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ABSTRACT 

 
This thesis examines how to model the choice of individual travelers among 
various possible travel alternatives in the airline industry. A review of the 
models used to represent that choice situation in the Passenger Origin-
Destination Simulator (PODS) was undertaken for two reasons. First, the 
development of computational capabilities has lead to advancements in 
consumer choice theory that enabled the implementation of more flexible models 
like mixed logit models. Second, the increasing competition of low-cost new 
entrant airlines has put great pressure on pricing practices of traditional network 
carriers. This increasing competition has also compelled these carriers to focus on 
their strengths, for example, schedule coverage. In this thesis, after a comparison 
between the PODS Passenger Choice Model and the literature on consumer 
choice theory, we will then focus on how to model passenger preference for 
schedule.  
 

The review of the literature on air traveler choice reveals that most authors have 
used discrete choice models, like standard logit or nested logit models, to 
represent the choice of individual passengers among travel alternatives. 
However, the logit model has two limitations in the air traveler choice problem: 
it can accommodate neither random taste variation in some elements of the 
passenger utility function nor the complex substitution patterns across travel 
alternatives modeled in PODS. However, we show that the highly flexible mixed 
logit model brings a solution to these limitations and the choice process modeled 
in PODS can be approximated by a set of mixed logit models.  
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In the second part of the thesis, we focus on how passenger preference for 
schedule is modeled in PODS. In the current model, a constant replanning 
disutility is added to the cost of all paths that are not convenient to the 
passenger. However, the current approach does not differentiate among paths 
based on their level of schedule inconvenience and this leads to distortions in the 
valuation of the revenue advantage of the carrier offering the best schedule. We 
propose in this thesis an alternative approach called the variable replanning 
disutility model. In this model, the replanning disutility added to the cost of 
paths depends on the time location of the path and its level of schedule 
inconvenience. PODS simulation results show that the variable replanning 
disutility model leads to a more realistic valuation of the revenue advantage 
associated with a better schedule coverage. 

 

Thesis Advisor: Dr Peter Paul Belobaba 

Title: Principal Research Scientist, Department of Aeronautics and Astronautics 
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Chapter 1  Introduction 
 

 

1.1. Setting, Purpose and Motivation 

 

In liberalized air transportation markets, the consumers of air 

transportation services have typically the choice between several fare class 

products on one or more available flight itineraries offered by the airlines serving 

the desired markets. Depending on their characteristics and preferences, air 

travelers will choose a particular airline, flight and fare class to fulfill their travel 

needs. Demand for air travel at the path/class level is then the result of the 

tradeoffs individual air travelers make when they choose among different 

airlines, flights and fare classes. 

 

Gaining insight about air traveler preferences and understanding the 

determinants of demand for air travel at the path/class level is important to 

support key airline planning decisions like flight scheduling, pricing, fare class 

restrictions design and seat allocation among path/classes (revenue 

management).  In that context, MIT and a consortium of seven leading airlines 

developed in the mid-nineties the Passenger Origin-Destination Simulator 

(PODS) to examine the impact of revenue management methods, especially seat 

allocation decisions at the airline network level. However, unlike most revenue 

management simulators used previously, demand for each particular path/class 

in PODS is not exogenous; it is the result of millions of individual choices at the 

air traveler level between available airlines, flight schedules and fare classes. As a 

result, what makes PODS unique among airline revenue management simulators 

is its passenger choice model that reproduces how hypothetical air travelers 
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choose among various airline, flight schedule and fare class products available in 

an air travel market. 

 

Over the years, PODS and its Passenger Choice Model have proved to be a 

valuable tool to measure the impact of various revenue management methods 

designed to maximize airline revenues at the network level. With the increase in 

computational power during the nineties, PODS has been used to simulate 

passenger choices in increasingly complex airline networks including 

transatlantic alliance networks and has produced stable and consistent results in 

the study of various revenue management issues: origin-destination revenue 

management methods, alliance revenue management, forecasting, passenger 

behavior issues like sell-up and recapture. 

 

A review of the PODS Passenger Choice Model today seems necessary for 

two main reasons. The first reason is driven by a structural change in the airline 

industry with the increasing competition from low-cost new entrant airlines. 

These new carriers along with the downturn in airline business travel since 2001 

have put a great pressure on the fare and restriction structure used by the 

traditional network carriers. As a result, PODS member airlines have shown 

great interest in using PODS to study the revenue impact of changes in their 

pricing and restriction policies. However, the PODS Passenger Choice Model has 

been primarily designed and calibrated to study the impact of revenue 

management decisions like seat allocation decisions in the context of the 

competition between several traditional network carriers offering similar fares 

and restriction structures. In order to test the impact of a new entrant airline or 

different fare/restriction structures, a review of some elements of the PODS 

passenger choice model would be useful and a recalibration of the model could 

well be necessary. 
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In addition, due to the development of low-cost competition in the United 

States and Europe in the recent years, network carriers need to focus on their 

strengths including network coverage and frequency of service. These industry 

trends have lead some consortium members to show interest into investigating 

the impact of schedule asymmetry on PODS simulation results. However, the 

PODS Passenger Choice Model has been conceived to simulate the competition 

between airlines offering similar schedules but using different revenue 

management strategies. As a result, to assess the impact of offering a superior 

schedule on airline revenues requires reviewing how passenger preference for 

schedule is modeled in PODS. 

 

The second reason is driven by progress in the theory of consumer choice. 

The development of computational capabilities in the nineties has also enabled 

significant progress in consumer choice theory, in particular in the field of 

discrete choice models. Essentially, these advancements have been mostly 

centered on the use of simulation methods, which is the researchers’ response to 

the inability of computers to perform complex integration. Simulation allows the 

estimation of otherwise intractable models: almost any model specification can 

be estimated by some form of simulation. As a result, the researcher is freed from 

previous constraints on model specification and is not limited to a few model 

specification alternatives that have favorable mathematical properties but also 

some severe limitations. Simulation allows a more creative, precise and realistic 

representation of the hugely varied choice situations that arise in the world, 

including air traveler choice among airlines, flight schedule and fare class. A new 

class of discrete choice models has emerged that offer a lot more flexibility than 

standard models used in the past. As a result, we can compare the PODS 

Passenger Choice Model and its hypotheses to these new developments in 

discrete choice models. 
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The objective of this thesis is then to review how air traveler preferences 

are modeled in PODS and relate the options used in the PODS Passenger Choice 

Model to the new competitive environment in the industry and the 

advancements in consumer choice theory. In particular, this thesis will compare 

the PODS approach to the literature and theory on air traveler choice focusing on 

discrete choice models including the new classes of flexible discrete choice 

models like mixed logit models.  In addition, due to the interest expressed by 

some consortium airline members and the potential for improvement identified 

during the passenger choice model review, this thesis will include a case study 

on how to model passenger preference for schedule in PODS.  

 

1.2. Outline of the Thesis 

 

Chapter 2 reviews the literature on consumer choice theory focusing in 

particular on discrete choice models used to describe the choice of a consumer 

among a discrete number of alternatives. This chapter includes a description of 

the most widely used discrete choice model, the logit model, its advantages and 

its limitations and some more complex and flexible models developed to 

overcome these limitations like for instance nested logit models or mixed logit 

models. 

 

Chapter 3 provides a detailed description of the PODS Passenger Choice 

Model including how it was developed based on the Boeing Decision Window 

Model. In addition, this chapter compares the approach used in the PODS 

Passenger Choice Model with models used in the transportation literature 

primarily discrete choice models. 
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After analyzing the PODS Passenger Choice Model in its entirety and 

relating it to the consumer choice literature, the two subsequent chapters focus 

on one particular element of the choice model: passenger preference for flight 

schedule. Chapter 4 reviews the literature on schedule choice in intercity travel 

and compares it to the approach used in PODS. Based on that analysis, 

alternative approaches are designed. 

 

In Chapter 5, PODS is used to simulate the impact of alternative 

approaches to model passenger preference for flight schedule. Detailed analysis 

of the simulation results is included in this chapter. 

 

Finally, Chapter 6 concludes this thesis with a summary of the findings 

from the literature review, the comparison between the PODS approach and the 

methods used in the literature and the flight schedule case study. At the very end 

of this chapter, we address some of the issues for future research directions 

involving the PODS Passenger Choice Model and discrete choice models in air 

transportation. 
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Chapter 2  Discrete Choice Models 
 

 

2.1. Introduction 

 

Discrete choice models describe decision-makers’ choice among various 

alternatives. To fit within a discrete choice model framework, the set of 

alternatives called the choice set must exhibit three properties: the alternatives 

must be mutually exclusive, collectively exhaustive and the number of 

alternatives must be finite. Indeed, the first and second criteria are not restrictive 

as the researcher can always ensure that the alternatives are mutually exclusive 

and collectively exhaustive by an appropriate definition. In contrast, the third 

condition is actually restrictive as it is the defining characteristic of discrete 

choice models and distinguishes their realm of application in consumer choice 

theory from that of regression models, where the dependent variable is 

continuous, which means that there are an infinite number of possible outcomes.  

 

In addition, discrete choice models usually assume that the decision-

maker has a rational behavior and will choose the alternative that maximizes its 

utility. However, the utility that each alternative brings to the decision-maker is 

not known with certainty but is divided into two parts: an observed element 

known to the researcher and a random element, which remains unknown. As a 

result, the researcher is not able to predict precisely the choice of the decision-

maker (the alternative that maximizes its utility) but rather estimates the 

probability that each alternative might be chosen. This probability depends on 

the observed part of the utility known to the researcher and the assumed 

distribution of the error terms (random element). As a result, discrete choice 

models are known as random utility maximizing models. 
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The purpose of the PODS Passenger Choice Model is to reproduce the 

choice of individual travelers among various travel alternatives defined along 

three dimensions: the choice of an airline, a flight schedule and a fare class. In the 

real world, air travelers have a choice between various travel alternatives when 

planning a trip. The number of available alternatives varies market by market 

based on the number of airlines serving that market, the number of flights 

offered by each airline and the number of fare-class products they actually 

market. However, this number is always finite for a given time period. Each 

individual traveler has to make a choice among a finite number of possible travel 

alternatives. The choice set might vary across decision-makers based on their 

preferences or on their access to information but the number of alternatives is 

always finite.  

 

As a result, the choice of a travel alternative by an individual air traveler 

fits within the discrete choice model framework. The study of the most widely 

used discrete choice models, with their respective strengths and weaknesses is 

then necessary to better understand the design of the PODS Passenger Choice 

Model and to compare it to the approaches usually used in the literature.  

 

2.2. The Logit Model 

 

The logit model is by far the easiest and most widely used discrete choice 

model. The description of the logit model in this section is based on Ben-Akiva 

and Lerman (1985). The popularity of logit is due to its mathematical simplicity: 

the formula for the choice probabilities takes a closed form and is readily 

interpretable. To derive the logit model, let us introduce the following notation. 

A decision-maker labeled n faces a choice among J alternatives. The utility that 
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the decision-maker obtains from alternative j is decomposed into a part labeled 

Vnj that is known by the researcher and an unknown part εnj that is supposed to 

be random: 

 

Unj = Vnj + εnj ∀ j 

 

  The logit model is obtained by assuming that each random element εnj is 

distributed independently and identically extreme value.  The probability that 

the decision-maker n chooses alternative i ∈ J is then:   

 

   Prob (Vni + εni > Vnj + εnj) ∀ j 

  ⇔    Prob (Vni - Vnj > εnj - εni) ∀ j 

 

Given the extreme value distribution of the error term, the choice 

probability of alternative i becomes: 

 

∑
=

j
Vj

Vii
)exp(

)exp()Pr(  

If Vj = a Xj ∀ j with Xj observed by the researcher the formula then becomes: 

  

   
∑

=

j
aXj

aXii
)exp(

)exp()Pr(  

The value of the parameters a can be estimated using maximum likelihood 

techniques. 

 

Using the extreme value distribution for the error terms is nearly the same 

as assuming that they are normally distributed. The extreme value distribution 

gives slightly fatter tails than a normal, which means that it allows for slightly 
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more aberrant behavior than a normal distribution. But the key assumption of 

the logit model is not the shape of the distribution but the independence of the 

error terms. This means that the unobserved utility of one alternative is unrelated 

to that of another alternative, which can be fairly restrictive. Stated equivalently, 

this means that the researcher has specified the systematic part of the utility Vnj 

precisely enough that the remaining unobserved portion is just essentially white 

noise. This can be considered as the ideal goal of any researcher: specify the 

utility so well that a logit model is appropriate. Seen in this way, the logit model 

is ideal rather than restrictive. If the researcher thinks that the unobserved 

portion of the decision-maker utility is correlated across alternatives, he has 

basically three options: use a different model that allows for such a correlation, 

re-specify the systematic utility so that errors are now uncorrelated or use the 

logit model as an approximation. The last option might however lead to some 

errors, especially if the researcher plans to investigate substitution patterns.  

 

The logit model has two main advantages: its mathematical simplicity and 

a very large flexibility in the definition of the choice set. As already mentioned, 

the choice probabilities take a closed form and are very easy to calculate. In 

addition, the choice set can vary from an individual to the next individual and 

only a subset of the alternatives can be included in a decision maker particular 

choice set. Indeed, the standard logit estimation procedure by likelihood 

maximization remains valid if only a subset of alternatives is included in the 

choice set, if all alternatives have the same chance of being chosen into each 

decision-maker choice set (uniform conditioning).  

  

However, the logit model has also three main weaknesses: it cannot 

accommodate random taste variation in the population, it implies a very specific 

substitution pattern and it is not appropriate to deal with panel data. Let us 

examine first the issue of random taste variation. Random taste variation occurs 
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when there is heterogeneity in the population response to an alternative 

attribute.  

 

For instance, the impact of a Saturday night stay restriction associated 

with a discount fare may vary from traveler to traveler and this variation might 

be unobserved by the researcher. Some travelers, especially those with family 

commitments, might consider that having to stay over the weekend at their 

destination is a very serious disadvantage and has a very negative impact on 

their utility: they will give a very high value to the Saturday night stay 

coefficient. However, for some other travelers like young unmarried students, 

staying at destination over the weekend might not be such a hassle and could 

even be seen as an opportunity. These passengers will give a very low value to 

the Saturday night stay coefficient. As a result, the coefficient of the Saturday 

night stay in the utility function of the discount fare alternative is not fixed but 

follows an unknown distribution: this variation in the population response is 

called random taste variation.  

 

If tastes vary with unobserved parts of the utility, then the logit model is 

not appropriate as the error terms will necessarily be correlated across 

alternatives. A logit model is then a misspecification. As an approximation it 

might be able to capture the average taste fairly well since the logit formula is 

typically fairly robust to misspecifications. However, even if the logit model 

were to provide an acceptable approximation of the average taste, it does not 

give information on the distribution of tastes around the average. This 

distribution can be important in many situations and to incorporate random taste 

variation appropriately, a mixed logit model will be preferred. 

 

In addition to the random taste variation issue, the logit model implies a 

very specific substitution pattern among alternatives. Due to the assumption of 
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independence between error terms, the ratio of choice probabilities of two 

alternatives remains constant (the independence of irrelevant alternatives 

property or IIA property) and there is a proportional substitution between 

alternatives. Any increase in the choice probability of one alternative leads to a 

decrease in choice probabilities of all other alternatives by the same percent. This 

very specific substitution pattern can be clearly unrealistic in some situations as 

illustrated by the famous blue bus/red bus paradox.  

 

Suppose that a commuter has the choice between using his private car or 

riding the bus to go to work and that each alternative has a 50% choice 

probability. Now suppose that another bus service is introduced that is equal to 

the existing buses in all its attributes except for the color of the bus. We now have 

red and blue buses as well as driving a private car as the all the available 

alternatives. Under the logit model, the choice probability of each alternative is 

33.33%. However, this is unrealistic because the commuter will most likely 

consider the two bus modes as similar and treat them as a single alternative: in 

this case the probability of the car alternative will remain 50% and each of the 

bus alternatives will have a 25% choice probability. Proportional substitution 

between alternatives in this case seems completely unrealistic and the logit 

specification is not an appropriate approach to model such a choice situation. 

 

However, as already mentioned, the IIA property of the logit model has a 

major advantage: it allows to estimate model parameters consistently only on a 

subset of alternatives (if each decision-maker choice set is chosen randomly). 

This can be a tremendous benefit when the number of alternatives is so high that 

estimation would be otherwise too computer-intensive. It allows also great 

flexibility as the choice set can vary across decision-makers. 
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Whether the IIA property seems realistic or not can be tested. Indeed, if 

the IIA property holds, the coefficient estimates obtained on a subset of 

alternatives are not significantly different from those obtained on the full set of 

alternatives. A test of that hypothesis constitutes a test of the IIA property and 

several procedures have been defined like for instance the McFadden-Hausman 

test (McFadden and Hausman, 1984). In addition, as the logit model is often a 

special case of more complex models, the IIA property can generally easily be 

tested.  

 

The third limitation of the logit model is with panel data. Data that 

represent repeated choice over time by the same decision-maker are called panel 

data. If the unobserved factors that affect the choice of decision-makers are 

independent over the repeated choices, then logit can be used with panel data. 

However, in most cases, errors can be assumed to be correlated over time. In 

these situations, either the model needs to be re-specified to bring the sources of 

correlation into the observed part of the utility or another model like mixed logit 

should be used. 

 

The air traveler choice problem i.e. the choice by an individual air traveler 

of an airline, a flight schedule and a fare class might involve all three main 

limitations of the logit model. For instance, we can reasonably assume that there 

is some significant heterogeneity in the response of the air traveler population to 

some parameters like schedule convenience or the disutilities associated with 

low-fare restrictions. Indeed, air travelers flying for business purposes are known 

to place a high emphasis on schedule convenience and flexibility and people 

flying for leisure purposes on price. Even within the population of business and 

leisure travelers, they should be significant differences on how passengers value 

these elements of their utility function. 
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In addition, in the case of the air traveler problem, we do not expect the 

IIA property to hold. Indeed, we expect for instance a higher degree of 

substitution among lower restricted discounted fare class products than between 

discounted fare classes and fully flexible full fare products. Similarly a higher 

degree of substitution can be expected between two flights offered by the same 

airline and two flights offered by two different airlines. As a result, a model able 

to accommodate more flexible substitution patterns than the logit model may be 

preferred.  

 

Finally, a large proportion of air traffic is actually flown by a relatively 

small population of regular frequent fliers. Indeed, most airlines have developed 

very complex and extensive frequent flyer programs. Membership to these 

frequent flyer programs is open to all air travelers but their benefits are non-

linear and they are especially targeted to seduce that regular frequent flyer 

population. These regular users of air travel services typically make repeated 

choices of airlines, flight schedule and fare class and these repeated choices can 

be assumed to be fairly correlated over time based on the decision-maker 

preferences and characteristics. As a result, a model able to take into account 

some correlation between repeated choices over time might be useful to our 

analysis of the air traveler choice problem. 

 

In the case of the air traveler choice problem, the assumptions of the logit 

model are actually fairly restrictive. Another model specification that is able to 

account for random taste variation, complex substitution patterns and correlation 

between repeated choices over time is probably more appropriate. The next two 

sections will then describe two alternatives to the standard logit specification: the 

Generalized Extreme Value (GEV) family of models that allows integrating more 

complex substitutions patterns and the mixed logit model, which is fully general 
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and highly flexible and provides a solution to all three limitations of the logit 

model. 

 

2.3. The GEV Family of Discrete Choice Models 

  

Generalized extreme value (GEV) models constitute a large class of 

models that exhibit a variety of substitution patterns. GEV models are consistent 

with utility maximization and their unifying attribute is that the unobserved 

portion of utility for all alternatives is jointly distributed as a generalized extreme 

value, which allows for some correlation patterns across alternatives. GEV 

models relax one of the three limitations of the logit model and have the 

advantage that the choice probabilities usually take a closed form such that they 

can be relatively easily estimated without resorting to simulation. 

 

The most widely used model of the GEV family is called the nested logit 

model. The nested logit model is appropriate when alternatives can be grouped 

into nests and exhibit the following substitution patterns: the ratio of the choice 

probabilities of any two alternatives in the same nest is independent of the 

attributes or existence of other alternatives. IIA holds within the nest. However, 

for two alternatives in different nests, the ratio of probabilities can depend on the 

attributes of other alternatives. IIA does not hold across nests. The error terms 

are correlated for two alternatives in the same nest but remain independent for 

alternatives in different nests.  

 

A consistent way to picture the substitution patterns is with a tree 

diagram. In such a tree, each branch denotes a subset of alternatives within 

which IIA holds and every leaf on each branch denotes an alternative. There is 

proportional substitution across twigs within a branch but not across branches. 
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The tree in Figure 2.1. illustrates the situation in which there is a proportional 

substitution pattern among various flights offered by the same airline but not 

across flights from different airlines:  

 

 

 
Airline B Airline A  

 

 

 
Flight A1 Flight A2 Flight B1 Flight B2 

 

Figure 2.1. : The nested logit tree structure 

 

In this case, if airline A were to introduce a third flight in the market, 

demand for flights A1 and A2 would decrease by the same proportion but that 

proportion would be different from the decrease in passenger demand for flights 

B1 and B2.  

 

If we suppose that Unj = Vnj + εnj ∀ j where Vnj is observed by the 

researcher and εnj is an unobserved random variable, the nested logit model is 

obtained by assuming that the vector of errors has a certain type of generalized 

extreme value distribution. Then, the choice probabilities take a closed form and 

the model can be estimated using maximum likelihood techniques. The standard 

logit model is of course a special case of the nested logit model in which the 

generalized extreme value of the error terms collapses into an iid extreme value 

distribution. Indeed, it is possible to test the nested logit specification against the 

logit specification and verify if IIA might hold across nests (McFadden and 

Hausman, 1984). 
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If the nested logit model has the ability to accommodate some non-

proportional substitution patterns, it can only apply if the choice situation can fit 

within this particular tree structure. This means that alternatives can be grouped 

into nests and that the choice problem must be divided into several dimensions 

with a specific hierarchy between these dimensions. In the example above, the 

choice of passengers is bi-dimensional with first the selection of an airline and 

then the selection of a particular flight schedule. We will discuss in the next 

chapter whether such a hierarchy is appropriate in the case of the air traveler 

choice problem.  

 

In the standard nested logit, each alternative belongs to only one nest. 

This limitation is sometimes restrictive and several kinds of GEV models have 

been specified with overlapping nests to accommodate more complex 

substitution patterns. However, the GEV family of models does not provide the 

researcher with a complete freedom in exploring all kinds of substitution 

patterns. In addition, GEV models are not a solution to the other two limitations 

of the logit model i.e. random taste variation and panel data. The next section 

describes the mixed logit model, which resolves all three limitations of the logit 

model but, unlike logit and GEV models, requires the use of simulation methods 

to estimate the choice probabilities. 

 

2.4.  The Mixed Logit Model 

 

 Mixed logit is a highly flexible model that can approximate any random 

utility model. It resolves all three limitations of standard logit models and allows 

for random taste variation, any substitution pattern and correlation in 

unobserved factors over time. The mixed logit model is defined on the basis of 
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the functional form of its choice probabilities. Any behavioral specification 

whose derived choice probabilities take this form is called a mixed logit. The 

description of the mixed logit model in this section is based on Train (2000). 

 

Mixed logit choice probabilities are the integral of standard logit 

probabilities over a density of parameters. 

 

Pni = ∫ Lni(β)ƒ(β)∂β 

where 
∑

=

j
Vnj

Vni
))(exp(

))(exp()Lni(
β

β
β   

 

and ƒ(β) is a density function. Vni(β) is a portion of utility that depends on 

parameters β. If utility is linear in β, then Vni(β) = β’ xni. Then the mixed logit 

probability takes its usual form: 

 

∫ ∑
=
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xnj

xni
)'exp(

)'exp()Pni(
β

β
β ƒ(β)∂β 

 

  It is a weighted average of logit choice probabilities evaluated at different 

values of the parameters β with the weights given by the density ƒ(β). In the 

statistics literature, the weighted average of several functions is called a mixed 

function and the distribution that provides the weights the mixing distribution.  

 

Standard logit is a special case of mixed logit model, where the mixing 

distribution is degenerated to fixed parameters. This mixing distribution can also 

be discrete. A discrete function can be a useful specification if there are distinct 

segments in the population, each of which has its own behavioral pattern. In 

most cases, it is however a continuous function. It can be specified to be a normal 
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or lognormal distribution. By specifying the explanatory variables and mixing 

distribution appropriately, the researcher can represent any type of random 

utility maximizing behavior as well as many forms of non-utility maximizing 

behavior. 

 

An issue of terminology arises in mixed logit models. There are two sets of 

parameters that enter a mixed logit formula. There are the parameters used in the 

logit formula and there are the parameters that describe the mixing distribution, 

typically its mean and variance. Usually, the researcher is interested in 

estimating the second ones. As a result, we will focus here on estimation 

techniques to get estimates of the mixing distribution parameters.  

 

Using a mixed logit specification to represent random taste variation is 

then straightforward. The utility specification is the same as for standard logit 

except that the parameters are supposed to vary across decision-makers rather 

than being fixed (the parameters are random variables). For each decision-maker, 

the researcher observed the value of the explanatory variable but neither their 

coefficient, nor the unobserved part of the utility function. The researcher has 

then to specify a distribution for each coefficient of the systematic utility and 

estimate the parameters of this distribution. Several specifications are possible: 

normal but also lognormal when the coefficient is known to have the same sign 

for all decision-makers like for instance a price or cost coefficient.  

 

For instance, if we go back to the example of the Saturday night stay 

requirement developed in Section 2.2., as mentioned earlier, in a logit model, we 

need to assume that the coefficient of the Saturday night stay restriction is fixed. 

However, under a mixed logit specification, the coefficient of this restriction is 

not necessarily fixed. It can vary from one decision-maker to the next. For 

instance, we can assume that it follows a normal distribution and estimate its 
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mean and variance. As a result, a mixed logit specification allows the researcher 

to investigate heterogeneity in response of the population to some part of the 

utility function. 

 

A mixed logit model can also be used without a random coefficient 

interpretation but to simply represent error components that create correlation 

among the utilities of different alternatives. The error component is then 

composed of two terms, one that is distributed iid extreme value across 

alternatives and another one that can be correlated over alternatives. Various 

correlation patterns, hence substitution patterns, can be obtained by an 

appropriate choice of the variables that enter the error component. For example, 

an analog of nested logit is obtained by specifying a dummy variable for each 

nest that equals 1 if the alternative belongs to the nest and zero otherwise. The 

variance of the dummy coefficient will capture the magnitude of the correlation 

of alternatives that belong to the nest. 

 

In fact, any random utility model can be approximated by a mixed logit 

specification with the appropriate choice of variables and mixing distribution. A 

mixed logit specification just requires that part of the error component is 

distributed iid extreme value. Adding an iid extreme value term to the utility of 

all alternatives might change the decision-maker behavior. However, by scaling 

up the utilities appropriately, the researcher can assure that this will never occur. 

As a result, adding an extreme value term to the true utility, which makes the 

model into a mixed logit does not change it in any meaningful way when the 

scale of the utility is sufficiently large. A mixed logit can approximate any 

random utility model by simply scaling up utility sufficiently. However, in most 

cases, this scaling-up might not be necessary if some part of the true utility can 

be assumed to be iid extreme value. In this case, the researcher’s task is just to 
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find variables and a mixing distribution that capture the other parts of utility, i.e. 

the parts that are correlated.  

 

Once the researcher has specified the model, the estimation procedure is 

composed of two steps. First, the choice probabilities are approximated by 

simulation. The choice probability simulation proceeds as follows: draws of the 

parameters are taken from the mixing distribution. Then, for each draw, the 

choice probability is calculated using the classical logit formula. The simulated 

choice probability is the average of the choice probabilities calculated for each 

draw of the parameters. These simulated estimates are unbiased estimators of the 

true choice probabilities. Their variance diminishes as the number of draws used 

in the simulation increases.  

 

In a second step, these choice probabilities estimates are used to estimate 

the mixing distribution parameters through for instance a maximum likelihood 

procedure. Under some conditions, these simulated maximum likelihood 

estimators will be unbiased and consistent estimates of the unknown true 

parameters. 

 

2.5. Some Applications in the Air Transportation Literature 

 

 Prossaloglou and Koppelman (1999) use a logit model to investigate the 

choice of air carrier, flight and fare-class. They consider air travelers as rational 

decision-makers that choose the alternative with the highest utility. The authors 

justify the existence of an error term in the trip utility function to account for the 

lack of complete information, possible measurement errors and the inability to 

properly observe and account for all factors affecting choice behavior. The factors 

that are examined as explanatory variables include fare class restrictions, fares, 
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carrier market presence, quality of service, participation in carrier frequent flyer 

programs and flight schedules. Separate models were estimated for business and 

leisure passengers.  

 

 Estimation of these logit models is based on stated-preference data. Data 

collection was based on a two-tier survey: initial data concerning passenger 

characteristics (past trips, trip purpose, permanent address, frequent flyer 

membership) was collected through a mail survey. A random sample of mail 

survey respondents was then chosen for a phone-based survey designed to 

simulate individual travelers’ search for information about air travel options and 

the selection among available alternatives like during a booking process. Based 

on the answers to the mail survey, each interviewee was presented with the 

scenario of either a business trip or a vacation trip in one of the two following 

markets: ORD-DEN (7 morning flights available on three different airlines) or 

DFW-DEN (9 morning flights available on 4 different airlines). Business travelers 

had a three-day advance notice and had the choice between three fare classes: 

first class, unrestricted coach and restricted coach. Leisure travelers had three-

week advance notice and also the choice between three fare classes all with 

restrictions. Each traveler had to ask the agent over the phone on the available 

alternatives (carrier, flight, fare class) and finally make a booking decision based 

on the information provided and their own preferences like during a booking 

process with a regular travel agent.  

 

The results of the model suggest significant differences in travel behavior 

between leisure and business travelers. As expected, business travelers are more 

time-sensitive and less price-sensitive than leisure travelers. Indeed, business 

travelers are willing to pay $60 per hour of reduced schedule delay compared to 

only $17 for leisure travelers. They also place more emphasis on frequent flyer 

programs. They are willing to pay a $21 premium to travel on an airline, which 
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frequent flyer program they already belong to and $52 more to fly with the 

airline of their most preferred frequent flyer program. For leisure passengers, 

those values are only $7 and $18 respectively.  

 

In addition, there has been a number of studies of airport choice in multi-

airport regions that are based on discrete choice models, especially logit and 

nested logit models. For instance, Kanafani (1983) uses a multinomial logit model 

to study the choice the choice of airports by air travelers flying between the Los 

Angeles metropolitan area and the San Francisco Bay area. The explanatory 

variables in his model include for instance the frequency of service at each 

airport and the level of the fares. 

 

Regarding the application of mixed logit models to the air transportation 

field, Mehndiratta (1996) studies in his doctoral dissertation the impact of time of 

day preferences on the scheduling of business trips in the domestic US focusing 

mainly on trips involving air transportation. His assumption is that the current 

models used in inter-city travel analysis do not take into account the spatial and 

temporal variations in the value of time and that these variations have a large 

influence on the choice of travel alternatives at the individual level. He attempts 

to incorporate these variations in a discrete choice model and to study their 

impact on the selection of travel alternatives. 

 

 Mehndiratta divided a regular 24-hour schedule into three periods: work, 

leisure and sleep time. He proposed and formulated a theory to accommodate 

variations in the value of time among these three periods of the day. He then 

proceeded to implement his theoretical approach. As he wanted to test whether 

there might be some heterogeneity in the population response, he used a mixed 

logit model specification to study the impact of disruption of work, leisure and 

sleep time on the choice of intercity travel alternatives. The coefficients for the 
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value of disruption of leisure and sleep time were specified to be random. Based 

on stated preference data, he estimated the mean and standard deviation of the 

distribution of these random coefficients. As the standard deviation of these 

coefficients turned out to be statistically significant, the assumption of 

heterogeneity in response of the population to disruption of various periods of 

their regular schedule was validated.  

 

In addition, another conclusion of this study is that business travelers tend 

to give a higher value to sleeping time than to work and leisure time. In addition, 

sleep and leisure time spent at home or around home is more valuable than 

leisure time and sleep time at the business destination. As a result, travelers will 

avoid staying overnight at their destination unless staying home and leaving 

very early in the morning would disrupt too largely their normal sleep schedule. 

 

2.6.  Summary 

  

 In this chapter, we have described the most widely used discrete choice 

models with their respective strengths and weaknesses. In addition, we have 

shown how these models have been used to study a variety of choice situations 

that air travelers may face including the choice of an airline, a flight schedule and 

a fare class. In the next section, we will describe how these choices are modeled 

in PODS and how the PODS Passenger Choice Model relates to these theoretical 

models used in consumer choice theory in general and in air transportation 

choice in particular. 
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Chapter 3  The PODS Passenger Choice Model 
 

 

3.1. Introduction 

 

 In the previous chapter, we have described the discrete choice models 

usually found in the literature on consumer choice theory and applied in the air 

transportation field. This chapter will concentrate on the Passenger Origin-

Destination Simulator and in particular on its passenger choice model that 

reproduces the choice process of an individual air traveler among various 

possible travel alternatives. After a general overview of the simulator, we will 

focus on a description of all the elements that affect air traveler choice, how they 

are modeled in PODS and how the PODS approach relates to the theory 

introduced in the previous chapter. 

 

3.2. Overview of the PODS Simulator 

 

PODS is a computer simulation tool designed to investigate airline 

revenue management techniques. It was originally developed by Hopperstad, 

Berge and Filipowski at the Boeing Company and is an extension of the Boeing 

Decision Window Model used to study the impact of flight schedules on airline 

market share. For a description of the Boeing Decision Window Model, the 

reader is referred to Chapter 4. PODS has served as a revenue management 

experimental tool for the PODS consortium, a partnership between MIT and 

seven major international airlines.  
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To this end, PODS simulates millions of choices by individual air travelers 

flying over a network of origin-destination markets served by several airlines. 

More precisely, it simulates the interactions between passengers and airlines 

during the booking period for a single day of departure. The booking period 

extends over 16 successive time frames, the first time frame beginning 63 days 

before departure and the last ending on the departure day. After the simulation 

is over, it is possible to analyze the results of each airline. The simulation outputs 

are the results of these individual choices and include airline traffic, revenues 

and loads. With these outputs, researchers are able to analyze the relative 

performance of various revenue management strategies. 

 

To this end, PODS runs an iterative process, performing multiple “trials” 

for the same departure day. This allows the airlines to progressively build the 

historical database they need to operate the forecasting component of their 

revenue management systems: initial numbers in the database are progressively 

replaced by passenger demand that results from the choices of thousands of 

individual air travelers. To be more precise, under the current default settings, 

each PODS simulation consists of 5 independent trials, each composed of 600 

successive (and thus correlated) simulations of a departure day (also called a 

sample). The initial 200 samples of each trial are discarded to eliminate the initial 

condition effects, and the results from the 5 trials are averaged to give stable and 

statistically significant results. Under these settings, in the most widely used 

network environment (PODS Network D), simulation results are then the 

outcome of the simulation of 2,000 departure days or samples with about 16,000 

booking requests per sample. This means that each PODS run involves in 

Network D the simulation of the choice process of 32,000,000 air trips.  
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The PODS architecture consists of four components, which are linked as 

shown in Figure 3.1. 

 
 

The first component is the historical database. It is created by keeping a 

record of booking histories starting from the first booking of the simulation.  

These booking histories are then used to generate forecasts for future flights. 

Forecasting demand is the task of the second component of the PODS simulator, 

i.e. the forecaster. Indeed, to set the booking limits for each fare class of future 

flight departures, the revenue management optimizer requires as inputs a 

demand forecast by fare class or path class based on the characteristics of the 

revenue management method used. In the following section, we describe the 

forecasting process for fare class demand forecasts. The process is similar for 

path class demand forecasts. 
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Demand forecasts are based on historical bookings for the same flight and 

fare class. There are currently four fare classes in PODS labeled Y, B, M and Q 

with Y being the most expensive fare. Demand forecasting consists of two steps:  

first, the forecaster performs detruncation of observed historical bookings. 

Indeed, if a fare class was closed before departure on a past flight, the bookings 

recorded in the historical database are a constrained observation of the actual 

demand for that flight/fare class. As a result, to estimate the total past demand 

for that flight/fare class, it is necessary to estimate what the demand would have 

been if there was no capacity constraint i.e. if capacity for that flight/fare class 

was infinite. Several detruncation methods can be used in PODS to get estimates 

of the unconstrained demand for a flight/fare class based on the observation of 

actual bookings constrained by capacity. In a second step, these estimates of the 

unconstrained demand by fare class of past flight departures are used to forecast 

unconstrained demand for future flights by fare class. Several techniques are 

available in PODS to perform forecasts based on these historical data. The 

forecasts are then transferred to the revenue management optimizer at the 

beginning of each time frame: they are updated 16 times during the booking 

process for each future flight departure to take advantage of the latest 

information recorded in the historical booking database. For a more complete 

description of forecasting and detruncation methods in PODS, the reader is 

referred to Zickus (1998). 

 

Based on the remaining capacity of the aircraft (total aircraft capacity 

minus current bookings) and the demand forecasts, the optimizer sets booking 

limits for each fare class on future flights. Booking limits are nested so that all of 

the remaining aircraft capacity is always available for booking requests in the 

highest fare class. Booking requests for each fare class will be accepted up to the 

booking limit set by the optimizer. Each time a booking is made, booking limits 

are decreased by one unit for that fare class and all fare classes above due to the 
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nested structure of fare class booking limits. As already mentioned, this booking 

also gets recorded in the historical database, which is constantly kept up to date. 

At the beginning of each time frame, booking limits are re-optimized based on 

updated forecasts delivered by the forecaster. For a description of the various 

revenue management methods, the reader should refer to Darot (2001). 

 

Finally, the last component of the simulator is the passenger choice model. 

This component generates the number of booking requests for each future flight 

departure. Then, based on passenger characteristics and fare class booking limits, 

each individual air traveler will choose among all the available travel alternatives 

that fulfills his travel need for getting from city A to city B. But before looking in 

more detail into the PODS Passenger Choice Model, the next section describes 

the most widely used network configurations. 

 

3.3.  PODS Network Configurations 

 

We will use in this thesis two different network configurations, Network 

D and Network E. Network D represents the US domestic market and Network E 

a transatlantic international alliance market. In addition, in Network D, 

competing airlines offer very similar schedules whereas in network E, one airline 

has a significant schedule advantage over its competitors. 

 

In Network D, two airlines compete in 482 US domestic origin-destination 

markets. Each airline offers 3 flights a day between its own hub and 40 spoke 

cities all over the US as well as to its competitor’s hub. All flights use 100-seat 

aircraft. Network D is unidirectional as all passengers travel from the West to the 

East, except bi-directional flights in the hub-to hub market. Each airline offers 

three connecting banks at their respective mid-continent hub and their schedules 
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are quite similar as the starting time of the connecting banks are the same for 

both airlines. Figure 3.2. below is a map of this US domestic network: 
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Figure 3.2. : Network D route map 

 

In Network E, four airlines (two US and two European airlines) compete 

over their own domestic market as well as over the transatlantic market. Each 

airline offers flights from 10 origin cities to 10 destination cities in its own 

continent (from the West to the East of the US and from northern Europe to 

southern  Europe). In addition, each airline offers transatlantic flights between its 

own hub and his alliance partner hub. As a result, each airline also offers 

transatlantic codeshare service to the 10 destination cities in its partner’s 

continent. Airlines use aircraft of various sizes depending on the level of demand 

in each market with aircraft of larger size being used for transatlantic services. 

Figure 3.3. is a map of this transatlantic network: 
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Figure 3.3. : Network E route map 

 

Unlike in Network D, each airline offers quite different schedules in 

Network E. Like in Network D, each airline has three connecting banks with 

arrivals from all domestic origin cities and departures to all domestic destination 

cities. Two of these banks also include transatlantic flights.  However, one of the 

US airline has a significant schedule advantage over its competitor thanks to a 

larger schedule coverage. European carriers have more similar schedules. Table 

3.1. details the bank starting times for all four carriers: 
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US Europe

Starting 
time

Dom. Int. 
Inbound

Int. 
Outbound

Starting 
time

Dom. Int. 
Inbound

Int. 
Outbound

Alliance A
(MSP-
FRA)

10 a.m. X X 7 a.m. X X X

3 p.m. X X X 12 p.m. X X X

8 p.m. X X 4 p.m. X

Alliance B
(DFW-
CDG)

12 p.m. X X 8 a.m. X X X

3 p.m. X X X 12 p.m. X X X

6 p.m. X X 4 p.m. X

US Europe

Starting 
time

Dom. Int. 
Inbound

Int. 
Outbound

Starting 
time

Dom. Int. 
Inbound

Int. 
Outbound

Alliance A
(MSP-
FRA)

10 a.m. X X 7 a.m. X X X

3 p.m. X X X 12 p.m. X X X

8 p.m. X X 4 p.m. X

Alliance B
(DFW-
CDG)

12 p.m. X X 8 a.m. X X X

3 p.m. X X X 12 p.m. X X X

6 p.m. X X 4 p.m. X

USUS EuropeEurope

Starting 
time
Starting 
time

Dom.Dom. Int. 
Inbound
Int. 
Inbound

Int. 
Outbound
Int. 
Outbound

Starting 
time
Starting 
time

Dom.Dom. Int. 
Inbound
Int. 
Inbound

Int. 
Outbound
Int. 
Outbound

Alliance A
(MSP-
FRA)

Alliance A
(MSP-
FRA)

10 a.m.10 a.m. XX XX 7 a.m.7 a.m. XX XX XX

3 p.m.3 p.m. XX XX XX 12 p.m.12 p.m. XX XX XX

8 p.m.8 p.m. XX XX 4 p.m.4 p.m. XX

Alliance B
(DFW-
CDG)

Alliance B
(DFW-
CDG)

12 p.m.12 p.m. XX XX 8 a.m.8 a.m. XX XX XX

3 p.m.3 p.m. XX XX XX 12 p.m.12 p.m. XX XX XX

6 p.m.6 p.m. XX XX 4 p.m.4 p.m. XX

Table 3.1. : Connecting banks in Network E 
 

3.4. The PODS Passenger Choice Model 

 

This section describes the various elements of the PODS Passenger Choice 

Model. As already mentioned, the design of the PODS Passenger Choice Model 

is based on previous work by Boeing, especially the Boeing Decision Window 

Model. It can be divided into four different steps: first demand for air travel gets 

generated, a set of characteristics is then defined for each individual traveler to 

model his preferences, then the passenger choice set is defined based on the 

passenger characteristics and the state of the airline inventory and, finally, each 

passenger makes travel decisions by matching the attributes of all available 

travel alternatives and his own preferences. Figure 3.4. illustrates the structure of 

the passenger choice model:  
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Figure 3.4. : The structure of the PODS Passenger Choice Model 

 

3.4.1. Demand Generation 

 

The first step of the Passenger Choice Model is to calculate the number of 

potential passengers who will make a booking request in a particular origin-

destination market for example Los Angeles to New York. Air travelers are 

divided in PODS into two types based on trip purpose: leisure and business 

passengers are modeled separately and as we will see later on, they have 

different characteristics based on different behavioral assumptions. As a result, 

 42



demand for air travel in each market is divided into demand for business and 

leisure travel.  

 

Until recently (PODS Network D), the average demand for air travel was 

determined in each market through a gravity model based on the attractiveness 

of the origin and destination cities and the passenger mix was equally divided 

between business and leisure passengers. However, with the introduction of the 

international alliance network (PODS Network E), demand for air transportation 

is now based on real data provided by consortium member airlines. As a result, 

the split between business and leisure passengers now varies by market: in the 

international alliance network, some markets are largely dominated by leisure 

demand like for instance southern European destinations, whereas some other 

markets are more business-oriented.  

 

Once the average demand for air transportation services has been 

determined for every O-D market in the PODS network, the simulator computes 

the demand for every single travel day (sample). The demand generation process 

does not incorporate some variability elements like seasonality or variations in 

the level of demand according to day of the week. However, even without taking 

these two elements into account, demand for air transportation will vary from 

one departure day (sample) to the next and some of this variation which cannot 

be easily explained or forecasted is modeled in the simulator. 

 

To incorporate random deviations around the average demand, PODS 

follows the common industry practice of assessing a variability measure that 

depends on the magnitude of the mean. Two alternatives forms have been 

suggested to represent this stochastic variation referred to as k- and z-factors. 

PODS employs a combination of these two approaches to calculate the deviation 
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from mean of the demand for air travel in a specific O-D market for a particular 

departure date. 

 

Application of a k-factor supposes that the standard deviation σ of a 

random variable is a constant times the mean µ, σ = kµ. From empirical analysis 

of airline demand data, researchers at Boeing have found that a k-value of 0.3 can 

be typically observed. If demand for air transportation is modeled as normally 

distributed, this means that 68% of the observations will be in the µ ± σ range. 

Alternatively the z-factor approach suggests that the variation is proportional to 

the variance σ2, or  σ2 = zµ. More detail about variation in demand by departure 

day can be found in Wilson (1995). 

 

Given the total number of booking requests for each departure date or 

sample, the allocation during the booking process must still be determined. The 

booking process in PODS starts 63 days before departure and is divided into 16 

time frames, which are defined at the system-wide level. Time frames are 

initially as long as one week but their duration diminishes as the departure date 

becomes closer to reflect a more intense booking activity.  

 

The allocation of the booking requests among the time frames is modeled 

through a booking arrival curve. These curves are different for business and 

leisure travelers as industry experience has shown that leisure travelers tend to 

book earlier than business travelers, a trend that is strengthened by the advance 

purchase requirements associated with lower fares (Y, B, M and Q have 

respectively 0, 7, 14 and 21-day advance purchase requirements in our PODS 

scenarios). In addition, they incorporate the impact of advance purchase 

requirements on the booking process with a stronger booking activity before the 

threshold booking dates of the lower fare-classes, especially for leisure travelers. 

 44



Figure 3.5. displays the booking curves used in all markets for business and 

leisure travelers:  
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Figure 3.5. : PODS booking curves 

 

Once the number of passengers of both types wishing to travel in all O-D 

markets on a particular date has been calculated, the PODS Passenger Choice 

Model must determine the characteristics of every single passenger, 

characteristics that will have a large influence on the final selection of a travel 

alternative. 

 

3.4.2. Passenger Characteristics 

 

Each passenger that intends to travel and makes a booking request in 

PODS gets assigned a set of characteristics to represent his preferences for 

various elements of the air transportation service. Based on those characteristics 
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and the attributes of all available travel alternatives, a passenger will select a 

travel option. These characteristics have then a major influence on passenger 

choice behavior in PODS. They can be divided into three main elements: each 

individual traveler gets assigned a decision window, a maximum willingness to 

pay and a set of passenger disutilities.  

 

3.4.2.1. Decision Window 

 

As already mentioned, the PODS Passenger Choice Model is based on the 

Boeing Decision Window Model. In order to represent his preferences for a 

particular schedule, each passenger gets assigned a time decision window. The 

boundaries of this time window represent respectively the earliest departure 

time and the latest convenient arrival time that fulfill a passenger’s original 

schedule constraints. The concept is that most travelers’ schedule plans and time 

constraints do not require looking for a specific single departure time. Each 

passenger’s schedule plan and constraints can be satisfied through a range of 

convenient travel times that ensure a satisfactory solution to his own time-space 

problem. 

 

Two parameters define a decision window: its width and its position 

during the day. The width of a decision window is the sum of the minimum 

travel time in the market and a random element called the schedule tolerance. 

The value of the schedule tolerance is defined randomly for each single traveler 

but depends on the market stage length and the passenger trip purpose. Decision 

windows are on average shorter for business travelers than for leisure travelers 

to reproduce the emphasis people traveling on business place on time and 

schedule. In addition, schedule tolerance is smaller in short-haul markets than in 

long-haul markets. The position of the decision window is defined such as to 
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reproduce the typical time of the day distribution of demand in every market 

with typically peak demand in the morning and late afternoon. 

 

All path/classes that fit into a decision window (i.e. for which departure 

time is after the beginning of the time window and arrival time before the end of 

the time window) are equally schedule-attractive to the air traveler. All other 

path/classes are also equally unattractive to the air traveler and the difference 

between the two categories is modeled through a specific cost called the 

replanning disutility (see below, section 3.4.2.3.). 

 

3.4.2.2 . Maximum willingness to pay 

 

In addition to his decision window, each traveler gets assigned a 

maximum willingness to pay. This dollar value represents the maximum amount 

this passenger is willing to pay for his ticket. If the fare of a path/class is above 

that value, the passenger will not accept to travel on that path/class and will 

look for other alternatives to fulfill his travel needs.  

 

Maximum willingness to pay values are assigned randomly to passengers 

but there are set to reproduce willingness to pay curves designed to represent 

some expected passenger characteristics. The willingness to pay curves are not 

the same for business and leisure travelers. On average, business travelers have a 

much higher willingness to pay than leisure travelers. A very large proportion of 

them is ready to pay the most expensive fare (Y fare), if necessary. On the 

contrary, the willingness to pay curves are designed such that most leisure 

travelers will accept to pay only the most inexpensive fare (Q fare). 

 

The equation of the maximum willingness to pay curves is the following: 
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Where f = the fare in question 

Basefare = fare at which all potential travelers would travel 

e-mult = elasticity multiplier (of the base fare where 50% of the passengers are 

willing to travel) 

 

To differentiate the behavior of business and leisure travelers, the value of 

the basefare and the e-mult are different for the two categories. For leisure 

travelers the basefare is equal to the lowest fare (Q fare) but for business 

travelers, it is set at 2.5 times the Q fare. The e-mult is set to 1.2 and 3 for leisure 

and business travelers respectively.  

 

This means that all business travelers are ready to pay a fare up to 2.5 

times the lowest fare whereas all leisure travelers are willing to accept anything 

but that Q fare. In addition, 50% of the leisure travelers cannot afford a fare 

higher than 1.2 times the Q fare whereas 50% of the business travelers can afford 

up to 7.5 times the Q fare. 

 

As a result, almost all business travelers are typically willing to purchase 

the most expensive fare but a large proportion of the leisure travelers cannot 

afford anything but the cheapest fare. The design of the willingness to pay curves 

reproduces fundamental behavioral differences between business and leisure 

travelers and the dichotomy between a largely inelastic demand for business 

travel and a very price-sensitive demand for leisure travel.  

 

Table 3.2. describes an example of the willingness to pay curves used in 

PODS: 
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 Probability that a random passenger will pay at least 
 Q M B Y 
Pax Type $100  $150  $200  $400  
Business 100% 100% 100% 93% 
Leisure 100% 18% 3% 0% 

 
Table 3.2. : Maximum willingness to pay 

 

3.4.2.3. Passenger Disutilities 

 

In addition to a time decision window and a maximum willingness to pay, 

an additional set of characteristics is generated for each passenger and is used to 

calculate disutilities. Disutilities are used to represent additional non-monetary 

costs that depend on the attributes of each path/class and influence the choice of 

air travelers. There are two types of disutilities: the disutilities associated with 

the restrictions and other disutilities. 

 

Except for the Y full fare, all lower fare-classes have restrictions: the B fare 

has one restriction, the M fare has two of them and the Q fare three of them. Such 

a fare/restriction structure is typical of the pricing structure found in the airline 

industry since deregulation. In PODS, each passenger gets assigned a random 

value for the disutility or cost associated with each restriction. The average 

disutility is different for business and leisure travelers. For business travelers, the 

restrictions disutilities are designed such that on average, the passenger will 

prefer an unrestricted Y full-fare, and then respectively a B, M and Q fare. This 

means that, on average, for a business traveler, the dollar cost of a Y fare will be 

less than the sum of a B fare and its restriction disutility cost.  

 

Airlines usually design restrictions to achieve market segmentation: 

Restrictions are used to offer different products designed to fulfill the needs of 
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different market segments. For instance, restrictions are designed such that 

business travelers cannot usually meet them and then prefer to choose the full-

fare most of them are willing to pay for. For instance, lower fares require usually 

a Saturday night stay, a restriction most passengers traveling on business cannot 

fulfill as they typically travel on short trips during the week and want to return 

home to spend the weekend with their families. As a result, there would be little 

stimulation in business traffic if the lowest fares in the market were reduced 

because the restriction disutilities are high enough to make business travelers 

prefer a Y unrestricted full-fare.  

 

On the contrary, most leisure travelers are able to meet the restrictions 

requirements associated with the lower fares and then in PODS, the average 

restriction disutilities are lower for leisure than for business travelers. On 

average leisure travelers will prefer the most restricted Q fare, then the M, B and 

finally Y full fare. In addition, these restrictions are independent and their values 

are not correlated for a single passenger. Table 3.3. gives an example of the 

average restriction disutility costs for business and leisure travelers in a market 

with a Q fare of $100. 
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Pax 
Type Fare Class Y B M Q 

Avg Res. 1 N/A $225.00 $225.00 $225.00 
Avg Res. 2 N/A N/A $75.00 $75.00 
Avg Res. 3 N/A N/A N/A $75.00 
Fare $400.00 $200.00 $150.00 $100.00 

Business Average Total cost $400.00 $425.00 $450.00 $475.00 
Avg Res. 1 N/A $175.00 $175.00 $175.00 
Avg Res. 2 N/A N/A $25.00 $25.00 
Avg Res. 3 N/A N/A N/A $25.00 
Fare $400.00 $200.00 $150.00 $100.00 

Leisure Average Total cost $400.00 $375.00 $350.00 $325.00 
 

Table 3.3. : Restriction disutility cost 
 
In addition to the restriction disutilities, there are three other disutilities 

included in the PODS Passenger Choice Model: replanning disutility, path 

quality index and unfavorite airline. These disutilities are once again 

independent for a single passenger and on average higher for business travelers 

than for leisure travelers.  

 

If a particular path/class is outside the decision window of a passenger, a 

replanning disutility is added to the cost of the path/class to take into account 

the inconvenience of the schedule. This cost is higher on average for business 

travelers that are known to place more emphasis on frequency of service and 

schedule but does not depend directly on the size of the decision window. For 

more information about passenger preference for schedule and replanning 

disutilities, the reader is referred to Chapter 4. 

 

Passengers usually prefer non-stop flights to connecting paths. In order to 

take this into account, each path/class gets assigned a path quality index. This 

index is equal to 1 for non-stop flights and 2 for connecting paths. The PQI 

disutility of each path/class is equal to a base disutility multiplied by the value 
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of the index. As a result, for the same passenger, the PQI disutility of a 

connecting path will be twice as much as that of a non-stop service. 

 

Finally, air travelers tend to have some preferences for a particular airline, 

in part due to frequent flyer programs the airlines have developed over the 

years. The frequent flyer programs are often non-linear and target primarily 

business passengers that tend to give them more importance than leisure 

travelers. To model these preferences, each passenger gets assigned in PODS a 

preferred airline and a randomly drawn unfavorite airline disutility. If a 

path/class is not operated by its favorite airline, the unfavorite airline disutility 

is added to the total cost of the path. The probability pfava that a passenger 

considers Airline A as his favorite carrier is determined by the airline coefficient 

of preference calpa  

 

∑
=

i
i

a
a

calp
calppfav  

 

In PODS Network D, each airline has a coefficient of preference of 0.5, 

which means that 50% of the passengers will consider each airline as their 

favorite airline.  

 

All disutilities are defined randomly for each air traveler. However, on 

average, for both business and leisure travelers, they are a linear function of the 

market basefare that depends to some extent on the length of haul.  The intercept 

and the slope of the disutility functions have been calculated to reproduce some 

expected passenger behavior. These passenger behaviors have been defined 

through a survey of the marketing expertise of the member airlines. For instance, 

the path quality disutility is designed to decrease in relative terms with length of 

haul, as passengers flying to medium/long-haul destinations are supposed to be 
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more willing to accept a connection than passengers flying to a short-haul 

destination.  

 

In addition, as already mentioned, all disutilities are on average higher for 

business than for leisure passengers: business passengers are assumed to place 

more emphasis on non-monetary elements like the quality of the path, 

unrestricted fares, airline preference, schedule convenience than leisure 

passengers and to be less sensitive to price. Finally, all disutilities are assumed to 

be independent and to follow a normal distribution with a 0.3 k-factor, typical of 

air transportation demand according to marketing research conducted by 

Boeing. For more information on passenger disutilities, the reader should refer to 

Lee (2000). Table 3.4. summarizes the three latter average disutility costs for a 

market with a Q fare of $100. 

 
Pax type Market Base fare Replanning Unfavorite Airline Path quality 
Business $250.00 $61.56 $30.21 $22.23 
Leisure $100.00 $11.90 $9.02 $7.01 

 
Table 3.4. : Replanning, unfavorite airline and path quality disutility costs 

 
 

3.4.2.4. The Passenger Choice Set 

 

Once the simulator has generated the characteristics of a specific traveler, 

each traveler will make travel decisions through a two-step process: in the first 

step, the simulator will define the passenger choice set. In PODS network D, in 

most markets, up to 25 alternatives are potentially available: the air travelers 

have the choice among two airlines, three paths per airline, four fare classes per 

path (Y, B, M and Q classes) plus the no go alternative. Alternatives are also 

called path/classes and they are characterized by these two elements: the path 

(which includes the airline identity) and the fare class. The no go alternative is 
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included in the choice set of all air travelers. However, some of the other 24 

alternatives will be excluded from the passenger choice set for three reasons: 

 

• The revenue management controls: the alternative is unavailable and will 

be excluded from a passenger choice set if the airline inventory indicates 

that no availability remains for this path/class. Availability is based on the 

booking limits set by the optimizer at the beginning of each time frame 

minus the bookings that occurred so far during the time frame. 

 

• The advance purchase requirements associated with lower fare classes: in 

PODS B, M and Q classes have advance purchase requirements of 

respectively 21, 14 and 7 days. If a booking request occurs between 21 and 

14 days before the flight departure date, only Y, B and M classes will 

remain available and will be included in the passenger choice set. 

 

•  The willingness to pay: PODS will exclude from a passenger choice set 

any path/class that has a fare higher than the passenger maximum 

willingness to pay. 

 

Now that the passenger choice set has been defined, let us finally consider 

the decision rule used in PODS to determine which alternative will be chosen. 

 

3.4.2.5. The Passenger Choice 

 
 As mentioned in the previous section, the passenger choice set contains in 

most markets in PODS network D between 1 and 25 alternatives depending on 

the passenger willingness to pay, the date of the booking request and the state of 
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the airline inventory. Let us now consider the decision rule used to choose 

among path/classes that are included in a passenger choice set.  

 

As already mentioned, the choice set of any air traveler contains at least 

one alternative, the no go alternative. There are then two cases: if the passenger 

choice set contains only one alternative i.e. the no go alternative, the passenger 

will “choose” not to go. However, if there are at least two alternatives in the 

passenger choice set, the no go alternative will never be chosen and PODS will 

use  the following decision rule to select the most preferred alternative: the air 

traveler will consider additional non-monetary elements and a generalized cost 

is calculated for each alternative (except the no go alternative). This generalized 

cost is the sum of the fare and all additional disutilities that depend on: 

 

• the characteristics of this specific air traveler (O-D market, business or 

leisure, time window) 

• the fare/class (restrictions) 

• the path (airline, quality of the path, schedule)  

 

In order to choose among all path/classes considered, the generalized cost 

of each alternative is calculated by adding the fare and the sum of all six 

disutilities associated with the path/class for that particular passenger. The air 

traveler will then choose the path/class, which has the lowest generalized cost. 

As already mentioned business travelers tend to put more emphasis on the 

convenience of the path/class attributes and leisure travelers on the fare as all 

disutilities are on average largely higher for business travelers.  

 

Once an air traveler has chosen a path/class, the seat availability is 

updated by decreasing the airline inventory by one seat on the legs traversed by 

the path/class. In addition, this travel decision is recorded in the historical 
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database that feeds the forecaster and the optimizer components of the simulator 

used to set revenue management controls for the entire network at the end of 

each time frame.  

 

As a result, the decision rule currently used in PODS makes a distinction 

between monetary elements (willingness to pay) and non-monetary elements 

(disutilities). The choice of a particular path/class is based both on monetary 

(fare) and non-monetary (restrictions, passenger disutilities) considerations but 

this choice is conditional on the maximum willingness to pay requirement. Only 

path/classes which fare is lower than the passenger maximum willingness to 

pay are effectively included in a passenger choice set. 

 

3.5. Discrete Choice Models and the PODS Passenger Choice 
Model 

 

In this section, we examine the relationship between the PODS Passenger 

Choice Model and the discrete choice models usually found in the literature to 

study consumer choice and described in Chapter 2. We will investigate the 

similarities and differences between the PODS Passenger Choice Model and 

respectively the logit model, the nested logit model and finally the more flexible 

mixed logit model. 

 

3.5.1. PODS and the Logit Model 

 

The PODS Passenger Choice Model and logit models share three 

fundamental common characteristics. First, both models are utility maximizing 

models. In PODS, passengers choose the alternative included in their choice set 

that has the lowest generalized cost. This is equivalent to a utility maximizing 
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model as the generalized cost multiplied by minus 1 can be considered as a 

utility measure and multiplying the generalized cost by minus 1 for all 

alternatives does not change the outcome of the choice process for any decision-

maker. Choosing the alternative that has the lowest generalized cost or the 

highest utility is then equivalent. 

 

In addition, the second fundamental common characteristic between the 

PODS Passenger Choice Model and discrete choice models is that the number of 

alternatives in the consumer/passenger choice set is finite. As outlined in 

Chapter 2, this property defines the class of discrete choice models. Furthermore, 

as described in the previous section, the number of alternatives in a passenger 

choice set in PODS is finite as well: in network D, the passenger choice set can 

include up to 25 alternatives in most markets and at the maximum 49 in the more 

frequently served inter-hub market. 

 

Finally, the logit model is also particularly well suited to deal with choice 

sets that vary in size and composition from one decision-maker to the next. The 

PODS Passenger Choice Model creates such a situation as we have shown in the 

previous section that the passenger choice set varies from one passenger to the 

next based on the passenger characteristics (willingness to pay, time decision 

window), the date of the booking request and the state of the airline inventory. 

The ability of the logit model to accommodate variable choice sets could prove to 

be very useful in that respect. 

 

However, there are two fundamental differences between the PODS 

Passenger Choice Model and the logit model. First, the logit model cannot 

accommodate random taste variation i.e. heterogeneity in response in the 

population to a particular element of the decision-maker utility because random 
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taste variation violates one of the fundamental assumptions of the logit model, 

the independence between the error terms across alternatives.  

 

As we have shown in the previous section, all disutilities that are included 

in an alternative’s cost/utility in PODS vary from one passenger to the next and 

are randomly drawn from independent normal distributions. Only the fare 

component remains constant across all passengers. As a result, the PODS 

Passenger Choice Model is based on random taste variation and differs 

fundamentally from logit models that cannot accommodate random taste 

variation. 

 

To better understand the difference between PODS and logit models, let 

us take the example of restriction 1 that applies in PODS to all alternatives that 

involve a B, M or Q fare class. As mentioned earlier, the value of restriction 1 is 

drawn randomly for each passenger from a pre-defined normal distribution. As a 

result, for each passenger, the value of restriction 1 will deviate from the average 

of the restriction’s distribution. If we use a logit model, this deviation from the 

mean restriction disutility will be included in the random part of the utility 

function since a logit specification requires all coefficients to be fixed. As a result, 

for the same passenger, the random part of the utility function will include that 

same deviation for all alternatives that involve a B, M and Q fare class: error 

terms cannot then be considered to be independent across alternatives. As 

mentioned in Chapter 2, if tastes vary with unobserved parts of the utility, then 

the logit model is not appropriate as the error terms will necessarily be correlated 

across alternatives. A logit model is then a misspecification and a more flexible 

model able to accommodate random taste variation is then needed to represent 

the passenger choice problem modeled in PODS. 
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In addition, the logit model assumption that error terms are independent 

across alternatives leads to a very specific substitution pattern: the proportional 

substitution pattern. Such a substitution pattern is not observed in PODS because 

the PODS Passenger Choice Model assumes random taste variation in some 

elements of the passenger utility function and we have shown that random taste 

variation creates correlation between error terms across alternatives.  

 

To show the difference in substitution patterns between the PODS 

Passenger Choice Model and the logit model, let us take an example. Let us 

assume that a business passenger has three alternatives in his choice set: 

 

• The no go alternative 

• A Y fare-class on airline 1 in a path that fits within his decision window 

• A Y fare-class on airline 2 in a path that also fits within his decision 

window 

 

Let us further assume that the B fare class becomes available only on 

airline 2. We will assume in that example that the Q, M, B, and Y fares in that 

market are set to respectively $100, $150, $200 and $400. Table 3.5. describes the 

market share of all three travel alternatives (the no go alternative is never chosen 

since there are some other travel alternatives in the passenger choice set): 
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28% 36% 36% 28% 32% 40% Yes 
N/A 50% 50% N/A 50% 50% No 
B2 Y2 Y1 B2 Y2 Y1  

MNL PODS PCM 

Table 3.5. : The PODS Passenger Choice Model and logit models 

 

 This example illustrates the difference in substitution patterns between 

the PODS Passenger Choice Model and a multinomial logit model: in the logit 

model, the proportion of passengers shifting to the new alternative – a B fare 

class on airline 2 – comes in similar proportion from passengers that chose 

initially airline 1 and 2. However, in PODS, the passengers shifting to the B class 

come primarily from passengers already traveling on airline 2. The PODS 

Passenger Choice Model exhibits a more realistic substitution pattern as one 

would expect passengers to be more willing to shift to a different fare class on 

the same airline than to modify both fare class and carrier identity at the same 

time. As a result, the use of a multinomial logit approach in PODS would under-

estimate airline 1 market share in such a situation. 

 

In fact, the substitution pattern of the PODS Passenger Choice Model 

reflects the correlation between the Y and B fare class alternatives offered by the 

same carrier, airline 2. This substitution pattern reflects the underlying 

assumption that the utility of a Y and a B fare class on the same airline are 

correlated as they share some common elements associated with airline 2 

characteristics like for instance the value a passenger gives to his preference for 

traveling on a particular airline. As a result, such a substitution pattern violates 

the logit fundamental assumption of independence in error terms across 
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alternatives. We will see in the next section how a nested logit model is able to 

accommodate such correlation and substitution patterns. 

 

3.5.2. PODS and the GEV Family of Models 

 

As shown in Chapter 2, the GEV family is a class of models that enables 

the researcher to accommodate more complex substitution patterns than the logit 

model and keeps part of the mathematical simplicity of logit, especially a closed-

form expression for the choice probabilities. The most widely used GEV family 

model is the nested logit model described in Chapter 2. Let us examine the 

relationship between the nested logit model and the PODS Passenger Choice 

Model. 

 

The nested logit model takes into account the correlation between the 

utilities of some alternatives by grouping them into nests. In the nested logit 

model, correlation is allowed between alternatives that belong to the same nest 

but not between alternatives that belong to different nests. Referring to the 

example above, the nested logit model could accommodate such a correlation 

pattern by grouping into a nest the Y and B fare class alternatives offered by 

airline 2. However, this example is only a partial description of the complex 

substitution/correlation pattern that exists in PODS. Indeed, the passenger 

choice problem in PODS implies a three-dimensional choice situation: the choice 

of an airline, a flight schedule and a fare class. Some correlation might exist 

between two fare classes on the same flight offered by the same airline and they 

should be grouped into a nest but there might also be some correlation between 

two different flights of the same airline for the same fare class. So they also 

should be grouped into another nest. If a travel alternative can belong to only 

one nest, it is then impossible to represent such a correlation/substitution 
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pattern. In the nested logit model, alternatives belong only to a single nest so the 

nested logit model is not able to accommodate the complexity of the choice 

situation modeled in PODS, which involves more complex correlation patterns.  

 

In fact, the nested logit model requires the researcher to establish a 

hierarchy between the various levels of the choice problem and only select 

correlation patterns are allowed at the lower level of the hierarchy that can be 

symbolized by a tree like in Chapter 2. Independence is assumed between nests 

at all nodes at the upper level of the tree. In PODS, no hierarchy is assumed 

between the three levels of the passenger choice problem: passengers do not 

choose an airline first and then a flight schedule and then a fare class. In PODS, 

correlation might exist between the utility of any combination of alternatives. As 

a result, a nested logit approach is not adapted to represent the passenger choice 

problem as it is modeled in PODS. 

 

In addition, if the GEV family of models is able to accommodate more 

complex substitution patterns than the logit model, it cannot accommodate 

random taste variation and all coefficients of a decision-maker utility have also to 

remain constant. Only more flexible models like the mixed logit model can 

accommodate random coefficients to represent the heterogeneity in response in 

the population to some elements of the decision-maker utility. Let us then 

examine the relationship between the PODS Passenger Choice Model and mixed 

logit models. 

 

3.5.3. PODS and Mixed Logit Models 

 

As already mentioned in Chapter 2, mixed logit models are a highly 

flexible class of discrete choice models. They can accommodate any form of 
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substitution patterns and are particularly amenable to incorporate random taste 

variation. Mixed logit models are defined on the basis of the functional form of 

the choice probabilities: mixed logit choice probabilities are the integral of 

standard logit probabilities over a density of parameters. Using a mixed logit 

specification to represent random taste variation is straightforward. The utility 

specification is the same as for standard logit except that the parameters are 

supposed to vary across decision-makers rather than being fixed (the parameters 

are random variables). The researcher has then to specify a distribution for each 

coefficient of the systematic utility and estimate the parameters of this 

distribution. 

 

In the case of the PODS Passenger Choice Model, as already mentioned all 

disutility costs are assumed to be normally distributed except for the fare 

coefficient that is specified to be fixed. In addition, all the disutility costs are 

assumed to be independent. As a result, the joint distribution of all disutility 

costs is the product of six normal distributions. Then, to turn the PODS 

Passenger Choice Model into a mixed logit specification only requires that the 

utility of each alternative given the disutility costs take a standard logit form. 

This is achieved if an iid extreme value term is added to the utility of each 

alternative. However, as already mentioned in Chapter 2, by scaling up the 

utilities appropriately, the researcher can ensure that adding an extreme value 

term to the true utility will never change the outcome of the choice process for 

any decision-maker or air traveler. 

 

As a result, the PODS Passenger Choice Model can be considered as the 

equivalent of a mixed logit model with the mixing distribution equal to the 

product of six independent normal distributions, one for each of the disutility 

cost coefficients. As the disutility cost distributions depend on the passenger type 

and the basefare of each O-D market, the current PODS Passenger Choice Model 
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can in network D be approximated by 964 mixed logit choice models (482 O-D 

markets, two passenger types per market). 

 

The PODS Passenger Choice Model can then be approximated by a set of 

mixed logit models. This result is consistent with the fact that mixed logit choice 

models can approximate any utility maximizing model: as already mentioned, 

the PODS Passenger Choice Model is actually a utility maximizing model. The 

use of a mixed logit model to approximate the PODS Passenger Choice Model is 

especially straightforward as mixed logit models are extremely convenient for 

random coefficient choice problems like the passenger choice problem modeled 

in PODS. 

 

3.6.  Conclusion 
 

In this chapter, we have described first the general architecture of the 

PODS simulator and then in detail one of its four major components, the PODS 

Passenger Choice Model. Finally, we have shown the similarities and differences 

between the choice model used in PODS and the models generally found in the 

consumer choice theory literature. Combined with Chapter 2, we have provided 

in this chapter a general framework to understand the PODS Passenger Choice 

Model as a whole and establish that it can be approximated by a series of mixed 

logit models with a random coefficient specification. In the next two chapters, we 

will focus in more detail on one of the component of the Passenger Choice 

Model: How passenger preference for flight schedules is modeled in PODS. In a 

first part, we will concentrate on a more detailed description of the decision 

window model used in PODS and compare it to alternative solutions found in 

the literature. In a second step, we will use the simulator to test the impact of 

alternative approaches to model passenger preference for schedule in PODS. 
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Chapter 4  Passenger Preference for Schedule 
 

 

4.1. Introduction 
 

In the previous chapters, we have described the general structure of the 

PODS Passenger Choice Model and its relationship with the discrete choice 

models found in the consumer choice theory literature. In this chapter, we are 

going to focus in more detail on how passenger preference for schedule is 

modeled in PODS and compare the PODS approach to the literature on traveler 

preference for schedule.  

 

The development of low-cost competition in the United States and Europe 

in the recent years has become a growing challenge for full-service network 

carriers. As a result, network carriers need to focus on their strengths including 

network coverage and frequency of service. These industry trends have raised 

the interest for a review of how preference for schedule is modeled in PODS and 

an investigation of the impact of schedule asymmetry on PODS simulation 

results. 

 

In the first part of this chapter, we will review the literature on how to 

model preference for schedule in inter-city travel in general and air 

transportation in particular. In the subsequent section, we will take a closer look 

at how preference for schedule is modeled in PODS including a more detailed 

description of the Boeing Decision Window Model with its strengths and 

shortcomings. Based on the literature review and the current PODS approach, we 

will finally propose alternative approaches to model passenger preference for 

schedule in PODS. 
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4.2. Passenger Preference for Schedule: Literature Review 
 

The demand for air travel is a derived demand that reflects travelers’ need 

to participate in activities at their destination. As a result, the scheduling of these 

activities determine to a great extent a traveler’s preferred departure and arrival 

time. All else being equal, a passenger will choose the flight departure that offers 

the best solution to his own individual time-space problem, i.e. participate to 

some activities at his destination. From an airline perspective, the objective is to 

design a flight schedule that accommodates the departure time preferences of the 

largest possible number of travelers based on the distribution of demand by time 

of the day observed in each market subject to some constraints like for instance 

the size of their fleet or aircraft rotations. Schedule convenience is an essential 

part of the choice by potential passengers of a particular air travel itinerary and 

the models used to represent passenger preference for schedule are an essential 

component of any attempt to simulate air traveler choice among various travel 

alternatives. 

 

The review of the literature on passenger preference for schedule in the air 

travel industry reveals two different approaches to model schedule convenience: 

the schedule delay vs. the decision window models. In the air travel literature, 

schedule delay has been defined as a measure of schedule convenience related to 

the difference between a passenger ideal departure time and his actual flight 

departure time (Douglas and Miller, 1974). A similar concept has been used in 

empirical studies to estimate travelers’ sensitivity to the average time between 

scheduled departures (Morrison and Winston, 1985, 1986).  

 

On the other hand, another approach found in the literature challenges the 

assumption that air travelers may have a unique ideal departure time. Flexibility 

in the schedule of their activities at destination implies that a range of departure 
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times is a convenient solution to their time-space problem. This approach has 

been developed by the Boeing Airplane Company in the Boeing Decision 

Window Model (Boeing Commercial Airplane Group, 1997). According to 

Boeing research on passenger behavior, each individual air traveler does not 

have a single ideal departure time but a decision window. The passenger 

decision window represents the time frame that the traveler considers 

convenient for travel. It is bounded by the passenger earliest convenient 

departure time and latest convenient arrival time.  Any flight schedule that fits 

entirely within the decision window is equivalent to the air traveler from a 

scheduling point of view. Before describing in more detail in the next section the 

Boeing Decision Window Model and its influence on how passenger preference 

for schedule is modeled in PODS, let us examine how passenger preference to 

schedule is applied in two recent studies on passenger choice in air 

transportation. 

 

As already mentioned in Chapter 2, Prossaloglou and Koppelman (1999) 

investigate the choice of a carrier, a flight and a fare-class. Based on stated 

preference data collected through a survey, they use a logit model to estimate the 

impact of several factors like fare or carrier identity on the selection of a 

particular travel alternative by individual air travelers. For more detail about the 

general framework and results of their study, the reader is referred to Chapter 2, 

Section 5.  

 

Regarding more specifically the choice of a flight schedule, the authors use 

a schedule delay approach and include a schedule delay variable in the 

passenger utility function. They tested first a linear schedule delay model where 

the schedule delay is equal to the difference between a passenger ideal departure 

time obtained from the survey and the actual flight departure time. Their 

findings indicate that business travelers are more reluctant to deviate from their 
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ideal departure time than leisure travelers. The difference in the schedule delay 

coefficient by trip purpose reflects business travelers’ expected greater sensitivity 

to schedule delay. Based on the values of the fare and schedule delay coefficients 

included in the model, they estimated that the average values of one hour of 

schedule delay were $60 and $17 for business and leisure travelers respectively. 

These findings support the usual segmentation of air travel demand between 

time-sensitive business travelers and less time-sensitive leisure travelers.  

 

In addition, they further explored traveler’s sensitivity to schedule delay 

by using more complex non-linear formulations of the schedule delay function. 

Under this more complex approach, they collected data for each passenger on 

both an ideal departure time and a decision window representing non-ideal but 

convenient and acceptable departure times. As expected, these models indicate a 

greater sensitivity to schedule delays associated with flights that depart outside 

the decision window, suggesting a non-linear sensitivity to schedule delays.  

 

In his doctoral dissertation, Mehndiratta (1996) studies the impact of time 

of day preferences on the scheduling of business trips in the domestic US 

focusing mainly on trips involving air transportation. His study includes an 

exploratory survey of recent business trips by a small group of ten San-Francisco 

based professionals. One of the conclusions from the interviews with these 

business travelers is that there was always a flight that fulfilled their travel 

schedule preferences, even in markets where only a few travel alternatives were 

available, sometimes only a single non-stop flight. That suggests that business 

travelers adapt their travel plans to the travel schedules offered by the airlines 

and supports the assumption that air travelers do not have a specific ideal 

departure time but a range of preferred travel times. Most of the business 

travelers included in this sample actually had some flexibility in the design of 

their schedule at their destination. Mehndiratta states that “there was substantial 
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evidence suggesting that supply and destination related constraints were non-

binding in a majority of cases”. In addition, when asked to state when they 

would have preferred to depart under ideal circumstances, most respondents 

reported times close to the times when flights were actually scheduled. These 

results support the decision window concept: Most business travelers do not 

have in mind a unique ideal departure time but a range of convenient travel 

schedules reflecting their ability to adapt their schedule at destination to the 

flight schedules offered by the airlines. In that perspective, each traveler decision 

window can be viewed as the result of the passenger time preferences mitigated 

by his time constraints like flying time, meeting schedule at destination. The time 

decision window can be viewed as the traveling schedule that minimizes the 

disutility associated with the disruption of the traveler’s regular schedule under 

some constraints (work schedule at destination etc.) 

 

In addition, Mehndiratta focuses in his work on the difference between 

the valuation of time across different periods of the day. As already mentioned in 

Chapter 2, he divided a regular 24-hour schedule into three periods: work, 

leisure and sleep time. He proposed and formulated a theory to accommodate 

variations in the value of time among these three periods of the day. His work 

suggests that deviating from the passenger decision window can be costly to the 

traveler, especially if this involves a disruption of some activities like sleeping or 

spending leisure time at home. This suggests that time matters and that different 

travel alternatives outside the decision window are very unlikely to be 

equivalent to the business traveler from a scheduling point of view. This study 

could have several implications on how we can view preference for schedule in 

PODS. But before discussing the impact of Mehndiratta’s results on the approach 

to scheduling in PODS, let us describe in the next section in more detail the 

current approach to schedule convenience in PODS.  
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4.3. Passenger Preference for Schedule in PODS 
 

4.3.1. The Boeing Decision Window Model 
 

 
As already mentioned in Chapter 3, the PODS Passenger Choice Model 

has been developed as an extension of the Boeing Decision Window Model. As a 

result, the approach used in PODS to model passenger preference for schedule is 

directly inspired by the options developed in the Boeing Decision Window 

Model. Before coming back to the PODS Passenger Choice Model and its 

schedule component, let us then first examine in more detail its foundations, i.e. 

the Boeing Decision Window Model. This section is based on Decision Window 

Path Preference Methodology Description, The Boeing Commercial Airplane Group 

(1997). 

 

The Decision Window Model was developed at Boeing originally as a 

scheduling decision support tool for the airlines. The objective of the Decision 

Window Model is to assist an airline in designing attractive schedules in a 

particular origin-destination market in order to maximize market coverage and 

market share. Thanks to the Decision Window Model, airlines can assess the 

potential impact of alternative schedules on their own and competitor’s loads. 

This tool is designed to help airlines build schedules that are attractive to the 

demand and increase the number of people considering traveling (market 

coverage) and their own market share. 

 

As a result, to determine each airline market share, the Decision Window 

Model requires modeling the choice of individual passengers among various 

travel alternatives or paths based primarily on one characteristic: the schedule of 

each path. The approach used by Boeing to model this choice process is based on 

the concept of a decision window. As already mentioned, each passenger gets 
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assigned a decision window that represents his range of convenient travel times, 

given his own time-space problem. In designing the decision window model, 

Boeing modelers assumed that individual passengers do not have in mind a 

single ideal departure time to fulfill their travel needs but that a range of travel 

times are convenient to them thanks to some flexibility in their schedule plans at 

their destination. As a result, any path that wholly fits within a passenger 

decision window is equally attractive to the passenger from a solely schedule 

perspective. 

 

The first step of the model is then to define for each passenger a decision 

window. As already mentioned in Chapter 3, a decision window is characterized 

by two parameters: its width and its location. The width of a decision window is 

the sum of the minimum travel time in the market and a random element called 

the schedule tolerance. Schedule tolerance represents the amount of flexibility a 

traveler has. The value of the schedule tolerance is defined randomly for each 

single traveler and varies from one passenger to the next but depends on the 

market stage length and the passenger trip purpose. Indeed, decision windows 

are on average shorter for business travelers than for leisure travelers to 

reproduce the emphasis people traveling on business place on time and 

schedule. In addition, schedule tolerance is smaller in short-haul markets than in 

long-haul markets. The location of the decision window is defined such as to 

reproduce the typical demand distribution during the day in every market with 

for instance the usual peaks in demand in the morning and late afternoon. 

  

The second step of the model is to define each passenger choice set. Only 

paths that fit completely within the boundaries of a passenger decision window 

will be considered and included in the passenger choice set. In addition, only the 

best service for each airline is included in the passenger choice set. For instance, 

if airline A has two paths that fit within the passenger decision window, one 
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non-stop path and one connecting path, only the non-stop path will be included 

in the passenger choice set as the model assumes that the passenger will always 

choose that path as they are equivalent from a schedule perspective but the non-

stop service is preferred from a path quality point of view. Then, the last step of 

the model is the decision rule and the passenger choice. There are three cases: 

 

• No path fits within the passenger decision window. The passenger 

must then re-plan his trip: a new decision window will be generated 

and a new decision process will be initiated 

• If only one path fits within the passenger decision window, the 

passenger will choose that path 

• If several paths fit within the decision window and are then equally 

attractive to the passenger from a schedule perspective, the passenger 

will select a path based on the carrier identity and the quality of the 

path. For more information about this choice process, the reader is 

referred to Boeing Commercial Airplane Group (1997) 

 

After this description of the Decision Window Model, let us now examine 

the similarities and differences between the Boeing Model and the PODS 

Passenger Choice Model focusing in particular on the approach to passenger 

preference for schedule. 

 

4.3.2.  Comparative Analysis of the PODS Passenger Choice and the 

Decision Window Models 

 

The PODS Passenger Choice Model is an extension of the Boeing Decision 

Window Model: It shares a large number of similarities with the Boeing Model. 

However, additional elements beyond schedule convenience, path quality and 
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airline identity are taken into account in PODS like for instance fare and fare 

class restrictions. In addition, the PODS Passenger Choice Model uses at the last 

step a utility-maximizing decision rule based on the calculation for each path of a 

generalized cost.  

 

But strictly from a schedule perspective, there is one fundamental 

difference between the Boeing Decision Window Model and PODS. This 

difference involves the definition of the passenger choice set. In the Boeing 

Decision Window Model, only paths that fit within the passenger decision 

window are included in the choice set and if there is none, a new decision 

window is defined and only paths that fit within this new window are 

considered. In PODS, all paths are included in the passenger choice set, whether 

or not they fit into the passenger decision window and the difference between 

the paths inside the decision window and outside the decision window is the 

replanning disutility. For more information on replanning disutilities, see 

Chapter 3. 

 

As a result, in both the Boeing Decision Window Model and PODS, all 

paths that fit within a passenger decision window are equally attractive from a 

schedule point of view. However, in PODS, all paths that do not fit within a 

passenger decision window are also equally attractive to the passenger from a 

schedule perspective. The replanning disutility is the same for all paths outside 

the decision window whatever their position might be, whether there is a slight 

violation of the decision window boundaries or the path is completely outside 

the decision window. In the Boeing Decision Window Model, paths outside a 

passenger decision window are only considered if no path fits within a passenger 

initial decision window and the passenger needs to re-plan. Even, when 

replanning occurs, all paths are not considered equally schedule-attractive as 

only paths that fit within the new decision window are now considered. 
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Both the PODS and the Boeing Decision Window Model approaches 

might have drawbacks: The Decision Window Model approach is justified within 

the objectives of this model that focuses mainly on the influence of airline 

scheduling decisions on airline market share. However, it might not be 

appropriate within the PODS framework that goes beyond dealing only with 

airline scheduling decisions and is focused on airline revenue management 

decisions and takes into consideration additional elements of the passenger 

choice problem, especially fare and fare class restrictions. As a result, it seems 

reasonable that passengers would consider paths that do not fit within the 

boundaries of their original schedule plans if they are associated with some other 

substantial benefits like a lower fare or fewer restrictions.  

 

In PODS, additional paths that do not fit wholly within a passenger 

decision window should then be included in a passenger choice set. However, it 

might not be reasonable to assume that the schedule of all paths outside the 

decision window is equally attractive to the air traveler. The approach currently 

used in PODS, which we will call the constant replanning disutility model might 

lead to some unrealistic decisions, especially for business travelers that are 

assumed to be more time-sensitive than leisure travelers.  

  

For instance, it seems really unlikely that a business traveler that needs to 

travel in the morning, attend a meeting in the destination city during the day and 

come back in the evening would accept an evening departure. He might just 

decide not to travel at all if no path is available in the morning. In addition, it is 

also unlikely that such a business passenger would give the same value to a 

midday and evening departure. This problem is much more an issue for business 

travelers that have short decision windows and put a lot of emphasis on 
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schedule convenience than for leisure travelers, which have wider decision 

windows that might cover in some cases the entire length of the day. 

 

In fact, under the current PODS approach, because passengers consider all 

paths that are both inside and outside their decision windows, it can happen that 

a business traveler with a 6 a.m.-12 p.m. decision window prefers a B fare on an 

evening flight completely outside its decision window over a Y fare on the 

morning flight that would fit into it because the fare difference is higher than the 

sum of the restriction and replanning disutilities.  

 

For instance, let us consider a business passenger willing to pay the Y fare 

(under the current PODS default settings, 93% of business passengers are willing 

to do so) and that has the following choice set: either a Y fare on the morning 

non-stop path that fits into his decision window or a B and Y fare on an evening 

non-stop flight outside his decision window. Both paths are operated by the 

same airline. The passenger will never choose the Y/evening combination as the 

cost of this path/class is always higher than the Y/morning path/class. As a 

result, his choice set is reduced to the following alternatives: Y/morning or 

B/evening. Under the current PODS design, the probability of choosing the 

B/evening path/class is between 10 and 15% for values of the market Q fare 

varying between $85 and $268 (Q fares in PODS network D and E are within that 

range in most markets). Such a figure might seem too high and unrealistic for a 

path that is located completely outside a passenger decision window but also too 

low for a path that deviates hardly from one of the decision window boundaries. 

 

As a result, the constant replanning disutility model currently used in 

PODS might under-estimate the importance of schedule convenience, especially 

for business travelers. However, before going further into designing and testing 

alternatives to the constant replanning disutility model, let us examine the 
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potential impact of schedule convenience on PODS simulation results. In order to 

assess the importance of passenger preference for schedule in PODS, let us do a 

sensitivity analysis of PODS simulation results with regard to the level of the 

replanning disutility for both business and leisure passengers 

 

4.3.3.  Sensitivity Analysis of PODS Simulation Results  
 

 In order to evaluate the impact of the schedule component of the PODS 

Passenger Choice Model on simulation results, let us do a sensitivity analysis of 

PODS results with regard to the value of the replanning disutility. For this 

analysis, we will consider both the schedule-symmetric Network D and the more 

schedule-asymmetric international alliance Network E. For a more complete 

description of the network characteristics, the reader is referred to Chapter 3. 

However, as a reminder, airline 1 has a small schedule advantage over its 

competitor in symmetric Network D thanks to a better geographical location of 

its hub with regard to the bulk of traffic flows. In less symmetric Network E, 

airline 1 has a large schedule advantage over its US competitor thanks to a wider 

schedule coverage.  

 

For both networks, we will vary the replanning disutility from 0 to 200% 

of the current base replanning disutility with 25% increments. In addition, we 

also tested an extremely high replanning disutility called here the infinite case: 

under this assumption, like in the original Boeing Decision Window Model, only 

paths that fit within a passenger decision window are considered. The cost of all 

paths outside the decision window is so high that a potential passenger will 

never choose such a path, except if there are no paths in his choice set that fit in 

his decision window. Figures 4.1. and 4.2. below show the results of the PODS 

simulations carried out for this sensitivity study. 
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The simulation results reveal common characteristics for both networks: 

in both Network D and E, a decrease in the value of the replanning disutility 

leads to a decrease in revenues for the schedule dominant airline and an increase 

in revenues for other airlines. Similarly, an increase in the value of the 

replanning disutility leads to an increase in revenues for the schedule dominant 

airline and a decrease for the other carriers. This is consistent with our 

expectations as the schedule advantage of an airline has more impact as the 

influence of schedule convenience on passenger choice increases. When all 

replanning disutilities are set to 0 and schedule convenience is supposed to have 

no impact on passenger choice, airline revenues tend to converge if all airlines 

use the same revenue management method. 

 

However, the impact of a variation in the replanning disutility is much 

greater in schedule-asymmetric network E than in schedule-symmetric network 

D. While significant, the impact of a change in replanning disutility value on 

airline revenues remain relatively limited in network D. However, the level of 

the replanning disutility has a dramatic impact on airline revenues in the more 

complex and less symmetric network E. Its impact is multiplied by at least a 

factor of 3 compared to network D. 
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Figure 4.1. : Sensitivity of airline revenues w.r.t. replanning disutility in 

PODS Network D 
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Figure 4.2. : Sensitivity of airline revenues w.r.t. replanning disutility in 

PODS Network E 
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Similarly, Figures 4.3. and 4.4. show that varying the replanning disutility 

has a different impact on load factors in Network D and E. In Network D, 

changes in load factor are relatively limited for both airlines: If the replanning 

disutility is very low, the schedules offered by both carriers are more attractive to 

passengers, load factors are higher and are similar for both airlines. However, 

when schedule convenience has more impact on passenger choice, airline 1 load 

factor starts increasing and becomes higher than airline 2 load factor due to the 

slight schedule advantage related to the geographical location of airline 1 hub. 

 

In network E, if we set the replanning disutility to zero, airline 2 has a 

much higher load factor as it is as attractive as airline 1 from a schedule 

perspective but offers less capacity as aircraft capacity has been initially 

calibrated based on the base value of the replanning disutility and not on a zero 

replanning disutility. However, as passengers give a higher value to schedule 

convenience and the replanning disutility increases, airline 1 and 2 load factors 

follow two very different patterns: airline 1 load factor increases rapidly thanks 

to its attractiveness to schedule-conscious travelers due to its wider schedule 

coverage and airline 2 load factor decreases rapidly. Airline 3 and 4 load factors 

experience more moderate change that can be mainly explained by the evolution 

of their US codeshare partner load factor. 

 

 79



82.2

82.4

82.6

82.8

83

83.2

83.4

83.6

83.8

84

84.2

0% 25
%

50
%

75
%

10
0%

12
5%

15
0%

17
5%

20
0%

Inf
ini

te

% of Base Replanning Distutility

%
 lo

ad
 fa

ct
or

Airline 1
Airline 2

 
Figure 4.3. : Sensitivity of airline load factor w.r.t. replanning disutility in 

PODS Network D 
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Figure 4.4. : Sensitivity of airline load factor w.r.t. replanning disutility in 

PODS Network E 
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To get a better understanding of the differences between Network D and 

E, let us examine the revenue per category figures. In PODS, we collect data, on 

passenger choice behavior when their initial most preferred travel alternative is 

no longer available. These data are called actual choice given first choice data. 

The first choice of a passenger is defined as the alternative with the lowest 

generalized cost that meets the passenger willingness to pay and the advance 

purchase requirements. If this alternative is available, we say that the passenger 

got his first choice satisfied. If it is not available due to the revenue management 

controls, the passenger has the four following options: Travel on the same path 

but on a higher fare class  (sell-up), travel on the same airline but on a different 

path (recapture), travel on another airline (spill) or decide not to travel at all. 

 

Unlike in the real world, since PODS is a simulation of a booking process, 

it is possible to track passenger behavior when denied booking of their first 

choice. As a result, it is possible to calculate in PODS the proportion of revenues 

that comes from passengers that had their first choice satisfied or were denied 

booking. We divide the airline total revenues into the following four categories: 

 

• First choice revenues are revenues from all passengers that had their first 

choice satisfied 

• Sell-up revenues are revenues from passengers that were denied booking of 

their first choice and decided to sell-up to a higher fare class on the same path 

• Recapture revenues are revenues from passengers that were denied booking 

of their first choice and decided to shift to another path of the same airline 

• Spill-in are revenues from passengers that were denied booking of their first 

choice on another airline and decided to shift to a path offered by this airline 

 

Figures 4.5. to 4.8. display the revenues by category for the two airlines 

competing in PODS Network D: 
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Figure 4.5. : First choice revenues in Network D 
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Figure 4.6. : Sell-up revenues in Network D 
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Figure 4.7. : Recapture revenues in Network D 
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 Figure 4.8. : Spill-in revenues in Network D 
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In PODS Network D, three categories of revenue follow a similar pattern 

for both airlines when the replanning disutility varies. As the replanning 

disutility increases and passengers tend to give a higher value to schedule 

convenience, sell-up and spill-in revenues increase as more passengers are 

willing to shift to a more expensive fare class or a different airline to select a path 

that fits within their decision window. On the contrary, more passengers are 

reluctant to shift to another path of the same airline as such paths might be 

located outside their decision window and recapture revenues decrease. 

 

However, for the largest revenue category, first choice revenues, the 

replanning disutility sensitivity analysis reveals different patterns: First choice 

revenues increase with the replanning disutility for airline 1 but decrease for 

airline 2. As the replanning disutility increases and represents a higher 

proportion of a path/class generalized cost, some additional passengers will 

have airline 1 as their first choice thanks to his slight schedule advantage: For 

some passengers, airline 1 will be the only one for which a path is located within 

their decision window and a convenient schedule becomes more important as 

the replanning disutility increases. For those passengers, it is less and less likely 

for airline 2 to be their first choice as airline 1 better schedule can less and less be 

compensated by some other elements like path quality or the premium 

associated with a path on a passenger favorite airline. 

 

However, Figures 4.9. to 4.12. show that the evolution of revenues by 

category is very different in PODS network E: 
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Figure 4.9. : First choice revenues in Network E 
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Figure 4.10. : Sell-up revenues in Network E 
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Figure 4.11. : Recapture revenues in Network E 
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Figure 4.12. : Spill-in revenues in Network E 
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The evolution of the revenue per category figures reveal in Network E the 

impact of the replanning disutility on the choice of passengers in the presence of 

a significant asymmetry between the schedules offered by the competing airlines. 

The sensitivity of revenues in each category is very much driven by the impact of 

schedule asymmetry.  

 

 For airline 1, as in Network D, first choice revenues initially increase 

slightly as the replanning disutility increases. However, as the replanning 

disutility becomes larger, more and more passengers prefer to travel on airline 1 

that offers the most convenient schedule. Faced with a very high demand, airline 

1 load factor starts to increase sharply and the airline has less and less space 

available to accommodate the demand. As a result, a higher proportion of 

passengers do not get their first choice satisfied and  first choice revenues start to 

decrease. Recapture and sell-up revenues increase sharply as the airline is faced 

with very high demand and cannot satisfy the first choice requirements of many 

passengers: A significant proportion of them accept to shift to a higher fare class 

on the same path or to another airline 1 path that might also be located in their 

decision window. However, some also get spilled to the competitor and this 

explains the large increase in airline 2 spill-in revenues. 

 

For airline 2, first choice revenues decrease sharply. As schedule 

convenience becomes more important, less and less passengers are willing to 

travel on a path located outside their decision window and so less and less 

passengers consider airline 2 as their first choice since it has a shorter schedule 

coverage and offers paths that fit within the decision window for fewer 

passengers than airline 1. In addition, for very few passengers, airline 2 offers 

several paths that fit in their decision window and as a result, recapture revenues 

also decrease. 
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For airline 3 and 4, the revenue per category figures display a more stable 

pattern and their evolution is combination of both the forces described in the 

PODS network D case and the influence of their US codeshare partners. For 

instance, due to the lack of attractiveness of its US partner, airline 4 first choice 

revenues tend to decrease but airline 3 first choice revenues remains more stable. 

Similarly, airline 4 spill-in revenues tend to increase like for airline 2 and airline 3 

recapture revenues tend to grow following the pattern observed for its US 

codeshare partners. 

 

To conclude, the results of this sensitivity analysis show the large impact 

of the replanning disutility and how to value schedule convenience in the 

presence of a significant schedule asymmetry. As a result, the approach used to 

model schedule convenience in the Passenger Choice Model is an important 

factor that needs to be considered if PODS is to be used to study the impact of 

asymmetry in general and schedule asymmetry in particular. In order to study 

the impact of schedule asymmetry in PODS, the drawbacks of the constant 

replanning disutility model should be addressed and alternative models should 

be developed and tested.  

 

4.4.  Alternative approaches to Passenger Preference for Schedule 

in PODS 

  

 To design a new approach to passenger preference for schedule, we will 

restrict our analysis in this section within the limits of the schedule delay and 

decision window concepts as these are the two approaches found in the air 

transportation literature that have been applied in research on passenger 

preference for schedule in the past. 
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4.4.1. Decision window vs. Schedule delay? 
 

Within this framework, our first option could be to design an approach 

based entirely on the concept of schedule delay without any reference to a 

decision window. Under such an approach, instead of a decision window, each 

passenger would get assigned a unique ideal departure time. The ideal departure 

time would be assigned randomly for each passenger but would be designed 

such as to reproduce a pre-determined typical time of day distribution of air 

travel demand in each market. A disutility cost would be added to the cost of 

each path based on the difference between the actual path departure time and 

the ideal departure time of the passenger. This disutility cost could be a linear or 

non-linear function of the difference between actual and ideal departure time 

and would vary based on trip purpose and market stage length.  

 

However, even if such an approach could be implemented in PODS, it 

does not seem very attractive. As already stated, we believe that most air 

travelers have some flexibility in the schedule of their activities at their 

destination and that a single ideal departure time does not exist for most 

passengers. Most passengers have in mind a range of acceptable travel times that 

is a convenient solution to their time-space problem. In addition, the results of 

the exploratory survey carried out by Mehndiratta supports the concept of a 

decision window. As a result, we will prefer alternative approaches that remain 

based on the decision window concept and are not solely based on a schedule 

delay approach. 

 

An alternative to the PODS approach to passenger preference for schedule 

would be to keep the current decision window model but to modify the 

passenger choice set. Under that approach, like in the initial Boeing Decision 

Window Model, only paths that fit entirely within a passenger decision window 
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would be considered and included in the passenger choice set. All paths outside 

the passenger decision window would be excluded. If there were no paths 

included in his decision window, the passenger would need to re-plan and 

would be assigned a second decision window and would pick among the 

available paths that fit into that new window and satisfy the passenger 

willingness to pay requirements.   

 

However, as already mentioned in the previous section, such an option 

might not be appropriate as the purpose of the PODS Passenger Choice Model is 

to represent the decision process of individual air travelers faced with multiple 

trade-offs like for instance between fare and schedule convenience. Such a 

solution, which gives a primary role to schedule convenience in passenger choice 

and is close to an infinite replanning disutility model could lead to major 

counter-intuitive effects.  

 

For instance, with the introduction of asymmetric schedules in PODS, 

such a solution might overestimate the competitive advantage of the carrier 

offering the best schedule. The definition of short decision windows for business 

travelers to reproduce the high value they place on schedule convenience would 

lead some of them to select the schedule-dominant and only carrier that offer a 

flight schedule that fits within their decision window without considering 

alternative paths offered by competing carriers that do not fit in the decision 

window but do not deviate largely from it. This might lead to an over-estimation 

of passenger preference for the carrier that offers the most convenient schedule 

to a large number of business travelers.  

  

 As a result, our preferred approach draws on the advantages of both the 

decision window and the schedule delay approaches. As in the current PODS 

Passenger Choice Model, a decision window would be defined for each 
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passenger and all path/classes that fit into the window would be equivalent to 

the air traveler from a schedule point of view. However, unlike under the current 

constant replanning disutility model, path/classes that do not fit in the decision 

window would not be equally attractive to the passenger anymore. This would 

be obtained through a variable replanning disutility approach. Similar to a 

schedule delay model, the replanning disutility of each path would vary based 

on its deviation from the passenger decision window.  

 

 The behavioral assumption is that passengers have some flexibility in their 

schedule plans at destination and this is reflected through their decision window, 

but beyond this initial flexibility, any deviation from their original plans comes at 

a cost and induces an inconvenience to the passenger modeled through the 

replanning disutility. In addition, this inconvenience is growing with the 

deviation of the path schedule with regard to their initial plans or decision 

window: The replanning disutility is then a function of the deviation from the 

decision window. The next question is then: What should be the form of the 

replanning disutility function? 

 

 As already mentioned, Prossaloglou and Koppelman study suggests that 

the relationship between the cost to the passenger of the schedule inconvenience 

and the deviation from his initial schedule plans is non-linear. According to their 

research, the cost of schedule inconvenience is an increasing function of the 

deviation from the passenger ideal departure time. In addition, Mehndiratta 

study suggests that there exists a difference in the valuation of time by business 

travelers between different periods of the day like work, leisure and sleep time. 

This suggests that the replanning disutility of a path that does not fit within a 

passenger decision window depends on the amount of disruption it creates in 

the passenger usual work, leisure and sleep schedule. As a result, Mehndiratta 

work suggests that the value of the replanning disutility should be a piece-wise 
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linear function of the deviation from the decision window based on which part of 

the passenger schedule gets disrupted. 

 

4.4.2. The Variable Replanning Disutility Approach 
 

As mentioned in the last section, Mehndiratta study of the impact of time 

of the day effects on the demand for intercity travel suggests a piece-wise linear 

form for the replanning disutility function. The implementation in PODS is then 

based on that principle. The variable replanning disutility is equal to the product 

of a common base replanning disutility and a replanning disutility index that 

depends on the deviation of the path schedule from the passenger decision 

window. The base replanning disutility is equal to the current PODS replanning 

disutility described in Chapter 3 to keep, for the same deviation from the 

passenger decision window, the scale in the value of replanning disutilities 

across O-D markets established by Lee (2000). 

 

To allow for a high level of flexibility in the specification of various piece-

wise linear replanning disutility functions representing a wide range of possible 

passenger behavior patterns, each segment of the piece-wise linear function has 

only a one-hour duration. The value passengers give to the first hour of deviation 

from the decision window can be specified to be different from the value they 

give to the second hour of deviation, the third hour of deviation etc. As a result, 

for each passenger type, the replanning disutility index is then composed of 24 

input parameters, one for each incremental hourly deviation from the passenger 

decision window.  

 

In addition, the replanning disutility index is different for business and 

leisure passengers as numerous studies including the work of Prossaloglou and 
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Koppelman have shown that the two categories exhibit different behavioral 

patterns with regard to passenger preference for schedule. As a result, the 

difference between the value of the replanning disutility for a business and 

leisure traveler comes from the difference in the value of both the base 

replanning disutility and the replanning disutility index. 

 

The values of the replanning disutility function input parameters are 

designed to reproduce expected passenger behavior for both passenger types. As 

business passengers choose in PODS primarily between Y and B fares, the 

replanning disutility index is calibrated based on the proportion of business 

travelers that prefer a Y fare class itinerary inside their decision window to a B 

fare class itinerary outside their decision window all else being equal (same path 

quality and travel on the same airline). For leisure travelers, as they primarily 

selects Q and M fares, the replanning disutility is calibrated based on the 

proportion of passengers that prefer a M fare inside their decision window over a 

Q fare outside their decision window all else being equal. 

 

Tables 4.1. and 4.2. below describe one example of a replanning disutility 

index for respectively business and leisure passengers in a market with a $100 Q 

fare, $150 M fare, $200 B fare and $400 Y fare. In this market, the base average 

replanning disutility is equal to $61.56 for business passengers and 11% of them 

prefer a B fare outside their decision window over a Y fare inside their decision 

window, all else being equal. Similarly, the base average replanning disutility is 

$11.9 for leisure passengers and 94.3% of them prefer a Q fare outside their 

decision window over an M fare inside their decision window. 
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Hours of deviation Replanning Disutility % pax prefer B outside
1 $15.4 27.5%
2 $38.5 17.8%
3 $77.0 7.9%
4 $119.3 3.2%
5 $157.0 1.6%
6 $192.4 0.9%
7 $226.5 0.6%
8 $259.7 0.4%
9 $292.4 0.3%
10 $324.7 0.3%
11 $356.8 0.2%
12 $388.6 0.2%
13 $420.3 0.2%
14 $451.8 0.2%
15 $483.2 0.2%
16 $514.6 0.2%
17 $545.9 0.1%
18 $577.1 0.1%
19 $608.3 0.1%
20 $639.5 0.1%
21 $670.6 0.1%
22 $701.6 0.1%
23 $732.7 0.1%
24 $763.7 0.1%

 

Table 4.1. : Variable replanning disutility (business travelers) 

Hours of deviation Replanning Disutility % pax prefer B outside
1 $11.9 94.3%
2 $13.4 91.4%
3 $14.9 87.7%
4 $16.4 83.2%
5 $17.9 78.1%
6 $19.3 72.5%
7 $20.8 66.6%
8 $22.3 60.5%
9 $23.8 54.6%
10 $25.3 48.9%
11 $26.8 43.6%
12 $28.3 38.7%
13 $29.8 34.2%
14 $31.2 30.2%
15 $32.7 26.6%
16 $34.2 23.4%
17 $35.7 20.7%
18 $37.2 18.2%
19 $38.7 16.1%
20 $40.2 14.3%
21 $41.7 12.7%
22 $43.1 11.3%
23 $44.6 10.0%
24 $46.1 9.0%

 

Table 4.2. : Variable replanning disutility (leisure passengers) 
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Figure 4.13. describes the difference in expected passenger behavior 

between the initial constant replanning disutility and the new variable 

replanning disutility approaches 
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Figure 4.13. : Expected passenger behavior under the initial and new approach to 

passenger preference for schedule 

 

Finally, Figure 4.14. below describes the value of the replanning disutility 

under the two schemes for a business passenger with a decision window that 

spans from 9 a.m. to 3 p.m.. 
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Figure 4.14. : Value of the replanning disutility for a business passenger with a  

9 a.m.-3 p.m. decision window  

 

As a result, the variable replanning disutility approach takes into account 

that if a passenger has a range of acceptable schedules that are equally attractive 

to him, unlike in the initial PODS design, everything outside that range is not 

equivalent and he does not give the same value to a path close to his schedule 

requirements and one that deviates largely from it. We expect the variable 

replanning disutility approach to have a greater impact on business travelers as 

they have shorter decision windows and more path/classes are likely to be 

outside their decision window. With such an approach, we are able to model the 

fact that business travelers might be extremely reluctant to accept path/classes 

that deviate largely from their desired schedule but might still consider flying on 

an airline that offers a better price/restriction value on a path that deviates only a 

little from the passenger decision window.  
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4.5. Conclusion 

 

In this chapter, we have examined how passenger preference for schedule 

is currently modeled in PODS and compared the PODS approach to the concepts 

found in the air transportation literature. Based on our analysis of the strengths 

and weaknesses of the constant replanning disutility model used in PODS, we 

have defined an alternative, the variable replanning disutility model. 

 

In the next chapter, we will test the variable replanning disutility 

approach through PODS simulations. Based on simulation results, we will assess 

the impact of the variable replanning disutility models on PODS results in both a 

schedule-symmetric and a schedule-asymmetric environment. 
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Chapter 5  PODS Simulation Results 
 

 

5.1. Introduction 
 

 In the previous chapter, we have described a new alternative approach to 

model passenger preference for schedule in PODS called the variable replanning 

disutility model. In this chapter, we will use the simulator to test the impact of 

this approach on the revenue performance of airlines in a competitive 

environment. 

 

In particular, we will show how passenger preference for schedule affects 

some key airline performance characteristics like airline revenues and load 

factor. We will also study the differential impact of passenger preference for 

schedule in two different competitive environments, one called schedule-

symmetric where all competitor airlines offer similar schedules and one called 

schedule-asymmetric where the competing airlines differentiate themselves by 

offering different schedules. 

 

This chapter is organized as follows: Section 5.2. is an explanation of the 

base case settings with an emphasis on some key inputs of the simulator. Section 

5.3. presents the simulation results of the new approach to model passenger 

preference for schedule in PODS, followed by a summary in section 5.4. 
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5.2. Simulation Set-up 
 

5.2.1. Base Case Settings 
 

Before presenting the results of PODS simulations, it is necessary to 

describe the base case used as a basis for comparison of all simulations 

performed for this thesis. Since the objective of this thesis is to understand 

preference for schedule in the airline industry and enhance how passenger 

preference for schedule is modeled in PODS, our base case will be the current 

approach to passenger preference for schedule in PODS described in Chapter 4 

and called the constant replanning disutility model. As a result, in the base case, 

a constant replanning disutility is added to the cost of all path/classes that do 

not fit entirely within a passenger decision window irrespective of the time 

position of the path relative to the passenger decision window. As described in 

Chapter 4, the value of the replanning disutility depends on trip purpose and the 

market basefare. 

 

5.2.2. Variable Replanning Disutility Functions 
 

In Chapter 4, we defined a new approach to passenger preference for 

schedule in PODS based on a variable replanning disutility. Under this model, 

the value of the replanning disutility added to the cost of every path located 

outside a passenger decision window depends on the position in time of the path 

relative to the decision window. As described in Chapter 4, the value of the 

replanning disutility is calibrated to represent expected passenger behavior for 

both business and leisure passengers. For business passengers (respectively 

leisure passengers), the value of the replanning disutility is calibrated based on 

the proportion of passengers that prefer a Y path/class (respectively a M 

path/class) inside their decision window over a B path/class (respectively a Q 
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path/class) outside their decision window, all else being equal. We will consider 

three alternatives, labeled low, medium and high for the value of passenger 

replanning disutilities. Tables 5.1. and 5.2. and Figures 5.1. and 5.2. describe the 

three levels of replanning disutility and the associated passenger preferences in a 

market with a lowest fare (Q fare) of $100. In addition, in order to isolate the 

contribution of each type of passenger to the change in airline revenue 

performance, we will consider in this chapter three simulation scenarios:  

 

• Scenario 1: The replanning disutility is constant for leisure passengers 

and variable for business passengers 

 

• Scenario 2: The replanning disutility is constant for business 

passengers and variable for leisure passengers 

 

• Scenario 3: The replanning disutility is variable for both types of 

passengers 
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  Low   Medium   High   
Hours of deviation Replanning Disutility % pax prefer B outside Replanning Disutility % pax prefer B outside Replanning Disutility % pax prefer B outside 

1       $15.4 27.5% $15.4 27.5% $15.4 27.5%
2       $30.8 20.7% $38.5 17.8% $53.9 12.9%
3       $51.3 13.6% $77.0 7.9% $97.5 5.1%
4       $77.0 7.9% $119.3 3.2% $150.1 1.8%
5       $110.8 3.8% $157.0 1.6% $193.9 0.9%
6       $143.6 2.0% $192.4 0.9% $233.4 0.6%
7       $167.1 1.4% $226.5 0.6% $270.4 0.4%
8       $184.7 1.0% $259.7 0.4% $305.9 0.3%
9       $198.4 0.9% $292.4 0.3% $340.3 0.3%
10       $209.3 0.8% $324.7 0.3% $374.0 0.2%
11       $218.3 0.7% $356.8 0.2% $407.1 0.2%
12       $225.7 0.6% $388.6 0.2% $439.9 0.2%
13       $232.0 0.6% $420.3 0.2% $472.4 0.2%
14       $237.4 0.6% $451.8 0.2% $504.6 0.2%
15       $242.1 0.5% $483.2 0.2% $536.6 0.1%
16       $246.2 0.5% $514.6 0.2% $568.5 0.1%
17       $249.9 0.5% $545.9 0.1% $600.2 0.1%
18       $253.1 0.5% $577.1 0.1% $631.8 0.1%
19       $256.0 0.5% $608.3 0.1% $663.4 0.1%
20       $258.6 0.5% $639.5 0.1% $694.9 0.1%
21       $260.9 0.4% $670.6 0.1% $726.3 0.1%
22       $263.0 0.4% $701.6 0.1% $757.6 0.1%
23       $265.0 0.4% $732.7 0.1% $788.9 0.1%
24       $266.8 0.4% $763.7 0.1% $820.2 0.1%

 

Table 5.1. : Variable replanning disutility (business travelers) 

 101



0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hours of deviation from the decision window

%
 p

ax
 c

os
t B

 o
ut

si
de

 <
 Y

 in
si

de

Constant Low Medium High

 

Figure 5.1. :  Expected passenger behavior under the constant and variable replanning disutility models (business 

passengers) 
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  Low   Medium   High   
Hours of deviation Replanning Disutility % pax prefer Q outside Replanning Disutility % pax prefer Q outside Replanning Disutility % pax prefer Q outside 

1       $3.0 99.8% $11.9 94.3% $11.9 94.3%
2       $4.5 99.6% $13.4 91.4% $13.4 91.4%
3       $6.0 99.3% $14.9 87.7% $14.9 87.7%
4       $7.4 98.8% $16.4 83.2% $16.4 83.2%
5       $8.9 97.8% $17.9 78.1% $17.9 78.1%
6       $10.4 96.4% $18.8 74.4% $19.3 72.5%
7       $11.9 94.3% $19.6 71.6% $20.8 66.6%
8       $13.4 91.4% $20.1 69.5% $22.3 60.5%
9       $14.5 88.6% $20.5 67.9% $23.8 54.6%
10       $15.5 86.0% $20.8 66.6% $25.3 48.9%
11       $16.2 83.7% $21.1 65.5% $26.8 43.6%
12       $16.9 81.6% $21.3 64.6% $28.3 38.7%
13       $17.4 79.7% $21.5 63.8% $29.8 34.2%
14       $17.9 78.1% $21.7 63.1% $31.2 30.2%
15       $18.2 76.6% $21.8 62.5% $32.7 26.6%
16       $18.6 75.3% $21.9 62.0% $34.2 23.4%
17       $18.9 74.2% $22.1 61.6% $35.7 20.7%
18       $19.2 73.1% $22.1 61.2% $37.2 18.2%
19       $19.4 72.2% $22.2 60.9% $38.7 16.1%
20       $19.6 71.3% $22.3 60.5% $40.2 14.3%
21       $19.8 70.5% $22.4 60.3% $41.7 12.7%
22       $20.0 69.8% $22.4 60.0% $43.1 11.3%
23       $20.2 69.2% $22.5 59.8% $44.6 10.0%
24       $20.3 68.6% $22.6 59.5% $46.1 9.0%

 

Table 5.2. : Variable replanning disutility (leisure travelers)  
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Figure 5.2. :  Expected Passenger behavior under the constant and variable replanning disutility models (leisure 

passengers) 
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5.2.3. Other PODS Inputs 
 

Apart from the replanning disutility, other major PODS inputs include 

other passenger preference inputs and forecasting, detruncation and revenue 

management method inputs. As the objective of this thesis is to model passenger 

preference for schedule in the airline industry and understand its impact on 

PODS simulation results, all these inputs will remain constant across all 

simulations. 

 

All other passenger preference inputs like restriction, path quality index 

and unfavorite airline disutility are equal to the settings described in Chapter 3. 

In addition, we will use the current default PODS detruncation and forecasting 

techniques, i.e. booking curve detruncation and pick-up forecasting methods. For 

a description of these methods, the reader is referred to Darot (2001). 

 

In addition, since revenue management is not the primary focus of this 

thesis, all airlines will use the standard Expected Marginal Seat Revenue (EMSR) 

algorithm to control seat allocation among fare classes. EMSR was first 

introduced by Belobaba (1987) and has been used since then by a large number of 

airlines for seat allocation purposes. For a description of EMSR, the reader is also 

referred to Darot (2001). 

 

Finally, the simulations were performed in both “schedule-symmetric” 

Network D and “schedule-asymmetric” network E. For a description of these 

two network environments, the reader is referred to Chapter 3. The average load 

factor is equal to 83% and 80% in network D and E respectively. 
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5.3. Simulation Results 
 
 

5.3.1. Revenues 
 

Let us first look at the impact on airline revenues following the 

introduction of a variable replanning disutility in Network D and E.  

 

Network D 

 

Figures 5.3., 5.4. and 5.5. below show the change in airline revenues for the 

three simulation scenarios. 

 

First of all, the impact of switching from the current constant replanning 

disutility to the new variable disutility is much greater for business passengers  

(scenario 1) than for leisure passengers (scenario 2). This is expected since 

business and leisure passengers have different behavioral patterns with business 

passengers giving more emphasis to non-monetary elements like preference for 

schedule and leisure passengers’ decisions being more influenced by fare levels. 

In PODS, business passengers have on average a much higher replanning 

disutility than leisure passengers and the replanning disutility represents a 

higher proportion of the total cost of a path for business than for leisure 

passengers. As a result, we expect airline revenues to be more sensitive to a 

change in the way business passengers value preference for schedule. The 

introduction of a variable replanning disutility in PODS Network D can lead to 

change in revenues over 1% if this new valuation of passenger preference for 

schedule is introduced for business passengers only versus a maximum change 

in revenues of no more than 0.15% if it is used by leisure passengers only. 
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Figure 5.3. : % change in simulated airline revenues when business 

passengers only use a variable replanning disutility (Scenario 1) 
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Figure 5.4. : % change in simulated airline revenues when leisure passengers 

only use a variable replanning disutility (Scenario 2) 
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Figure 5.5. : % change in simulated airline revenues when both business and 

leisure passengers use a variable replanning disutility (Scenario 3) 

 

In addition, simulation results also show that simulated airline revenues 

at the system level (sum of airline 1 and 2 revenues) tend to increase for all 

scenarios and all values of the replanning disutility. This increase in simulated 

total revenues for the industry is larger for the medium and large variable 

replanning disutility alternatives than for the low alternative. Table 5.3. below 

shows the change in revenues at the industry level in PODS Network D. The 

base case for this table is industry revenues with a constant replanning disutility 

model 

 

  Scenario 1 Scenario 2 Scenario 3 
Low 0.33% 0.09% 0.50% 
Medium 0.61% 0.09% 0.83% 
High 0.70% 0.12% 1.09% 

 

Table 5.3. : % change in simulated airline revenues at the system level in 

Network D 
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As already stated in Chapter 4, the major drawback of the constant 

replanning disutility model is that the value of a path located outside a 

passenger decision window is independent of the time location of the path 

relative to the decision window. As a result, the constant replanning disutility 

model under-estimates the preference of a passenger for a path located close to 

his decision window but over-estimates his preference for a schedule-

inconvenient path located far outside his decision window. When a variable 

replanning disutility model is introduced, passengers become very reluctant to 

travel on schedule-inconvenient paths located far outside their decision window 

and would rather pay a higher fare to switch to a more schedule-convenient path 

located inside or close to their decision window. As a result, simulated revenues 

at the system level increase and this trend is strengthened as the value of the 

replanning disutility increases and passengers are less and less willing to travel 

on schedule-inconvenient paths. This is especially true for business passengers 

that have on average shorter decision windows and higher replanning 

disutilities.  

 

Finally, let us consider how these incremental revenues at the system level 

are split between the two competing airlines. Simulation results show that when 

the variable replanning disutility is relatively low, airline 2 revenues tend to 

increase while airline 1 revenues decrease. However, when the replanning 

disutility is high, we observe higher revenues gains for airline 1 and airline 2 

revenues tend to decrease. Actually, as stated in Chapter 3, despite very similar 

schedules, airline 1 has a small schedule advantage over airline 2 due to the 

geographical location of its hub relative to the bulk of traffic flows in Network D. 

When the variable replanning disutility is low, business passengers are more 

willing to switch to airline 2: Since airline 2 offers slightly more inconvenient 

schedules with longer travel times in most markets, airline 2 paths might lie 

outside the decision window for some business passengers but relatively close to 
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it. As a result, if the variable disutility is very low for paths close to a passenger 

decision window, some airline 1 passengers might be willing to switch to airline 

2 to take advantage of a lower fare/restriction product, a better path quality or 

probably more frequently to travel on their favorite airline.  

 

However, as the value of passenger preference for schedule increases and 

the variable replanning disutility becomes larger even for paths close to a 

passenger decision window, business passengers are less and less willing to 

switch airlines and prefer to travel on the airline offering the most convenient 

schedule. As a result, revenue gains become higher for airline 1 and revenues 

start to decrease for airline 2. 

 

To summarize, the use of a variable replanning disutility model leads to 

an increase in PODS simulated revenues at the system level but also to a more 

realistic evaluation of the benefits of airline 1 schedule advantage: the variable 

replanning disutility model leads to a decrease in the cost of paths located 

outside but close to a passenger decision window and this benefits airline 2 that 

offers slightly less attractive schedules. 

 

Network E 

 

As shown by the sensitivity analysis of airline revenues with regard to the 

value of a constant replanning disutility performed in Chapter 4, the impact of 

how passengers value preference for schedule on airline revenues is much 

greater in schedule-asymmetric network E than in schedule-symmetric network 

D. Similarly, the magnitude of the change in revenues is much greater in 

network E than in network D when a variable replanning disutility is introduced. 

Figures 5.6., 5.7. and 5.8. below show the evolution of airline revenues in 

network E for the three simulation scenarios. 
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Figure 5.6. : % change in simulated airline revenues when business 

passengers only use a variable replanning disutility (Scenario 1) 
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Figure 5.7. : % change in simulated airline revenues when leisure passengers 

only use a variable replanning disutility (Scenario 2) 
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Figure 5.8. : % change in simulated airline revenues when both business and 

leisure passengers use a variable replanning disutility (Scenario 3) 

 

As in Network D, the introduction of a variable replanning disutility has a 

greater impact for business than for leisure passengers. When the variable 

replanning disutility is used for both types of passengers, the change in airline 

revenues comes primarily from business passengers. 

 

In addition, like in Network D, revenues at the system level tend to 

increase for all scenarios and all values of the replanning disutilities. However, 

this increase is more moderate than in Network D for scenarios 1 and 3 as airline 

1 and 3 do not have sufficient capacity to accommodate all the passenger 

demand that prefer to travel on schedule–convenient paths and a large number 

of passengers are unable to book their most preferred alternative as confirmed by 

the analysis of more detailed revenue data in the next subsection. 

 112



 

 Scenario 1 Scenario 2 Scenario 3 

Low 0.02% 0.12% 0.22% 

Medium  0.27% 0.17% 0.45% 

High 0.25% 0.23% 0.56% 
 

Table 5.4. : % change in simulated airline revenues at the system level in 

Network E 

 

Finally, like in the sensitivity analysis of last chapter, the schedule-

dominant airline (airline 1) and its alliance partner (airline 3) benefit from the 

variable replanning disutility approach, especially if the replanning disutility is 

assumed to be relatively high and passengers view preference for schedule as an 

important element in the choice of a travel alternative. A large number of 

passengers, especially business passengers prefer to travel on airline 1 and 3 that 

offer the most attractive schedule. 

 

 On the contrary, revenues of airline 2 that offers a less convenient 

schedule decrease as a variable replanning disutility is introduced, especially for 

the medium and high alternatives and this also affects negatively the revenues of 

its alliance partner, airline 4. For a significant number of passengers, airline 2 

paths are located relatively far from the boundaries of their decision window. For 

these passengers, the value of the replanning disutility increases when the 

variable replanning disutility model is used instead of the constant replanning 

disutility, especially for the medium and high alternatives. These passengers 

consider airline 2 schedules as very unattractive and most of them prefer then to 

travel on airline 1. This explains the large decline in airline 2 revenues when a 

variable replanning disutility is introduced.  
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As a result, the introduction of a variable replanning disutility leads to a 

more realistic evaluation of the revenue advantage associated with attractive 

schedules as the constant replanning disutility approach tends to under-evaluate 

the cost of paths located far from the passenger decision window, something 

occurring often in Network E due to the difference between the airline schedules.  

 

5.3.2. Load factor and Loads by Fare Class 

 
Let us now examine the impact of the variable replanning disutility model 

on airline load factor and fare class mix (loads by fare class). 

 

Network D 
 

Table 5.5. below compares the load factor for the constant and variable 

replanning disutility models. 

 

 Airline 1 Airline 2 
  Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 
Constant 83.73% 83.46% 
Low 83.27% 83.53% 83.13% 83.66% 83.64% 83.75% 
Medium 83.38% 83.60% 83.29% 83.53% 83.43% 83.53% 
High 83.54% 83.51% 83.37% 83.30% 83.54% 83.55% 

 

Table 5.5. : Airline load factor in Network D 

 

As expected, when a low variable replanning disutility is introduced, 

airline 1 load factor tends to decrease and airline 2 load factor tends to increase 

as the variable replanning disutility model reduces the benefit of airline 1 

schedule advantage: More passengers, especially business passengers, now select 

airline 2 as their first choice because the cost associated with paths located 
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outside a passenger decision but close to it has been lowered. However, as 

replanning disutilities become larger and we shift from the low to the medium 

and high alternatives, this effect tends to progressively disappear and airline 1 

load factor increases again. 

 

This trend is confirmed by the analysis of the loads by fare class or fare class mix. 

In Figures 5.9. and 5.10. below, fare classes are grouped in two categories: high-

yield fare classes (Y and B fare classes) that are selected primarily by business 

passengers and low-yield fare classes (M and Q  fare classes) selected primarily 

by leisure passengers. 

 
When a variable replanning disutility is introduced, fare class mix at the 

industry level improves: The number of high-yield passengers increases while 

the number of low yield passengers decreases. This is expected, as with a 

variable replanning disutility, passengers are more willing to purchase higher 

fares in order to travel on a schedule convenient path.  

 

However, the change in fare class mix is not similar for airline 1 and 

airline 2. If the variable replanning disutility is low, fare class mix improves for 

airline 2 and deteriorates for airline 1. With a low replanning disutility, more 

business passengers will choose airline 2 as their first choice due to a lower and 

more accurate valuation of the schedule inconvenience associated with airline 2 

slightly less convenient schedules. But, as the cost of schedule inconvenience 

increases for the medium and high alternatives, convenient schedules become 

more valuable and airline 1 loads in the high-yield classes increase as well. 
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Figure 5.9. : Loads in the high-yield fare classes (Network D, Scenario 1) 
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Figure 5.10. : Loads in the low-yield fare classes (Network D, Scenario 1) 

 116



Network E 
 

Table 5.6. below shows that the change in load factor is influenced by the 

schedule asymmetry of Network E. Unlike in network D, airline 1 load factor 

does not decrease when a variable replanning disutility is introduced but 

increases very substantially, especially for scenarios 1 and 3. When a variable 

replanning disutility is used, the paths offered by airline 2 that lie far outside the 

decision window for a significant number of passengers appear very unattractive 

and more passengers prefer to travel on airline 1. This is especially true for 

business passengers that consider schedule convenience as a very important 

criterion in the choice of a path and have both shorter decision windows and 

higher replanning disutilities. 

 

 Airline 1 Airline 2 

  Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

Constant 78.08% 82.15% 
Low 78.84% 78.33% 78.53% 81.74% 81.52% 81.49% 
Medium 80.10% 78.01% 79.51% 80.35% 81.98% 80.56% 
High 80.12% 77.78% 78.40% 80.33% 80.55% 80.20% 

 

Table 5.6. : Airline load factor in Network E 

 
The effect of schedule asymmetry is confirmed by the analysis of the fare 

class mix. In Network E, high-yield loads increase substantially for Alliance A 

partners as business passengers try to take advantage of convenient flight 

schedules. However, as airline 1 and 3 are unable to accommodate all of the 

demand, they spill low-yield passengers to their competitors and the number of 

low-yield passengers increases for airline 2 and 4 as shown in Figures 5.11 and 

5.12. below. 
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Figure 5.11. : Loads in the high-yield fare classes (Network E, Scenario 1) 

50

60

70

80

90

100

110

120

130

AL 1 AL 3 AL 2 AL 4

Alliance A Alliance B

Constant
Low 
Medium
High

  
Figure 5.12. : Loads in the low-yield fare classes (Network E, Scenario 1) 
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5.3.2. Revenues per Category 
 

Finally, to confirm our analysis so far, let us now look at more detailed 

revenue data, revenues by category in Network D and E. Since we established in 

the previous section that most of the change in airline revenues was associated 

with the introduction of a variable replanning disutility for business passengers, 

we will present in this section simulation results when only business passengers 

use a variable replanning disutility (scenario 1). Results for the other two 

scenarios are largely similar. For all graphs in this section, the base case is 

revenues with a constant replanning disutility for both business and leisure 

passengers. 

 

Network D 

 

Figures 5.13. to 5.16. show the change in first choice, sell-up, recapture and 

spill-in revenues for both airlines. For a definition of these revenue categories, 

the reader is referred to Chapter 4. 
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Figure 5.13. : Change in first choice revenues (Network D) 
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Figure 5.14. : Change in sell-up revenues (Network D) 
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Figure 5.15. : Change in recapture revenues (Network D) 
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Figure 5.16. : Change in spill-in revenues (Network D) 
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Let us first consider sell-up revenues, i.e. revenues from passengers 

switching to a higher fare class on the same flight itinerary. As expected, sell-up 

revenues increase as business passengers are more willing to switch to a higher 

fare class to travel on a schedule-convenient path and are not willing to accept to 

shift to a path that is located far from their decision window due to its level of 

schedule inconvenience. Also, as expected, sell-up revenues are higher for the 

medium and high alternatives for both airlines. As the value of schedule 

convenience increases, business passengers are more and more reluctant to shift 

to alternative paths and are more willing to accept to sell-up to a more expensive 

fare class in order to travel on a schedule-convenient path. 

 

In addition to sell-up revenues, recapture revenues also increase when a 

variable replanning disutility is introduced. While this may seem counter-

intuitive, it is the result of two opposite effects. With a variable replanning 

disutility, business passengers are more reluctant to shift to alternative paths 

offered by the same airline located far outside their decision window. However, 

they are also more willing than before to shift to an alternative path that is 

located close to their decision window. When a variable replanning disutility is 

introduced, the second effect seems to dominate and recapture revenues 

increase. However, as the value of schedule convenience increases, business 

passengers should be less and less willing to shift to paths located outside their 

decision window, even if they are located relatively close to their decision 

window. Indeed, as we shift from the medium to the high valuation of 

replanning disutilities, recapture revenues increase only slightly for airline 1 and 

start to decrease for airline 2. 

 

As is the case with sell-up and recapture revenues, spill-in revenues also 

tend to increase when business passengers use a variable replanning disutility to 

evaluate the schedule convenience of a path located outside their decision 
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window. As outlined in Chapter 4, this is expected since passengers are assumed 

to be more willing to shift to another airline to travel on a schedule-convenient 

path, even if this airline is not their favorite carrier and this trend is also expected 

to increase with the value of schedule convenience as observed.  

 

Finally, let us analyze the evolution of first choice revenues. Since 

business passengers are more willing shift to a higher fare class on the same 

path, alternative paths located close to their decision window or to the 

competitor airline, the supply of seats is constrained by the aircraft capacity and 

the load factor is relatively high (83%), this means that the proportion of business 

passengers that get their first choice satisfied will decrease and first choice 

revenues will be negatively impacted for both airlines. Table 5.7. below shows 

data for the proportion of passengers that had their first choice satisfied by 

airline and fare class:  

 

  Fare Class Constant Low Medium High 

Y 0.909 0.904 0.898 0.896 

B 0.916 0.907 0.886 0.879 

M 0.875 0.857 0.817 0.81 
AL 1 
  
  
  Q 0.724 0.665 0.632 0.619 

Y 0.91 0.903 0.896 0.895 

B 0.915 0.903 0.875 0.87 

M 0.848 0.809 0.756 0.745 
AL 2 
  
  
  Q 0.733 0.657 0.629 0.629 

 

Table 5.7. : Proportion of passengers that had their first choice satisfied  

 

For all fare classes and both airlines, the proportion of passengers that had 

their first choice satisfied decreases as a variable replanning disutility is 
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introduced and the value of schedule convenience increases. As a result, this 

leads to a decrease in first choice revenues for both airlines.  

 

However, the decrease in first choice revenues is larger for airline 1 than 

for airline 2, especially for the low replanning disutility case. As mentioned 

earlier, airline 1 has a small schedule advantage over airline 2 due to the 

geographical location of its hub relative to the bulk of traffic flows in Network D. 

As a result, some business passengers may have in their decision window only 

an airline 1 path. However, for these passengers, there is probably an airline 2 

path that does not fit within their decision window but is located very close to it. 

If a constant replanning disutility is added to the cost of all paths located outside 

a passenger decision window, PODS will over-estimate the cost of the airline 2 

path and an airline 1 path will be the passenger’s first choice, even if airline 2 is 

his favorite airline. However, if we use a variable replanning disutility and this 

disutility is assumed to be relatively low, the same passenger may now choose 

the airline 2 path as his first choice, especially if this path has a better 

fare/restriction combination, a better path quality or more frequently if airline 2 

is the passenger’s favorite airline. As a result, if we introduce a variable 

replanning disutility, more passengers will have airline 2 as their first choice and 

first choice revenues will decrease less for airline 2 than for airline 1, especially if 

the value of the variable replanning disutility is relatively low. 

 

Network E 

 
Figures 5.17. to 5.20. show the change in revenues for each airline by 

category in Network E when a variable replanning disutility is introduced for 

business passengers only. 
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Figure 5.17. : Change in first choice revenues (Network E) 
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Figure 5.18. : Change in sell-up revenues (Network E) 
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Figure 5.19. : Change in recapture revenues (Network E) 
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Figure 5.20. : Change in spill-in revenues (Network E) 
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Like in Network D, sell-up revenues increase for all airlines as business 

passengers are more willing to switch to a higher fare class in order to travel on a 

schedule-convenient path. With a variable replanning disutility, they prefer to 

pay a higher fare than travel on a schedule-inconvenient path located far outside 

their decision window. However, sell-up revenues also reflect the asymmetry 

between airlines in Network E. Sell-up revenues increase far more for the 

schedule-dominant airline 1 than for its weaker competitor airline 2. In addition, 

as schedule convenience becomes a more important criterion in passenger choice, 

the schedule disadvantage penalizes airline 2 even more and sell-up revenues are 

lower for airline 2 for the medium and high than for the low alternative. Finally, 

for airline 3 and 4, the change in sell-up revenues depends on their alliance 

partner and sell-up revenues increase more for airline 3 than for airline 4. 

 

Also like in Network D, recapture revenues increase when a variable 

replanning disutility is introduced. As explained above, this increase is the result 

of two opposite effects. With a variable replanning disutility, business 

passengers may be more or less reluctant to shift to alternative paths depending 

on the location of the path relative to their decision window. The increase in 

recapture revenues suggests that for most business passengers, the location of 

alternative paths offered by the same airline is generally relatively close to their 

decision window. However, like for the sell-up category, the change in recapture 

revenues also reflect the structure of Network E and its schedule asymmetry 

between airline 1 and airline 2: Recapture revenues increase more for airline 1 

thanks to its schedule attractiveness and this also influences positively recapture 

revenues of its European partner. 

 

However, the influence of schedule asymmetry in Network E is the largest 

on the following two categories: first choice and spill-in revenues. Due to the 

attractiveness of its schedule relative to its competitor, airline 1 is much more 
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attractive to a large number of passengers. A large proportion of business 

passengers consider it as their first choice and the introduction of a variable 

replanning disutility tends to strengthen that trend. As a result, unlike in 

Network D, airline 1 first choice revenues increase slightly, especially for the 

medium and high alternatives. On the other hand, as passenger preference for 

schedule increases under the variable replanning disutility scheme, airline 2 

seems less and less attractive and airline 2 first choice revenues decrease sharply, 

especially for the medium and high alternatives. For airline 3 and 4, the change 

in first choice revenues is once again influenced by the evolution of their US 

partner and they increase slightly for airline 3 and decrease for airline 4 but less 

than for airline 2. 

 

Faced with a very high demand, airline 1 does not have enough space to 

accommodate all passengers and is unable to satisfy their first choice 

requirements for a significant number of them. Some get recaptured and this 

explains the high level of airline 1 recapture revenues. Others switch to its 

weaker competitor and this is reflected in the high level of airline 2 spill-in 

revenues. In addition, the use of a variable replanning disutility tends to 

strengthen these trends compared to the constant replanning disutility approach. 

This explains the sharp increase in airline 1 recapture and airline 2 spill-in 

revenues, especially for the medium and high alternatives. 
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5.4. Summary 
 
 

In this chapter, we have analyzed the impact of introducing a variable 

replanning disutility in both a schedule-symmetric and schedule-asymmetric 

environment. The analysis of the revenue performance at the industry, airline 

and category levels reveals that the impact of how passenger preference for 

schedule is modeled in PODS can be very significant and depends largely on the 

structure of the network environment.  

 

In the next chapter, we will synthesize all the results and the lessons 

learned during this research and we will develop further research directions on 

passenger preference for schedule and traveler choice in the airline industry. 
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Chapter 6  Conclusion 
 

 

As mentioned in the introduction, the objective of this thesis was to 

review the PODS Passenger Choice Model and evaluate the relevance of its 

assumptions relative to the current state of the airline industry, to the issues 

studied by the PODS consortium and the recent advancements in consumer 

choice theory. In addition, as the development of a transatlantic alliance network 

was associated with the introduction of schedule asymmetry in PODS, we have 

focused as a case study on one particular component of the PODS passenger 

choice model, passenger preference for a flight schedule. 

 

 

6.1. Summary of Findings and Contributions 

 

 In the first part of this thesis, we have described the current PODS 

Passenger Choice Model and compared its assumptions to the models found in 

the consumer choice literature. We have established in Chapter 3 that the PODS 

generalized cost function can be compared to the specification of a mixed logit 

model with normally distributed independent random coefficients. As a result, 

the PODS Passenger Choice Model can be approximated by a series of mixed 

logit models, one for each market and passenger type (964 market-types in 

Network D). Based on data collected on actual passenger choice or through 

surveys simulating a booking process, it would then be possible to estimate the 

coefficients of the PODS generalized cost function, i.e. their mean and standard 

deviation using available estimation techniques. 
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In the second part of this thesis, we have focused on how passenger 

preference for schedule is modeled in PODS and its impact of the revenue 

performance of competing airlines both in a schedule-symmetric and schedule-

asymmetric environment. We have established that the constant replanning 

disutility model used in PODS was not relevant to study the impact of schedule 

asymmetry because it tends to under-estimate or over-estimate the value of a 

path class depending on its location relative to the passenger decision window. 

As a result, we have developed an alternative model called the variable 

replanning disutility model that determines the value of the replanning disutility 

based on the deviation of each path from the passenger decision function. Based 

on a review of the literature, we have proposed to use a piece-wise linear 

function to calculate the replanning disutility of each path based on its offset 

from the nearest boundary of the passenger decision window. 

 

We have then used the simulator to evaluate the impact of the variable 

replanning disutility model in both a schedule-symmetric and schedule-

asymmetric network environment. From the results of the simulation study, we 

can draw the four following conclusions.  

 

First, the variable replanning disutility model has a larger impact in PODS 

on business than on leisure passengers. This was expected since business 

travelers are generally assumed in the industry to be more sensitive to non-

monetary elements like for instance fare class restrictions or schedule than leisure 

passengers that are assumed to be mainly concerned about fares and this 

behavior is incorporated in the PODS Passenger Choice Model. As a result, based 

on the proportion of business passengers in the traveler population in each 

market, one can determine whether the impact of offering a wider schedule 

coverage will be rather large or small. 
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Second, the use of a variable replanning disutility model leads to an 

increase in simulated revenues at the system level. Due to this more realistic 

representation of the schedule convenience of each path, passengers are more 

reluctant to travel on schedule-inconvenient paths located far outside their 

decision window and some of them prefer to pay a higher fare to travel on a 

more schedule-convenient path. As a result, simulated industry revenues in 

general and sell-up revenues in particular increase. 

 

Third, the impact of the variable replanning disutility model is much 

larger in a schedule-asymmetric than in a schedule-symmetric environment. 

PODS simulation results show that the revenue advantage of offering a better 

schedule can be very significant, something that was largely under-estimated 

when the constant replanning disutility model is used. As a result, PODS could 

be used to estimate the potential revenue benefits of offering improved schedules 

or the potential revenue losses incurred when an airline decides to cut its 

schedule coverage at the market and network levels. 

 

Finally, the detailed analysis of the simulation results suggests that the 

introduction of the variable replanning disutility model establishes a better 

balance between the different components of the PODS generalized cost 

function. For instance, with the variable replanning disutility model, some 

passengers are more willing to accept a flight schedule outside but close to their 

decision window in order to travel on their most preferred airline.  

 

To conclude, simulation results suggest that the introduction of the 

variable replanning disutility model is a significant enhancement of the PODS 

simulator:  This more realistic representation of the value of the schedule 

convenience of each path allows using PODS to study with more accuracy 

scheduling issues that are relevant to the current industry environment like for 
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instance the impact on revenues of schedule reductions large network carriers 

have been implementing in the recent months. 

 

6.2. Future Research Directions 

 

From this study of airline passenger choice and this review of the PODS 

Passenger Choice Model, two categories of future research directions could be 

explored.  

 

First, one could investigate further the passenger preference for schedule 

issue. In particular, data collection of actual passenger choice behavior or surveys 

based on the simulation of a booking process involving the choice among several 

alternative flight schedules could enable researchers to calibrate the variable 

replanning disutility function and determine whether to use a function close to 

one of the three alternatives proposed in this thesis.  

 

Furthermore, it would also be interesting to study the relative impact of 

the variable replanning disutility model on various revenue management 

methods routinely used in PODS and in the airline industry. Such a study would 

enable to determine whether sophisticated revenue management techniques can 

be useful to leverage the benefits of offering a better schedule or mitigate the 

revenue losses associated with a less attractive schedule. 

 

In addition to improving the schedule component of the PODS Passenger 

Choice Model, further research could be useful on other parts of the choice 

model prior to starting significant research and simulation work on some issues 

involving specific parts of the passenger choice model. For instance, in order to 

simulate the competition between a network airline in PODS and a low-cost 
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competitor, it might be interesting to review how fare class restrictions are 

modeled in PODS and if the assumptions used in the simulator are a realistic 

representation of the current state of the industry. Furthermore, besides 

preference for schedule, it might be relevant to investigate some elements of the 

model related to the strengths of network carriers like for instance passenger 

loyalty and frequent flyer programs modeled in PODS through the unfavorite 

airline disutility. 

 

Finally on a more extended scale, extensive data collection on passenger 

booking choice behavior would enable to use advanced estimation techniques to 

determine the value of the coefficients of the PODS generalized cost function 

based on the specification of a mixed logit model with independent, normally 

distributed random coefficients or any other mixed logit specification. 
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