
subset of the graph L-nodes; the subgraph H may contain as many as all of the graph L-nodes, and
as few as one. We say that the Schur contraction of the graph G, with respect to H, is the graph
G〈H〉 whose Laplacian matrix is given by

L〈H〉 = LH − LHHL−1
H LHH .

Theorem 4.20 (Fully-Connectedness After Schur Contraction)
Consider a graph G comprising both G-nodes and L-nodes. Denote the partitioned Laplacian matrix
for the graph by

L =

[
LG LGL

LLG LL

]
, (4.47)

where LLG = LT
GL. The subscript denotes the node-type to which a submatrix corresponds. Fur-

thermore, assume that

(a) the subgraph induced by the L-nodes is connected.

(b) every G-node is adjacent to at least one L-node in the graph.
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Denote by G〈L〉 the graph obtained by Schur contracting the L-nodes. We know that the Laplacian
matrix for G〈L〉 is the Schur complement of LL in L, i.e.,

L〈L〉 = LG − LGLL−1
L LLG . (4.48)

Then, G〈L〉 is a complete graph, i.e., it is fully connected.

Proof: The submatrix LL is irreducible because the subgraph induced by the L-nodes is
connected. Moreover, as a principal submatrix of the irreducible matrix L, we know that
LL is a nonsingular M-matrix. Therefore, L−1

L Â 0 .

The second piece of information, that every G-node is adjacent to an L-node, implies that
every column of LLG must have a nonzero entry in it.

Putting it all together, it must be that every entry of L−1
L LLG is nonzero. Hence,

−LGLL−1
L LLG Â 0 .

It is now clear that the Laplacian matrix for G〈L〉, which is given by (4.48), cannot have any
zero off-diagonal terms. Thus, very node in G〈L〉 neighbors every other node, which means
G〈L〉 is a fully-connected graph. The proof is complete. ¤
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1.4 5

ν2

ν1

ν3

ν4

1.3 1.2

1.1ν

Figure 4.3: A five-node graph with one L-node.

Example 4.21
Figure 4.3 depicts a star graph with four G-nodes and one L-node. The G-nodes are not neighbors,
as can be seen from the diagram. The Laplacian matrix for the star graph is

L =




1.1 0 0 0 −1.1
0 1.2 0 0 −1.2
0 0 1.3 0 −1.3
0 0 0 1.4 −1.4

−1.1 −1.2 −1.3 −1.4 5




.

In terms of the oscillatory dynamics of the graph, however, the G-nodes behave according to the
graph in which node 5, the only L-node, is Schur-contracted. The result of the Schur contraction
is shown in Figure 4.4. As theoretically predicted, the Schur-contracted graph is fully connected,
with the edge weights shown in the figure, and depicted by the Laplacian matrix L〈L〉 below:

L〈L〉 =




1.1 0 0 0
0 1.2 0 0
0 0 1.3 0
0 0 0 1.4



−




−1.1
−1.2
−1.3
−1.4




(
1
5

) [
−1.1 −1.2 −1.3 −1.4

]

=




0.858 −0.264 −0.286 −0.308
−0.264 0.912 −0.312 −0.336
−0.286 −0.312 0.962 −0.364
−0.308 −0.336 −0.364 1.008




.
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Figure 4.4: Schur contraction of the five-node graph into a four-node fully-connected dynamic
equivalent.

Example 4.22 (The Star-Delta Transformation)
The Star-Delta transformation is a well-known technique among electrical engineers, especially
those with interests in circuit theory or power systems. The idea is that a star-shaped four-node
circuit segment can be turned into a triangular (delta) equivalent. We demonstrate this in a very
straightforward manner, with graphs and with what we have learnt so far about fully connectedness
of nodes that surround a Schur-contracted L-node. This example we will work out analytically,
instead of numerically, because it is reasonably tractable, and the result is useful in analytical form.

The Laplacian matrix for the star graph is given by:

L =




a14 0 0 −a14

0 a24 0 −a24

0 0 a34 −a34

−a14 −a24 −a34 d




, (4.49)

where d = a14 + a24 + a34 is the degree of the L-node that sits at the center of the star. We know
that if we Schur contract the graph with respect to the L-node, the result would be a fully-connected
graph with three node, i.e., a triangle (delta). Our task now is to find expressions for the edge
weights of the delta graph.

The Laplacian of the Schur contracted graph is given by:

L〈L〉
4
= LG − LGLL−1

L LLG (4.50)
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=




a14 0 0
0 a24 0
0 0 a34


−



−a14

−a24

−a34




(
1
d

) [
−a14 −a24 −a34

]
(4.51)

L〈L〉 =




a14 − a2
14

d
−a14

d −a14a34
d

−a14a24
d a24 − a2

24
d −a24a34

d

−a14a34
d −a24a34

d a34 − a2
34
d




L〈L〉 =
1

a14 + a24 + a34




a14(a24 + a34) −a14a24 −a14a34

−a14a24 a24(a14 + a34) −a24a34

−a14a34 −a24a34 a34(a14 + a24)


 (4.52)

Denoting the Laplacian matrix of the Delta graph by

L∆ =




b12 + b13 −b12 −b13

−b12 b12 + b23 −b23

−b13 −b23 b13 + b23


 ,

we find that:

bij =
ai4aj4

d
i 6= j (4.53a)

b11 =
a14(a24 + a34)

d
(4.53b)

b22 =
a24(a14 + a34)

d
(4.53c)

b33 =
a34(a14 + a24)

d
(4.53d)

d = a14 + a24 + a34 . (4.53e)

Equations (4.53) carry precisely the expressions that have long been known about the Star-
Delta transformation in circuit theory. It is worth noting here that understanding how to
expand a fully-connected graph into a tree-graph structure with additional L-nodes is an
issue that requires further research. In this case the expansion is from a Delta graph to a
four-node star. This size turns out to be straightforward to solve; the four-node star it the
small tree with just the right number of degrees of freedom, so that when arbitrary positive
edges are specified on the Delta graph, we can compute the edge weights on the four-node
star graph. Can we devise a Kn-Tree extension of the Star-Delta transformation? This is a
subject for further research.
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The converse of the problem of expanding out to a tree is the following one: ”What prop-
erties must a graph with L-nodes have, so that its Schur contraction with respect to its
L-nodes, is a tree?” As we will see in a subsequent chapter, much can be said about the
eigenvector properties of tree graphs. Therefore, identifying the properties of graphs that
Schur-contract into trees gives us the ability to use what we know about the characteristic
valuations of L-nodes, along with the properties that we will show govern the eigenvec-
tors of trees, to make statements about the graph eigenvector structures prior to Schur
contraction.

Delta Graph

1

ν2ν3

ν4

a14

a34 a24

ν3 ν2

ν1

b12b13

b23

Star Graph

ν

Figure 4.5: Schur contraction of a four-node graph with an L-node at its center. The result
is a fully-connected three-node graph (i.e., a triangle, or a delta). The edge weights after
the Schur contraction show how they are related to those in the star graph.

We can generalize Theorem 4.20 to include cases where there are nodes in the graph that
do not border the Schur-contracted L-nodes. The following theorem states a more general
result.

Theorem 4.23 (Fully Connectedness Of Neighboring Nodes Upon Partial Schur Con-
traction)
Consider a connected graph G, and let H denote a connected subgraph induced by a subset of the
L-nodes in G. Let E denote the subset of nodes in G that do not border any node in H; let F rep-
resent those that do. (There is no requirement that E or F must contain only G-nodes.) We have,
V (E) = V (E) ∪ V (F) ∪ V (H). Upon Schur contracting the nodes in H, the subgraph induced by
F will be fully connected. Furthermore, the edges connecting E and F will not be affected by the
Schur contraction.
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Proof: To prove this theorem, we write the Laplacian matrix for G in the appropriate par-
titioned form as shown below:

L =




LE LEF 0
LFE LF LFH
0 LHF LH


 . (4.54)

The zero blocks indicate that the nodes in E do not border any node inH. Schur contracting
the nodes in H results in the following Laplacian matrix:

L〈H〉 =

[
LE LEF
LFE LF

]
−

[
0

LFH

]
L−1
H

[
0 LHF

]

=

[
LE LEF
LFE LF

]
−

[
0 0
0 LFHL−1

H LHF

]

=

[
LE LEF
LFE LF − LFHL−1

H LHF

]
(4.55)

It is clear from (4.55) that neither the internal connections within E , nor the interconnec-
tions between E and F are affected by the Schur contraction. Furthermore, after the Schur
contraction, the nodes in F are fully connected, because the bottom-right quadrant of the
Laplacian matrix L〈H〉 in (4.55) has strictly negative off-diagonal entries, as stipulated by
Theorem 4.20. The proof is complete. ¤

Example 4.24
Consider a six-node graph comprising three G-nodes and an equal number of L-nodes. Figure 4.6
depicts the graph and its edge weights.

The Laplacian matrix for this graph is given by

L =




7 −2 0 0 −5 0
−2 6 0 0 0 −4
0 0 1 0 0 −1
0 0 0 9 −6 −3
−5 0 0 −6 11 0
0 −4 −1 −3 0 8




.

Suppose we want to find the Schur contraction of the graph with respect to node 6; that is, node 6
is the only one among the L-nodes that we want to contract. The resulting graph will, as the theory
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predicts, be as shown in Figure 4.7.

The Laplacian matrix corresponding to the Schur-contracted graph of Figure 4.7 is

L〈ν6〉 =




7 −2 0 0 −5
−2 6 0 0 0
0 0 1 0 0
0 0 0 9 −6
−5 0 0 −6 11



−




0
−4
−1
−3
0




(
1
8

) [
0 −4 −1 −3 0

]

=




7 −2 0 0 −5
−2 4.000 −0.500 −1.500 0
0 −0.500 0.875 −0.375 0
0 −1.500 −0.375 7.875 −6
−5 0 0 −6 11




.

As Theorem 4.23 predicted, nodes 2, 3, and 4 are now fully connected while the edges (1, 2), (1, 5),
and (4, 5) are unaffected by the Schur contraction of node 6, because node 1 nor node 5 are not
neighbors of the contracted node 6 in the original graph of Figure 4.6.

4

2

ν1ν5

ν4

ν6

ν3

3

5

6

1

2

ν

Figure 4.6: A six-node graph that is Schur-contracted with respect to a subset of its L-nodes,
and that has nodes not neighboring the contracted L-node.
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0.375
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5

6 2

0.500

1.500 ν

Figure 4.7: Schur contraction of the six-node graph with respect to node 6. Edges (1, 2),
(1, 5), and (4, 5) are unaffected by the Schur contraction.

4.5 A Look at Structural Perturbations to Graphs

4.5.1 Edge Addition: A Rank-One Perturbation and the Schur Complement

Proposition 4.25
Consider a partitioned matrix

H =

[
Q R
S Z

]

and a rank-one perturbation matrix

E = xyT =

[
xq

xz

] [
yT

q yT
z

]
=

[
xqy

T
q xqy

T
z

xzy
T
q xzy

T
z

]
,

where x and y are partitioned conformally with H. Denote the perturbed matrix by

H̃ =

[
Q̃ R̃
S̃ Z̃

]
= H + E =

[
Q + xqy

T
q R + xqy

T
z

S + xzy
T
q Z + xzy

T
z

]
.

Let H〈Z〉 = Q−RZ−1S be the Schur complement of Z in H. Then

H̃〈eZ〉 = H〈Z〉 +
1

1 + yT
z Z−1xz

(
xq −RZ−1xz

) (
yq − STZ−1yz

)T
. (4.56)
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That is, the Schur complement H〈Z〉 undergoes a rank-one perturbation ghT, where

g =
1√

1 + yT
z Z−1xz

(
xq −RZ−1xz

)
(4.57)

and

h =
1√

1 + yT
z Z−1xz

(
yq − STZ−1yz

)
. (4.58)

Moreover, if H and the perturbation matrix E are symmetric, i.e., Q = QT, Z = ZT, S = RT,
E = xyT, where x = y = [xT

q xT
z ]T, and H〈Z〉 = Q −RZ−1RT is the Schur complement of Z

in H, then:

H̃〈eZ〉 = H〈Z〉 +
1

1 + xT
z Z−1xz

(
xq −RZ−1xz

) (
xq −RZ−1xz

)T
. (4.59)

That is, the Schur complement H〈Z〉 undergoes a symmetric, rank-one perturbation hhT, where

h =
1√

1 + xT
z Z−1xz

(
xq −RZ−1xz

)
. (4.60)

Proof: To prove (4.56) we need to invoke the rank-one perturbation expression (4.20), and
carry out some algebraic manipulations, the main trick being to group the algebraic terms
in just the right way. By definition, we know that

H̃〈eZ〉 = Q̃− R̃Z̃−1S̃ (4.61)

= Q + xq yT
q −

(
R + xqy

T
z

)(
Z + xzy

T
z

)−1 (
S + xzy

T
q

)
. (4.62)

Based on the rank-one perturbation expression (4.20) of Corollary 4.10, we can expand(
Z + xzy

T
z

)−1 as follows:

(
Z + xzy

T
z

)−1
= Z−1 − 1

1 + yT
z Z−1xz

(
Z−1xz

) (
yT

z Z−1
)

. (4.63)
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Letting

f = Z−1xz ,

gT = yT
z Z−1 ,

1
α

=
1

1 + yT
z Z−1xz

,

and

yT
z Z−1xz = yT

z f = fTyz = gTxz = α− 1 ,

we have:

H̃〈eZ〉 = Q + xqy
T
q −

(
R + xqy

T
z

)(
Z−1 − 1

α
fgT

) (
S + xzy

T
q

)

= Q + xqy
T
q −

(
R + xqy

T
z

)
Z−1

(
S + xz yT

q

)

+
1
α

(
R + xqy

T
z

)
fgT

(
S + xzy

T
q

)

= Q−RZ−1S︸ ︷︷ ︸
H〈Z〉

+xqy
T
q −RZ−1xz︸ ︷︷ ︸

f

yT
q − xq yT

z Z−1

︸ ︷︷ ︸
gT

S− xq yT
z Z−1xz︸ ︷︷ ︸
(α−1)

yT
q

+
1
α
RfgTS +

1
α
Rf gTxz︸ ︷︷ ︸

(α−1)

yT
q +

1
α

xq yT
z f︸︷︷︸

(α−1)

gTS +
1
α

xq yT
z f︸︷︷︸

(α−1)

gTxz︸ ︷︷ ︸
(α−1)

yT
q

= H〈Z〉 + xqy
T
q −RfyT

q − xqg
TS− (α− 1)xqy

T
q

+
1
α
RfgTS +

α− 1
α

RfyT
q +

α− 1
α

xqg
TS +

(α− 1)2

α
xqy

T
q

= H〈Z〉 +
[
1− (α− 1) +

(α− 1)2

α

]
xqy

T
q +

[
α− 1

α
− 1

]
RfyT

q

+
[
α− 1

α
− 1

]
xqg

TS +
1
α
RfgTS

= H〈Z〉 +
1
α

xqy
T
q −

1
α
RfyT

q −
1
α
xqg

TS +
1
α
RfgTS

= H〈Z〉 +
1
α

(xq −Rf) yT
q −

1
α

(xq −Rf) gTS

= H〈Z〉 +
1
α

(xq −Rf)
(
yq − STg

)T
.

Re-inserting the expressions for α, f , and g, we obtain:

H̃〈eZ〉 = H〈Z〉 +
1

1 + yT
z Z−1xz

(
xq −RZ−1xz

) (
yq − STZ−1yz

)T
. (4.64)
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For the symmetric case, we know the following: x = y, and hence xq = yq and xz = yz ;
S = RT; and Z = ZT, which means f = g = Z−1xz . Substituting all these in (4.56), we
obtain Equation (4.59). The proof is now complete. ¤

The result of Proposition 4.25 helps our understanding of how a rank-one structural per-
turbation to a graph—in the form of an edge addition or deletion—manifests itself in the
dynamics of the graph. We now consider different types of edge addition to a graph G,
depending on whether the ends of the edge are G-nodes, L-nodes, or one of each type. We
simply tailor and simplify Equation (4.59) to the case at hand.

In what follows we consider a graph G with nG gravis nodes (G-nodes) and nL levis nodes
(L-nodes). We number the G-nodes 1, . . . , nG, and the L-nodes 1, . . . , nL.

4.5.2 First-Order Eigenvalue Sensitivities Due to Rank-One Graph Perturba-
tions

We know from basic perturbation theory, that if an eigenproblem is perturbed from

LvG = λMvG

to
(L + E)(v + dv) = (λ + dλ)M(v + dv) ,

the first-order sensitivity expression for the eigenvalue λ is given by:

dλ =
vTEv

vTMv
. (4.65)

Earlier, we showed that a rank-one perturbation to a symmetric matrix translates to a rank-
one perturbation in any of its properly defined Schur complements. Adapting that result
from (4.59) into the context of graphs with G- and L-nodes, the expression for the error
matrix E is given as follows:

E =
1

1 + xT
LL−1

L xL

(
xG − LGLL−1

L xL

) (
xG − LGLL−1

L xL

)T
. (4.66)

Assuming that vG is already M-normalized, i.e., vT
GMvG = 1, we apply (4.65) to (4.66) to
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obtain

dλ = vT
GEvG =

1
1 + xT

LL−1
L xL

(
vT

GxG − vT
GLGLL−1

L xL

) (
xT

GvG − xT
LL−1

L LLGvG

)
. (4.67)

From Theorem 4.16 and Equation (4.41) we know that

vL = −L−1
L LT

GLvG . .

The sensitivity expression for the eigenvalue simplifies to:

dλ =
1

1 + xT
LL−1

L xL

(
vT

GxG + vT
L xL

)(
xT

GvG + xT
L vL

)
=

(
vTx

)2

1 + xT
LL−1

L xL

, (4.68)

where v = [vG vL]T and x is defined similarly.

We now consider three different types of rank-one perturbation to a graph. In each case, we
will derive exact expressions for the error matrix E, and comment on how the eigenvalue
sensitivity expression specializes to each type of perturbation.

4.5.2.1 Gravis-Gravis (GG-Type) Edge Addition

Consider a graph G comprising G-nodes and L-nodes, whose Laplacian matrix is parti-
tioned as follows:

L =

[
LG LGL

LLG LL

]
.

Let the Schur complement of LL in L be denoted by L〈L〉 = LG − LGLL−1
L LLG. Suppose we

join two non-neighboring G-nodes, say the ith and the jth, with an edge of weight γ. The
perturbation matrix corresponding to such an edge addition (xL = 0) is given below:

E = xxT =

[
xG

xL

] [
xT

G xT
L

]
=

[
xG

0

] [
xT

G 0T
]

=

[
xGxT

G 0
0 0

]
. (4.69)

We note that Equation (4.59), adapted to the notation of the Laplacian matrix, simplifies to:

L̃〈eL〉 = L〈L〉 + xGxT
G . (4.70)
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Furthermore, xG has the following form:

xG =
√

γ




0
+1
0
−1
0




nG×1

← ith row

← jth row
=
√

γ
(
ei|(nG) − ej|(nG)

)
. (4.71)

Therefore, the perturbation matrix that modifies the original Schur complement L〈L〉 is:

xGxT
G = γ

ith jth

col col
↓ ↓



+1 −1

−1 +1




← ith row

← jth row

. (4.72)

Except for the entries shown, the matrix is zero everywhere. Note that xGxT
G is a Laplacian

matrix in its own right. The eigenvalue sensitivity expression (4.68) for this type of edge
perturbation (remember xL = 0) takes the form:

dλ =
(
vT

GxG

)2
= γ (vG(i)− vG(j))2 , (4.73)

where the indices i and j correspond to the ith and jth G-nodes, respectively.

4.5.2.2 Levis-Levis (LL-Type) Edge Addition

Now suppose we join two L-nodes, say the ith and the jth, with an edge of weight ζ. The
perturbation matrix corresponding to such an edge addition (xG = 0) would be:

E = xxT =

[
xG

xL

] [
xT

G xT
L

]
=

[
0
xL

] [
0T xT

L

]
=

[
0 0
0 xLx

T
L

]
. (4.74)
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The perturbation vector corresponding to the LL-edge is

xL =
√

ζ




0
+1
0
−1
0




nL×1

← ith row

← jth row
=

√
ζ

(
ei|(nL) − ej|(nL)

)
. (4.75)

For such an LL-connection, we note that Equation (4.59), adapted to the notation of the
Laplacian matrix, simplifies to:

L̃〈eL〉 = L〈L〉 +
1

1 + xT
LL−1

L xL

LGLL−1
L xLx

T
LL−1

L LT
GL . (4.76)

Letting Q = −L−1
L LT

GL be the row-stochastic matrix discussed in Theorem 4.14, we express
it by its rows as follows:

Q = −L−1
L LT

GL =




qT
1
...

qT
nL


 . (4.77)

Equation (4.76) then simplifies to:

L̃〈eL〉 = L〈L〉 +
ζ

1 + ζ
([

L−1
L

]
ii

+
[
L−1

L

]
jj
− 2

[
L−1

L

]
ij

) (qi − qj) (qi − qj)
T , (4.78)

where we have noted that for xL given in (4.75),

xT
LL−1

L xT
L = ζ

(
ei|(nL) − ej|(nL)

)TL−1
L

(
ei|(nL) − ej|(nL)

)

= ζ
([

L−1
L

]
ii

+
[
L−1

L

]
jj
− 2

[
L−1

L

]
ij

)
.

From Theorem 3.12 we know that
[
L−1

L

]
ii

> 0, i = 1, . . . , nL. Moreover, if the subgraph
induced by the L-nodes on graph G is connected, i.e.if LL is irreducible, the theorem further
stipulates that

[
L−1

L

]
ij

> 0, i, j = 1, . . . , nL, i 6= j. If, however, the subgraph induced by
the L-nodes is not connected, i.e., if LL is reducible, then

[
L−1

L

]
ij
≥ 0, with equality if, and

only if, the ith and jth nodes belong to two disconnected induced subgraphs. Regardless,
it is clear that the denominator term xT

LL−1
L xT

L > 0.
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The eigenvalue sensitivity expression for this LL-type edge addition is simply

dλ =

(
vT

L xL

)2

1 + xT
LL−1xL

=
ζ (vL(i)− vL(j))

2

1 + ζ
([

L−1
L

]
ii

+
[
L−1

L

]
jj
− 2

[
L−1

L

]
ij

) . (4.79)

4.5.2.3 Gravis-Levis (GL-Type) Edge Addition

Suppose we connect the ith G-node to the jth L-node, where i = 1, . . . , nG and j = 1, . . . , nL;
let the weight of the connection be θ. The perturbation matrix corresponding to such an
edge addition would be:

E = xxT =

[
xG

xL

] [
xT

G xT
L

]
=

[
xGxT

G xGxT
L

xLx
T
G xLx

T
L

]
, (4.80)

where xG and xL are given by:

xG =
√

θ




0
+1
0




nG×1

← ith row =
√

θ ei|(nG) (4.81)

xL =
√

θ




0
−1
0




nL×1

← jth row = −
√

θ ej|(nL) . (4.82)

For xG and xL as given by (4.81) and (4.82), Equation (4.59) adapts as follows:

L̃〈eL〉 = L〈L〉 +
θ

1 + θej|(nL)
TL−1

L ej|(nL)

(
ei|(nG) + QTej|(nL)

)(
ei|(nG) + QTej|(nL)

)T
.

This simplifies to:

L̃〈eL〉 = L〈L〉 +
θ

1 + θ
[
L−1

L

]
jj

(
ei|(nG) + qj

) (
ei|(nG) + qj

)T
, (4.83)

where Q is as defined in (4.77), and

xL
TL−1

L xL =
(√

θ ej|(nL)
T
)
L−1

L

(√
θ ej|(nL)

)
= θ

[
L−1

L

]
jj

.
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Theorem 3.12 implies strict positivity for
[
L−1

L

]
jj

, j = 1, . . . , nL. The first-order eigenvalue
sensitivity expression for this case is given below:

dλ =
θ (vG(i)− vL(j))

2

1 + θ
[
L−1

L

]
jj

. (4.84)

4.5.3 L-Node Addition

Adding of an L-node is qualitatively different from adding a G-node to a graph, because
the Schur contraction necessary for extracting the dynamic properties of the network are
done with respect to the L-nodes. In this section, we show that when an L-node is added to
a graph through only one edge (i.e., the added L-node is a terminal vertex), the dynamics of
the graph do not change: the finite eigenvalues do not move (there will be one additional
infinite eigenvalue though), and the eigenvectors corresponding to the finite eigenvalues
of the graph do not change. This is regardless of whether the added terminal L-node
connects to another L-node or a G-node in the network.

4.5.3.1 Added L-node connected to G-nodes only

Suppose we connect the added the L-node only to G-nodes. In this case, the size of the
Laplacian matrix of the graph increases by one, and can be written in partitioned form as
follows:

L =




LG + H
∣∣ LGL h

LLG

∣∣ LL 0
hT

∣∣ 0T γ


 , (4.85)

where H = −diag (h), and γ = −hT1 is the degree of the added L-node. The Laplacian
matrix of the Schur-contracted graph is:
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Q = LG + H−
[
LGL z

] [
L−1

L 0
0 γ−1

] [
LLG

zT

]
(4.86)

= LG − LGLL−1
L LLG + H− 1

γ
hhT (4.87)

= L〈L〉 + H− 1
γ

hhT . (4.88)

When the added L-node is connected to only one G-node, say the ith, p is given by:

h = γ




0
+1
0




nG×1

← ith row (4.89)

Clearly, H = 1
γ hhT, thus leading to the interesting result:

Q = L〈L〉 . (4.90)

This result is consistent with our discussion of the fully-connectedness of the Schur con-
tracted subgraphs, and how the segments of the graph not in contact with the subgraph
with respect to which the Schur contraction is performed, do not get affected.

4.5.3.2 Added L-node connected to L-nodes only

Now suppose we connect the added the L-node only to other L-nodes. In this case, the size
of the Laplacian matrix of the graph increases by one, and can be written in partitioned
form as follows:

L =




LG

∣∣ LGL 0

LLG

∣∣ LL + Z z

0
∣∣ zT ξ


 , (4.91)

where Z = −diag (z), and ξ = −zT1 is the degree of the added L-node. The Laplacian
matrix of the Schur-contracted graph is:
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R = LG −
[
LGL 0

] [
LL z

zT ξ

]−1 [
LLG

0T

]
(4.92)

= LG − LGL

(
LL + Z− 1

ξ
zzT

)−1

LLG . (4.93)

When the added L-node is connected to only one L-node, say the ith, z is given by:

z = ξ




0
+1
0




nL×1

← ith row (4.94)

Clearly, Z = 1
ξ zzT, thus leading to a similar result as before:

R = L〈L〉 . (4.95)
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Chapter 5

A Graph-Theoretic Look at Dynamic
Coherency

5.1 Introduction and Contributions

The dynamic behavior of large-scale vibrational networks has been the subject of active
research over the past two decades. A variety of approaches has been developed to expose
modal structures of large dynamic systems, each scheme having its own assumptions and
conclusions, and geared toward a specific purpose—for example, partitioning and model
reduction. Among these methods, the one that is of immediate interest to us is broadly
termed coherency; it is applied predominantly to the study of modal structures of power
networks.

In this chapter, we look at coherency from a graph-theoretic vantage point. We consider not
only approximate slow-coherency, but also exact (theoretical) coherency over an arbitrary
set of modes (chord). Our analysis demonstrates how coherency need not occur only in
the slowest modes. It also suggests a design strategy by which we can construct a graph
with a desired set of coherent modes. The design begins with a smaller, aggregate graph
that oscillates at the frequencies in which we want to see coherency in the designed graph;
furthermore, the shapes of the coherent modes in the designed graph are closely related to
those of the aggregate graph from which the design originates.

The contributions of this chapter are as follows:

• We present a matrix-perturbation approach to explain slow coherency, one that is far
simpler, crisper, and cleaner than the slow-fast, two-time-scale approaches used so far
in the literature. Using the Laplacian matrix of a graph, we begin with a set of dis-
connected components, each with its own Laplacian matrix and intra-component edge
weights of order O(1). We then connect the components by edge weights of order O(ε)
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where ε ¿ 1, leaving the actual topology of the inter-component links (i.e., the deci-
sion as to which node in Vk connects to which node in Vl) for someone else to specify,
while we insist on assigning the actual nonzero weights to those inter-area edges. We
then show—through a simple perturbation analysis—how the network exhibits slow
coherency.

• We look at exact (theoretical) coherency, and describe a method to design—from an
aggregate graph G[Vq] (of order q and modes (θ, c))—a larger graph G of order n > q,
such that G has a q-partition Vq, with respect to which it is coherent in exactly q modes
of the form (θ,Xc), where X is the partition matrix that describes Vq.

• As part of our design, we specify necessary and sufficient conditions for the designed
graph G to not only have q modes exactly as specified above, but also have the remain-
ing oscillatory modes localized to their respective q areas. This leads to a very interest-
ing design, with the following properties: (a) q− 1 of the q non-oscillatory modes of the
disconnected network are replaced by the q oscillatory modes of the aggregate graph
from which the design originates; (b) one non-oscillatory mode of the interconnected
network remains at frequency zero; (c) each of the oscillatory modes of the original com-
ponents (nG−q oscillatory modes in total, where nG is the number of G-nodes) becomes
a localized mode of the larger, interconnected network, with an eigenvalue that closely
relates to the corresponding one in the individual component from which it came; and
(d) the intra-area connections can be specified completely independently of the require-
ments imposed on the coherent modes, because each coherent mode—constant over a
particular component—is in the null space of the corresponding local Laplacian matrix.
What (d) implies is that we can design the intra-area connections such that the intra-
area eigenvalues are arbitrarily situated relative to those of the coherent modes; this is
how we can design a network that exhibits exact coherency, but not necessarily in the
slowest q modes; we can make the intra-area modes arbitrarily small by insisting on
weak links within one or more component.

• Our design unveils the requirements that must be satisfied for L-nodes to be introduced
into the larger network, while maintaining exact coherency. In particular, our analy-
sis makes apparent why a q-partition Vq may not include L-nodes that border an area
G(Vk); that is, an L-node may not be connected to any node outside the area in which it
resides. For approximate slow coherency, as we shall see, this requirement is lifted, due
to the mathematics of weak link approximations.

• The theory behind designing an exactly coherent graph that also has only local oscil-
latory modes suggests a relation between the mode confinement that we see in exact
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coherency and the phenomenon of mode localization. We briefly, via an example, show
how mode localization may be explained for an network with a particularly symmetric
topology. We shall return to the topic of mode localization in Chapter 6.

5.2 A New Formulation of Slow Coherency

Slow-coherency theory is premised on the assumption that a large-scale power network
comprises a number, say q, of groups of generators (or areas), with inter-area link weights
of order O(ε), where ε ¿ 1, and intra-area connections of O(1) strength. The consequences
of these assumptions can be summarized as follows:

1. For a large-scale network with q weakly linked areas (or groups), there are q− 1 ”slow”
modes at frequencies of order O(ε). There is also one non-oscillatory mode which is the
trivial λ = 0, corresponding to ”rigid body motion” (generator angles all equal). These
slow modes—also called ”inter-area” or ”inter-group” modes—are ”extensive” in that
their eigenvectors are not confined to just one or two areas; rather, they extend over the
entire network.

2. The remaining n − q eigenvalues are considered ”fast” modes—also known as ”intra-
area” or ”intra-group” modes—of the system, and are of order O(1). The eigenvectors
of these modes generally (but not always) are confined to one of the areas. If say two
of the areas, considered separately, have the same fast eigenvalue, then the fast mode
in the overall network (with O(ε) inter-area links inserted) will extend over those two
areas.

3. For small enough ε, the generators in an area move coherently when only the slow
modes are excited. In graph-theoretic terms, this means that the eigenvector of each of
the slow modes is roughly constant over the nodes of a given area (or group).

In this section we establish a graph/matrix-theoretic proof for slow coherency, explaining
several of the points summarized above. Of special consequence is our proof of Item 3. In
the process, conditions under which slow-coherency’s insights and predictions hold true
will be exposed.

Before we proceed, however, we need to establish some terminology.
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Definition 5.1 (Aggregate Graph)
Consider a connected graph G with node-weight matrix M = diag (M1, . . . , Mn) and Laplacian
matrix L, where aij is the weight of the edge that connects distinct nodes νi and νj . Let Vq =
{V1, . . . , Vq} be a q-partition of G, where G(Vi) is connected for every i = 1, . . . , q. Denote the node
weight matrix for each G(Vi) by Mi (so that we can alternatively write M = diag (M1, . . . ,Mq)).
Then G[Vq], the aggregate graph of G with respect to partition Vq, is defined as follows:

1. G[Vq] has q vertices ϑ1, . . . , ϑq, each of weight

M [i] =
∑

l∈Vi

Ml = xT
i Mxi ,

where xi is the indicator vector for cluster Vi.

2. The edge connecting distinct nodes ϑk with ϑl in G[Vq] has weight

ξkl =
∑

νi∈Vk,νj∈Vl

aij .

In other words, to construct the aggregate graph G[Vq], we simply represent each Vk-induced sub-
graph G(Vk) with an ”aggregate node” ϑk; assign to the aggregate node an ”aggregate weight”
equal to the sum of all the node weights in G(Vk); and define the ”aggregate weight” of the edge
between distinct aggregate nodes ϑk and ϑl to be the sum of all edges in G that connect a node in
G(Vk) with another in G(Vl). We denote the Laplacian matrix of G[Vq] by L[q] and its node weight
matrix by M[q] = diag (M [1], . . . , M [q]).

Example 5.2
Figure 5.1 shows a partitioned graph along with its aggregate graph. Each node ϑi in the aggregate
graph has weight equal to the total weight of the nodes in the corresponding subgraph G(Vi), and
each edge joining ϑi and ϑj has weight equal to the total weight of edges connecting Vi and Vj .

Theorem 5.3 (Slow-Coherency in Graph-Theoretic Terms)
Consider a graph G with n vertices, Laplacian matrix L, and vertex weight matrix M. Let the
graph have a q-partition Vq = {V1, . . . , Vq}, where each cluster G(Vi) contains at least one G-node.
The intra-area edge weights are of order O(1), while the inter-area link strengths are of order O(ε).
Then

1. the fastest nG − q eigenvalues of (L,M) are of order O(1).
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V2V5
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V5 V2

Figure 5.1: A partitioned graph and its aggregate.

2. the slowest q eigenvalues of (L,M) are of order O(ε).

3. the slowest q eigenvectors of (L,M) exhibit approximate coherency, i.e., they are approximately
constant over any given area G(Vi), i = 1, . . . , q.

Proof: Consider the graph G with all the inter-area edges nulled; that is, consider

Ĝ = G(V1)⊕ · · · ⊕G(Vq) ,

which has the Laplacian matrix

L̂ = diag (L1, . . . ,Lq)

and vertex weight matrix
M = diag (M1, . . . ,Mq) .

We shall consider L as an O(ε) perturbation of L̂, i.e., L = L̂ + E, where E ∼ ε.

As each G(Vi) is connected, the matrix pair (L̂,M) has exactly q eigenvalues at zero. The
fastest nG − q eigenvalues will be given by the Courant-Fischer theorem

Clearly, as the entries in L̂ are O(1) and an eigenvector v has unit M-norm, the fastest n−q

eigenvalues must be O(1). When the O(ε) inter-area edges are inserted into G, these n− q

fast eigenvalues shift only slightly, thus retaining their O(1) magnitudes.

The complication that arises here—related to the q slowest eigenvalues—has to do with
the fact that the zero eigenvalue is of multiplicity q. Therefore, techniques outlined in
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Appendix C need to be employed to study the effect of the O(ε) perturbations properly.

The symmetric perturbation matrix E that incorporates the O(ε) inter-area links, is a Lapla-
cian matrix in its own right, and can be partitioned as follows:

E =




E1 E12 · · · E1q

E21 E2 · · · E2q

...
...

. . .
...

Eq1 Eq2 · · · Eq




. (5.1)

Below are some observations about the perturbation matrix E:

• Each block Ei is a diagonal matrix because it does not represent any intra-area edge
(intra-area edges of G(Vi) already are accounted for in Li). Each diagonal entry of Ei is
the sum of all the inter-area edges connected to the node corresponding to that diagonal
entry. If a particular node in G(Vi) is connected only to other nodes within the ith sub-
graph, then the corresponding diagonal entry in Ei is zero. Otherwise, it is a positive
quantity denoting the inter-area degree of that node.

• The inter-area links are represented by Eij ¹ 0.

• Clearly, −xT
k Exl = −1T

nk
Ekl1nl

= ξkl, the sum of the edge weights connecting clusters
Vk and Vl, which is also the edge weight ξkl in the aggregate graph G[Vq].

• δk = xT
k Exk = −

q∑

l=1
l 6=k

xT
k Exl = −

q∑

l=1
l 6=k

1T
nk

Ekl1nl
=

q∑

l=1
l 6=k

ξkl, where δk is the degree of node

ϑk in G[Vq], which is the same as the inter-area degree of cluster Vk.

We now proceed to examine how the q eigenvalues of L at zero are perturbed. The mul-
tiplicity of the zero eigenvalue means that we must follow a procedure as outlined in Ap-
pendix C. We begin by specifying a set of q unit M-norm eigenvectors for L. This is
straightforward. If we index the nodes of G cluster-by-cluster, the partition matrix X cor-
responding to Vq would be:
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X =




1n1 0 · · · 0

0 1n2 · · · ...
...

. . . . . . 0
0 · · · 0 1nq




= diag (1n1 , . . . ,1nq) , (5.2)

where xk, the kth column of X, is the indicator vector for cluster Vk, i.e.,

xk(i) =





1 if νi ∈ Vi

0 otherwise.

It is clear, then, that the n × q matrix W defined below has columns that can serve as
mutually M-orthonormal eigenvectors for the q zero eigenvalues of (L,M).

W = XM−1/2
[q] =

[
x1√
M [1]

∣∣∣∣ · · ·
∣∣∣∣

xq√
M [q]

]
, (5.3)

where
wk =

xk√
M [k]

denotes our choice of the kth eigenvector for the zero eigenvalue of (L,M).

To find the actual eigenvectors ui, i = 1, . . . , q to which the perturbed ones reduce, we fol-
low the procedure outlined in Appendix C. Namely, we create the matrix G = WT EW,
and solve the eigenproblem of Equation (C.25): GC = CΘ. Given our choice of W, the
matrix G is given by:

G = WT EW = M−1/2
[q] XT EXM−1/2

[q] . (5.4)

Based on the observations we made of the perturbation matrix E as well as the structure
of the partition matrix X, it is clear that XT EX is of the form of a Laplacian matrix:

XT EX =




δ1 −ξ12 · · · −ξ1q

−ξ21 δ2 · · · −ξ2q

...
...

. . .
...

−ξq1 −ξq2 · · · δq




, (5.5)
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where we have already defined δk =
∑q

l=1
l 6=k

ξkl. Clearly, XT EX is the Laplacian matrix of

the aggregate graph G[Vq]. That is,

L[q] = XT EX . (5.6)

Hence, we have: G = M−1/2
[q] L[q] M

−1/2
[q] .

We can now recast the eigenproblem of Equation (C.25) GC = CΘ into the following
GEP form:

L[q] C[q] = M[q]C[q] Θ , (5.7)

where C[q] = M−1/2
[q] C.

Equation (5.7) is precisely the GEP for the aggregate graph G[Vq]; furthermore, Θ = diag (dλ1, . . . , dλq)
denotes the first-order eigenvalue shifts.

Assuming that the aggregate graph G[Vq] has no repeated eigenvalues, we simply use
Equation (C.23) to find the zero eigenvectors U to which the perturbed ones reduce as
E −→ 0, i.e., U = WC[q]. That is to say, the zero eigenvectors to which the perturbed ones
reduce are given by:

U = WC = XM−1/2
[q]︸ ︷︷ ︸

W

M1/2
[q] C[q]︸ ︷︷ ︸
C

= XM−1
[q] C[q] . (5.8)

It is clear now that the zero eigenvectors to which the perturbed ones reduce are simply
linear combinations of the indicator vectors for the various clusters, the coefficients in that
linear combination being the columns of the matrix M−1

[q] C. Hence, with a perturbation
matrix that is vanishingly small (of order O(ε)), and assuming that the aggregate graph—
represented by the pair (L[q],M[q])—has no repeated eigenvalues (we can ensure this if we
are given the prerogative of specifying the inter-area edge valuations), then the q slowest
eigenvectors of G will be roughly constant over each of the clusters Vi, as they reduce to
the columns of U above.

If we are not given the prerogative of specifying the inter-area edge-weights, there is a
possibility that the aggregate matrix will have repeated eigenvalues, in which case we
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need to carry the first-order perturbation analysis to the next higher order.

Regarding the eigenvalues to which the q zero eigenvalues are perturbed, we have shown
in Appendix C that they are of order O(ε). The proof is now complete. ¤

Before we proceed to the next corollary, we need to define the notions of a ”block acyclic
matrix” and a ”block spanning tree.”

Definition 5.4 (Block Acyclic Matrix)
A symmetric n × n matrix A is ”block acyclic of order q” (or ”q-block acyclic”) if (a) its graph
G(A) has nonnegative edges, and (b) there exists a q-partition Vq = {V1, . . . , Vq} of G(A), with a
corresponding partition matrix X = diag (x1, . . . ,xq), where xi is the indicator vector for cluster
Vi, such that, for some integer 1 ≤ q ≤ n, the matrix XTAX is acyclic.

Example 5.5
The following graph, said to have ”block tree” structure, has a block acyclic Laplacian matrix.

V2V5

V1

V3

V4

Figure 5.2: A graph with a block tree structure (and block acyclic Laplacian matrix.)

Proposition 1. A symmetric matrix A is block acyclic if, and only if, its graph has a aggregate
graph that is a tree.

Definition 5.6 (Spanning Block-Tree)
Specify a q-partition Vq = {V1, . . . , Vq} on a connected graph G. A spanning block tree of G with
respect to Vq is obtained by:

1. considering the aggregate companion graph G[Vq].

2. selecting a spanning tree of G[Vq].
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3. deleting all the edges between areas Vi and Vj in G if the corresponding edge between ϑi and ϑj

in G[Vq] is not in the spanning tree of G[Vq] that was selected in Item 1.

Clearly, the Laplacian matrix of a spanning block-tree of G must be block acyclic.

V2V5

V1

V3

V4

V2V5

V1

V3

V4

G
ST

G

Figure 5.3: A q-partitioned graph G and a spanning block tree (q = 5).

Corollary 5.7
Consider a graph similar to the one described by the slow coherency theorem, except that this one
has a block tree structure. Then for the kth slowest mode, 1 ≤ k ≤ q, there are exactly k − 1
eigenvector sign alternations across cluster boundaries.

Proof: The aggregate graph G([Vq]) corresponding to G has a tree structure. Therefore,
according to Fiedler’s results for acyclic matrices (and our extensions of his results in the
previous chapter), the eigenvector components of G([Vq]) show exactly k − 1 sign alterna-
tions for the kth slowest mode. These eigenvectors being the coefficients of the indicator
vectors that form the columns of X, in producing the eigenvectors of G, it is clear that for
sufficiently small ε, the perturbed eigenvector of the kth slowest mode will have exactly
k − 1 sign alternations across cluster boundaries.

The proof is now complete. ¤
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Example 5.8
Consider the block-acyclic graph of Figure 5.4, which comprises four clusters (indicated by dashed
circles) that have intra-area links of order O(1), but are weakly connected to each other according
to weights of order O(ε).

Table 5.2 shows the four slow, approximately coherent modes of the block-acyclic graph. Notice that
the sign alternations across clusters, in the four slow modes, follow the results of Fiedler and our
extensions for weighted trees graphs.

(1)

(3)

(2)

(4)

(5) (6)

(7)(8)

(10)(11)

(13)

(12)

(9)

2.5

0.025 2.5

1.9

1.71.6

1.52.2

2.12.3

2.8
0.015 1.9

2.1

0.030.05

0.03

0.01

0.02

Figure 5.4: A (q = 4)-cluster network that is block acyclic (in this case it is a block linear
array). The intra-area connections are of order O(1), whereas the inter-area links are of
order O(ε).

The following is an extension of a theorem due to Fiedler (see Theorem 3.8 in [27]), and
one that is closely related to slow coherency.

Theorem 5.9
Let G be a connected graph of n vertices. Let the graph have a q-partition Vq = {V1, . . . , Vq} and
a corresponding q-way cut Kq such that each component G(Vi) induced by Vi is connected, and
contains at least one G-node. Then there exists a positive valuation of edges of G such that the
slowest q eigenvectors of the matrix pair (L,M) provide spectral node valuations (i.e., eigenvector
components corresponding to each node) that have at least k − 1 sign alternations (for the kth
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slowest most) across cluster boundaries; within each G(Vi) there is coherency, and therefore, a
single eigenvector sign corresponding to the each slow eigenvector.

Proof: We are given the topology of the interconnections, but left to choose the edge
weights. A priori, we claim that we need not concern ourselves with any intra-area edge
weight. We merely need determine the inter-area edge weights. First, construct the aggre-
gate graph G(V[q]). Then select a spanning tree of G(V[q]), and call it T (V[q]). Assign edge
weights of order O(ε) to the interarea edges of G that correspond to the edges in T (Vq). If
all other inter-cluster edges are nulled, then the result of the previous corollary applies. We
can now assign edge valuations of order O(ε2) to the remaining inter-cluster edges (those
that were nulled when we formed T (V[q]). For sufficiently small ε the eigenvectors of the
G so constructed will have the same sign alternation properties as a graph with block tree
structure would.

The one issue we need to worry about is to ascribe edge valuations in a way that prevents
the aggregate spanning tree T (V[q]) from having multiple eigenvalues. If T (V[q]) has a
Hamilton path, i.e., a path that traverses every vertex in T (V[q]), then we simply select that
path as our spanning tree, ascribe edge weights of order O(ε) to its corresponding inter-
cluster edges, and valuate all other edges on the order O(ε2). The benefit of this is that
a Hamilton path is essentially a connected linear array, whose Laplacian is an irreducible
tridiagonal matrix, which always has distinct eigenvalues. Barring this, we can always
valuate the edges of T (V[q]) such that it does not have repeated eigenvalues. The proof is
now complete. ¤

Example 5.10 (Special Case When q = 2)
When q = 2, the result of the previous corollary specializes to that of Theorem 3.8 of Fiedler [27].
Consider a bi-partitioned graph with connected components G(V1) and G(V2).

V1

V2

Figure 5.5: A two-cluster approximately coherent graph.
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Then the matrix W is given by:

W =

[
1n1 0
0 1n2

]

︸ ︷︷ ︸
X




1√
M [1]

0

0 1√
M [2]




︸ ︷︷ ︸
M
−1/2
[q]

. (5.9)

The aggregate graph for this case would be a two-node graph with edge weight ξ = ξ12 denoting
the edge between them (i.e., the sum of the edge weights between clusters V1 and V2), and each with
respective weight M [1] and M [2].

γ    = γ12

M [2]

M [1]

Figure 5.6: Aggregate graph for the two-cluster graph.

The Laplacian matrix L[q] is given by

L[q] =

[
ξ −ξ

−ξ ξ

]
,

and the node weight matrix M[q] is:

M[q] =

[
M [1] 0

0 M [2]

]
.

It is easy to verify that the eigenvalues of the matrix pair (L[q],M[q]) are θ1 = dλ1 = 0 and

θ2 = dλ2 =
ξ12

(M [1]) ‖ (M [2])
, where M [1] ‖ M [2] =

M [1]M [2]
M [1] + M [2]

. The eigenvectors are given

by:

C[q] =
1√

M [1] + M [2]

[
1 +

√
M [2]/M [1]

1 −
√

M [1]/M [2]

]
. (5.10)

The unperturbed eigenvectors to which the perturbed ones reduce to as E −→ 0 are:

U = XC[q] = X
1√

M [1] + M [2]

[
1

√
M [2]/M [1]

1 −
√

M [1]/M [2]

]
(5.11)
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From this we obtain

u2 =
1√

M [1] + M [2]

[√
M [2]/M [1]1n1√
M [1]/M [2]1n2

]
, (5.12)

which reduces precisely to Fiedler’s result, if we consider the special case that he dealt with, namely:
M1 = · · · = Mn = 1, M [1] =

∑
νi∈Vi

Mi = |V1| = n1, and M [2] = n2, where n1 + n2 = n.

Example 5.11
Consider the block-acyclic graph of Figure 5.7, which comprises four clusters (indicated by dashed
circles) that have intra-area links of order O(1), but weakly connected to each other according to
weights of order O(ε). Now add links of order O(ε2) between clusters 1 and 4. Figure 5.7 depicts
our example.

An eigenanalysis of the graph shows that it approximates a block-acyclic graph with the same sign
patterns for coherent areas as was predicted by Theorem 5.9. Table 5.2 shows the approximately
coherent slow modes, and the sign alternations between clusters.

(1)

(3)

(2)

(4)

(5) (6)

(7)(8)

(10)(11)

(13)

(12)

(9)

2.5

0.025 2.5

1.9

1.71.6

1.52.2

2.12.3

0.002 0.001

2.8
0.015 1.9

2.1

0.030.05

0.03

0.01

0.02

Figure 5.7: A four-cluster network that is a slightly perturbed away from being block
acyclic (in this case, the block linear array has been perturbed by links of order O(ε2) to
form a block ring network). The intra-area connections are of order O(1), whereas all ex-
cept one of the inter-area links are of order O(ε). The one except is the set of links that
shape the network in the form of a block ring.

– 109 –



Chapter 5 A Graph-Theoretic Look at Dynamic Coherency

λ
1

=
0.

00
00

λ
2

=
0.

02
26

λ
3

=
0.

05
65

λ
4

=
0.

11
24

λ
5

=
3.

36
54

λ
6

=
4.

28
00

λ
7

=
6.

49
03

λ
8

=
7.

03
00

1.
00

00
0.

72
01

0.
26

89
-0

.2
19

2
0.

00
55

-0
.1

24
7

1.
00

00
-0

.0
00

1
1.

00
00

0.
71

48
0.

26
31

-0
.2

10
5

0.
00

20
1.

00
00

-0
.4

00
9

0.
00

00
1.

00
00

0.
70

91
0.

25
81

-0
.2

02
3

-0
.0

05
5

0.
04

25
-0

.4
99

9
0.

00
00

1.
00

00
0.

71
75

0.
26

73
-0

.2
16

0
0.

00
05

-0
.8

70
6

-0
.6

03
7

0.
00

00
1.

00
00

-0
.0

10
6

-0
.5

28
2

0.
97

28
0.

10
41

0.
00

34
-0

.0
01

9
-0

.0
02

3
1.

00
00

-0
.0

16
0

-0
.5

39
1

1.
00

00
0.

97
74

-0
.0

03
1

0.
00

00
-0

.0
02

1
1.

00
00

-0
.0

21
9

-0
.5

33
3

0.
96

43
0.

01
85

-0
.0

02
5

0.
00

21
0.

00
67

1.
00

00
-0

.0
18

2
-0

.5
30

2
0.

96
19

-1
.0

00
0

-0
.0

02
1

0.
00

44
-0

.0
02

5
1.

00
00

-0
.5

52
3

-0
.3

67
3

-0
.9

06
1

-0
.0

05
1

0.
00

00
0.

00
00

0.
04

88
1.

00
00

-0
.5

56
6

-0
.3

69
3

-0
.9

29
2

0.
00

71
0.

00
00

0.
00

00
0.

99
89

1.
00

00
-0

.5
61

6
-0

.3
60

7
-0

.9
29

6
0.

00
76

0.
00

00
-0

.0
00

1
-1

.0
00

0
1.

00
00

-1
.0

00
0

1.
00

00
0.

54
26

-0
.0

00
1

0.
00

04
0.

00
03

0.
00

57
1.

00
00

-0
.9

95
8

0.
99

20
0.

53
40

-0
.0

00
1

-0
.0

00
2

-0
.0

00
3

0.
00

04

Ta
bl

e
5.

2:
Th

e
fin

it
e

m
od

es
of

an
in

te
rc

on
ne

ct
ed

ne
tw

or
k

ex
hi

bi
ti

ng
ap

pr
ox

im
at

e,
sl

ow
co

he
re

nc
y,

w
it

h
cl

us
te

r
si

gn
-p

at
te

rn
s

de
si

gn
ed

to
ap

pr
ox

im
at

e
th

os
e

of
a

bl
oc

k-
ac

yc
lic

gr
ap

h.
Th

e
fir

st
q

=
4

co
lu

m
ns

be
lo

ng
to

th
e

sl
ow

,a
pp

ro
xi

m
at

el
y

co
he

re
nt

m
od

es
.

– 110 –



Chapter 5 A Graph-Theoretic Look at Dynamic Coherency

Definition 5.12 (A q-Partition Induced Splitting of the Laplacian Matrix L)
Consider Vq = {V1, . . . , Vq}, a q-partition of a connected graph G. We say that Vq induces a
splitting of the Laplacian matrix L into intra- and inter-area Laplacian matrices as follows:

L =




L̂1 0 · · · 0

0 L̂2
. . .

...
...

. . . . . . 0
0 · · · 0 L̂q




︸ ︷︷ ︸
bL

+




L̃1 L̃12 · · · L̃1q

L̃21 L̃2 · · · ...
...

. . . . . . L̃q−1,q

L̃q1 · · · L̃q,q−1 L̃q




︸ ︷︷ ︸
eL

, (5.13)

where L̂ and L̃ contain the intra-area and the inter-area connection information, respectively. Note
that each L̂i is an irreducible Laplacian matrix in its own right. The matrix

L̂ = L̂1 ⊕ · · · ⊕ L̂q

is the Laplacian matrix of the graph

Ĝ = Ĝ(V1)⊕ · · · ⊕ Ĝ(Vq) ,

wherein all the clusters Vi of G are decoupled from each other.

The Laplacian matrix L̃, on the other hand, describes the inter-area couplings. Furthermore, each of
its diagonal blocks L̃i is a diagonal matrix containing the inter-area degrees of each node in cluster
Vi; it is diagonal because it contains no information about the intra-area links for cluster Vi. In
general, L̃i could have some zero-valued diagonal entries if it has nodes that are not connected
to any cluster other than Vi; we will argue later that for exact coherency, the only nodes whose
corresponding diagonal entries in L̃i are allowed to be zero are L-type nodes. Moreover, it must
be that L̃i 6= 0, because cluster Vi would be disconnected from the rest of the graph otherwise—a
contradiction to our supposition that G is connected.
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Example 5.13 (Ramaswamy [68], Example 2.1)
Consider a vibrational network with Laplacian matrix

L =




+6.2 −0.2 −1.0 −1.0 −2.0 −2.0
−0.2 +6.2 −1.0 −1.0 −2.0 −2.0
−1.0 −1.0 +3.6 −0.8 −0.4 −0.4
−1.0 −1.0 −0.8 +3.6 −0.4 −0.4
−2.0 −2.0 −0.4 −0.4 +5.0 −0.2
−2.0 −2.0 −0.4 −0.4 −0.2 +5.0




,

and a 3-partition V3 =
{{1, 2}, {3, 4}, {5, 6}}. Then the V3-induced splitting of the Laplacian

matrix L is given by:

L =




+0.2 −0.2 0.0 0.0 0.0 0.0
−0.2 +0.2 0.0 0.0 0.0 0.0
0.0 0.0 +0.8 −0.8 0.0 0.0
0.0 0.0 −0.8 +0.8 0.0 0.0
0.0 0.0 0.0 0.0 +0.2 −0.2
0.0 0.0 0.0 0.0 −0.2 +0.2




︸ ︷︷ ︸
L̂

+




+6.0 0.0 −1.0 −1.0 −2.0 −2.0
0.0 +6.0 −1.0 −1.0 −2.0 −2.0
−1.0 −1.0 +2.8 0.0 −0.4 −0.4
−1.0 −1.0 0.0 +2.8 −0.4 −0.4
−2.0 −2.0 −0.4 −0.4 +4.8 0.0
−2.0 −2.0 −0.4 −0.4 0.0 +4.8




︸ ︷︷ ︸
L̃

.

(5.14)

Definition 5.14 (Dynamic Coherency)
Consider a connected graph G described by the n× n matrix pair (L,M), where L and M are the
Laplacian and vertex weight matrices, respectively. Let the modes of the graph be given by (λ↑i , ui),
i = 1, . . . , n. Let F = {λk1 , . . . , λkr} be a spectral chord of (L,M), where 1 = k1 < k2 <

· · · < kr ≤ n, and Vq = {V1, . . . , Vq} be a q-partition of G. Then G is said to exhibit (F ,Vq)-
coherency—or be (F ,Vq)-coherent—if the mode shapes (modulo normalization) corresponding to
F are given by:

[
uk1 | · · · |ukr

]

︸ ︷︷ ︸
UF

=




1n1 0 · · · 0

0 1n2

. . .
...

...
. . . . . . 0

0 · · · 0 1nq




︸ ︷︷ ︸
X




η11 · · · η1r

...
. . .

...
ηq1 · · · ηqr




︸ ︷︷ ︸
C

(5.15)

UF = XC . (5.16)
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On occasion, we might abuse terminology and say that a particular mode (λ,u) of G (or equiva-
lently, a mode of (L,M)) is coherent, with respect to Vq, if the eigenvector u is of the form:

u =




c11n1

...
cq1nq


 = X c .

Theorem 5.15
Let a connected graph G, described by the n × n matrix pair (L,M), be (λ,Vq)-coherent, with
respect to the q-partition Vq, i.e., let the eigenvector corresponding to λ be

u =




c11n1

...
cq1nq


 =




1n1 0 · · · 0

0 1n2

. . .
...

...
. . . . . . 0

0 · · · 0 1nq




︸ ︷︷ ︸
X




c1

...
cq




︸ ︷︷ ︸
c

.

Then (λ, c) is a mode of the aggregate graph G[Vq], described by the matrix pair (L[q],M[q]).

Proof: We are given that Lu = λMu, and know that u = X c. Putting these two together
we have:

LX c = λMX c .

Pre-multiplying both side with XT yields:

XT LX︸ ︷︷ ︸
L[q]

c = λ XT MX︸ ︷︷ ︸
M[q]

c (5.17)

which is the eigenproblem

L[q] c = λM[q] c . (5.18)

The proof is now complete. ¤
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5.3 Necessary & Sufficient Conditions for Exact Coherency

In this section we describe necessary and sufficient conditions for a graph G to exhibit exact
coherency and mode confinement. First, we state necessary and sufficient conditions for a
graph to exhibit (Vq,F)-coherency. This is encapsulated by Theorem 5.16 below. Next, we
impose an additional constraint; not only do we want the graph G to be (Vq,F)-coherent,
but we also insist that when a disturbance (not to include a zero-mode disturbance) is con-
fined to one of the areas G(Vi), it will not excite other areas in the overall interconnected
network. That is to say, we look for necessary and sufficient conditions for a graph to be
coherent in a set of q modes, while having each of the remaining n − q ”modes” confined
to one of the q areas; we have placed ”modes” in quotes because the eigenvectors corre-
sponding to infinite eigenvectors are included in our statement. This will be addressed by
Theorem 5.21.

The results of this section suggest a design strategy for constructing, from a graph of size
q and a chosen set of disconnected graphs G(Vi)—each of respective size ni, i = 1, . . . , q

(possibly containing even L-type nodes)—a graph G(V ) of size n =
∑q

i=1 ni, such that G

exhibits coherency, and—in the case described by Theorem 5.21—even mode confinement.

5.3.1 Exact Coherency Theorem

The theorem we are about to state and prove lays out the requirements for a graph G to be
coherent with respect to a q-partitioning Vq, over a chord F that consists of q eigenvalues.
The backbone of this theorem was formulated by Chow [13] (in his Corollary 4.5.1, p. 81);
however, he stated the theorem in a manner that does not accommodate L-nodes. We
restate the theorem in a form that takes into account the presence of L-nodes in the graph.
Building on that, we infer corollaries that impose structure on the inter-area links that G-
nodes and L-nodes may have in a graph so that (Vq,F)-coherency is feasible.

Theorem 5.16 (Exact Coherency Theorem (ECT))
Consider a graph G described by the matrix pair (L,M), having modes (Λ,U), where Λ =
diag (λ1, . . . , λn) and U = [u1, . . . ,un]. Let Vq = {V1, . . . , Vq} be a q-partition of G where
each area Vi has size ni, with n1 + · · ·+nq = n. Let X = diag (1n1 , . . . ,1nq) be the corresponding
n × q partition matrix. Let the aggregate graph G[Vq] be described by the matrix pair (L[q],M[q])
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given by

L[q] = XT LX =




δ1 −ξ12 · · · −ξ1q

−ξ21 δ2 · · · −ξ2q

...
...

. . .
...

−ξq1 −ξq2 · · · δq




M[q] = XT MX =




M [1]
. . .

M [q]


 ,

(5.19)
having modes (Θ,C), where Θ = diag (θ1, . . . , θq) and C = [c1, . . . , cq] ∈ Rq×q. Let F =
{θ1, . . . , θq} be the chord of frequencies of interest. And let L = L̂ + L̃ be the Vq-induced splitting
of the Laplacian matrix L.

Then the graph G is (Vq,F)-coherent if, and only if,

L̃i =
δi

M [i]
Mi i = 1, . . . , q (5.20)

and

L̃ij1nj = − ξij

M [i]
Mi1ni︸ ︷︷ ︸
mi

= − ξij

M [i]
mi . (5.21)

Proof: If G is (Vq,F)-coherent, then the eigenproblem for the q coherent modes may be
written as:

(
L̂ + L̃

)
XC = L̃XC = MXCΘ ⇐⇒ L̃X = MXCΘC−1 . (5.22)

We also know from the eigenproblem associated with (L[q],M[q]) that:

L[q] C = M[q] CΘ ⇐⇒ CΘC−1 = M−1
[q] L[q] . (5.23)

Substituting the expression for CΘC−1 of (5.23) in (5.22), we obtain:

L̃X = MXM−1
[q] L[q] . (5.24)
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Rewriting (5.24) in partitioned form yields:




L̃11n1 L̃121n2 · · · L̃1q1nq

L̃211n1 L̃21n2 · · · L̃2q1nq

...
...

. . .
...

L̃q11n1 L̃q21n2 · · · L̃q1nq




=




m1

M [1]
. . .

mq

M [q]







δ1 −ξ12 · · · −ξ1q

−ξ21 δ2 · · · −ξ2q

...
...

. . .
...

−ξq1 −ξq2 · · · δq




=




δ1

M [1]
m1 − ξ12

M [1]
m1 · · · − ξ1q

M [1]
m1

− ξ21

M [2]
m2

δ2

M [2]
m2 · · · − ξ2q

M [2]
m2

...
...

. . .
...

− ξq1

M [q]
mq − ξq2

M [q]
mq · · · δq

M [q]
mq




. (5.25)

Setting equal the corresponding diagonal blocks on each side, we obtain:

L̃i1ni =
δi

M [i]
mi . (5.26)

We recall that L̃i is a diagonal matrix of size ni. Therefore, it must be that:

L̃i =
δi

M [i]
Mi . (5.27)

Analogously, setting equal the off-diagonal blocks, say the (i, j)th, we have:

L̃ij1nj = − ξij

M [i]
mi . (5.28)

All the steps we took in the proof have involved necessity and sufficiency. Therefore, the
proof is complete. Nevertheless, we may easily verify sufficiency by taking the necessity
properties (5.27) and (5.28) as the starting point, and then showing that the graph G ex-
hibits coherency in the set of modes corresponding to those of (L[q],M[q]). ¤

5.3.2 A Few Design-Oriented Observations and Implications

Clearly, the Exact Coherency Theorem 5.16 does accommodate the presence of L-nodes in
each of the individual areas G(Vi). We can therefore make the following observation, in
the form of a corollary to Theorem 5.16:
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Corollary 5.17
If G exhibits exact coherency, as in Theorem 5.16, then every L-node must be internal to each area;
it cannot have any inter-area connections.

Proof: We arrive at this simply by noting that the corresponding element on the diagonal
matrix L̃i in (5.27), which is the inter-area degree of each node in the ith area G(Vi), is
zero when the corresponding node is L-type. To prove this, we note that the row of L̃ij

corresponding to an L-node in G(Vi) must be zero for all j 6= i, as the row-sum must be
proportional to the weight of the node corresponding to that row (which, in the case of
an L-node is zero). This is because L̃ij ¹ 0; hence, when a particular row-sum is zero, it
must be that all elements on that row are zero. By the symmetry of L̃, coherency must
be exhibited also by the left eigenvectors (which are the same as the right eigenvectors).
Therefore, the properties that we have arrived at must hold for corresponding columns of
each L̃ij block as well. To summarize, for every L̃ij , which is of size ni × nj , every row
corresponding to an L-node in G(Vi) is zero, and every column corresponding to an L-node
in G(Vj) is zero. ¤

It is convenient for us to index the nodes of the graph such that within each area the L-
nodes are listed last. This way, L̃i and L̃ij take the forms:

L̃i =


F

n
(i)
G ×n

(i)
G

0
n

(i)
G ×n

(i)
L

0
n

(i)
L ×n

(i)
G

0
n

(i)
L ×n

(i)
L


 L̃ij =


F

n
(i)
G ×n

(j)
G

0
n

(i)
G ×n

(j)
L

0
n

(i)
L ×n

(j)
G

0
n

(i)
L ×n

(j)
L


 (5.29)

The next observation is the dual of Corollary 5.17, and it is a necessary restriction imposed
on the G-nodes.

Corollary 5.18
If a connected graph G exhibits exact coherency, as described in Theorem 5.16, then every G-node
of G must have at least one inter-area connection to at least one node (of G-type, according to
Corollary 5.17) in a different cluster.

Proof: Suppose a G-node in area G(Vi) is not linked to any other cluster G(Vj), j 6= i. Then,
the entire row in L̃, corresponding to that G-node, is nulled. This implies that cluster G(Vi)
is not connected to any other cluster, because the only way for a row of L̃ij to be zero is for
the corresponding ξij to be zero in the aggregate graph, or, for the node in question to be
L-type. If G(Vi) is not connected to any other cluster, then the graph G is not connected: a
contradiction. The proof is complete. ¤

– 117 –



Chapter 5 A Graph-Theoretic Look at Dynamic Coherency

Another observation is that

1T
ni

L̃ij 1nj = − ξij

M [i]
1T

ni
mi︸ ︷︷ ︸

M [i]

= −ξij . (5.30)

In terms of designing a coherent graph G from the various areas G(Vi), this means that
whenever in the aggregate graph, from which we start the design, a particular edge is
non-existent (ξij = 0), the corresponding areas G(Vi) and G(Vj) are not connected to each
other, i.e., L̃ij = 0. Rewriting L̃ij = −ξij Lij for areas that are connected to each other, (5.30)
becomes 1T

ni
Lij 1nj = 1.

Another observation is that because L̃ is symmetric, we must have L̃T
ij = L̃ji. Taking the

transpose of both sides of (5.28) we get:

1T
nj

L̃T
ij = 1T

nj
L̃ji = − ξij

M [i]
mT

i . (5.31)

Since i and j are merely generic indexing variables, we can rewrite (5.31) for L̃ij as follows:

1T
ni

L̃ij = − ξij

M [j]
mT

j . (5.32)

So not only do we have a constraint on the row-sums of L̃ij , but also—due to the symmetry
of L̃—on the column-sums.

Example 5.19
Suppose we are given three graphs G(Vi), i = 1, 2, 3, whose matrix pairs are given below (we also
show their modes, as we will make reference to them later in this chapter):

L̂1 =




0.30 −0.20 0 −0.10 0
−0.20 0.31 −0.11 0 0

0 −0.11 0.39 −0.15 −0.13
−0.10 0 −0.15 0.37 −0.12

0 0 −0.13 −0.12 0.25




M1 =




1
2

0
0

0




(5.33)
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Figure 5.8: Three disjoint clusters G(V1), G(V2), and G(V3) that we want to interconnect to
create a coherent network.

L̂2 =




0.90 −0.80 0 −0.10 0 0
−0.80 0.91 −0.11 0 0 0

0 −0.11 0.40 0 −0.15 −0.14
−0.10 0 0 0.42 −0.15 −0.17

0 0 −0.15 −0.15 0.41 −0.11
0 0 −0.14 −0.17 −0.11 0.42




M2 =




5
7

0
0

0
0




(5.34)
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λ̂
(1)
1 = 0.0000 λ̂

(1)
2 = 0.3630 λ̂

(1)
3 =∞ λ̂

(1)
4 =∞ λ̂

(1)
5 =∞

1.0000 1.0000 0.0000 0.0000 0.0000
1.0000 -0.5000 0.0000 0.0000 0.0000
1.0000 0.0730 1.0000 0.0000 0.0000
1.0000 0.3697 0.0000 1.0000 0.0000
1.0000 0.2154 0.0000 0.0000 1.0000

Table 5.3: Eigenvalues and eigenvectors of (L̂1,M1).

λ̂
(2)
1 = 0.0000 λ̂

(2)
2 = 0.2876 λ̂

(2)
3 = ∞ λ̂

(2)
4 = ∞ λ̂

(2)
5 = ∞ λ̂

(2)
6 = ∞

1.0000 1.0000 0 .0000 0 .0000 0 .0000 0 .0000
1.0000 -0.7143 0 .0000 0 .0000 0 .0000 0 .0000
1.0000 -0.1073 1 .0000 0 .0000 0 .0000 0 .0000
1.0000 0.3323 0 .0000 1 .0000 0 .0000 0 .0000
1.0000 0.1170 0 .0000 0 .0000 1 .0000 0 .0000
1.0000 0.1294 0 .0000 0 .0000 0 .0000 1 .0000

Table 5.4: Eigenvalues and eigenvectors of (L̂2,M2).

L̂3 =




0.32 −0.20 0.00 −0.12 0.00 0.00
−0.20 0.34 −0.14 0.00 0.00 0.00
0.00 −0.14 0.45 −0.16 0.00 −0.15
−0.12 0.00 −0.16 0.46 −0.18 0.00
0.00 0.00 0.00 −0.18 0.30 −0.12
0.00 0.00 −0.15 0.00 −0.12 0.27




M3 =




6
12

0
0

0
0




.

(5.35)

Our design problem is to interconnect these three graphs in such a way as to make the overall graph
G(V ), where V = V1 ∪ V2 ∪ V3, coherent according to the modes of the following 3-node aggregate
graph:

L[q] =




13.50 −9.00 −4.50
−9.00 21.00 −12.00
−4.50 −12.00 16.50


 M[q] =




3
12

18


 . (5.36)
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λ̂
(3)
1 = 0.0000 λ̂

(3)
2 = 0.0623 λ̂

(3)
3 =∞ λ̂

(3)
4 =∞ λ̂

(3)
5 =∞ λ̂

(3)
6 =∞

1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
1.0000 -0.5000 0.0000 0.0000 0.0000 0.0000
1.0000 0.0286 1.0000 0.0000 0.0000 0.0000
1.0000 0.3833 0.0000 1.0000 0.0000 0.0000
1.0000 0.2874 0.0000 0.0000 1.0000 0.0000
1.0000 0.1436 0.0000 0.0000 0.0000 1.0000

Table 5.5: Eigenvalues and eigenvectors of (L̂3,M3).

From (5.27) it is easy to specify L̃i for i = 1, 2, 3. We have:

L̃1 =
δ1

M [1]
M1 =

13.5
3




1
2

0
0

0




=




4.5
9

0
0

0




, (5.37)

and similarly for the others

L̃2 =
δ2

M [2]
M2 =

21
12




5
7

0
0

0
0




=




8.75
12.25

0
0

0
0




(5.38)

L̃3 =
δ3

M [3]
M3 =

16.5
18




6
12

0
0

0
0




=




5.5
11

0
0

0
0




. (5.39)

To complete our solution, we have to appropriately design the L̃12, L̃13, and L̃23 blocks of L̃. We
know from (5.28) and (5.32) that those rows and columns of L̃ij corresponding to L-nodes must be
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zero. In the case of L̃12 this leads to

L̃12 = −ξ12 L12 = −ξ12




F F 0 0 0 0
F F 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, (5.40)

where our task is to find appropriate values for the four entries marked as F. Furthermore, we know
from (5.28) and (5.32) what the row and column sums ought to be; we also know that ξ12 = 9.
Therefore, it is easy to verify that the following values substituted for F would satisfy the design
requirements for L̃12:

L̃12 = −9




4
36

8
36 0 0 0 0

11
36

13
36 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




=




−1.00 −2.00 0 0 0 0
−2.75 −3.25 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (5.41)

These choices for the four entries marked by F are by no means unique. Any other set of four
non-negative values that satisfy the row- and column-sum requirements would work just as well.

Proceeding as we have, we choose an admissible set of values for the relevant entries in L̃13 and L̃23.
The reader may verify that the following choices work

L̃13 = −4.5




0 3
9 0 0 0 0

3
9

3
9 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




=




0 −1.5 0 0 0 0
−1.5 −1.5 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, (5.42)
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and

L̃23 = −12




12
16

3
16 0 0 0 0

0 21
36 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




=




−4 −1 0 0 0 0
0 −7 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(5.43)

Noting that L̃ji = L̃T
ij , we consider the design problem completed. Figure 5.9 shows the graph that

we just designed.
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Figure 5.9: Interconnected network that is coherent in three modes.

To verify that our design meets the requirements, we first compute the eigenpairs of (L[q],M[q]) (for
convenience of comparison with the larger coherent graph G, we have scaled each eigenvector so its
first entry is unity).
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θ1 = 0.0000 θ2 = 1.9934 θ3 = 5.1732
1.0000 1.0000 1.0000
1.0000 1.3783 -0.2116
1.0000 -1.0855 -0.0256

It is easy to verify that θ1, θ2, and θ3 are also eigenvalues of (L,M)—albeit not the slowest ones.
Specifically, the finite eigenvalues of (L,M) along with their eigenvectors are:

λ1 = 0.0000 λ2 = 0.6146 λ3 = 1.9934 λ4 = 2.3723 λ5 = 4.8928 λ6 = 5.1732
1.0000 -0.1609 1.0000 0.0192 -0.8333 1.0000
1.0000 0.0804 1.0000 -0.0096 0.4166 1.0000
1.0000 -0.0117 1.0000 0.0014 -0.0608 1.0000
1.0000 -0.0595 1.0000 0.0071 -0.3081 1.0000
1.0000 -0.0347 1.0000 0.0041 -0.1795 1.0000
1.0000 0.3565 1.3783 -0.7052 -0.0160 -0.2116
1.0000 -0.2547 1.3783 0.5037 0.0115 -0.2116
1.0000 -0.0382 1.3783 0.0756 0.0017 -0.2116
1.0000 0.1185 1.3783 -0.2343 -0.0053 -0.2116
1.0000 0.0417 1.3783 -0.0825 -0.0019 -0.2116
1.0000 0.0461 1.3783 -0.0912 -0.0021 -0.2116
1.0000 0.7075 -1.0855 0.3392 -0.0239 -0.0256
1.0000 -0.3538 -1.0855 -0.1696 0.0119 -0.0256
1.0000 0.0202 -1.0855 0.0097 -0.0007 -0.0256
1.0000 0.2712 -1.0855 0.1300 -0.0092 -0.0256
1.0000 0.2034 -1.0855 0.0975 -0.0069 -0.0256
1.0000 0.1016 -1.0855 0.0487 -0.0034 -0.0256

Table 5.6: The finite modes of an interconnected network, designed according to Theorem 5.16 to be
perfectly coherent in three modes.

Our design example has involved a 3-way coherency-based partition of a seventeen-node graph, six
of whose nodes are G-type and the rest L-type. None of the L-nodes has any inter-area connections,
whereas every G-node has at least one neighbor in a different area—both these in consonance with
our design requirements.

– 124 –



Chapter 5 A Graph-Theoretic Look at Dynamic Coherency

5.4 Exact Coherency and Mode Confinement

5.4.1 When is a Mode Confined to an Area?

The issue of a mode shape being confined to a proper subgraph of a graph G will occasion-
ally arise in our subsequent discussion. Therefore, we take a pause to describe a simple
necessary and sufficient condition for mode confinement.

Consider the matrix pair (L,M) associated with a graph G. Let a mode (λ,u) be confined
to a proper subgraph GA of G; that is, if we consider the entries of u to be valuations of the
nodes of G, then all vertices not in GA are zero-valuated. In other words, we can write the
eigenproblem corresponding to the mode as follows:

[
LA LAA

LAA LA

][
uA

0

]
= λ

[
MA 0
0 MA

][
uA

0

]
. (5.44)

Clearly, then for a mode to be confined to a proper subgraph GA of G, it must satisfy two
conditions:

1. The non-null portion uA of the eigenvector u must be an eigenvector, corresponding to
the same eigenvalue, for the subgraph GA. That is, we must have

LA = λMA uA .

2. The eigenvector uA of GA must be in the null space of LAA; that is, we must have

LAA uA = 0 .

Example 5.20 (Ramaswamy [68], Example 2.1)
Consider a vibrational network with node-weight matrix M = I, and Laplacian matrix:

L =




+6.2 −0.2 −1.0 −1.0 −2.0 −2.0
−0.2 +6.2 −1.0 −1.0 −2.0 −2.0
−1.0 −1.0 +3.6 −0.8 −0.4 −0.4
−1.0 −1.0 −0.8 +3.6 −0.4 −0.4
−2.0 −2.0 −0.4 −0.4 +5.0 −0.2
−2.0 −2.0 −0.4 −0.4 −0.2 +5.0




.

– 125 –



Chapter 5 A Graph-Theoretic Look at Dynamic Coherency

If we consider the partitions as {ν1, ν2}, {ν3, ν4}, and {ν5, ν6}, it is a fairly straightforward
exercise to note that all L̃ij blocks have rows that are multiples of 1T Mj = 1T, which is
orthogonal to every oscillatory eigenvector of each of the components. This is why the
network has modes local to each area.

Theorem 5.21 (Exact Coherency and Mode Confinement Theorem)
Consider a graph G described by the matrix pair (L,M). Let Vq = {V1, . . . , Vq} be a q-partitioning
of G such that each area G(Vi) has size ni, with n1 + · · · + nq = n. Let L̂ = diag (L̂1, . . . , L̂q)
be the intra-area portion of the Vq-induced splitting of L, and let M = diag (M1, . . . ,Mq) be the
corresponding grouping of the node-weight matrix; each area G(Vi) contains 0 < n

(i)
G ≤ ni nodes

of type G, and may also contain a number 0 ≤ n
(i)
L = ni − n

(i)
G of L-type nodes. Assume that

distinct subgraphs G(Vi) and G(Vj)—described by (Li,Mi) and (Lj ,Mj), respectively—have no
finite, non-zero (oscillatory) eigenvalues in common.

Furthermore, consider the nj − 1 linearly independent vectors w
(j)
2 , . . . ,w

(j)
nj , where

w
(j)
l =




0

v
(j)
l

0




n×1

, (5.45)

with {v(j)
2 , . . . ,v

(j)
nj } being the set of n

(j)
G − 1 oscillatory finite, as well as the n

(j)
L infinite, eigen-

vectors of (Lj ,Mj)

Then w
(j)
l is an eigenvector of (L,M) if, and only if,

L̃ij = − ξij

M [i]M [j]
(Mi1ni)

(
Mj1nj

)T = − ξij

M [i] M [j]
mi m

T
j i 6= j (5.46)

and

L̃i =
δi

M [i]
Mi , (5.47)

for some constants ξij ≥ 0, and δi =
q∑

j=1
j 6=i

ξij > 0.
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Proof: Consider the Laplacian splitting induced by Vq, as described in Definition 5.12:
L = L̂ + L̃. It is clear that

L̂w
(j)
l =




0

L̂j v
(j)
l

0


 =




0

λ̂
(j)
l Mj v

(j)
l

0


 = λ̂

(j)
l M




0

v
(j)
l

0


 = λ̂

(j)
l Mw

(j)
l , (5.48)

for l = 2, . . . , nj . Hence, we need concern ourselves only with

L̃w
(j)
l =




L̃1 L̃12 · · · L̃1q

L̃21 L̃2 · · · ...
...

. . . . . . L̃q−1,q

L̃q1 · · · L̃q,q−1 L̃q







0

v
(j)
l

0


 =




L̃1j

...
L̃j

...
L̃qj




v
(j)
l . (5.49)

To have the resulting vector be zero everywhere except in the entries corresponding to the
jth group G(Vj), we must have:

L̃ij v
(j)
l = 0 , (5.50)

for all i ∈ {1, . . . , q}, i 6= j and l = 2, . . . , nj . The only way this can happen is if each
row of L̃ij is of the form f

(i)
r 1T

nj
Mj = f

(i)
r mT

j , for r = 1, . . . , ni. That is to say, letting

f (i) = [f (j)
1 · · · f

(j)
ni ]T, we see that L̃ij = f (i) mT

j is a rank-one matrix. The symmetry of L̃
necessitates that we also have L̃ij = mi g

(j)T for an nj-vector g(j). Combining these two
requirements, we conclude that:

L̃ij = − ξij

M [i]M [j]
mi m

T
j , (5.51)

for some nonnegative constant ξij .

Furthermore, we must have
L̃j v

(j)
l = α

(j)
l Mj v

(j)
l . (5.52)

We know that L̃j is a diagonal matrix. Therefore, Equation (5.52) is satisfied if, and only if,

L̃j = α
(j)
l Mj . (5.53)
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The Laplacian-matrix structure of L̃ necessitates that we have:

α
(j)
l =

δj

M [j]
. (5.54)

The proof is now complete. ¤

Corollary 5.22
The graph designed according to Theorem 5.21 is coherent in the q modes of its aggregate graph
described by (L[q],M[q]).

Proof: The diagonal blocks L̃j in the graph of Theorem 5.21 are of the same form as those
of Theorem 5.16. Therefore, all we need to show is that the off-diagonal blocks L̃ij satisfy
the conditions imposed on them by Theorem 5.16. That L̃ji = L̃T

ij is obvious. Hence,
we only need to confirm that the row-sum condition of Equation 5.28 is satisfied. This is
straightforward:

L̃ij 1nj = − ξij

M [i]M [j]
mT

j 1nj︸ ︷︷ ︸
M [j]

= − ξij

M [i]
, (5.55)

which is precisely the row-sum condition imposed on L̃ij by Equation 5.28 of Theorem 5.16.

Corollary 5.23
The eigenvectors w

(j)
l defined in Theorem 5.21 for l = 2, . . . , n

(j)
G and j = 1, . . . , q correspond to

the following eigenvalues in the interconnected graph G:

λ
(j)
l = λ̂

(j)
l +

δj

M [j]
. (5.56)
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Proof: We know that:

Lw
(j)
l =




0

L̂j v
(j)
l

0


 +




L̃1j v
(j)
l

...
L̃j v

(j)
l

...
L̃qj v

(j)
l




(5.57)

=




0

λ̂
(j)
l Mj v

(j)
l

0


 +




0
δj

M [j] Mj v
(j)
l

0


 (5.58)

=
(

λ̂
(j)
l +

δj

M [j]

)
Mw

(j)
l . (5.59)

The proof is complete. ¤

Corollary 5.23 shows that for a graph designed according to Theorem 5.21, the oscillatory
modes of any given cluster G(Vj) shift by the same amount, where that amount is simply
the ratio of δj , the aggregate inter-area degree of cluster G(Vj), over the aggregate node-
weight of that cluster M [j].

Corollary 5.24
In the graph designed according to Theorem 5.21, every G-node of cluster G(Vi) is connected to
every G-node of cluster G(Vj), j 6= i, if ξij > 0 in the aggregate graph G[Vq].

Proof: The proof is obvious from the expression for L̃ij .

5.5 Designing a q-Mode Coherent Graph with Otherwise Con-
fined Modes

Theorem 5.21 suggests an obvious procedure for designing coherent graphs with con-
fined modes. Consider a connected graph G[Vq] of size q, described by the matrix pair
(L[q],M[q]). Further, assume that the graph comprises only G-type vertices; the weights of
these vertices serve as the aggregate node weights for our target graph G, and we already
have stipulated that each cluster within G must have at least one G-type node. This is why
we insist that G[Vq] contain only G-type nodes.
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Theorem 5.21 then suggests one way of designing G so that it will be coherent in the q

eigenvalues of G[Vq]; Theorem 5.16 suggests alternative designs. However, Theorem 5.21
offers the unique design that not only yields a graph G that is coherent in the eigenvalues of
G[Vq], but one that has the additional property that its finite, oscillatory modes are simply
shifted versions of the corresponding oscillatory eigenvalues in the clusters G(Vi).

The following example illustrates the procedure.

Example 5.25
We begin our design problem with the same three graphs G(V1), G(V2), and G(V3) from Ex-
ample 5.19. This time, however, we wish to interconnect them in just the right way so that the
constructed graph is exactly coherent in the three modes of the aggregate graph G[Vq]—described
by the matrix pair (L[q],M[q]) of 5.36—and also has every non-coherent modes confined to one of
the clusters.

The design is identical to the previous one insofar as the diagonal blocks L̃i are concerned.
They are as they were designed in Example 5.19. However, the off-diagonal blocks L̃ij are
now restricted to the form:

L̃ij = − ξij

M [i]M [j]
mi m

T
j . (5.60)

This leads to:

L̃12 = L̃T
21 = − 9

3× 12




1
2
0
0
0




[
5 7 0 0 0 0

]
=




−5
4 −7

4 0 0 0
−10

4 −14
4 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, (5.61)

L̃13 = L̃T
31 = − 4.5

3× 18




1
2
0
0
0




[
6 12 0 0 0 0

]
=




−1
2 −1 0 0 0 0

−1 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, (5.62)
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and

L̃23 = L̃T
32 = − 12

12× 18




5
7
0
0
0
0




[
6 12 0 0 0 0

]
=




−5
3 −10

3 0 0 0 0
−7

3 −14
3 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(5.63)
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Figure 5.10: Interconnected network three of whose modes exhibit coherency, and the re-
maining ones are confined to one of the clusters.

Having designed the inter-area connections, we expect the following:

1. The interconnected graph G must have three coherent modes with eigenvalues equal to
those of (L[q],M[q]): 0.0000, 1.9934, and 5.1732.

2. The area-wise constant values in the coherent eigenvectors are proportional to the cor-
responding eigenvector component in the aggregate graph.
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3. The non-coherent, finite, and area-confined oscillatory modes are at eigenvalues given
by (5.56):

λ̂
(i)
l +

δi

M [i]
, i = 1, . . . , q; l = 2, . . . , n

(i)
G , (5.64)

where n
(i)
G is the number of G-nodes of G(Vi), which is, in turn, the number of finite

eigenvalues of G(Vi).

4. The eigenvectors corresponding to the infinite eigenvalues of the individual areas G(Vi)
are also the infinite eigenvectors of the interconnected network G.

A complete eigenanalysis of (L,M) confirms everything that we expect from the modes of
the interconnected system. For example, Table 5.7 shows that the design requirements on
the coherent modes are met. As for the non-coherent modes, that each is confined to only
one area is easily observed from the table as well. Clearly, G has three coherent modes at
the same eigenvalues as the aggregate graph G[Vq]. Also, the coherent eigenvector compo-
nents are consistent with those of G[Vq].

λ1 = 0.0000 λ2 = 0.9790 λ3 = 1.9934 λ4 = 2.0376 λ5 = 4.8630 λ6 = 5.1732
1.0000 0.0000 1.0000 0.0000 1.0000 1.0000
1.0000 0.0000 1.0000 0.0000 -0.5000 1.0000
1.0000 0.0000 1.0000 0.0000 0.0730 1.0000
1.0000 0.0000 1.0000 0.0000 0.3697 1.0000
1.0000 0.0000 1.0000 0.0000 0.2154 1.0000
1.0000 0.0000 1.3783 1.0000 0.0000 -0.2116
1.0000 0.0000 1.3783 -0.7143 0.0000 -0.2116
1.0000 0.0000 1.3783 -0.1073 0.0000 -0.2116
1.0000 0.0000 1.3783 0.3323 0.0000 -0.2116
1.0000 0.0000 1.3783 0.1170 0.0000 -0.2116
1.0000 0.0000 1.3783 0.1294 0.0000 -0.2116
1.0000 1.0000 -1.0855 0.0000 0.0000 -0.0256
1.0000 -0.5000 -1.0855 0.0000 0.0000 -0.0256
1.0000 0.0286 -1.0855 0.0000 0.0000 -0.0256
1.0000 0.3833 -1.0855 0.0000 0.0000 -0.0256
1.0000 0.2874 -1.0855 0.0000 0.0000 -0.0256
1.0000 0.1436 -1.0855 0.0000 0.0000 -0.0256

Table 5.7: The finite modes of a graph designed according to Theorem 5.21 to exhibit per-
fect coherency and mode confinement properties.
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For ease of comparison, we repeat the eigenvalue-eigenvector table of the aggregate graph:

θ1 = 0.0000 θ2 = 1.9934 θ3 = 5.1732
1.0000 1.0000 1.0000
1.0000 1.3783 -0.2116
1.0000 -1.0855 -0.0256

Equally easily we can verify that the confined, non-coherent modes are at eigenvalues
that are simply shifted versions of the individual cluster eigenvalues. We have three such
modes:

λ̂
(1)
2 +

δ1

M [1]
= 0.3630 +

13.5
3

= 4.8630 = λ5 (5.65)

λ̂
(2)
2 +

δ2

M [2]
= 0.2876 +

21
12

= 2.0376 = λ4 (5.66)

λ̂
(3)
2 +

δ3

M [3]
= 0.0623 +

16.5
18

= 0.9790 = λ2 . (5.67)

5.5.1 Relaxation of the Ban on L-Node Inter-Area Connections

We stated earlier that for exact coherency, no L-Node of any area G(Vi) may be a neighbor
to any node (L- or G-type) in another area G(Vj), j 6= i. In approximate slow coherency
this restriction may be lifted because of the O(ε) weights of the inter-area links. We now
show more concretely, why this relaxation is permissible.

Suppose the eigenproblem for a graph G is written in the following partitioned form:




LS LSW

∣∣ LSL

LWS LW

∣∣ LWL

LLS LLW

∣∣ LL




︸ ︷︷ ︸
L




uS

uW

uL




︸ ︷︷ ︸
u

= λ




MS

∣∣
MW

∣∣
∣∣ 0




︸ ︷︷ ︸
B




uS

uW

uL


 , (5.68)

where S and W denote two categories of nodes which neighbor the L-nodes—the distinc-
tion being made on account of the strength of their connections to the L-nodes. The nodes
denoted by S are strongly connected to the L-nodes (with edge weights of order O(1)) ,
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whereas those denoted by W are weakly connected with the L-nodes (with edge weights
of order O(ε)). Further, we assume that

LL =

[
LS LSW

LWS LW

]
∼ O(1) LLL =

[
LSL

LWL

]
∼ O(ε) (5.69)

LLL =
[
LLS LLW

]
∼ O(ε) LL ∼ O(1) . (5.70)

(5.71)

We showed in Chapter 4 that the eigenvector portion uL is given by:

uL = −L−1
L LLS uS − L−1

L LLW uW . (5.72)

We also know from Chapter 4 that

LLS 1S + LLW 1W + LL 1L = 0 , (5.73)

which leads to
1L = −L−1

L LLS 1S − L−1
L LLW 1W . (5.74)

As L−1
L ∼ O(1), then it must be that

L−1
L LLS ∼ O(1) L−1

L LLW ∼ O(ε) and 1L ≈ L−1
L LLS1S . (5.75)

Thus, Equation (5.72) is written in approximate form as:

uL ≈ −L−1
L LLS uS . (5.76)

When uS ≈ c1S (for some constant c) is an approximately coherent eigenvector compo-
nent, practically constant over the subgraph represented by S, it is clear that

uL ≈ c − L−1
L LLS 1S = c1S . (5.77)

In other words, even though the L-nodes are externally linked, they maintain approximate
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coherency with the rest of the nodes of their own cluster, because they are weakly con-
nected with those outside nodes and strongly connected internally within their own area.

5.6 Exact Coherency, Mode Confinement, and Mode Localization

There is a connection to be made between exact coherency and a phenomenon that has
been studied for over four decades now, mode localization. Broadly speaking, mode local-
ization is what occurs when a vibrational network comprising identical subsystems and
interconnected in a symmetric fashion, is perturbed. It has been observed by many re-
searchers that faster modes of such systems tend to contract to within a short range around
the point where the perturbation occurred, with this phenomenon, on the whole, becoming
more acute as we look at higher and higher frequencies.

We can design and understand mode localization using our exact coherency and mode
confinement analysis. Consider the following network of ten identically-weighted nodes,
connected to each other in the manner shown, with each edge weight being unity. It is
a trivial exercise to verify that the interconnections of clusters {ν1, ν2}, {ν3, ν4}, . . . {ν9, ν10

are made according to the requirements of Equations 5.52 and 5.46.

(1)

(2) (4)

(3) (5)

(6)

(7)

(8)

(9)

(10)

Figure 5.11: A five-cluster network comprising G-nodes only.

Suppose, however, that we perturb the weights of nodes ν5 and ν6 so that they are now:
M5 = 1.05 and M6 = 0.98. What happens to the oscillatory mode of cluster {ν5, ν6} is
clear. The subsystem has been perturbed away from the others, and so it no longer shares
its oscillatory eigenvalue with the other two-node clusters. The oscillatory eigenvector
of this subsystem, however, does not get perturbed by much. So it is still very close to
being orthogonal to all the rows of the L̃ij blocks. Because of the approximate (and not
exact) orthogonality, this mode will spread beyond the boundaries of its home cluster (the
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{ν5, ν6) cluster), but not beyond its neighboring one; even in the neighboring ones, the
spreading is mild, because of the near-orthogonality of of the local oscillatory eigenvector
of the {ν5, ν6) cluster and the rows of the L̃ij blocks belonging to neighboring clusters. We
have, in essence, produced a localized mode. The oscillatory eigenvector of the {ν5, ν6)
cluster is fair approximation to an actual eigenvector of the network; and it is localized!

Below is the eigenvector corresponding to the localized mode:

λ7 = 5.9054
0.0238
0.0238

-0.0465
-0.0465
0.7234

-0.6824
-0.0465
-0.0465
0.0238
0.0238
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Eigenvalues and Graph Design

6.1 Introduction and Contributions

So far, we have focused mostly—albeit not entirely—on mode-shape properties of graphs.
In this chapter, we shift our attention to a few salient features of graph eigenvalues. It
turns out that our discovery of the eigenvalue shifting property (5.56), implied by the Exact
Coherency and Mode Confinement Theorem 5.21, is worth a much closer look.

Also in this chapter we examine some extremal properties of graph eigenvalues. Our
eigenvalue bounds are extensions (to weighted G-node graphs) of results already known
for graphs with uniform node weights. The bounds will be expressed in terms of the phys-
ical features of the graph, that is, node and edge weights.

The contributions of this chapter are:

• As an important corollary to the Exact Coherency and Mode Confinement Theorem,
we devise a novel graph design algorithm that solves the following inverse eigenvalue
problem:

Construct a connected graph comprising a set of G-nodes with
weights 0 < M1, . . . , Mn, and eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn.

Inclusion of L-nodes is possible but trivial—given the results of Chapter 4. So long as
L-nodes are inserted according to the results of Section 4.5.3, they can be sequentially
introduced into our designed graph without altering the essential modal characteristics.

Our solution to the inverse eigenvalue problem is a complete graph Kn whose param-
eters are computed through a backward recursive procedure. With a design-oriented
view, we will discuss several important features of our graph, including coherent dy-
namics and mode confinement, even though neither of these appear in the inverse
eigenvalue problem.
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• Although the bulk of the discussion in this chapter revolves around eigenvalues, the
graph design algorithm that we devise has important ramifications for the eigenvector
shapes. In particular, we will see two features in the graphs that we design:

– We will show that with a decreasing mode index number (i.e., as we go toward
slower modes) the region over which the mode exhibits coherency expands. Whereas
the fastest mode exhibits coherency over one node, the Fiedler mode is coherent
over n− 1 nodes. For the modes in between, the trend is monotonic, with a coher-
ent region expansion by one vertex for every one unit decrease in the mode index
number toward the eigenvalue at 0.

– We also will show that as we increase the mode index number, the eigenvector
region of support decreases by one vertex. The trend of increasing confinement
(i.e., decreasing region of support) is monotonic as we go from the Fiedler mode to
the fastest one, the latter having a region of support of only two vertices.

• We look at some important eigenvalue bounds, already known for non-weighted graphs,
and extend them to weighted graphs. Ordinarily, the Fiedler eigenvalue and the fastest
one are the two of interest. Here we describe the bound for the Fiedler eigenvalue and
relate it to the physical features of the graph, including node-weight and edge-weight
properties.

• We will show—using the graph design algorithm that we describe in this chapter—that
some of the eigenvalue bounds are tight. We do this by constructing graphs that meet
those bounds.

Our results in this chapter shed more light on the dynamic behavior of oscillatory net-
works, with emphasis on eigenvalues (or network natural frequencies).

6.2 A Novel Graph Design Algorithm

The mode confinement and coherency theory can be used to solve an inverse eigenvalue
problem that will enable us to design graphs with desired node weights and eigenvalues.
This problem, of course, is worth studying in its own right. However, we shall see later
that it has additional benefits. It turns out that we can establish the tightness of certain
eigenvalue bounds by constructing graphs that satisfy them exactly. In other words, tight-
ness is proved by construction, using the design algorithm that we develop in this chapter.
This is an important corollary of our novel graph design technique.
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A concise statement of the inverse eigenvalue problem is the one below.

Graph Design with Specified Node Weights and Eigenvalues: Construct a graph with

• node weights 0 < M1, . . . ,Mn

and

• eigenvalues 0 = µ1 < µ2 ≤ · · · ≤ µn.

As expected, the design is not unique. In fact, when the desired eigenvalues and the spec-
ified G-node weights are respectively distinct, there are n! ways of constructing a graph
that meets the design requirements. Moreover, this multiplicity of solutions accounts only
for the number of ways that we can solve the design problem using our technique; it does
not include other ways that a graph can be constructed to meet the design constraints.

This non-uniqueness turns out to be an advantage, because it gives us some flexibility and
design leverage over the regions of support of the eigenvectors. For example, as we will
show, the graph design algorithm starts with two of the vertices, and then inserts addi-
tional G-nodes, one at a time, according to a set procedure, until the final graph of size n

comprising all the G-nodes is constructed. It turns out that the faster modes (corresponding
to larger eigenvalues) have increasingly confined regions of support. In fact, the increase
in confinement (i.e., shrinkage in the region of support) is monotonic with the mode num-
ber; namely, as we index through the modes from slow to fast, the first non-oscillatory
mode (µ1 = 0) and the Fiedler mode (µ2 > 0) each has a region of support that extends
over all the nodes. Thereafter, with each unit increment in the mode index number, the
region of support of the associated eigenvector shrinks by one node (while the region over
which the eigenvector entries are zero expands by one vertex). This continues until the
fastest mode, which has a region of support of only two nodes; these two are the first pair
of nodes inserted in the design algorithm (the ones we label M1 and M2). All this suggests
that the order in which we insert the G-nodes can be chosen according to our desire to see
a subset of the modes extend over a desired group of the vertices in the graph. We do not
have complete freedom over how to allocate the vertices to each particular mode’s region
of support, but we do have considerable flexibility. We shall clarify this by example.

Although the distinction is not substantial, we will differentiate between the design prob-
lem wherein each eigenvalue is simple, and another in which an eigenvalue is allowed
to have algebraic multiplicity greater than one. We will, however, adhere to our overall
insistence that the graph be connected; that is, we consider the non-oscillatory eigenvalue
(µ1 = 0) to be simple throughout our discussion.
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6.2.1 Graph Design Involving Distinct Eigenvalues

Our design algorithm, in essence, is an application of reverse engineering, one in which
we invoke a backward recursion approach to solve the design problem. Our strategy is a
natural consequence of Equation (5.56) in Corollary 5.23, which showed how the oscilla-
tory eigenvalues of different graphs would shift as they are interconnected according to
the Exact Coherency and Mode Confinement Theorem 5.21 (ECMCT).

We shall explain the design algorithm by outlining a step-by-step procedure to construct
a graph comprising n G-nodes, without initially concerning ourselves with the eigenval-
ues of the resulting graph. The emphasis at this point is on the way we put together the
graph. The procedure itself will suggest how to apply the algorithm, in reverse, to attain
the desired spectrum for the desired graph.

Step 1: Label and index the nodes in whatever manner desired. We label the sequence
of corresponding weights M1, . . . ,Mn, and without ambiguity identify a node i by its
weight Mi.

Step 2: Begin with node M1. Alone, this node has only one eigenvalue λ
[1]
1 = 0, where

the superscript denotes the recursion step in the algorithm we are at, which also equals
the current number of nodes in the partial graph constructed so far. Using a similar
notation, we use the symbol M

[1]
1 to denote the total mass of the partial graph (at this

stage, M
[1]
1 = M1).

Step 3: Bring in node M2, and attach it to M
[1]
1 . Denote the inserted weight by M

[2]
2 = M2,

and the edge weight that connects the two by a12. We now have a two-node graph as
shown in Figure 6.1. The symbol δ[2] denotes the total weight of edges that connect the

=

=M M
i=1

i1
[2] 2-1=1

[2]δ a12

= MM 2
[2]

2Σ

Figure 6.1: The second stage of the graph design algorithm for simple eigenvalues.

new node Mk with all the previous nodes M1, . . . ,Mk−1. At this stage there is only one
such edge—which is why δ[2] = a12.
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The eigenvalues of the new two-node graph are given by the following expressions,
which are based on the results of Example 5.10:

λ
[2]
1 = 0 λ

[2]
2 =

δ[2]

M
[2]
1 ‖ M

[2]
2

=
a12

M1 ‖ M2
. (6.1)

Figure 6.2 depicts the evolution of the system eigenvalues as we go from a one-node
to a two-node graph. The arrow mapping the eigenvalue λ

[1]
1 = 0 to λ

[2]
2 is dotted to

indicate that, strictly speaking, there is no ”motion” from one to the other; rather, it is
merely to give a visual sense of how the eigenvalue at zero is situated with respect to
the Fiedler eigenvalue of the next stage in the recursion. In the subsequent stages, we
will use solid arrows to indicate a mapping from one eigenvalue to the other. Those
will represent actual shifts in the oscillatory eigenvalues.

=

[1]
1

λ[2]
1

λ[2]
2

[2]
δ

2M
[2]

1M
[2] M1 2M

a12

0

0

Step 1

Step 2

=

λ

Figure 6.2: Graphical representation of the eigenvalue placements for the second stage.

Step 4: Now that we have a two-node graph, we add node M3 by connecting it to each of
the first two nodes according to the rules of Theorem 5.21. In other words, we consider
as one component, the two-node graph that we have constructed so far, while treating
M3 as a separate component on its own. Figure 6.3 is a pictorial representation of this
stage. Equation (5.46) of Theorem 5.21 specifies the way in which two separate graphs
must be connected. Translating that constraint to our current setup, the interconnec-
tions are given by

[
a13 a23

]
=

δ[3]

M
[3]
1 M

[3]
2

M
[3]
2

[
M1 M2

]

= δ[3]

[
M1

M
[3]
1

M2

M
[3]
1

]
,
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for the 3rd Stage

3

M1

M2

a13

a23

a13 a23+

M1 M2+M 1
[3]

=

=

δ

MM 2

Aggregate Graph

[3]
3

[3]
=

M

Figure 6.3: The third stage of the graph design algorithm for simple eigenvalues.

or equivalently,

[
a13 a23

]
=

[
M1

M1 + M2
δ[3] M2

M1 + M2
δ[3]

]
. (6.2)

Equation 6.2 begs scrutiny. First, it states that the connection between the newly-added
node M3 and each previous node Mi, i = 1, 2, is proportional to the relative weight of
node Mi over the total weight of the two-node graph to which it belongs (and to which
M3 is being connected). Second, if we sum the entries on each side of (6.2), we see that

δ[3] = a13 + a23 =
3−1=2∑

i=1

ai3 .

Having connected M3 to the previous two nodes according to the ECMCT, we now
know the three eigenvalues of the new three-node graph comprising M1,M2 and M3.
One eigenvalue, of course, is

λ
[3]
1 = 0 .

Another is at

λ
[3]
2 =

δ[3]

M
[3]
1 ‖ M

[3]
2

=
a13 + a23

(M1 + M2) ‖ M3
.

And the third eigenvalue is obtained by shifting the oscillatory eigenvalue λ
[2]
2 (of the

two-node graph) by an amount specified according to Equation (5.56), namely:

λ
[3]
3 = λ

[2]
2 +

δ[3]

M
[3]
1

= λ
[2]
2 +

a13 + a23

M1 + M2
.

– 142 –



Chapter 6 Eigenvalues and Graph Design

Figure 6.4 is a qualitative pictorial view of the eigenvalue placements for the third stage.
The third eigenvalue λ

[3]
3 is obtained by a direct shift of the oscillatory eigenvalue λ

[2]
2

from the previous stage; that is why we have used a solid arrow to show their associ-
ation. In contrast, the Fiedler eigenvalue λ

[3]
2 has a virtual—not an actual—association

with the non-oscillatory eigenvalue of the previous stage. That is why we only use a
dotted arrow to link them. At this point the following question may arise: ”How do

=

[1]
1

λ[2]
1

λ[3]
1

M1 2M
[2] [2]

[2]
δλ[2]

2

λ[3]
2

λ[3]
3

M1
[3]

δ
[3]

λ[2]
2

M1 2M

a12

M1 2M+( ) M3

a23a13 +

M1
[3]

2M
[3]

δ
[3]

a23a13 +

M1 2M+

0

0

0
=

=

= +

=

=
Step 3

Step 2

Step 1

λ

Figure 6.4: Graphical representation of the eigenvalue placements for the third stage of the
construction.

we know that the eigenvalue labelled as λ
[2]
2 is actually smaller in value than the one

we have marked as λ
[3]
3 ?” After all, the quantity δ[3]

M
[3]
1 ‖M3

is larger than δ[3]

M
[3]
1

, because the

denominator of the first is smaller than that of the second for all finite node weights. So
for a sufficiently large δ[3], it is possible for the first quantity to exceed the other. This is
a valid concern, but one that, as we will show when we explain the backward recursion
design procedure, does not cause us trouble; by design we never let this happen. We
shall return to this issue later, when we will discuss for what range of values of δ[k], the
eigenvalue δ[k]

M
[k]
1 ‖M [k]

2

is guaranteed to be the Fiedler value.

Step 5: The remaining stages are analogous to what we have described so far. For clarity,
we show the pictorial views of the generic kth stage of the construction process, as well
as the corresponding equations that govern the eigenvalues and edge weights. At the
kth stage, we add Mk to the previous nodes M1, . . . , Mk−1, as shown in Figure 6.5. The
Fiedler eigenvalue of the new graph, as well as the total weight of the edges that connect
Mk to all the previous nodes, are reflected in the aggregate graph shown in Figure 6.5.

– 143 –



Chapter 6 Eigenvalues and Graph Design

=

for the kth Stage

Σ M
k-1

i=1
i

a1k
a ikΣ

k-1

i=1

Mk

=M 2
[k]

Mk

δ

M

M M
M

M

a a

a

[k]
1

[k]
2k 3k

k-1
32

1

k-1,k

=

Aggregate Graph

Figure 6.5: This is the kth stage of the design process. The partial graph that has been
constructed so far is shown, comprising k − 1 nodes. This partial graph has the aggregate
weight M

[k]
1 shown in the diagram. The additional node M

[k]
2 = Mk is shown attached to

each of the nodes in the partial subgraph, with respective weights a1k, . . . , ak−1,k chosen
according to the ECMT.

For convenience, we rewrite the equations for the aggregate graph below.

The Laplacian and node-weight matrices for the aggregate graph are:

L[k] =

[
+δ[k] −δ[k]

−δ[k] +δ[k]

]
M[k] =

[
M

[k]
1 0
0 Mk

]
.

The eigenpairs for (L[k],M[k]) are given below.

Non-Oscillatory Mode:

λ
[k]
1 = 0 v

[k]
1 =

1√
M

[k]
1 + Mk

[
1
1

]

Fiedler Mode:

λ
[k]
2 =

δ[k]

M
[k]
1 ‖ Mk

v
[k]
2 =

1√
M

[k]
1 + Mk


+

√
Mk/M

[k]
1

−
√

M
[k]
1 /Mk


 .

The non-oscillatory and Fiedler modes for the graph of size k, then, are given by the
Exact Coherency and Mode Confinement Theorem 5.21. They are:
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Non-Oscillatory Mode:

λ
[k]
1 = 0 v

[k]
1 =

1√
M

[k]
1 + Mk

1k

Fiedler Mode:

λ
[k]
2 =

δ[k]

M
[k]
1 ‖ Mk

v
[k]
2 =

1√
M

[k]
1 + Mk

[
1k−1

1

]



+
√

Mk/M
[k]
1

−
√

M
[k]
1 /Mk


 .

The remainder of the unknowns are are straightforward to express.

Edge Weights: These are the edges that connect the kth node to each of the previous
ones.

aik =
Mi

M
[k]
1

δ[k] =
Mi

M1 + · · ·+ Mk−1
δ[k] i = 1, . . . , k − 1 , (6.3)

where the total weight is

δ[k] =
k−1∑

i=1

aik . (6.4)

Faster Eigenvalues: The ECMCT allows us to compute these recursively from the oscil-
latory eigenvalues of the previous stage. The recursion is given below.

λ
[k]
i = λ

[k−1]
i−1 +

δ[k]

M
[k]
1

= λ
[k−1]
i−1 +

δ[k]

M1 + · · ·+ Mk−1
(i = 3, . . . , k − 1) . (6.5)

Step 6: We continue in this manner until all n nodes have been inserted to form a com-
plete (Kn)-graph.

The construction of the Kn-graph according to the recursive procedure that we just de-
scribed, suggests a natural way to solve the inverse eigenvalue problem that is the main
object of our study. The process simply is the backward recursion of the one we just de-
scribed.

– 145 –



Chapter 6 Eigenvalues and Graph Design

Suppose we are given a set of node weights 0 < M1, . . . , Mn, and a set of n eigenvalues that
the graph must have: 0 = µ1 < µ2 < · · · < µn. The design presumes that a Kn-graph exists
that is built according to the procedure just described, and meets these specifications. The
proof of this is by construction. Here is how it works.

STEP 1 INITIALIZATION

We know that if the Kn-graph is constructed according to the procedure we outlined
above, the eigenvalues of the desired graph will be in the following correspondence
with those of the Kn-graph:

λ
[n]
1 = 0 = µ1 < λ

[n]
2 = µ2 < · · · < λ[n]

n = µn .

STEP 2 BACKWARD RECURSION

for k = n : 3

Compute the Partial Aggregate Weight

M
[k]
1 =

k−1∑

j=1

Mj

Initialize the Marginal Weight

M
[k]
2 = Mk .
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Compute the Aggregate Edge Weight δ[k]

We know that the Fiedler eigenvalue λ
[k]
2 is given by

λ
[k]
2 =

δ[k]

M
[k]
1 ‖ M

[k]
2

.

Solve for the only unknown, the aggregate edge weight δ[k]:

δ[k] =
(
M

[k]
1 ‖ Mk

)
λ

[k]
2 .

Compute the Oscillatory Eigenvalues λ
[k−1]
i

for i = 2 : k − 1

λ
[k−1]
i = λ

[k]
i+1 −

δ[k]

M
[k]
1

end

end

δ[2] =
(
M

[2]
1 ‖ M

[2]
2

)
λ

[2]
2 = (M1 ‖ M2) λ

[2]
2 .

STEP 3: COMPUTATION OF THE INDIVIDUAL EDGE WEIGHTS

From the aggregate edge weights we can find the appropriate values for each of the
individual edge weights.

for k = 2 : n

for i = 1 : k − 1

aik =
Mi

M
[k]
1

δ[k] =
Mi

M1 + · · ·+ Mk−1
δ[k]

end

end

The expression for aik indicates that each node i, where i < k, connects to the kth node with
an edge weight that is proportional to the relative weight of the ith node in the aggregate
partial graph to which the first k − 1 nodes belong (See Figure 6.5).
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6.2.2 Eigenvectors of the Designed Kn Graph

We have focused so far on the eigenvalues of the Kn graph—for the most part because the
eigenvalues were the primary objects of the design problem. However, since we invoke
the ECMCT in designing our graph, it is worth taking a look at the mode confinement im-
plications of Theorem 5.21 in our design. It turns out that the eigenvectors of the designed
graph have interesting mode confinement properties, as we will show below.

To understand what the mode shapes look like, we return to the stage-by-stage construc-
tion of the Kn graph, from each of the smaller graphs Kk, k ≤ n.

Two-Node Stage (K2) We already have shown the eigenvalues and eigenvectors of the
two-node graph. Here we merely recall the eigenvectors, without regard to normaliza-
tion of the magnitudes:

v
[2]
1 = 12 v

[2]
2 =

[
M2

−M1

]
.

Three-Node Stage K3 At this stage, we have two extensive modes, and one mode con-
fined to the first two vertices M1 and M2 (in accordance with the ECMCT). The two
extensive modes are the non-oscillatory mode and the Fiedler mode, given by the fol-
lowing expressions (again, without regard to normalization):

v
[3]
1 = 13 v

[3]
2 =

[
12

1

]


+M3

−M
[3]
1


 =

[
12

1

]


+M3

−(M1 + M2)


 .

The fastest mode at this 3rd stage is the one corresponding to the eigenvalue

λ
[3]
3 = λ

[2]
2 +

δ[3]

M
[3]
1

.

The ECMCT tells us that this mode will be confined to the first two vertices M1 and M2.
In fact, the mode shape, again without regard for normalization scaling, is

v
[3]
3 =




v
[2]
2

0


 .

Final Stage (Kn) Continuing in the manner described above, we have the following eigen-
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vectors for the final graph Kn:

Non-Oscillatory Eigenvector:

v
[n]
1 = 1n

Fiedler Vector:

v
[n]
2 =

[
1n−1

1

]


+M
[n]
2

−M
[n]
1




Faster Eigenvectors:

v
[n]
2 =


v

[n−1]
2

0


 , v

[n]
3 =


v

[n−2]
2

02


 , · · · v[n]

n =


 v

[2]
2

0n−2




The expressions for these oscillatory eigenvectors (beyond Fiedler’s) show a monotonic
trend in confinement; namely, as the mode index number increases the eigenvector is
more localized. More specifically, with each increase in the mode index number beyond
Fiedler’s, the region of support of the corresponding eigenvector decreases by one node
in the graph. The trend continues through to the fastest mode, which has a region of
support of only two nodes (M1 and M2). This confinement (or localization) of the modes
is quite striking, for two reasons:

• The designed Kn-graph does not have ”regularity” or symmetry features; even if
all the node weights are equal, the edge weights will not be all equal.

• The monotonic trend in confinement, with increasing mode numbers, is something
that is not at all customary for vibrational systems that exhibit mode localization.
Ordinarily, mode-localized systems exhibit merely a general trend—not a mono-
tonic one—toward increasing confinement of the eigenvector region of support, as
the mode number increases.

The expressions for the faster eigenvectors also show that the sequence in which we
insert the nodes into the design algorithm determines which one of them falls within
the region of support of what mode or modes. For example, the first two vertices M1

and M2 fall within the region of support of all the modes, whereas Mn and Mn−1 are
stationary under all modes except the non-oscillatory and the Fiedler modes.

Earlier, we remarked on the combinatorial diversity of the graph designs that meet the
eigenvalue specifications. Now that we have laid out the design algorithm, it should be
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clear that for n distinct node weights Mi, there are n! ways of constructing a graph with
the desired eigenvalues; this is the number of distinguishable orderings in which we can
insert the n vertices in the design algorithm. This is an additional luxury us; depending on
the order in which we insert the nodes in the design algorithm, we can have partial control
over what vertices fall within the region of support of which modes. For example, if we
want the region of support of the fastest mode to be limited to two specific vertices ν and
ζ, then we symbolically represent the weights of these two nodes M1 and M2, and insert
them first into the design algorithm.

Example 6.1 (Four-Node Graph Design with Distinct Eigenvalues)
Construct a graph with node weights

M1 = 1, M2 = 4, M3 = 3, and M4 = 2 ,

such that the graph eigenvalues are at:

µ1 = 0, µ2 = 2, µ3 = 3, and µ4 = 4 .

STEP 1 INITIALIZATION

λ
[4]
1 = 0 λ

[4]
2 = 2 λ

[4]
3 = 3 λ

[4]
4 = 4

STEP 2 BACKWARD RECURSION

M
[4]
1 = M1 + M2 + M3 = 8

M
[4]
2 = M4 = 2

δ[4] =
(
M

[4]
1 ‖ M

[4]
2

)
λ

[4]
2 = (8 ‖ 2) · 2 = 3.2

λ
[3]
2 = λ

[4]
3 − δ[4]

M
[4]
1

= 3− 3.2
8

= 3− 0.4 = 2.6

λ
[3]
3 = λ

[4]
4 − δ[4]

M
[4]
1

= 4− 0.4 = 3.6

M
[3]
1 = M1 + M2 = 5

M
[3]
2 = M3 = 3
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δ[3] =
(
M

[3]
1 ‖ M

[3]
2

)
λ

[3]
2 = (5 ‖ 3) · 2.6 =

39
8

λ
[2]
2 = λ

[3]
3 − δ[3]

M
[3]
1

= 3.6− 39
40

=
21
8

δ[2] =
(
M

[2]
1 ‖ M

[2]
2

)
λ

[2]
2 = (M1 ‖ M2) λ

[2]
2 = (1 ‖ 4) · 21

8
= 2.1 .

STEP 3 COMPUTATION OF THE INDIVIDUAL EDGE WEIGHTS

a12 = δ[2] = 2.1

a13 =
M1

M
[3]
1

δ[3] =
M1

M1 + M2
δ[3] =

1
5

39
8

=
39
40

= 0.975

a23 =
M2

M
[3]
1

δ[3] =
M2

M1 + M2
δ[3] = 3.9

a14 =
M1

M
[4]
1

δ[4] =
M1

M1 + M2 + M3
δ[4] =

1
8

32
10

= 0.4

a24 =
M2

M
[4]
1

δ[4] =
M2

M1 + M2 + M3
δ[4] =

4
8

32
10

= 1.6

a34 =
M3

M
[4]
1

δ[4] =
M3

M1 + M2 + M3
δ[4] =

3
8

32
10

= 1.2 .

Having computed all the edge weights, we can compute the Laplacian matrix for the graph:

L =




3.475 -2.100 -0.975 -0.400
-2.100 7.600 -3.900 -1.600
-0.975 -3.900 6.075 -1.200
-0.400 -1.600 -1.200 3.200




With the node-weights shown in Figure 6.6 forming the diagonal elements of the matrix M, it is
straightforward to verify that the modes of the matrix pair (L,M) are those given in Table 6.1.

Notice how the features that we had predicted for the eigenvectors manifest themselves in this nu-
merical example. The Fiedler mode is coherent over three vertices (M1,M2, and M3), the third
mode is coherent over two vertices (M1 and M2), and the fastest mode is coherent over one vertex,
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1.
6

2 =4M1 =1

M4 =2 M3 =3

3.90.4

2.1

1.2

0.975

M

Figure 6.6: Visual representation of the four-node graph designed according to the ECMT.

µ1 = 0.0000 µ2 = 2.0000 µ3 = 3.0000 µ4 = 4.0000
-0.3162 -0.1581 0.2739 -0.8944
-0.3162 -0.1581 0.2739 0.2236
-0.3162 -0.1581 -0.4564 0.0000
-0.3162 0.6325 0.0000 0.0000

Table 6.1: Eigenvalues and eigenvectors of the four-node graph designed according to the principles
of the ECMCT. The eigenvalues clearly match the desired values, and the eigenvector exhibit the
coherency and mode confinement features that had been theoretically predicted.

which is a trivial case of coherency). Furthermore, we note that the fastest mode extends over only
nodes M1 and M2, which are the two nodes we inserted into the algorithm first. The third mode
extends over three nodes, and the Fiedler mode extends over all the vertices of the graph, just as we
had theoretically predicted.

Design-Oriented Observations We recap now the salient features of our graph design
algorithm:

• LUXURY OF ARBITRARILY LABELLED NODES, for sequential insertion into the design
algorithm.

• MODE-SHAPE LOCALIZATION monotonically increases with mode index number.

– Fiedler mode (µ2, v2) has a full-network region of support.

– Fastest mode (µn,vn) has a two-node region of support.

• COHERENCY observed over larger and larger subgraphs as the mode number decreases.
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M2M1M1 M2

M3

M2M1

M3M4

a12

a13

a14

a34

a23

a12

a23

a12

a13

a24

Figure 6.7: Visual representation of the step-by-step construction of the four-node example.

6.2.3 Multiple Eigenvalue Case

Designing a graph with given G-node weights and prescribed eigenvalues (some of which
may have algebraic multiplicity greater than 1) is very similar to designing a graph in-
volving only distinct eigenvalues. We can very simply incorporate the multiplicity of a
particular eigenvalue by choosing an appropriate value for δ[k] (at a carefully chosen stage
k) such that the following equality holds:

δ[k]

M
[k]
1 ‖ M

[k]
2

4
= λ

[k]
2 = λ

[k]
3

4
= λ

[k−1]
2 +

δ[k]

M
[k]
1

. (6.6)

In other words, as we are inserting the node at stage k, we choose the total edge weight
δ[k] so that the Fiedler eigenvalue and the third eigenvalue coincide.

Let us illustrate this graphically. Figure 6.9 shows the kth stage of the construction. If δ[k]

is chosen large enough, then the Fiedler eigenvalue λ
[k]
2 will land on the third eigenvalue

λ
[k]
3 as shown in the diagram. This is possible because for finite node weights, it is always

the case that (
M

[k]
1 ‖ M

[k]
2

)
< M

[k]
1 .
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Step 4

[1]
1

λ[2]
2

λ[3]
2

λ[2]
1

λ[3]
1

λ[4]
1

M1 2M
[2] [2]

[2]
δ

M1
[3]

δ
[3]

λ[2]
2

+λ[3]
3 =

λ[4]
3 λ[4]

4

M1 2M

=
2λ

δ[4]

[4] [4]

[4]

0

0

0

0

Step 1

Step 2

Step 3

λ

Figure 6.8: Tracking the eigenvalues in the step-by-step construction of the four-node example.

If the desired multiplicity for a particular eigenvalue exceeds two, then at the next stage
k + 1 we would have to choose δ[k+1] large enough so that the Fiedler eigenvalue λ

[k+1]
2

would equal the double eigenvalue λ
[k+1]
3 = λ

[k+1]
4 . The process continues in this manner

until the desired multiplicity is reached.

As for the actual design, we proceed again in the reverse direction of what we just de-
scribed. The process is best described by a numerical example.

Example 6.2 (Four-Node Graph Design with Multiple Eigenvalues )
Construct a graph with node weights

M1 = 1 M2 = 2, M3 = 3, and M4 = 4 ,

such that the graph eigenvalues are at:

µ1 = 0, µ2 = µ3 = µ4 = 1 .

Figure 6.10 depicts a qualitative tracking of the eigenvalues at each stage of the construction from
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Step k-1

λ[k-1]

δ
[k]

M1
[k]

+

M1 2M

=
δ

2λ[k]
[k]

[k] [k]

0

0

=

1λ

3λ λ
1λ

[k-1]

[k]
[k] [k-1]

2

Step k

2

Figure 6.9: Creation of a multiple eigenvalue at Stage k.

one to four nodes. We solve for the unknown edge weights using a procedure nearly identical to the

Step 4

[1]
1

λ[2]
1

λ[3]
1

λ[4]
1

λ[4]
4λ[4]

3 =2λ[4]
=

λ[3]
3λ[3]

2 =

λ[2]
2

0

0

0

0

Step 1

Step 2

Step 3

λ

Figure 6.10: Tracking of the eigenvalues for the four-node graph with triple eigenvalue at 1.

one we used for the distinct eigenvalue example. This time, we ”peel” one of the multiple Fiedler
eigenvalues in each backward-recursion step, and assign it to the eigenvalue at zero in the previous
step.

STEP 1 INITIALIZATION

λ
[4]
1 = 0 λ

[4]
2 = λ

[4]
3 = λ

[4]
4 = 1

– 155 –



Chapter 6 Eigenvalues and Graph Design

STEP 2 BACKWARD RECURSION

M
[4]
1 = M1 + M2 + M3 = 6

M
[4]
2 = M4 = 4

δ[4] =
(
M

[4]
1 ‖ M

[4]
2

)
λ

[4]
2 = (6 ‖ 4) · 1 = 2.4

λ
[3]
2 = λ

[3]
3 = λ

[4]
3 − δ[4]

M
[4]
1

= 1− 2.4
6

= 1− 0.4 = 0.6

M
[3]
1 = M1 + M2 = 3

M
[3]
2 = M3 = 3

δ[3] =
(
M

[3]
1 ‖ M

[3]
2

)
λ

[3]
2 = (3 ‖ 3) · 0.6 = 0.9

λ
[2]
2 = λ

[3]
3 − δ[3]

M
[3]
1

= 0.6− 0.9
3

= 0.3

δ[2] =
(
M

[2]
1 ‖ M

[2]
2

)
λ

[2]
2 = (M1 ‖ M2) λ

[2]
2 = (1 ‖ 2) · (0.3) = 0.2 .

STEP 3 COMPUTATION OF THE INDIVIDUAL EDGE WEIGHTS

a12 = δ[2] = 0.2

a13 =
M1

M
[3]
1

δ[3] =
M1

M1 + M2
δ[3] =

1
3
(0.9) = 0.3

a23 =
M2

M
[3]
1

δ[3] =
M2

M1 + M2
δ[3] = 0.6

a14 =
M1

M
[4]
1

δ[4] =
M1

M1 + M2 + M3
δ[4] =

1
6
(2.4) = 0.4

a24 =
M2

M
[4]
1

δ[4] =
M2

M1 + M2 + M3
δ[4] =

2
6
(2.4) = 0.8

a34 =
M3

M
[4]
1

δ[4] =
M3

M1 + M2 + M3
δ[4] =

3
6
(2.4) = 1.2 .
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Having computed all the edge weights, we can compute the Laplacian matrix for the graph:

L =




0.9 -0.2 -0.3 -0.4
-0.2 1.6 -0.6 -0.8
-0.3 -0.6 2.1 -1.2
-0.4 -0.8 -1.2 2.4




The designed graph is shown in Figure 6.11.

=1

3

M1

0.4

1.2

0.2

0.
8

0.3
0.6

M4

M2

=4

=2

=3M

Figure 6.11: Four-node graph with triple eigenvalue at 1.

It is easy to verify that the eigenvalues of this graph, i.e., the eigenvalues of the matrix pair (L,M)
satisfy the design requirements.

6.3 Graph Eigenvalue Bounds

We devote the remainder of this chapter to a different type of eigenvalue analysis: de-
velopment of eigenvalue bounds in terms of physical features of a graph, such as vertex
degrees and weights.

We restrict ourselves to studying just a few of the eigenvalue bounds that are known in
spectral graph theory. We extend these bounds to include weighted G-node graphs. We
then apply our graph design technique to show how some of the bounds are tight. This is
one of our main contribution in this section. We will also discuss the implications of some
of the results on the stability of graphs with negative edge weights.
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We begin with an eigenvalue bound that was proven by Mohar in [61, Lemma 2.6, p.
232]. He proved that if s and t are two non-adjacent vertices in a graph, then the Fiedler
eigenvalue for the graph satisfies the following inequality:

λ↑2 ≤
ds + dt

2
. (6.7)

We extend (6.7) in two aspects:

• We develop the bound to include G-node graphs with otherwise arbitrary (but finite)
node weights.

• We modify the result to include the case where the two nodes a and b may be adjacent.

Theorem 6.3
Consider two nodes s and t in a graph defined by the matrix pair (L,M); denote the weights of the
two nodes by Ms and Mt. Let ast be the weight of the edge that links them (ast = 0 if s and t are
non-adjacent). Furthermore, let ds and dt denote the degrees of nodes s and t, respectively. Then
the Fiedler eigenvalue satisfies the following inequality:

λ↑2 ≤
Mt

(
ds

Ms

)
+ Ms

(
dt

Mt

)
+ 2ast

Ms + Mt
. (6.8)

Proof: Define a vector x as follows:

xi =





+Mt i = s

−Ms i = t

0 otherwise.

It is easy to verify that xTMx = MsMt(Ms + Mt), and that x is M-orthogonal to 1; that is,
xTM1 = 0. According to the Courant-Fischer theorem,

λ↑2 = min
〈x,1〉M=0

xTLx

xTMx
. (6.9)

Therefore, we see that for our choice of x,

λ↑2 ≤
xTLx

xTMx
. (6.10)
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It only remains for us to find the expression in the numerator of (6.10). From Property 3 of
the Laplacian matrix (Equation (3.13), p. 52), we know that:

xTLx =
∑

j 6=t

asj(xs − xj)2 +
∑

j 6=s

asj(xt − xj)2 + ast(xs − xt)2 +
∑

i,j /∈{s,t}
aij(xi − xj)2 .

The last term in on the right-hand side is zero, because xi = xj = 0 when i, j 6= s, t.
Through a similar argument,

∑

j 6=t

asj(xs − xj)2 = M2
t (ds − ast)

∑

j 6=s

atj(xt − xj)2 = M2
s (dt − ast)

ast(xs − xt)2 = ast(Ms + Mt)2 .

The result then follows immediately, and the proof is complete. ¤

Our result in Theorem 6.3 readily simplifies to Inequality (6.7) by Mohar, if s and t are
non-adjacent (ast = 0) and if all the graph vertices have unity weights.

Theorem 6.4
Consider a connected graph G, and a pair of its adjacent vertices s and t, whose connecting edge is
a bridge of weight ast. Then the Fiedler eigenvalue satisfies the following inequality:

λ↑2 ≤
ast

Ms ‖ Mt
. (6.11)

Proof: As the edge (s, t) is a bridge, we can divide the graph vertices into two clusters S

and T , as shown in Figure 6.12. Subgraphs S and T are formed when the bridge (s, t) is
removed; S is the connected cluster that contains node s and T the one that contains t. Let
MS be the total weight of cluster S and MT the total weight of T .

Next, define a vector x as follows:

xi =





+MT i ∈ S

−MS i ∈ T .

It is easy to verify that xTMx = MSMT(MS + MT), and that x is M-orthogonal to 1; that
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T

st t

s

S

a

Figure 6.12: A graph with a bridge.

is, xTM1 = 0. Invoking the Courant-Fischer theorem for our choice of x, we have

λ↑2 ≤
xTLx

xTMx
.

Using the quadratic property of the Laplacian matrix (Property 3, p. 52), we can rewrite
the numerator as follows:

xTLx =
∑

j∈S

asj(xs − xj)2 +
∑

j∈T

asj(xt − xj)2 + ast(xs − xt)2 .

Each of the two summations is zero, because within the subgraphs S and T the entries of
x are at constants MS and MT, respectively (this is how we defined x). The last term is
simply

ast(xs − xt)2 = ast(MT + MS)2 .

The Fiedler eigenvalue upper bound may now be written as follows:

λ↑2 ≤
ast(MT + MS)2

MSMT(MS + MT)
=

ast

MS ‖ MT
.

The proof is complete. ¤

We can extend the results of Theorems 6.3 and 6.4 even further, to include clusters of nodes
S and T , instead of vertices s and t. This merely requires a redefinition of vector x in our
proofs for each of these two theorems. We will state both extensions, but prove only the
one corresponding to Theorem 6.3. The other proof follows in exactly the same way.
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Theorem 6.5
Consider two vertex clusters S and T in a connected graph. The two clusters do not share any
nodes. Denote the total weight of S by MS and that of T by MT. Let

aST =
∑

i∈S
j∈T

aij

be the total weight of the edges that link clusters S and T together (aST = 0 if S and T are non-
adjacent). Furthermore, let

dS =
∑

i∈S
j /∈S

aij

be the total degree of cluster S, and let dT be similarly defined. Then, the Fiedler eigenvalue of the
graph satisfies the following inequality:

λ↑2 ≤
MT

(
dS

MS

)
+ MS

(
dT

MT

)
+ 2aST

MS + MT
. (6.12)

Proof: Define a vector x as follows:

xi =





+MT i = S

−MS i = T

0 otherwise.

It is easy to verify that xTMx = MS MT(MS + MT), and that 〈x,1〉M = 0. Invoking the
quadratic property of the Laplacian matrix, we have:

xTLx =
∑

i∈S
j /∈S∪T

aij(xi − xj)2 +
∑

i∈T
j /∈S∪T

aij(xi − xj)2 +
∑

i∈S
j∈T

aij(xi − xj)2

+
∑

i,j /∈S∪T

aij(xi − xj)2 +
∑

i∈S
j∈S

aij(xi − xj)2 +
∑

i∈T
j∈T

aij(xi − xj)2 . (6.13)
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Figure 6.13 shows two possible configurations for the multiple-cluster problem that we are
considering. In the left figure the clusters S and T are adjacent, whereas in the one on the
right they are not.1

T
���������
���������
���������
���������

���������
���������
���������
���������

TS and     Non-adjacentS Tand     Adjacent

S S 

T

Figure 6.13: Two configurations for subgraphs S and T .

Each of the last three summations in the right-hand side of (6.13) is zero, because the value
of the vector x is constant in the region where each summation is defined. As for the first
three summations, their respective values are:

∑

i∈S
j /∈S∪T

aij(xi − xj)2 = M2
T (dS − aST) ,

∑

i∈T
j /∈S∪T

aij(xi − xj)2 = M2
S (dT − aST) ,

∑

i∈S
j∈T

aij(xi − xj)2 = (MS + MT)2 aST .

Inserting these values into the Courant-Fischer inequality for the Fiedler eigenvalue, we
have:

λ↑2 ≤
xTLx

xTMx
=

M2
T (dS − aST) + M2

S (dT − aST) + (MS + MT)2 aST

MS MT(MS + MT)
. (6.14)

After simplifying the terms, we arrive at (6.12). This completes the proof. ¤

1Two subgraphs S and T are adjacent if there is at least one edge (i, j) where i ∈ S and j ∈ T . If no such
edge exists, then the two subgraphs are non-adjacent.
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The next theorem is an analogous extension of Theorem 6.4 to the case where there is more
than one edge between two mutually exclusive, collectively exhaustive node clusters S

and T of a connected graph.

Theorem 6.6
Consider a connected graph G and a bi-partitioning of the nodes into clusters S and T , as shown
in Figure 6.14. Let MS and MT denote the total node weights of S and T , respectively, and denote
by aST, the total edge weight between the two clusters. Then, the Fiedler eigenvalue satisfies the
following inequality:

λ↑2 ≤
aST

MS ‖ MT
. (6.15)

T
ST

S
a

Figure 6.14: A bi-partitioned graph with total inter-cluster edge weight given be aST. The
edges that are enclosed by the dotted ellipse are the ones that contribute to aST.

Proof: Choose vector x as we did in Theorem 6.5, and the rest of the proof is very similar
to what did previously. ¤

Corollary 6.7
Consider a connected graph G, and let

δ̂(G) = min
s∈V (G)

ds

Ms ‖ (M −Ms)

denote the minimum single-node cut-ratio of G, where M
4
=

∑
i Mi is the total node weight of G.

Then, the Fiedler eigenvalue satisfies the following inequality:

λ↑2 ≤ δ̂(G) . (6.16)
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Proof: In Theorem 6.6, let S = {s} be a single-node cluster and T = G − s the remainder
of the graph. This is shown in Figure 6.15. Clearly, then, MT = M −Ms is the total node
weight of cluster T , and aST = ds = dT is the degree of node s. The result then follows
immediately. ¤

= s

sdTa ST ==

T = G -s

S

d

Figure 6.15: A bi-partitioned graph wherein one cluster comprises only a single node s.

Inequality 6.16 in Corollary 6.7 is the node-weighted extension of the one given by Mo-
har [61, Proposition 2.8, Inequality (17)]. Inequality 6.15 is the extension of the one given
in Mohar [61, Lemma 3.1].

Before proceeding further, an observation is in order. Rewriting the bound of Inequal-
ity (6.15) leads to the following equivalent expression:

λ↑2 ≤
(

dS

M2
S

+
dT

M2
T

)
(MS ‖ MT) +

aST

MS ‖ MT
, (6.17)

where
dS

4
=

∑

i∈S
j /∈S∪T

aij

is the total inter-cluster degree of S, minus the portion that is due to the interconnections
between S and T ; that is, dS = dS − aST. The variable dT is similarly defined for cluster T .

Inequality (6.17) highlights the relationship between the two-cluster problem and the multi-
cluster one. When the nodes of a graph are divided between two mutually exclusive and
collectively exhaustive sets of nodes S and T , it is clear that both dS and dT are zero, and
the bound for Theorem 6.5 reduces to that of Theorem 6.6. So, in a sense, the first term
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on the right-hand side of Inequality (6.17) is a ”correction” factor that accounts for the
presence of other clusters in the graph, beside S and T .

Earlier, we stated that one of our contributions is that we can use our graph design algo-
rithm to show that some of the eigenvalue bounds that have we have extended are indeed
tight. We now show how we can construct a graph of any size n ≥ 2 that meets the Fiedler
bound (6.16) exactly. So we show the tightness of the bound by construction.

Let T of Figure 6.15 be a connected graph of size n−1. We wish to construct a graph of size
n, by adding a G-node s of finite, but otherwise arbitrary, weight Ms, such that the graph
G of size n has a Fiedler eigenvalue that meets the bound (6.16) exactly.

Here, we are not concerned about how T is constructed. In fact, we even allow T to contain
L-nodes. What we need to know about T are its eigenvalues, which we denote by

µ1 = 0 < µ2 ≤ · · · ≤ µn−1 .

We connect the nth node s according to the principles of the exact coherency and mode
confinement theorem 5.21. That is, the edges connecting the nth node with each of the
n− 1 nodes of T are given by:

[
a1s · · · an−1,s

]
=

[
M1

MT
· · · Mn−1

MT

]
ds , (6.18)

where ds = dT is the degree of node s (the nth node). We know that by interconnecting
node s with T in this manner, one of the eigenvalues of the overall graph G will be

ds

Ms ‖ MT
.

Furthermore, after connecting node s according to the ECMCT, we know that the oscilla-
tory eigenvalues of T all shift by a constant amount ds

MT
. The smallest of these will be

µ2 +
ds

MT
.

We need to control the value of ds so that this eigenvalue equals or exceeds

ds

Ms ‖ MT
.
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Therefore, we must have
ds

Ms ‖ MT
≤ µ2 +

ds

MT
.

Solving for ds, we obtain the following inequality that it must satisfy so the Fiedler eigen-
value meets the bound δ̂(G) exactly:

ds ≤ Ms µ2 . (6.19)

When we ensure that ds satisfies (6.19), and design the edge weights ais according to the
ECMCT, we, in effect, guarantee two things:

• The minimum cut-ratio δ̂(G) is given by

δ̂(G) =
ds

Ms ‖ MT
.

• The Fiedler eigenvalue is

λ↑2 = δ̂(G) =
ds

Ms ‖ MT
.

Example 6.8
Consider the graph of Figure 6.16, where M1 = 1,M2 = 2,M3 = 3, and a12 = 5. Initially, we

T

1 M2

M3

a12

a13 a23

M

Figure 6.16: A three-node graph designed to meet the Fiedler eigenvalue upper bound 6.16 exactly.

have the two-node graph T comprising nodes M1 and M2. We are given the node weight M3 and
are asked to connect M3 to the other two nodes so that the overall graph has a Fiedler eigenvalue
that meets (6.16) exactly.

Our strategy, as we already have indicated, is to ensure that the edge weights a13 and a23 are
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selected according to the ECMCT. Thus, we must have:

[
a13 a23

]
=

[
M1

M1 + M2

M2

M1 + M2

]
d3 =

[
1
3

2
3

]
d3 .

The ECMCT determines the relative proportionality of the edge weights a13 and a23 with respect to
one another. To select a d3 that meets the design requirements, we must choose it so that it satisfies
Inequality (6.19). To do that, we need the eigenvalues of the subgraph T . These are easily seen to be

µ1 = 0 µ2 =
a12

M1 ‖ M2
=

5
1 ‖ 2

=
15
2

.

Therefore, the acceptable range for d3 is given by

d3 ≤ M3 µ2 =
45
2

.

When d3 = 45
2 , the maximum allowable, we expect the graph to have a Fiedler eigenvalue of multi-

plicity 2, given by
d3

M3 ‖ (M1 + M2)
=

45
2

3 ‖ 3
= 15 .

In fact, when d3 = 45
2 , the graph will have the following Laplacian matrix:

L =




12.5 -5.0 -7.5
-5.0 20.0 -15.0
-7.5 -15.0 22.5


 ,

and it is easy to verify that the matrix pair (L,M), where the node-weight matrix M = diag (1, 2, 3)
has a double eigenvalue at 15. Any value of d3 that exceeds 45

2 will result in an eigenvalue at
d3

M3‖(M1+M2) that will exceed µ2 + d3
M1+M2

, and hence will not meet the design requirements.

For example, choosing d3 = 54
2 = 27, we expect one of the eigenvalues to be at

d3

M3 ‖ (M1 + M2)
=

27
3 ‖ 3

= 18 .

This value exceeds the shifted eigenvalue µ2 + d3
M1+M2

= 7.5 + 27
3 = 16.5, which is the other

oscillatory eigenvalue of the graph. For this value of d3 (that is beyond the acceptable range) the
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graph will have the following Laplacian matrix:

L =




14 -5 -9
-5 23 -18
-9 -18 27


 ,

and it is easy to verify that the eigenvalues of the matrix pair (L,M) are λ1 = 0, λ2 = 16.5, and
λ3 = 18, as theoretically predicted.

For the sake of completeness, we now choose a value of d3 that is strictly below the allowable limit,
and show that we meet the design requirement exactly, and that the Fiedler eigenvalue has mul-
tiplicity one. Let d3 = 42

2 = 21 < M3 µ2 = 22.5. Then we expect the Fiedler eigenvalue to be
at

λ2 =
d3

M3 ‖ (M1 + M2)
=

21
3 ‖ 3

= 14 ,

and the fastest eigenvalue to be at

λ3 = µ2 +
d3

M1 + M2
= 7.5 +

21
3

= 14.5 .

Indeed, this is the case. When d3 = 21, the Laplacian matrix is given by

L =




12 -5 -7
-5 19 -14
-7 -14 21


 ,

and it is easy to verify that the eigenvalues of the matrix pair (L,M) are λ1 = 0, λ2 = 14, and
λ3 = 14.5, as theoretically predicted. The smaller d3 gets, the greater the separation between the
Fiedler eigenvalue λ2 and the fastest one λ3.

We can easily extend this design technique to prove the following:

Theorem 6.9
Consider two graphs S and T , each of which is connected, with respective eigenvalues

0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ µq (6.20)

0 = τ1 < τ2 ≤ τ3 ≤ · · · ≤ τr (6.21)

where q and r denote the sizes of S and T , respectively. Then there is a way to interconnect S and
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T , such that the resulting graph G = S ∪T has a Fiedler eigenvalue that satisfies Inequality (6.15)
exactly, i.e.,

λ↑2 =
aST

MS ‖ MT
.

Proof: The approach to proving this theorem is nearly identical to what we have done so
far. The only additional bookkeeping is that aST, the total weight of edges connecting S

and T , must now satisfy the following inequality

aST ≤ min(MSτ2, MTµ2) .

The proof of this is based on a reasoning identical to the one that led to Inequality (6.19). In
this case, after interconnecting S and T according to the ECMCT, the Fiedler eigenvalues
of these two graphs shift to the following positions, respectively:

µ2 +
aST

MS
τ2 +

aST

MT

We want the Fiedler eigenvalue, after interconnecting S and T , to be

λ2 =
aST

MS
‖ MT .

Ensuring that this value does not exceed the values to which µ2 and τ2 move to, we get the
constraint that we specified above.
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Conclusions and Future Research

In this thesis, we have tried to gain a better understanding of how linear (or linearizable)
non-dissipative oscillatory networks behave. We have made the connection between a
very rich area of applied mathematics—spectral graph theory—and physical networks that
”vibrate.” This connection is as deep as spectral graph theory on the one hand, and as
rich as the engineering and physical-science applications on the other. We merely have
scratched the surface here!

Throughout the thesis, we focused mainly on issues of a fundamental, theoretical, and
conceptual nature. We did not venture into exploring actual engineering systems (such
as power networks or vibrating space structures) or physical-science applications (such as
molecular dynamics).

This omission was not intended to derogate from the importance of physical applications.
After all, the ultimate goal of this research—as was stated very clearly at the outset—
has been to bridge the gap between what applied mathematicians (in particular, graph
theorists) know about graphs, and what engineers and scientists know about actual engi-
neering systems, biological networks, or chemical structures, and the potential for mutual
cross-disciplinary learning and research influence.

Real-world systems almost never possess the exact theoretical properties that we have
modelled in our research. Therefore, focusing on actual, physical networks has the nearly-
certain potential to obfuscate the underlying structure or salient features that a real net-
work may approximately possess. By concentrating on exact, theoretical properties of syn-
thetic networks, we cut through the clutter to get at the crux of the important conceptual
issues. Our focus has been to gain intuition, at a basic level, about how oscillatory net-
works behave dynamically.

There is yet a second—perhaps more important—motivation behind our focus on theo-
retical properties and synthetic networks. Our research has been as much, if not more,
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motivated by design of oscillatory networks as it has been by analysis. In fact, we used
the phrase ”design-oriented analysis” on various occasions. Although there are many ac-
tual systems that beg to be understood and analyzed (for example, power networks), we
should be concerned as well with designing new systems more intelligently. It is in the de-
sign process that our theoretical emphasis should prove to be most useful. The synthetic
examples throughout the thesis have been specifically designed to point out the salient the-
oretical issues of concern to us, and to illustrate more vividly the fundamental properties
of graphs that our research has discovered.

The last reason for our deferral of the engineering and physical-science applications to
another time and place has been pragmatism. We had to keep the scope of the research
bounded.

With the hope that our work is useful to future researchers and developing significant ap-
plications, we enumerate here a few potential avenues for extending the results developed
in this dissertation.

Modular design of networks, according to the principles of Chapter 5.

7.1 Potential Avenues of Future Research

Extension to Distributed-Parameter Networks Throughout the thesis, we have focused
mainly on lumped-parameter systems. This has the benefit of keeping the network’s
node-weight matrix diagonal. However, distributed-parameter oscillatory systems (such
as a vibrating drum) form an equally interesting genre of applications that deserve
study in their own right. To make use of graph theory for such systems, they first need
to be discretized to lumped-parameter networks (via finite-element approximations, for
example). Often the node-weight matrix for such discretized systems will no longer be
diagonal. It is of interest, therefore, to study the generalized eigenproblem under such
circumstances. In fact, the eigenproblem may no longer have symmetry properties ei-
ther. Sorting out the issues involved in discretizing distributed-parameter systems is
one avenue of future work.

Kn-Star Transformation In Chapter 4, when we discussed the fully-connectedness of the
nodes surrounding Schur-contracted L-nodes, we showed a graph-theoretic proof of the
well-known star-delta transformation. There is a potential for extending the star-delta
transformation to more complex tree-graph structures; we call these transformation Kn-
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tree transformations. The problem can be stated as follows. Given a fully-connected
graph (Kn) with specified edge and node weights, find a tree graph with additional L-
nodes, such that when the tree-graph is Schur-contracted with respect to those L-nodes,
it will result in the K-graph with precisely the specified edge weights. Our prelimi-
nary investigations indicate that to solve this problem would involve a thorough un-
derstanding of inverses of acyclic non-singular M-matrices, Groebner bases, varieties,
ideals, and other similar notions in algebraic geometry.

Approximate Coherency in Arbitrary Modes Our study of theoretical coherency in arbi-
trary modes begs a simple question that is certain not to have an equally simple an-
swer. Namely, how may we detect approximate coherency in systems that only approx-
imately meet the inter-area link structure and values of the exact coherency theorem
(ECT) or the exact coherency and mode confinement theorem (ECMCT) in Chapter 5.
Studying how perturbations away from the constraints of those two theorems affect the
network dynamics is another avenue of further study.

Spectral Partitioning of Graphs The coherency theorems for oscillatory networks suggest
particular ways of interconnecting small or moderate-sized networks to create large-
scale ones. How can large-scale systems be designed to meet certain desired tractability
requirements? How may we exploit the theoretical principles developed in Chapters 5
and 6 to design large-scale networks more intelligently, so that they are more tractable
and amenable to less complex analysis?

Extensions to the Graph Design Algorithm Our graph design algorithm has involved an
incremental, one-node-at-a-time, design methodology to construct a full graph of size n

with desired properties. Extensions involving conjoining clusters of nodes may prove
helpful in cases where those clusters already are designed, operating graphs. Such in-
terconnected networks would exhibit mode confinement features that are more pro-
nounced than the current single-node design procedure.

Connections with Mode Localization For about four decades now, an important area in
the study of vibrational networks has been mode localization. Typically, mode localiza-
tion has been observed in systems that have strong symmetry properties, but which are
perturbed away from regularity at some location in the network. We have shown in our
graphs that uniformity of node weights is not necessary for a network to exhibit mode
localization. We have also shown that we can build networks that exhibit a type of lo-
calization that monotonically increases with increasing mode number (that is, as we go
to faster and faster modes). We are aware of no paper in the mode localization com-
munity where such a network is shown. Ordinarily, the systems that the researchers in

– 172 –



Chapter 7 Conclusions and Future Research

that field have studied exhibit generally, but not monotonically, increasing mode local-
ization with increasing mode number.

Graphs with Negative Edge Weights Our focus through most of the thesis has been on
graphs that have nonnegative edges. Graphs with negative edges are also important,
as they can arise in certain applications (such as power networks). Issues such as con-
tinued stability are important when an edge is perturbed to have a negative sign. What
features of the theory we have developed in this thesis carry over to graphs with neg-
ative edges? When does a graph turn unstable when an edge changes sign? These are
sample issues to be addressed.

Estimation Theory and Statistics The covariance matrix of a random vector Y compris-
ing a set of linearly dependent random variables is quasi-Laplacian; we say quasi be-
cause it can have off-diagonal entries that are positive (corresponding to negative edge
weights in a graph). Negative edge weights are possible because the covariance of two
random variables can have either positive or negative sign. This is an observation that
further motivates a thorough study of graphs with negative edge weights. We know
that a covariance matrix is symmetric and positive semi-definite. What properties does
the graph of the covariance matrix have that guarantee its stability? Can this connection
between graph theory and covariance matrices be exploited in estimation problems?
We know that the eigenvectors of the covariance matrix decorrelate the random vari-
ables corresponding to that covariance matrix. So spectral graph theory has a potential
application here.

– 173 –



Appendix A

Summary of Notation

Below is a list of the symbols and notation that we use in our presentation.

Symbol Description

R the set of real numbers
Rn the set of real n-vectors
Rm×n the set of real m× n matrices
|H| cardinality of H
A = (aij) a matrix and its (i, j)th entry
[A]ij aij , the (i, j)th entry of A

a
(r)
ij (i, j)th entry of Ar

x a vector
1n the n-vector of all ones
In the identity matrix of size n; subscript is omitted if

it is clear from the context or if it is irrelevant
0n (0m×n) n-vector (or m× n matrix) of zeroes; subscript is omitted if

it is clear from the context or if it is irrelevant
P permutation matrix
AT transpose of A
A−1 inverse of A
detA, |A| determinant of A
In (A) inertia of A
rank A rank of A
sizeA n if A is n× n,

(m,n) if A is m× n

tr A trace of A
diag (d1, . . . , dn) diagonal matrix with diagonal entries d1, . . . , dn

diag (A) diag (a11, . . . , ann)
diag (D1, . . . ,Dn) block-diagonal matrix with diagonal blocks D1, . . . ,Dn
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Chapter A Summary of Notation

A B 0 A is positive definite.
A D 0 A is positive semi-definite.
A C 0 A is negative definite.
A E 0 A is negative semi-definite matrix.
〈x,y〉B xTBy, B-innerproduct of x and y (B positive definite)
‖x‖B

√〈x,y〉B , B-norm of x (B positive definite)
A ² 0 aij 6= 0 for i = 1, . . . , m and j = 1, . . . , n)
A Â 0 aij > 0 ∀i, j .
A < 0 aij ≥ 0 and A 6= 0.
A º 0 aij ≥ 0 (and possibly A = 0).
λ↑i (A) ith smallest eigenvalue of A

λ↑(A)




λ↑1(A)
...

λ↑n(A)




λ↓j (A) jth largest eigenvalue of A
λmax(A) λ↑n(A) = λ↓1(A)
λmin(A) λ↑1(A) = λ↓n(A)
%(A) spectral radius of A, i.e., λmax(A)
Class K set of nonsingular M-matrices
Class K0 set of singular M-matrices (closure of K)
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Graph-Theoretic Definitions and Terminology

A (weighted) graph G(V, E,B,E) consists of

• a non-empty vertex (node) set V = V (G) = {v1, v2, . . . , vn};

• an edge set E = E(G) = {eij} ⊆ V × V , where eij denotes an edge connecting the node
pair {vi, vj}. If {vi, vj} = (vi, vj) is an ordered pair, i.e., if there is a “direction of flow”
associated with each edge, then G is called a directed graph, or, more simply, a digraph;

• a set of positive vertex (node) weights Wv = Wv(G) = {wv(1), wv(2), . . . , wv(n)}; and

• a set of non-negative edge weights We = We(G) = {wij = we(eij) | eij ∈ E}, where wij

is short-hand notation denoting the weight of edge eij which connects nodes vi and vj .

Sometimes it might be that the graph is unweighted (i.e., all vertex and edge weights are
unity), or that the vertex and node weights do not concern us. In such cases, we shall use
the simplified notation G(V, E) to denote the graph.

B.0.1 A Glossary of Some Important Concepts

Loop: An edge of the form eii = {vi, vi}, ∃vi ∈ V is called a loop.

Path: A path is a non-empty graph P with a vertex set VP = {ν1, . . . , ν`} and edge set EP =
{{ν1, ν2}, {ν2, ν3}, . . . , {ν`−2, ν` − 1}, {ν`−1, ν`}}. For our purposes, the corresponding
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node and edge weights are unimportant. Nodes ν1 and ν` are said to be linked by P .
Figure (B.1) shows a path P comprising five nodes; the edges in the path are illustrated
with thicker lines.

ν
1

ν
2

ν
3

ν
4

ν
5

G

Figure B.1: A Path P

Connected Graph: A graph G is said to be (maximally) connected if any two of its vertices
are linked by a path in G.

Subgraph: We say G′ = (V ′, E′) is a subgraph of G(V, E), if V ′ ⊆ V and E′ ⊆ E, with
corresponding vertex and edge weights unchanged.

Induced Subgraph: We shall omit the reference to whether a subgraph is vertex- or edge-
induced, as it would normally be clear from the context.

Component: A maximally connected subgraph of G is called a component of G. A subgraph
G′ is called maximally connected if the addition of even one more vertex to G′ will cause
it to be no longer connected. In other words, there is no edge between the vertices in
V − V ′ and V ′.

Spanning Tree:

Chord: It is clear that a connected graph has only one component.

Multi-graph or Multi-Digraph: If graph G contains multiple undirected or directed edges
between at least one node pair {vi, vj}, it is called a multi-graph or multi-digraph, respec-
tively.
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G"

G

G’

Figure B.2: A Graph G which cosists of two components, G′ and G′′.

Adjacency Matrix: Two vertices vi and vj are adjacent if there exists an edge eij ∈ E that
connects them. The (weighted) adjacency matrix A = A(G) of a graph G is defined as
A = (aij) ∈ Rn×n, where

aij =





wij if eij ∈ E and i 6= j,

0 otherwise.

Note that for undirected graphs, the adjacency matrix is symmetric, i.e., AT = A.

Vertex Degree (or Valency) Matrix: The degree (or valency) of a vertex vi is defined to be
the total weight of all the edges incident on vi. Let di denote the degree of vertex vi. It is
clear that di =

∑n
j=1 aij =

∑n
j=1 wij , where the second equality is based on the premise

that graph G is loopless—otherwise, wii 6= 0 ∃ i ∈ {1, . . . , n}, whereas aii = 0 i =
1, . . . , n. The vertex degree matrix D = D(G) ∈ Rn×n of a graph G is defined as

D = diag (d1, . . . , dn) .

q-Partition: We denote the q−partition of a graph G by Vq = {V1, V2, . . . , Vq}, where each
Vi is connected, Vi

⋂
Vj = φ for i 6= j, and

⋃q
i=1 Vi = V .

Multi-way Edge Cut: Consider a q-partition Vq of V (G), as defined above. The set of
edges

Kq =
q⋃

i,j=1i6=j

E(Vi, Vj) (B.1)

Assignment Matrix: Associated with every q-partition Vq is an assignment matrix X =
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(xik) ∈ Rn×q, whose entries are defined as

xik =





1 if vi ∈ Vk

0 if vi /∈ Vk ,

is called the assignment matrix for the partitioning Vq. Its kth column xk is an indicator
vector for cluster Vk, i.e., it is a (0, 1)-vector which indicates the assignment of each of the
n vertices to cluster Vk. We can write X in terms of its columns: X = [x1 |x2 | · · · |xq].
Note that the assignment matrix satisfies the transportation constraint X1q = 1n, where

1n
4
= [1, . . . , 1]T is the n-vector of all ones, and 1q is similarly defined.

The partition matrix T, defined below, is another, equivalent way of specifying how a graph
is partitioned:

Partition Matrix: The matrix T = (tij) ∈ Rn×n, whose entries are defined as

tij =





1 if vi and vj belong to the same group

0 otherwise ,

is called the partition matrix for the partitioning Vq. With a proper numbering of the
nodes (i.e., with an appropriate pre- and post-multiplication with a permutation matrix
P) the partition matrix can be made to look block diagonal in form, with each block
containing the nodes that belong to one of the groups.

Node-Edge Incidence Matrix: The oriented node-edge incidence matrix F ∈ Rn×m, for a
graph with n nodes and m edges, is defined as follows. Assign an arbitrary orienta-
tion to each edge in the graph. The rows of F are indexed by the vertex set V (G) and
the columns by the edge set E(G). The entry [F]ie = +1 if node i is the initial vertex
of the oriented edge e, [F]ie = −1 if node i is the terminal vertex of the edge e, and
[F]ie = 0 if node i is not incident on edge e.

Laplacian Matrix: The Laplacian matrix L = L(G) ∈ Rn×n of a graph G is defined as L =
D−A. Therefore,

[L]i` =





−ai` if i 6= `

n∑

j=1

aij if i = `

(B.2)
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This matrix will feature prominently throughout our discussion. It has such impor-
tant and well-established properties that we shall devote an entire section of this thesis
summarizing and discussing them. In particular, the eigenvalues and eigenvectors of
the Laplacian matrix turn out to be very significant in—and in fact form the backbone
of—any discussion of dynamic behavior of the networks represented by our graphs.
The Laplacian matrix L is referred to by other names as well, such as the admittance
matrix, the stiffness matrix, or the Kirchhoff matrix, a terminology that clearly owes itself
to electrical network theory and the pioneering work of Kirchhoff in that area.

NOTE: In this thesis, unless otherwise noted, whenever we use the
term graph, we refer only to a connected (i.e., single-component)
graph that has a finite number of vertices (each with a nonnegative
weight), is undirected, has no loops or multiple edges, and has
non-negative edge weights.
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Perturbation Theory for a Class of Generalized
Eigenvalue Problems

We outline the salient results of the first-order perturbation theory for the generalized eigen-
problem (GEP)

Au = λMu , (C.1)

where A ∈ Rn×n is symmetric, and M = diag (M1, . . . , Mn) is a diagonal matrix with Mi >

0, ∀ i. The perturbation results associated with (C.1) can be obtained quite simply if all the
eigenvalues are distinct; the analysis is more complicated if at least one of the eigenvalues
has an algebraic multiplicity greater than one.1. We consider each case separately.

C.1 First-Order Perturbation Theory for Multiple Eigenvalues

Consider the GEP
(A + E) ũ = λ̃M ũ , (C.2)

where A and E are symmetric, positive semi-definite n × n matrices, E is a perturbation
matrix with entries of order ε, and M = diag (M1, . . . , Mn) has positive diagonal entries
Mi. Suppose we know the solution to the unperturbed problem

Au = λMu . (C.3)

Furthermore, let the unperturbed eigenproblem (C.3) have an eigenvalue, say λ1, with
algebraic multiplicity q > 1 (we know that due to the symmetry of A and E, and the
structure of M, the geometric multiplicity of every eigenvalue is the same as its algebraic
multiplicity, i.e., the matrix pairs (A,M) and (A + E,M) are non-defective). Then, associ-
ated with the multiple eigenvalue λ1 there is a q-dimensional subspace V1 of eigenvectors.

1Our coverage in this appendix very closely follows the treatment in Butkov [10].
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Studying perturbations of such an eigenproblem is complicated by the fact that we do not
know to which vector in V1 each perturbed eigenvector reduces as E −→ 0; any set of
q linearly independent vectors in V1 can serve as eigenvectors of λ1 in the unperturbed
problem, whereas it is not to any arbitrary set of q linearly independent vectors in V1 that
the perturbed eigenvectors converge if E −→ 0.

The standard approach to the problem is to first construct an M-orthonormal basis set for
V1. To simplify notation, however, we drop the subscript ”1” from the eigenvalue and its
associated eigenspace; that is, we consider λ a generic eigenvalue of algebraic multiplicity
q, V its corresponding q-dimensional eigenspace, and so on. Using a Gram-Schmidt pro-
cess, we construct a set of q vectors w1, . . . , wq ∈ V such that 〈wi, wj〉M = δij . Thus, we
have:

Awk = λMwk k = 1, . . . , q (C.4)

or in a more compact matrix form,

AW = λMW , (C.5)

where the n× q matrix W is

W =
[
w1

∣∣∣∣· · ·
∣∣∣∣wq

]
. (C.6)

If the perturbed eigenvalue λ̃ converges to λ (as E −→ 0), then its corresponding eigen-
vector ũ must reduce to some vector in the eigenspace V . Writing the expansion of λ̃ and
ũ (up to first order) we have:

λ̃ ' λ + dλ , (C.7)

ũ ' u + du . (C.8)

We note that each unperturbed eigenvector u (to which the a perturbed one reduces) must
be a linear combination of w1, . . . , wq; namely,

ui =
q∑

k=1

ckiwk = W ci i = 1, . . . , q , (C.9)

where
ci =

[
c1i · · · cqi

]T
(C.10)
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is the ith column of the q × q matrix

C =
[
c1

∣∣∣∣· · ·
∣∣∣∣cq

]
. (C.11)

We are therefore in search of q vectors c1, . . . , cq ∈ Rq each of which defines, through (C.9),
one of the q unperturbed eigenvectors ui. We note that the basis vectors w1, . . . ,wq are
M-orthonormal, i.e., 〈wi, wj〉M = δij ; therefore, we have WTMW = Iq. The same holds
for U ∈ Rn×q; that is, UTMU = Iq, where

U =
[
u1

∣∣∣∣· · ·
∣∣∣∣uq

]
. (C.12)

We can now summarize—in compact matrix form—the unperturbed and perturbed prob-
lems as follows.

C.1.1 The Unperturbed Multiple Eigenvalue Problem

AU = λMU , (C.13)

but because we do not know, a priori, the unperturbed eigenvectors to which the perturbed
ones reduce, we construct the M-orthonormal vectors w1, . . . ,wq ∈ V , so that:

AW = λMW , (C.14)

and our task is to find the coefficient matrix C ∈ Rq×q that relates U and W:

U = WC . (C.15)

C.1.2 The Perturbed Multiple Eigenvalue Problem

(A + E) Ũ = MŨΛ̃ , (C.16)

– 183 –



Chapter C Perturbation Theory for a Class of Generalized Eigenvalue Problems

where

Λ̃ = Λ + dΛ (C.17)

Ũ = U + dU . (C.18)

Expanding (C.16) we have:

(A + E)(U + dU) = M(U + dU)(λI + dΛ) . (C.19)

Equating first-order terms on both sides we obtain:

A dU + EU = λM dU + MU dΛ . (C.20)

Pre-multiplying each side of (C.20) by WT we get:

WT A dU + WT EU = λWT M dU + WT MU dΛ . (C.21)

Recalling that

WT A = λWT M (C.22)

and

U = WC (C.23)

we are led to

WT EW︸ ︷︷ ︸
G

C = WT MW︸ ︷︷ ︸
Iq

C dΛ︸︷︷︸
Θ

. (C.24)

Thus, the first-order perturbation study of the original multiple eigenvalue problem has
led to the ordinary q × q eigenproblem

GC = CΘ , (C.25)

where G = WT EW is the new matrix, whose entries are of order ε, whose eigenvectors
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give us the desired C matrix, and whose eigenvalues

Θ = dΛ = diag (dλ1︸︷︷︸
θ1

, . . . , dλq︸︷︷︸
θq

) (C.26)

are the admissible first-order shifts that the unperturbed multiple eigenvalue λ undergoes.

The eigenvalues θi = dλi of (C.25, C.26) being distinct means that the unperturbed multi-
ple eigenvalue λ moves to a set of q distinct perturbed eigenvalue positions λ̃(1), . . . , λ̃(q);
hence, we need go no further, as we have broken the multiplicity using a first-order analy-
sis. However, if any eigenvalue of (C.25,C.26) has multiplicity greater than unity, then we
need to carry out the perturbation analysis further—to second and possibly higher order.
This contingency will not be necessary in the cases that we consider in this thesis, so we
shall not concern ourselves with it here.

We note that as G = WT EW it must be symmetric; therefore, the system (C.25) has a full
set of q linearly independent eigenvectors (columns of C), and that the eigenvector matrix
C is an orthogonal matrix, i.e., CTC = CCT = Iq. We also note that

Θ = CTGC = (WC)T E (WC) . (C.27)

Referring to (C.23), we rewrite the above as:

Θ = UT EU . (C.28)

Clearly, the entries in Θ are of order ε, as expected. That is, the unperturbed multiple
eigenvalue λ undergoes q order-ε shifts as a result of the order-ε perturbation matrix E
applied to A.

All these insights have a direct bearing on our understanding of slow-coherency dynamics
of certain vibrational networks. See Section 5.2 to see how we apply the principles we have
covered here to a certain class of vibrational networks.
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