Demonstration System for a Low-Power Seismic

Detector and Classifier
by
Elliot Richard Ranger

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2003
(© E. Ranger, 2003. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

AUthor ..
Department of Electrical Engineering and Computer Science

May 9, 2003

Certified Dy
Thomas F. Knight, Jr.

Senior Research Scientist, MIT

Thesis Supervisor

Certified Dy
Kenneth M. Houston

Group Leader - Analog Systems, C.S. Draper Laboratory

Thesis Supervisor

Accepted Dy . ..o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Demonstration System for a Low-Power Seismic Detector

and Classifier
by
Elliot Richard Ranger

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 2003, in partial fulfillment of the
requirements for the degree of
Master of Science in Electrical Engineering

Abstract

A low-power seismic detector and classifier was designed and implemented which was
able to detect the footsteps of a person from as far as 35 meters away. Through-
out the design an emphasis was placed on using low power circuitry and efficient
algorithms. The test platform to demonstrate the concepts of the design utilizes
a revolutionary low-power microcontroller and Digital Signal Processor (DSP) from
Texas Instruments, Inc.. The DSP is a fixed-point processor that is underclocked to
minimize power consumption and the microcontroller has idle modes which consume
microamps of power. The system is designed to run on battery power, and uses solar
power to continually charge the batteries during the day. Lastly, a “Commercial Off
the Shelf” RF module allows multiple sensors to communicate with themselves to
triangulate position, or to relay detections and commands to and from a base station.

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist, MIT

Thesis Supervisor: Kenneth M. Houston
Title: Group Leader - Analog Systems, C.S. Draper Laboratory

Acknowledgment

May 9, 2003

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under Internal
Company Sponsored Research Project IRD03-2-5042.

Publication of this thesis does not constitute approval by Draper or the sponsoring
agency of the findings or conclusions contained herein. It is published for the exchange

and stimulation of ideas.

I always enjoy reading the acknowledgment section of my fellow colleagues’ thesis
documents. It is the one section of the report where you get to take a glimpse into
the author’s life and learn about the people who influenced them. Sir Isaac Newton
once said, “If T have seen further [than others| it is by standing on the shoulders of
giants”. I prefer to take a more humble approach and say it is because I have had
the shoulders of the great people who have helped me that I have seen so far.

My family has always been a source of strength and nourishment. Lots of things
come and go in your life: you change careers, where you live, and what walk of life
you choose to pursue. One thing that has always remained a constant in my life has
been my family. They have inspired me with their continual support to always reach
for the stars. I owe them a deep sense of gratitude for making education such a high
priority.

Thomas Knight and Kenneth Houston, my two advisors, helped me solidify my
project, come up with the resources to execute the project, and gave me the confidence
that I was doing a notable job. We have had some interesting experiences together
from lunches at the Cambridge Brewing Company to exhaustive days of testing in
the park. Without the support of these two, this project would never have occurred
or have been completed.

I owe a special recognition to the guys at Draper who helped me throughout my
stay there: Jack McKenna, Mike Matranga, Jim Scholten, Dan McGaffigan, Charles
Barone, Bob Menyhert, Bill Russo, Dennis Kessler and Fred Kasparian. Some of the
guys I talked to about the technical aspects of the project and other guys I talked to
about the stock market or politics, but I value the assistance all of them provided.
One person who deserves a little more thanks is my officemate Sermed Ashkouri. He
got to put up with all the daily joys of having me in the same office.

Lastly, there are numerous friends and colleagues along the way that have provided
me with a spring-board to bounce ideas off of. Although there is not room to mention

all of you rest assured that the thanks is still forthcoming.

Contents

Introduction

1.1 Background
1.2 Previous Worko
1.3 Research
1.4 Overview

System Architecture

2.1 Digital Signal Processing L.
2.1.1 Bandpass Filter 0
2.1.2 Envelope Detect
2.1.3 Decimation Lo o
2.1.4 Hanning Window
2.1.5 Fast Fourier Transform
2.1.6 Spectral Normalization

2.2 Footstep Detection Algorithm

Design Description

3.1 Analog Design
3.1.1 Geophone
3.1.2 Filtering
3.1.3 Amplificationo
3.2 Digital Design
3.2.1 MSP430F149 Microcontroller

17
18
19
19
23

25
27
28
29
29
31
31
33
34

3.2.2 TMS320VC5H509 Digital Signal Processor

3.2.3 Host Port Interface 0L
3.3 RF Design
3.4 Power Design
3.4.1 Solar Powero
3.4.2 Battery Charger.
3.4.3 External Power oL

Test Procedure

4.1 Unit Level Testing
4.2 System Testing
4.2.1 Data Collection
Results
5.1 Detection Performance L.
5.2 Analog Performance
5.3 Solar Power
54 Power Usage
5.5 RF Range
Conclusion
6.1 Future Enhancements00
6.1.1 Algorithm Improvement
6.1.2 DSP Technology
Schematics

Parts Listing

Assembly Drawing

Test Procedure

10

55
95
26
26

59
99
64
67
67
67

69
71
71
72

73

79

83

85

E TMS320VC5509 Source Code 93

E.1 bootcode.asmo 93
E2 defineh 98
E.3 difference.asmo 99
E4 extern.ho 100
E.5 filtersh. o 101
E.6 firdecimate.asmo Lo 103
E.7 hanning.h oo 106
E.8 hpfilterasm 130
E.9 hpic 131
Ed0 includeh . . . o 0 000 135
E.dl initsys.c o .o 135
E 12 Ipfilterasmo 138
Edl3 main.c L 140
E.14 normalization.ho oo 141
E.l5 proccemd.c.o 141
E.16 prototype.ho 143
E.17 signal proc.co 144
Ed8 timer.c L 155
E.19 variables.h oo 158
E.20 veb509.h . oL 158
E.21 vectors.asmo 162
E.22 whufferasmo 164
E.23 window.asm 166
F MSP430F149 Source Code 169
F.1 bootdsp.c 169
F.2 comms.c 172
F.3 defineh 175
F.4 display.c 177

Fb5 extern.h 180

F.6 flash.c 180
F.7 hpic 182
F.8 includeh 000 191
FO initsysh. 191
F.10 low_power.s43 198
Fll main.c oo 0 198
F12 menu.c 199
F.13 proccadc.c oo 204
F.14 proccemd.c. 209
F.15 prototype.h 218
F.16 signal proc.co 219
FI7 timer.c e 222
F.18 typedefh 223
F.19 variables.h o 225
G Errata 227

12

List of Figures

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

Solar Isolation (kWh/m?/day) in the U.S. 21
Signal Processing Path 26
Signal After Bandpass Filter 30
Envelope Detection oo 30
Decimation 31
Hanning Window L o 32
Hanning Window Applied to Footstep Data 32
Scaled FFT Output 33
Analog Frontend Stages 38
Bode Plot for Analog Frontend 40
Main Menu 44
VC5509 Menu oo 44
Geophone Menuo 44
ADC Menu 44
Miscellaneous Menu Lo 45
Solar Panel 53
Footstep Data Collection Setup o7
Magnitude, Phase and Noise Plots for Board SN101 65
Magnitude, Phase and Noise Plots for Board SN102 66
Prototype Board 70

13

14

List of Tables

3.1
3.2
3.3
3.4
3.5

5.1
5.2
5.3

Microcontroller Memory Map 42
Initial Configuration of Port Registers. 46
DSP Memory Map 49
HPI Write Memory Map for Saving Program Code 50
HPI Command Codes 51
Detection Data oo 63
Subject Data 64
Power Usage 67

15

16

Chapter 1

Introduction

Recently, there has been a great emphasis on low power circuit design. This has revo-
lutionized many areas in computers and electronics. One area specifically benefitting
from the improvements in lower power consumption is sensors. Sensors can now run
for weeks with the power of only a couple Lithium Ion batteries. This means they
are cheaper to operate, and more importantly, they require less human intervention
because the operator does not have to replace the batteries as frequently. Texas In-
struments, Inc., has an Ultra-Low-Power Microcontroller which only draws 2.5 uA
of power in certain operating modes [13]. New advances in programmable parts are
being made as well. Combining this low power mentality in an area which has not
had much research is the goal of this thesis.

When a person or animal walks along the ground they emit seismic waves as a
result of the impact. These waves then propagate through the ground. A geophone is
a sensor that is able to measure the amplitude of these seismic waves in the ground.
geophones can be used to measure everything from a car driving by to an outright
earthquake. The critical part is then establishing algorithms that allow the device to
differentiate seismic waves coming from a person versus other seismic activity.

This project is an improvement to current technology in a number of regards.
First, it will focus on low power components. Next, it focuses on the development of
simple yet effective algorithms to detect and classify people. Numerous algorithms

exist for classifying data, however, most of them are not intended for low power

17

applications. The algorithms utilized for this project will need to be relatively simple
so they can run in a low power environment, but also still need to maintain their
effectiveness in classifying people. Lastly, is the consideration of alternative forms of
energy. This area is frequently overlooked when designing systems, but will no doubt
become more important in future designs with our diminishing supply of natural
resources. Combining all these areas in a working prototype will help advance sensor
technology as well as general design principles.

The methodology behind the design of this system was to create a platform that
later could be built upon and expanded. The scope of the project is quite expansive
and some areas have had more attention than others. Every attempt has been made
to clearly document all the aspects of the project so that in the event that someone
chooses to pursue an aspect of the project at a later point the design and results will

be at their disposal.

1.1 Background

The ground, like any other elastic medium, allows waves to propagate through it. The
impact from a footstep hitting the ground can be distinguished from as far as 100
meters away under ideal conditions [12]. The maximum distance is directly related
to the attenuation rate of the ground and the type of wave being studied. There
are four types of seismic waves that propagate through the ground: compression,
shear, Rayleigh, and Love. These waves have varying diminishing amplitudes as they
travel through the ground. The Rayleigh wave diminishes as 1/R while the shear and
compressional waves diminish as 1/R? [11]. The Love wave, which is caused by the
layering of the soil, is not really considered. In footstep detection, the most important
wave is the Rayleigh wave. It is a wave which travels along the surface of the earth.
Its components expand in two dimensions and diminish exponentially with depth [11].
As a result of this, the wave can be detected at much further distances than the body
waves (compressional and shear). Another thing to consider is how the energy from

a footstep gets partitioned into the three waves. The shear and compressional waves

18

which are body waves contain roughly 26% and 7% of the energy, respectively, while
the Rayleigh wave contains 67% of the energy [11]. Therefore the Rayleigh wave is the
critical wave for footstep detection. Not only does it propagate through the ground
over greater distances, but it is also where the bulk of the energy from a footstep
gets transmitted. It is also possible to extract bearing information from the Rayleigh

wave using a three-axis geophone [11].

1.2 Previous Work

There are numerous algorithms for classifying data, however, most of them require
massive amounts of computational processing power or memory. For instance, Succi
et al, used a Levenberg-Marquardt Neural Network Classifier to track vehicle data
[10]. This produced good results, but it required 6MB of dynamic memory for its
matrix processing. In a low powered embedded system running a classifier of that
nature would require too much power.

Kenneth Houston and Dan McGaffigan at Draper Laboratory have done a sig-
nificant amount of research in the area of personnel detection using seismic sensors
[3]. Most systems prior to their work was transient based. The downfall of that
approach is that many real-world signals unrelated to human locomotion look like
transients. A systems designed like that will have either a very high false alarm rate
or else will be insensitive. They introduced the idea of using spectrum analysis on
envelope-detected seismic signals. This method not only produced reasonable detec-
tion ranges but also was significantly better at discriminating footsteps from other
types of seismic sources. This work is the basis for the algorithms that were utilized

in the system.

1.3 Research

Continuing the work on the algorithms developed by Kenneth Houston and Daniel

McGaffigan, it became desirable to examine how different geological and topological

19

features affected the ability to detect and classify footsteps. Also, it became desirable
to collect data from other ambulatory creatures, such as horses, to determine if there
was noticeable features which would allow the system to discriminate from horses

while still maintaining a simple algorithm.

The other area in which the project was expanded was to look at alternative forms
of energy to power the system. There are many forms of energy on the planet. Wind,
vibration, water, coal, oil, wood, nuclear fusion, and solar all produce energy that can
be transferred into electrical energy. Considering the application of this project as a
small, low-powered sensor, it is important that the energy source be able to convert
the energy into electrical energy efficiently and that the mechanism are relatively

small.

Energy can be readily converted from one form to another. However, most tech-
niques do not yield enough electrical energy to sustain a system. Amirtharajah has
proposed using ambient vibrational energy to power electrical devices [1]. Vibrational
energy does not yield enough energy to power the prototype, but solar energy is a
viable solution. Current research is around 20% efficiency which means for a 1 cm?

solar cell 20 mW of energy can be obtained [2].

Photovoltaics are materials that when sunlight hits them an electron is released
causing it to generate an electrical current. Photovoltaics are the cheapest way to
produce electricity for smaller systems and often times the simplest and cleanest to
operate. The problem with solar power is the sun is almost never directly overhead,
except in the tropics. At a latitude of 45 degrees the solar radiation may vary from
92% (early summer) to 38% (early winter) [9]. At higher latitudes the distance from
the sun to the earth becomes further and also the scattering of the sun’s radiation
from gases in the atmosphere becomes significant when considering the use of solar
power as well. Furthermore, it is important to take into account the natural landscape
such as mountains, altitude, and cloud cover. All these variables make solar power a
very inconsistent source of energy. Figure 1-1 shows some of the typical solar isolation

amounts in the United States.

In 1839, Edmond Becquerel was the first to discover that when sunlight is absorbed

20

"Worst Case"” Solar Insolation
(Wh/m= fday)

1.7

Source: Sandia National Laboratories

Figure 1-1: Solar Isolation (kWh/m?/day) in the U.S.

21

by certain materials it can produce an electrical current. It was not until the 1950 and
the advent of solid-state devices that people were able to do something meaningful
with this information. The space program was the first application for solar cells and
in 1954 a 4% efficient silicon crystal was developed [9]. As early as 1958 a small array

of solar cells was used to provide electrical power to a U.S. satellite.

Photovoltaic cells are created by doping a material like silicon with a substance
like Boron or Phosphorus which has one less or one more electron respectively. A
junction forms between the doped silicon and the undoped silicon. When a photon
strikes the cell it contains enough energy to release the extra electron and allow it
to move across the junction. A grid is set up to gather the current from a number
of cells and different currents and voltages can be constructed depending on how the

grid is arranged.

The most common photovoltaic cell used today is the single crystal silicon cell.
The silicon is highly purified and sliced into wafers from single-crystal ingots, or grown
as thin crystalline sheets or ribbons. Polycrystalline cells are available as well but are
inherently less efficient, but they are cheaper to produce. Some of the most efficient
cells are made from Gallium arsenide; however, they are very expensive. Currently,
there has been a lot of focus on thin films made from amorphous silicon. Copper
Indium Diselenide and Cadmium Telluride may also provide viable low-cost solutions.
The thin films do not require a lot of material and have great manufacturabilty.
Another area which is receiving a lot of attention is multijunction cells. This will

allow the cell to use more of the spectrum from the sunlight giving higher efficiencies.

There are drawbacks with the use of solar energy. For one thing, it only works
when the sun is out so batteries will be required during the evening hours or if the
device is buried underground. Also, the solar cells are fragile so they will need to be

protected from adverse weather conditions.

22

1.4 Overview

Ultimately, the goal of the project is to produce a bread-board prototype that is able
to correctly detect and classify people. In order to accomplish this the device needs
to incorporate many types of electronics. It will require a sensor to acquire the data,
an Analog-to-Digital Converter (ADC) to convert the data to digital form, and a low
power Digital Signal Processor (DSP) to process the data. In addition, the device will
incorporate a radio frequency (RF) transmitter to relay data back to the operator
when it has detected something. Low power devices will be featured in the design,

and solar power as a means of powering the device will be explored.

23

24

Chapter 2

System Architecture

The clearest way to understand how the system processes data is to analyze it from a
signal perspective. The next couple paragraphs describe the path a signal takes from
when the sensor picks up vibrations all the way to the determination of whether or
not the signal is classified as a person.

The geophone is an external sensor with a stake on it that penetrates the ground.
It generates very small electrical voltages depending on the intensity of the propa-
gating waves in the axis that the geophone is arranged in. The geophone is biased
to fluctuate around 1.5 V, the middle of the full range input to the Analog-to-Digital
Converter (ADC). This allows use of a single supply voltage for the front-end electron-
ics and maximizes the signal voltage range. The geophone plugs into the prototype
board through port J3. The port is able to support up to there seismic channels
of data, however, currently the system is only utilizing a single channel. The other
two channels could be used to concurrently process data from two other single-axis
geophones or the data from one three-axis geophone.

When the signal arrives at the board it is initially filtered through the analog
circuitry. It is filtered through two analog lowpass filters and one highpass filter.
These filters bandlimit the signal to prevent aliasing. Then the signal goes through
a single gain stage. Following the gain stage, the signal is sampled by a 12-bit ADC
built into the microcontroller. The sampling rate is controlled by one of the internal

timers on the microcontroller and is set at 1 kHz. After eight samples have been

25

collected by the ADC, the microcontroller directly writes the data into a certain
memory location within the DSP through the Host Port Interface (HPI). Every 1200

samples, or 1.2 seconds at a 1 kHz sampling rate, the microcontroller takes the DSP

out of its low-power mode and requests the DSP process the next block of data.

Geophone Antialiasing Gain of 12-Bit ADC IR
Sensor Filter 40 dB or Sampling Bandpass
1-Axis or 2-Pole 60 dB Rate Filter
3-Axis Fc=300 Hz 1kHz 10-40 Hz
NORMALIZATION
& DETECTION
Envelope FIR Hanning Normalize to SNR
Detect Decimation Window Classify if above
Filter FFT every Threshold and if
M=10 1.2 secs Harmonics are

Present

Figure 2-1: Signal Processing Path

Figure 2-1 shows the stages of the signal processing chain. The DSP begins by
passing the data through a digital bandpass filter allowing signals within the range
of 10 Hz to 40 Hz to pass. This bandpass range is geology dependent but was fixed
for this project. The next step is critical for the detection process. The important
part of detecting footsteps is the periodicity of the footsteps on the ground. The
time of each distinct impact on the ground is the critical information that needs to
be retained, as opposed to, the exact frequency content received at the sensor, which
can be quite variable. An absolute value is performed on the whole signal to create an
envelope of the received signal, which will peak for each distinct footstep. After this,

the data is decimated and lowpass filtered again to prevent aliasing. The decimation

26

occurs in two separate steps; first by 5 and then by 2. The decimation removes high
frequencies in the envelope data so as to smooth out the footstep pulses. It also allows
the Fast Fourier Transform (FFT) to be smaller to get the frequency resolution that is
required. A moving window technique employing a Hanning Window is then utilized
because the amplitude of the data is changing as the distance from the person to the
sensor changes with respect to time. Next, a 1024-point FF'T is performed to convert
the data into the frequency domain. The FFT returns the values of the frequency
components as complex numbers. A function converts those real and imaginary parts
into magnitudes, and the data is scaled to make it easier to differentiate the signal
from the noise. A two-pass normalization is performed to estimate the background
level. Then the background signal (converted to decibels) is subtracted from the
seismic signal (also in decibels) so the detection is based on normalized signal levels.
Lastly, the footstep discriminator algorithm is called to decide whether the footsteps

are from a person. The details of the discriminating algorithm will be discussed later.

2.1 Digital Signal Processing

A Digital Signal Processor has specific hardware to expedite signal processing rou-
tines. It is a fixed-point processor to reduce power consumption. Using a fixed-point
processor increases the complexity of the design and requires careful design to keep
the signals scaled and in an appropriate range. Also, floating-point calculations take
many additional clock cycles on a fixed-point processor so they should be avoided.
The way numbers are represented in the processor is an important aspect of the
design stage. Using a fixed-point processor allows the programmer to pick any arbi-
trary number of bits to represent the integer portion of the number and the fractional
component. As long as the representation remains consistent the operations will pro-
duce the correct results. Texas Instruments has provided a number of common DSP
functions to assist developers using their processors. Whenever possible, these func-
tions were utilized because they are written in assembly and attempt to maximize the

efficiency of the algorithms for the hardware platform. The DSP Library functions

27

generally use a Q15 number representation, which means there is no integer portion,
15 bits of fractional data and one bit to represent the sign of the number. There-
fore, all the numbers represented throughout the signal processing chain are scaled

between -1 and 1.

2.1.1 Bandpass Filter

The Infinite Impulse Response (ITR) bandpass filter allows frequencies from within
the range of 10 Hz to 40 Hz to pass. Originally, it was designed to be a 4 pole filter,
2 poles for the lowpass component and 2 poles for the highpass component, however,
there were some difficulties getting the biquads to function properly. A simple 2
pole bandpass filter was resorted to, to get the system working. Within a Digital
Signal Processor the easiest way to implement an IIR filter is through the difference
equations. The single pole difference equations for the highpass and lowpass filter are

described in the equations below.

Highpass : Y; = *Y, 1+ X, — X (2.1)

N -1 1
« Y+ — x X, (2.2)

L 1Y, =
owpass N N

1

-
where N = —, 7= —————
T, 2T * fcutoff’

T = sample period

To create the highpass filter 77 = 1/1000, 7 = 1/(27 * 10Hz), and N = 16. The
lowpass filter is realized in a similar fashion with 7" = 1/1000, 7 = 1/(27 % 40H z),

and N = 4. This produces the following difference equations for the bandpass filter.

15
Highpass : Y; = 1—6Yi,1 + X, — X (2.3)

28

3 1
Lowpass : Y; = ZY;_l + ZXi (2.4)
The fractional components are scaled as fractional components within the proces-

sor with 1 being represented by 32,767. Both of these filters are coded in assembly

and can be found in Appendix F in the files hp_filter.asm and lp_filter.asm.

2.1.2 Envelope Detect

After the signal has been filtered it looks like the signal shown in Figure 2-2. Notice
how the impact from the footsteps generates both positive and negative waves. The
frequency of these waves is controlled by the terrain. The goal however is to treat
this whole block as one impact and then determine the frequency that the impacts
are occurring. In order to do this the absolute value function changes the sign of all
the negative going waves and flips them about the axis so they are positive. This

generates an envelope for each of the footsteps shown in Figure 2-3.

2.1.3 Decimation

Oversampling followed by decimation has several benefits. Oversampling allows the
use of a less stringent analog antialiasing filter, which has a lower precision than a
digital filter. In addition, a digital filter does not drift with temperature or time. The
decimation stage requires a lowpass filter to prevent aliasing. The unique thing about
decimating is that the function is the same as a regular Finite Infinite Response (FIR)
filter except it is only necessary to do the operations on the values that will exist after
decimating. It is implemented in assembly as a standard FIR filter that only runs on
the samples that exist after decimating. Thus if it is decimating by two it only runs
on every other sample and if it is decimating by 5 it runs on every 5Hth sample. For
this application, the decimation operation is divided into two parts to limit the size
of any filter. The other benefit of decimating is it smooths out the waveform. The

same sample data after a decimation of 10 in shown in Figure 2-4.

29

0.0165

0.01474
0.01254
0.01104
0.009174
0.007354
0.005504

0.003674

T e N ka nﬂ I MM}‘W Al
o] i U“WVWVUUU I W?

-0.00367

-0.003504

-0.007 3544

-0.009174

-0.01104

-0.01 28

-0.0147

-0.mes] T T T T T T T T T
1] 120 240 360 430 E00 720 G40 Q&0 1030 1199

Figure 2-2: Signal After Bandpass Filter

0.0163

0.01474

0.01264

0.01104

0.00917

0.007 34

0.00550

0.00367

0.0015354

0

Figure 2-3: Envelope Detection

30

0.0104

0.009254

00081 24

000556

0.00550+

0.004544

000343

0002352

000116

0

Figure 2-4: Decimation

2.1.4 Hanning Window

Before the Hanning window is applied to the data there is a window buffer function
which takes advantage of the specialized hardware on the DSP to handle circular
buffers. A circular buffer is able to loop through the same memory space without
shifting data. It is a feature prevalent in DSPs and very handy when doing signal
processing operations. The function keeps adding new data to the end of a buffer
and outputs a linear array with the next set of data to run through the window.
The window function simply multiplies all the values in the output by the Hanning
Window coefficients. The coefficients for the Hanning Window were realized in Matlab
and a plot of the window is shown in Figure 2-5. The data after it passes through
the window is shown in Figure 2-7. The window contains about 8.5 seconds worth of

footstep data and the sampling rate is now 100 Hz after the decimation by 10.

2.1.5 Fast Fourier Transform

The Fast Fourier Transform (FFT) routine was provided by Texas Instruments in their
DSP Library. The project uses a 1024-point FFT which gives a frequency resolution
of 0.098 Hz per bin. The output from the routine segments the numbers into real

and imaginary components. The phase information is not useful for this application

31

0.8 - —

0.6 —

0.4 B

L L L L L L L L L
s} 100 200 300 400 500 500 7o0 800 900 1000

Figure 2-5: Hanning Window

0472

0153

0.134+

01154

00955

0.0764

0.0573

00352

00191

Figure 2-6: Hanning Window Applied to Footstep Data

32

0E17

0.549
0,450+
0.4114
0.343
0.2744

0.206+

0137+
0

Figure 2-7: Scaled FFT Output

and can be disregarded. The convert_to_mag function, in Appendix F, converts
the output from the FFT to a number representing the magnitude information. It
computes the absolute value of the data, squares the real and imaginary component
and then finds the square root of the number. The square root function was provided
by Ken Turkowski [14]. The function computes the square root using only fixed-point
numbers. After the data has been converted to a magnitude, the DC frequencies
are removed from the spectrum and the data is scaled. The data after the FFT and

scaling looks like Figure 2-7.

2.1.6 Spectral Normalization

It is very clear where the first, second and third harmonics are from the FFT output
in Figure 2-7. The problem is this data are not normalized relative to the background
level. In order to normalize the data a two-pass normalization is performed on the
data. This calculates the average on both sides of a moving center point, and then
calculates the mean within the center. Ideally, the peaks in the FFT will fit into the
gap in the center. If the average of the center points divided by some threshold is
above the average of the sides then the center value gets replaced by the average from

the sides. It requires two passes because after the first pass a large peak will create

33

two smaller peaks in the output. The second pass helps to smooth out those smaller
peaks so that when the operation is finished there is an array which approximates
the background level of the spectrum. The width of the sides and the width of the
center section can be adjusted in the normalization.h file. Currently, the length of
the sides is 16 samples and the length of the center is 9 samples. Lastly, every point
in the output of the FFT is subtracted by the background level multiplied by two.

2.2 Footstep Detection Algorithm

The footstep detection algorithm is based on the work by Kenneth Houston and Daniel
McGaffigan [3]. Footstep data was collected from three days of testing in a few parks
around Massachusetts. The data was recorded with a 16-channel acquisition system
running into a laptop and a two channel portable DAT machine. A GPS receiver was
also carried by the individual and the data was later downloaded to a computer to
provide a ground truth. The test setup used to collect the data is described in further
detail in Chapter 4. After collecting the data, Matlab was used to post-process the
data and come up with the feature set used to distinguish footsteps.

The first criterion is that the frequency of the first harmonic for the footsteps be
in the range of 1 Hz to 3 Hz. This is the frequency range of the impacts from a
person’s feet hitting the ground. It is remarkable how periodic the footsteps of most
people are when they are walking normally. In addition to the frequency component,
the peak also has to be greater than a certain threshold relative to the noise level.
The next aspect of the detection algorithm is to verify that either a second or third
harmonic exists and that one of them is above another threshold level. The algorithm
finds the first five peaks in the range of 1 Hz to 10 Hz. Then it determines if the
peaks it acquired meet the requirement to classify it as a footstep.

The digital bandpass filter at the beginning of the signal processing chain is very
important in determining how well the algorithm performs detections and classifica-
tions. The environment and terrain can have a huge impact on the waveforms that

are observed when a person walks on the ground. In future versions one would want

34

to consider an adaptive bandpass filter that automatically fine-tunes the frequency of
its passband. Also, there could be intervention from the user to pick a specific land

terrain for where the sensor will be operated.

35

36

Chapter 3

Design Description

The design of the footstep detector can be broken down into four major areas: analog
design, digital design, RF design, and power design. The analog design includes all
the electronics that are necessary to filter and amplify the small voltage signal coming
from the geophone. The digital design contains the microcontroller and DSP, and all
their supporting circuitry. These chips do the analog-to-digital conversion (ADC)
and process the data to detect footsteps. The microcontroller also handles the user
interface to control various settings. The RF design is mainly an off the shelf product
which is used to allow multiple boards to communicate with each other or for the
sensor to communicate with a base-station. Lastly, the power design contains all the
circuity to support power from a battery, solar power or an external power supply.
If the system were deployed in the field the ideal solution would be to have the solar
power charge the batteries during the day and provide power for the system, and at
night power the system via battery power. Also included in the power design is the
power management scheme. Systems are shutdown when they are not in use and the
processors are put into low-power modes when they are not actively processing data.

These areas will be discussed more fully in the following sections.

37

3.1 Analog Design

The analog design has a separate power and ground plane from the digital area. The
geophone provides a very small voltage that varies depending on the amount of seismic
activity. This output needs to be amplified and filtered before it can be sampled by
the ADC. A portion of the schematic which handles the analog frontend is provided

in Figure 3-1 for reference. The sections will be discussed later.

Single-Pole Active
Lowpass Filter CMOS Switch
Determining Gain

Gain Stage

/

ii;) \ o -

Single-Pole RC Si.ngle—PoIe. RC
Lowpass Filter Highpass Filter

Figure 3-1: Analog Frontend Stages

3.1.1 Geophone

A geophone is a small instrument for measuring ground motion. It is part of a category
of sensors called seismometers. Seismometers usually consist of a mass suspended by
a spring, with the mass being either a magnet that moves within a moving coil, or a
coil moving within the field of a fixed magnet. The geophone is an electromagnetic
seismometer, which produces a voltage across the coil that is proportional to the
velocity of the coil in the magnetic field, and thus approximately proportional to
the velocity of the ground. There are two variants of geophones a one-axis version
and a three-axis version. As the names imply, the one-axis version measures surface
waves travelling in one axis while the three-axis version provides circuity to measure

propagating waves in all three axes. For this application only a single axis geophone

38

is used, but the system is capable of handling a three-axis geophone.

3.1.2 Filtering

The sampling rate is set at 1 kHz. Therefore, to prevent aliasing the Nyquist frequency
of 500 Hz must be observed. A lowpass filter with a cutoff of approximately 300 Hz
will prevent any antialiasing. Two stages of single pole lowpass filters are provided,
Figure 3-1. The first one is a simple RC filter with a cutoff of 15.92 kHz to prevent
RF noise from getting into the analog inputs. The second lowpass filter is a single-
pole active filter with a cutoff of 482 Hz, and is followed by another RC passive
highpass filter with a cutoff of 0.98 Hz. The highpass filter prevents any DC signals
from passing through and being amplified. The equations used to calculate the cutoff
frequencies are shown below. Chapter 5 provides the actual measurements taken from

the boards. Figure 3-2 shows the Matlab plot of the analog circuitry.

1 1
L 1: = = = 15.92kH 1
owpass L+ Jeworf = 5 pE = ga 00w 01up OOk (3:1)
DCgain =1 (3.2)
1 1
Lowpass 2 : feuoff = = 482H » (3.3)

o1 % RyC' 27 * 1Meg * 330pF

-R
DCgain = —2 — _31.65 (34)
1
Highpass 1: forr — — 1 _ ! — 0.98H (3.5)
gnpass 1 Jeutoff = 27« RC T % 162k * 1ul’ - ‘ .
DCgain =1 (3.6)

39

Bode Plot for Analog Frontend

Figure 3-2

10 T T T T T . T T T T T
__-10F ;
o) X
E .
c 20 :
‘© :
U .
30 : D
40+ _
I R . ; |
10° 10' 10° 10° 10"
T T T T
150 : . i
100 : -
g 50 & Z—
E .
() 0 o =
p :
= -50 :
-100 :
-150 . L : FR a
L L L i
10° 10' 10° 10° 10"

Frequency (Hz)

: Bode Plot for Analog Frontend

40

3.1.3 Amplification

The amplification is through a single stage instrument amplifier, Figure 3-1. A low
on-resistance CMOS analog switch is used to select whether a single 464 k) resistor
or the 464 k2 in parallel with a 32.4 k() resistor control the gain. The microcontroller
is able to control the line GEO_X_SEL to determine which gain setting the amplifier is
in. With only the 464 k2 resistor there is 40 dB of gain, while with the two resistors
in parallel the approximate resistance is the value of the lower one, 32.4 k), and the

gain is approximately 60 dB.

3.2 Digital Design

The digital design is comprised of the microcontroller, DSP, and all the supporting
circuitry. The main functions of the microcontroller are to control the power to all the
subsystems, change various settings within the subsystem, control the user interface,
sample the data, and transfer the data to the memory of the DSP. The DSP processes
the data and executes all the signal processing operations. After performing the
detection algorithms, it reports to the microcontroller when a positive detection has

been made.

3.2.1 MSP430F149 Microcontroller

The MSP430F149 (MSP) is a new generation of low-power microcontrollers developed
at Texas Instruments. This microcontroller is able to run on less than a milliamp of
power and has a whole host of features as well. There are numerous I/O ports on the
microcontroller which allow control over all the subsystems, a built-in 12-bit ADC,
and two UART ports for serial communications. In addition, the MSP has 60 KB of
flash to store program code and 2 Kb of RAM.

The MSP is able to do the job that three or four ICs would perform in a traditional
design. Since the number of digital 1/O lines required for the design is relatively low,

the MSP is able to manage the job of controlling digital lines that a separate FPGA

41

or CPLD would normally handle. The UART ports allow communications between
the host computer and the RF unit. The flash memory is large enough to store all
the MSP program code as well as all the program code for the DSP. The DSP would
usually have its own flash chips to store its program code in, and external memory
to process data. Having less components reduces the size of the system and more
importantly the power consumption.

The MSP is able to address 64 kB memory locations. Table 3.1 shows the memory
map for the MSP. The MSP program code occupies the memory address locations
0x1100-0x5FFF about 20 kB of space, while the DSP occupies the flash memory
locations 0x6000-0xC600 about 26 kB of space.

’ Memory Byte Address \ Contents ‘

0x0000-0x01FF Registers
0x0200-0x0FFF Ram
0x1000-0x10FF Information Memory
0x1100-0x5FFF MSP Program Code
0x6000-0xC600 DSP Program Code
OxFFEO-OxFFFF Interrupt Vectors

Table 3.1: Microcontroller Memory Map

User Interface

The user interface allows the user to interact with the system and control various
modes of operation. The commands are given over an RS232 serial link. Currently,
the serial connection is set to run at 19200 bps with 8 data bits, no parity bit and
one stop bit; however, those settings can easily be modified in the code.

When the system is first powered the user is presented with the main menu shown
in Figure 3-3. The main menu has three standard sections. The header information
for the project is shown on the top of every screen. A message area is used to display
feedback to the user. The actual menu screen is in the center and allows the user
to select various submenus, such as, the VC5509 menu, Geophone menu, and ADC

menu. By pressing the letter associated with the menu the appropriate submenu is

42

brought up. These menus serve a dual purpose in the system. When the system
was designed this is how the system was tested. As various subsystems were brought
online they were tested by generating commands from the microcontroller to verify
that they were functioning correctly. Now, the menus serve to test the subsystems
again if something is not operating correctly and allow the user to make changes to
the system settings.

The VC5509 menu, Figure 3-4, regulates when the DSP is booted, how code gets
loaded into the DSP, and when signal processing is started. Also, this controls how
the DSP code gets saved into the flash of the microcontroller. First, the code is loaded
into a buffer location in the DSP memory and then it is transferred over to the flash of
the microcontroller. Starting the signal processing operation turns on the geophone
channel and starts the ADC on the microcontroller.

The Geophone menu, Figure 3-5, controls the geophone channels. The gain set-
tings can be modified for any of the channels, and power to the analog subsystem can
be turned on or off.

The ADC menu, Figure 3-6, allows the user to poll various channels on the ADC
to find out their instantaneous values. Both the geophone and test input channels
can be polled, and there is an internal temperature sensor in the microcontroller that
can be checked.

The Misc menu, Figure 3-7, has a few miscellaneous features that were pro-
grammed in the system, but not really necessary for normal operation. The tem-
perature can be checked and power supply voltage. The message area can be cleared,

and the running time of the processor since it was powered on can be displayed.

Port Description

The MSP has up to 48 digital I/O lines to control various subsystems and interface
with other components. Many of the ports on the MSP can be configured to perform
special functions as well. For instance, the ports that are used to receive the ADC
signals can either be selected as I/O ports or the inputs to the ADC. Obviously, when

the ports are selected to perform special functions it reduces the number of I/O ports

43

K
File Edit Yiew Cal Transfer Help
D @8|DnE|

|

Personnel Detector

Master's Thesis Project

Elliot Ranger

HSPAJOF149 VERSION 1.04 3/04/2003

Main Menu

. YC5509 Menu

. Geophone Menu

. RF Menu

. RS232 Menu

. ADC Test

. Host Port Interface
. Flash Menu

. Misc Menu

Select: _

o ho o0 T

-

4 |

Connected 1:34:40

louto detect 1920081 [SCROLL

13

[CAPS M [Captu 4

Figure 3-3: Main Menu

K
File Edit Yiew Cal Transfer Help
D& &8[08

|

Personnel Detector

Master's Thesis Project

Elliot Ranger

HSPAJOF149 VERSION 1.04 3/04/2003

YC5509: Booted and Running
THH320VC5509PGE VERSTON 1.20 3/04/2003
MSP: Starting Signal Processing

YCH509 Menu

. Power ON

. Power OFF

. Boot DSP

. Copy DSP Code to Buffer

. Copy Buffer to Flash

. Start Signal Processing

. Stop Signal Processing

. Clear Signal Processing Buffers
. Y0509 Code Yersion

Select:

D —hD X0 T

-

4 |

13

Curmected 1:35:06 o detect 19200801 [SCROLL

[CAPS M [Captu 4

il
File Edit Wew Cal Transfer Help
D& & 305 8

Personnel Detector

Master's Thesis Project

Elliot Ranger

MSP430F149 VERSION 1.04 3/04/2003

Geophone Menu

. Power ON

. Power OFF

. Channel A Gain 48dB
. Channel A Gain 68dB
. Channel B Gain 48dB
. Channel B Gain 68dB
. Channel C Gain 48dB
h. Channel C Gain 68dB

o = o0 T

Select:

-

4 |

Connected 1:35:39

y
[outodetect [t920080-t [SCROLL [Cars M [Captu

Figure 3-5: Geophone Menu

44

Figure 3-4: VC5509 Menu

e
File Edit Yiew Cal Transfer Help
O (@8 [DB|

|

Personnel Detector

Master’s Thesis Project

Elliot Ranger

HSP4IOF149 VERSION 1.04 3/04/2003

Geophone A: 1.5051
Geophone B: 1.5081
Geophone C: 1.5081

ADC Henu

a. Geophone Channels
b. Test Input Channels
c. Temperature Sensor
d. Power Supply Yoltage

Select:

-

4 |

13

Comnected 1:36:02 Jauto detect [192008--1 [SCROLL

[R5 oM [Capi

Figure 3-6: ADC Menu

#PD1 - HyperTerminal ngﬁl

File Edit View Cal Transfer Help

A

Personnel Detector

Master’s Thesis Project

Elliot Ranger

MSPA3OF149 YERSION 1.04 3/04/2003

0 hours : 2 minutes : 32 seconds
Power Supply VYoltage: 3.2666
Temperature Sensor: 31.68 C

Misc Menu

a. Display Running Time

b. MSP Power Supply Yoltage
c. MSP Temperature

d. Clear Hessage Display Area

Select: _

S

4 | »

Connected 1:36:39 fputodetect 1920081t [SCROLL [CAPS o [Captu

Figure 3-7: Miscellaneous Menu

available. All of the I/O ports can be configured to read or write to the port. The
I/O ports are used to control the power for the DSP chip, seismic analog filtering and
amplification, the RF power, and RS232 chip. Furthermore, they are used to transfer
data back and forth between the DSP using the Host Port Interface (HPI).

The ports on the MSP are configured by writing to specific registers. Each port
has its own register to control: whether it is a port or special function, and the
direction of the port (read or write). There is a register to read the data from the
port or write data to the port. In addition to all the above configurations, Port 1 and
2 on the MSP are also able to receive interrupts as well. The ports are all set to their
initial values in the function initialize_ports() within the initialize_system()
routine. Table 3.2 shows the initial values of all the registers associated with each
of the ports. The PxSEL register determines if it is a special function (high) or the
standard port (low). PxDIR sets the direction of the port as either an output (high)
or input (low). PxIE enables the interrupts for the port. Interrupts can only be
enabled on port 1 and port 2. PxIES determines which edge the interrupt should
trigger on, the rising edge (low) or falling edge (high).

45

7 6 5 4 3 2 1 0
PORT 1 HRDY HDS1 HRW HCNTL1 | HCNTLO HBE HBEO HINT
P1SEL 0 0 0 0 0 0 0 0
P1DIR 0 1 1 1 1 1 1 0
P1IE 0 0 0 0 0 0 0 0
P1IES 0 0 0 0 0 0 0 0
PORT 2 HP7 HP6 HP5 HP4 HP3 HP2 HP1 HPO
P2SEL 0 0 0 0 0 0 0 0
P2DIR 0 0 0 0 0 0 0 0
P2IE 0 0 0 0 0 0 0 0
P2IES 0 0 0 0 0 0 0 0
PORT3 [RF_RXD | RF_TXD | ULRXD U_TXD | RF_CTS | RF_ENA | GEO_ENA | VC55_ENA
P3SEL 1 1 1 1 0 0 0 0
P3DIR 0 0 0 0 0 1 1 1
PORT4 [HP15 HP14 HP13 HP12 HP11 HP10 HP9 HP8
P4SEL 0 0 0 0 0 0 0 0
P4DIR 0 0 0 0 0 0 0 0
PORT 5 [RF_PWRDN| ACLK |RS232_ENA| MCLK | NOT USED |[GEO_C_SEL|GEO_B_SEL|GEO_A_SEL
P5SEL 0 1 0 1 0 0 0 0
P5DIR 1 1 1 1 1 1 1 1
PORT 6 [TEST_IN3 | TEST_IN2 | TEST_IN1 |GEO_C_OUTGEO_B_OUT[GEO_A_OUT| NOT USED | NOT USED
P6SEL 1 1 1 1 1 1 1 1
P6DIR 0 0 0 0 0 0 0 0

Table 3.2: Initial Configuration of Port Registers

Clocks

There are three different clocks on the MSP. The master clock (MCLK) runs the CPU.
The LXT2 oscillator is divided by 4 which gives a frequency of 1.23 MHz. During the

low-power mode this clock gets shutdown. The subsystem clock (SMCLK) is used

by the peripherals. This clock is the same frequency as the MCLK but does not get

shutdown in the low-power modes. Lastly, there is the auxiliary clock (ACLK) which

runs at 32,768 Hz. The ACLK is used to keep system time, and control slower events

such as the sampling rate for the ADC.

Timers

There are two timers on the MSP, Timer A and Timer B. Timer A is used to keep the

running time of the processor. It is connected to the ACLK which runs at 32,768 Hz

and every 0x8000 ticks it generates an interrupt to add a second to the time. Timer

46

B is also connected to the ACLK but it is used to generate the sampling frequency
for the ADC.

Analog-to-Digital Conversion

The ADC is used to convert the analog levels from the seismic sensor into digital
values. The converter is a 12-bit successive-approximation converter so the digital
values range between 0x0000 and OxOFFF.

The sampling rate for the ADC is controlled by Timer B. This allows for a known
sampling rate in the system. Whenever Timer B counts up to the number in its
register it generates a pulse on the out signal. The ADC uses this pulse to trigger
the next conversion. Timer B is connected to the ACLK which runs at 32,768 Hz
therefore counting to 0x0020 gives a sampling rate of approximately 1 kHz and 0x0040
gives a sampling rate of 500 Hz.

The microcontroller has an internal temperature sensor that can be used to de-
termine the temperature of the processor attached to one of the ADC inputs. Also,

the microcontroller is able to determine the supply voltage.

Serial Interface

The serial interface communicates with the host computer through the RS232 connec-
tions and the RF module. The MSP has two built-in UARTSs which facilitate serial
communications. Both UARTSs use the SMCLK as their source for baud rate gener-
ation. The SMCLK runs at the same frequency as the MCLK but is not shutdown

during the low power mode.

Flash

The MSP has 60 KB of flash on-chip. Through control registers the MSP is able
to not only read the flash memory contents but is able to erase and write to the
flash memory directly as well. The voltage required to write to the flash is controlled
internally and is transparent to the user. The flash memory is different from normal

RAM in that a line cannot be reset high after it has had data written to it. Thus, in

47

order to reprogram a memory location it needs to be erased first and then it can be
reprogrammed. When a memory location is erased all the bits get reset high. Also,
an erase operation erases a whole segment of flash memory which is 255 bytes and
not just a single word. It is important to have interrupts disabled while writing or

erasing from flash.

JTAG Interface

The JTAG port is an IEEE Standard (1149.1-1990 Standard-Test-Access Port and
Boundary Scan Architecture) that allows a host computer to program the MSP, set
breakpoints in the code, and read the contents of registers and memory. It is crucial
when debugging the software to use the debugger to get information about the MSP.
The computer has a pod which connects to the parallel port of the computer to

communicate with the processor.

3.2.2 TMS320VC5509 Digital Signal Processor

The DSP is the workhorse for the system. It is a fixed-point processor and performs
all the signal processing algorithms. The DSP is underclocked to use less power and
contains idle modes for low power consumption when it is not processing data. The
microcontroller loads the data from the ADC directly into the DSP memory while it
is in an idle mode. After it has finished loading 1.2 seconds worth of data it wakes up
the DSP and instructs it to process the next data block. While the DSP is processing
the block of data the microcontroller fills a different block of memory, and keeps
alternating between the two memory locations. It takes approximately 200 ms for

the DSP to process the data, and after finishing it returns to its idle mode.

A memory map for the DSP memory is shown in Figure 3.3. The DSP has Dual-
Access RAM (DARAM) as well as Single-Access Ram (SARAM) built into the chip.
The MSP can only access the lower 32 kB of DARAM through the HPI. All program
code for the DSP is stored in SARAM beginning at memory address 010000.

48

Memory Byte Address ‘ Contents Memory Word Address ‘

0x0000C0-0x0000FF Direct Access Variables 0x000060-0x00007F
0x000100-0x0001FF Interrupt Vectors 0x000080-0x0000FF
0x000200-0x0002FF HPI Read Area 0x000100-0x00017F
0x000300-0x0003FF Boot Code 0x000180-0x0001FF
0x000400-0x0007FF DARAMO (stack) 0x000200-0x0003FF
0x000800-0x000BFF DARAMI (data, const) 0x000400-0x0005FF
0x000C00-0x0019FF DARAM2 (bss) 0x000600-0x000CFF
0x001A00-0x007FFF HPI Write Area 0x000D00-0x003FFF
0x008000-0x00BFFF DARAMS (filter,window data) | 0x004000-0x005FFF
0x00C000-0x00DFFF DARAMA4 (delay buffers) 0x006000-0x006FFF
0x00E000-0xO0FFFF DARAM5 0x007000-0x007FFF
0x010000-0x013FFF | SARAMO (program code) 0x008000-0x009FFF
0x014000-0x017FFF SARAMI (coefficients) 0x00A000-0x00BFFF
0x018000-0x01BFFF | SARAM2 (frequency data) 0x00C000-0x00DFFF

Table 3.3: DSP Memory Map

Bootloader

As stated before, the code for the DSP is actually stored in the flash memory of the
microcontroller. The MSP indicates to the DSP that it should copy all the program
code into the HPI Write area which the MSP can access. The HPI Write area contains
the code blocks shown in Table 3.4. The General Purpose 1/0 pins on the DSP control
which configuration the processor boots up in. It is configured to boot from the Host
Port Interface in its current configuration. The ROM bootloader sets the initial state
of the CPU registers and then keeps the DSP in a loop while the microcontroller loads
the DSP memory with the code. After the microcontroller has finished, it sets register
0x0061 with 0x0300, the memory location for the bootloader, and register 0x0060 with
0xFF00 the sentinel that the DSP recognizes to begin executing instructions at the
memory address specified by register 0x0061.

DSP Algorithms

The DSP performs all the functions that were described in the last chapter. First
it shifts the data down to take out the DC offset from the ADC. This is a simple

subtraction of a constant offset from the data. Next it performs a highpass and

49

Memory Byte Address ‘ Contents ‘ Memory Word Address ‘

0x001A00-0x001AFF Boot Code 0x000D00-0x000D7F
0x001B00-0x001BFF Interrupt Vectors 0x000D80-0x000DFF
0x001C00-0x001DFF DARAM1 (data, Const) 0x000E00-0x000EFF
0x001E00-0x002BFF DARAM2 (bss) 0x000F00-0x0015FF
0x002C00-0x005BFF | SARAMO (program code) | 0x001600-0x002DFF
0x005C00-0x0070FF SARAMI (coefficients) 0x002E00-0x00387F

Table 3.4: HPI Write Memory Map for Saving Program Code

lowpass single order IIR filter to remove the frequency content that is not needed for
the algorithm. After that an envelope detect is performed. The data is decimated
to focus in on only the envelopes associated with footsteps. Then the data is passed
through a moving window. Next an FFT routine is performed and the output gets
converted to a signed-magnitude number. A two pass normalization is performed
and the background level is subtracted from the data. Lastly, the detection routine
is performed.

The DSP uses different memory locations to process the data. The initial values
after they are received from the MSP are stored in DARAM in the HPI Write area.
All the initial routines are performed on the data in the same memory location. After
the decimation, the data is added to a circular buffer. This circular buffer discards
the oldest data values and adds the new data values to the end of the buffer. The
buffer is stored in DARAM4 memory. The output from the window function is stored
in DARAM3. The FFT converts the data to the frequency domain and then uses
SARAM2 to convert the numbers to a real values for the 2-pass normalization. The
detection routine is performed in this same memory location. All the coefficients for

the various filters are stored in SARAMI.

JTAG Interface

The JTAG port for the DSP is very similar to the one on the MSP. It allows Code
Composer, the programming suite developed by Texas Instruments: to download code

to the processor, set break points, and view memory contents. The pod connects to

50

the JTAG port on the processor and connects to the computer through the parallel
port.

3.2.3 Host Port Interface

The Host Port Interface is the set of communication procedures used to facilitate
communication between the two processors. The interface utilizes 16 data lines to
send and receive complete words in one transfer and 8 control lines to regulate com-
munications between the two processors. The microcontroller is able to read and
write directly to the first 32 kB of memory in the DSP. This memory is dual-access
memory so two buses can read from the same location concurrently. Obviously only
one bus can write to a location at a time. There are specific locations setup in the
DSP memory for reading and writing instructions to the microcontroller. The micro-
controller writes commands in the allocated memory location in the DSP and then
initiates an interrupt when the DSP is supposed to acknowledge the next command.
The DSP has a similar communication for communicating information back the MSP.
The most commonly used command from the DSP is the one to print a message to
the user. During a print message command, the DSP packs the characters into words
in the HPI Read section and then sends the print command to the microcontroller.

The beginning of the array tells how many characters are in the string.

| COMMAND | CODE |
PRINT_MESSAGE 0x0100
STOP_PROCESSING 0x0200
PROCESS_DATA_BLOCK_1 0x0100
PROCESS_DATA _BLOCK_2 0x0100
CLEAR_PROCESSING_BUFFERS | 0x0300
GET_VC5509_-VERSION 0x0900
COPY_TO_HPLWRITE 0x0999

Table 3.5: HPI Command Codes

51

3.3 RF Design

The RF is controlled by the microcontroller through the second UART port. This port
is programmed to run at 9600 bps, but can easily be increased in the software. The
RF module is made by Maxstream and it transmits and receives in the 900 MHz band.
It provides a half duplex virtual serial link with 100mW (420 dBm) transmit power
and -110 dBm receiver sensitivity. The module has its own buffering scheme and puts
itself into a low power mode when it is not transmitting or receiving any characters.
The microcontroller simply sends the characters to the module through an RS232 port
and the Maxstream transparently transmits them to the other modules within range.
If the Maxstream is not able to correct errors from the transmission the characters
get discarded. It is up to the application to send or receive acknowledgements and

retransmit if necessary.

Currently, the RF subsystem has only been used to echo the data that is appearing
on the RS232 output. It can also read in responses from a remote terminal to modify
settings within the system. In future designs the RF port could be used to network a
number of sensors together. It could communicate the information in a network and
multiple sensors could be used to either triangulate on a certain position or else track

a person the whole way through the range of all the sensors.

3.4 Power Design

The power design is very critical for the sensor. In the field the system should run for
a long time without the need for human intervention. The system uses solar power to
run the system and charge the batteries during the day and automatically switches to
battery power when the solar power has diminished below usable levels. The voltage
coming out of the solar panels changes depending on how much sunlight is striking
the panels. This voltage is regulated to 9.1 V with a buck converter and provides the
power to charge the batteries and power the system. Two more buck/boost converters

provide the power for the 3.3 V power plane and 5 V RF power. The system as it is

92

currently designed would have a lifetime dependent only on how often the batteries

need replacing from the constant charging and discharging.

3.4.1 Solar Power

The solar panels incorporated in the design were manufactured by Siemens, and use
thin film technology based on Copper Indium Diselenide (CIS). They are able to
produce battery charging levels even in low-light environments. Additionally this
is a commercially available part in a black-anodized aluminum frame with a glass
covering to protect the cells. A picture of the solar panel is shown in Figure 3-8.
Unfortunately, the size of the panel is rather large for a sensor application (12.9” by

8.17). The solar panels produced 2.5 W of power even on cloudy days.

Figure 3-8: Solar Panel

53

3.4.2 Battery Charger

The battery charger is a Maxim part that is able to regulate the current going to
the batteries. It charges up the batteries and then shuts off when it senses that the
batteries are charged. It is also able to provide power to a load while it is charging.
This is used to run the system while the battery charger is charging the batteries.
Four AA NiMH batteries are used in the system to give a nominal voltage of 4.8 V

on the power bus when it is running off battery power.

3.4.3 External Power

External Power can be supplied to the board as well. This is mainly for lab environ-
ments and during testing. The voltage for the supply should be 6V and there is diode

protection circuitry to protect against reversed supply connections.

o4

Chapter 4

Test Procedure

In order to ensure that the system was designed and working correctly, various levels
of tests were performed. A bottom-up test procedure was employed to verify that
each component by itself was operating correctly and then integration tests were

performed to confirm that the whole system was functioning correctly.

4.1 Unit Level Testing

A complete test procedure was written to validate all the components of the system
after the board was fabricated. The procedure examines all the power and ground
connections to make sure there are no short circuits. Next, signals controlled by the
microcontroller are tested. Last are basic functional tests to achieve communication
with the subsystems and communications between the two processors through the

HPI. The procedure is shown in Appendix D.

After the hardware was debugged, unit-level testing was performed on all the
signal processing routines. They were each run individually with simulated test data.
Then the same data was put into Matlab and the routines were verified against the

results from Matlab for their accuracy.

55

4.2 System Testing

In addition to the testing for the signal processing routines, Matlab scripts were de-
veloped which generated simulated footstep data. These scripts were used to perform
system level testing. The data from the scripts was furnished directly to the ADC of
the microcontroller without any frontend analog processing. At this point the signal
processing routines were debugged until they were able to process the data and give
the expected results. At each stage in the signal processing chain the data could
be verified against the Matlab results. When the signal processing functions were
at a sufficient level then actual data, recorded on DAT, was played into the system
through the sensor input. The DAT stores the time of day when the recording was

made and that was used to determine the distance from the sensor via the GPS data.

4.2.1 Data Collection

Three days were spent collecting footstep data that was used to develop the algorithms
and later test the system. The data was recorded on both a Sony portable DAT
machine and a 16 port data acquisition system connected to a laptop. The course
had 9 single-axis geophone senors and 2 three-axis geophone senors. It extended for
100 meters on each side of the sensor array. A graphic showing the configuration of
the array is shown in Figure 4-1.

The test sequence involved the subject conducting two normal walks through the
course, a stealthy walk, and then a jog through the course. There were waypoints
along the way, to coordinate where the person was on the course. As the person
crossed each waypoint they announced over the radio which waypoint they were
passing. A GPS receiver was worn by each person as they went through the course
and it recorded the GPS coordinates of the person every two seconds. This data
later became the ground truth that was used to determine the effective ranges for
detection. A background run was also performed at each location to determine the
ambient background level. Lastly, for two of the locations horse data was collected

to see if modifications could be made to the algorithm to discriminate a person from

56

a horse.

w100 mA2E ~L00 o W32E
- -
it m16d sl W 164
-4 > + -
Wy Bo it wp wp WE
1 2 a 4
STAET g g 3 - ® Turn-

FIRISE Areund
ol ~irn m16f f ~5lmmled ft

Futh
e w16 I

~20m mEs ft

E.Heusten .
Siaeinz Fecording
Statinn

Figure 4-1: Footstep Data Collection Setup

57

58

Chapter 5

Results

Overall the system performed quite well. Considering the scope of the project, it is
amazing that the system worked at all. The detection ranges ended up not being as
far as originally hoped for, however, it still performed well. Typical detection ranges
were on the order of 10 meters depending on the environmental conditions and the
weight of the person. Having lower noise in the system would allow the system to

differentiate footsteps from further distances.

5.1 Detection Performance

The detection ranges for a number of the test runs are shown in Table 5.1. These
tests were performed at three different locations in Massachusetts and a couple of
different types of walks were used. The first location was Great Brook Farm State
Park (GB). Only one location was used at Great Brook and the terrain was an open
field with a dirt path. The next location was at Harold Parker State Forest (HPSF).
Two locations were used at Harold Parker: a dirt path through a wooded area, and
a dense foliage area that was on a hill. Lastly, a location in Acton was used to
collect horse data. Each run was analyzed three times by the system to determine
detection ranges. The sensor in the middle of the array was the one used for all the
tests. Also, the number of false positives was recorded as well. The subject data is

recorded in Table 5.2. The environmental aspects of the area play a tremendous role

59

in the detection ranges of the system. For some of the runs, the system was not able
to detect the person until they were right at the sensor, and in other locations the
system could detect footsteps from 35 meters away. There is system lag due to the
length of the FFT as well. The FFT represents 8.5 seconds of data which suggests
why some detections were made after the subject passed by the sensor. Also, the
sensor array is 5 meters offset from the trail. The way the person walks also plays a
role in the detection ranges of the system. If the person walks in a stealthy fashion
then it is very difficult to pick up the footsteps until they are right at the sensor.
Unfortunately, the frequency spectrum collected from the horse data is very similar
to the spectrum from people and it is very difficult to differentiate a horse from a

person with the current algorithms.

60

Location ‘ Track # ‘ Subject ‘ Type

‘ Avg. Speed ‘ Detection ‘ False Positives

GB1 2 1 Normal | 1.85 m/s 7.4 m 0
GB1 2 1 Normal | 1.85 m/s 7.4 m 0
GB1 2 1 Normal | 1.85 m/s 74 m 0
GB1 3 1 Normal | 1.72 m/s 8.6 m 0
GB1 3 1 Normal | 1.72 m/s 8.6 m 2
GB1 3 1 Normal | 1.72 m/s 6.9 m 0
GB1 4 1 Normal | 1.72 m/s 6.9 m 0
GB1 4 1 Normal | 1.72 m/s 6.9 m 1
GB1 4 1 Normal | 1.72 m/s 5.2 m 0
GB1 5 1 Stealthy | 1.39 m/s 4.2 m 6
GB1 5 1 Stealthy | 1.39 m/s 4.2 m 5
GB1 5 1 Stealthy | 1.39 m/s 42 m 6
GB1 6 1 Jog 3.33 m/s 6.7 m 0
GB1 6 1 Jog 3.33 m/s 0m 0
GB1 6 1 Jog 3.33 m/s 0m 2
GB1 8 4 Normal | 1.85 m/s 0m 0
GB1 8 4 Normal | 1.85 m/s 3.7m 0
GB1 8 4 Normal | 1.85 m/s 3.7m 0
GB1 9 4 Stealthy | 1.47 m/s 29m 1
GB1 9 4 Stealthy | 1.47 m/s 1.47 m 3
GB1 9 4 Stealthy | 1.47 m/s 29m 2
GB1 10 4 Jog 3.85 m/s 154 m 2
GB1 10 4 Jog 3.85 m/s 26.9 m 3
GB1 10 4 Jog 3.85 m/s 23.1m 3
GB1 11 2 Normal | 1.47 m/s 13.2m 2
GB1 11 2 Normal | 1.47 m/s 11.8 m 1
GB1 11 2 Normal | 1.47 m/s 11.8 m 1
GB1 12 2 Normal | 1.47 m/s 10.3 m 2
GB1 12 2 Normal | 1.47 m/s 10.3 m 1
GB1 12 2 Normal | 1.47 m/s 10.3 m 6
GB1 13 2 Stealthy | 1.47 m/s 3.1m 4
GB1 13 2 Stealthy | 1.47 m/s 42 m 9
GB1 13 2 Stealthy | 1.47 m/s 3.1m 7
GB1 16 2 Jog 3.85 m/s 11.5m 1
GB1 16 2 Jog 3.85 m/s 23.1m 0
GB1 16 2 Jog 3.85 m/s 23.1m 0
GB1 18 3 Normal | 1.56 m/s -1.6 m 0
GB1 18 3 Normal | 1.56 m/s -3.1m 2
GB1 18 3 Normal | 1.56 m/s -3.1m 0

61

Location ‘ Track # ‘ Subject ‘ Type ‘ Avg. Speed ‘ Detection ‘ False Positives

GB1 19 3 Normal | 1.72 m/s 5.2 m 0
GB1 19 3 Normal | 1.72 m/s 5.2 m 0
GB1 19 3 Normal | 1.72 m/s 3.4m 0
GB1 21 3 Jog 3.13 m/s 9.4 m 2
GB1 21 3 Jog 3.13 m/s 0 m 1
GB1 21 3 Jog 3.13 m/s 9.4 m 0
HPSF1 |1 2 Normal | 1.47 m/s 221m 1
HPSF1 |1 2 Normal | 1.47 m/s 221 m 0
HPSF1 |1 2 Normal | 1.47 m/s 221 m 0
HPSF1 |4 2 Normal | 1.67 m/s 21.7m 0
HPSF1 |4 2 Normal | 1.67 m/s 20.0 m 0
HPSF1 |4 2 Normal | 1.67 m/s 20.0 m 2
HPSF1 |5 2 Stealthy | 0.89 m/s 8.0 m 2
HPSF1 |5 2 Stealthy | 0.89 m/s 8.9 m 4
HPSF1 |5 2 Stealthy | 0.89 m/s 8.9 m 3
HPSF1 |6 2 Jog 2.94 m/s 23.5m 0
HPSF1 6 2 Jog 2.94 m/s 20.6 m 1
HPSF1 |6 2 Jog 2.94 m/s 20.6 m 1
HPSF1 |7 1 Normal | 1.67 m/s 35.0 m 0
HPSF1 |7 1 Normal | 1.67 m/s 31.7m 1
HPSF1 |7 1 Normal | 1.67 m/s 31.7m 0
HPSF1 |9 1 Normal | 1.56 m/s 20.3 m 2
HPSF1 |9 1 Normal | 1.56 m/s 219 m 0
HPSF1 |9 1 Normal | 1.56 m/s 234 m 1
HPSF1 |11 1 Jog 2.78 m/s 30.6 m 0
HPSF1 11 1 Jog 2.78 m/s 27.8 m 0
HPSF1 11 1 Jog 2.78 m/s 30.6 m 0
HPSF1 |13 3 Normal | 1.56 m/s 14.1m 1
HPSF1 |13 3 Normal | 1.56 m/s 12.5 m 0
HPSF1 |13 3 Normal | 1.56 m/s 219 m 1
HPSF1 | 14 3 Normal | 1.47 m/s 74 m 1
HPSF1 | 14 3 Normal | 1.47 m/s 8.8 m 1
HPSF1 | 14 3 Normal | 1.47 m/s 5.9 m 1
HPSF1 | 15 3 Normal | 0.81 m/s 1.6 m 3
HPSF1 | 15 3 Normal | 0.81 m/s 24 m 2
HPSF1 | 15 3 Normal | 0.81 m/s 24 m 3
HPSF1 16 3 Jog 3.33 m/s 16.7 m 1
HPSF1 16 3 Jog 3.33 m/s 13.3 m 1
HPSF1 16 3 Jog 3.33 m/s 16.7 m 1

62

Location ‘ Track # ‘ Subject ‘ Type ‘ Avg. Speed ‘ Detection ‘ False Positives

HPSF2 1 2 Normal | 1.52 m/s 3.0 m 0
HPSF2 1 2 Normal | 1.52 m/s 0.0 m 0
HPSF2 1 2 Normal | 1.52 m/s 0.0 m 0
HPSE2 2 2 Normal | 1.52 m/s 0.0 m 0
HPSE2 2 2 Normal | 1.52 m/s 1.5 m 0
HPSF2 2 2 Normal | 1.52 m/s 1.5 m 0
HPSF2 5 1 Normal | 1.52 m/s -1.5m 0
HPSF2 5 1 Normal | 1.52 m/s -3.0 m 0
HPSF2 5 1 Normal | 1.52 m/s -1.5m 0
HPSF2 6 1 Normal | 1.47 m/s 0.0 m 0
HPSF2 6 1 Normal | 1.47 m/s 0.0 m 0
HPSE2 6 1 Normal | 1.47 m/s -1.5m 0
HPSF2 9 1 Jog 2.94 m/s 0.0 m 0
HPSF2 9 1 Jog 2.94 m/s 0.0 m 0
HPSF2 9 1 Jog 2.94 m/s 0.0 m 0
HPSF2 10 3 Normal | 1.56 m/s 0.0 m 0
HPSF2 10 3 Normal | 1.56 m/s -1.6 m 0
HPSF2 10 3 Normal | 1.56 m/s -1.6 m 0
HPSF2 11 3 Normal | 1.56 m/s -1.6 m 0
HPSF2 11 3 Normal | 1.56 m/s -1.6 m 0
HPSF2 11 3 Normal | 1.56 m/s -3.1m 0
ACTONT1 | 3 5 Normal | 1.79 m/s 3.6 m 0
ACTON1 | 4 5 Normal | 1.85 m/s -1.9m 0

Table 5.1: Detection Data

63

| Number | Height (inches) | Weight (Ibs.) | Type |

1 70 180 Male
2 72 230 Male
3 72 180 Male
4 67 135 Male
5 N/A N/A Horse

Table 5.2: Subject Data

5.2 Analog Performance

A Hewlett Packard Dynamic Signal Analyzer was used to measure the frequency
response, phase response, and noise floor of all the analog channels of both boards
produced. Only one channel of data is included for each board, but the tests were
run on all the channels. The results for the other channels are within acceptable
tolerances of the first. The values are lower than 40 dB and 60 dB because the signal
is decreased by the active filtering stage. Also, the gain-bandwidth product of the
op-amps is only 500 kHz.

64

X=4100
Ya=34

FREQ
Yo=-—1

FREQ

40.

Phase

Deg

—325

0.0
Fxd Y

<X

0N ol

™

R

-2

)

m U0
[s X6

FREQ
4.0

RE
or-

2ias as Geophone Channel A - 40 dB Setting
sa.o peg SN101 8/27/2002

SP

oo prantd Lo rraid Lo drgnti L1yl
1 LLog H=z= 10k
2. %538 as Geophone Channel A - 60 dB Setting
JhEse L SN101 8/27/2002
RESR

—80 .0

aB

Phase

Deg

—400
0.0
Fxd Y

X
o

(=1
ra=

¢

[e]e]
—1
: PO
120

[Iks

S5.0

/Divy

dB

rms
VM HzZ

—160

Figure

(N N SO 0 U 5 W Y SN SN B SN I MW AN | I B W L 0 S B S SR W WA Y |
1 LLog Hz 10k
bz Geophone Channel A - Noise Floor

42 .5 dB

b:J__ER SPEC2 168AvVg 020v1p Hann

SN101

B 8/27/2002

| -

1 L 1 | I I I { 1 |
o H=z 1

5-1: Magnitude, Phase and Noise Plots for Board SN101

65

$5285 .0337 as Geophone Channel A - 40 dB Setting
vbo—iss.07 Deg SN102 8/27/2002

FREQ RESP
40 .0 [

—425 | 0

—325

o.o s
i 1oaoapal L1t raad NS TN T U O 0 O SN N S S T W W B
Fxd Y 1 Log Hz= 10k

Xz100 Hz Geophone Channel A - 60 dB Setting

Ya=51.1756 dB3

FREQ RESP SN102 8/27/2002
Yb=—202.14 Deg

FREQ RESPR

64.0[

—80 .0

dB

Pnase

L1t prarad L1 araild 4t pratnld L1 11 iiit
Fxd Y 1 Log Hz 10k

i, Geophone Channel A - Noise Floor
ER SPEC2 16Avg 0%0vi1p Hann

SN102
8.0 8/27/2002

das

rms
V/MHz

—160

Figure 5-2: Magnitude, Phase and Noise Plots for Board SN102

66

5.3 Solar Power

The solar panels were taken outside and measured at various points in the day with
different cloud cover. Even on cloudy days the solar panels were able to put out
approximately 2.5 W of power. As the table in the power section will show, even
with everything turned on and the RF running, the system only requires about 400
mW of power. This means the solar panels should be more than adequate to run
the system and power the batteries at the same time even on cloudy days or in the
winter time. Obviously, this data is for the Boston area and other locations would

have different solar intensities.

5.4 Power Usage

The power usage is shown in Table 5.3. The microcontroller is always running because
it controls the other subsystems. The RF requires a significant amount of power to
transmit and receive signals. Perhaps a system where the RF unit was only transmit-
ting and receiving at set intervals would help lower the power consumption because

the RF subsystem could be shutdown when not in use.

] Configuration \ Current \ Voltage \ Power
MSP Running, DSP Off, ADC Off, RF Off 192 uA 6.0138 V | 1.15 mW
MSP Running, DSP Idle, ADC Off, RF Off 437 mA | 6.0138 V | 26.28 mW
MSP Running, DSP Idle, ADC On, RF Off 513 mA | 6.0138 V | 30.85 mW
MSP Running, DSP Processing, ADC On, RF Off | 9.27 mA | 6.0138 V | 55.75 mW
MSP Running, DSP Idle, ADC Off, RF On 51.92 mA | 6.0138 V | 312.24 mW
MSP Running, DSP Processing, ADC On, RF On | 61.63 mA | 6.0138 V | 370.63 mW

Table 5.3: Power Usage

5.5 RF Range

The Maxstream 9Xtream-96 provides a 9600 bps serial link. The range was tested by
setting up two transceivers and moving one of them successively further away from

the other. The Maxstream does not try to resend messages that it cannot correct

67

the errors in, instead, it just discards the messages. Typical ranges for 100% packet
transmission were on the order of 300-500 meters when the radios were placed on the
ground like they would be on the sensor. Using a half-wave antenna it was possible

to attain ranges of 750 meters.

68

Chapter 6

Conclusion

Overall this project has had very positive results. The project was a massive under-
taking for one person to conduct. A picture of the final prototype board that was
produced is shown in Figure 6-1. The design involved many aspects including the
requirements, schematic capture, board layout, creating a test plan, debugging com-
ponents, and system integration. Furthermore, the documentation aspect has been a
critical component as well. Designers these days do not work in a little box. Designs
get revised at later dates and clear documentation becomes necessary to allow other
designers to pick up where you left off. It is my desire that if at a later point someone
is interested in continuing to work on this project the time it will take to get familiar
with the project will be greatly reduced as a result of this documentation.

The design contained a number of areas which had a higher chance of failure in
the system. It is fun to use the cutting-edge technology, but there are some pitfalls
which come with that as well. For instance, the DSP was a pre-release part. There
were many functions that were not documented yet and they way they worked had to
be discovered through experimentation. Also, the datasheet did not contain accurate
information on some of the aspects of the chip. The lack of any extra memory to boot
the DSP was another risk. If time permitted it would be better to include the memory
and also work on setting up the DSP to boot from MSP. Then when the system was
past the prototyping stages the memory could be removed. Fortunately, everything

ended up working in the end, but in the future a more conservative approach should

69

probably be taken. Usually, a project of this scale requires at least two revisions. A
first cut prototype version to make sure everything works as expected and then the
final design. True to most projects, the funds were limited and there was not enough

money to fabricate two boards.

The amount of knowledge gained from this project is indescribable. The design
had to be taken all the way from the initial design stages to the final tests. Having
never actually routed and laid out the parts on a board before, a lot of learning was
associated with that. Also, my background is more in hardware design and most of
the signal processing routines required some learning. The results achieved are very

notable, but there will always be room for improvement.

Figure 6-1: Prototype Board

70

6.1 Future Enhancements

There are endless possibilities for this system from intruder detection around a home
to earthquake detections. Future versions will probably want to investigate a smaller
package for the system. Ideally, the system should fit into a package right in the

Sensor.

Another area that would be interesting to explore is to see if it is possible to use
the RF modules to communicate with other nearby systems and then triangulate the
bearing of the person being tracked based on the information from several sensors.

These could be used to follow a person through an entire array of sensors.

Hopefully, as time progresses solar panels will become more efficient and cheaper.
Currently, the number of solar cells needed to power the system makes for a rather
large array, but as new photovoltaic technologies are explored no doubt the arrays

will become smaller and cheaper.

6.1.1 Algorithm Improvement

Obviously the area of algorithm development is something that can always be im-
proved. As more tests are conducted with the system over a wider variety of condi-
tions there is likely to be more enhancements to the algorithms. It would be nice to
have a confidence level coming from the algorithm. This confidence level could then

be used to set various warning levels or actions that should be taken.

Time domain algorithms could be examined to determine if it is possible to use
those methods in conjunction with frequency data to get more accurate algorithms
that detect at further distances. Alternatively, the system could be easily redesigned
to do math intensive tracking algorithms. More memory could be added to the DSP
and the DSP can be clocked at up to 200 MHz. This opens up a whole set of

possibilities for tracking algorithms.

71

6.1.2 DSP Technology

As DSP technology improves the DSP should be able to have more functionality,
with less power. The TI DSP that was used in the design was a TMX part which
means it had not been fully tested and not guaranteed to meet all the specifications
in the datasheet. In future versions, the production level part should have better

performance and power usage.

72

Appendix A

Schematics

73

oIV

Tiddy

o azsn

S

1aso

AYLINDYID ¥3IMOd

HOLO313d TANNOSYAd [[
@i
VAm
bed
X<
bed aed,
Ped
X
X
N
o s
o
a
-
3
4
9
H

SNOSIAIY

asi A

NO 11Ng M1S [d ® NO ILVINO3d d3v0d

LY

i

74

7 . 8

NOILVOrIddY

WO G350 | ASsv IXaN

R [SNON ==
PT| XXXXXXX £6615| 3
1asd

AdLINDYID DOTVNY
¥0103134 1INNOSH3d

e, @Bl

XXX K] |

Svaiandy Holwidl ____ Noudmossa fay

SNOSIAIY

NO ILVO 14 IIdAV ANV ON 4317 14 O INS 13S

13

5

3 [3NN =] NGIVoMaaY
W6 G36n | ASev IXaN

T 7 4 € 14 H S 9 L 8

ON ISS3004d W1 © Id

1aso
AYLINDYID TVLIoId
¥0103134 1INNOSH3d

XXX K] |

‘« RS __ -Jlewow_\ a;-J“UMM

—

b a— @
=] i . wm : I
3 4 wu

Svaiandy Holwidl ____ Noudmossa fay

SNOSIAIY

76

4 €

NOILVOrIddY

WO G350 | ASsv IXaN

1aso
SYOLO3INNOD ® SIOV4HILIN
¥0103134 1INNOSH3d

. @i

-

SHOLOANNOO ANV SFOVAYTUN |

L\ =EINE]

Rk
bed
X<
<
< e
: T
ol
1Nd1no .
B INAN | 1S3l
a
|v
HOLOINNOD 8SN FoVREIN | 24
3 i
E]
INdN I O NS I3S
ovLr
E WOLOINNDO TV R3S i
9 00 s
W e =
H
3va/ONdY DHONM]____ Noudmosaa
T 4 € H S L

7

78

Appendix B

Parts Listing

79

To/st/v

XVYIW-TIIW
XawNi

V104OLOW

X313z
DJINOSVNVd
DJINOSVNVd

DINOSVNVd
DJINOSVNVd
DJINOSVNVd

DJINOSVNVd

DJINOSVNVd
DJINOSVNVd

DJINOSVNVd
DJINOSVNVd
DJINOSVNVd
DJINOSVNVd

DJINOSVNVd
DJINOSVNVd
DJINOSVNVd

REEM]

DJINOSVNVd
DJINOSVNVd
39OV

NZOXTOYAH
2E8TX1-IN

E1SUENW-TN

V-£210S-N
90ZTVvIZ-0N
0TZTVvI3-0N

9TCZEVIA-IN
2o¥0vI3-on
20¥0vI3-oNn

20v0vI3-on

20¥0vI3-oNn
8ZSEXd3-TN

€090VI3-0N
8TSEXd3-TN
9TZEVIZ-ON
9TZEVIZ-ON

E€YELVII-ON
9TCeEVIa-oN
S080VI3-0N
S080VIZ-0N

S080VI3-0N
9TZeEVIZ-oN
NOILdI¥DS3a

ZXT'Ld3INY3IAVIH
AWS ‘a3 NId Z

aws
€¢-10S NId €
dIHD
dIHD

dIHD
dIHD
dIHD

dIHD

dIHD
INIW AXOd3 ‘dIHD

dIHD
INW AXOd3 ‘dIHD
dIHD
dIHD

dIHD
dIHD
dIHD
dIHD

dIHD
dIHD
¥IGWNN

WAH LY3IA ZXT'NId OS S20°
awWs ‘a3l a3y

AMLLOHDS "¥43IMOd "d3IIHILO3Y
¥3rYve ‘AMLLOHDS ‘3a0Id
dIHD "DIWVYID ‘Q3aXId ‘dvd
dIHD "DIWVY3D ‘d3XId 'dvO

WNTVINYL ‘a3XId ‘dvd
dIHD ‘DIWVY3ID ‘dvD
dIHD ‘DIWVYID ‘dvD

dIHD ‘DINVY3ID “ULX 'dVD

dIHD "DIWNVYID "dLX ‘dVD
WNTVINVL'd3XI4'dvO

dIHD ‘DIWVY3ID ‘a3aXId ‘dvd
WNTVINYL'd3XI4'dvO
WNIVINVYL ‘a3XId ‘dvd
WNIVINVYL ‘@3XId ‘dvd

WNTVINYL ‘a3XId ‘dvd
WNIVINYL ‘a3XId ‘dvd
dIHD "DIWVY3D ‘OdN ‘dvD
dIHD "DIWVYID "LX ‘dVD

dIHD ‘DIWVY3ID ‘a3aXId ‘dvd
WNIVINYL ‘a3XId ‘dvd
Livd

T 39vd

208-0T-200-6£-068
DIZE8TXT-TNS

€10vESHA
AaN-12300820Z
ASOTOTIAELDT
Z90T3TdAp-(03

YSTTADTLSOT
0Dr00ZHT3-ND3
[0ZTHTO30003

MTEE3TE30003

AE0TOTE30003
Y90TXITLSO3

NEOTITAAT(OT
™YI0TXVTILSO3
™YSTCADTLSO3
YSOTADTLSO3

¥£0TAVTLSO3
USLPADTLSOT
[0EEHTOAZIOT
NLOVYFXNS0TOS0800

AP0T3ITAAZIO3
USLPADTLSO3
dmd

N9T
NST

N9T
A0S
NOS

AT
N9T

NST
AOT
A9T
N9T

AOT
A9T
A0S
A9T

NST
AT
JoL

%0T

%0C-.

%0C
%S
%S

%0T

%0T
%0T

%0T
%0T
%0T
%0T

%0¢C
%0C
%S

%0T

%0T
%0T

/08+

dWVN

PTI'ETCI

‘zra'tiea

‘013’603

‘'803°4(3

'9r3's(3

RZERAE]

‘2(3'103

€50'zsa’tsa

9D’ PYD

Ot ‘€42'24D
136}

4NT 962'S6D'v6D
4Nn0T €60
262160

anze '062'680
4doz 880°£8D
4dzt 980'58D
€80'28D

‘182080

4d0€€E 642840
¥82'LLD

'942'SLD

4nT0°0 "VLD'ELD
4not [4is}
T£2'04D

'692'89D0

'£92'99D

‘592490

'£92'290

192092

‘652850

'£82'95D

'SSD'PSD

'£92'250

‘152052

'6vD'8%D

"LYD'9YD

'SYD'PrO

4nT0°0 ‘€¥D'THD
4N0T THD'0D'6€D
Elarard 8€D°LED
ant 9€2'5€D
YED'EED

4n00T ‘'2€2'1€D
ancy 0€2'620
ddee ¥22'€2D
4n0'T 0]
822'£7D'92D
'520'72D

‘122'02D

‘612'810

‘£12'91D

‘STO'PTD

‘€1D'TTD

‘T1D'010°8D
'£2'92'SD

4nT'o $2'€2'20
ancy 10
WO02/3NIVA s3aa 43y

© NNYT HMmHWL ®

— 0

NN®mOo
I

— NS

144
T

ALO

[44
TC

(4
6T
8T
LT

9T

ST
14

€T

(49
T

—

N oo

M <o

4
T

WNN

UIDNVY LOITTI - SISFHL S UILSVW

80

XYW-TTIW
ABD
nwNsns
DJINOSVNVd
DJINOSVNVd
DINOSVNVd
DINOSVNVd

DJINOSVNVd
DJINOSVNVd
DJINOSVNVd

DJINOSVNVd
DJINOSVNVd
DJINOSVNVd
DJINOSVNVd

DJINOSVNVd
JINOSVNVd
DJINOSVNVd
DJINOSVNVd
DINOSVNVd
DINOSVNVd
DJINOSVNVd
DJINOSVNVd

DJINOSVNVd
DINOSVNVd
V104OLOW
VI04OLOW

"YOLONANODIWIS NO

2o/st/v

14v¥D110D
14v¥D110D

XYW-TTIW
We
XYW-TTIW
diV

diNV

XVYIW-TTIW
I9VIOVd

ATOXTOY¥AH-L
TOTL-MS
S080vVI3-0N
90¢TVI3-0N
90¢TVI3-0N
S080VI3-0N
20o¥0vI3-on

20v0vI3-on
20v0vI3-on
2ov0vIa-on

20¥0vI3-oNn
20v0vI3-on
20v0vI3-on
20v0vI3-on

20¥0vI3-oNn
20v0vI3-on
20v0vI3-on
20ov0vI3-on
20o¥0vI3-on
20¥0vI3-on
20¥0vI3-oNn
20v0vI3-on

20ov0vI3-on
S080VI3-0N
VVZTOSW-N
VVZTOSW-N
€210s-n
909T1d1-n
08091T0d-0N
Y60VHOZAHdWY
APOXTOY¥AH-L
PISTWE NOD
ATTXTOYAH
SLVD T-Z¥E€8SS-L
U60VI0ZAHdINY

NEOXTOYAH
NOILdI¥DS3a

TXT'd'A™¥aH

‘1adS "HOLIMS 319901
dIHD

dIHD

dIHD

dIHD

dIHD

dIHD
dIHD
dIHD

dIHD
dIHD
dIHD
dIHD

dIHD
dIHD
dIHD
dIHD
dIHD
dIHD
dIHD
dIHD

dIHD

dIHD

3dIM 0ST" OS NId 8
3AIM 0ST" OS NId 8
€¢-10S NId €

1WS dIO¥OL
NISE09'LWS

PXT'd’AdaH

W3AVIH LYLS NId £XT
TIXT L3N YAH

LIS “4VINAOW "MOVL
IVYNIWY3L Od NId 6

EXT'1I3INYIAVIH
dIgWNN

¥AH L¥3A IXT'NId OS S20°
1ads ‘HOLIMS 319901
dIHD "YOLSISTY

dIHD ‘W14 MDIHL "dOLSISIY
dIHD ‘W14 MDIHL "dOLSISIY
dIHD "YO1SIS3Y

dIHD "YO1SIS3Y

dIHD "YOLSISTY
WTI4 MDIHL ‘a3XId “JOLSISIY
dIHD "YOL1SIS3Y

dIHD "YO1SIS3Y
dIHD "YOLSIS3Y
dIHD "YO1SIS3Y
dIHD "YO1SIS3Y

dIHD "YO1SIS3Y
W14 MDIHL ‘3XId "WOLSISIY
dIHD "YO1SIS3Y
dIHD "YO1SIS3Y
dIHD "YO1SIS3Y
dIHD "YO1SIS3Y
dIHD "YO1SIS3Y
dIHD "YOLSIS3Y

dIHD "YO1SIS3Y

W74 MHL'dIHD'S3Y

TANNVHO-d TvNAd YOLSISNVYL
T3INNVHO-N 1VNA YOLSISNVYL
dNd “JOLSISNVYL

LIS “43IMOd "dOLDNANI
"YOLONANI ¥3IMOd LWS

¥AH L¥3A bXT'NId OS S20°

Q3ANOYHS “1ALS ‘LXT "d3AVIH

AAH LY3A TIXT'NId OS S20°

S AY0DILYD ‘v "YVINAOW “MDOVL

AINW 8T€ ‘1d3D3Y 'ITONV-LY ‘d INIWENS

WAH LY3IA EXT'NId OS S20°
Livd

T 3ovd

208-0T-T00-6£-068
JODASTOTL
4-GY1-S022T Y
[4A4VERR-E]
200Z4N38U3
9000T4N39MUT
ATOSTIMYZE3

AZT00TIMYZrY3
AT9S[39ZU3
PSR E D Lo TARE]

X000THHZE3
XEPIPINIZrYI
Xzbzedderda
XETITMIZET

XP00TINUZEI

ATST(IDZMY3
N0L8LIMYZrYT
AZ0TZIMYZrea
AYASEEN L r4R-E]
NESTTIMYZ(YT
XP0OTIUZEI
X0d0TAMYZYI

XE00TMAZHT
NETOPANIOCH3
2YAHZOdZ4AWNW
CTYQHZONEJAWNW
TLIVL06ZL9WW
€0T-909T1d1
€22¢-280910Q

208-0T-¥00-6£-068
anzo09-¥1sT
208-0T-TT0-6£-068
T-2PEBSS
C-S6ESYL

208-0T-£00-6£-068
dmd

MIWO0ST
MWO0ST
MRWSZT
MWO0OT

MWES

MWES
MWES
MWES

MWES
MWES
MWES
MWES

MWES
MWES
MWES
MWES
MWES
MWES
MWES
MWES

MWES
MWO0OT

aoL

%T
%S
%T
%T
%T

%T
%S
%T

%T
%T
%T
%T

%T
%S
%T
%T
%T
%T
%T
%T

%T
%T

%0¢C
%0¢C

ST

00T

09S

00T

0ST
L8L

ot

AWVYN

ALY
0T

AS'T

0T

A9'TE

Aoy
Ab'ze
prasy

WO'T

A0'ze
AT'89
ASTT
WO'T

00T
Aoy

HNOT
HNZe

WO0D2/3NIVA

‘8TdL'LTdL
‘9TdL'STdL
‘PTdLETdL
‘TTdL'TTdL
‘0TdL'6dL
‘8dL'sdL
‘9dL'SdL
‘bdL'€dL
‘2dL'TdL

1S

99Y

S9U'v9Y

€9y
294'T94'09Y
65y
85Y'£5Y'95Y
05’67y
LpY'9bY'ShY
EY'ECY'9TY
9€y'SeY
‘zeY'1EY
‘STY'vTy
LEY'0EY'ETY
8EU'67Y' 2Ty
824'TTY'9TY
£24'02Y
‘6TY'8TY
‘LTY'STY
3]

oty

6Y

8y

24

vy

2]
SSY'PSU'ESY
‘75U 1Sy
‘8PY'vHY
‘EPY'THY
“THY0pY
‘6EYPTY
‘ETd'ZTY
'94'sY'2Yy

Ty

Y0

€0'20

0

€1

o1'm

8C

Le

or'st

I

€r'ec

T

1203
‘02(3'61(3
‘8T(3'£T(3
‘9T(3'ST(3
EELREEY]

MOn e N

Mmoo

HH A O

~

ALD

85
LS
9§
SS
S
€S
[49)

1S
0s
6t

8%
Ly
9%
14

144
34
(a4
134
o
6€
8€
LE

9€
S€
e
€€
[4
1€
0€
6T
8¢
LT
9T
S¢
144

€T

WNN

YIONVY LOITI3 - SISTHL S UILSVW

81

SO3

SO3

1L

WIXVIW

L

IW3S TLYN
WIXVIW
WIXVIW
WIXVIW

L
NMOYd-ddng
WIXVIW
SOINOYLD313 NNVWSSY

EDA) lo)]

z0/St/v

90€X23-N
VN6¥OH-L
VVZTOSW-N
€-€210s-n
949920SKW-N
JVESTOW-N
91d0S0-N
VVZTIOSW-N
VVZTOSW-N
adg9zosw-n
§-€£210s-n
VV/L8TOW-N
LOOTA-NY NNOD
OVZTOSKW-N
VVZTOSW-N
JVESTOW-N

NOILdI¥DS3a

NId ¥ LNW 4S

av3a1 vIAvyY NId ¢
3dIM 0ST" OS NId 8
€-£210S

d407 NId v¥T
dOSSL NId 02
dOSO NId 9T

3dIM 0ST" OS NId 8
OS NId 8

d40d NId +9
§-€C-10S NId §
XVIWN NId 8

LNW Od NId ¥

OS NId 9T

3dIM 0ST" OS NId 8
dOSSL NId 02

YIGWNN

TVLSAYD Z14VNO AWS

Z1¥VYNO "TV.LSAYD

dWV dO Tvnd

YOSSID0YJOUDIW ‘13STY

ZHWPPT ‘LNIOd-a3xId ‘dsa

ANI-NON TV.1D0 “¥3IAINA 3INIT/4344ng
NMOA/dN *2d-2d "43143ANOD
YOLVINDIY WVINIT

A000°€ ‘NOISIOFYd ‘43¥ IDV.LION
9IS A3IXIW “43TTOYLNODOUDIW
IIVY-0L-1IVY "dMdOUDIW ‘dWVdO
AYZ ‘'VINO09 ‘NMOQJ-d3LS "d3L43IANOD
SOd-t ‘a SATY3S ‘SN "YOLDOINNOD
IDYVHI-1SV4 "YITIOULNOD

HOLIMS DOTVNY

¥IMOd-MOT ‘ZE€2-SY "YIATIDSNVYEL

Lavd

€ 39vd

LT-§°CT-L2€-S03
T-02-6%-S03
azeveniL
L-ETUNICEIXVIN
YPTIDd60SSON0TESWL
JLWYHZXOTPL
333CLITXVIN
VSIEBBXVIN
VS3FEITIXVIN
WdI6%T40EPdSIW
VNLPEVdO
VNILLIXVIN
LOOTA-NY
ISATTLXVIN
VSIVTSPXVIN
dNIITTTEXVIN

IMd

™

IoL

ZHM89L'CE €A
ZHWZST6'V TA'TA
TZn'ozn’eTN

8IN'ZIN‘9TN

SN

vin

€IN‘2IN

Tmn

otn

en

8n

n

an

sn

yn'en’zn

m

SZdL

‘vzdl'€Tdl

‘zzdl'TTdL

‘0TdLl'6TdL

dWVN WO02/3NTvA $3a 43y

A A A A A A AN A H MM N

ALO

L
€L
(44
T
0L
69
89
L9

S9
9
€9
29
9
09
6S

WNN

YIADNVY 10ITT3 - SISIHL S HIALSYIW

82

Appendix C

Assembly Drawing

83

U

G LVD 1-2+£8SS

w

U

G LvD 1-2+£86S
v

6£0

dSW

9“0 ooo oo ol
40 0o oo oo

¥idL

w
— o
L]
PSLE]
~ o
o 613

L

ler3

=
=2

Zdl Sl

0z 1T

a][1[0 [l

gidl 0zdl

sr

@ 4]
0 OO o4J
Em

)

o o
Bfe) BE &
.o T

[]
9ldl

9idL

B[l

w8

oo oo

e

[Jz= Eu::ﬁk
.
TAE
bl BRE
30

L)

O i

= —

< - > m
w Ger F 80

& - S i+
ey * = 5
T 5 O
VC5510 3

-
.3 O

20 0 0 O O o o" N

t0 0 000 O Ogp
T

BATTERY
- 4+[3

ar3 8r3 m
(e o]5 = : .
a3 a . “
5 = =
SE== S
E
& —=_ @
= S
A

=

= [Jwa
IYNY3LX3

st |t

& a]:
5
ot s E
-
15
=)
R
on W
oo

(]
o=
T gff
=0 v _
EZ] I

NN ¥V 08

O

7002/%
YIONVY 3

84

Appendix D

Test Procedure

85

Personnel Detector
Test Procedure

Elliot Ranger
6/26/2002

86

TEST INFORMATION

Board Number

Name of Tester

Date
EQUIPMENT:
MANUFACTURER NAME MODEL SERIAL NUM. DRAPER NUM.
Lambda Power Supply | LP-521-FM
Fluke Multimeter 89 1V
Tektronix Digital TDS 3014
Oscilliscope
Hewlett Packard | Dynamic 3562A
Signal
Analyzer

SETUP

Personnel Detector

87

Oscilliscope

Multimeter =

CONTINUITY TESTS

Instructions: Make sure Jumpers EJ5,EJ6,E]J7,E]8,E]9, EJ10, EJ3, EJ2,
EJ4, EJ2, EJ1, EJ11, EJ12, E]J13 are connected.

GROUNDS ALL CONNECTED
With one probe on TP10 check for continuity between:

EJ5
EJ7
EJ8

EJS

EJ10

POWER NOT SHORTED TO GROUND
With one probe on TP10 check to make sure there is no
continuity between:
TP7
TP6
TP8
TP1

TP5
TP3

TP4

TP2

TP12

TP13

88

| 3.3V POWER TEST

Instructions: Remove all Jumpers except for EJ5,E]6,E]7,E]8,E]9, and EJ10. Use an
external power supply to provide 6V of power from TP6 (EXT_PWR+) to TP11
(EXT_PWR-).

Record the voltage at TP1 with S1 on

Turn S1 off and on and observe at least a
100ms pulse (active low) at U17 Pin 2

Sweep the power supply voltage from
3.5V - 10 V ensure that the voltage at TP1
stays at approximately 3.3 V

Determine the input voltage that causes the
Voltage at TP1 to drop below 3.1 V

| Msp

CLOCK MEASUREMENTS
Instructions: Program the MSP through the JTAG port with the test program.

Record the frequency of MCLK at TP14

Record the frequency of ACLK at TP16

RS232 TesT

Test that the MSP is able to echo characters
back to the computer

PORT TEST
Toggle the following signals:
VC55_ENA
Record the voltage of VC55_3VD at TP4
Record the voltage of VC55_CORE at TP2

Turn ON the VC55 and observe at least a
100ms pulse (active low) at U18 Pin 2

89

GEO_ENA
Record the voltage of GEO_PWR at TP3
RF_ENA
Record the voltage of RF_PWR at TP5
Instructions: Connect Jumper EJ1.
Toggle RF_ENA and observe at least a
100ms pulse (active low) at U16 Pin 2
RF_PWRDN (J4 PIN 2)
GEO_A_SEL (U2 PIN 6)
GEO_B_SEL (U4 PIN 6)
GEO_C_SEL (U3 PIN 6)

RS232_ENA (Characters should not be displayed
on the terminal when turned off)

ANALOG TEST

Instructions: Connect a Jumper across EJ4. Turn on GEO_ENA with the MSP.

SEISMIC MEASUREMENTS
Instructions: Connect a signal analyzer to the positive input and measure the output
at Test out.

GEO_A:
Record the small signal gain

Record the high frequency -3db point
Record the noise floor

GEO_B:
Record the small signal gain

Record the high frequency -3db point
Record the noise floor

GEO_C:
Record the small signal gain

90

Record the high frequency -3db point

Record the noise floor

VC5509

Instructions: Turn on VC55_ENA with the MSP.

CLOCK MEASUREMENT
Instructions: Program the VC5509 through the JTAG port with the test program.

Record the frequency of CLKOUT at TP25

LEDs
Observe that LEDO lights
Observe that LED1 lights

Observe that LED?2 lights

HPI

Instructions: Select the HPI menu item.

Verify that the MSP can write a character into
The VC5509s memory and the VC5509 can read it

Verify that the VC5509 can write a character into
The MSPs memory and the MSP can read it

RF INTERFACE

Instructions: Connect a Jumper across EJ1. Turn on RF_ENA with the MSP.
Turn the RF echo ON from the MSP.

Send characters from one of the Evaluation Board
Maxstream modules to the board in question and
Observe that characters are correctly echoed back

91

| SOLAR INTERFACE

Instructions: Ensure that Jumper EJ3 is removed. Use an external power supply to
provide power from TP7 (SOLAR+) to TP9 (SOLAR-).

Set the voltage of the power supple to 12 V
And record the voltage at PIN 1 of EJ3

Sweep the voltage of the power supply from
12 V - 21 V and ensure the voltage at PIN 1 of EJ3
Stays constant

Determine the input voltage that causes the
Voltage at PIN 1 of EJ3 to drop below 5V

| BATTERY CHARGER

Instructions: Ensure that Jumper EJ2 is removed. Use an external power supply to
provide 9.1V of power from TP6 (EXT_PWR+) to TP11 (EXT_PWR-).

Record the voltage from EJ2 PIN 1 to TP10 (BATT-)

Place an ammeter across EJ2. Connect a battery pack
with 4 partially drained NiMH batteries in series from
TP8 (BATT+) to TP10 (BATT-) record the amount of
Current flowing through EJ2

92

Appendix E

TMS320VC5509 Source Code

E.1 bootcode.asm

; Personnel Detector

; Elliot Ranger

; Master of Science Thesis

; Massachusetts Institute of Technology

; in conjunction with Charles Stark Draper Laboratory

;**\
10 ; FILENAME. bootcode.asm

; DATE CREATED. . 07/11/2002

; LAST MODIFIED. 01/15/2003

;**/

.global _hpi_save_code, _hpi_load_code

.sect ".text"
_hpi_save_code:

20 ; Copy bootcode to hpi write section
AMOV #02000180, XAR1
AMOV #02000D00, XAR3
NOP

NOP

93

30

40

50

NOP
NOP
NOP
RPT #0z007TF

MOV *AR1-F *AR3-

; Copy vectors to hpi write section

AMOV #0x000080, XAR1

AMOV #0x000D80, XAR3

NOP

NOP

NOP

NOP

NOP

RPT #0z007F

MOV *AR1-+,*AR3+

; Copy DARAM1 to hpi write section

AMOV #02000400, XAR1

AMOV #0x00OE00, XAR3

NOP

NOP

NOP

NOP

NOP

RPT #0zOOFF

MOV <AR1-,%AR3+

; Copy DARAM2 to hpi write section

AMOV #0x000600, XAR1

94

60

70

80

AMOV #0x000F00, XAR3
NOP

NOP

NOP

NOP

NOP

RPT #0zO6FF

MOV kAR14-,%AR3-+

; Copy SARAMO to hpi write section

AMOV #0x008000, XAR1

AMOV #0x001600, XAR3

NOP

NOP

NOP

NOP

NOP

RPT #0z17FF

MOV *AR1-F, *AR3-+

; Copy SARAM1 to hpi write section

AMOV #0x00A000, XAR1

AMOV #0x002E00, XAR3

NOP

NOP

NOP

NOP

NOP

RPT #0xzO0A7F

MOV *AR1-+,*AR3+

95

RET

.sect ".boot"

_hpi_load_code:

90
; Copy hpi write section to vectors

AMOV #0x000D00, XAR1
AMOV #0x000080, XAR3
NOP
NOP
NOP
NOP
NOP
RPT #0z007F

100 MOV *AR1-+,*AR3+

; Copy hpi write section to DARAM1

AMOV #0xz000D80, XAR1
AMOV #0x000400, XAR3
NOP
NOP
NOP
NOP
NOP

110 RPT #0zOOFF

MOV ¢AR1-,%AR3+

; Copy hpi write section to DARAM2

AMOV #0xz000E80, XAR1

96

AMOV #0x000600, XAR3
NOP
NOP
NOP
NOP
120 NOP
RPT #0zO6FF

MOV kAR14-,%AR3-+

; Copy hpi write section SARAM1

AMOV #02001580, XAR1
AMOV #02008000, XAR3
NOP
NOP
NOP

130 NOP
NOP
RPT #0z17FF

MOV *AR1-F, *AR3-+

; Copy hpi write section SARAM2

AMOV #02002D80, XAR1
AMOV #0x00A000, XAR3
NOP
NOP

140 NOP
NOP
NOP
RPT #0xzO0A7F

MOV *AR1-+,*AR3+

97

10

20

30

8 0x010000

E.2 define.h

/*

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* in conjunction with Charles Stark Draper Laboratory
*

+/

/st stk ks stk ks sk ok ks sk ok ks sk ok ke stk ke stk ks skt ok ks sk ok ke st ok ks stk sk sk ko |
* FILENAME. define.h

* DATE CREATED. . 07/11/2002

* LAST MODIFIED. 03/04/2003

>k*>k**>k**>k*>k>k*>k*****>k****>k>k*>k*******>(<**>k>k*>k**>k****>(<**********************/

#define TRUE 1
#define FALSE 0

#define INV_LOG2 3.321928094887
#define DC_OFFSET 16384
#define VERSION "TMX320VC5509PGE VERSION 1.20 3/04/2003"

#define MAX_BUFFER 90

/* MSP Command Codes x/
#define PRINT_MESSAGE 0x0100
#define STOP_PROCESSING 0x0200

/* VC5509 Command Codes */

#define PROCESS_DATA_BLOCK_1 0x0100
#define PROCESS_DATA_BLOCK_2 0x0200
#define CLEAR_PROCESSING_BUFFERS 0x0300

#define GET_VC5509_VERSION 0x0900
#define COPY_TO_HPI_WRITE 0x0999

98

40

10

20

/* Memory locations x/

#define BLOCK1_MEM 0x1000

#define BLOCK2_MEM 0x1500

/* Detection Paramaters x/

#define FIRST_THRESHOLD 300

#define SECOND_THRESHOLD 250

#define THIRD_THRESHOLD 250

#define PEAK_WIDTH 2

E.3 difference.asm

B

Function Call

prototype: void hp_filter(DATA xx, ushort nx, DATA xy_previous, DATA xx_previous)

Entry: argO: ARO — signal input pointer

argl: TO — number of samples in the input
arg2: AR1 — pointer to previous output y
arg3: AR2 — pointer to previous input x

.def _hp_filter

.sect .text

_window

pshm ST1.55 ; Save ST1, ST2, and ST3

pshm ST2_.55

pshm ST3_55

or #0340, mmap (ST1_55) ; Set FRCT,SXMD,SATD

bset SMUL ; Set SMUL

sub #1,T0

mov T0,BRCO ; Outer loop couter

rptblocal 1pl— 1

mov

*ARO, T2

; save the input value x[i] in T2

99

30

40

10

mov *AR1, T1 ; store y[previous] in T1
sub *AR2,*AR0,ACO , subtract x[i] - x[previous]

mack T1, #30720, ACO, ACO ; multiply ylprevious] x 30720 and accumulate

mov hi(ACO),*ARO ; store the new output
mov T2, *AR2 ; put the previous x value in AR2
mov >|<ARO—|-7 *AR1 ; put the previous y value in AR1
1p1
popm ST3.55 ; Restore ST1, ST2, and ST3

popm ST2_55
popm ST1.55
ret

.end

E.4 extern.h

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* 4n conjunction with Charles Stark Draper Laboratory
*
«/
[sk stok ks stk ks skt ok s skt ok sk stk sk s stk sk s stk ks sk s skt ok ks skt ok sk stk sk sk stk sk |
* FILENAME. extern.h
* DATE CREATED. . 07/11/2002
x LAST MODIFIED. 08/07/2002

***************************************>I<**************************************/

extern Uintl16 timerO_counter;
extern Uintl6 new_command;

extern DATAx block_memloc;

100

E.5 filters.h

/*
* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
«/
[kot sk ok ks kot sk kot sk sk ok sk sk ok sk sk ok sk kot sk kot sk kot ok sk sk ok sk ok skakok |
* FILENAME. filters.h
* DATE CREATED. . 08/07/2002
* LAST MODIFIED. 02/19/2003

**/

#define NX_IIR 1200
#define NBIQ-IIR 2

#define NX_FIR1 1200
#define NX_FIR2 240
#define NH_FIR 31
#define D_1 5

#define D_2 2
#define NX_SIZE 120

/* delay buffers */

DATA dbuffer_bp[2+«NBIQ_IIR];
DATA dbuffer_firdecil[NH_FIR+1];
DATA dbuffer_firdec2[NH_FIR+1];
ushort dbuffer_indexil;

ushort dbuffer_index2;
DATA iir_hp_y;
DATA iir_hp_x;
DATA iir_lp_y;

/* coefficients - bandpass IIR filter x*/

101

40

50

60

70

80

DATA h_bp[5%NBIQ-IIR] ={ /% C55z: al a2 b2 b0 bl
—26992,
11483,
1852,
1852,
3704,
—31313,
14991,
1852,
1852,
—3704,

s

/* coefficients - FIR Decimation filter stage 1
DATA h_firdecl[NH_FIR] ={

0,

39,

91,

139,

129,

—271,
—609,
—832,
—696,

1297,
3011,
4755,
6059,
6542,
6059,
4755,
3011,
1297,

—696,
—832,
—609,
—271,
0,
129,
139,
91,
39,

M=5) =/

102

90

100

110

120

0,
s

/* coefficients - FIR Decimation filter stage

DATA h_firdec2[NH_FIR] ={
—56,
0,

—3176,
0,
10342,
16410,
10342,
0,
—3176,
0,
1609,
0,
—878,
0,
462,
0,
—221,
0,

96,

0,
—56,
s

E.6 firdecimate.asm

B

; Personnel Detector

2 (M=2) x/

103

10

20

30

40

H

B

;**\

B

H

Elliot Ranger
Master of Science Thesis
Massachusetts Institute of Technology

in conjunction with Charles Stark Draper Laboratory

FILENAME. firdecimate.asm
DATE CREATED. . 09/11/2002

; LAST MODIFIED. 09/15/2002

;**/

H

s

Modified code from Real—Time Digital Signal Processing

firdecimate.asm — decimating FIR filter

prototype: ushort firdecimate(DATA #x, ushort nx, DATA xh,
ushort nh, DATA xr, DATA xdbuffer, ushort dbufindex

ushort m, ushort outsize);

Entry: arg0: ARO — filter input buffer pointer
argl: TO — number of samples in the input buffer
arg2: AR1 — FIR coefficients array pointer
arg3: Tl — FIR filter order
argd: AR2 — filter output buffer pointer
argb: AR3 — signal buffer pointer
arg6: AR4 — signal buffer index

arg7: on stack — decimation factor
arg8: on stack — length after decimation
Return: TO = signal buffer index
.def _firdecimate
.sect .text
_firdecimate
pshm ST1_55 ; Save ST1, ST2, and ST3
pshm ST2_55
pshm ST3_55
pshm T2
pshm T3
mov *SP(#6), T2
mov *SP(#’?’), T3
or #0x34,0, mmap (ST1_55) ; Set FRCT,SXMD,SATD

104

bset SMUL ; Set SMUL
mov XAR1,XCDP , CDP as coefficient pointer
mov mmap(ARl),BSAC ; Set up base address for CDP

50 mov #0,CDP ; Start from the 1st coefficient
mov mmap(Tl),BKC ; Set the coefficient array size
mov mmap(ARS),BSAQB ; Set base address for AR3
mov mmap(Tl),BKOS , Set signal buffer XH size as L
mov AR4,AR3 ; AR3 signal buffer index
or #0z104, mmap (ST2_55); CDP, AR1, AR3 circular pointers;
sub #1,T3 H outer repeat counter NX/D
mov T3,BRCO ; Outer loop couter
sub #2,T2 5 Decimation factor - 2

sub #3,T1,TO
60 becc Decim2, T2==0
rptblocal sa.mple,loopl—].

mov *ARO-,*AR3 ;

; Check to see if decimation factor :2

Put new sample to signal buffer x[n]

| | mov TO,CSR ; Inner loop counter as L—3

mpym *AR3-F,%CDP-+,ACO
|| rpt CSR
macm KAR3-,%CDP+,ACO |
macmr AR3,%CDP-,ACO
|| mov T2,08R
mov hi(AC0),*AR2+
70 || rpt CSR
mov ARO-,*AR3—
sample_loopl

b L2

Decim2:

rptblocal sample_loop2— 1

The first operation

The rest MAC iterations

105

mov *ARO+,*AR3 ; Put new sample to signal buffer x[n]

| | mov TO,CSR ; Inner loop counter as L—3
mpym *AR3-,%CDP-,ACO ; The first operation

H rpt CSR
macm *AR3-,%CDP,ACO ; The rest MAC iterations

macmr *AR3,*CDP—,ACO
|| mov T2,08R
mov hi (Aco) ,kAR2+
mov *ARO—+,%AR3— ; do it only once for the case when p=2

sample_loop2

L2:
popm T3
popm T2
popm ST3_55 ; Restore ST1, ST2, and ST3

popm ST2_55
popm ST1.55

mov AR3,TO ; Return signal buffer index

E.7 hanning.h

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* in conjunction with Charles Stark Draper Laboratory
*

«/

/**\

106

10

20

30

40

50

* FILENAME. hanning.h
x DATE CREATED. . 10/13/2002
x LAST MODIFIED. 01/22/2003

>(<*********>k*****************************>(<*********************************/

#define WINDOW_SIZE 1024
#define FREQ_SIZE 513

ushort windex;
DATA output [WINDOW_SIZE];
DATA wsignal [WINDOW_SIZE];

/* window coefficients x/
ushort hanning [WINDOW_SIZE]={
1,
2,
6,
10,
15,
22,
30,
39,
50,
62,
74,
89,
104,
121,
138,
157,
178,
199,
222,
246,
271,
298,
325,
354,
384,
415,
448,
481,
516,
553,
590,

107

60

70

80

90

628,

668,

709,

751,

795,

839,

885,

932,

980,

1029,
1080,
1132,
1185,
1239,
1294,
1351,
1408,
1467,
1527,
1588,
1651,
1714,
1779,
1845,
1912,
1980,
2049,
2120,
2191,
2264,
2338,
2413,
2489,
2567,
2645,
2725,
2806,
2888,
2971,
3055,
3140,
3226,
3314,
3402,
3492,

108

100 3583,
3675,
3768,
3862,
3957,
4053,
4150,
4249,
4348,
4449,

110 4550,
4653,
4757,
4861,
4967,
5074,
5182,
5291,
5401,
5512,

120 5624,
5737,
5851,
5966,
6082,
6199,
6317,
6436,
6556,
6677,

130 6799,
6922,
7046,
7171,
7297,
7424,
7552,
7680,
7810,
7941,

140 8072,
8205,
8338,
8473,
8608,

109

8744,
8881,
9019,
9158,
9298,
150 9438,
9580,
9722,
9865,
10009,
10154,
10300,
10447,
10594,
10742,
160 10892,
11042,
11192,
11344,
11496,
11649,
11803,
11958,
12114,
12270,
170 12427,
12585,
12744,
12903,
13063,
13224,
13386,
13548,
13711,
13875,
180 14039,
14204,
14370,
14537,
14704,
14872,
15041,
15210,
15380,
15550,

110

190 15722,
15893,
16066,
16239,
16413,
16587,
16762,
16938,
17114,
17291,

200 17468,
17646,
17824,
18003,
18183,
18363,
18544,
18725,
18907,
19089,

210 19272,
19455,
19639,
19823,
20008,
20193,
20379,
20565,
20752,
20939,

220 21126,
21314,
21503,
21692,
21881,
22070,
22260,
22451,
22642,
22833,

230 23025,
23217,
23409,
23602,
23795,

111

23988,
24182,
24376,
24570,
24765,
240 24959,
25155,
25350,
25546,
25742,
25938,
26135,
26332,
26529,
26726,
250 26924,
27121,
27319,
27518,
27716,
27914,
28113,
28312,
28511,
28710,
260 28910,
29109,
29309,
29509,
29709,
29909,
30109,
30309,
30510,
30710,
270 30911,
31111,
31312,
31512,
31713,
31914,
32115,
32316,
32516,
32717,

112

280 32918,
33119,
33320,
33521,
33721,
33922,
34123,
34324,
34524,
34725,

290 34925,
35126,
35326,
35526,
35726,
35926,
36126,
36326,
36525,
36725,

300 36924,
37123,
37322,
37521,
37720,
37918,
38117,
38315,
38512,
38710,

310 38908,
39105,
39302,
39498,
39695,
39891,
40087,
40283,
40478,
40673,

320 40868,
41062,
41256,
41450,
41644,

113

41837,
42030,
42222,
42414,
42606,
330 42798,
42989,
43179,
43370,
43559,
43749,
43938,
44127,
44315,
44503,
340 44690,
44877,
45063,
45249,
45435,
45620,
45804,
45988,
46172,
46355,
350 46537,
46719,
46901,
47082,
47262,
47442,
47621,
47800,
47978,
48156,
360 48333,
48509,
48685,
48860,
49035,
49209,
49383,
49555,
49728,
49899,

114

370 50070,
50240,
50410,
50579,
50747,
50915,
51082,
51248,
51413,
51578,

380 51742,
51906,
52068,
52230,
52392,
52552,
52712,
52871,
53029,
53186,

390 53343,
53499,
53654,
53809,
53962,
54115,
54267,
54418,
54569,
54718,

400 54867,
55015,
55162,
55308,
55453,
55598,
55742,
55884,
56026,
56167,

410 56307,
56447,
56585,
56723,
56859,

115

56995,
57130,
57264,
57397,
57529,
420 57660,
57790,
57919,
58047,
58175,
58301,
58426,
58551,
58674,
58797,
430 58918,
59039,
59158,
59277,
59395,
59511,
59627,
59741,
59855,
59967,
440 60079,
60189,
60299,
60407,
60514,
60621,
60726,
60830,
60933,
61036,
450 61137,
61237,
61336,
61433,
61530,
61626,
61720,
61814,
61906,
61998,

116

460 62088,
62177,
62265,
62352,
62438,
62522,
62606,
62688,
62770,
62850,

470 62929,
63007,
63084,
63159,
63234,
63307,
63380,
63451,
63521,
63589,

480 63657,
63723,
63789,
63853,
63916,
63977,
64038,
64098,
64156,
64213,

490 64269,
64323,
64377,
64429,
64480,
64530,
64579,
64627,
64673,
64718,

500 64762,
64805,
64847,
64887,
64926,

117

64964,
65001,
65036,
65071,
65104,
510 65135,
65166,
65196,
65224,
65251,
65277,
65301,
65325,
65347,
65368,
520 65387,
65406,
65423,
65439,
65454,
65467,
65479,
65491,
65500,
65509,
530 65516,
65523,
65527,
65531,
65534,
65535,
65535,
65534,
65531,
65527,
540 65523,
65516,
65509,
65500,
65491,
65479,
65467,
65454,
65439,
65423,

118

550 65406,
65387,
65368,
65347,
65325,
65301,
65277,
65251,
65224,
65196,

560 65166,
65135,
65104,
65071,
65036,
65001,
64964,
64926,
64887,
64847,

570 64805,
64762,
64718,
64673,
64627,
64579,
64530,
64480,
64429,
64377,

580 64323,
64269,
64213,
64156,
64098,
64038,
63977,
63916,
63853,
63789,

590 63723,
63657,
63589,
63521,
63451,

119

63380,
63307,
63234,
63159,
63084,
600 63007,
62929,
62850,
62770,
62688,
62606,
62522,
62438,
62352,
62265,
610 62177,
62088,
61998,
61906,
61814,
61720,
61626,
61530,
61433,
61336,
620 61237,
61137,
61036,
60933,
60830,
60726,
60621,
60514,
60407,
60299,
630 60189,
60079,
59967,
59855,
59741,
59627,
50511,
59395,
59277,
59158,

120

640 59039,
58918,
58797,
58674,
58551,
58426,
58301,
58175,
58047,
57919,

650 57790,
57660,
57529,
57397,
57264,
57130,
56995,
56859,
56723,
56585,

660 56447,
56307,
56167,
56026,
55884,
55742,
55598,
55453,
55308,
55162,

670 55015,
54867,
54718,
54569,
54418,
54267,
54115,
53962,
53809,
53654,

680 53499,
53343,
53186,
53029,
52871,

121

52712,
52552,
52392,
52230,
52068,
690 51906,
51742,
51578,
51413,
51248,
51082,
50915,
50747,
50579,
50410,
700 50240,
50070,
49899,
49728,
49555,
49383,
49209,
49035,
48860,
48685,
710 48509,
48333,
48156,
47978,
47800,
47621,
47442,
47262,
47082,
46901,
720 46719,
46537,
46355,
46172,
45988,
45804,
45620,
45435,
45249,
45063,

122

730 44877,
44690,
44503,
44315,
44127,
43938,
43749,
43559,
43370,
43179,

740 42989,
42798,
42606,
42414,
42222,
42030,
41837,
41644,
41450,
41256,

750 41062,
40868,
40673,
40478,
40283,
40087,
39891,
39695,
39408,
39302,

760 39105,
38908,
38710,
38512,
38315,
38117,
37918,
37720,
37521,
37322,

770 37123,
36924,
36725,
36525,
36326,

123

36126,
35926,
35726,
35526,
35326,
780 35126,
34925,
34725,
34524,
34324,
34123,
33922,
33721,
33521,
33320,
790 33119,
32918,
32717,
32516,
32316,
32115,
31914,
31713,
31512,
31312,
800 31111,
30911,
30710,
30510,
30309,
30109,
29909,
29709,
29509,
29309,
810 29109,
28910,
28710,
28511,
28312,
28113,
27914,
27716,
27518,
27319,

124

820 27121,
26924,
26726,
26529,
26332,
26135,
25938,
25742,
25546,
25350,

830 25155,
24959,
24765,
24570,
24376,
24182,
23988,
23795,
23602,
23409,

840 23217,
23025,
22833,
22642,
22451,
22260,
22070,
21881,
21692,
21503,

850 21314,
21126,
20939,
20752,
20565,
20379,
20193,
20008,
19823,
19639,

860 19455,
19272,
19089,
18907,
18725,

125

18544,
18363,
18183,
18003,
17824,
870 17646,
17468,
17291,
17114,
16938,
16762,
16587,
16413,
16239,
16066,
880 15893,
15722,
15550,
15380,
15210,
15041,
14872,
14704,
14537,
14370,
890 14204,
14039,
13875,
13711,
13548,
13386,
13224,
13063,
12903,
12744,
900 12585,
12427,
12270,
12114,
11958,
11803,
11649,
11496,
11344,
11192,

126

910 11042,
10892,
10742,
10594,
10447,
10300,
10154,
10009,
9865,
9722,

920 9580,
9438,
9298,
9158,
9019,
8881,
8744,
8608,
8473,
8338,

930 8205,
8072,
7941,
7810,
7680,
7552,
7424,
7297,
7171,
7046,

940 6922,
6799,
6677,
6556,
6436,
6317,
6199,
6082,
5966,
5851,

950 5737,
5624,
5512,
5401,
5291,

127

5182,
5074,
4967,
4861,
4757,
960 4653,
4550,
4449,
4348,
4249,
4150,
4053,
3957,
3862,
3768,
970 3675,
3583,
3492,
3402,
3314,
3226,
3140,
3055,
2071,
2888,
980 2806,
2725,
2645,
2567,
2489,
2413,
2338,
2264,
2101,
2120,
990 2049,
1980,
1912,
1845,
1779,
1714,
1651,
1588,
1527,
1467,

128

1000 1408,
1351,
1294,
1239,
1185,
1132,
1080,
1029,
980,
932,
1010 885,
839,
795,
751,
709,
668,
628,
590,
553,
516,
1020 481,
448,
415,
384,
354,
325,
298,
271,
246,
222,
1030 199,
178,
157,
138,
121,
104,
89,
74,
62,
50,
1040 39,
30,
22,
15,
10,

129

—~— = N O

E.8 hp filter.asm

; Personnel Detector

; Elliot Ranger

; Master of Science Thesis

; Massachusetts Institute of Technology

; in conjunction with Charles Stark Draper Laboratory

§ otk stk ks ok sk sk stk sk stk sk stk ks sk ok ks sk st ok sk sk st ok sk sk sk ok sk sk sk ok sk sk stk sk stk ko |
; FILENAME. hp_filter.asm

; DATE CREATED. . 02/11/2003

; LAST MODIFIED. 02/20/2003

§ otk stk ks stk ks stk ks stk ks stk ks skt ks skt ok sk skt ok skl sk stk sk sk stk sk s stk sk sk sk ok sk /

H prototype: void hp_filter(DATA xx, ushort nx, DATA xy_previous, DATA *x_previous)

H Entry: argO: ARO — signal input pointer
H argl: TO — number of samples in the input

H arg2: AR1 — pointer to previous output y

H arg3: AR2 — pointer to previous input x
.def _hp_filter
.sect .text

_hp_filter
pshm ST1.55 ; Save ST1, ST2, and ST3

pshm ST2_55

pshm ST3_55
or #02340, mmap (ST1_55) ; Set FRCT,SXMD,SATD
bset SMUL ; Set SMUL

130

sub #1,T0
mov TO,BRCO ; Outer loop couter

rptblocal 1pl— 1

mov *ARO, T2 , save the input value x[i] in T2
mov *AR1, T1 , store y[previous] in T1
40 sub *ARO,*AR2,ACO , subtract x[i] - x[previous]

mack T1, #30720, ACO, ACO ; multiply ylprevious] x 30720 and accumulate

mov hi(ACO),*ARO , Store the new output
mov T2, *AR2 ; put the previous x value in AR2
mov *ARO-+, *AR1 ; put the previous y value in AR1
1p1

popm ST3_55 ; Restore ST1, ST2, and ST3
popm ST2_55

50 popm ST1_55
ret
.end

E.9 hpi.c

/*

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* 4in conjunction with Charles Stark Draper Laboratory

*

«/

[k sk koo kot sk ot sk otk sk ko sk sk ok sk ok skok kot sk ot sk sk ok sk sk ks kakok |
10 * FILENAME. hpi.c

* DATE CREATED. . 07/11/2002

131

20

30

40

50

* LAST MODIFIED. 08/07/2002

**/

#include "include.h"

[kot sk ok ok sk kot sk kot sk sk ko sk sk ok sk ok sk kot sk kot sk kot ok sk sk ok sk ok skakok |
* print_message: takes a string and packs the bytes to be sent over the HPI
* then gives the command to the MSP to print the data in the buffer
\ stk stk ke stk ks skt o kst ok ke sk st ok sk s stk ks stk ks sk ks skt ok s skt ok ks sk stk sk sk stk sk /
void print_message(Char s*message)
{

Uint16 hpi_data_address = _MSP_DATA;

Uint16 i=0;

Uint16 temp_word;

/* the first position is for the length of the string */

hpi_data_address+=1;

/* start at the beginning of the message */
i=0;

/* takes care of everything but last character x/
while ((messagel[i] != 0) && (i <= MAX_BUFFER))
{

/* load the first character of the word */

temp_word = (Uint16) (messagel[i]l << 8);

i++;
/* load the second character of the word */
if (messagel[i] != 0)
{

temp_word |= (Uint16) (messagel[il);

i++;

else

temp_word |= 0x0000;

/* do mot increment i x/

/* store the word at the address */
(*(Uint16 *)hpi_data_address) = temp_word;

hpi_data_address++;

132

60

70

80

90

100

/* put a null character in at the end, just in case */

(x(Uint16 *)hpi_data_address) = 0x0000;

/* store the length in bytes at the beginning of the buffer x/
(+(Uint16 +)_MSP_DATA) = (Uint16) i;

/* send code to MSP to print the buffer */
MSP_COMMAND_REGISTER = PRINT_MESSAGE;

send_host_interrupt();

void clear_messages(void)
{
Uint16 hpi_data_address = _MSP_DATA;

Uint16 i=0;

for (i=0;i<MAX_BUFFER;i++)
{
(%(Uint16 =*)hpi_data_address) = 0x0000;

hpi_data_address++;

[kt ko sk kot sk ot sk koo soksk ko sk sk ok sk ot sskok kot sk kot sk koo sk sk ok s kakok |
* send_host_interrupt: sends an interrupt to the MSP

\ sk stk ks stk ke skt o ke skt ok ke sk stk ks st ok ks stk ks skt s skt o ks skt ok sk stk sk sk stk ok /
void send_host_interrupt(void)

{

Uint16 i;

/* interrupts on the falling edge of HINT x/
ST3_55 &= ("MSP_HINT);

/* delay */
for(i=0;1i<=1000;i++);

/* release the interrupt pin */

ST3_55 |= MSP_HINT;

kot kot sk kot sk kot sk sk ok sk sk ok sk kot s skok kot sk kot ks sk ok sk ok s kakok |
* get_command: gets the next command from the MSP
\ stttk ks stk ks st ke sk ok ke st ok ke stk ks stk ks stk s skt ok ks st ok stk ks stk sk /

Uint16 get_command(void)

{

133

110

120

130

140

while (new_command == FALSE)

{
/* Puts the processor in low power mode when it */
/* is mot processing anything */
ICR |= (CACHE | CPU);
EXECUTE_IDLE;

/* reset new_command to prepare for next commandsk/

new_command = FALSE;

/* return command x/

return (DSP_COMMAND_REGISTER);

[ookt sk sk sk sk sk sk stk st kot ks sk sk sk sk sk sk sk sk sttt R sk sk sk sk sk sk sk sk sk skttt ook
* send_hpi_command: sends a command to the MSP
\ stk stk ks sk ks skt o ks skt o sk stk sk sk stk sk sk stk ks skt ks skt ok sk skt ok sk sk stk sk sk ok sk /
void send_hpi_command(Uint16 command)

/* writes a command to the register x/

MSP_COMMAND_REGISTER = command;

/* sends an interrupt to the MSP to look at the register */

send_host_interrupt();

skt ok ok kot sk kot sk koo sk sk ok sk sk ok sk kot sk kot sk otk sk sk ok sk ok skakok |
* hpi_interrupt: turns on LEDI1 when an interrupt is received, sets a flag
* to indicate there is a new command to process and takes the
* system out of low power mode.
\ sttt ks kot sk kot ok kot ok koo stk sk ik stk ok stk ot skok kot sk skt ok sk ok skskok ok skokok /
interrupt void hpi_interrupt(void)
{
/* turn on LED1 x/
GPIO_DATA |= LED1;

/* start timer to turn off LED1 x/

start_timer1();

new_command = TRUE;

/* take out of low power mode */

ICR &= ~(CACHE | CPU);

134

E.10 include.h

/*
* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
«/
[ookt ks sk sk sk sk sk sk sk stk st kot R ks sk sk sk sk sk sk sk sk sttt R sk sk sk sk sk sk sk sk sk sk kR ook
* FILENAME. include.h
* DATE CREATED. . 07/11/2002
* LAST MODIFIED. 08/07/2002

>k*>k**>k****>k>k*>k*****>k****>k>k*>k*******>(<***>k*>k**>k****>(<**********************/

#include "vcb5509.h"
#include "prototype.h"
#include "define.h"
#include "extern.h"

#include "math.h"

#include "dsplib.h"

E.11 init_sys.c

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
«/
[k sk ko kot sk ot sk sk ok sk ko sk ok s kskok kot s skok kot sk kot sk skt sk ok kakok |
* FILENAME. init_sys.c
* DATE CREATED. . 07/11/2002
* LAST MODIFIED. 08/07/2002

135

**/

#include "include.h"

[kst sk stk sk skt o ks sk ok ok ke sk stk sk sk stk ks stk sk skt sk skt ok ks skt ok sk sk stk sk sk kot ok |
* initialize_system: initialize all the o, interrupts, and low power mode
otk okt sk sk sk sk sk sk stk st ot ot ok ook ok sk sk sk sk sk sk stk ot ko ok sk sk sk sk sk sk sk sk sk stk kot ok ok ok ok ok /

20 void initialize_system(void)

{

/* disable global interrupts while configuring x*/

INTR_GLOBAL_DISABLE;

/* set processor to ’55z mative mode instead of */
/* ’54z compatibility mode (reset wvalue) */
ST1_55 &= ("C54CM);

30 /* initialize gemeral purpose io x/

initialize_gpio();

/* initialize interrupts */

initialize_intr();

/* clear the registers used to send commands to and from the MSP x/
DSP_COMMAND_REGISTER = O;
MSP_COMMAND_REGISTER = O0;

40 clear_messages();

/* enable interrupts for dspint and timer0 x/

IERO |= (DSPINT | TINTO) ;

/* enable interrupts for timerl x/

IER1 |= TINT1;

/* setup the low power mode configuration */
initialize_idle_configuration();
50
/* turn off all the LEDs x/
GPIO_DATA &= ("LEDO);
GPIO_DATA &= ("LED1);
GPIO_DATA &= ("LED2);

/* enable global interrupts */

INTR_GLOBAL_ENABLE;

136

60

70

80

90

100

[ookt sk sk sk sk sk sk stk ot kot sk sk sk sk sk sk sk sk sttt kR sk sk sk sk sk sk sk sk sk sk skttt ook |
* initialize_gpto: setup GPIOO-7 as inputs, and enable GPIO on the ports
* with the LEDs.
\ sttt ks kot ok kot sk kot sk otk sk sk ko stk ok sk ot otk kot sk otk sk sk ok skskk ok s kkok /
void initialize_gpio(void)
{

/* setup GPIOO-GPIO7 as inputs %/

I0_DIR = 0x0000;

/* enable LED GPIO ports x/
GPIO_ENABLE = LED2 | LED1 | LEDO;

/* setup LED GPIO ports as outputs x/

GPIO_DIR = LED2 | LED1 | LEDO;

/* turn off all the LEDs %/
GPIO_DATA &= ("(LEDO | LED1 | LED2));

[ks stk ke stk ks sk ok ok ko sk ok ok sk st ok sk sk stk sk sk sk ok ks skt sk skt ok s skt ok ks sk stk sk sk stk sk |
* initialize_intr: initialize interrupts and the interrupt vector table
\ sttt sttt ok kot sk kot sk kot sokk ko sk ok sokskok ot sskok kot skok kot sk koo skskk ok s kokok /
void initialize_intr(void)

/* disable interrupt enable register 0 */

IERO = O; //

/* disable interrupt enable register 1 x/

IER1 = O;

/* clear any pending interrupts on interrupt flag register 0 */

IFRO = OxFFFF;

/* clear any pending interrupts on interrupt flag register 1 x/

IFR1 = OxFFFF;

/* Locate DSP Interrupt vectors at byte address 100h */
IVPD = 1;

* Locate Hos nterrupt vectors a e address *
L te Host Int pt t t byt dd 100h
IVPH = 1;

137

110

120

10

[kst sk ok ks kot sk skt ok sk skt ok sk sk stk sk sk ok ks ok sk skt ok sk skt ok sk sk ok sk sk ok kakok |
* initialize_idle_configuration: shutdown all the peripherals not in use
\ otttk sk sk sk sk sk sk sk stk ottt ks sk sk sk sk sk stk sttt R sk sk sk sk sk sk sk sk sk skttt ok ok ok
void initialize_idle_configuration(void)
{

/* enable the idle domain for the serial ports x/

PCRO |= McBSP_IDLE_EN;

PCR1 |= McBSP_IDLE_EN;

PCR2 |= McBSP_IDLE_EN;

/* enable the idle domain for the I2C x/
ICMDR |= I2C_IDEL_EN;

/* enable the idle domain for the multimedia card */

MMCFCLK |= MMC_IDEL_EN;

/* load the idle configuration register with the peripheral x*/
/* and exzternal memory interface domains to shut them down x*/

ICR = (EMIF | PERIPH);

/* ewecute the loaded idle configuration x/

EXECUTE_IDLE;

E.12 lp_filter.asm

; Personnel Detector

; Elliot Ranger

; Master of Science Thesis

; Massachusetts Institute of Technology

; in conjunction with Charles Stark Draper Laboratory

§ otk kskok ok s skk ot kok otk kot sk skt Rk skt R sk kot R sk kot R stk sk ok sk sk ok sk ok kakok |
; FILENAME. lp_filter.asm

; DATE CREATED. . 02/12/2003

; LAST MODIFIED. 02/20/2003

§ otk skskok ok s kok otk ot s kk kot sk skt sk skt R sk kot R sk kot R stk sk ok sk sk ok sk ok s kakok /

; void lp_filter(DATA *x, ushort nx, DATA xy_previous);
H Entry: arg0: ARO — signal input pointer

138

H argl: TO — number of samples in the input

H arg2: AR1 — pointer to previous output y

20
.def _lp_filter
.sect .text
_lp_filter
pshm ST1.55 ; Save ST1, ST2, and ST3
pshm ST2_55
pshm ST3_55
30
or #0x340, mmap (ST1_55); Set FRCT,SXMD,SATD
bset SMUL ; Set SMUL
sub #1,T0
mov TO,BRCO ; Outer loop couter
rptblocal lpl—].
mov *AR1, T1 , Store y[previous] in T1
mov }ARO<<#16,4C0
mpyk #8192,AC0,ACO ; multiply x[1]%8192
40 mack T1, #24576, ACO, ACO ; multiply ylprevious] * 30720 and accumulate
mov hi(ACO),*ARO , store the new output
mov >|<ARO—|—7 *AR1 ; put the previous y value in AR1
1p1
popm ST3.55 ; Restore ST1, ST2, and ST3
popm ST2_55
popm ST1.55
ret
.end
50

139

10

20

30

40

E.13 main.c

/*
* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* an conjunction with Charles Stark Draper Laboratory
*
«/
[skttt ks stk ks skt ok ks skt ok skt ok ke stk sk stk ks stk s skt ok ks skt ok ks stk sk stk ko |
* FILENAME. main.c
+« DATE CREATED. . 07/11/2002
* LAST MODIFIED. 08/07/2002

>(<>k*>k>k*******>(<>k*>k***********>k*>k**>k**>k*>(<***>k*>k**>k***************************/

#include "include.h"

#include "variables.h"

[sk stok stk sk ok ks sk ok ok ks skt ok ks sk stk ke stk ks stk ks sk ok s skt ok ks skt ok sk stk sk stk ok |
* main: main function which initializes the system and indefinitely

* keeps processing commands.

N sttt ks ok otk kot sk kot ook otk stk sk ok stk ok stk otk kot ok kot ok sk ok sk ok skkok /
void main(void)

{

/* initialize the system x/
initialize_system();

signal_proc_init();

/* starts timer0 to flash LEDO while the processor is running */

start_timer0();

/* send a message to MSP x/

print_message("VC5509: Booted and Running");

/* infinite loop */
while(1)

{

process_commands () ;

140

E.14 normalization.h

/*

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* 4in conjunction with Charles Stark Draper Laboratory
*

%

kot koot sk kot sk kot sk skt sk sk ok sk sk ok sk ok sk kot sk otk sk skt sk ok s kakok |
* FILENAME. normalization.h

+« DATE CREATED. . 12/14/2002

* LAST MODIFIED. 02/08/2003

***************************************>I<**************************************/

#define SUMWIDTH 8

#define BLKOUT 4

#define OFFSET 12 /* SUMWIDTH + BLKOUT x/
#define THRESHOLD 1

#define SPECTRUM_SIZE 512

#define CENTER_SIZE 9 /% 2«BLKOUT + 1 */
#define SIDES_SIZE 16 /* 2xSUMWIDTH */

/* used as a temporary variable for converting to magnitude x/

LDATA magtemp [FREQ_SIZE];

/* extz and T should be the nz + 2x(offset) x/
DATA spectemp [SPECTRUM_SIZE+(2+0FFSET)];
DATA norm_spec [SPECTRUM_SIZE+(2x0FFSET)];

E.15 proc_cmd.c

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* 4in conjunction with Charles Stark Draper Laboratory

141

10

20

30

40

50

*
%

[sk stok ks stk ks skt ok ks skt ok ks sk stk sk s stk sk sk stk ks stk sk skt ok s skt ok sk stk sk sk stk ook |

* FILENAME. proc_cmd.c

+« DATE CREATED. . 07/11/2002

* LAST MODIFIED. 01/15/2003

********>k**>k****>k*****>k**>k**********>k**>k**********>k***************************/

#include "include.h"

[kst sk ok ks kot sk kot o sk skt stk sk ok stk ok stk kot sk skt sk skt ok sk sk ok sk sk ok sk |
* process_commands: processes a command that is received through the hpi

\ stk stk ke ok ks skt o sk skt ok e sk stk sk sk stk sk stk ks skt sk skt ok ek skt ok ks sk stk sk sk sk ok kkok /
void process_commands(void)

{

switch(get_command())
{
case PROCESS_DATA_BLOCK_1:
block_memloc=(DATAx)BLOCK1_MEM;
process_block();

break;

case PROCESS_DATA_BLOCK_2:
block_memloc=(DATAx)BLOCK2_MEM;
process_block();
break;

case CLEAR_PROCESSING_BUFFERS:
signal_proc_init();
print_message ("VC5509: Buffers Cleared");

break;

case GET_VC5509_VERSION:
print_message (VERSION) ;
break;

case COPY_TO_HPI_WRITE:
hpi_save_code();
print_message("VC5509: Code Copied to Buffer");

break;

default: break;

142

10

20

30

40

E.16 prototype.h

/*
* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* an conjunction with Charles Stark Draper Laboratory
*
«/
[skttt ks stk ks skt ok ks skt ok skt ok ke stk sk stk ks stk s skt ok ks skt ok ks stk sk stk ko |
* FILENAME. prototype.h
+« DATE CREATED. . 07/11/2002
* LAST MODIFIED. 02/25/2003
\ stttk ke sk ek ke sk o ke sk ok ke stk etk sk stk ke stk ke st ok ke stk etk sk /

#include "tms320.h"

void initialize_system(void);
void initialize_gpio(void);
void initialize_intr(void);

void initialize_idle_configuration(void);

void LEDO_on(void);
void LEDO_off (void);
void LED1_on(void);
void LED1_off (void);
void LED2_on(void);
void LED2_off (void);

void LED_test(void);

void send_host_interrupt(void) ;

interrupt void hpi_interrupt(void);

void start_timerO(void);
void start_timeril(void);
interrupt void timerO_interrupt(void);

interrupt void timeri_interrupt(void);

void process_commands(void) ;

void print_message (Char xmessage);
void hpi_save_code(void);

void send_hpi_command(Uint16 command);

void clear_messages(void);

void process_block(void);

143

50

10

20

void abs_val(DATA *x, ushort nx);

void signal_proc_init(void);

ushort firdecimate(DATA #x, ushort nx, DATA xh, ushort nh, DATA *r, DATA xdbuffer, ushort dbufindex, ushort m, ushort ouw
void convert_to_mag(DATA +*x, ushort nx, LDATA x*r);

ushort Sqrt32(ulong x);

void spectral_normalization(DATA #x, ushort nx, DATA xextx, DATA xr);

void window(DATA *x, ushort nx, ushort *window, DATA xoutput);

ushort window_buffer (DATA #*x, ushort nx, ushort nb, DATA sxoutput, DATA xsignal, ushort index);
void scale_output(DATA #*x, ushort nx);

ushort detection_algorithm(DATA #x);

void shift_down(DATA *x, ushort nx, ushort shift_value);

void hp_filter (DATA *x, ushort nx, DATA *y_previous, DATA *x_previous);

void lp_filter (DATA x*x, ushort nx, DATA xy_previous);

E.17 signal_proc.c

/*
* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* 4n conjunction with Charles Stark Draper Laboratory
*
%
[kst ok stk ks sk ok ok ks sk ok o sk st ok sk sk stk sk sk stk ks skt sk skt ok s skt ok sk sk stk ks sk stk ok |
* FILENAME. stgnal_proc.c
* DATE CREATED. . 07/12/2002
* LAST MODIFIED. 03/03/2003

**/

#include "include.h"
#include "filters.h"
#include "hanning.h"

#include "normalization.h"

/* Memory locations */
#pragma DATA_SECTION(h_bp, "iir_coef");
#pragma DATA_SECTION(dbuffer_bp, "iir_delay");

#pragma DATA_SECTION(h_firdecl, "fir_coef");

#pragma DATA_SECTION(h_firdec2, "fir_coef");
#pragma DATA_SECTION(dbuffer_firdecl, "fir_delay");

144

30

40

50

60

70

#pragma DATA_SECTION(dbuffer_firdec2, "fir_delay");

#pragma DATA_SECTION(hanning, "window_coef");

#pragma DATA_SECTION(wsignal, "window_signal");

#pragma DATA_SECTION(output, "window_data");

#pragma DATA_SECTION (magtemp,"freq_data");

#pragma DATA_SECTION(spectemp,"freq_data");

#pragma DATA_SECTION(norm_spec,"freq_data");

/**\

*

*

**/

signal_proc_init:

vartables.

void signal_proc_init()

{

ushort ij;

/* clear buffers for bandpass filters x*/
iir_hp_y=0;
iir_hp_x=0;

iir_1p_y=0;

/* clear signal buffers for FIR x/
for (i=0; i< (NH_FIR+1); i++)
{

dbuffer_firdec1[i]=0;

dbuffer_firdec2[i]=0;

/* clear signal buffer index for FIR */
dbuffer_index1l =0;

dbuffer_index2 =0;

/* clear signal buffers for window */
for (i=0; i< (WINDOW_SIZE); i++)

{
wsignall[i]=0;

output [1]=0;

/* clear normalization buffers x/

for (i=0; i< (SPECTRUM_SIZE); i++)

{

norm_spec[i]=0;

145

initializes all the signal processing buffers and

spectemp[i]=0;

/% clear index for window */

windex=0;

clear_messages();

80

[kst sk ok ks kot sk kot ok sk sk stk stk sk ok stk ok stk kot sk skt sk skt ok sk sk ok sk sk ok skkok |

* process_block: function called by the MSP after it has loaded a complete

* block of data into the DSP memory.

\ skt ks sk ke sk o ke skt ok ke skt ok ke s stk ks stk ks stk o s skt ok ks skt ok ks stk sk sk stk sk /

void process_block()

{
/* take out the DC offset from the incoming data */
shift_down(block_memloc, NX_IIR, DC_OFFSET);

90 /* IIR bandpass filter x/
hp_filter(block_memloc, NX_IIR, &iir_hp_y, &iir_hp_x);
lp_filter(block_memloc, NX_IIR, &iir_lp_y);
/* envelope detect x/
abs_val (block_memloc,NX_IIR);
/* FIR decimation in two stages (5 and 2) %/
dbuffer_indexl=firdecimate(block_memloc, NX_FIR1, h_firdecl, NH_FIR, block_memloc, dbuffer_firdecl, dbuffer_indexi, D_
dbuffer_index2=firdecimate(block_memloc, NX_FIR2, h_firdec2, NH_FIR, block_memloc, dbuffer_firdec2, dbuffer_index2, D_
100
/* window buffer circular buffer that keeps aligning the data correctly for the FFT x/
windex=window_buffer(block_memloc, NX_SIZE, WINDOW_SIZE, output, wsignal, windex);
/* multiply the data by a hanning window before FFT */
window(output, WINDOW_SIZE, hanning, output);
/* FFT routine x*/
rfft(output,WINDOW_SIZE,SCALE) ;
110 /* convert output magnitude */

convert_to_mag(output,WINDOW_SIZE,magtemp) ;

/* take out DC component and scale output */

scale_output (output,SPECTRUM_SIZE) ;

/* mormalize the spectrum */

146

120

130

140

150

160

spectral_normalization(output,SPECTRUM_SIZE, spectemp, norm_spec);

/* detection algorithm x*/
if (detection_algorithm(norm_spec)==TRUE)

{

print_message ("VC5509: Footsteps Detected");

/* turn on LED2 x/

GPIO_DATA |= LED2;

else

/* turn off LED2 %/
GPIO_DATA &= ("LED2);

[ks stk ok stk ks sk ok ok sk skt o sk st ok sk sk stk ks sk sk ok ks skt sk skt ok s skt ok s sk ko sk sk stk kokok |
* shift_down: just subtracts out the DC offset from the A/D conversion
\ otk otk sk sk sk sk sk sk stk st kot ok o sk sk sk sk sk sk sk sk sk sttt ok ok sk sk sk sk sk sk sk sk sk skttt ok ko ko ok /
void shift_down(DATA *x, ushort nx, ushort shift_value)
{

/* just shift the whole signal down by DC offset x/

ushort ij;

for (i=0;i<nx;i++) x[i] = x[i] — shift_value;

[kt ok sk kot sk kot sk kot sk sk ko sk sk ok sk ot sk kot sk otk sk sk ok sk ok sk |
* abs_val: takes the absolute wvalue of all the walues
\ stttk ks sk ks sk o ke sk ok ke stk ke st ok ks stk ks sk ks skt ok sk st ok sk stk sk sk ok ke /
void abs_val(DATA *x, ushort nx)

ushort ij;

for (i=0;i<nx;i++) x[i] = abs(x[il);

/**\

* scale_output: removes any DC frequency components by setting all the wvalues

* to the mean of the next 20 wvalues divided by 2 to account for the
* fact that the data contains a number of peaks and we want it to

* be lower. Then scales the whole data set so the peak wvalue 1s

* near full scale.

**/

void scale_output(DATA #*x, ushort nx)

{

147

170

180

190

200

ushort i;
ushort xval;

ulong sum=0;

/* take out DC values by setting to the mean/2 of the first values */
for (i=5;i<25;i++) sum = sum + x[i];
xval=sum/40;

for (i=0;i<5;i++) x[i]

xval;

/* scale the data up */

for (i=0;i<nx;i++) x[i] = x[il<<7;

/**\

*

*

convert_to_mag: takes the real and imaginary data that is outputed from

the FFT routine and converts it to a magnitude.

**/

void convert_to_mag(DATA #*x, ushort nx, LDATA *r)

{

*

*

ushort 1i,j;

ushort temp;

/* take absolute wvalue first x/

for (i=0;i<nx;i++) x[i] = abs(x[il);

/* first two values are DC and Nyquist */

temp = x[1];

j=1;

for (i=2;i<(nx/2—1);i=i+2)

{
r[jl=(ulong)x[il*x[i]l+(ulong)x [i+1]*x [i+1];
x[j1=Sqrt32(r[j1);

j++;

s

* store Nyquist *
Yq

x[j] = temp;

/**\

Sqrt32: fized point square-root function. This algorithm was provided

by Ken Turkowski Oct 1994.

**/

148

210

220

230

240

250

ushort Sqrt32(unsigned long x)

{

register unsigned long root, remHi, remLo, testDiv, count;

/* Clear root */

root = 0;

/* Clear high part of partial remainder */

remHi = 0;

/* Get argument into low part of partial remainder x/

remlo = x;

/* Loop couter x/

count = 15;

do

/* get 2 bits of arg */

remHi = (remHi<<2)|(remLo>>30); remlo <<=2;

/* get ready for the nexzt bit in the Toot */
root <<= 1;

/* Test radical */
testDiv = (root <<1) + 1;
if (remHi >= testDiv)
{
remHi—=testDiv;
root++;

}

} while (count—— != 0);

return(root);

[kt koo kot sk kot sk kot sk ko sk ko skskk kot skok kot sk kot sk koo sk sk ok akok |
* spectral_normalization: 2 pass normalization function which normalizes
* the peaks to the noise floor.
\ stttk ke stk ks skt ks skt ok sk sk stk sk sk ok stk sk ok ks kot sk skt sk skt ok sk sk ok sk sk ok skskok /
void spectral_normalization(DATA +x, ushort nx, DATA xextx, DATA xr)
{

ushort i,j,lbeg,lend,rbeg,rend;

ulong lsum=0,rsum=0,censum=0,cmpsum=0;

149

260

270

280

290

/* mirror data to left side and calculate the sum */
j=0FFSET—1;

for (i=0;i<O0FFSET;i++)

{
r[jl=x[il;
if (i>=BLKOUT) lsum=lsum+x[i];
j=——:;

}

/* copy over the data */
j=0FFSET;
for (i=0;i<nx;i++)
{
rljl=x[i];

j++s

H

/* mirror data to right x/
j=nx+0FFSET;
for (i=nx—1;i>=(nx—0FFSET);i——)
{

r[jl=x[i];

B

jH+;

/* get the sum for the right side x/
for (i=(0OFFSET+BLKOUT+1) ;i<=(2*0FFSET) ;i++) rsum=rsum+rl[i];

/* get the sum for the center x/
for (i=(0FFSET—BLKOUT) ;i<=(0FFSET+BLKOUT);i++) censum=censum+r[i];

/* store value of first point */
extx [OFFSET]=censum/CENTER_SIZE;
cmpsum=(1lsum+rsum) /SIDES_SIZE;

/* replace with lower value */

if ((extx[OFFSET]/THRESHOLD) > cmpsum) extx[OFFSET]=cmpsum;

1lbeg=0;
1lend=0FFSET—BLKOUT;
rbeg=0FFSET+BLKOUT+1;
rend=2+0FFSET+1;

/* first pass */
for (i=OFFSET+1;i< (nx+OFFSET);i++)

150

/* move everything over by one */
lsum=lsum—r [1lbeg] ;

300 lsum=1sum+r[lend] ;
rsum=rsum—r [rbeg] ;

rsum=rsum+r [rend] ;

/* get the new sum for the center x/
censum=censum—r [lend] ;

censum=censum+r [rbeg] ;

lbeg++;
lend++;
310 rbeg++;

rend++;

/* store value of mezt point */
extx[il=censum/CENTER_SIZE;

cmpsum=(1lsum+rsum) /SIDES_SIZE;

if ((extx[i]/THRESHOLD) > cmpsum) extx[i]l=cmpsum;

320 /* reset all the walues x/

1sum=0;rsum=0; censum=0; cmpsum=0;

/* mirror the data back around the sides */

j=0FFSET—1;

for (i=0FFSET;i< (2%0FFSET) ;i++)

{
extx[jl=extx[i];
if (i>=(0FFSET+BLKOUT)) lsum=lsum+extx[i];
j=—=s

330 }

j=nx+0FFSET;
for (i=nx+0FFSET—1;i>=nx;i——)

{

extx[jl=extx[i];

B

j++;

/* get the sum for the right side x/
340 for (i=(OFFSET+BLKOUT+1);i<=(2*0FFSET) ;i++) rsum=rsum+extx[i];

151

/* get the sum for the center */
for (i=(0FFSET—BLKOUT) ;i<=(0FFSET+BLKOUT) ;i++) censum=censum+extx[i];

/* store value of first point */
r[0]=censum/CENTER_SIZE;

cmpsum=(1lsum+rsum) /SIDES_SIZE;

/* replace with lower wvalue */

350 if ((r[0]/THRESHOLD) > cmpsum) r[0]=cmpsum;

1beg=0;
lend=0FFSET—BLKOUT;
rbeg=0FFSET+BLKOUT+1;
rend=2+0FFSET+1;

/* second pass */
for (i=l;i<nx;i++)
{

360 /* move everything over by one */
lsum=lsum—extx[1beg] ;
lsum=1sum+extx[lend] ;
rsum=rsum—extx [rbeg] ;

rsum=rsum+extx[rend] ;

/* get the new sum for the center x/
censum=censum—extx[lend] ;

censum=censum+extx [rbeg] ;

370 lbeg++;
lend++;
rbeg++;

rend++;

/* store value of first point */
r[il=censum/CENTER_SIZE;

cmpsum=(1lsum+rsum) /SIDES_SIZE;

if ((r[i]/THRESHOLD) > cmpsum) r[i]=cmpsum;
380 }

/* divide the mormalized spectrum by 64 otherwise the */
/* results from the integer division are too low */
/* want to find peaks that are twice as big as background x/

for (i=0;i<nx;i++) r[i] = rl[il<<1;

152

390

/* all that is left ts to subtract the background from */

/* the original spectrum */

for (i=0;i<nx;i++){

rlil=x[i]—r[il;

/**\

*

*

*

*

**/

detection_algorithm: actual algorithm that classifies whether it <s a person

looks at frequency and threshold of the first harmonic and if

there is a second or third harmonic present as well which 7s above

a certain threshold.

400 ushort detection_algorithm2(DATA xx)

410

420

430

{

ushort i;

ushort peak1=0;

ushort index_peakl;

ushort second_harmonic=FALSE;

ushort third_harmonic=FALSE;

/* first check and see if there is a peak within the */
/* range of 1-3 Hz above the threshold (each bin is .098 Hz) */
for (i=10;i<=31;i++)
{
if (x[i] > peakl)
{
peakl=x[i];

index_peakl=i;

if (peakl < FIRST_THRESHOLD) return FALSE;

/* mow check to see if there is a second or third harmonic x/
/* that is above the threshold */

for (i=(index_peak1%2) —PEAK_WIDTH;i<=(index_peak1*2)+PEAK_WIDTH;i++)

{

if (x[i] > SECOND_THRESHOLD) second_harmonic=TRUE;

for (i=(index_peak1%3)—PEAK_WIDTH;i<=(index_peak1%3)+PEAK_WIDTH;i++)

{

if (x[i] > THIRD_THRESHOLD) third_harmonic=TRUE;

153

if (second_harmonic==TRUE || third_harmonic==TRUE) return TRUE;

return FALSE;

ushort detection_algorithm(DATA xx)

{
440 ushort i,j;
DATA peaks[5];
ushort index_peaks[5];
/* clear out values */
for (i=0;i<5;i++)
{
peaks[1]1=0;
index_peaks[i]=0;
}
450
/* find first 5 peaks x/
for (i=0;i<5;i++)
{
for (j=10;3j<100;j++)
{
if (x[j] > peaks[il)
{
peaks[i]l=x[j];
index_peaks[i]=j;
460 }
}
/* make peak negative so it isn’t included again */
for (j=index_peaks[i] —PEAK_WIDTH;j<=index_peaks[i]+PEAK_WIDTH; j++)
{
/* only flip down positive walues x*/
if (x[31 > 0) x[jI1=—=x[3j];
}
}
470

for (i=0;i<5;i++)

{

/* first check and see if there is a peak within the */
/* range of 1-3 Hz above the threshold (each bin is .098 Hz) */
if ((index_peaks[i] >= 10) &&

154

(index_peaks[i] <= 31) &&
(peaks[i] >= FIRST_THRESHOLD))

480 /* this is a possible first harmonic */
/* check and see if there is a second or third harmonic */
/* which is above the threshold x/
for (j=0;j<5;j++)
{
/* do mot want to check agaist itself x/
if (3!=1)
{
if ((index_peaks[j] >= (index_peaks[i]*2—PEAK_WIDTH)) &&
(index_peaks[j] <= (index_peaks[i]+2+PEAK_WIDTH)) &&
490 (peaks[j] >= SECOND_THRESHOLD)) return TRUE;

if ((index_peaks[j] >= (index_peaks[i]*3—PEAK_WIDTH)) &&
(index_peaks[j] <= (index_peaks[i]*3+PEAK_WIDTH)) &&
(peaks[j] >= THIRD_THRESHOLD)) return TRUE;

500
return FALSE;
}
o

E.18 timer.c

/*

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* 4in conjunction with Charles Stark Draper Laboratory

*

%

[ks stk sk stk ks skt sk sk ot ok s sk st ok sk sk stk sk sk ok sk sk sk skt ok sk skt ok ks sk stk ks sk stk ok |
10 = FILENAME. timer.c

* DATE CREATED. . 07/11/2002
x LAST MODIFIED. 08/07/2002

**/

155

#include "include.h"

/**\

*

*

start_timer0: timer O is used to flash the LED when the VC5509 ts booted

up and running code.

20 **/

void start_timerO(void)

{

/* make sure Timer 0 is stopped x/

TCRO |= TSS;

/% enable timer loading */

TCRO |= TLB;

/* do not stop timer for breakpoints x*/

TCRO |= FREE;

/* automatically reload the timer x/

TCRO |= ARB;

/* TDDR = F 4n PRSCO divide the main clock by 15 x/
PRSCO = 0x000F;

/* period register which is loaded into TIMO */
PRDO = OxFFFF;

/* disable further loading of register */
TCRO &= ("TLB);

/* start Timer 0 %/
TCRO &= (°TSS);

[ks stk ok stk ks sk ok ok sk sk ok ok ke sk st ok sk sk stk sk sk stk ks skt sk skt ok s skt ok ks sk stk sk sk kot ook |

30
40

}
50 =«

*

start_timerl: timer 1 is used to flash the LED when the VC5509 receives

an hpi command from the MSP.

**/

void start_timeri(void)

{

/* make sure Timer 1 is stopped */

TCR1 |= TSS;

/* enable timer loading */

TCR1 |= TLB;

156

60

70

/* do not stop timer for breakpoints */

TCR1 |= FREE;

/* TDDR = F 4n PRSCO divide the main clock by 15 x/
PRSC1 = Ox000F;

/* period register which s loaded into TIMI x/
PRD1 = OxFFFF;

* 18 e ur er oaain [register x
disabl ther loading gist
TCR1 &= ("TLB);

/* start Timer 1 %/
TCR1 &= (°TSS);

/**\

*

timerO_interrupt: only turn LEDO on after the timer counts down 25 times

80 **/

90

100

interrupt void timerO_interrupt(void)

{

if ((GPIO_DATA & LEDO) == LEDO) /* LEDO is om */

{

/* turn off LEDO x/
GPIO_DATA &= ("LEDO);

timerO_counter=0;

else /* LEDO is off */

timerO_counter++;

if (timerO_counter >= 25)

{

/* turn on LEDO */
GPIO_DATA |= LEDO;

/**\

*

timerl_interrupt: turn LED1 off and stop the timer

**/

interrupt void timerl_interrupt(void)

157

110

10

20

/* turn off LED1 x/
GPIO_DATA &= ("LED1);

TCR1 |= TSS; // make sure Timer 0 is stopped

E.19 variables.h

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
«/
[kttt kot sk ot sk kot sksk ko sk sk ok sk kot sk kot skok otk sk sk ok sk ok s akok |
* FILENAME. variables.h
* DATE CREATED. . 07/11/2002
* LAST MODIFIED. 08/07/2002

*****>k**>k*****>k****>k>k*>k*****>k****>k**>k*****>k**>k*>k**>k***************************/

/* global wariables */
Uint16 timerO_counter=0;

Uint16 new_command=0;

DATA* block_memloc; /* stores the location of where to begin processing */

E.20 vc5509.h

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* 4in conjunction with Charles Stark Draper Laboratory

158

10

20

30

40

50

%
*/

/**\

% FILENAME. ve5509.h

% DATE CREATED. . 07/11/2002

% LAST MODIFIED. 08/07/2002

**/

[soksksstok sk stk sk ok ks kot s sk skt ok sk skt ok ko |
* typedef declarations

\ stttk otk ok sk kot sk ot sk kot soksk koo ook /
typedef unsigned char Uchar;

typedef char Char;

typedef unsigned short Uintil6;

typedef unsigned long Uint32;

typedef short Int16;

typedef long Int32;

[kot ok ok sk kot sk kot sskok kot ok sk sk ok sokok |

* helper functions

\ otttk sk sk ok sk sk kot Rk sk skok sk ok ok ok |

#define PREG16(addr) (x(volatile ioport Uint16x) (addr))

#define REG16(addr) (x(volatile Uint16x) (addr))

[sksksestok sk stk sk stk ks skt o s skt ok sk sk sk ok sk |
* LED declarations

**/

#define LEDO 0x0002u /* GPIO 9 %/
#define LED1 0x0004u /* GPIO 10 %/
#define LED2 0x0020u /* GPIO 13 %/

[k sk Rk ok s R Rk ok |
* I/0 registers

\ sk stk ke stk ke sk ks skt ok skt ok sk sk sk ok sokok [

#define IO_DIR PREG16 (0x3400u) /* GPIO0-GPIO7 Dir Register
#define IO_DATA PREG16(0x3401u) /* GPIOO-GPIO7 Data Register
#define GPIO_ENABLE PREG16 (0x4403u) /* GPIO8-GPIO15 Enable Register
#define GPIO_DIR PREG16 (0x4404u) /* GPIO8-GPIO15 Dir Register
#define GPIO_DATA PREG16 (0x4405u) /* GPIO8-GPIO15 Data Register

[kst stok skt ok sk sk ko sk ko sk ko skt ok ko |
* Idle registers

**/

#define ICR PREG16 (0x0001u) /* Idle Configuration Register

159

60

70

80

90

#define ISRT PREG16 (0x0002u)

#define PCRO PREG16(0x2812u)
#define PCR1 PREG16 (0x2C12u)
#define PCR2 PREG16(0x3012u)
#define ICMDR PREG16 (0x3C09u)
#define MMCFCLK PREG16 (0x4800u)

[sk stok ks stk sk sk ko sk sk ok sk st ok sk st ok ko |
* Idle declarations

**/

#define CPU 0x0001u
#define DMA 0x0002u
#define CACHE 0x0004u
#define PERIPH 0x0008u
#define CLKGEN 0x0010u
#define EMIF 0x0020u

#define McBSP_IDLE_EN 0x0040u
#define I2C_IDEL_EN 0x1000u

#define MMC_IDEL_EN 0x0100u

[skttt stk stk ks sk ok sk ok sk stk sk st ok ko |
* Timer registers

\ stttk otk ok ks kot ks kot ok kot ok sk sk ok sokok [

/* Idle Status Register */

/* Pin Control Register for McBSPO x/

/* Pin Control Register for McBSPO x/

/% Pin Control Register for McBSPO */

/* I2C Control Register x/

/* Multi-Media Card Clock Control x/

/% for shutting down the CPU

/% for shutting down the DMA

/* for shutting down the CACHE x/

/* for shutting down the PERIPHERALS x*/

/* for shutting down the CLKGEN x/

/* for shutting down the External Memory Interface
/* Idle enable bit for McBSP ports x/
/* Idle enable bit for I2C port x/

/* Idle enable bit for MMC port x/

#define TIMO PREG16 (0x1000u) /* Timer Count Register, Timer #0 */
#define PRDO PREG16(0x1001u) /* Period Register, Timer #0 */
#define TCRO PREG16 (0x1002u) /* Timer Control Register, Timer #0 %/
#define PRSCO PREG16(0x1003u) /* Timer Prescaler Register, Timer #0 */
#define TIM1 PREG16 (0x2400u) /* Timer Count Register, Timer #1 */
#define PRD1 PREG16 (0x2401u) /* Period Register, Timer #1 */
#define TCR1 PREG16(0x2402u) /* Timer Control Register, Timer #1 */
#define PRSC1 PREG16 (0x2403u) /% Timer Prescaler Register, Timer #1 x/

[ks stok ks stk ks skt ok s sk ok sk stk sk st ok sk |
* Timer declarations

\ sk stk ks ok ks kot sk kot ok kot ok sk skt ok sokok /

#define TSS 0x0010u
#define TLB 0x0400u
#define FREE 0x0100u

#define ARB 0x0020u

[kst kskeke s stk sk se sk ko sk ok ks stk sk stk ko |
* CPU registers
\ stk ks ok ks stk sk kot ok skt ok sk sk ok sokok /

#define STO_55 REG16(0x0002u)

160

/* Timer Start/Stop Bit
/* Timer Load Bit
/* Free running

/* Automatic Reload of Timer x/

/* Status Register 0

*/
*/

*/

#define ST1.55 REG16 (0x0003u) /* Status Register 1

#define ST3_55 REG16 (0x0004u) /* Status Register 3

#define IERO REG16 (0x0000u) /* Interrupt Enable Register 0O */
100 #define IFRO REG16 (0x0001u) /* Interrupt Flag Register 0 */

#define IER1 REG16 (0x0045u) /* Interrupt Enable Register 1 */

#define IFR1 REG16 (0x0046u) /* Interrupt Flag Register 1 */

#define IVPD REG16 (0x0049u) /* Interrupt Vector Pointer for DSP

#define IVPH REG16 (0x004Au) /* Interrupt Vector Pointer for Host x/

[kot sk ok ks ok sk skok kot ok kot ok sk skt ok sokok |
% CPU declarations

**/

#define INTM 0x0800u /* Global Interrupts x/

110 #define MSP_HINT 0x1000u /* HPI Interrupt bit =/
#define DSPINT 0x0400u /% DSP Interrupt bit %/
#define TINTO 0x0010u /* Timer 0 Interrupt bit x/
#define TINT1 0x0040u /* Timer 1 Interrupt bit */
#define C54CM 0x0020u /* C54 Compatibility mode */

[k sk ko sk kot sk ot sk otk sksk sk ok ook |
* HPI declarations

\ sk stk ke stk ke sk ok ks skt sk skt ok sk sk sk ok okok [

#define DSP_COMMAND_REGISTER REG16(0x0100u) /* Location to Read commands from MSP x/
120 #define MSP_COMMAND_REGISTER REG16(0x0101u) /* Location to Write commands to the MSP x/

#define _MSP_DATA 0x0102u /% Memory location */

#define MSP_DATA REG16 (0x0102u) /* Location to Write data for the MSP x/

#define DSP_HPI_WRITE REG16 (0x0AQ00u) /* Location to read data from the MSP x/

/**/
/* INTR_ENABLE - enables all masked interrupts by resetting INTM x/
/% bit in Status Register 1 */
/**/
#define INTR_GLOBAL_ENABLE \
130 asm("\t RSBX\t INTM"); \
asm("\tNOP") ;

/**/
/* INTR_DISABLE - disables all masked interrupts by setting INTM x/
/* bit in Status Register 1 */
/**/
#define INTR_GLOBAL_DISABLE \
asm("\t SSBX\t INTM"); \
140 asm("\tNOP");

161

150

10

20

[ks stk ks stk ks sk ok ks skt ok sk skt ok sk skt ok ks stk sk stk sk sk stk sk sk stk sk ok /
/* EXECUTE_IDLE - tells the processor to ezecute the current idle */
/* configuration held in ICR */
[ksksstok ok sk ok sk ok ks skt sk skt ok sk skt ok sk sk stk sk sk ok sk ok sk ok sk ok /
#define EXECUTE_IDLE \

asm("\t IDLE\t"); \

E.21 vectors.asm

; Personnel Detector

; Elliot Ranger

; Master of Science Thesis

; Massachusetts Institute of Technology

in conjunction with Charles Stark Draper Laboratory

§ okttt ek stk ek stk ks stk ks stk kst ok ks st ok ke s stk kel stk sk stk stk ok |
; FILENAME. vectors.asm

; DATE CREATED. . 07/11/2002

; LAST MODIFIED. 08/07/2002

;***********>k*>(<***>k*********>(<***>k**/

.ref _hpi_interrupt, _timerO_interrupt, _timeril_interrupt

.def rsv, no_isr ; symbols defined in this file
.sect "vectors" ; interrupt vectors
rsv .ivec no_isr
nmi .ivec no_isr ; non—maskable interrupt
int0O .ivec no_isr ; External interrupt #0
int2 .ivec no_isr ; External interrupt #2
tint0 .ivec _timerO_interrupt ; Timer 0
rint0 .ivec mno_isr ; McBSP #0 receive
rintl .ivec no_isr ; McBSP #1 receive
xintl .ivec no_isr , McBSP #1 transmit
usb .ivec no._isr ; USB interrupt

162

30

40

50

dmac1i

dspint

int3

rint2

xint2

dmac4

dmach

int1

xint0

dmacO

int4

dmac2

dmac3

tintl

intb

berr

dlog

rtos

sint27

sint28

sint29

sint30

sint31

; Interrupt service routine:

.text

no_isr:

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

.ivec

no_isr

_hpi_interrupt

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

?

Y

External interrupt #3

DMA Channel #1

; Interupt from host

McBSP #2 receive

McBSP #2 transmit

; DMA Channel #4

)

External interrupt #1

DMA Channel #5

McBSP #0 transmit

)

External interrupt #4

)

Y

DMA Channel #0

DMA Channel #2

DMA Channel #3

_timerl_interrupt

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

no_isr

B no_isr

; External interrupt #5

; Timer 1

Bus error interrupt

Data log interrupt

Real—time operating

)

Y

)

)

)

)

Software

Software

Software

Software

Software

interrupt

interrupt

interrupt

interrupt

interrupt

default ISR

system interrupt

#27

#28

#29

#30

#31

163

E.22 wbuffer.asm

; Personnel Detector

; Elliot Ranger

; Master of Science Thesis

; Massachusetts Institute of Technology

; in conjunction with Charles Stark Draper Laboratory

5

5

§ otk skskok ok skok ot sRkok otk kR skok kot sk skt sk skt sk ko sk sk ok sk sk ok sk sk kR ok |
; FILENAME. wbuffer.asm

; DATE CREATED. . 08/23/2002

; LAST MODIFIED. 01/15/2003

§ otk stk ket ok sk stk ks stk ok sk stk ok ekt kst ok ks stk kel s stk sk s stk sk stk stk sk /
5

5 window_buffer.asm

; prototype: ushort window_buffer(DATA #*x, ushort nx, ushort nb,

; DATA *output, DATA *signal, ushort index);

H Entry: arg0: ARO — signal input buffer pointer

H argl: TO — number of samples in the input
H arg2: Tl — buffer size

H arg3: AR1 — output

H arg4: AR2 — signal buffer pointer

H argb: AR3 — signal buffer index
; Return: TO = signal buffer index

.def _window_buffer

.sect .text
_window_buffer

pshm ST1_55 ; Save ST1, ST2, and ST3
pshm ST2_.55

pshm ST3.55

or #0340, mmap (ST1_55) ; Set FRCT,SXMD,SATD
bset SMUL ; Set SMUL
mov mmap(ARQ),BSAQB ; Set base address for AR2
mov mmap(Tl),BKOS ; Set signal buffer size

164

mov AR3,AR2 ; AR2 signal buffer index

or #0z4,, mmap (ST2_55) ; AR2 circular pointer

; First block equal to size of input so we can save

; the starting point for the next we run

mov TO,T3
sub #1,T0
mov TO,BRCO
50 rptblocal lpi—].
mov *AR2-,*AR1+

1p1

mov AR2,TO

; Outer loop couter

; load first part

; save next starting point

; Do all other calculations which don't have the new

; input values
sub T3,T1
sub T3,T1
60 sub #1,T1
mov T1,BRCO
rptblocal 1p2-1
mov *AR2+,*xAR1+
1p2

; subtract beginning and ending

; samples

; Outer loop couter

; load other values

; Lastly add new data to the end of the signal buffer

; and do the calculations
sub #1,T3
mov T3,BRCO
70 rptblocal 1p3-1
mov *ARO+, *AR2

; Put new samples into signal buffer

165

80

10

20

mov *AR2+,*AR1+ ; Create array

1p3
popm ST3_55 ; Restore ST1, ST2, and ST3
popm ST2_55
popm ST1_55
ret
.end

E.23 window.asm

; Personnel Detector

; Elliot Ranger

; Master of Science Thesis

; Massachusetts Institute of Technology

; in conjunction with Charles Stark Draper Laboratory

5

5

3 3kokok Rk o oK ok ok ok ook ok K ok oK oK o K ok o oK oK ok K ok oK ok o K ok o ok ok ok K ok oK ok o K ok o ok ok ok K ok oK sk ok K ok oK ok sk ok oK ok ok ok \
; FILENAME. window.asm

; DATE CREATED. . 07/11/2002

; LAST MODIFIED. 01/15/2003

3 kR Rk ok ok ok ok sk ook ok ok ok ok sk o ok ok o ok o ok ok ok sk ok sk o ok ok o ok ok ok ok sk ok sk ok ok ok ok sk ok ok sk sk sk ok ok ok sk sk ok sk ok ok ok ok /
5

5 window.asm
; prototype: void window(DATA #*x, ushort nx, ushort *window, DATA *output);

H Entry: argO: ARO - signal input buffer pointer
H argl: TO - number of samples in the input buffer
; arg2: AR1 - window array pointer

H arg3: AR2 - output

.def _window

.sect .text

166

30

40

50

_window

pshm ST1_55 ; Save ST1, ST2, and ST3

pshm ST2_55
pshm ST3_55

or #0340, mmap (ST1_55); Set FRCT,SXMD,SATD

bset SMUL ; Set SMUL

5 Jjust multiply the window by the input buffer and store the output

1p1

sub #1,T0

mov TO , BRCO

rptblocal lpl"l

mpym uns(*AR1+) ,*ARO+,ACO

mov hi(Aco) , *aR2+

; Outer loop couter

; multiply the beginning values

popm ST3_55 ; Restore ST1, ST2, and ST3

popm ST2_55

popm ST1_55

ret

. end

167

168

10

20

Appendix F

MSP430F149 Source Code

F.1 Dboot_dsp.c

* Personnel Detector

* FElltot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* in conjunction with Charles Stark Draper Laboratory

*
*/
/AR AAAAA KA A KR AHA KA A KKK KA HA A A KA KA KA KA KA KA KA KA KA KA KA KA AKAKA KA AKAKAKAKAK K\
* FILENAME. boot_dsp.c
* DATE CREATED. . 07/29/2002
* LAST MODIFIED. 08/06/2002

\ KA AR FA KA A KKK A KKK AR AR A A KKK A KT A KKK KKK KFK KA KKK KKNNK)
#include "include.h"

[seoksksstok sk stk sk sk ok ks sk ok ok ks sk stk sk sk st ok ks sk sk ok ks sk s skt ok s skt ok ks sk stk ks sk sk ok fkkok |
* boot_dsp: copies the VC5509 boot code and program code that was stored in
* the MSP flash to the VC5509 and then instructs the processor where
* to start loading code from.
\ sttt stk kot stk kot sk kot sk kot sk sk ok sokskok ok sk ot skok kot sk otk sk sk ok skskk ok s kakok /
void boot_dsp(void)
{
Uint16 flash_data;

Uint16 flash_memory_address;

enable_hpi();

169

/* Load Boot Code */
30 /* VC5509 memory location 0z0180 - 0z0200 (word addressing) */
/* MSP Flash memory 0z6000 - 0z6100 (byte addressing) x/

write_hpi_address_register(0x0180);

for (flash_memory_address = 0x6000;
flash_memory_address < 0x6100;

flash_memory_address+=0x0002)

flash data = read_flash(flash_memory_address);
write_hpi_data_word(flash_data,TRUE) ;
40 }

/* Load Program Code */
/* VC5509 memory location OzOA00 - 0z1A80 (word addressing) */
/* MSP Flash memory 0z6100 - 0z8200 (byte addressing) */

write_hpi_address_register(0x0DO00) ;

for (flash_memory_address = 0x6100;
flash_memory_address <= 0xC600;
flash_memory_address+=0x0002)
50 {
flash data = read_flash(flash_memory_address);

write_hpi_data_word(flash_data,TRUE);

/* VC5509 location to start ezecuting boot code */
/* The VC5509 uses byte addressing for the program code */
write_hpi_address_register(0x0061) ;
write_hpi_data_word(0x0300,FALSE);
write_hpi_address_register (0x0060) ;

60 write_hpi_data_word(OxFF0O0,FALSE) ;

[kt ko sk kot sk ot sk kot sk ko sk sk ok sk ok sskok kot sk kot sk sk ok sk sk ok sk |
* copy-dsp_code_to_flash: first erases the flash memory used to store the
* VC5509 code. Then copies all the code from the HPI Write section
* of the VC5509’s memory to the MSP’s flash.
\ sttt stk kot ok kot sk kot sk koo sk koo sk ok sskok ok skok kot sk otk sk sk ok sk ok skakok /
void copy-_dsp_code_to_flash(void)
70 |
Uint16 flash_memory_address;

Uint16 flash_data;

170

* Disable global interrupts *
g P
_DINTQ);

/* Erase flash memory used to store VC5509 code x/
for (flash_memory_address = 0x6000;
flash_memory_address <= 0xC600;

80 flash_memory_address+=0x0100)

erase_flash(flash_memory_address);

/* Save VC5509 boot code and program code to MSP flash */
/* VC5509 memory location O0z0DO0 - 0z4000 (word addressing) x*/
/* MSP Flash memory 0z6000 - 0zC600 (byte addressing) */

write_hpi_address_register(0x0D00) ;

90 for (flash_memory_address = 0x6000;
flash_memory_address <= 0xC600;

flash_memory_address+=0x0002)

flash_data = read_hpi_data_word(TRUE);

write_flash(flash_memory_address, flash_data);

/* Enable global interrupts */
100 _EINTQ);

[kst sk stk ks kot ok sk skt o sk stk sk sk stk sk stk sk skt sk skt ok s skt ok sk sk stk ks sk ok skkok |
* werify_dsp_code: compares the code stored in MSP flash to the data in
* VC5509 HPI Write section and checks for any differences.
\ stk stk ks sk ks sk o ke sk o kst ok ke st ok ke stk ks skt ok sk skt ok sk stk s stk stk ke /
void verify_dsp_code(void)
{
Uint16 vcb5_data;
110 Uint16 flash_data;
Uint16 flash_memory_address;
Uchar buffer [MAX_LINE_LENGTH];

Uint16 compare=0;

/* Set address to beginning of HPI Write Section of VC5509 memory x*/

write_hpi_address_register(0x0DO00) ;

171

/* Compare flash memory contents with VC5509 HPI write x/
/* section and increment compare if they are not equal x/
120 for (flash_memory_address = 0x6000;
flash_memory_address <= 0xC600;
flash_memory_address+=0x0002)

vch5_data = read_hpi_data_word(TRUE);
flash_data = read_flash(flash_memory_address);
if (flash_data != vcb5_data)
{

compare++;

130 }

/* Print a message displaying the results */

if (compare > 0)

{
sprintf (buffer,">>> %d Errors in compare of memory",compare);
add_message_to_display(buffer);

}

else add_message_to_display("Memory verified correctly");

140

}

F.2 comms.c

/*

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* in conjunction with Charles Stark Draper Laboratory

*

+/

[/ skttt ks stk ks sk ok ks sk ok ks stk ke s stk ke stk ks skt ok s skt ok sk st ok stk sk stk sk |
10 = FILENAME. comms. c

x DATE CREATED. . 04/18/2002
x LAST MODIFIED. 08/06/2002

>(<*********>k*****************************>(<*********************************/

#include "include.h"

172

[kt ok ks kot sk kot sk kot sk sk ok sk sk ok sk kot sk kot sk otk sk sk ok sk ok kakok |
* print_message: outputs a message to the RS232 port and the RF port if
* RF ts enabled.
20\ sokskskoksokogokskok otk kot ek skt sk skt sk sk sk stk sk sk stk stk sk stk sk sk stk sk sk ok sk sk stk sk sk ok kkok /
void print_message(Uchar simessage)
{
RF_CONTROL_TYPE rf_in;
Uint16 i=0;

Uint16 start_timer;

/* turn on RS232 transmitter x/

msp-port5.byte = P50UT;

msp-_port5.bit.rs232_enable = 1;
30 P50UT = msp_port5.byte;

/* use timer A to make sure the transmitter is out of shutdown x/
start_timer = TAR;

while (((TAR — start_timer) & TIMER_MASK) < 50);

i=0;
while (message[i] != 0)

{

/* wait for TX ready on RS232 x/
40 while ((IFG1 & UTXIFGO) != UTXIFGO);

/* Transmit character on RS232 x/

UOTXBUF = messagel[i];
if (rf_ena == TRUE)
{
/* wait for TX ready on RF x/
while ((IFG2 & UTXIFG1) !'= UTXIFG1);
50 /* wait for CTS on RF x/

rf_in.byte = P3IN;

while (rf_in.bit.rf_cts) rf_in.byte=P3IN;

/* Transmit character on RF x/

ULTXBUF = messagel[i];

i++

60 #if LOW_POWER_MODE==TRUE

173

70

80

90

100

/* use timer A to make sure all the characters get sent out x/
start_timer = TAR;

while (((TAR — start_timer) & TIMER_MASK) < 50);

/* turn off RS232 transmitter x/
msp_port5.byte = P50UT;
msp_port5.bit.rs232_enable = 0;
P50UT = msp_port5.byte;

#endif

}

[ookt sk sk sk sk sk sk stk ottt Rk sk sk sk sk sk sk sk sk skttt R ks sk sk sk sk sk sk sk kR ook
* rcvl_handler: interrupt handler when a character is received on RS232
* places the character in a buffer and then takes the system out
* of low power mode tif enabled
\ otttk sk sk sk sk sk sk stk ottt sk sk sk sk sk sk sk sk ok sttt ot sk sk sk sk sk sk sk sk sk kst otk ok ok
interrupt [UARTORX_VECTOR] void rcvi_handler(void)
{

in_buffer[buffer_write_pos] = UORXBUF;

buffer_write_pos++;

/* loops to beginning of buffer x/

if (buffer_write_pos >= MAX_BUFFER) buffer_write_pos=0;

#if LOW_POWER_MODE==TRUE
clear_low_power_mode (LPM1_bits);

#endif

}

ekttt stk ks sk ok ks st ok ke s stk ke st ok ke stk ks stk ks sk ok sk sk ok ks stok sk stk ok |
* rcvl_handler: interrupt handler when a character is received on RF
* places the character in a buffer and then takes the system out
* of low power mode tif enabled
\ st stk ks sk kst o ke sk o ke stk ke stk ke stk ks sk ok sk st ok ke st ok e stk stk sk /
interrupt [UART1RX_VECTOR] void rcv2_handler(void)
{

in_buffer[buffer_write_pos] = U1RXBUF;

buffer_write_pos++;

/* loops to beginning of buffer x/

if (buffer_write_pos >= MAX_BUFFER) buffer_write_pos=0;
#if LOW_POWER_MODE==TRUE

clear_low_power_mode (LPM1_bits) ;

#endif

174

[ookt ks sk sk sk sk sk sk stk sttt R ks sk sk sk sk sk sk sk sk sk sttt R sk sk sk sk sk sk sk sk sk skt ook

* get_char: returns the next character in the buffer. Puts system in low power
110 =* mode while waiting for the next character, <f enabled.

\ sttt stk kot ok kot sk kot sk kot sk koo sk sk ok sk ok sskok kot sk otk sk sk ok skskok ok s kakok /

Uchar get_char(void)

{

Uchar byte;

#if LOW_POWER_MODE==TRUE

while (buffer_write_pos == buffer_read_pos) LPMi;
#else

while (buffer_write_pos == buffer_read_pos);

120 #endif

byte = in_buffer[buffer_read_pos];

buffer_read_pos++;

/* loops to beginning of buffer x/
if (buffer_read_pos >= MAX_BUFFER) buffer_read_pos = 0;

return (byte);

F.3 define.h

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
«/
[otk sk sk sk sk sk sk sk ok st kot ks sk sk sk sk sk sk sk sttt ok sk sk sk sk sk sk sk sk sk skttt ok ok ok
10 * FILENAME. define.h
* DATE CREATED. . 04/18/2002
* LAST MODIFIED. 08/06/2002

*****>k**>k*************>k**>k**********>k**>k**********>k***************************/

#define VERSION "MSP430F149 VERSION 1.04 3/04/2003"

175

20

30

40

50

#define TRUE 1

#define FALSE 0

#define CR 0x0D
#define LF Ox0A
#define ESC Ox1B
#define BS O0x08

#define DEL Ox7F

#define MAX_LINE_LENGTH 64

#define MAX_DISPLAY_LINES 3

#define MAX_BUFFER 64
#define TIMER_MASK 0x07FF
/* set to true to enable low power modes, */

/* set to falsh to disable low power modes */

#define LOW_POWER_MODE TRUE

/* controls the sampling rate of ADC with timer B x/

/% 0x0021 is approz 1 KHz, 0z0042 is approz 500 Hz */

#define SAMPLING_RATE 0x0021;

/* VC5509 memory location to read commands */
#define DSP_COMMAND_REGISTER 0x0100

#define MSP_COMMAND_REGISTER 0x0101

#define DSP_HPI_WRITE_1 0x1000
#define DSP_HPI_WRITE_2 0x1500
#define DATA_BLOCK_1 0x0001
#define DATA_BLOCK_2 0x0002

/* MSP Command Codes x/
#define PRINT_MESSAGE 0x0100

#define STOP_PROCESSING 0x0200

/* VC5509 Command Codes */

#define PROCESS_DATA_BLOCK_1 0x0100
#define PROCESS_DATA_BLOCK_2 0x0200
#define CLEAR_PROCESSING_BUFFERS 0x0300
#define GET_VC5509_VERSION 0x0900

#define COPY_TO_HPI_WRITE 0x0999

176

10

20

30

40

F.4 display.c

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* an conjunction with Charles Stark Draper Laboratory
*
«/
[skttt ks stk ks skt ok ks skt ok skt ok ke stk sk stk ks stk s skt ok ks skt ok ks stk sk stk ko |
* FILENAME. display.c
+« DATE CREATED. . 07/31/2002
* LAST MODIFIED. 08/06/2002

\ stttk ke sk ek ke sk o ke sk ok ke stk etk sk stk ke stk ke st ok ke stk etk sk /
#include "include.h"

[k ko sk kot sk ot sk sk ok sk ko sk ok sk ok skok kot sk kot sk sk ok sk sk ok kakok |
* add_message_to_display: adds a message to the display area of the screen
\ sttt stk kot sk kot skok ot sk koo sk ko sk ok skskok ot sskok kot sk kot sk sk ok skskk ok skakok /
void add_message_to_display(Uchar xmessage)

Uint16 i = 0,display_pos = 0;

Uint16 done=FALSE;
do

switch(message[i])

{

case 0 : /+ take care of the null by putting a new line at the end */

display_lines[display_current_line] [display_pos] = CR;
display_pos++;
display_lines[display_current_line] [display_pos] = LF;
display_pos++;
display_lines[display_current_line] [display_pos] = O;

/% increment current line for the next write x/

display_current_line++;

/* loop around if reach mazimum number of lines */

if (display-_current_line == MAX_DISPLAY_LINES) display_current_line

done = TRUE;

break;

177

0;

case CR : /* check and see if nexzt character s a line feed */
if (message[i+l] == LF)

{

/* put the line feed at the end of the line */

display_lines[display_current_line] [display_pos] CR;
50 display_pos++;

i++;

display_lines[display_current_line] [display_pos] LF;
display_pos++;
P4+

H

display_lines[display_current_line] [display_pos]

]
o

/* increment current line x/

display_current_line++;

60 /* loop around if reach mazimum number of lines x/

if (display-_current_line == MAX_DISPLAY_LINES) display-_current_line = O0;

/* start at the beginning of the nezt line */

display_pos = 0;

else

/* just copy the letter x/

display_lines[display_current_line] [display_pos] = messagel[il;
70 display_pos++;

i++;

H

}

break;

default: /x just copy the letter */
display_lines[display_current_line] [display_pos] = messagel[il;
display_pos++;
i+
break;

80 }
} while ((done == FALSE) && (display_pos < MAX_LINE_LENGTH));

if (display_pos == MAX_LINE_LENGTH)

{

display_lines[display_current_line] [(MAX_LINE_LENGTH—3)] = CR;
display_lines[display_current_line] [(MAX_LINE_LENGTH—2)] = LF;
display_lines[display_current_line] [(MAX_LINE_LENGTH—1)] = O;

178

90

100

110

120

/**\

* clear_display_-area: clears all the display lines and resets

* display-current_line back to the beginning.

**/

void clear_display_area(void)

{

Uintl6 1i;

/* do for each display line x/
for (i=0;i<MAX_DISPLAY_LINES;i++)
{
display_lines[i] [0] = CR;
display_lines[i][1] = LF;

display_lines[i][2] = O0;

display_current_line = 0;

/**\

* print_display-area: function that goes through and prints all of the

* display lines in the correct order

**/

void print_display_area(void)

{

Uint16 line_to_print;

line_to_print = display_current_line;

do

print_message(display_lines[line_to_print]);

line_to_print++;

/* start at the beginning when line_to_print reaches the last line x/

if (line_to_print == MAX_DISPLAY_LINES) line_to_print = 0;

} while (line_to_print != display_current_line);

179

10

20

30

F.5

/*

extern.h

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* in conjunction with Charles Stark Draper Laboratory

*

*/

/**\

* FILENAME. extern.h

* DATE CREATED. . 04/18/2002

x LAST MODIFIED. 08/06/2002

**/

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern

F.6

/*

MSP_PORT3_TYPE msp_port3;
MSP_PORT5_TYPE msp_port5;
HPIC_CONTROL_TYPE hpic;
Uint32 time;

Uint16 seconds;

Uint16 minutes;

Uint16 hours;

Uint16 days;

Uchar in_buffer [MAX_BUFFER];
Uint16 buffer_write_pos;
Uint16 buffer_read_pos;
Uint16 rf_ena;

Uchar display_lines[MAX_DISPLAY_LINES] [MAX_LINE_LENGTH];
Uint16 display_current_line;
Uint16 dsp_data_address;

Uint16 dsp_memory_block;

flash.c

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* in conjunction with Charles Stark Draper Laboratory

180

10

20

30

40

50

/**\
x FILENAME. flash.c

x DATE CREATED. . 07/17/2002

* LAST MODIFIED. 08/06/2002

**/

#include "include.h"

[ks stk ks stk ks sk ok ok ks sk ok ok s sk st ok sk s stk ks sk sk ok ks skt s skt ok ks skt ok ks sk stk sk sk stk sk |
* erase_flash: erases one segment of flash memory
\ sttt stk kot ook kot skskok ot sk otk sokk ko sk kot skskok ot sskok kot sk kot sk sk ok sk ok s kokok /
void erase_flash(Uint16 address)

/* wait for busy to be reset x/

while ((FCTL3 & BUSY) == BUSY);

/* clear lock bit */
FCTL3 = FWKEY;

/* enable erase from flash */

FCTL1 = (FWKEY | ERASE);

/* address to erase x/

(*(unsigned short x*)address) = 0x0000;

/* wait for busy to be reset x/

while ((FCTL3 & BUSY) == BUSY);

/* reset write bit x/

FCTL1 = FWKEY;

/* change lock bit */
FCTL3 "= (FXKEY | LOCK);

[kot sk ok ks kot sk kot sk sk ok stk sk ok stk ok sk kot sk kot sk skt ok sk sk ok sk sk ok kkok |
* write_flash: writes one word of data to flash memory
\ otk otttk sk sk sk sk sk sk kot sk sk sk sk sk sk sk skttt k ks sk sk sk ok otk ook
void write_flash(unsigned short address, unsigned short data)

/* wait for busy to be reset */

while ((FCTL3 & BUSY) == BUSY);

/* Clear lock bit */
FCTL3 = FWKEY;

181

60

70

10

/* enable write to flash */
FCTL1 = (FWKEY | WRT);

/* data to write to flash */

(x(Uint16 x)address) = data;

/* wait for busy to be reset x/

while ((FCTL3 & BUSY) == BUSY);

/* reset write bit x/

FCTL1 = FWKEY;

/* change lock bit */
FCTL3 "= (FXKEY | LOCK);

[kt ok sk kot sk ot sk kot sk sk ok sk sk ok sk kot s skok kot sk kot ok sk sk ok sk ok s kakok |
* read_flash: returns the memory contents of the address

\ skt ks sk ks sk ok ke sk ok ke stk ke stk ke stk ks skt ks sk ok ks skt ok sk stk sk sk stk ko /
Uint16 read_flash(Uint16 address)

{

return(x(Uint16 x)address);

F.7 hpi.c

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* in conjunction with Charles Stark Draper Laboratory

*

+/
/**\
* FILENAME. hpi.c
* DATE CREATED. . 04/18/2002
x LAST MODIFIED. 08/06/2002

**/

#include "include.h"

182

/**\

*

enable_hpi: sets up MSP ports for HPI use, and enables host port interrupt

**/

20 void enable_hpi(void)

30

40

50

60

{

HPI_CONTROL_TYPE hpi_ctl_out;

/* Reset the HPIC register values x/
hpic.byte = 0;
hpic.bit.reset = 1;

write_hpi_control_register(hpic.byte);

/* Enable HPI interrupt on the falling edgex/

P1IES = 1;
P1IFG = 0;
P1IE = 1;

/* hold the host data strobe line high */
hpi_ctl_out.byte = 0;
hpi_ctl_out.bit.hds = 1;
P10UT = hpi_ctl_out.byte;

/**\

*

disable_hpi: disables host port interrupt and sets hpi port as output

**/

void disable_hpi(void)

{

HPI_CONTROL_TYPE hpi_ctl_out;

/* disable HPI interrupt and clear interrupt flag */

P1IE = 0;
P1IFG = 0;
P1IES = 0;

/* Clear all lines on the control port */
hpi_ctl_out.byte = 0;
P10UT = hpi_ctl_out.byte;

/* reset the data lines x/

P2DIR = OxFF;
P4ADIR = OxFF;
P20UT = 0x0;
P40UT = 0x0;

183

[ookt sk sk sk sk sk sk stk ot kot sk sk sk sk sk sk sk sk sttt kR sk sk sk sk sk sk sk sk sk sk skttt ook |
* write_hpi_control_register: writes a word to the HPI control register
* in the VC5509.
\ sttt ks kot ks kot ok kot ok otk sk sk ok stk sk ok sk ot ksl kot ok kot ok sk sk ok skskk ok s kokok /
void write_hpi_control_register(Uint16 data)
{
Uint16 i;
70 HPI_CONTROL_TYPE hpi_ctl_out;
HPI_CONTROL_TYPE hpi_ctl_in;

/* Configure PORT2 and PORT as outputs */
P2DIR = OxFF;
P4DIR = OxFF;

/* Initialize hpi_ctl_out */
hpi_ctl_out.byte = P10UT;

80 /* Set to write mode, word addressing, HPIC register x/

hpi_ctl_out.bit.rd_wr =

0;
hpi_ctl_out.bit.control 0;
hpi_ctl_out.bit.byte_en = 0;
hpi_ctl_out.bit.hds =1;

P10UT = hpi_ctl_out.byte;

/* wait for ready from VC5509 */
hpi_ctl_in.byte = P1IN;

while (!'hpi_ctl_in.bit.ready) hpi_ctl_in.byte = P1IN;

90
/* Assert the data strobe low */
hpi_ctl_out.bit.hds = 0;
P10UT = hpi_ctl_out.byte;
/* Write the LSB of the HPIC data register x/
P20UT = (char) data;
/* Write the MSB of the HPIC data register x/
P40UT = (char) (data >> 8);

100

/* small loop to make sure the data lines are stable x*/

for(i=0;i<=2;i++);

/* Release the data strobe */

hpi_ctl_out.bit.hds =1;

184

P10UT = hpi_ctl_out.byte;

skttt ks stk ks sk ok ks sk ok ks s stk ke stk ks stk ks stk ok sk skt ok sk st ok sk stk sk stk sk |
110 * write_hpi_address_register: writes a word to the HPI address register

* in the VC5509.

otk koo sk sk sk sk stk st ot ot ok o ok sk sk sk sk sk sk stk ot otk ks sk sk sk sk sk sk sk sk sk kot ok ok ok ok /

void write_hpi_address_register(Uintl6 data)

{

Uint16 i;
HPI_CONTROL_TYPE hpi_ctl_out;
HPI_CONTROL_TYPE hpi_ctl_in;

/* Configure PORT2 and PORT as outputs */
120 P2DIR = OxFF;
P4DIR = OxFF;

/* Initialize hpi_ctl_out x/

hpi_ctl_out.byte = P10UT;

/* Set to write mode, word addressing, HPIA register */

hpi_ctl_out.bit.rd_wr = 0;
hpi_ctl_out.bit.control = 2;
hpi_ctl_out.bit.byte_en = 0;

130 hpi_ctl_out.bit.hds =1;
P10UT = hpi_ctl_out.byte;

/* wait for ready from VC5509 */
hpi_ctl_in.byte = P1IN;

while ('hpi_ctl_in.bit.ready) hpi_ctl_in.byte = P1IN;

/* Assert the data strobe low */
hpi_ctl_out.bit.hds = 0;
140 P10UT = hpi_ctl_out.byte;

/* Write the LSB of the address x/

P20UT = (char) data;

/* Write the MSB of the address x/

P40UT = (char) (data >> 8);

/* small loop to make sure the data lines are stable */

150 for(i=0;i<=2;i++);

185

160

170

180

190

/* Release the data strobe */
hpi_ctl_out.bit.hds = 1;

P10UT = hpi_ctl_out.byte;

/**\

*

*

*

write_hpi_data_word: writes a data word to the address location stored
in the HPI address register. Increments the address register

if auto_incr is true.

**/

void write_hpi_data_word(Uint16 data, Uint16 auto_incr)

{

Uint16 1i;
HPI_CONTROL_TYPE hpi_ctl_out;
HPI_CONTROL_TYPE hpi_ctl_in;

/* Configure PORT2 and PORT as outputs */
P2DIR = OxFF;
PADIR = OxFF;

/* Initialize hpi_ctl_out */

hpi_ctl_out.byte = P10UT;

/* Set to write mode, word addressing, HPID register */

hpi_ctl_out.bit.rd_wr = 0;
hpi_ctl_out.bit.byte_en = 0;
hpi_ctl_out.bit.hds =1;

if (auto_incr == TRUE)

{

hpi_ctl_out.bit.control = 1;
else
{
hpi_ctl_out.bit.control = 3;
}
P10UT = hpi_ctl_out.byte;

/* wait for ready from VC5509x/
hpi_ctl_in.byte = P1IN;

while (!'hpi_ctl_in.bit.ready) hpi_ctl_in.byte = P1IN;

/* Assert the data strobe low */

hpi_ctl_out.bit.hds = 0;

186

200
210 }
*
*
*
{
220
230
240

P10UT = hpi_ctl_out.byte;

/* Write the LSB of the data */
P20UT = (char)data;

/* Write the MSB of the data */
P40UT = (char)(data >> 8);

/* small loop to make sure the data lines are stable */

for(i=0;i<=2;i++);

/* Release the data strobe */
hpi_ctl_out.bit.hds = 1;

P10UT = hpi_ctl_out.byte;

/**\

read_hpi_data_word: reads the data word at the address location stored

in the HPI address register. Increments the address register

1f auto_incr is true.

**/

Uint16 read_hpi_data_word(Uint16 auto_incr)

Uint16 i,hpi_data;
HPI_CONTROL_TYPE hpi_ctl_out;

HPI_CONTROL_TYPE hpi_ctl_in;

/* Configure PORT2 and PORT/ as inputs */
P2DIR = 0x0;
P4ADIR = 0x0;

/* Initialize hpi_ctl_out */

hpi_ctl_out.byte = P10UT;

/* Set to read mode, word addressing, HPID register x/
hpi_ctl_out.bit.rd_wr =1;
hpi_ctl_out.bit.byte_en = 0;

hpi_ctl_out.bit.hds =1;
if (auto_incr == TRUE)
{

hpi_ctl_out.bit.control =1;

else

187

250

260

270

280

hpi_ctl_out.bit.control = 3;

}

P10UT = hpi_ctl_out.byte;

/* wait for ready from VC5509 x/
hpi_ctl_in.byte = P1IN;

while (!hpi_ctl_in.bit.ready) hpi_ctl_in.byte = P1IN;

/* Assert the data strobe low */
hpi_ctl_out.bit.hds = 0;

P10UT = hpi_ctl_out.byte;

/* loop to make sure the data lines are stable x/

for (i=0;i<10;i++);

/* Read the MSB */
hpi_data = (((unsigned short)P4IN) << 8);

/* Read the LSB x/

hpi_data |= ((unsigned short) (P2IN));

/* Release the data strobe */
hpi_ctl_out.bit.hds =1;

P10UT = hpi_ctl_out.byte;

return (hpi_data);

[ookt ks sk sk sk sk sk sk sk stk st kot sk sk sk sk sk sk sk sk sk sttt R sk sk sk sk sk sk sk sk sk sk kot ook
* send_dsp_interrupt: sends an interrupt to the VC5509 by asserting the
* dsp interrupt bit in the control register.
\ sttt ks kot ok kot sk kot sk otk sk koo sk ok sk kot skok kot ok kot sk sk ok skskk ok s kokok /
void send_dsp_interrupt(void)
{

hpic.byte = 0;

hpic.bit.dsp_int = 1;

write_hpi_control_register(hpic.byte);

hpic.bit.dsp_int = 0;

write_hpi_control_register(hpic.byte);

[ookt sk sk sk sk sk sk stk ottt R ks sk sk sk sk sk sk sk sttt R sk sk sk sk sk sk sk sk sk sk skt ook
* send_dsp_command: writes a command code to the VC5509°’s memory and then
* sends an tinterrupt to the VC5509 to look at the command.

**/

188

290

300

310

320

330

void send_dsp_command(Uint16 command)

{
write_hpi_address_register (DSP_COMMAND_REGISTER) ;
write_hpi_data_word(command,FALSE) ;

send_dsp_interrupt();

/st stk ks sk ks sk ok ke sk ok ke sk ok ke s stk ke stk ks sk ok etk sk st ok s stk ke stk ke |
* print_hpi_message: prints messages received from the VC5509 to the display
* area. The characters are sent in a packed array.
\ sttt stk kot sk kot sk ot sk koo sk ko sk ok skskok ot sskok kot sk kot sk sk ok sk ok s kokok /
void print_hpi_message(void)
{

Uint16 read_buffer, i, str_len;

Uchar read_msg[MAX_LINE_LENGTH];

/* print_hpi_message is always called from the hpi interrupt handler x/
* 50 e next memory location in the address register is e len *
th t Yy locatt in the add gist is the length

str_len = read_hpi_data_word(TRUE);

i=0;
while ((i < str_len) && (i < (MAX_LINE_LENGTH-3)))
{

/* get nezt character x/

read_buffer = read_hpi_data_word(TRUE);

/* put the MSB in first x/

read_msg[i]l = (char) (read_buffer >> 8);
i++;
/% then the LSB x/

read_msg[i] = (char) (read_buffer);

i++;

/* null terminate the string */

read_msgl[i]l = O;

add_message_to_display(read_msg) ;

[ookt sk sk sk sk sk sk stk ot R R ks sk ks sk sk sk sk sk sk sttt R ks sk sk sk sk sk sk sk skt o ok
* hpi_handler: processes any commands that are received from the VC5509
\ stk stk ks stk ks skt ks skt o e sk stk sk sk stk ks ok sk sk ks skt ok ek skt ok sk sk stk sk sk ok sk /

interrupt [PORT1_VECTOR] void hpi_handler(void)

189

Uint16 read_buffer;

Uint16 refresh=FALSE;

/* get the command */
write_hpi_address_register (MSP_COMMAND_REGISTER) ;

read-buffer = read_hpi_data_word(TRUE) ;

switch(read_buffer)
340 {
case PRINT_MESSAGE:
print_hpi_message();
refresh=TRUE;

break;

case STOP_PROCESSING:
stop_signal_processing();
refresh=TRUE;
break;
350

default: break;

if (refresh)

{
/% simulates typing a dummy character to refresh the screen x*/
in_buffer[buffer_write_pos] = ']';

buffer_write_pos++;

360 /% loop back to the beginning if at the end of the buffer x/

if (buffer_write_pos >= MAX_BUFFER) buffer_write_pos = 0;

#if LOW_POWER_MODE==TRUE
clear_hpi_low_power (LPM1_bits) ;

#endif

}

/* Clear the interrupt flag */
P1IFG = 0;
370 }

190

10

20

10

F.8 include.h

/*
* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
%
[okttt ok sk kot sk skt ok sk sk stk sk sk st ok ks sk ok ks kot sk skt sk skt ok sk sk stk sk sk ok skakok |
* FILENAME. include.h
* DATE CREATED. . 04/18/2002
x LAST MODIFIED. 08/06/2002

**/

#include <stdio.h>
#include <string.h>
#include "msp430x14x.h"
#include "typedef.h"
#include "prototype.h"

#include "define.h"

#include "extern.h"

F.9 init_sys.h

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
+/
[ookt skskk sk sk sk sk sk sk stk sttt Rk sk sk sk sk sk sk sk sk kRt R ks sk sk sk sk sk sk sk kR ook
* FILENAME. init_sys.c
* DATE CREATED. . 04/18/2002
* LAST MODIFIED. 08/06/2002

\ sttt stk kot sk kot sskok kot sk koo sk ko sk sk ok sk ot sskok kot sk kot sk sk ok sk ok s kokok /
#include "include.h"

/**\

* initialize_system: all the setting to initialize the system

191

stttk ke stk ks skt ks skt ok ek sk stk sk sk stk ks sk ok ks ok sk skt ok ek skt ok sk sk ok sk sk ok skskok /
20 void initialize_system(void)
{
disable_watch_dog_timer();
initialize_ports();
initialize_serial_interface();
initialize_adc();
initialize_timers();

clear_display_area();

// only temporary for debugging
30 dsp_data_address = DSP_HPI_WRITE_1;
dsp_memory_block = DATA_BLOCK_1;

/* enable global interrupts */
_EINTQ);

[kot sk ok sk skok kot sk kot sk koo sk sk ko sk sk ok sk kot sk kot sk skt ok sk sk ok sk ok skakok |
* tnitialize_sertal_interface: sets up the serial ports for RS232 and
* RF communications.
40 \sokokororokstekoksior ko skok sk skt sk sk stk sk sk stk sk sk st ok sk sk stk sk sk stk sk stk sk stk sk sk stk sk ok |/
void initialize_serial_interface(void)
{
/* select the uarts as special function ports */

P3SEL |= (BIT4 | BIT5 | BIT6 | BIT7);

/* set RS232 to 8-bits per character */
UOCTL = CHAR;

/* select the SMCLK for the transmit and receive baud rate gemerator for RS232 x/
50 UOTCTL = SSEL1 | SSELO;

UORCTL = SSEL1 | SSELO;

/* enable the RS232 receiver x/
UORCTL |= URXEIE;

/* program the RS232 baud rate to 19.2kbs x/

UOBR1 = 0;
UOBRO = 64;
UOMCTL = O;

60
/* enable the RS232 transmitter and receiver x/

ME1 = UTXEO | URXEO;

192

/* enable the receive interrupt for RS232 x/
IE1 = URXIEO;

/* set RF to 8-bits per character x/
UL1CTL = CHAR;

70 /* select the SMCLK for the transmit and receive baud rate gemerator for RF x/
UITCTL = SSEL1 | SSELO;

UIRCTL = SSEL1 | SSELO;

/* enable the RF receiver x/

U1RCTL |= URXEIE;

/* program the RF baud rate to 19.2kbs x*/

U1BR1 = 0;
U1BRO = 64;
80 UIMCTL = 0;

[k koo kot sk ot sk sk ok sk ko sk sk ok sk ot s skok kot sk kot sk sk ok sk sk kR kakok |
* initialize_adc: sets up the A/D converter
\ sk stk ke stk ke skt ok skt o ke sk stk sk sk stk ks stk ks sk ks skt ks skt ok ks sk stk sk stk sk /

void initialize_adc(void)

{
/* Reset before changing the settings x*/
ADC12CTLO = 0x0000;
90 ADC12CTL1 = 0x0000;

/* Ref = VeRef+, VeRef-, Input = ADC2 (Geo A) x/
ADC12MCTLO = (SREF_7 | INCH-2);

/* Ref = VeRef+, VeRef-, Input = ADC3 (Geo B) x/
ADC12MCTL1 = (SREF_7 | INCH_3);

/* Ref = VeRef+, VeRef-, Input = ADC/ (Geo C) x/
ADC12MCTL2 = (EOS | SREF_7 | INCH_4);

100
/* Ref = VeRef+, VeRef-, Input = ADC5 (Test 1) x/
ADC12MCTL3 = (SREF_7 | INCH.5);

/* Ref = VeRef+, VeRef-, Input = ADC6 (Test 2) x/
ADC12MCTL4 = (SREF_7 | INCH_6);

/* Ref = VeRef+, VeRef-, Input = ADC7 (Test 3) x/
ADC12MCTL5 = (EQS | SREF_7 | INCH.7);

193

110

120

/* Ref = VREF+, AVss, Input = ADC10 (Temperature) x/
ADC12MCTL6 = (EOS | SREF_1 | INCH.10);

/* Ref = VREF+, AVss, Input = ADC11 (Power Supply Volatge) x/
ADC12MCTL7 = (EQS | SREF_1 | INCH_11);

/* used to buffer the conversions for signal processing x/

/* Ref = VeRef+, VeRef-, Input = ADC2 (Geo A) */
ADC12MCTL8 = (SREF_7 | INCH_2);
ADC12MCTL9 = (SREF_7 | INCH_2);
ADC12MCTL10 = (SREF_7 INCH_2);
ADC12MCTL11 = (SREF_7 INCH_2);

INCH_2) ;

\

\
ADC12MCTL12 = (SREF_7 | INCH-2);
ADC12MCTL13 = (SREF_7

\

ADC12MCTL14 = (SREF_7 | INCH_2);

ADC12MCTL15 = (EOS | SREF_7 | INCH-2);

/*****>k**>k**>k*******>k>k*>k**>k*******>k**>k**********>k**>k***************************\

*

initialize_ports: sets up the I/0 ports

130 \skostokstokekkestok sk ok ke skt e skt o e skt ok sk skt ks sk stk e sk stk sk sk stk sk sk stk sk sk stk sk stk ok /

140

150

void initialize_ports(void)

{

/* —-——= Port 1 Settings ---- x/
/* use as a port x/

P1SEL = 0x00;

/* HINT and HRDY are inputs, the rest are outputs Oz7E x/
PIDIR = (BIT6 | BITS | BIT4 | BIT3 | BIT2 | BIT1);

/* force all outputs to 0 */
P10UT = 0x00;

/* disable all interrupts */

P1IE = 0x00;

/* when interrupts are enabled, interrupt on a low to high transition x/

P1IES = 0x00;
/* —-——— Port 2 Settings ---- x/
/* use as a port */

P2SEL = 0x00; //

/* all bits are inputs x/

194

P2DIR = Ox00; //

/% force all output bits to 0 */
P20UT = 0x00;

/* disable all interrupts x*/

160 P2IE = 0x00;

/* When interrupts are enabled, interrupt on a low to high transition x/

P2IES = 0x00;

/* -—-—= Port 3 Settings ---- x/
/* use bits 0 to 3 as a port, use bits 4 to 7 as UARTs x/
P3SEL = (BIT7 | BIT6 | BIT5 | BIT4);

/* CTS is an input, bits O to 2 are outputs */
170 P3DIR = (BIT2 | BIT1 | BITO);

/* force VC55_ENA and GEO_ENA to 1 and all other output bits to 0 */
P30UT = (BIT1 | BITO);

/* ---= Port 4 Settings ---- x/
/* Use as a port x*/
P4SEL = 0x00;

/% all bits are inputs x/

180 P4DIR = 0x00;

/% force all output bits to 0 */
P40UT = 0x00;

/* -——= Port 5 Settings ---- x/
/* enable ACLK, and MCLK x/

P5SEL = (BIT6 | BIT4);

/* all bits are outputs x/
190 PSDIR = (BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO);

/* force RS232 enmable high, all other outputs 0 */
P50UT = BIT5;

/* —-——= Port 6 Settings ---- x/

/* use as special function for ADC x/

P6SEL = (BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO);

195

/* all inputs */
200 P6DIR = 0x00;

[kst sk stk ks sk ok ks sk ok ok sk st ok sk sk stk sk sk stk sk skt sk skt ok ks skt ok ks sk ok sk sk stk ok |
* initialize_timers: initializes the clock crystals and sets up the timers
otk okt sk sk sk sk sk sk stk st ot ot ok ook ok sk sk sk sk sk sk stk ot ko ok sk sk sk sk sk sk sk sk sk stk kot ok ok ok ok ok /
void initialize_timers(void)

{

Uint16 i,j;

210 /* select 1.3 MHz for the DCOC just in case %/
BCSCTL1 |= RSEL2 | RSELO;

/* clear the XTS bit =/

BCSCTL1 &= ("XTS);

/* clear the OSCOFF flag in the Status Register x/
_BIC_SR(OSCOFF) ;

/* turn on XT2 oscillator */

220 BCSCTL1 &= ("XTOFF);

/* test to see if it was able lock onto X2 %/
for (i=15; i > 0; i—-)
{

IFG1 &= ("OFIFG);

for (j=0;3j<1000;j++);

if (IFG1 && OFIFG == 0) break;

230 /* set MCLK and SMCLK to XT2 with a divide by 4 x/
BCSCTL2 |= SELM1 ‘ DIVM1 ‘ SELS | DIVS1;
/* setup timer A to keep the rumning time */
/* reset the timer */

TACTL = TACLR;

/* start in up mode with ACLK as source */

TACTL = TASSEL_1 | MC_1 | ID_O;

240 /* interrupt produces a toggle of OUT x/
CCTLO = OUTMOD_4 | CCIE;

/* set CCRO register to 32768 ticks for one second */

196

CCRO = 0x8000;

/* shut off CC1 and CC2 x/
CCTL1 = O;

CCTL2 = O0;

CCR1 = 0x0000;

250 CCR2

0x0000;
/* setup timer B to keep the sampling rate for ADC x/
/* reset the timer */

TBCTL = TBCLR;

/* pulse OUT when it reaches the register x/

TBCCTLO = OUTMOD_3;

/* sets the sampling rate of the ADC x/

260 TBCCRO = SAMPLING_RATE;

/* shut off all the other CCTL registers x/

TBCCTL1 = 0;
TBCCTL2 = 0;
TBCCTL3 = 0;
TBCCTL4 = 0;
TBCCTL5S = 0;
TBCCTL6 = 0;

TBCCR1 = 0x0000;
270 TBCCR2 = 0x0000;
TBCCR3 = 0x0000;
TBCCR4 = 0x0000;
TBCCR6 = 0x0000;

TBCCR6 = 0x0000;

[kttt ok ks kot sk kot sk kot ok sk sk ok sk ok sk kot sk kot sk skt ok sk sk ok ks ok skakok |

* disable_watch_dog_timer: disables the watch dog timer

\ otttk sk sk sk sk sk sk stk ot kot ko sk sk sk sk sk sk sk sk sk sttt ok ks sk sk sk sk sk sk sk sk sk skttt ok ok
280 void disable_watch_dog-timer(void)

{

WDTCTL = WDTPW | WDTHOLD;

197

10

20

10

F.10 low_power.s43

; Personnel Detector

; Elliot Ranger

; Master of Science Thesis

; Massachusetts Institute of Technology

; in conjunction
H

B

with Charles Stark Draper Laboratory

;**\

; FILENAME.
; DATE CREATED. .

low_power.s43

04,/18/2002

; LAST MODIFIED. 08/06,/2002

;**/

NAME
RSEG
PUBLIC
PUBLIC
EXTERN
RSEG

low_power(16)
CODE(1)
clear_low_power_mode
clear_hpi_low_power
?CL430-1_23_L08

CODE

clear_low_power_mode:

BIC.W
RET

R12,11(SP)

clear_hpi_low_power:

BIC.W
RET
END

R12,12(SP)

F.11 main.c

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts

Institute of Technology

* 4in conjunction with Charles Stark Draper Laboratory

*

*/

[sk stk ks sk ok ks sk ok ok ks sk ok ok ks sk st ok sk stk sk sk sk ok s skt s skt ok s skt ok sk stk sk sk stk kkok |

* FILENAME.

% DATE CREATED. . 04/18/2002

198

20

30

10

20

* LAST MODIFIED. 08/06/2002

**********************************>)<*************>)<*****************************/

#include "include.h"

#include "variables.h"

[ookt sk sk sk sk sk sk stk sttt R ks sk sk sk sk sk sk sk sk sk sttt R ks sk sk sk sk sk sk sk skttt o ok
* main: initializes the system and then processes commands indefinitely.

\ skt ks stk ks sk ot ks skt ok ek sk stk sk sk stk ks sk ok ks ok sk skt ok sk skt ok sk sk ok ks sk ok skskok /
void main(void)

{

initialize_system();

/* infinite loop */
while (TRUE)

{

process_commands () ;

F.12 menu.c

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* an conjunction with Charles Stark Draper Laboratory
*
«/
[kttt sk ok ks kot sk kot sk kot sk sk ko stk sk ok sk kot sk kot sk kot ok sk sk ok sk ok skokok |
* FILENAME. menu. c
* DATE CREATED. . 04/18/2002
* LAST MODIFIED. 08/06/2002

\ sttt ks kot ok kot sk kot sk kot sk koo sokskok ok stk kot sk kot sk kot sk sk ok skskok ok s kokok /
#include "include.h"

kot sk ok ok skok kot sk kot sk kot sk sk ok sk sk ok sk kot sk kot sk skt sk sk ok sk ok skakok |
* cls: anst ESC character sequence to clear the screen.
\ skt ok ks sk ke sk o ke st ok ke stk ke st ok ke stk ks sk s st ok sk st ok sk stk sk stk sk /

void cls(void)

{

199

30

40

50

60

unsigned char buffer[10];
sprintf (buffer,")c[2J",ESC) ;

print_message (buffer);

[kot sk ok ks kot sk kot sk sk ok sk sk ok stk ok sk kot sk kot sk kot ok sk sk ok sk ok skakok |
* display_header: prints out the header at the top of each menu then calls
* print_display_area to print out the messages.
\ stk stk ks stk ks skt ok skt ok ke sk stk sk sk stk ks stk ks sk sk skt o s skt ok ks stk sk sk stk sk /
void display_header(void)
{

clsO; // clear the screen

print_message("Personnel Detector\r\n");

print_message("Master's Thesis Project\r\n");

print_message("Elliot Ranger\r\n");

print_message (VERSION) ;

print_message ("\r\n\r\n");

// call function to display messages
print_display_area();

print_message("\r\n\r\n");

[kt koot kot sk kot sk koo soksk ko sk sk ok sk ot skok kot sk kot sk sk ok sk sk ok s kakok |
* display_footer: prints out the footer at the bottom of each menu screen.

\ stk stk ks stk ke skt o ke sk ok ke sk stk ke st ok sk stk ks skt s skt ok ks skt ok ks stk kst ok ok /
void display_footer(void)

{

print_message("\r\nSelect: ");

[kot sk kot sk kot sk kot sk kot sk sk ok sk sk ok sk kot sk kot sk kot ok sk sk ok sk ok skakok |
* display_main_menu: prints the main menu screen.
\ stttk ks sk ke sk o ket o kst ok ke stk ke stk ks skt ok s st ok ke st ok sk stk s stk sk /
void display-main_menu(void)
{

display_header();

print_message("Main Menu\r\n");

print_message("\r\n");

print_message("a. VC5509 Menu\r\n");

print_message("b. Geophone Menu\r\n");

print_message("c. RF Menu\r\n");

print_message("d. RS232 Menu\r\n");

print_message("e. ADC Test\r\n");

print_message("f. Host Port Interface\r\n");

200

70

80

90

100

110

print_message("g. Flash Menu\r\n");
print_message("h. Misc Menu\r\n");

display_footer();

[kot sk ok ks kot sk kot sk sk ok sk sk ok stk ok sk kot stk kot sk otk sk sk ok sk ok skakok |
* display_vcbb_menu: prints the VC5509 menu screen.
\ otttk sk sk sk sk sk ok stk sk skk sk sk sk sk sk sk sk kR R Rk sk sk sk sk sk sk sk sk kRt ook
void display_vc55_menu(void)
{

display_header();

print_message ("VC5509 Menu\r\n");

print_message("\r\n");

print_message("a. Power ON\r\n");

print_message("b. Power OFF\r\n");

print_message("c. Boot DSP\r\n");

print_message("d. Copy DSP Code to Buffer\r\n");

print_message("e. Copy Buffer to Flash\r\n");

print_message("f. Start Signal Processing\r\n");

print_message("g. Stop Signal Processing\r\n");

print_message("h. Clear Signal Processing Buffers\r\n");

print_message("i. VC5509 Code Version\r\n");

display_footer();

[k sk sk kR Rk sk sk ks kR kR R R Rk skk sk sk sk sk kR R Rk ok
* display_geophone_menu: prints the geophone menu screen.
\ sttt otk kot sk kot sk kot sk kot sk koo sk ok sk ot sskok ot skok otk sk sk ok skskok ok skakok /
void display_geophone_menu(void)
{

display_header();

print_message ("Geophone Menu\r\n");

print_message ("\r\n");

print_message("a. Power ON\r\n");

print_message("b. Power OFF\r\n");

print_message("c. Channel A Gain 40dB\r\n");

print_message("d. Channel A Gain 60dB\r\n");

print_message("e. Channel B Gain 40dB\r\n");

print_message("f. Channel B Gain 60dB\r\n");

print_message("g. Channel C Gain 40dB\r\n");

print_message("h. Channel C Gain 60dB\r\n");

display_footer();

/**\

201

120

130

140

150

* display_rf_menu: prints the RF menu screen.
\ sttt otk ok sk kot sk kot sk kot sk koo sk sk ok sskok otk ot sk otk sk koo skskk ok s kokok /
void display_rf_menu(void)
{
display_header();
print_message ("RF Menu\r\n");
print_message ("\r\n");
print_message("a. Power ON\r\n");
print_message("b. Power OFF\r\n");
print_message("a. Shutdown ON\r\n");
print_message("b. Shutdown OFF\r\n");

display_footer();

kot kot sk kot sk kot sk skt sk sk ok sk sk ok sk kot sskok kot sk kot ok sk sk ok sk ok kakok |
* display_rs232_menu: prints the RS232 menu screen.
otk stotooosok sk sk sk sk ok skttt ok R Rk sk sk sk sk sk sk kR Rk sk sk sk sk sk sk kR kRt ok ok
void display_rs232_menu(void)
{

display_header();

print_message("RS232 Menu\r\n");

print_message("\r\n");

print_message("a. Shutdown ON\r\n");

print_message("b. Shutdown OFF\r\n");

display_footer();

[kt kot sk kot sk kot sk koo sk sk ok sk sk ok sk ok skok kot sk otk sk sk ok sk ok skakok |
* display_dac_menu: prints the A/D converter menu screen.
otk stokooosokskskok sk sk sk ok skttt oR R Rk sk sk sk sk sk kR R Rk skk sk sk sk sk sk kR Rkt ok ok
void display_adc_menu(void)
{

display_header();

print_message("ADC Menu\r\n");

print_message("\r\n");

print_message("a. Geophone Channels\r\n");

print_message("b. Test Input Channels\r\n");

print_message("c. Temperature Sensor\r\n");

print_message("d. Power Supply Voltage\r\n");

display_footer();

[skttt ks stk ks sk ok ks st ok ke s stk ke stk ks stk ks stk ok s skt ok s st ok sk stk sk stk ok |
* display_hpi_menu: prints the host port interface menu screen.

**/

202

void display_hpi_menu(void)

{
display_header();

160 print_message ("Host Port Interface\r\n");

print_message("\r\n");
print_message("a. Enable HPI\r\n");
print_message("b. Disable HPI\r\n");
print_message("c. Write 0x1234 (4660 Decimal) to 0xOAOO\r\n");
print_message("d. Read Memory Location 0xOAOO\r\n");
print_message("e. Send HPI Interrupt\r\n");

display_footer();

170 /oot stokskok kot fokskok ot ookok kot okk kot okkktosokkksto skl o sk ko skt ok ook |
* display_flash_menu: prints the flash menu screen.
\ sttt ks kot ks kot sk kot ok sk kot sk sk ok stk kot sk kot sk kot ok skt sk sk ok sk ok s kokok /
void display_flash_menu(void)
{
display_header();
print_message("Flash Menu\r\n");
print_message("\r\n");
print_message("a. Write to address 0x6000\r\n");
print_message("b. Erase address 0x6000\r\n");
180 print_message("c. Read address 0x6000\r\n");

display_footer();

[ks stk ks stk ks sk ok ok ko sk ok ok ks sk st ok sk sk stk sk sk sk ok ks skt sk skt ok ke skt ok sk stk sk sk stk sk |
* display_misc_menu: prints the miscellaneous menu screen.
\ stk stk ks stk ks skt okt o ke sk stk sk s stk ks stk ks skt s skt ok s skt ok ks stk sk sk stk sk /
void display_misc_menu(void)
{
display_header();
190 print_message("Misc Menu\r\n");
print_message("\r\n");
print_message("a. Display Running Time\r\n");
print_message("b. MSP Power Supply Voltage\r\n");
print_message("c. MSP Temperature\r\n");
print_message("d. Clear Message Display Area\r\n");

display_footer();

203

10

20

30

40

F.13 proc_adc.c

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* an conjunction with Charles Stark Draper Laboratory
*
«/
[sk stok ks sk ok ks sk ok ok ks skt ok skt ok ke stk kst ok ks sk ks skt ok ks skt ok ks stk sk sk kot ook |
* FILENAME. proc_adc.c
+« DATE CREATED. . 04/18/2002
+ LAST MODIFIED. 08/06/2002

\ stk stk ek sk ks sk ke sk ke stk ke stk ke stk sk ke stk kst ok ke stk etk sk /
#include "include.h"

[k ko sk kot sk ot sk sk ok sk ko sk ok skskok ok skok kot sk kot sk sk ok sk ok akok |
* process_adc: gets a character from the process_commands function and allows
* the user to keep sampling ome of the A/D converter channels
* until ESC <s pressed.
\ sttt stk kot stk kot sk kot sk koo sk koo stk ok sk ot s skok kot sk kot sk sk ok sokskok ok skakok /
void process_adc(Char channel)
{

Char buffer [MAX_LINE_LENGTH];

Uint16 start_timer;

switch(channel)

{

case 'a' : /% Geophone Channels */

/* make sure control register is cleared out x/

ADC12CTL1 = 0x0000;

/* turn on ADC core x/

ADC12CTLO |= ADC120N;

/* perform the conversion on a single channel at address 0 - Geo A */

ADC12CTL1 = (CONSEQ-O | ADC12SSEL_2 | SHP | CSTARTADD_O);

/* single NOP to make sure ADC core is on x/

H

/* start sampling */

204

50

60

70

80

ADC12CTLO |= (ENC | ADC12SC);

/* wait for comversion to complete */

while ((ADC12CTL1 & ADC12BUSY) == ADC12BUSY);

/* turn off enable conversion x/

ADC12CTLO &= (“ENC); //

/* perform the conversion on a single channel at address 1 - Geo B x/

ADC12CTL1 = (CONSEQ_O | ADC12SSEL_2 | SHP | CSTARTADD_1);

/* single NOP to make sure ADC core %is on */

B

/* start sampling */
ADC12CTLO |= (ENC | ADC12SC);

/* wait for conversion to complete x/

while ((ADC12CTL1 & ADC12BUSY) == ADC12BUSY);

/* turn off enable conversion x/

ADC12CTLO &= ("ENC);

/* perform the conversion on a single channel at address 2 - Geo C x/

ADC12CTL1 = (CONSEQ-O | ADC12SSEL_2 | SHP | CSTARTADD_2);

/* single NOP to make sure ADC core %is on */

H

/% start sampling */
ADC12CTLO |= (ENC | ADC12SC);

/* wait for comversion to complete */

while ((ADC12CTL1 & ADC12BUSY) == ADC12BUSY);

/* turn off enable conversion x/

ADC12CTLO &= ("ENC);

/% turn off adc */
ADC12CTLO &= (~ADC120N);

/* print results to display area */

sprintf (buffer,"Geophone A: %6.4f", ((double)ADC12MEM[0]/4096.0)+3.00) ;
add_message_to_display(buffer);

sprintf (buffer,"Geophone B: %6.4f", ((double)ADC12MEM[1]/4096.0)+3.00) ;

205

add_message_to_display(buffer);
90 sprintf (buffer,"Geophone C: %6.4f", ((double)ADC12MEM[2]/4096.0)+3.00) ;

add_message_to_display(buffer);

}

break;

case 'b' /* Test Input x*/

/* make sure control register is cleared out x/

ADC12CTL1 = 0x0000;

100 /* turn on ADC core x/
ADC12CTLO |= ADC120N;

/* perform the conversion on a single channel at address 3 - Test 1 %/

ADC12CTL1 = (CONSEQ-O | ADC12SSEL_2 | SHP | CSTARTADD_3);

/* single NOP to make sure ADC core %is on */

H

/% start sampling */
110 ADC12CTLO |= (ENC | ADC12SC);

/* wait for conversion to complete x*/

while ((ADC12CTL1 & ADC12BUSY) == ADC12BUSY);

/* turn off enable conversion x/

ADC12CTLO &= ("ENC);

/* perform the conversion om a single channel at address 4 - Test 2 */
ADC12CTL1 = (CONSEQ-O | ADC12SSEL_2 | SHP | CSTARTADD_4);

120
/* single NOP to make sure ADC core is on */

B

/* start sampling */
ADC12CTLO |= (ENC | ADC12SC);

/* wait for conversion to complete x/

while ((ADC12CTL1 & ADC12BUSY) == ADC12BUSY);

130 /* turn off enable conversion */

ADC12CTLO &= ("ENC);

/* perform the conversion on a single channel at address 5 - Test 3 */

206

ADC12CTL1 = (CONSEQ-O | ADC12SSEL_2 | SHP | CSTARTADD_5);

/* single NOP to make sure ADC core %is on */

/* start sampling */
140 ADC12CTLO |= (ENC | ADC12SC);

/* wait for conversion to complete */

while ((ADC12CTL1 & ADC12BUSY) == ADC12BUSY);

/* turn off enable conversion */

ADC12CTLO &= ("ENC);

/* turn off adc */
ADC12CTLO &= (~ADC120N);

150
/* print results to display area */
sprintf (buffer,"Test Input 1: %6.4f", ((double)ADC12MEM[3]/4096.0)+3.00) ;
add_message_to_display(buffer);
sprintf (buffer,"Test Input 2: %6.4f",((double)ADC12MEM[4]/4096.0)%3.00) ;
add_message_to_display(buffer);
sprintf (buffer,"Test Input 3: %6.4f", ((double)ADC12MEM[5]/4096.0)+3.00) ;
add_message_to_display(buffer);
}
break;
160
case 'c' /* Temperature Sensor x/
{
/* make sure control register is cleared out */
ADC12CTL1 = 0x0000;
/* perform the conversion on a single channel at address 6 - Temperature Sensor x/
ADC12CTL1 = (CONSEQ-O | ADC12SSEL_2 | ADC12DIV_7 | SHP | CSTARTADD_6);
/* turn on core and reference woltage to 2.5 V x/
170 ADC12CTLO |= (ADC120N | REFON | REF2_5V);

/* make sure reference voltages are stable x/
start_timer = TAR;

while (((TAR — start_timer) & TIMER_MASK) < 15);

/* start sampling */
ADC12CTLO |= (ENC | ADC12SC);

207

/* wait for conversion to complete x/

180 while ((ADC12CTL1 & ADC12BUSY) == ADC12BUSY);

/* turn off enable conversion x/

ADC12CTLO &= ("ENC);

/* turn off reference voltages */

ADC12CTLO &= (~(ADC120N | REFON | REF2_5V));

/* print results to display area x/

sprintf (buffer,"Temperature Sensor: %6.2f C",((((double) ADC12MEM[6])%2.50/4096.0)/3.55e—3) — 273.15);

190 add_message_to_display(buffer);
}
break;
case 'd' /* Power Supply Voltage x/
{

/* make sure control register is cleared out x/

ADC12CTL1 = 0x0000;

/* perform the conversion om a single channel at address 7 - Power Supply Voltage x/

200 ADC12CTL1 = (CONSEQ-O | ADC12SSEL_2 | ADC12DIV_7 | SHP | CSTARTADD_7); // Using master clock, single channel

/* turn on core and reference voltage to 2.5 V x/

ADC12CTLO |= (ADC120N | REFON | REF2_5V);

/* make sure reference voltages are stable x/
start_timer = TAR;

while (((TAR — start_timer) & TIMER_MASK) < 15);

/* start sampling */
210 ADC12CTLO |= (ENC | ADC12SC);

/* wait for conversion to complete x/

while ((ADC12CTL1 & ADC12BUSY) == ADC12BUSY);

/* turn off enable conversion x/

ADC12CTLO &= ("ENC);

/* turn off reference voltages */
ADC12CTLO &= (~(ADC120N | REFON | REF2_5V)); // turn off reference voltages
220
/* print results to display area x/
sprintf (buffer,"Power Supply Voltage: %6.4f",((((double) ADC12MEM[7])%2.50/4096.0)/0.5));

add_message_to_display(buffer);

208

230

10

20

30

}

break;

default : break;

}

F.14 proc_cmd.c

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
«/
[kt ok ok kot sk kot sk kot sk sk ko sk ok sk kot sk kot sk kot ok sk sk ok sk sk ok skakok |
* FILENAME. proc_cmd.c
* DATE CREATED. . 04/18/2002
« LAST MODIFIED. 08/06/2002

\ sttt ks kot ok kot sk kot ok kot stk koo stk ok sk ot skok kot sk otk sk sk ok sokskok ok s kokok /
#include "include.h"

[kt sk otk kot sk kot sk ko sk sk ok stk ok sk kot sk kot sk kot ok sk sk ok sk skt ok skakok |
* process_commands: main function that continually processes any key typed
* and exzecutes the associated function.
\ ket ks ok ke skt ke sk ok o ke sk stk sk sk stk sk stk ks skt sk skt o sk skt ok s sk stk sk sk ok sk /
void process_commands(void)
{

Uint16 done = FALSE;

Uchar key;

Uint16 read_data;

Uchar buffer [MAX_LINE_LENGTH];

display_main_menu() ;

switch(get_char())

{

case 'a' : /* VC5509 Menu x/

do

209

done = FALSE;

display_vc55_menu() ;

switch (get_char())

{

case 'a' : /* turn on VC5509 and enable hpi */

msp_port3.byte = P30UT;
msp_port3.bit.vc55_enable = 0;
P30UT = msp_port3.byte;

enable_hpi();

done = TRUE;
break;
case 'b' : /* disable hpi and turn off VC5509 x/

disable_hpi(Q);

msp_port3.byte = P30UT;
msp_port3.bit.vcb5_enable = 1;
P30UT = msp_port3.byte;

done = TRUE;
break;
case 'c' : /* downloads the code from flash and boots VC5509 x/
boot_dsp();
done = TRUE;
break;
case 'd' : /* tells VC5509 to copy its program code to HPI Write */

send_dsp_command (COPY_TO_HPI_WRITE);

done = TRUE;
break;

case 'e' : /* copy VC5509 code to flash and verify that the memory is the same */
clsQ;

print_message ("\r\n\r\nCopying VC5509 Code to Flash, Please Wait...\r\n");
copy-dsp-code_to_flash();

verify_dsp_code();

done = TRUE;
break;
case 'f' : /* begins signal processing */

add_message_to_display("MSP: Starting Signal Processing");

/* turn on geophone power x/
msp-port3.byte = P30UT;

msp_port3.bit.geo_enable = 0;

210

P30UT = msp_port3.byte;

80 start_signal_processing();
done = TRUE;
break;
case 'g' : /* stops signal processing */

add_message_to_display("MSP: Stopping Signal Processing");

stop_signal_processing();

done = TRUE;
break;
90 case 'h' : /* clear signal processing buffers*/

send_dsp_command (CLEAR_PROCESSING_BUFFERS) ;

done = TRUE;
break;
case 'i' : /* tells VC5509 to print out its code version x/

send_dsp-command (GET_VC5509_VERSION) ;

done = TRUE;
break;
100 default : break;
}
} while (!dome);
}
break;
case 'b' : /* Geophone Menu */
{
do
{
110 done = FALSE;

display_geophone_menu() ;
switch (get_char())
{
case 'a' : /* turn on geophone power x/
msp_port3.byte = P30UT;
msp_port3.bit.geo_enable = 0;
P30UT = msp_port3.byte;

done = TRUE;
break;
120
case 'b' : /* turn off geophone power x/

msp-port3.byte = P30UT;

msp_port3.bit.geo_enable = 1;

211

P30UT = msp_port3.byte;

done = TRUE;
break;
case 'c' : /* set Geo A to 40 dB x/

msp_port5.byte = P50UT;
130 msp_port5.bit.geo_A_sel = 0;
P50UT = msp_port5.byte;

done = TRUE;
break;
case 'd' : /* set Geo A to 60 dB x/

msp-port5.byte = P50UT;
msp-_port5.bit.geo_A_sel = 1;

P50UT = msp_portb.byte;

done = TRUE;
140 break;
case 'e' : /* set Geo B to 40 dB x/

msp_port5.byte = P50UT;
msp_port5.bit.geo_B_sel = 0;
P50UT = msp_port5.byte;

done = TRUE;
break;
case 'f' : /* set Geo B to 60 dB x/
150 msp_port5.byte = P50UT;

msp_port5.bit.geo_B_sel = 1;

P50UT = msp_portb.byte;

done = TRUE;
break;
case 'g' : /% set Geo C to 40 dB x/

msp-port5.byte = P50UT;
msp_port5.bit.geo_C_sel = 0;

P50UT = msp_portb.byte;

160 done = TRUE;
break;
case 'h' : /* set Geo C to 60 dB x/

msp_port5.byte = P50UT;
msp_port5.bit.geo_C_sel = 1;
P50UT = msp_port5.byte;
done = TRUE;

break;

212

170 default : break;

}

} while (!done);

}
break;
case 'c' : /* RF Menu */
{
do
{
180 done = FALSE;
display_rf_menu();
switch (get_char())
{
case 'a' /% turn on RF power and enable interrupts x/
msp-port3.byte = P30UT;
msp_port3.bit.rf_enable = 1;
P30UT = msp_port3.byte;
/* enable the RF transmitter and receiver x/
190 ME2 = UTXE1 | URXE1;
/* enable RF receive interrupt x/
IE2 = URXIE1;
rf_ena = TRUE;
done = TRUE;
break;
case 'b' : /* turn off RF power and disable interrupts x/
200 msp_port3.byte = P30UT;
msp_port3.bit.rf_enable = 0;
P30UT = msp_port3.byte;
/* disable the RF transmitter and receiver x/
ME2 = 0; // disable the transmitter & recevier
/* disable RF receive interrupt x/
IE2 = 0;
210 rf_ena = FALSE;
done = TRUE;
break;

213

case 'c' : /* put RF in sleep mode x/
msp_port5.byte = P50UT;
msp_port5.bit.rf_shutdown = 1;

P50UT = msp_port5.byte;

done = TRUE;
break;
220
case 'd' : /* take RF out of sleep mode */
msp-port5.byte = P50UT;
msp_port5.bit.rf_shutdown = 0;
P50UT = msp_port5.byte;
done = TRUE;
break;
default : break;
}
230 } while (!done);
}
break;
case 'd' : /% RS232 Menu x/
{
do
{
done = FALSE;
display_rs232_menu();
240 switch (get_char())
{
case 'a' : /* shutdown RS232 transmitter x/
msp-port5.byte = P50UT;
msp-_port5.bit.rs232_enable = 0;
P50UT = msp_port5.byte;
done = TRUE;
break;
case 'b' : /* turn on RS232 transmitter x/
250 msp_port5.byte = P50UT;
msp_port5.bit.rs232_enable = 1;
P50UT = msp_port5.byte;
done = TRUE;
break;
default break;
}

} while (!dome);

214

260 break;
case 'e' : /* ADC Menu x/
{
do
{
done = FALSE;
display_adc_menu();
switch (key=get_char())
270 {
case ESC : /* wait for ESC or CR to exzit menu */
case CR
done = TRUE;
break;
default
cls();
process_adc(key) ;
280 break;
}
} while (!dome);
}
break;
case 'f' : /* HPI Menu x/
{
do
{
290 done = FALSE;
display_hpi_menu();
switch (get_char())
{
case 'a' : /* enable host port interface x/
enable_hpi();
done = TRUE;
break;
case 'b' : /* disable host port interface */
300 disable_hpi(Q);
done = TRUE;
break;

215

case 'c' : /* write a test word to HPI Write location */
write_hpi_address_register (0x0AQ0) ;
write_hpi_data_word(0x1234,TRUE) ;

done = TRUE;
break;
310 case 'd' : /* read first word at HPI Write location */

write_hpi_address_register (0x0AQ0) ;
read_data = read_hpi_data_word(TRUE) ;
sprintf (buffer,"VC5509 Memory Location O0x0A0O: %X",read_data);

add_message_to_display(buffer);

done = TRUE;
break;
case 'e' : /* send VC5509 host port interrupt x/

send_dsp_interrupt () ;

320 done = TRUE;
break;
default : Dbreak;

}

} while (!done);

}

break;

case 'g' : /* Flash Menu x/
330 {
do

done = FALSE;
display_flash_menu();

switch (get_char())

{

case 'a' : /* write test word to flash location 0z6000 */
write_flash(0x6000,0x1234) ;
done = TRUE;
340 break;
case 'b' : /* erase flash memory location 0z6000 */

erase_flash(0x6000) ;

done = TRUE;
break;
case 'c' : /* read the memory at location 0z6000 */

read_data = read_flash(0x6000) ;

216

sprintf (buffer,"Flash Memory Location 0x6000: %X",read_data);
350 add_message_to_display(buffer);
done = TRUE;

break;

default : break;

}

} while (!done);

}

break;

360 case 'h' : /* Misc Menu x/

do

done = FALSE;
display_misc_menu();

switch (get_char())

{

'a' /* print out running time of processor */

case
sprintf (buffer,"\r\n%d days",days);
370 add_message_to_display(buffer);
sprintf (buffer,"%d hours : %d minutes : %d seconds",hours, minutes, seconds);

add_message_to_display(buffer);

done = TRUE;
break;
case 'b' : /* print out MSP power supply voltage */

process_adc('d');

done = TRUE;
break;
380
case 'c' : /* print out MSP temperature x/
process_adc('c');
done = TRUE;
break;
case 'd' : /* reset display message area x/
clear_display_area();
done = TRUE;
break;
390
default : Dbreak;

}

} while (!dome);

217

10

20

30

F.

/%

*

*/

}

break;

default : break;

15 prototype.h

Personnel Detector

Elliot Ranger

Master of Science Thesis
Massachusetts Institute of Technology

in conjunction with Charles Stark Draper Laboratory

/**\

* FILENAME. prototype.h

* DATE CREATED. . 04/18/2002

+ LAST MODIFIED. 08/06/2002

**/

void

void

void
void
void
void
void

void

void

clear_low_power_mode (Uint16 mode) ;

clear_hpi_low_power (Uint16 mode);

initialize_system(void);
initialize_serial_interface(void);
initialize_adc(void);
initialize_ports(void);
initialize_timers(void);

disable_watch_dog_timer(void) ;

print_message(Uchar *message);

Uchar get_char(void);

void

void

void
void
void

void

process_commands (void) ;

process_adc (Uchar channel);

cls(void);
display_header(void);
display_footer(void);

display_main_menu(void) ;

218

void display-_vcb5_menu(void) ;
void display_geophone_menu(void);
void display_rf_menu(void);

void display_rs232_menu(void);
void display-adc_menu(void);

void display_hpi_menu(void);

void display_flash_menu(void);

void display-misc_menu(void);

void enable_hpi(void);

void disable_hpi(void);

void write_hpi_control_register(Uintl6 data);

void write_hpi_address_register(Uintl16 data);

void write_hpi_data_word(Uint16, Uintl16 auto_incr);
Uint16 read_hpi_data_word(Uint16 auto_incr);

void send_dsp_interrupt(void);

void send_dsp_command(Uint16 command) ;

void print_hpi_message(void);

void add_message_to_display(Uchar xmessage);
void clear_display_area(void);

void print_display_area(void);

void boot_dsp(void);
void copy-dsp_code_to_flash(void);

void verify_dsp_code(void);

void erase_flash(Uintl6 address);
void write_flash(Uint16 address, Uintl6 data);

Uint16 read_flash(Uint16 address);

void start_signal_processing(void);

void stop_signal_processing(void);

F.16 signal proc.c

/*
* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology

* in conjunction with Charles Stark Draper Laboratory

219

«/
kot ok sokskok kot sk kot sk kot sk sk o sk ok sk kot s skok kot sk otk sk ko sk sk ok s kakok |
10 =+ FILENAME. signal_proc.c
* DATE CREATED. . 08/01/2002
« LAST MODIFIED. 08/06/2002

**/

#include "include.h"

[kst sk ok ks kot sk kot sk skt stk sk ok sk sk ok stk kot stk kot sk skt ok sk skt ok sk ok skakok |

* start_signal_processing: turns on the ADC to start collecting data, sets

* timer B as the control for the sampling rate, and enables timer B
20\ sokskokostokkskokek skt sk stk ke stk kst ks skt ks sk stk sk sk stk sk sk stk skl s stk sk sk stk sk sk sk ok s kokok /

void start_signal_processing(void)

{

/* make sure control register is cleared out */

ADC12CTL1 = 0x0000;

/* clear any interrupt flags and enable interrupts on channel 15 x/
ADC12IFG = 0x0000;
ADC12IE = BITF;
30
/* Tepeated sequence starting at address 8 using timer B x/
/* to control the sampling rate */

ADC12CTL1 = (CONSEQ-3 | SHS_2 | ADC12SSEL_3 | SHP | CSTARTADD_8);

/* turn on ADC core x/

ADC12CTLO |= (ADC120N);

/* single NOP to make sure ADC core %is on */
5

40
/* enable conversions */

ADC12CTLO |= ENC;

/* start Timer B using ACLK as the source in up mode */

TBCTL = TBSSEL_1 | MC_1 | ID_O;

[kt sk ok sk kot sk kot sk kot sk sk ok sk sk ok sskok kot skok kot sk kot ok sk sk ok sk sk ok skakok |
* stop_signal_processing: resets timer B, disables all ADC interrupts and

50 * turns off the ADC core.
\ stk stk ks stk ke skt ks skt ok ke sk stk sk sk stk sk ok ks skt sk skt ok sk skt ok sk sk stk sk sk ok skok /

void stop_signal_processing(void)

220

60

70

80

90

/* reset timer B x/

TBCTL = TBCLR;

/* disable ADC12 interrupts and clear any pending interrupts x*/
ADC12IE = 0x0000;
ADC12IFG = 0x0000;

/* turn off enable conversion x/

ADC12CTLO &= ("ENC);

/* turn off ADC x/
ADC12CTLO &= (~ADC120N);

/**\

*

*

*

adc_handler: recetves an interrupt when the ADC has done 8 conversions
transfers the data to the VC5509 using dsp_data_address to

keep tract of where the next set of conversions should go.

**/

interrupt [ADC_VECTOR] void adc_handler(void)

{

Uint16 i;

Uint16 scaled;

/* transfer the data to the VC5509 x/
if ((ADC12IFG & BITF) == BITF)
{
/* set the correct address location to start writing data x/
write_hpi_address_register(dsp_data_address) ;
for (i=8;i<=15;i++)
{
scaled = ADC12MEM[i] << 3;
write_hpi_data_word(scaled,TRUE);

dsp_data_address++;

if ((dsp-data_address >= O0x14AF) && (dsp_-memory_block == DATA_BLOCK_1))

{
send_dsp_command (PROCESS_DATA_BLOCK_1) ;
dsp_data_address = DSP_HPI_WRITE_2;

dsp_memory_block = DATA_BLOCK_2;

if ((dsp_data_address >= Ox19AF) && (dsp_memory_block == DATA_BLOCK_2))

221

100

10

20

30

send_dsp_command (PROCESS_DATA_BLOCK_2) ;
dsp_data_address = DSP_HPI_WRITE_1;
dsp_memory_block = DATA_BLOCK_1;

F.17 timer.c

* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* in conjunction with Charles Stark Draper Laboratory
*
«/
[kt sk ok ks kot sk kot sk kot sk koo sk sk ok sk kot sk kot sk kot ok sk sk ok sk sk ok skakok |
* FILENAME. timer.c
* DATE CREATED. . 04/18/2002
« LAST MODIFIED. 08/06/2002

\ sttt ks kot sk kot sk kot ok kot sk koo stk ok sk kot skok kot ok otk sk sk ok skskk ok s kkok /
#include "include.h"

[kttt sk kot ok sk kot sk kot sk koo sk sk ok sk ok sk kot sk kot sk kot ok sk sk ok sk ok skakok |
* timer_A_handler: keeps tract of the running time of the processor

\ stttk ks sk kst o ke sk o ke stk ke stk ke stk ks stk ks st ok s sk ok sk stk sk sk ok sk /
interrupt [TIMERAO_VECTOR] void timer_A_handler(void)

{

time++;

/* increment the number of seconds */
seconds++;
seconds’%=60;
if (seconds == 0)
{
/* increment the number of minutes x*/
minutes++;
minutes’=60;
if (minutes == 0)

{

222

/* dincrement the number of hours x/
hours++;
hours%=24;
if (hours == 0)
{
/* increment the number of days x/

40 days++;

F.18 typedef.h

/*

* Personnel Detector

* Elliot Ranger

* Master of Science Thesis

* Massachusetts Institute of Technology

* an conjunction with Charles Stark Draper Laboratory

*

«/

kot sk ok ks kot sk kot sk ko sk koo sk sk ok sk kot sk kot sk skt ok sk sk ok sk ok sk |
10 * FILENAME. typedef.h

* DATE CREATED. . 04/18/2002

« LAST MODIFIED. 08/06/2002

**/

typedef unsigned char Uchar;
typedef char Char;
typedef unsigned short Uinti6;

typedef unsigned long Uint32;

20 typedef union

{

struct

{

short vcb5_enable : 1;

short geo_enable : 1;

short rf_enable : 1

short spare -
} bit;

Uchar byte;

223

30 }
MSP_PORT3_TYPE;

typedef union

{
struct
{
short geo_A_sel : 1
short geo_B_sel 1
short geo_C_sel : 1
40 short sparel T 2
short rs232_enable : 1;
short spare2 : 1
short rf_shutdown : 1;
} bit;
Uchar byte;
}

MSP_PORT5_TYPE;

typedef union

50 {

struct

{
short sparel : 3;
short rf_cts : 1;
short spare2 : 4,

} bit;

Uchar byte;

} RF_CONTROL_TYPE;
60 typedef union
{

struct

short hpi_int

short byte_en

short control

short rd_wr

short hds

R N = ST ST

short ready
70 } bit;

Uchar byte;
} HPI_CONTROL_TYPE;

typedef wunion

224

struct

{

short reset 1

short dsp-_int 1;

short spare : 35

short xadd 1;

short sparel : 10;
} bit;

Uint16 byte;

} HPIC_CONTROL_TYPE;

F.19 variables.h

/*
* Personnel Detector
* Elliot Ranger
* Master of Science Thesis
* Massachusetts Institute of Technology
* 4in conjunction with Charles Stark Draper Laboratory
*
«/
kot sk ok sk skok kot kskok kot sk kot sk sk ok sk sk ok sk kot sk kot sk kot ok sk sk ok sk sk ok s kakok |
* FILENAME. variables.h
* DATE CREATED. . 04/18/2002
* LAST MODIFIED. 08/06/2002

**/

/* global wvariables x/
MSP_PORT3_TYPE msp_port3;
MSP_PORT5_TYPE msp_portb;
HPIC_CONTROL_TYPE hpic;
Uint32 time = 0;

Uint16 seconds = 0;

Uint16 minutes

[
o

Uint16 hours = 0;

Uint16 days = O;

Uchar in_buffer[64];

Uint16 buffer_write_pos = 0;
Uint16 buffer_read_pos = 0;
Uintl16 rf_ena = FALSE;
Uchar display-lines[3][64];

Uint16 display_current_line = O;

225

I
o

30 Uint16 dsp_data_address =

[
—

Uint16 dsp_memory_block

226

Appendix G

Errata

Problem: Part U12 (MAX1672) pins 2, 15, 7, and 10 were tied together but were not
tied to PGND.

Solution: Jumper pins 7 and 8 together. Pins 8, 6, and 5 were correctly tied to PGND
on the part.

Problem: Connector J5 pin 9 should be the only connection to DGND, but 4,8,10,12,13,and
14 were tied to DGND as well.

Solution: Cut pins 4,8,and 10 to remove the connection to DGND those pins actually
connect to circuitry in the FET pod. Pins 12, 13, and 14 can be left uncut because

those pins are unused by the programmer.

Problem: Part Ul the RX_IN and RX_OUT are reversed.
Solution: Lift pins 15 and 16 from the circuit board, and run wires to swap the con-

nections.

Problem: J4 and J7 are specified as pins in the parts listing, but should be sock-
ets.
Solution: Change the part to a socket. The hole spacing on the board is the same for

both parts.

227

Problem: GEO_VREF- was never connected to AGND.
Solution: Connect a jumper wire between the GEO_VREF- side of R13 and pin 2 of
part US.

228

Bibliography

1]

8]

Amirtharajah, R. Design of Low Power VLSI Systems Powered by Ambient
Mechanical Vibration. PhD thesis, Massachusetts Institute of Technology, May
1999.

Doshi, P., et al. Modelling and characterization of high-efficiency silicon so-
lar cells fabricated by rapid thermal processing, screen printing, and plasma-
enhanced chemical vapor deposition. IEEE Trans. on FElectron Deuvices,

44(9):1417-1423, September 1997.

Houston, Kenneth M., and Daniel McGaffigan. Spectrum analysis techniques for
personnel detection using seismic sensors. MSS Specialty Group on Acoustic and

Seismic Sensing, September 2002.

Kuo, Sen M., and Bob H. Lee. Real-Time Digital Signal Processing. John Wiley
and Sons, LTD, 2001.

Oppenheim, Alan V., and Alan S. Willsky. Signals and Systems. Prentice Hall,
second edition, 1997.

Oppenheim, Alan V., et al. Discrete-Time Signal Processing. Prentice Hall,
second edition, 1999.

Rowe, D. Demonstration system for a low-power classification processor. Mas-

ter’s thesis, Massachusetts Institute of Technology, February 2000.

Sedra, Adel S., and Kenneth C. Smith. Microelectronic Circuits. Oxford Univer-
sity Press, fourth edition, 1998.

229

[9] Solar Electric Power Association. A primer on solar photovoltaics and pv systems,

February 2003. http://www.solarelectricpower.org/power /fact_sheets.cfm.

[10] Succi, G., et al. Acoustic target tracking and target identification - recent results.

Proceedings of SPIFE, 3713:10-21, April 1999.

[11] Succi, G., et al. Problems in seismic detection and tracking. Proceedings of SPIFE,
4040:165-173, April 2000.

[12] Succi, G., et al. On the design of a small passive sensor for locating vehicles,

footsteps and gunshots. Proceedings of SPIE, 4232:367-376, April 2001.

[13] Texas Instruments, Inc. MSP430x13z, MSP430x14x Mized Signal Microcon-
troller, February 2001.

[14] Turkowski, Ken. Fixed point square root. Apple Technical Report 96, October
1994.

230

