
Short-Term Precipitation Nowcasting for

Composite Radar Rainfall Fields

by

Matthew P. Van Horne

B.S., Massachusetts Institute of Technology (2002)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Civil and Environmental Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

c© Massachusetts Institute of Technology 2003. All rights reserved.

Author .
Department of Civil and Environmental Engineering

August 15, 2003

Certified by. .
Dara Entekhabi

Professor of Civil and Environmental Engineering
Thesis Supervisor

Accepted by .
Heidi Nepf

Chairman, Departmental Committee on Graduate Students

2

Short-Term Precipitation Nowcasting for Composite Radar

Rainfall Fields

by

Matthew P. Van Horne

Submitted to the Department of Civil and Environmental Engineering
on August 15, 2003, in partial fulfillment of the

requirements for the degree of
Master of Science in Civil and Environmental Engineering

Abstract

Precipitation nowcasting at very short lead times is a difficult and important earth
science goal. The implications of nowcasting extend into aviation, flood forecasting
and other areas. Using correlation analysis for the generation of velocity vectors to
advect a composite radar rainfall field is the method of nowcasting utilized in this
work. The MIT Lincoln Laboratory Growth and Decay Storm Tracker (GDST) is a
correlation-based nowcasting algorithm that utilizes spatial filtering to eliminate the
potentially adverse effects of transient, small-scale rainfall features in the correlation
step. The GDST is used in this work to evaluate the benefits of image filtering as
compared to a situation where the filtering is absent. The GDST generates a spatially
variable velocity field for input rainfall field advection. Forecasts made using this
enhancement are compared to forecasts made using a single velocity value for all input
pixels in order to determine the benefits of allowing for differential motion within the
storm envelope. The results from three storm cases show that image filtering provides
improvement in forecast accuracy over an unfiltered case however, to fully determine
any benefits from using spatially variable velocities requires more work.

This work also documents the development and testing of a new correlation-based
nowcasting algorithm. The Automated Precipitation Extrapolator (APEX) builds on
advancements made over the past 40 years to provide highly accurate precipitation
nowcasts. Initial testing shows that APEX-generated forecasts are more accurate than
persistence forecasts, and are approximately as accurate as forecasts generated by the
GDST or with a uniform advection method. Allowing for small errors in forecasted
rainfall location, through an extended verification kernel, APEX-generated forecasts
are visibly more accurate than GDST forecasts or uniform advection forecasts.

Thesis Supervisor: Dara Entekhabi
Title: Professor of Civil and Environmental Engineering

Acknowledgments

I would like to thank Enrique Vivoni and Dara Entekhabi for their help throughout

the duration of this research. I would also like to acknowledge the assistance of Bob

Hallowell, Marylin Wolfson and Barbara Forman of Lincoln Laboratory for their help

in obtaining and deciphering the original model. Ross Hoffman and Chris Grassotti of

Atmospheric and Environmental Research, Inc. also provided significant help along

the way. Funding for this thesis was provided by the National Science Foundation

grant entitled “An Ensemble Approach to Data Assimilation in the Earth Sciences”

(principal investigator: Professor Dennis McLaughlin). Support from this grant is

gratefully acknowledged. On a more personal note I would like to thank my longtime

girlfriend Sabrina Kinyon for her constant support and love as well as my family for

their support for me from day one.

6

Contents

1 Introduction 17

1.1 Motivations . 17

1.2 Nowcasting Background . 18

1.3 Outline and Goals . 20

2 Image Filtering For Short Term Rainfall Forecasting 21

2.1 Introduction . 21

2.2 Filtering History . 22

2.3 Growth and Decay Storm Tracker . 25

2.4 Rainfall Data . 28

2.5 Evaluation Criteria . 30

2.5.1 Critical Success Index . 30

2.5.2 Basin-Based Statistics . 31

2.5.3 Theoretical Error Analysis . 32

2.6 Results . 33

2.6.1 Filter Size Sensitivity . 34

2.6.2 Lead Time and Threshold Comparison 34

2.6.3 Verification Area Analysis . 34

2.6.4 Uniform Advection Comparison 37

2.6.5 Basin-Based Analysis . 40

2.6.6 Theoretical Error Analysis . 42

2.7 Conclusions . 44

7

3 The Automated Precipitation Extrapolator (APEX) 47

3.1 Introduction . 47

3.2 Correlation Analysis Background . 47

3.3 APEX Algorithm Description . 51

3.3.1 Overview . 51

3.3.2 Input Field Filtering . 53

3.3.3 Global Motion Analysis . 53

3.3.4 Correlation Analysis . 55

3.3.5 Correlation Surface Filtering 56

3.3.6 Quality Control . 57

3.3.7 Vector Interpolation . 59

3.3.8 Advection and Forecast Generation 59

4 APEX Results and Comparisons 63

4.1 APEX Outputs . 63

4.2 Lead Time Comparisons . 65

4.3 Verification Area Comparisons . 65

4.4 False Alarm Ratio Comparisons . 67

5 Conclusions 71

Bibliography 75

A APEX Users Guide 81

A.1 Parameter File . 81

A.2 Source File Description . 83

B MATLAB Source Code 91

B.1 tracker.m . 91

B.2 global tracker.m . 94

B.3 read batch file.m . 96

B.4 correlate images.m . 97

8

B.5 prepare images.m . 99

B.6 st filt.m . 100

B.7 global correlation.m . 101

B.8 quality control.m . 102

B.9 surface filter.m . 102

B.10 get vectors.m . 104

B.11 interpolation.m . 105

B.12 advect image.m . 106

B.13 advect global.m . 109

B.14 file writer.m . 111

B.15 score forecasts.m . 111

B.16 get actual file.m . 112

B.17 csi score.m . 113

9

10

List of Figures

1-1 Theoretical forecast skill as a function of lead time for several forecast-

ing methods (adapted from Zipser 1990). 19

2-1 The result of applying a square filter (60 km x 60 km) to a line storm

from 5 October 1998. The full image (a) is decomposed into its large-

scale (b) and small-scale (c) features using an averaging filter. The

arrow in (b) corresponds to the velocity derived by the GDST, 9.6 m/s

directed 17◦ South of East. 26

2-2 (a) Observed image at 1200 UTC on 5 October 1998. The scale in

panel (a) also applies to panels (b) and (c). (b) observed image at

1215 UTC of the same day. Images (a) and (b) are cross correlated to

generate a velocity field that is used to advect the storm for forecasting.

(c) One hour forecast valid at 1315 UTC. (d) Difference between the

forecast rainfall field shown in (c) and the actual rainfall at that time.

The radar sites providing coverage of the Arkansas-Red River Basin

are also shown in all panels. 27

2-3 Sample radar rainfall images for the January 1998 (a), October 1998

(b) and April 1999 (c) storm events. 29

2-4 The location of the Illinois River Basin within the ARB region. 30

2-5 Average CSI scores for multiple filter sizes for each storm event. . . . 35

11

2-6 CSI scores at several rainfall thresholds versus lead time for the three

storm events for forecasts generated by the GDST. Solid lines repre-

sent forecasts made using the optimal filter for each storm event while

dashed lines represent the use of no filter for each storm event. 36

2-7 CSI scores at several rainfall thresholds versus verification area for

GDST optimal filter and no filter 60-minute forecasts for the three

storm events. 38

2-8 Comparison of lead time dependent CSI scores between the GDST

(solid line), a global advection algorithm (dashed line) and persistence

forecasting (dotted line). Note: GDST (solid) and global advection

(dashed) lines almost overlap. 39

2-9 Rainfall threshold comparison between the GDST (solid line) and a

global advection algorithm (dashed line) for the three storm events. . 41

2-10 Trio of basin based statistics for the January 1998 (panels a, b, and c),

the October 1998 (panels d, e, and f) and the April 1999 (panels g, h,

and i) storm events comparing the GDST 60-minute forecast (dashed

line) with the observed values (solid line). Panels a, d, and g show the

mean rainfall rate (M) over the basin during the storm event, panels

b, e, and h show the fractional coverage of rainfall (F) over the basin

during each event and panels c, f, and i show the normalized distance

to the outlet (D) over the duration of the event. 43

2-11 Theoretical error analysis for the January 1998 (panels a, b, and c),

the October 1998 (panels d, e, and f) and the April 1999 (panels g, h,

and i) storm events showing the evaluation for the GDST 60 minute

forecasts over the entirety of each event. Each time series has been

smoothed using a moving average filter to show only the major trends.

Panels a, d, and g show the changes in CSI score between consecutive

forecasts, panels b, e, and h show the area errors and panels c, f, and

i show the velocity errors. 45

12

3-1 Flowchart that shows APEX model structure and data transfer pathways. 54

3-2 Example of correlation surface filtering. Panel (a) shows the correlation

meta surface that influences the central correlation surface seen in panel

(e), while panel (c) shows the neighboring correlation surfaces of the

central correlation surface. Panel (b) shows the result of the correlation

surface filtering on the area of influence, while panel (d) shows the

filtered neighbors of the central correlation surface and panel (d) shows

the filtered central correlation surface. 58

3-3 Advection scheme used in APEX nowcasting method. 60

4-1 Sample outputs from the APEX algorithm (panels (a) and (c)) as com-

pared to to the corresponding outputs from the GDST algorithm (pan-

els (b) and (d)). the velocity vectors shown are a subset of the entire

field and are a section located near the leading edge of the storm en-

velope. The rainfall fields are comparable 60-minute forecasts valid at

1300 UTC. 64

4-2 Comparison of the GDST (solid line), APEX (dashed line), global ad-

vection (dotted line) and persistence (dash-dotted line) CSI scoring as

a function of lead time. 66

4-3 Comparison of the GDST (solid line), APEX (dashed line), global ad-

vection (dotted line) and persistence (dash-dotted line) CSI scoring as

a function of verification area for their respective 60-minute forecasts. 68

4-4 Comparison of the GDST (solid line), APEX (dashed line), global ad-

vection (dotted line) and persistence (dash-dotted line) CSI scoring as

a function of verification area for their respective 120-minute forecasts. 69

4-5 Comparison of the GDST (solid line), APEX (dashed line), global ad-

vection (dotted line) and persistence (dash-dotted line) FAR scoring

as a function of lead time. 70

13

14

List of Tables

2.1 Characteristics of the storm cases used in this study. Rain rates are

determined by extrapolating the 15 minute accumulation values to one

hour. 28

2.2 General 2x2 contingency table for critical success index computation . 31

2.3 Qualitative interpretations of area and velocity errors 33

3.1 Customizable parameters and a set of nominal values based on the spa-

tial and temporal resolution shown. Many parameters are resolution

dependent and should be changed accordingly. 52

15

16

Chapter 1

Introduction

1.1 Motivations

Precipitation forecasting is one of the most difficult earth system problems faced

today, and consequently the results are among the most imprecise. The lack of

precision is not due to lack of effort as there are numerous models designed specifically

to forecast rainfall. Yet the chaotic and transient nature of precipitation continues to

foil the majority of these attempts. There is a particular interest in the forecasting

of rainfall at very short lead-times, and a significant amount of effort has gone into

improving the accuracy of those forecasts over the last 40 years. The short-term

forecasting problem is the focus of the work presented here.

The need for accurate short-term forecasts is very real in fields such as aviation

safety and flash flood prediction. Precipitation causes a significant number of airplane

accidents and greatly contributes to delays. The highly transient nature of precipi-

tation requires that short-term forecasting procedures be available to aid in the final

decision making for pilots and flight controllers. Flash floods are almost solely caused

by high intensity, short duration rainfall over highly saturated basins. More accu-

rate short-term forecasting will not only provide forecasts of the flood-causing rainfall

but can also aid in soil moisture accounting to determine which basins are in danger

of flooding, prior to rainfall. These are only two of the potential applications for

short-term rainfall forecasts.

17

1.2 Nowcasting Background

Objective short-term forecasting can take many forms, one of which is nowcast-

ing. Nowcasting is defined as very short-term weather forecasting with forecast lead

times ranging from zero to six hours and includes methods such as extrapolation

and numerical weather prediction (NWP; Glickman 2000). Both forms of nowcast-

ing mentioned above have beneficial properties for forecasting at different spatial and

temporal scales. NWP models are typically run over large spatial scales and at coarse

spatial and temporal resolutions as compared to extrapolation forecasting (Browning

and Collier 1989).

For many applications, including hydrometeorologic forecasting and aviation, the

forecast resolutions provided by NWP models do not meet the user requirements for

several reasons. The coarse spatial resolution (30-100 km) of NWP model outputs is

often so large that it misses sub-grid scale processes such as small cells of convective

activity. The relatively infrequent temporal spacing of forecasts (6-24 hours) can only

provide general guidance about the large-scale state of the weather at the forecasted

time. The complexity of the algorithms also creates another drawback, as the spin-up

and adjustment time for these models is often on the scale of 6 hours (Browning and

Collier 1989; Hamill and Nehrkorn 1993; Wilson et al. 1998; Pierce et al. 2000).

For these and other reasons, extrapolation-based nowcasting models have been

developed to provide forecasting for short lead-times at high spatial and temporal

resolutions. Rainfall forecasting by extrapolation is a vital portion of the total fore-

casting process used today. At short lead times, extrapolation algorithms potentially

have a higher relative skill than other automated methods of forecasting (Browning

1980). Figure 1-1 (adapted from Zipser 1990) shows a conceptual ranking of several

nowcasting techniques in terms of their skill as a function of forecast lead time. The

dominance in skill of these methods at extremely short lead times has encouraged sig-

nificant research into applications of extrapolation for forecasting. The result of this

research is a great deal of knowledge about the composition and motion of both small

and large rainfall areas. The following work uses this knowledge in the development

18

and testing of two short-term extrapolation algorithms.

Figure 1-1: Theoretical forecast skill as a function of lead time for several forecasting
methods (adapted from Zipser 1990).

Despite improvements, extrapolation-based nowcasting models have their own

problems and drawbacks as well. Many extrapolation-based models do not include

mechanisms for predicting changes in the structure or intensity of the rainfall field

limiting the lead time for effective forecasting. In addition to these drawbacks, many

initial choices will also effect the forecast product. One such choice is the feature

scale to forecast. Individual cell forecasting can be done by determining cell motion

with pattern recognition algorithms for centroid tracking (Einfalt et al. 1990; Chen

and Kavvas 1992; Dixon and Wiener 1993; Johnson et al. 1998; Handwerker 2002)

while large scale movement can be predicted by using variations of correlation analy-

sis (Austin and Bellon 1974; Rinehart and Garvey 1978; Browning et al. 1982; Tuttle

and Foote 1990; Brémaud and Pointin 1993; Bellon and Zawadzki 1994; Li et al.

1995; Wolfson et al. 1999). Recently a new method for multi-scale forecasting has

emerged, variational echo tracking. This method utilizes a minimization process to

determine a physical transformation that results in the first field changing into the

second field (Grecu and Krajewski 2000; Germann and Zawadzki 2002). This method

has potential to account for changes in size and intensity over the forecasting period

as well as provide forecasting of multiple scales embedded within each other.

19

1.3 Outline and Goals

The layout of this work is as follows. An assessment of the improvement provided

by including image filtering as a step prior to the correlation analysis in extrapolation-

based nowcasting methods is presented in Chapter 2. Also included in Chapter 2 is a

history of the use of image filtering in nowcasting, the description of the forecasting

model used, a synopsis of the storm event data and evaluation criteria used throughout

this work. An in depth description of the algorithm behind the nowcasting method

developed for this work is presented in Chapter 3. Results from forecasts generated

with this model can be found in Chapter 4, along with comparisons to persistence,

uniform velocity advection and the previously developed nowcasting method. Finally,

conclusions and recommendations for future development and improvement are found

in Chapter 5.

The goals this work intends to achieve are as follows:

1. Goal: Determine the impact of the motion of small-scale features on forecast

performance.

2. Goal: Identify the benefits of allowing for differential motion within a storm

system in a nowcasting procedure.

3. Goal: Develop and test a MATLAB-based short-term forecasting procedure.

The scientific questions that these goals imply are:

1. Question: What impact does image filtering have on nowcasting accuracy?

2. Question: Do spatially variable velocities improve short-term forecast accuracy?

3. Question: How well does a new algorithm for nowcasting compare with simpler

methods and an operational nowcasting algorithm?

20

Chapter 2

Image Filtering For Short Term

Rainfall Forecasting

2.1 Introduction

A brief glance at almost any radar image from a rainfall event will show variations

in the rainfall intensity from point to point. Some of these gradients are gentle

while others are drastic. For most correlation-based nowcasting algorithms, these

gradients are what allow the correlation coefficient to differ between points. Difficulty

arises, however, when both dilation and translation occur between the images to be

correlated. This changes the relative location of the sharp gradients, with respect

to the storm envelope and to each other. In the case of a single-velocity nowcasting

algorithm, also referred to as uniform advection, this change in relative location may

result in a lower maximum correlation coefficient value than would have occurred in

the absence of differential motion. In a spatially-variable velocity vector forecasting

method, the effect of this differential motion may be an increase in the number of

erroneous matches identified by the correlation coefficient. In either case, the accuracy

of the forecast will likely suffer.

It has been well documented (see the following section), that differential motion

within a storm envelope exists and is commonly observed in the case of convective

weather embedded within a larger storm system. This particular level of rainfall orga-

21

nization can be extremely dangerous as a decrease in speed of the envelope motion can

stall the heavy rainfall in a single location, but at the same time it is also extremely

predictable. The high degree of predictability follows from the level of organization,

since over short lead-times the envelope motion will likely remain relatively constant.

Following from that assertion, prediction of the envelope motion can potentially pro-

vide very accurate forecasts for lead-times ranging from zero to two hours. One path

through which this potential can be reached using a correlation-based forecasting

algorithm is by eliminating the possibility of velocity contamination from internal

motion within the storm envelope. One method for avoiding the influence of this

motion is through image filtering.

This work mainly focuses on the benefits and associated increase in accuracy that

result from applying image filtering concepts to radar rainfall fields prior to input into

a local area correlation procedure. A brief look into the benefits of using spatially

variable vectors as opposed to a single global vector is also included. The remainder

of the work is presented according to the following outline. Section 2.2 reviews the

major literature and advances in image filtering over the last 45 years, Section 2.3

describes the nowcasting algorithm used to generate the forecasts used within, Section

2.4 describes the three storms used in testing the algorithm and Section 2.5 introduces

the criteria used to evaluate the forecasts. The following section, 2.6, presents the

evaluations of the forecasts using the previously described criteria and the conclusions

from this work can be seen in Section 2.7.

2.2 Filtering History

Image filtering in rainfall forecasting can be referred to by many different names.

Some common terms for the practice include spatial smoothing, spatial integration,

spatial decomposition, resolution reduction, and several others. Aside from the name,

the goal of the process is the same; take a field and remove the small scale features

from it. Panofsky and Brier (1958) discuss this topic in terms of one-dimensional time

series’ but the method is sufficiently flexible to allow multiple dimensions. They note

22

that small scale variations in data may be of secondary importance to the problem and

in many cases can actually complicate the problem. Their solution, borrowed from

electrical engineering terminology, is to implement a “low-pass” filter and remove the

high variability fluctuations from the data and leave only the low frequency compo-

nents (Panofsky and Brier 1958). This methodology can be applied to forecasting

meso-scale frontal precipitation patterns for short periods of time.

The idea of removing small scale features from rainfall maps prior to forecasting is

almost as old as correlation-based nowcasting. Wilson (1966) determined that small-

scale features in reflectivity or rainfall fields are short-lived and highly perishable,

and need not be forecast. Browning et al. (1982) were the first to use spatial filtering,

implemented as resolution reduction, in an operational objective forecasting scheme.

Their approach was to degrade the data from a 128x128, 5 km horizontal resolution

grid to a 32x32, 20 km horizontal resolution grid prior to centroid matching. This

action effectively averaged out the reflectivity echo scales that had predictability times

less than one hour. Browning and Collier (1989) generate more credence for filtering

by determining that frontal rain bands can persist for several hours and often act as

precursors for shorter lived convective weather. The large-scale forcing provided by

these storms can then be used as a predictive tool for severe weather that results from

smaller convective systems.

The work on spatial filtering was continued by Bellon and Zawadzki (1994) where

they determined that averaging scale was proportional to forecast lead-time. They

determined an empirical power-law relationship between averaging scale and lead time

using root mean squared error and the correlation coefficient as the selection criteria.

Zawadzki et al. (1994) also found that spatial filtering increases the effective forecast

lead time by focusing on forecasting only large-scale features. In a further statement

on scale-dependent predictability, Pereira Fo. et al. (1999), find that higher rainfall

rates are more difficult to forecast since the convective systems that they are often

associated with are five times more transient than stratiform rain areas. This result

provides justification for the removal of the small-scale features prior to forecasting.

A different approach to filtering emerged in 1999. Prior to that, fields were filtered

23

prior to advection and the smoothed fields were advected for forecast creation. Wolf-

son et al. used filtering in a different capacity. The Growth and Decay Storm Tracker

(see Section 2.3) filters the input fields prior to correlation analysis. This allows only

the large scale vectors to be created, and removes erroneous matches from small-scale

motion within the storm envelope. However, instead of advecting the filtered field

with the derived velocities, the original, unfiltered field is used for forecasting (Wolf-

son et al. 1999). This approach has strengths and weaknesses, but has been proven

to provide accurate forecasts for aviation uses (Cartwright et al. 1999; Hallowell et

al. 1999; Wolfson et al. 1999; Theriault et al. 2000).

Filtering can also be applied after the forecast has been issued for verification pur-

poses. Several works have shown that evaluating forecasts made at a high resolution

at a lower resolution leads to improved critical success index (CSI), false alarm ratio

(FAR), probability of detection (POD) and root mean squared error (RMSE) (Bellon

and Austin 1978; Hallowell et al. 1999; Pereira Fo. et al. 1999; Smith and Austin

2000). This result follows from the fact that large-scale features have longer temporal

persistence and are therefore predictable for longer forecast times. In a different quan-

tification, Grecu and Krajewski (2000) found that the correlation predictability time

approximately doubles as horizontal resolution is degraded by a factor of eight. Meck-

lenburg et al. (2000) also demonstrated the utility of spatial filtering and showed that

it impacts convective situation forecasts more than it impacts stratiform situation

forecasts. This is due to the probable elimination of any useful pattern for correlation

matching by smoothing a stratiform rain pattern. That work also determined that

temporal smoothing does not have significant positive benefits for forecasting.

Very recently two works have emerged that continue to reproduce the results

seen above but in different manners. Germann and Zawadzki (2002) found that

an increase in scale, the result of a smoothing process, results in an approximately

linear increase in feature lifetime. Seed (2003) showed that larger scale features have

longer correlation times than smaller features and the removal of smaller features

prior to forecasting results in a decrease in RMSE as compared to forecasts made

with features at all scales. As expected, the lifetimes of larger scale features were

24

greater than those of smaller scale features, both in an instantaneous comparison

and in the mean. Despite the large amount of previous work done in the area of

smoothing, there have been few quantitative analysis of the benefits of filtering as a

pre-processing step. The following work attempts to fill that void.

2.3 Growth and Decay Storm Tracker

The Growth and Decay Storm Tracker (GDST), developed at Lincoln Labora-

tory at the Massachusetts Institute of Technology (MIT LL), is a correlation tracker

originally created for use in the Federal Aviation Administration (FAA) Integrated

Terminal Weather System (ITWS) project (Evans and Ducot 1994). This particular

nowcasting method uses multi-scale separation to accurately forecast mesoscale storm

events. The ideal events for this method are frontal weather systems embedded with

smaller convective cells. The name of the method is deceiving, as there is no direct

incorporation of cell growth and decay in the version utilized here. Growth and decay

are taken into account insofar as large-scale movement occurs via cell growth on the

leading edge of the system and cell decay on the trailing edge of the system. The

scale-separation filtering used in this method accounts for this type of growth and

decay (Wolfson et al. 1999). More advanced versions of the GDST include direct

growth and decay trending for explicit characterization of storm growth and decay

processes (Dupree et al. 2002).

The GDST uses cross-correlation of successive radar images to generate spatially

distributed storm motion vectors. Advection is achieved by the application of these

vectors to the weather image (Chornoboy et al. 1994). The GDST improves on

traditional cross correlation analysis by using an elliptical filter to separate the large-

scale storm features from smaller-scale cells, thus enabling improved tracking of the

storm envelope. This separation removes the small-scale features from the field used

in the local correlation analysis and therefore allows the tracking to focus solely on the

large-scale motion of the storm envelope. Figure 2-1 shows the effect of a simplified

filtering process on a sample storm event from 5 October 1998 using a 60 km square

25

filter. The storm event contains smaller convective cells near the front edge of the

storm followed by a trailing area of lighter stratiform rain (Figure 2-1a). From two

consecutive large-scale filtered images (Figure 2-1b), a velocity field is derived and

applied to the unfiltered field. The average velocity for nonzero precipitation cells in

this case is 9.6 m/s directed 17◦ South of East. The small-scale image (Figure 2-1c)

is the result of subtracting the large-scale image (Figure 2-1b) from the full image

(Figure 2-1a).

Figure 2-1: The result of applying a square filter (60 km x 60 km) to a line storm
from 5 October 1998. The full image (a) is decomposed into its large-scale (b) and
small-scale (c) features using an averaging filter. The arrow in (b) corresponds to the
velocity derived by the GDST, 9.6 m/s directed 17◦ South of East.

MIT LL originally designed the GDST to forecast line storm progression near

airport areas to improve flight routing during severe weather (Forman et al. 1999).

In this study, the GDST is applied to catchment-scale regions for the purpose of

general rainfall forecasting. Also the model is tested with radar rainfall data at

different spatial and temporal resolutions than previously reported. For example,

26

preliminary testing at the DFW airport used NEXRAD raw reflectivity data at a

temporal resolution of 6 minutes and a spatial resolution of 1 km over a 440 km by

440 km area (Theriault et al. 2000). The data used here is described in Section 2.4.

In this study we use the GDST method with radar rainfall data derived from

the NEXRAD network to produce forecasts for lead-times up to 120 minutes in 15-

minute increments. Forecast verification uses radar rainfall images from the forecast

valid time. Figure 2-2 illustrates a sample radar rainfall input series (Figure 2-2a and

Figure 2-2b are images 15 minutes apart) and output product (Figure 2-2c is the 60

minute forecast from the image in Figure 2-2b) from the GDST model as well as the

differences between the forecasted and observed rain rates (Figure 2-2d is the GDST

forecast minus the true radar rainfall field). This example shows that the enveloping

synoptic movement can be captured and the largest forecast errors are associated

with internal small-scale features that, as expected, cannot be predicted well.

Figure 2-2: (a) Observed image at 1200 UTC on 5 October 1998. The scale in panel
(a) also applies to panels (b) and (c). (b) observed image at 1215 UTC of the same
day. Images (a) and (b) are cross correlated to generate a velocity field that is used
to advect the storm for forecasting. (c) One hour forecast valid at 1315 UTC. (d)
Difference between the forecast rainfall field shown in (c) and the actual rainfall at
that time. The radar sites providing coverage of the Arkansas-Red River Basin are
also shown in all panels.

27

2.4 Rainfall Data

The analyses contained in the remainder of the work are for three storm cases

taken from 1998 and 1999. The characteristics of the storm cases are summarized

in Table 2.1. Sample rainfall intensity maps from the time of peak rainfall over the

Illinois River Basin can be seen in Figure 2-3. Radar rainfall fields obtained from

Weather Services International (WSI) are used as input into the forecasting methods.

The horizontal resolution of the data is 4.7625 km while the temporal resolution is

15 minutes. This rainfall accumulation data was chosen due to its regular temporal

spacing, which provides a standard for verification of the forecasted fields and nearly

continuous availability. A validation of the WSI data with NEXRAD P1, and rain

gauge data can be found in a recent paper by Grassotti et al. (2003). The area of

study is the Arkansas-Red River Basin (ARB) in the Southern Great Plains of the

United States. This river basin is over 500 000 km2 in size while the Illinois River

basin, an interior basin used for additional basin-based analysis, is approximately 6

000 km2 in size. Figure 2-4 shows the ARB with the Illinois River basin expanded.

Event A Event B Event C
Date 4 Jan 1998 5 Oct 1998 13-14 Apr 1999

Duration 0000-2345 UTC 0000-2345 UTC 1200-1200 UTC
Max Rain Rate (mm/hr) 59.44 90.16 24.26

Percentile Levels (mm/hr)
0th (low) 0 0 0

50th (median) 5.08 5.08 5.08
90th (high) 10.16 18.8 13.0

Storm Characteristics Loose linear
organization

Strong linear
organization
with well
defined
convective cells

Loose linear
organization

Table 2.1: Characteristics of the storm cases used in this study. Rain rates are
determined by extrapolating the 15 minute accumulation values to one hour.

28

Figure 2-3: Sample radar rainfall images for the January 1998 (a), October 1998 (b)
and April 1999 (c) storm events.

29

Figure 2-4: The location of the Illinois River Basin within the ARB region.

2.5 Evaluation Criteria

2.5.1 Critical Success Index

The main statistic used for forecast evaluation in this study is the critical success

index (CSI; Donaldson 1975). This statistic is based on a 2x2 contingency table

(Table 2.2) and evaluates the forecasts on a binary criterion. A “yes” means that

the measurement (forecast or observation) exceeds a specified threshold, while a “no”

indicates that the threshold was not exceeded. In this work, thresholds are selected

based on the storm rainfall rate distributions. The percentile levels used are the 0th

(low), 50th (median) and the 90th (high) percentiles. The specific threshold values for

each storm can be seen in Table 2.1. The CSI can also be used with an extended search

area around the observed pixel in question to verify the forecasted pixel. Verification

areas in this study are square grids with side lengths ranging from one to nine pixels.

This variation of the CSI was first used by Bellon and Austin (1978) and the side

30

lengths can be representative of the desired spatial forecast precision. Equation 2.1

shows the calculation to determine the CSI from Table 2.2.

Forecasts
YES NO

Observations
YES Hit (H) Miss (M)
NO False Alarm (FA) Null (N)

Table 2.2: General 2x2 contingency table for critical success index computation

CSI =
H

H +M + FA
(2.1)

2.5.2 Basin-Based Statistics

While the CSI provides a general overview of the accuracy of the forecast, it

does not provide detailed information on the scale of a medium-sized river basin. A

trio of basin-based measures provide information on the accuracy of the intensity,

extent and distribution of the forecasted rainfall within a catchment. The mean areal

precipitation (M), averaged over the river basin in question, demonstrates the ability

of the forecasting model to forecast the correct rainfall intensities within a river basin.

The fractional coverage (F) is the areal percentage of the basin receiving rainfall. The

normalized distance to the basin outlet (D) provides more information than acquired

from F by further detailing where the rainfall occurs over the river basin (Smith et

al. 2002).

M and F are straightforwardly computed from rainfall fields while D, a function

of the hydrologic distance to the outlet and a weighting function based on the point

rainfall rate, is computed using

D =
|A−1|

∫
Aw (x) d (x) dx

dMAX

(2.2)

w (x) =
R (x)

|A−1|
∫
AR(u) du

(2.3)

where A is the total basin area [km2], x and u are locational indices, d (x) is the dis-

31

tance to the outlet [km], R (x) is the rain rate [mm/hr], and dMAX is the maximum

distance from the basin outlet [km] (Smith et al. 2002). The normalized distance pro-

duces values ranging from 0 to 1 where D = 0 indicates that the rain is concentrated

at the basin outlet while D = 1 indicates that the rain is concentrated at the periph-

ery of the basin. As a point of reference for comparison, for the basin considered in

this study, spatially uniform rain would produce D = 0.58.

2.5.3 Theoretical Error Analysis

Browning et al. (1982) identify four main sources of error in extrapolation based

nowcasting applications, two associated with the quality of the input data and two

associated with the forecasting process. The forecasting process error sources are

temporal changes in the rainfall pattern (growth and decay) and temporal changes in

rain feature velocity. Prior statistics describe the accuracy of the forecasts but do not

assess the impact of storm changes on forecast accuracy. Understanding the impacts

of storm characteristics, such as growth, decay and translation, on CSI scores can aid

in the interpretation of forecasts issued by extrapolation methods. Errors in rainfall

areal coverage and storm speed between the forecast generation time and the valid

time of the forecast are analyzed to determine their impact on CSI scores. The area

error (EA) and the velocity error (EV) are defined by

EA = (NO −NF) ∗ a (2.4)

EV =
1

NO

∑
RO(x)>0

√
u0 (x)2 + vO (x)2 − 1

NF

∑
RF (x)>0

√
uF (x)2 + vF (x)2 (2.5)

where the subscripts F and O indicate forecasted and observed values, respectively,

N is the number of pixels with a rainfall rate greater than a threshold, a is the area

of a single pixel (22.7 km2), x is a locational index, u and v are the eastbound and

northbound velocities [m/s], respectively, and R (x) is the point rainfall rate [mm/hr].

Since nowcasting is based on a steady state assumption, positive error values indicate

that over the forecast interval the quantity in question (area or velocity) increased

32

while a negative error value indicates a decrease. Table 2.3 provides a qualitative

interpretation of the sign of the error values, while the magnitudes of the values are

an indication of the strength of the changes.

EA EV
Positive Growth Acceleration
Negative Decay Deceleration

Table 2.3: Qualitative interpretations of area and velocity errors

2.6 Results

Several steps were taken to determine the improvement in skill that results from

filtering the input images prior to correlation. First, several filter sizes were tested to

determine the optimal filter size for each storm event. The optimal filter was chosen

using the average CSI score for all lead times over the entire storm event. Next,

the scores from the optimal filter were compared to the scores from forecasts made

by using a 3x3 pixel filter. This small filter approximates the unfiltered case since

the amount of smoothing done by a filter of that size is negligible. This comparison

is done using CSI scores with multiple thresholds. Next, the optimal filter and the

zero filter are analyzed using a set of 5 verification kernels at multiple thresholds to

determine the effect that spatial accuracy relaxation has on CSI scores. Following

that, the optimal filter is then compared to two other forecasting methods: persistence

and global advection. Persistence is a true steady state forecasting method. The

current weather is assumed to persist for the entire forecasting period with no changes.

Global advection is the use of a single velocity vector for forecasting as opposed to

the spatially variable velocity vector field utilized by the GDST. As the threshold

dependence of the scoring is seen in prior analyses, only the low threshold will be used

for this analysis. Finally the 60-minute forecasts are analyzed using the trio of basin-

based statistics described in Section 2.5.2 as well as with the error decomposition

methodology described in Section 2.5.3.

33

2.6.1 Filter Size Sensitivity

The optimal filter size for image smoothing is not only lead time dependent as

stated by Bellon and Zawadzki (1994) but is also storm type and season dependent

(Cartwright et al. 1999). For the purposes of this study, the optimal filter size was

determined by the averaging the CSI scores for all initial times and for all lead-times.

This process returns the filter that is the best overall filter for each storm event. For

the three storms (January 1998, October 1998, April 1999) , the optimal filter side

lengths were 11 pixels, 41 pixels and 41 pixels respectively. Figure 2-5 shows the filter

size dependence on CSI score for all three storm events. The improvement of the

optimal filters over the 3x3 filter (hereafter referred to as “no filter”) is noticeable

even at this level of averaging.

2.6.2 Lead Time and Threshold Comparison

Analyzing the lead time dependence of the CSI scores for the optimal filter case

and the no filter case further expands the understanding of the benefit of utilizing

image filtering in a correlation forecasting method. Figure 2-6 compares the storm-

averaged CSI scores at all lead times between the optimal filter and no filter. The

results show that in most cases there is slight improvement at short lead times but the

increase in accuracy is more apparent at longer lead times. The October 1998 event

shows the most improvement with the use of image filtering which can be expected

due to the highly linear storm envelope and well defined convective and stratiform

regions. The similarity in the increase in accuracy at all threshold levels indicates

that image filtering improves the predictability of all rainfall intensities approximately

equally.

2.6.3 Verification Area Analysis

Using an extended scoring kernel in the CSI computation can have a significant

impact on the resultant score. The size of the kernel used represents the level of

spatial precision desired by the user. A larger kernel indicates that a forecast may

34

Figure 2-5: Average CSI scores for multiple filter sizes for each storm event.

35

Figure 2-6: CSI scores at several rainfall thresholds versus lead time for the three
storm events for forecasts generated by the GDST. Solid lines represent forecasts
made using the optimal filter for each storm event while dashed lines represent the
use of no filter for each storm event.

36

still be useful even with some degree of spatial misplacement while a smaller kernel

narrows the desired precision. Figure 2-7 shows the optimal filter and the zero filter

60 minute forecasts scored with a range of verification areas at several thresholds.

The increased sensitivity of rainfall at higher rainfall thresholds to an increase in

verification area shows that when the GDST is forecasting high intensity rainfall,

there is a larger chance that its precise location will not be forecasted correctly. The

large increase in score with an increase in area shows that, for the particular cases

examined here, expanding the kernel to include the immediately neighboring pixels

causes the highest intensity rainfall to be forecast approximately as well as the median

intensity rainfall. The almost constant improvement seen by the optimal filter over

no filter indicates that the improvement in forecast accuracy as the required spatial

accuracy is decreased is not dependent on filtering of the images.

2.6.4 Uniform Advection Comparison

Uniform, or global, advection is a strict Lagrangian persistence forecasting method.

There is no change in the rainfall pattern over the forecast time since each pixel is

moved by the same velocity. To this point there has been no conclusive proof that

a distributed velocity field will generate more accurate forecasts than those created

using a uniform velocity field (Seed 2003). To determine the benefit of using a dis-

tributed velocity field generated by the GDST, forecasts were generated using both

methods, and were compared to each other and the forecasts made using a persis-

tence assumption. The results of this comparison can be seen in Figure 2-8. The CSI

scores shown here are calculated for the low threshold and it is obvious that applying

some form of advection to the input rainfall field greatly increases the accuracy of

the forecasts. However, the benefits of applying a distributed velocity field over a

uniform velocity field are not obvious at this threshold.

Analysis of the GDST and the uniform advection forecasts at all three thresholds

can be seen in Figure 2-9. At higher thresholds, especially for the October storm

event, the GDST shows an increased improvement in forecast accuracy over the more

simplistic method. However, this improvement is still very small and from this analy-

37

Figure 2-7: CSI scores at several rainfall thresholds versus verification area for GDST
optimal filter and no filter 60-minute forecasts for the three storm events.

38

Figure 2-8: Comparison of lead time dependent CSI scores between the GDST (solid
line), a global advection algorithm (dashed line) and persistence forecasting (dotted
line). Note: GDST (solid) and global advection (dashed) lines almost overlap.

39

sis it is difficult to conclusively determine whether a spatially distributed velocity field

does in fact provide a significant improvement in forecast accuracy. The similarity

between the GDST and the uniform advection scoring may be an artifact of the inter-

polation that is done on the GDST velocity fields. Due to quality control constraints

and the use of a block processing algorithm, as opposed to a sliding neighborhood

method, the GDST typically uses 30 or less velocity vectors acquired through the cor-

relation analysis. The remainder of the field is interpolated using an inverse distance

squared algorithm which would tend to bias the majority of the velocities to be close

to the average value of the correlation-generated velocities. This average velocity is

likely very close to the global velocity used in the uniform advection procedure and

would therefore result in forecasts that have been advected in much the same way as

the uniform velocity method.

2.6.5 Basin-Based Analysis

The previous sections have shown the results of large-scale analyses of forecasts

generated by the GDST algorithm. To get a better grasp of the smaller scale dynamics

of the forecasts, the trio of basin-based statistics presented in Section 2.5.2 is used

to show a different kind of accuracy. The Illinois River basin, shown in Figure 2-4,

is the basin over which this analysis is done. The first conclusion that can be drawn

from the results shown in 2-10 is that the January and October storm events were

significant rainfall events over the Illinois River while the April storm did not provide

nearly the same amount of water to the basin. A comparison between the observed

and the GDST 60-minute forecast values for the mean areal rainfall (M ; Figures 2-

10a, d, and g) show that for all three storm events, the GDST generally predicted

the magnitude and the timing of rainfall peaks with slight lags in time and small

overestimations of the magnitude.

The fractional coverage (F) of rainfall over the basin for the GDST 60-minute

forecasts and the observations can be seen in Figures 2-10b, e, and h. For the period

of highest intensity rainfall, the GDST forecasts the coverage well, again showing a

slight time lag behind the observations. The similarity in shape between the observed

40

Figure 2-9: Rainfall threshold comparison between the GDST (solid line) and a global
advection algorithm (dashed line) for the three storm events.

41

and the forecast time series’ indicate that the GDST is forecasting approximately

the correct number of rain-filled pixels for the storms events examined here. The

normalized distance to the basin outlet (D) provides more information about the

spatial placement of the rainfall than F provides. Seen in Figures 2-10c, f, and i,

D displays information about the accuracy with which the correct rainfall intensities

are correctly placed within the basin. The horizontal line seen in these Figures at

D = 0.58 indicates the normalized distance to the basin outlet for uniform rain over

the entire basin. Despite the erratic look of the data, for the periods of intense

rainfall the GDST tends to forecast the values of D well as compared to the observed

values. These statistics may be of use when evaluating the potential skill of a series

of forecasts for incorporation into a river basin model.

2.6.6 Theoretical Error Analysis

Introduced in Section 2.5.3, the error decomposition methodology was applied to

the 60-minute forecasts for each storm event. Figure 2-11 shows the time series’ that

resulted from this decomposition after smoothing with a moving average filter to elim-

inate the transient features and only capture the underlying trends. Figures 2-11a, d,

and g show the change in CSI score between consecutive 60-minute forecasts, Figures

2-11b, e, and h show the area error (EA) between the observations and the forecasts

and Figures 2-11c, f, and i show the velocity magnitude error (EV). When looked at

individually, EA and EV can show the extent to which the underlying assumption of

nowcasting, the steady state assumption, did not apply for the particular storm event.

When looked at together and in conjunction with the change in CSI, this error decom-

position may function as a diagnostic tool to determine the relative contribution of

changes in rainy area and storm speed to the accuracy of the forecast. However, the

intricacies of using this methodology in that capacity are complex and are still being

developed, so that level of analysis is not attempted in this work. Further research

into the utility of this concept may provide a standard by which multiple nowcasting

algorithms may be compared.

On a more basic level, EA and EV provide useful information about the devel-

42

Figure 2-10: Trio of basin based statistics for the January 1998 (panels a, b, and c),
the October 1998 (panels d, e, and f) and the April 1999 (panels g, h, and i) storm
events comparing the GDST 60-minute forecast (dashed line) with the observed values
(solid line). Panels a, d, and g show the mean rainfall rate (M) over the basin during
the storm event, panels b, e, and h show the fractional coverage of rainfall (F) over
the basin during each event and panels c, f, and i show the normalized distance to
the outlet (D) over the duration of the event.

43

opment and progression of the storm event over its lifetime. For example, the April

event consistently shows a relatively small value for EV (Figure 2-11i) but is in a

constant state of growth (Figure 2-11h), which may be one of the causes of its low

CSI scores relative to the October event. However, the October event shows small

changes in velocity over the course of the event but also has a smaller magnitude of

growth and decay, potentially resulting in higher CSI scores. The January event is

very erratic in terms of both area and velocity errors creating a very difficult steady

state nowcasting situation, which is reflected in the very low CSI scores.

2.7 Conclusions

Using an operational nowcasting algorithm (GDST) the improvement in forecast

accuracy as a result of spatial filtering prior to correlation analysis is assessed. In

addition, the benefits of using the GDST, a spatially variable velocity vector advec-

tion method, as compared to global advection and persistence, methods using more

simplistic advection criteria, is also determined. However, as this work only examines

a few storm events with a single operational nowcasting algorithm, the applicability

of the results to a more general statement on overall forecast accuracy improvement

have yet to be determined. Despite this caveat, the results from this work are still

encouraging to the development of more accurate nowcasting methods, as new math-

ematical methods are developed to represent changes in the rainfall fields that are

not accounted for within the GDST.

The results from this study show that in comparison to several simplistic forecast-

ing schemes, the enhancements utilized in the GDST provide an increase in forecasting

skill for lead times from 15 to 120 minutes. First, the addition of image filtering in

the GDST shows improvement in all three storm cases examined in this work, the

degree of improvement is likely a function of storm organization and rate of change

of speed and area over the forecasting interval. Second, GDST forecasts show signifi-

cant improvements over persistence forecasting for all three storm cases at lead times

greater than 15 minutes. Third, slight benefits are seen by using spatially variable

44

Figure 2-11: Theoretical error analysis for the January 1998 (panels a, b, and c), the
October 1998 (panels d, e, and f) and the April 1999 (panels g, h, and i) storm events
showing the evaluation for the GDST 60 minute forecasts over the entirety of each
event. Each time series has been smoothed using a moving average filter to show
only the major trends. Panels a, d, and g show the changes in CSI score between
consecutive forecasts, panels b, e, and h show the area errors and panels c, f, and i
show the velocity errors.

45

velocity vectors instead of a single vector for advection of the storm envelope. This

aspect of nowcasting would benefit greatly from more research into the benefits of

using spatially variable velocities as the implementation of this method has an asso-

ciated increase in computation time that may or may not be justified by the small

increase in accuracy seen here. Fourth, on the scale of a medium-sized river basin,

the GDST performs very well for the periods of highest intensity rainfall for the three

storm events and less well for periods of significant change. This is to be expected

from a steady-state forecasting algorithm. Finally, using the theoretical error anal-

ysis included here, the ability of a nowcasting algorithm to account for changes in

speed and area can be assessed and information regarding the rate of change of vital

storm characteristics can be garnered. More research is necessary to analyze the im-

pact of rainfall nowcasting on fields such as hydrometeorologic forecasting and flood

prediction.

46

Chapter 3

The Automated Precipitation

Extrapolator (APEX)

3.1 Introduction

The Automated Precipitation Extrapolator (APEX) nowcasting method was de-

veloped at the Massachusetts Institute of Technology to produce short-term now-

casts from composite radar rainfall fields. Section 3.2 details some previous work in

correlation-based extrapolation algorithms, Section 3.3 provides a detailed description

of the APEX model, and the following Chapter, Chapter 4, provides results of the

testing of APEX. A function-by-function description of the algorithm can be found

in Appendix A and the actual source code can be seen in Appendix B.

3.2 Correlation Analysis Background

Correlation methods have been used for time series analyses in the meteorological

sciences since Panofsky and Brier (1958). Forecasting of radar rainfall patterns via

correlation methods was first attempted by Hilst and Russo (1960). They utilized the

location of the maximum cross-correlation coefficient between consecutive fields as the

displacement of a storm feature. Their methodology was further advanced by Wilson

(1966), who applied the value of the correlation coefficient between consecutive radar

47

patterns as it relates to the movement and predictability of radar echoes at different

scales. This research soon spawned new innovations in weather forecasting with the

realization that correlation analysis can provide more detail than a single “global”

vector. Leese et al. (1971) used successive satellite images to generate a “distributed”

field of vectors based on the cross-correlation of segments of cloud images. This was

one of the first examples of using local area correlation analysis to generate a spatially

variable velocity field. The use of an optical system for correlation coefficient esti-

mation, provided empirical evidence for two obstacles traditional correlation analysis

needed to overcome. The internal motion of individual storm cells within the overall

storm envelope, and storm motion being composed of cell growth and decay on the

edges of the storm as well as large-scale forcing were these obstacles (Zawadzki 1973).

Following these developments, the correlation method for single radar forecasting

was employed in a procedure to correlate whole radar images. This results in the

derivation of a single displacement vector best describing the average storm motion

in the interval between radar images (Austin and Bellon 1974). This procedure was

used in an operational setting in the summers of 1976 and 1977 and showed results

that were superior to persistence and two other objective forecasting methods. They

also concluded that the major loss of predictability in a steady-state method, such as

extrapolation, is from rearrangement of rainfall patterns during the forecast interval

(Bellon and Austin 1978). A landmark advancement was made by Rinehart and

Garvey (1978), who used the Tracking of Radar Echoes with Correlations (TREC)

algorithm to generate a full grid of spatially varying velocities based on correlation

analysis of small sub-sections of radar reflectivity images.

The effect that current weather conditions have on weather conditions in the near

future cemented the importance of extrapolation methods to overall forecasting abil-

ity. The most accurate forecasts for short lead-times (zero to six hours), when con-

sidering mesoscale and synoptic scale NWP models and extrapolation techniques, are

generated by extrapolation methods (Browning, 1980). This conclusion along with

the new TREC algorithm spurred new research into other methods of nowcasting

that may aid in the increase in accuracy of the forecasts. The first of such efforts was

48

undertaken in an attempt to extend the effective lead-time of extrapolation forecasts

through growth and decay trending. The results showed that the additional com-

putation only negligibly increased the accuracy over simple advection, possibly due

to the inability to predict the proper decay rates near the end of the storm lifetime

(Tsonis and Austin 1981).

To this point, extrapolation based nowcasting methods had been confined to ex-

periments using data from a single radar, not utilizing the forecasting potential pro-

vided by regional radar networks. Many mesoscale storms have lifetimes exceeding

their time in the observation area of a single radar. Advancements in data assimilation

techniques and an increase in computation time helped to overcome this limitation

by allowing for the creation of regional radar mosaics. In 1982, an extrapolation

method using the combined data of four weather radars was demonstrated. The fore-

casting method was a variation on a distributed vector procedure, in that cells were

matched individually and assigned different displacement vectors. But as with most

centroid tracking algorithms, each rainfall echo was only assigned a single velocity.

The results showed that objective extrapolation forecasts using networked weather

radar data were superior to subjective human forecasts in most cases (Browning et

al. 1982). Shortly thereafter, a niche for correlation tracking was distinctly deter-

mined in a direct comparison of correlation and centroid tracking methods. The

study showed correlation methods performed better on average than did the centroid

tracking methods and also were more accurate than persistence forecasts (Ciccione

and Pircher 1984). Despite the advantage over centroid tracking, extrapolations main

hurdle was still yet to be successfully overcome. This hurdle was “rediscovered” in

1989, validating an observation made more than fifteen years prior by Zawadzki (Za-

wadzki 1973). This observation was that small-scale rainfall features often travel at

velocities different than that of the large scale system that they may be embedded in

(Browning and Collier 1989).

The merging of atmospheric physics into extrapolation algorithms has shown po-

tential to improve the accuracy of precipitation nowcasts. Using a correlation tracker

(from Leese et al. 1971) with a physically based model for growth and decay predic-

49

tion, one study showed that this combination of methods can produce a forecast with

a lower RMSE than advection alone (Seo and Smith 1992). The use of successive

GOES satellite images, in conjunction with correlation analysis to generate a regu-

larly spaced vector field provided advancements in quality control and interpolation

(Hamill and Nehrkorn 1993). Further development in correlation-based short-term

forecasting came in the form of a postprocessing algorithm to modify vectors gen-

erated by the TREC extrapolation algorithm. This postprocessing step forces the

velocity field to comply with a two-dimensional continuity equation, giving rise to

the nomenclature continuity of TREC vectors (COTREC; Li et al. 1995).

Due to their high intensities, thunderstorms are often the precipitation type of

greatest concern. As of 1998, advances in extrapolation and knowledge of rainfall

field characteristics have provided a solid basis for significant advances in the accu-

rate forecasting of convective weather in the near future (Wilson et al. 1998). That

optimism is shared in a second review paper where the utilization of knowledge of rain-

fall field statistics can be used to generate more accurate short-term forecast schemes.

This conclusion is based on the fact that in the twenty years from 1980 to 2000, sig-

nificant advancements were made in the description of rainfall fields and knowledge

of their statistics, but at the expense of progress in the accuracy of the forecasting

methods (Smith and Austin 2000). The TREC/COTREC forecasting procedure was

again used to generate nowcasts of convective and stratiform events in mountainous

terrain and to assess the predictability of forecasts made by the procedure. The re-

sults from this study show that convective cells are predictable using extrapolation

algorithms for approximately 40 minutes while stratiform rain areas have potentially

longer predictability times since they display a smaller degree of growth and decay

(Mecklenburg et al. 2000). Very recently Seed (2003) used a variation on the correla-

tion method to explore the effect of decomposition in the spatial and spectral domains

on forecast skill. This test which used a global advection velocity for rainfall observed

by a single radar, showed that smoothing processes can improve rainfall field RMSE

over simple extrapolation techniques (Seed 2003).

50

3.3 APEX Algorithm Description

3.3.1 Overview

Advances in nowcasting over the last 40 years have provided a strong base for

development of new forecasting methods. The APEX algorithm utilizes some of these

advancements to produce very short-term radar rainfall nowcasts. The generation of

these forecasts is done using correlation analysis combined with spatial filtering to

produce a gridded velocity field for the advection of rainfall fields. These goals are

achieved via a suite of MATLAB functions designed specifically for this reason. Model

development was done extensively using the MATLAB image processing toolbox to

decrease computation time, increase the efficiency of execution and reduce source

code complexity.

APEX, like other extrapolation forecasting algorithms uses a steady state assump-

tion as its theoretical base. Applied to rainfall forecasting, this assumption implies

that rainfall intensities and spatial patterns will remain the same over short forecast-

ing intervals. By applying a static velocity field to this static rainfall field, linear

forecasts are created via a process termed “Lagrangian Persistence” since the rainfall

field is persisted in a Lagrangian coordinate system (Germann and Zawadzki 2002).

This differs from “Eulerian Persistence”, in which the rainfall field is persisted in a

stationary frame of reference. Eulerian Persistence will be used as a basis for com-

parison for the Lagrangian Persistence method presented here.

The APEX forecasted rainfall rate at a point (xF , yF) can be simplistically de-

scribed by

ΨF (t0 + τ, xF , yF) = ΨI (tI , xI , yI) (3.1)

xF = xI + τ ∗ u (xI , yI) (3.2)

yF = yI + τ ∗ v (xI , yI) (3.3)

(adapted from Germann and Zawadzki 2002). Where ΨF is the forecasted rainfall

field, τ is the forecast lead time, ΨI is the initial rainfall field, (xI , yI) is the location

51

in the initial field where the pixel to be advected is located, and u (x, y) and v (x, y)

are the velocity fields for the east-west and north-south directions respectively. The

challenge this nowcasting method must overcome is the derivation of the velocity

fields and their application to rainfall fields to create short term forecasts.

This algorithm is governed by a set of parameters read into the model from an

external text file. These parameters control many aspects of the execution of the

code, including the size of the spatial filter, several thresholds and the range in which

to search for a maximum correlation coefficient. The parameters and a set of nominal

values can be seen in Table 3.1. Algorithm execution requires two input arguments

Parameter Name Nominal Value Units

FILTER ROWS 41 pixels
FILTER COLS 41 pixels
MAX SHIFT 10 pixels
CORR BOXSIZE 7 pixels
X RES 4762.5 meters
Y RES 4762.5 meters
TIME SPACING 15 minutes
ANGLE TOL 30 degrees
RAIN THRESH 0.1 mm
WX MIN 0.25 fraction
RANGE 11 pixels
SIGMA 1.5 pixels
Z THRESH 0.55 fraction
SPEED LIMIT 5 pixels
SEARCH RADIUS 3 pixels

Table 3.1: Customizable parameters and a set of nominal values based on the spa-
tial and temporal resolution shown. Many parameters are resolution dependent and
should be changed accordingly.

and returns a single output argument. The input parameters are the full path file

name of a “batch file” that lists the input files to be used in the forecast generation

and the full path directory name where the forecast file are to be written to. Currently

the single output is an array of Critical Success Index (CSI, see Section 2.5) scores,

detailing average forecast accuracy as a function of lead time. The flow of data

within the APEX algorithm can be seen in Figure 3-1 and a detailed description of

52

the functions performed by each MATLAB file can be found in Appendix A

3.3.2 Input Field Filtering

Chapter 2 showed the benefits of spatial smoothing using a tested extrapolation-

based nowcasting method. The algorithm presented here utilizes results from that

work and applies the filtering process to a new nowcasting algorithm. Prior to any

analysis on the input rainfall fields, the two-dimensional fields are subjected to spatial

smoothing, in the form of a two dimensional low-pass averaging filter. The imple-

mentation is via a two dimensional convolution between the input field and the filter.

The effect of the filtering is to remove the high frequency components of the rainfall

field, usually small scale, high intensity convective cells, which improves the large

scale advection of the storm system as seen in Chapter 2. In this algorithm, as in the

GDST method, filtering is done prior to correlation analysis. However, the velocities

are applied to the unfiltered rainfall field in the advection process.

3.3.3 Global Motion Analysis

The next step in the algorithm is an analysis of the mean storm motion. The sec-

ond input file (t0) is correlated with the first input file (t0−tS, where tS is the temporal

resolution of the input files) to generate a global displacement (details of correlation

based motion analysis can be found in Section 3.3.4). This displacement represents

the mean displacement of the entire field during tS. The returned displacement is

later used for three purposes:

1. Biasing local area correlation (LAC) analysis search areas.

2. Eliminating velocities with large deviations from the global displacement in a

quality control module (Section 3.3.6)

3. Forecasting with a uniform velocity applied to all points. This means of advec-

tion will be referred to as global advection.

53

Figure 3-1: Flowchart that shows APEX model structure and data transfer pathways.

54

3.3.4 Correlation Analysis

The most important step in this algorithm is the LAC analysis. This process

takes small sub-images of the first and second input fields and produces a field of

lag cross correlation coefficients for each pair of sub-images. To conserve computa-

tion resources, lag cross correlation surfaces are only computed for points that show

rainfall amounts greater than zero in the second image and have more than a certain

percentage (WX MIN) of “rainy pixels” in both sub-images. The GDST uses a block

processing method for their correlation process, where consecutive sub images are

spaced so that there is no overlap. While this conserves computational resources,

it requires a large amount of interpolation to generate a full velocity field. In this

algorithm, however, a sliding neighborhood processing method is used which gen-

erates a correlation surface for sub-images centered on each pixel. The increased

computational expense is offset by the benefit of generating velocity values at each

point.

Several variations of the correlation coefficient exist (see Giachetti 2000 for a re-

view), and for this model the zero-mean, variance normalized correlation coefficient

was chosen. This is the optimal choice for this application since the resultant co-

efficient field is independent of variations in intensity and in the spatial gradient of

the intensity due to normalization by the mean and the variance (Sun 2002). The

coefficient (γ(i, j)) is a function of the lags in x- and y-directions, i and j respectively,

and is computed from Equation 3.4.

γ(i, j) =

∑
x,y

[
St0−tS(x, y)− St0−tS

] [
St0(x− i, y − j)− St0

]
{∑

x,y

[
St0−tS(x, y)− St0−tS

]2∑
x,y

[
St0(x− i, y − j)− St0

]2}0.5 (3.4)

In Equation 3.4 St0−tS refers to the sub-image from the first input file (the search

field), St0 refers to the sub-image from the second file (the sample template), the

overbar notation indicates the mean value of the respective sub-image and x and y are

horizontal and vertical coordinates within the sub-images. This is a computationally

expensive calculation due to the local averaging process. The normxcorr2 function in

55

MATLAB’s image processing tool box seeks to minimize the computation time using

Fourier transforms, fast local-sum algorithms and convolution computations. This

frequency domain computation is often faster than the corresponding spatial domain

computation.

To ensure that correlation coefficients can be computed for all lags, the sub-image

from the first image is padded with zeros. However, this padding causes the resultant

correlation surface to have border areas showing large artificial gradients where the

padded values were used. These more distant correlation coefficients, and artificially

smaller values are eliminated from further analysis, saving computation time in data

transfer and further processing. Computational efficiency is also increased by only

using a small subsection of the limited correlation surface when searching for the max-

imum correlation coefficient value. This subsection is found by taking the subsection

of the correlation surface surrounding the end point of the global displacement vector.

The size of this sub-image is a function of the SEARCH RADIUS parameter. The

result of this process is a predisposition for the velocities to be similar to the global

velocity.

3.3.5 Correlation Surface Filtering

The individual, globally biased, limited area correlation surfaces found via cross

correlation analysis can display many problems. One such problem is a high degree

of variability in the relative location of the maxima over small spatial scales. To

mitigate this variability, correlation meta surface (CMS) filtering was implemented.

A CMS is a collection of individual correlation surfaces within a specified range of

a pixel. The filtering process biases each correlation surface (CS) to be similar to

neighboring CS, thus eliminating vectors that deviate widely from the local average

vector.

This process assumes that over short spatial scales the location of maximum cor-

relation should occur in approximately the same position. However, random matches

between the sub-images used as correlation inputs, cause fluctuations in the location

of the maxima. This occurs most often in places where there is little variability in the

56

rainfall fields. Distance-weighted filtering of the correlation surfaces has the potential

to propagate similar CS shapes to neighboring correlation surfaces. A previous study

(Chornoboy et al. 1994) used a multi-resolution averaging method for filtering, and a

similar method was implemented in this algorithm.

Instead of a computationally intensive multi-resolution averaging process, a simple

two dimensional Gaussian filter is applied to the CS points in the same relative

position in the CS. For example, all of the values in the top left corner of CS within

RANGE pixels of the central location are weight averaged to produce a smoothed

value for the top left corner in the central CS. Assuming the maximum correlation

coefficient (CC) value will be positive, CC values less than zero are not included in

the averaging process. The result from this averaging is a set of correlation surfaces

that are biased against large spatial variations between neighboring surfaces. Figure

3-2 shows CMS and CS fields before (Figures 3-2a, c and e) and after (Figures 3-2b,

d and f) filtering from an actual storm case (5 October 1998). Figures 3-2a and b

show the CMS surfaces that influence the filtered value of the center CS, Figures 3-2c

and d show the neighboring CS surrounding the central CS and Figures 3-2e and f

show the central CS before and after filtering. In Figure 3-2b, the increase in the

white area, where the correlation coefficient equals zero, is due to the elimination of

all CC values less than Z THRESH. In this case the benefits to the CS can be seen

in the increase in range of the correlation values and the decrease in area that has a

correlation coefficient above the highest contour.

3.3.6 Quality Control

Even after correlation meta-surface filtering, inferior quality displacement vectors

still exist and will have adverse impacts on forecast accuracy. Identification of these

invalid vectors is done according to three criteria.

1. Vectors whose directional deviation from the global angle (see Section 3.3.3) is

greater than ANGLE TOL.

57

Figure 3-2: Example of correlation surface filtering. Panel (a) shows the correlation
meta surface that influences the central correlation surface seen in panel (e), while
panel (c) shows the neighboring correlation surfaces of the central correlation surface.
Panel (b) shows the result of the correlation surface filtering on the area of influence,
while panel (d) shows the filtered neighbors of the central correlation surface and
panel (d) shows the filtered central correlation surface.

58

2. Vectors with magnitudes (r =
√
u2 + v2) exceeding SPEED LIMIT.

3. Maximum correlation coefficients less than the Z THRESH parameter.

If any of the above criteria are satisfied, the x- and y-direction displacements are

eliminated and flagged to be filled in an interpolation step.

3.3.7 Vector Interpolation

Interpolation is an important step in the vector generation process due to the

elimination of vectors in the quality control module. Prior to interpolation, the x-

and y-direction pixel displacements are converted into velocities with units of meters

per second. This conversion allows for the vectors to be displayed in a manner that

has a well defined physical meaning. The interpolation of vectors is confined to

eliminated vectors where the second input file had rainfall greater than zero. This

decreases computation time and eliminates the implication that clear air velocities can

be determined via this algorithm. Each pixel to be interpolated is replaced with the

local average of the valid velocity values within a RANGE by RANGE area around the

pixel in question. This also smoothes the final vector field, which aids in eliminating

sharp changes in the displacements over short spatial scales.

3.3.8 Advection and Forecast Generation

Once the velocity fields have been generated and processed, they are then applied

to the second of the two input fields to create forecasts. This is done with the

knowledge that the velocity fields represent the displacement between two consecutive

files and the assumption that forecasting is done in multiples of that temporal spacing.

First, the initial file is advected over one forecast interval. This is done by taking

each input pixel and moving it forward by its displacement value. To eliminate

“holes” in the resulting forecast field, each input pixel is advected with its eight

neighboring input pixels to the area centered on the forecasted location of the central

pixel after advection. This is done for all input pixels by summing all rainfall values

59

“put” in each forecast pixel. The number of values “put” into each forecast pixel is

counted and after all input pixel fields have been advected, each final forecast pixel

is computed as the average of all the input pixels that were “put” into that location.

The same procedure is then done on the x- and y displacement fields so that each

forecast pixel also has displacement values advected with it. The next forecast is

made using the same procedure but uses the previous forecast as the initial image

and the advected displacements as the motion field. Figure 3-3 shows a small sample

area being advected using the process described above. The 16 pixel image on the

left is the field being forecasted while the three smaller squares on the right are the

values after advection into their new position. The arrows depict the displacement

vectors used to advect the field forward, and their patterns correspond with the boxes

containing the advected values. The shaded areas are the areas where averaging will

occur resulting from the three vectors shown.

Figure 3-3: Advection scheme used in APEX nowcasting method.

This procedure is based on the assumption that a forecast for twice the original

forecast interval is the single interval forecast field advected forward again and a

three interval forecast is the result of three consecutive single interval forecasts of the

initial field and the subsequent forecasted fields. The benefit of this procedure is that

it allows the “holes” in the forecasted field to be filled at each step and ensure that

they are not propagated into the next forecast interval. In the absence of uniform

60

advection, “holes” in the forecast image expand with each forecast interval, so by

eliminating the holes at each step, these large regions of missing data are not created

at long lead times. The method used here for eliminating holes is an intelligent method

and maintains the influence of the initial field on the forecast field throughout the

forecasting period.

61

62

Chapter 4

APEX Results and Comparisons

4.1 APEX Outputs

Like the GDST algorithm, the main result from the APEX method is a series of

forecast files. These files are written into a directory specified by the user and are

easily incorporated into MATLAB or ArcView programs for further analysis. The

first step in comparing the two nowcasting algorithms is to examine the differences

between comparable velocity and forecast fields. Figure 4-1 performs this comparison.

Figures 4-1a and b show the velocity fields surrounding a point near the leading edge

of the storm envelope for the APEX and GDST algorithms, respectively. Figures 4-1c

and d show the 60-minute forecast fields valid at 1300 UTC on 5 October 1998 for

the APEX and GDST algorithms, respectively. At first glance, the largest difference

between the velocity fields is that the APEX-generated field is not full. This is due to

the constraint that only points where the rainfall field to be advected is greater than

zero are put through the correlation analysis. Also, unlike the GDST, the APEX

algorithm does not interpolate to all points in the range and therefore does not imply

that clear air velocities can be determined using radar rainfall inputs. The high degree

of smoothness seen in the GDST velocity field (Figure 4-1b) is also a consequence of

the interpolation process used to fill the field.

The forecast fields show some differences that are indicative of the different degree

of smoothness seen in the velocity fields. The APEX velocity field is not very smooth

63

and because of that, the special advection algorithm described in Section 3.3.8 was

implemented. A side effect of this advection algorithm is that the exact pattern and

shape of the rainfall field is not preserved in forecasting. The GDST however, due to

a very smooth velocity field, is able to preserve the pattern and shape of the rainfall

field almost exactly over the forecasting interval. A potential drawback to the APEX

advection algorithm is that the stratiform areas of the rainfall field appear to widen

while the areas of more intense rainfall appear to narrow over the forecasting interval.

This result may be due to erroneous velocity vectors produced by the algorithm for

areas with small gradients in rainfall, a potential difficulty for correlation matching.

The highest intensity rainfall appears to be advected to approximately the same

location by both methods.

Figure 4-1: Sample outputs from the APEX algorithm (panels (a) and (c)) as com-
pared to to the corresponding outputs from the GDST algorithm (panels (b) and
(d)). the velocity vectors shown are a subset of the entire field and are a section lo-
cated near the leading edge of the storm envelope. The rainfall fields are comparable
60-minute forecasts valid at 1300 UTC.

64

4.2 Lead Time Comparisons

The inclusion of the APEX algorithm in the comparison seen in Chapter 2.6, shows

the improvements and shortcomings of the model. Figure 4-2 shows this comparison

for the low rainfall threshold for all storm events as a function of lead time. As

seen previously, persistence forecasting scores much lower than any of the advection

methods while the GDST and the uniform advection scores are very similar over all

lead times. For all three storm events, the APEX method scores higher than any

of the other methods at short lead times and slightly lower then the GDST and

uniform advection at longer lead times. Part of the explanation for the lower scores

at longer lead times may lie in the advection algorithm used by the APEX method.

The averaging that occurs in the velocity vectors and in the forecast fields during the

advection step may change the resultant fields from the initial conditions in a manner

that does not capture the correct evolution of the quantities over the forecast period.

Similar comparisons using the median and high thresholds (not shown) show similar

differences between the forecasting methods.

4.3 Verification Area Comparisons

When examining the 60-minute forecasts from these four methods further, more

detail into the performance of the APEX algorithm can be seen. Figure 4-3 shows

the impact that an extended verification kernel has on the CSI scores from the four

forecasting methods. For all three storm events, the accuracy of the APEX forecasts

improve at a higher rate than do forecasts generated by the GDST. This would tend

to indicate that there are many cases where a small error in the displacement was

the cause of the lower CSI score. Also seen for all storm events is that at almost

all thresholds, the APEX algorithm scores as well or better than any of the other

forecasting methods. The magnitude of this difference is storm event and verification

area dependent. The results from the 120-minute forecasts, seen in Figure 4-4 show

similar results except that the increase in accuracy by the APEX algorithm over the

65

Figure 4-2: Comparison of the GDST (solid line), APEX (dashed line), global advec-
tion (dotted line) and persistence (dash-dotted line) CSI scoring as a function of lead
time.

66

GDST algorithm for large verification areas is not as large as seen in the 60-minute

forecasts.

4.4 False Alarm Ratio Comparisons

The false alarm ratio (FAR) is a statistic that can be computed from the same

contingency table the CSI is derived from. The statistic indicates the percentage of

total forecasted pixels that correspond to locations where no rainfall was observed.

A FAR of 0 is the optimal score while a FAR of 1 indicates that all of the pixels in

the forecast image were in error. In terms of the elements of Table 2.2, the FAR is

computed using Equation 4.1.

FAR =
FA

H + FA
(4.1)

For the storm cases examined in this study, the FAR analysis results show a different

dynamic between the forecasting methods than seen with other statistics. Figure 4-5

shows the values of the FAR as a function of lead time for the different forecasting

methods for all three storm events. Unlike the CSI scoring, the APEX algorithm

appears to perform more like persistence forecasting when analyzed using the FAR,

while the GDST and the uniform advection algorithm continue to perform in a very

similar manner. The high FAR scores for APEX may be a consequence of many items.

First, an error in the velocity estimates could cause an increase in the FAR if the

velocity magnitude or direction do not correspond with the observations. Second, and

very likely, the advection algorithm used in APEX causes some degree of smoothing

of the forecast field. This smoothing may have the effect of placing rainfall outside of

the observed rainfall envelope, thus increasing the number of forecast pixels with a

rainfall rate greater than a threshold while the observations do not meet that criterion.

67

Figure 4-3: Comparison of the GDST (solid line), APEX (dashed line), global ad-
vection (dotted line) and persistence (dash-dotted line) CSI scoring as a function of
verification area for their respective 60-minute forecasts.

68

Figure 4-4: Comparison of the GDST (solid line), APEX (dashed line), global ad-
vection (dotted line) and persistence (dash-dotted line) CSI scoring as a function of
verification area for their respective 120-minute forecasts.

69

Figure 4-5: Comparison of the GDST (solid line), APEX (dashed line), global ad-
vection (dotted line) and persistence (dash-dotted line) FAR scoring as a function of
lead time.

70

Chapter 5

Conclusions

This work addressed several issues that had yet to be addressed in the nowcasting

literature. First, in Chapter 2 the forecast improvement as a result of including image

filtering to eliminate small scale features prior to correlation was established. That

section showed that the erroneous vectors caused by the correlation of images contain-

ing highly perishable features degraded the accuracy of the forecasts. The nowcasting

method used in this determination was the MIT Lincoln Laboratory Growth and De-

cay Storm Tracker (GDST), an operational short-term rainfall forecasting algorithm.

A relatively simple method for their removal was implemented and the results showed

that for lead times from 15 to 120 minutes, forecast accuracy was improved for the

three storm cases examined here. Chapter 2 also examined the benefits of deriving

spatially variable velocity vectors as opposed to using a single velocity for the en-

tire rainfall field. The gain in accuracy through this enhancement was less clear and

more research is needed to ascertain the value of spatially variable velocity fields for

nowcasting.

In Chapter 3 a new nowcasting algorithm was introduced and described. Utiliz-

ing concepts culled from multiple previous algorithms, the Automated Precipitation

Extrapolator (APEX) seeks to combine the benefits from these prior methods to gen-

erate accurate very short-term rainfall forecasts using composite radar rainfall fields.

Composite radar rainfall fields have the potential to provide a highly accurate input to

nowcasting methods. Results from forecasts provided by the APEX algorithm can be

71

seen in Chapter 4. Using a variety of evaluation measures, APEX-generated forecasts

show approximately the same degree of accuracy as GDST and uniform advection

forecasts show for the storm events analyzed here.

The goals and questions that this work set out to examine and achieve in Chapter

1 are restated here along with a progress evaluation for the goals and answers to the

questions. First the goals and the progress.

Goals:

1. Goal: Determine the impact of the motion of small-scale features on forecast

performance.

2. Goal: Identify the benefits of allowing for differential motion within a storm

system in a nowcasting procedure.

3. Goal: Develop and test a MATLAB-based short-term forecasting procedure.

Progress:

1. Accomplished through analysis of the benefits of image filtering.

2. Partially accomplished through comparison of GDST and uniform

advection algorithm. More research is required to fully understand

the impacts.

3. Accomplished with the development of the APEX algorithm.

Questions:

1. Question: What impact does image filtering have on nowcasting accuracy?

2. Question: Do spatially variable velocities improve short-term forecast accuracy?

3. Question: How well does a new algorithm for nowcasting compare with simpler

methods and an operational nowcasting algorithm?

Answers:

72

1. Image filtering has a positive impact of several CSI points on short-

term nowcasts with the GDST for the three storm cases examined in

this work.

2. There was small improvement seen for the GDST over a uniform

advection method, but without further examination over more storm

events, this question can not be answered conclusively.

3. The APEX algorithm performs approximately as well as the GDST

and uniform advection methods and outperforms persistence forecast-

ing. With further improvements and detailed parameter sensitivity

testing, APEX may hold the potential to outperform the GDST now-

casting method also.

73

74

Bibliography

[1] Austin, G.L. and A. Bellon. The use of digital weather radar records for short-

term precipitation forecasting. Quarterly Journal of the Royal Meteorological

Society, 100:658–664, 1974.

[2] Bellon, A. and G.L. Austin. The evaluation of two years of real-time operation of

a short-term precipitation forecasting procedure (SHARP). Journal of Applied

Meteorology, 17:1778–1787, 1978.

[3] Bellon, A. and I. Zawadzki. Forecasting of hourly accumulations of precipitation

by optimal extrapolation of radar maps. Journal of Hydrology, 157:211–233,

1994.

[4] Brémaud, P.J. and Y.B. Pointin. Forecasting heavy rainfall from rain cell motion

using radar data. Journal of Hydrology, 142:373–389, 1993.

[5] Browning, K.A. Local weather forecasting. Proceedings of the Royal Society of

London. Series A: Mathematical and Physical Sciences, A371:179–211, 1980.

[6] Browning, K.A. and C.G. Collier. Nowcasting of precipitation systems. Reviews

of Geophysics, 27(3):345–370, 1989.

[7] Browning, K.A., C.G. Collier, P.R. Larke, P. Menmuir, G.A. Monk, and R.G.

Owens. On the forecasting of frontal rain using a weather radar network. Monthly

Weather Review, 110:534–552, 1982.

[8] Cartwright, T.J., M.M. Wolfson, B.E. Forman, R.G. Hallowell, M.P. Moore,

and K.E. Theriault. The FAA terminal convective weather forecast product:

75

scale separation filter optimization. In Twenty-ninth International Conference

on Radar Meteorology. American Meteorological Society, 1999.

[9] Chen, Zhi-Qiang and M.L. Kavvas. An automated method for representing,

tracking and forecasting rain fields of severe storms by Doppler weather radars.

Journal of Hydrology, 132:179–200, 1992.

[10] Chornoboy, Edward S., Anne M. Matlin, and John P. Morgan. Automated

storm tracking for terminal air traffic control. The Lincoln Laboratory Journal,

7(2):427–447, 1994.

[11] Ciccione, Monique and Vincent Pircher. Preliminary assessment of very short

term forecasting of rain from single radar data. In Proceedings of Nowcasting II,

pages 241–246. European Space Agency, 1984.

[12] Dixon, Michael and Gerry Wiener. TITAN: Thunderstorm identification, track-

ing, analysis, and nowcasting - a radar-based methodology. Journal of Atmo-

spheric and Oceanic Technology, 10(6):785–797, 1993.

[13] Donaldson, R.J., Jr, R.M Dyer, and M.J. Kraus. An objective evaluator of

techniques for predicting severe weather events. In Preprints: Ninth Conference

on Sever Local Storms, pages 321–326. American Meteorological Society, 1975.

[14] Dupree, W.J., R. Johnson Jr., M.M. Wolfson, K.E. Theriault, B.E. Forman, R.A.

Boldi, and C.A. Wilson. Forecasting convective weather using multi-scale detec-

tors and weather classification - enhancements to the MIT Lincoln Laboratory

Terminal Convective Weather Forecast. In Tenth Conference on Aviation, Range

and Aerospace Meteorology. American Meteorological Society, 2002.

[15] Einfalt, Thomas, Thierry Denoeux, and Guy Jacquet. A radar rainfall forecasting

method designed for hydrological purposes. Journal of Hydrology, 114:229–244,

1990.

[16] Evans, James E. and Elizabeth R. Ducot. The integrated terminal weather

system (ITWS). The Lincoln Laboratory Journal, 7(2):449–473, 1994.

76

[17] Forman, B.E., M.M. Wolfson, R.G. Hallowell, and M.P. Moore. Aviation user

needs for convective weather forecasts. In Eighth Conference on Aviation, Range

and Aerospace Meteorology. American Meteorological Society, 1999.

[18] Germann, Urs and Isztar Zawadzki. Scale-dependence of the predictability of

precipitation from continental radar images. Part I: Description of the method-

ology. Monthly Weather Review, 130:2859–2873, 2002.

[19] Giachetti, A. Matching techniques to compute image motion. Image and Vision

Computing, 18:247–260, 2000.

[20] Glickman, Todd S., editor. Glossary of Meteorology. American Meteorological

Society, second edition, 2000.

[21] Grassotti, Christopher, Ross N. Hoffman, Enrique R. Vivoni, and Dara En-

tekhabi. Multiple timescale intercomparison of two radar products and rain

gauge observations over the Arkansas-Red River basin. submitted to Weather

and Forecasting, 2003.

[22] Grecu, M. and W.F. Krajewski. A large-sample investigation of statistical proce-

dures for radar-based short-term quantitative precipitation forecasting. Journal

of Hydrology, 239:69–84, 2000.

[23] Hallowell, R.G., M.M. Wolfson, B.E. Forman, M.P. Moore, B.A. Crowe, T.M.

Rotz, D.W. Miller, T.C. Carty, and S.F. McGettigan. The terminal convective

weather forecast demonstration at the DFW International Airport. In Eighth

Conference on Aviation, Range and Aerospace Meteorology. American Meteoro-

logical Society, 1999.

[24] Hamill, Thomas M. and Thomas Nehrkorn. A short-term cloud forecast scheme

using cross correlations. Weather and Forecasting, 8(4):401–411, 1993.

[25] Handwerker, Jan. Cell tracking with TRACE3D - a new algorithm. Atmospheric

Research, 61:15–34, 2002.

77

[26] Hilst, G.R. and J.A. Russo Jr. An objective extrapolation technique for semi-

conservative fields with an application to radar patterns. Technical Memo 3,

The Travelers Weather Research Center, Inc., Hartford, CT, 1960. Contract

AF30-635-14459.

[27] Johnson, J.T., Pamela L. MacKeen, Arthur Witt, E. DeWayne Mitchell, Gre-

gory J. Stumpf, Michael D. Eilts, and Kevin W. Thomas. The storm cell iden-

tification and tracking algorithm: An enhanced WSR-88D algorithm. Weather

and Forecasting, 13:263–276, 1998.

[28] Leese, John A., Charles S. Novak, and Bruce B. Clark. An automated tech-

nique for obtaining cloud motion from geosynchronous satellite data using cross

correlation. Journal of Applied Meteorology, 10:118–132, 1971.

[29] Li, L., W. Schmid, and J. Joss. Nowcasting of motion and growth of precipitation

with radar over a complex orography. Journal of Applied Meteorology, 34:1286–

1300, 1995.

[30] Mecklenburg, S., J. Joss, and W. Schmid. Improving the nowcasting of pre-

cipitation in an Alpine region with an enhanced radar echo tracking algorithm.

Journal of Hydrology, 239:46–68, 2000.

[31] Panofsky, Hans A. and Glenn W. Brier. Some Applications of Statistics to Me-

teorology. Pennsylvania State University, first edition, 1958.

[32] Pereira Fo., Augusto J., Kenneth C. Crawford, and David J. Stensrud. Mesoscale

precipitation fields. Part II: Hydrometeorologic modeling. Journal of Applied

Meteorology, 38:102–125, 1999.

[33] Pierce, C.E., P.J. Hardaker, C.G. Collier, and C.M. Haggett. GANDOLF: A

system for generating automated nowcasts of convective precipitation. Meteoro-

logical Applications, 7:341–360, 2000.

[34] Rinehart, R.E. and E.T. Garvey. Three-dimensional storm motion detection by

conventional weather radar. Nature, 273:287–289, 1978.

78

[35] Seed, A.W. A dynamic and spatial scaling approach to advection forecasting.

Journal of Applied Meteorology, 42:381–388, 2003.

[36] Seo, D.-J. and J.A. Smith. Radar based short term rainfall prediction. Journal

of Hydrology, 131:341–367, 1992.

[37] Smith, James A., Mary Lynn Baeck, Julia E. Morrison, Paula Sturdevant-Rees,

Daniel F. Turner-Gillespie, and Paul D. Bates. The regional hydrology of extreme

floods in an urbanizing drainage basin. Journal of Hydrometeorology, 3:267–282,

2002.

[38] Smith, K.T. and G.L. Austin. Nowcasting precipitation - a proposal for a way

forward. Journal of Hydrology, 239:34–45, 2000.

[39] Sun, Changming. Fast optical flow using 3D shortest path techniques. Image

and Vision Computing, 20:981–991, 2002.

[40] Theriault, K.E., M.M. Wolfson, B.E. Forman, R.G. Hallowell, M.P. Moore, and

R.J. Johnson Jr. FAA terminal convective weather forecast algorithm assessment.

In Ninth Conference on Aviation, Range and Aerospace Meteorology. American

Meteorological Society, 2000.

[41] Tsonis, A.A. and G.L. Austin. An evaluation of extrapolation techniques for the

short-term prediction of rain amounts. Atmosphere-Ocean, 19(1):54–65, 1981.

[42] Tuttle, John D. and G. Brant Foote. Determination of the boundary layer airflow

from a single Doppler radar. Journal of Atmospheric and Oceanic Technology,

7:218–232, 1990.

[43] Wilson, James W., N. Andrew Crook, Cynthia K. Mueller, Juanzhen Sun, and

Michael Dixon. Nowcasting thunderstorms: a status report. Bulletin of the

American Meteorological Society, 79(10):2079–2099, 1998.

[44] Wilson, J.W. Movement and predictability of radar echoes. Final Report 7471-

204, The Travelers Weather Research Center, Inc., Hartford, CT, 1966.

79

[45] Wolfson, M.M., B. E. Forman, R. G. Hallowell, and M. P. Moore. The growth and

decay storm tracker. In Eighth Conference on Aviation, Range and Aerospace

Meteorology. American Meteorological Society, 1999.

[46] Zawadzki, I. Statistical properties of precipitation patterns. Journal of Applied

Meteorology, 12:459–472, 1973.

[47] Zawadzki, I., J. Morneau, and R. Laprise. Predictability of precipitation patterns:

An operational approach. Journal of Applied Meteorology, 33:1562–1571, 1994.

[48] Zipser, E. Rainfall predictability: When will extrapolation-based algorithms fail?

In Eighth Conference on Hydrometeorology, pages 138–142. American Meteoro-

logical Society, 1990.

80

Appendix A

APEX Users Guide

A.1 Parameter File

The parameter file is a text file that allows for flexibility in setting many pa-

rameters that govern the execution of the code. The parameter file should be named

st.params and located in the same directory as the MATLAB source files. The param-

eters include thresholds, ranges, resolutions and limits used within the code. Many

of the parameters are dependent on the spatial and temporal resolution of the files

and should be adjusted accordingly. The following list names all the parameters and

describes what they are used for within the code.

• FILTER ROWS and FILTER COLS: Sets the vertical and horizontal size of

the filter used for scale separation filtering done prior to the local correlation

analysis. The values of the filter size parameters should be odd numbers so the

filter can be properly centered. Only used as input to the st filt.m file. Nominal

value: 41 pixels

• MAX SHIFT: Component of the field parsed from the first input file. The field

is a square with a side length of 2∗MAX SHIFT + 1 whose center pixel is the

pixel that the correlation surface and resulting vector displacement correspond

to. The value of this parameter can be either even or odd. Only used in the

correlate images.m file. Nominal value: 10 pixels

81

• CORR BOXSIZE: Size of the sample from the second input file that is correlated

against the field (defined above) in the local correlation analysis. This number

should be smaller than 2 ∗MAX SHIFT + 1 and an odd number to produce

a good correlation analysis and a sub-image that is centered on the pixel in

question. Only used in the correlate images.m file. Nominal value: 7 pixels

• X RES and Y RES: The horizontal resolution of the input files in meters. Used

in the get vectors.m and advect image.m files. Nominal value: 4762.5 meters

• TIME SPACING: The temporal resolution of the input files in minutes. Used

in the get vectors.m and advect image.m files. Nominal value: 15 minutes

• ANGLE TOL: Specifies the maximum deviation, in degrees, between a local

vector and the global vector computed in the global correlation analysis. Used

in the get vectors.m file. Nominal value: 30 degrees

• RAIN THRESH: A minimum filtered rainfall value allowed to persist through

the code. Used in the prepare images.m file. Nominal value: 0.1 mm

• WX MIN: A minimum percentage of valid weather in the sample and field sub-

images needed to perform a local correlation between the two sub-images. Used

in the correlate images.m file. Nominal value: 0.25

• RANGE: A distance parameter that is used in multiple instances to define

areas for interpolation or filtering. Used as a side length in the correlation

meta surface (CMS) filtering process and as a side length of an area of influence

for vector interpolation. Occurs in the quality control.m, surface filter.m and

interpolation.m files. Nominal value: 11 pixels

• SIGMA: Used in the generation of the two dimensional Gaussian filter employed

for CMS filtering. In conjunction with the RANGE parameter, SIGMA serves

as an input to the fspecial function found in the image processing tool box.

Used in the quality control.m file. Nominal value: 1.5

82

• Z THRESH: Sets a minimum correlation coefficient value for a valid maximum.

Used in the quality control.m file. Nominal value: 0.55

• SPEED LIMIT: Sets a maximum displacement for local vectors. Vectors with

magnitudes over this value are eliminated and interpolated later. Used in the

get vectors.m file. Nominal value: 5 pixels

• SEARCH RADIUS: Defines an area around the endpoint of the global vector

in which to search for the maximum correlation coefficient. Is a component of

the correction values, that turn displacements from the global vector endpoint

into displacements from the center pixel. Used in the correlate images.m and

global correlation.m files. Nominal value: 3 pixels

• INTERP RADIUS: A component of the area used in the interpolation of the

forecast files. Side lengths of the influential area are 2∗INTERP RADIUS+1

pixels long. Used in the interp fcst.m file. Nominal value: 2 pixels

• INTERP PCT: Sets the minimum percentage of non-zero weather that must be

in the influential area for forecast interpolation. Used in the interp fcst.m file.

Nominal value: 0.50

A.2 Source File Description

The MATLAB code that performs the short-term, extrapolation-based forecasting

procedure is composed of 18 .m files. The source code is found in Appendix B.

tracker.m

This file is the main file for the execution of the Storm Tracker algorithm. From

this file, other files are called to provide support and outputs to pass on to other

functions. This files takes a batch file of rainfall field text files as inputs, produces

zero to two hour forecasts, in fifteen minute increments, and returns a vector of crit-

ical success index scores for the various lead times averaged over all the forecasted

83

files. Actions taken within this file include reading of the parameter file and writing

the averaged CSI scores into a file. The functions called directly from this func-

tion are read batch file, correlate images, quality control, get vectors, interpolation,

continuity, advect image, and score forecasts.

read batch file.m

This file takes the name of a batch file of full path file names as input and returns

a MATLAB array of strings of the filenames and the number of files in the batch file.

correlate images.m

This file performs the local area correlation analysis between two input files. In-

puts to this file are strings containing the pair of file names to perform the correlation

on and the four outputs are a binary field with values of one indicating that a valid

correlation was performed, a three dimensional data structure containing the global

vector biased, limited search area correlation surfaces for the valid correlations, a

two element vector containing the correction values for turning a location in the

global vector biased, limited search area correlation surface into a location relative

to the pixel the surface is associated with and a binary field of ones indicating all

the locations where correlation was performed for use in the vector interpolation file.

The functions called directly from this file are prepare images and global correlation.

Other acts performed by this file include a check to ensure that the the first of the two

images is not a field of zeros, the calling of the normxcorr2 function from the image

processing tool box to perform the correlation between the sub-images of the input

fields, and the clipping of the full correlation surface to create an output variable that

is efficient to pass between functions.

prepare images.m

This file pre-processes the input images prior to the correlation analysis step. The

inputs are the strings containing the filenames to be processed and the outputs are

84

the filtered fields, the filtered and padded fields, and the unfiltered second field. This

function calls the st filt function to perform the filtering on the two fields. Other

processes of this function are the thresholding of the filtered fields, a check to ensure

that the fields are the same size, and the padding of the fields by using the padarray

function from the image processing tool box.

st filt.m

This file filters a two dimensional field using an averaging filter. The inputs are

the field to be filtered, the number of rows in the filter and the number of columns in

the filter, while the output is the filtered field. The filtering is done using the conv2

function from the image processing tool box.

global correlation.m

This file performs a correlation analysis between the whole first and second images.

Inputs to the file are the strings containing the first and second file names and the

outputs are the correction array mentioned in the correlate images.m file, and the

Cartesian components of the global vector. The normxcorr2 function provides the

correlation surface of which the location of the maximum correlation coefficient is

found. The displacement of this location from the center of the correlation surface is

the global vector and from that vector the global angle and magnitude can be found

and in conjunction with the SEARCH RADIUS parameter the correction array is

computed. No other functions are called from this file.

quality control.m

This file performs the correlation meta surface filtering. Inputs to the file are the

three dimensional correlation surface data structure and the binary field of valid cor-

relation locations and the output is the filtered three dimensional correlation surface

data structure. Using the fspecial function from the image processing tool box, a two

dimensional Gaussian weighted filter is created than applied to the correlation sur-

85

faces. This file calls the surface filter function to do the filtering on the surfaces. The

surfaces that are filtered are created by taking all the pixels from the same relative

positions in the correlation surfaces and smoothing them using the filter specified

above. Correlation values less than Z THRESH are eliminated prior to their output.

surface filter.m

This file does the actual filtering of the correlation meta surfaces. The inputs are

the field to be filtered, the filter weights, and the binary field of valid correlation loca-

tions while the single output is the filtered surface. To only focus on the correlation

coefficient values that will yield a maximum, negative coefficients are eliminated prior

to the filtering operation, and are not included in the weighted average computation.

No other files are called in the execution of this file.

get vectors.m

This file converts the globally biased, limited search area correlation surfaces into a

field of displacement vectors for the pair of input files. Inputs to this file are the filtered

three dimensional correlation surface data structure, the correction array, the binary

field of valid correlation locations, and the binary interpolation field and outputs

horizontal and vertical vector fields in meters per second as well as adjusted versions of

the two input binary fields. Each valid correlation surface is analyzed for its maximum

value and its location is converted into a displacement vector. Before conversion

into a velocity, each vector is checked against the ANGLE TOL and SPEED LIMIT

parameters to eliminate largely erroneous vectors. No other files are called from

within this file.

interpolation.m

This file interpolates holes in the vector field caused by the elimination of vectors

due to failing one of the quality control criteria. Inputs to this file are the horizontal

and vertical vector fields and the binary interpolation field dictating which locations

86

to fill with interpolation, and the outputs are the interpolated vector fields. This file

only interpolates using valid vectors, which are composed solely of locations where the

second image file had rainfall rates greater than zero. The remainder of the locations

are forced to be not-a-number (NaN) and are not included in the calculation of the

interpolated value. No other files are called within this file.

advect image.m

This file applies the derived vector fields to the second input field and produces

a series of forecast files. The inputs to this file are the file to be forecasted from,

the horizontal and vertical velocity fields and a string of forecast times and outputs

an array of strings that are the names of the files that the forecasts were written

to. Displacements for each pixel are determined by multiplying the vector fields by

the forecast lead time to generate a displacement appropriate for that lead time. The

pixels from the input file are then advected to that new point using a “put” operation.

Other functions called from this file are interp fcst and file writer.

interp fcst.m

This file fills holes in the forecast field that are the result of the “put” forecasting

operation. The raw forecast field is the input to this file and the filled forecast field

is the output. By using an inverse distance squared interpolation algorithm, missing

points in the forecast field whose areas of influence include more than INTERP PCT

percentage of pixels within the 2 ∗ INTERP RADIUS + 1 square surrounding the

missing point are filled with the weighted average of the surrounding pixels. This file

does not call any other functions.

file writer.m

This file takes a two dimensional field and writes it into a text file on the hard

disk. Inputs to this file are the field to be written and the full path name of the file

to contain the field, and there are no outputs. This file does not call any other files.

87

score forecasts.m

This file take a set of forecasts from a single input file and scores them using a

critical success index comparison with the observed field from the valid time of the

forecast. The input to this file is an array of strings that are the filenames of the

forecast files that have been written to the hard disk and the output is an array of

CSI scores for the difference lead times in the file. This file calls the get actual file

and csi score functions to find the observed file for comparison and to determine the

CSI score between the two files.

get actual file.m

This file takes a file written by the file writer function, which has its initial time

as the first section of the file name and the lead time as the second section of the file

name, and finds the observed file that is valid at the time that the forecast is valid.

The input to this file is the string containing the forecast file name and the output

is the string containing the full path location of the observed file needed for scoring.

This file determines the change in minute, hour, and day by adding the lead time

to the initial time but does not compute the change in month or year, however this

would be relatively simple to incorporate. This file does not call any other files. The

directory name where the observed files are stored should be changed prior to use

with different storm events so the proper comparison can be made.

csi score.m

This file takes a forecast file and its corresponding observed file and computes

the CSI score between the fields. The inputs to this file are the strings containing

the names of the forecast and observed files as well as the verification area size and

the rainfall rate threshold. The output from this file is the CSI score, as a decimal,

indicating how well the forecast scored. Aside from square windows, called for by

entering a single number in the verification area size input, a “cross” or a three by

five rectangle can be used by entering “cross” or “rect” respectively for the argument.

88

The extended verification area scoring is done via a smoothing process on the observed

field prior to comparison. No other functions are called by this file.

89

90

Appendix B

MATLAB Source Code

B.1 tracker.m

function [av csi] = tracker(input, outputdir, actdir)
% Main function for MATLAB based, short term extrapolation rainfall
% forecasting. Takes a batch file of input files and generates a series of
% forecast files for each pair of initial files. Also requires directory
% names for the forecast files to be written to as well as the location of
% the verification files for comparison. Calls correlate images,
% quality control, get vectors, interpolation, continuity and advect image
% to do velocity vector generation, quality control, interpolation,
% conversion, and image advection. Files are written into the directory
% specified by outputdir. Please use full directory/file names for all 10

% inputs.

% Initialize timer and close all open figure windows.
start = clock;
close all

% Declare Global Variables: Defined in file st.params
global FILTER ROWS FILTER COLS MAX SHIFT CORR BOXSIZE
global X RES Y RES TIME SPACING ANGLE TOL RAIN THRESH
global WX MIN RANGE SIGMA Z THRESH SPEED LIMIT SEARCH RADIUS 20

% These global variable are defined within the following function calls
global TOTAL ROWS TOTAL COLS HALFSIZE THETA GLOBAL
global MARGIN ANGLE TOL RAD

% Read parameters from external parameter file
[params, values] = textread('st.params', '%s %n', 'delimiter',. . .

91

'\t','commentstyle','matlab');
for j=1:length(values)

assign = sprintf('%s%s%f%s', char(params(j)), '=',values(j),';'); 30

eval(assign);
end

% Define variables that are dependent on global variables
HALFSIZE = floor(CORR BOXSIZE/2);
ANGLE TOL RAD = ANGLE TOL∗pi/180;

% Desired forecast times (min)
forecast times = [0 15 30 45 60 75 90 105 120];

40

% Get list of filenames to be used in forecast
[file names,file count] = read batch file(input);

% Initialize total forecast counter.
n=0;

% Determine number of input file pairs to be analyzed
TOTAL PAIRS = file count−1;

% Start generating forecasts with second file 50

for h=2:file count
% Display progress
PAIR NUMBER = (h−1);
tag = sprintf('%s%d%s%d', 'This is pair ', PAIR NUMBER,. . .

' out of ', TOTAL PAIRS);
disp(tag)

% Define first and second files to be used in correlation analysis
file1 = file names(h−1, :);
file2 = file names(h, :); 60

% Perform correlation analysis on pair of images
disp('Starting Correlation Analysis')
[vec valid, z3d, corr matrix] = correlate images(file1, file2);

% Display correlation meta surface (CMS) surrounding selected pixel (optional).
create meta surface(z3d,100,225);

% vec valid will equal -9999 when the first of the two images has no
% weather in it. Forecasts will not be generated and the csi scores 70

% will not effect the average.
if vec valid ˜= −9999

92

%Increment total forecast counter
n = n+1;

% Filter the CMS to bias maximum displacement towards local average
% location
disp('Starting Quality Control (Meta-Surface Filtering)')
[z3d] = quality control(vec valid, z3d); 80

% Display filtered CMS around selected pixel (optional)
create meta surface(z3d,90,225);

% Convert vectors and remove errant vectors
disp('Converting vectors')
[x vectors, y vectors, vec valid] = get vectors(z3d,. . .

corr matrix, vec valid);

% Interpolate the removed vectors 90

disp('Interpolating Missing Vectors')
[x vectors,y vectors, vec valid] = interpolation(x vectors,. . .

y vectors,vec valid);

% Advect the image and write forecasts to files
disp('Generating Forecasts')
fcsts = advect image(file2, x vectors, y vectors, forecast times, outputdir);

% Evaluate forecast accuracy with CSI scoring
csi(h−1,:) = score forecasts(fcsts, 1, 0, actdir); 100

else
disp('Empty input field: forecasting process skipped')

end
end

% Plot average forecast accuracy against lead time
av csi = sum(csi,1)./n;
figure
plot(forecast times,av csi.∗100,'-*')
title('Average CSI v. Lead Time') 110

xlabel('Lead Time (min)')
ylabel('CSI (%)')

% Store forecast accuracy
csi outfile = sprintf('%s%s', outputdir, '/average_scores.csi');
fid = fopen(csi outfile,'w');
for i=1:size(av csi,2)

93

fprintf(fid, '%d %f\n',forecast times(i),av csi(1,i));
end
fclose(fid); 120

% Determine and display elapsed time
elapsed time = etime(clock,start)

B.2 global tracker.m

function [av csi] = global tracker(input, outputdir, actdir)
% Main function for MATLAB based, short term extrapolation rainfall
% forecasting with a single vector derived from correlation analysis
% between whole images. Takes a batch file of input files and generates a
% series of forecast files for each of the pairs of files. Also requires
% destination directory for the forecast files as well as the location of
% the files for verification. Calls global correlation, and advect image
% to do velocity vector generation and image advection. Files are written
% into the directory specified by outputdir. Please use full
% directory/file names for all input files. 10

% Initialize timer and close all open figure windows
start = clock;
close all

% Declare Global Variables: Defined in file st.params
global FILTER ROWS FILTER COLS MAX SHIFT CORR BOXSIZE
global X RES Y RES TIME SPACING ANGLE TOL RAIN THRESH
global WX MIN RANGE SIGMA Z THRESH SPEED LIMIT SEARCH RADIUS

20

% These global variable are defined within the following function calls
global TOTAL ROWS TOTAL COLS HALFSIZE THETA GLOBAL
global MARGIN ANGLE TOL RAD

% Read parameters from external parameter file
[params, values] = textread('st.params', '%s %n', 'delimiter',. . .

'\t','commentstyle','matlab');
for j=1:length(values)

assign = sprintf('%s%s%f%s', char(params(j)), '=',values(j),';');
eval(assign); 30

end

% Define variables that are dependent on global variables
HALFSIZE = floor(CORR BOXSIZE/2);
ANGLE TOL RAD = ANGLE TOL∗pi/180;

94

del t = TIME SPACING∗60;

% Desired forecast times (min)
forecast times = [0 15 30 45 60 75 90 105 120];

40

% Get list of filenames to be used in forecast
[file names,file count] = read batch file(input);

% Initialize total forecast counter
n=0;

% Determine number of input pairs to be analyzed
TOTAL PAIRS = file count−1;

% Start generating forecasts with second file 50

for h=2:file count
% Display progress
PAIR NUMBER = (h−1);
tag = sprintf('%s%d%s%d', 'This is pair ', PAIR NUMBER,. . .

' out of ', TOTAL PAIRS);
disp(tag)

% Define first and second files to be used in correlation analysis
file1 = file names(h−1, :);
file2 = file names(h, :); 60

% Prepare images for correlation analysis
[time1,time2,time1 pad,time2 pad,t2nf] = prepare images(file1,file2);

if sum(time1(:))˜=0
% Increment total forecast counter
n=n+1;

% Perform global correlation analysis
[corr matrix,g vec] = global correlation(time1,time2); 70

% Clear unneeded variables
clear time1 time2 time1pad time2pad

% Turn pixel displacements into velocities in meters per second
x vectors = (g vec(2)∗X RES/del t);
y vectors = (g vec(1)∗X RES/del t);

% Advect input file and score and write forecasts to files
disp('Generating Forecasts') 80

95

csi(h−1,:) = advect global(file2, x vectors, y vectors,. . .
forecast times, outputdir, actdir);

else
disp('Empty input field: forecasting process skipped')

end
end

% Plot average forecast accuracy against lead time
av csi = sum(csi,1)./n;
figure 90

plot(forecast times,av csi.∗100,'-*')
title('Average CSI v. Lead Time')
xlabel('Lead Time (min)')
ylabel('CSI (%)')

% Store forecast accuracy
outfile = sprintf('%s%s',outputdir, '/aprglobal.csi');
fid = fopen(outfile,'w');
for i=1:size(av csi,2)

fprintf(fid, '%d %f\n',forecast times(i),av csi(1,i)); 100

end
fclose(fid);

% Determine and display elapsed time.
elapsed time = etime(clock,start)

B.3 read batch file.m

function [filenames, filecount] = read batch file(batch file name)
% Function to obtain contents of a batch file of filenames. Takes the
% batch filename as an input and returns a list of filenames from within
% the batch file and a count of the number of filenames found.

% Open batch file
batch fid = fopen(batch file name, 'r');

% Initialize file counter
filecount = 0; 10

% Get number of lines (files) in batch file
while fgetl(batch fid) ˜= −1

filecount = filecount + 1;
end

96

% Reset file position indicator
frewind(batch fid);

% Get filenames from file 20

for g=1:filecount
filenames(g,:) = fgetl(batch fid);

end

B.4 correlate images.m

function [vec valid, z3d, corr matrix] = correlate images(file1, file2)
% Function that performs local area correlation between ’file1’ and
% ’file2’. Takes as inputs the full-path filenames and returns:
% ’vec valid’, a matrix of locations flagging which resulted in valid
% correlations, which are invalid and which need to be interpolated; ’z3d’,
% a 3D representation of the global-vector biased, limited search area,
% correlation surface at each pixel; and ’corr matrix’, a row and column
% correction value to be applied to the raw locations of maximum
% correlation to determine displacement from center pixel.

10

% Declare Global Variables
global FILTER ROWS FILTER COLS MAX SHIFT CORR BOXSIZE WX MIN
global RANGE SEARCH RADIUS TOTAL ROWS TOTAL COLS HALFSIZE

% Prepare input files for global and local correlation analyses
[time1,time2,time1 pad,time2 pad,t2nf] = prepare images(file1,file2);

% Check to ensure there is weather in the first image
if (sum(time1(:)) == 0) | (time1 == −9999)

vec valid = −9999; 20

z3d = 0;
corr matrix = 0;
disp('Error encountered in files: forecasting process skipped')
return

end

% Perform Global Correlation analysis
[corr matrix,g vec] = global correlation(time1,time2);

% Clear unneeded variables 30

clear time1 time2

% Initialize variables
counter = 0;

97

vec valid = zeros(TOTAL ROWS,TOTAL COLS);
z3d = zeros(TOTAL ROWS,TOTAL COLS, (2∗SEARCH RADIUS+1)^2);

% Loop over all rows and columns in input images
for row=1:TOTAL ROWS

for col=1:TOTAL COLS 40

if t2nf(row,col) > 0
% Designate all pixels who provide acceptable correlations as a
% pixel to be interpolated later. If there is no problem with
% the correlation, the flag is set to 1 which indicates the
% point as a “good” vector.
vec valid(row,col) = 2;

% Select region from second image to locate in the first image
sample = time2 pad(row:row+2∗HALFSIZE, col:col+2∗HALFSIZE);

50

% Select restricted search area from first image
field = time1 pad(row:row+2∗MAX SHIFT, col:col+2∗MAX SHIFT);

% Compute the percentage of the sub areas that “have weather”
per weather field = sum(field(:)>0)/prod(size(field));
per weather sample = sum(sample(:)>0)/prod(size(sample));

% Only do correlations for pixels whose sub areas have weather
% coverage exceeding the set threshold and have weather in the
% second image to be advected. 60

if (per weather field > WX MIN)&(per weather sample > WX MIN)
% Increment valid correlation counter
counter = counter +1;

% Adds noise to uniform sample pattern, as required by
% normxcorr2
if std(sample(:)) == 0

noise = (exp(0.25∗randn(size(sample))));
sample = sample .∗ noise;

end 70

% Correlate the two sub images (image processing toolbox
% function)
z = normxcorr2(sample, field);

% Create global vector biased and limited search area
if counter==1

% Find the coordinates of the center of the
% full correlation matrix

98

center = ceil(size(z)./2); 80

% Define the center of a limited region of the full
% correlation surface within which a maximum will be
% identified. This center is offset from the full center
% by the global displacement center.
new center = center−g vec;

% Determine the beginning and ending rows and columns
% of the re-centered limited search area.
starts = new center − SEARCH RADIUS; 90

ends = new center + SEARCH RADIUS;
end

% Check to ensure the edges of the limited search area are
% within the unpadded correlation area (eliminates effects

% of zero padded edges)
if (ends(1) <= size(z,1)−2∗HALFSIZE)&. . .

(starts(1) >= 2∗HALFSIZE)&. . .
(ends(2) <= size(z,2)−2∗HALFSIZE)&. . .
(starts(2) >= 2∗HALFSIZE) 100

% Define the limited search area
z t = z(starts(1):ends(1),starts(2):ends(2));

% Ensure that the limited search area is of proper size
if size(z t)==[2∗SEARCH RADIUS+1,. . .

2∗SEARCH RADIUS+1]
% Define this pixel as a valid correlation location
vec valid(row,col) = 1;

110

% Assign limited search area to output variable
z3d(row,col,:) = z t(:);

end
end

end
end

end
end

B.5 prepare images.m

function [time1,time2,time1 pad,time2 pad,time2 nf]=prepare images(file1,file2)
% Function that takes in the two files to be correlated

99

% and prepares them for the correlation procedure. Outputs
% from this function are the two filtered numerical fields,
% the two numerical fields filtered and padded with zeros,
% and the second field in its original form.

% Declare global variables
global FILTER ROWS FILTER COLS RAIN THRESH TOTAL ROWS
global TOTAL COLS HALFSIZE MAX SHIFT 10

% Load input files
time1 = load(file1);
time2 nf = load(file2);

% Filter the images prior to correlation
time1 = st filt(time1, FILTER ROWS, FILTER COLS);
time2 = st filt(time2 nf, FILTER ROWS, FILTER COLS);

% Eliminate the non-exceeding rainfall values. 20

time1(time1 < RAIN THRESH) = 0;
time2(time2 < RAIN THRESH) = 0;

% Check to ensure that the input files are of the same size
if (size(time1) ˜= size(time2))

disp('Files not the same size')
return

end

% Define global variables dealing with the size of the data 30

[TOTAL ROWS,TOTAL COLS] = size(time1);

% Pad fields with zeros so that the correct sizes of sub-regions
% can be made without errors due to exceeding size of the matrix.
time2 pad = padarray(time2,[HALFSIZE HALFSIZE],0,'both');
time1 pad = padarray(time1,[MAX SHIFT MAX SHIFT],0,'both');

B.6 st filt.m

function filtered image = st filt(z, filter rows, filter cols)
% Filters a 2-D image using an averaging filter. Takes image to be
% filtered and size of filter as inputs and returns filtered image.

% Define filter
weights = ones(filter rows, filter cols)/(filter rows ∗ filter cols);

100

% Initialize output
filtered image = z;

10

% Perform convolution filtering between input and filter. Returns a matrix
% with the same dimensions as the input.
filtered image = conv2(z, weights, 'same');

B.7 global correlation.m

function [corr matrix,g vec] = global correlation(time1,time2)
% Function to determine global displacement between two images. Takes
% image pair as input and returns the correction matrix, which is the
% coordinate transform required to turn a pixel location in global
% displacement biased, limited search area into a displacement from the
% center pixel, and the global vector.

% Declare global variables
global THETA GLOBAL SEARCH RADIUS

10

% Correlate the second image with the first
z = normxcorr2(time2, time1);

% Find the location of the maximum correlation value.
[m g, imax] = max(z(:));

% Turn the vector index into a matrix subscript location
[dy g, dx g] = ind2sub(size(z),imax);

% Find the coordinates of the center of the correlation matrix 20

center = ceil(size(z)./2);

% Convert from the location within the correlation vector to the actual
% displacement vector
g vec(1) = −(dy g−center(1));
g vec(2) = −(dx g−center(2));

% Find the “global angle” between 0 and 2∗pi
THETA GLOBAL = atan2(g vec(1), g vec(2));
if THETA GLOBAL < 0 30

THETA GLOBAL = THETA GLOBAL + 2∗pi;
end

% Determine coordinate transform vector
corr matrix = −(g vec+SEARCH RADIUS+1);

101

B.8 quality control.m

function [z3d out] = quality control(vec valid, z3d)
% Perform filtering on the correlation meta surface (CMS) to bias the
% location of the maximum correlation coefficient toward the local average.
% Takes the vec valid flag matrix and the 3D representation of the
% correlation surfaces as inputs and returns the filtered 3D correlation
% surface representation.

% Declare global variables
global RANGE SIGMA Z THRESH

10

% Determine the number of pixels in each individual correlation surface
% (CS)
c = size(z3d,3);

% Generate Gaussian weighted filter using an image processing toolbox
% function.
H = fspecial('gaussian', RANGE, SIGMA);

% Loop over total number of elements in the correlation surfaces
for g=1:c 20

% Extract same relative pixel from each surface for filtering
temp = z3d(:,:,g);

% Filter the field with the Gaussian filter
output = surface filter(temp, H, vec valid);

% Eliminate correlation surface values below Z THRESH
output(output<Z THRESH) = 0;

% Assign filtered field to output variable 30

z3d out(:,:,g) = output;
end

B.9 surface filter.m

function fsurf = surface filter(matrix, H, valid)
% Function to smooth a 2D field using a specified filter not including the
% NaN values. Takes the field to be filtered, the filter, and a field of
% locations to generate filtered values at as inputs and returns the
% filtered field.

% Remove extraneous screen output

102

warning off 'MATLAB:divideByZero'

% Declare global variables 10

global RANGE TOTAL ROWS TOTAL COLS

% Define filter radius

halfsize = floor(RANGE/2);

% Initialize output variable

fsurf = zeros(TOTAL ROWS,TOTAL COLS);

% Turn negative and zero correlation coefficients into NaNs

matrix(matrix<=0) = NaN; 20

% Loop over all interior points in field

for r= halfsize+1 : TOTAL ROWS−halfsize

for c= halfsize+1 : TOTAL COLS−halfsize

% Only filter points where valid correlations were made

if valid(r,c)== 1

% Define area of influence

sub matrix = matrix(r−halfsize:r+halfsize,. . .

c−halfsize:c+halfsize);

30

% Multiply by filter

z = H.∗sub matrix;

% Compute mean of positive values within filter weighted

% influential area

numer = nansum(z(:));

t = z>0;

w = H.∗t;
denom = sum(w(:));

40

% Do not return infinite mean values

if denom==0

fsurf(r,c) = 0;

else

fsurf(r,c) = numer/denom;

end

end

end

end

50

103

B.10 get vectors.m

function [u,v, vec valid] = get vectors(z3d, corr matrix,vec valid)
% Function to convert correlation surfaces to vectors in meters per second.
% Also incorporates several quality control tests. Takes the all the
% correlation surfaces, the correction matrix, the valid vector field and
% the interpolation field as inputs and returns the x- and y-direction
% velocities, and the adjusted valid vector field.

% Declare global variables.
global X RES Y RES TIME SPACING SPEED LIMIT TOTAL ROWS
global TOTAL COLS ANGLE TOL RAD THETA GLOBAL 10

% Define other variable that are function of the global variables
del t = TIME SPACING∗60; %seconds

% Initialize variables
x shift = NaN∗ones(TOTAL ROWS,TOTAL COLS);
y shift = NaN∗ones(TOTAL ROWS,TOTAL COLS);
theta loc = NaN∗ones(TOTAL ROWS,TOTAL COLS);

% Determine number of pixels in each CS 20

c = size(z3d,3);

% Loop over all rows and columns in the second image
for row=1:TOTAL ROWS

for col=1:TOTAL COLS

% Only generate velocities for valid correlations
if vec valid(row,col) == 1

% Find the maximum correlation values and the maximum row index 30

% over all the rows for each pixel.
[m(row,col), imax] = max(z3d(row,col,:));

% Retrieve the maximum column index for its associated row
[y,x] = ind2sub([sqrt(c) sqrt(c)], imax);

% Transform the returned maximum correlation location into a
% displacement from the center of the full correlation surface
x shift(row, col) = −(x + corr matrix(1,2));
y shift(row, col) = −(y + corr matrix(1,1)); 40

% Get local vector angle between 0 and 2∗pi
theta loc(row,col) = atan2(y shift(row,col),x shift(row,col));

104

if theta loc(row,col) < 0
theta loc(row,col) = theta loc(row,col) + 2∗pi;

end

% Get local magnitude
r local(row,col) = sqrt(x shift(row,col)^2 + y shift(row,col)^2);

50

% Compute deviation from global angle
angle diff = abs(theta loc(row,col)−THETA GLOBAL);
angle diff = min([angle diff abs(angle diff−2∗pi) (angle diff+2∗pi)]);

% Remove vectors that fail tests on angle deviation, local
% magnitude, and maximum correlation coefficient value and
% specify them to be interpolated (vec valid = 2)
if (angle diff > ANGLE TOL RAD) |. . .

(r local(row,col) > SPEED LIMIT)|. . .
(m(row,col) == 0) | (isnan(m(row,col))) 60

vec valid(row,col) = 2;
x shift(row,col) = NaN;
y shift(row,col) = NaN;
m(row,col) =NaN;
theta loc(row,col) = NaN;
r local(row,col) = NaN;

end
end % End if statement

end % End Column loop
end % End Row loop 70

% Convert from displacements to velocities in meters per second
u = x shift .∗ (X RES/del t);
v = y shift .∗ (Y RES/del t);

B.11 interpolation.m

function [xo,yo,v] = interpolation(x,y,v)
% Function to interpolate missing vectors values with the average of the
% surrounding magnitudes. Takes the vectors fields and the valid
% field as inputs and returns full vector fields and modified valid field. .

% Declare global variables
global TOTAL ROWS TOTAL COLS RANGE

% Define radius of influence
halfbox = floor(RANGE/2); 10

105

% Pad vector fields with NaN values.
x = [NaN∗ones(halfbox,TOTAL COLS+2∗halfbox);. . .

NaN∗ones(TOTAL ROWS,halfbox) x. . .
NaN∗ones(TOTAL ROWS,halfbox);. . .
NaN∗ones(halfbox,TOTAL COLS+2∗halfbox)];

y = [NaN∗ones(halfbox,TOTAL COLS+2∗halfbox);. . .
NaN∗ones(TOTAL ROWS,halfbox) y. . .
NaN∗ones(TOTAL ROWS,halfbox);. . .
NaN∗ones(halfbox,TOTAL COLS+2∗halfbox)]; 20

% Loop over all rows and columns in image
for m=1:TOTAL ROWS

for n=1:TOTAL COLS
% Only interpolate vectors identified by the interpolation field
if v(m,n) == 2

% Define local areas
loc area x = x(m:m+2∗halfbox,n:n+2∗halfbox);
loc area y = y(m:m+2∗halfbox,n:n+2∗halfbox);

30

%Compute local means
loc mean x = nanmean(loc area x(:));
loc mean y = nanmean(loc area y(:));

% Assign local means to center pixels
x(m+halfbox,n+halfbox) = loc mean x;
y(m+halfbox,n+halfbox) = loc mean y;

% Change the flag on the vector to represent a valid vector
v(m,n) = 1; 40

end
end

end

% Trim fields to original size
xo = x(halfbox+1:end−halfbox,halfbox+1:end−halfbox);
yo = y(halfbox+1:end−halfbox,halfbox+1:end−halfbox);

B.12 advect image.m

function fcst file=advect image(initial file,x vec,y vec,forecast times,outputdir)
% Function that performs the actual forecasting step. Takes an original
% file, x- and y-direction vectors, a string of forecast times, and the
% directory for the outputted files as inputs and returns a list of files

106

% that the forecasted fields were written to. Calls file writer.

% Declare global variables
global X RES Y RES TOTAL ROWS TOTAL COLS TIME SPACING

% Eliminate extraneous output to the screen 10

warning off 'MATLAB:divideByZero'

% Load the initial file
initial file mat = load(initial file);

% Determine number of forecasts to be made
d = size(forecast times, 2);

% Convert forecast times (in min) to seconds
forecast times sec = forecast times .∗ 60; 20

% Remove NaN values from vector fields
x vec(isnan(x vec)) = 0;
y vec(isnan(y vec)) = 0;

% Define the field to be advected
start = initial file mat;

% Compute incremental velocity field.
xv = x vec .∗ (TIME SPACING.∗60./X RES); 30

yv = y vec .∗ (TIME SPACING.∗60./X RES);

% Loop over all forecast times greater than zero
for t=1:d

if forecast times(1,t) ˜= 0

% Initialize forecast, velocity and averaging fields
forecast = zeros(TOTAL ROWS,TOTAL COLS);
xv new = zeros(TOTAL ROWS,TOTAL COLS);
yv new = zeros(TOTAL ROWS,TOTAL COLS); 40

check = zeros(TOTAL ROWS,TOTAL COLS);

% Loop over all internal rows and columns in initial image
for row = 2:TOTAL ROWS−1

for col = 2:TOTAL COLS−1
% Only advect pixels that have weather
if start(row,col) > 0

% Determine the index in the forecast for each point in

107

% the initial file based on the initial index and the 50

% displacement
row out = round(row + yv(row, col));
col out = round(col + xv(row, col));

% Do not put weather outside of forecast area
if (row out > 1) & (col out > 1) &. . .

(row out<TOTAL ROWS) & (col out <TOTAL COLS)
% Translate each pixel and its neighborhood to the
% corresponding locations in the forecast or
% advected velocity fields. 60

forecast(row out−1:row out+1, col out−1:col out+1) = . . .
forecast(row out−1:row out+1,. . .
col out−1:col out+1)+. . .
start(row−1:row+1, col−1:col+1);

xv new(row out−1:row out+1, col out−1:col out+1) = . . .
xv new(row out−1:row out+1,. . .
col out−1:col out+1) +. . .
xv(row−1:row+1,col−1:col+1);

yv new(row out−1:row out+1, col out−1:col out+1) = . . .
yv new(row out−1:row out+1,. . . 70

col out−1:col out+1) +. . .
yv(row−1:row+1,col−1:col+1);

% Increment the counter for number of values placed
% in each pixel
check(row out−1:row out+1, col out−1:col out+1) =. . .

check(row out−1:row out+1, col out−1:col out+1). . .
+ ones(3,3);

end
end 80

end
end

% Average advected values
xv = xv new./check;
yv = yv new./check;
forecast = forecast./check;

% Remove any cells that had zero pixels advected there.
xv(isinf(xv)) = NaN; 90

yv(isinf(yv)) = NaN;
forecast(isinf(forecast)) = NaN;

% Get forecast file name

108

fcst file(t,:) = sprintf('%s%s%s%03d%s', outputdir,. . .
'/f',initial file(end−19:end−7), forecast times(1,t), '.txt');

% Write forecast file
file writer(forecast, fcst file(t,:));

100

% Change the file to be advected in the next forecasting step
start = forecast;

else
% Do not do the advection for the “zero time” forecast
forecast = initial file mat;

% Determine file name and write zero time forecast to the file
fcst file(t,:) = sprintf('%s%s%s%03d%s', outputdir,. . .

'/f',initial file(end−19:end−7), forecast times(1,t), '.txt');
file writer(forecast, fcst file(t,:)); 110

end
end

B.13 advect global.m

function csi=advect global(initial file,x vec,y vec,forecast times,outputdir,actdir)
% Function that performs the actual forecasting step. Takes an original
% file, x- and y-direction vectors, a string of forecast times, the
% directory to write the forecasts to and the directory where the
% verification files can be found as inputs and returns an array of CSI
% scores for the forecasts. Calls file writer and csi score.

% Declare global variables
global TOTAL ROWS TOTAL COLS X RES Y RES

10

% Load the initial file
initial file mat = load(initial file);

% Determine number of forecasts to be made
d = size(forecast times, 2);

% Convert forecast times (in min) to seconds
forecast times sec = forecast times .∗ 60;

% Loop over all positive forecast times 20

for t=1:d
if forecast times(1,t) ˜= 0

% Compute displacements in pixels for each forecast time

109

x vec appl = x vec .∗ (forecast times sec(1, t)./X RES);
y vec appl = y vec .∗ (forecast times sec(1, t)./Y RES);

% Initialize forecast field
forecast = NaN.∗ones(TOTAL ROWS,TOTAL COLS);

% Loop over all rows and columns in initial image 30

for row = 1:TOTAL ROWS
for col = 1:TOTAL COLS

% Only advect pixels that have weather
if initial file mat(row,col) > 0

% Determine the index in the forecast for each point in
% the initial file based on the initial index and the
% displacement
row out = round(row + y vec appl);
col out = round(col + x vec appl); 40

% Do not put weather outside of forecast area
if (row out > 0) & (col out > 0) &. . .

(row out<=TOTAL ROWS)&. . .
(col out <=TOTAL COLS)

% Translate each pixel to its corresponding point
% in the forecast image.
forecast(row out, col out) = initial file mat(row, col);

end
end 50

end
end

% Get forecast file name
fcst file(t,:) = sprintf('%s%s%s%03d%s', outputdir,'/f',. . .

initial file(end−19:end−7), forecast times(1,t), '.txt');

% Write forecast field to file
file writer(forecast, fcst file(t,:));

else 60

forecast = initial file mat;
% Get forecast file name
fcst file(t,:) = sprintf('%s%s%s%03d%s', outputdir,'/f',. . .

initial file(end−19:end−7), forecast times(1,t), '.txt');

% Write forecast field to file
file writer(forecast, fcst file(t,:));

end

110

% Get actual file name to compare forecast to
actual = get actual file(fcst file(t,:), actdir); 70

% Score forecast with CSI
csi(1,t) = csi score(fcst file(t,:), actual, 1,0);

end

B.14 file writer.m

function file writer(matrix, outputfile)
% Function that takes in a matrix and writes it to a file. Takes matrix
% and output file name as input and has no outputs.

% Open output file
out fid = fopen(outputfile, 'w');

% Get size of input field
[rows, cols] = size(matrix);

10

% Loop over all rows and columns.
for r=1:rows

for c=1:cols
% Write each pixel to output file
fprintf(out fid, ' %6.3f ', matrix(r,c));

end
% Move to new row
fprintf(out fid, '\n');

end
20

% Close output file
fclose(out fid);

B.15 score forecasts.m

function csi = score forecasts(file names,va,th,actdir)
% Function to take forecast files and determine their CSI score as compared
% to the actual file at that time. Takes a list of forecast files, a
% verification area side length, a rainfall threshold and the directory
% where the verification files are located as inputs and returns a vector
% of csi scores.

% Determine the number of forecasts to be scored.
file count = size(file names,1);

111

10

for h=1:file count
% Determine the actual file corresponding to the forecast file
actual file(h,:) = get actual file(file names(h,:), actdir);

% Score the forecast file
csi(h,1) = csi score(file names(h,:),actual file(h,:),va,th);

end

B.16 get actual file.m

function [actual weather] = get actual file(text input, actdir)
% Takes a forecast file produced by the MATLAB Storm Tracker and determines
% the actual file that corresponds to the forecast. Takes as input the
% forecast file and the directory name where the file should be located and
% returns the full path name of the actual file. Does not test if increase
% in time goes into another month or year(yet)

% Extract the initial year from the forecast file
year str = text input(end−15:end−12);
year = str2num(year str); 10

% Extract the initial month from the forecast file
month str = text input(end−19:end−18);
month = str2num(month str);

% Extract the initial day from the forecast file
day str = text input(end−17:end−16);
day = str2num(day str);

% Extract the initial hour from the forecast file 20

hour str = text input(end−11:end−10);
hour = str2num(hour str);

% Extract the initial minute from the forecast file
min str = text input(end−9:end−8);
min = str2num(min str);

% Extract the forecast lead time from the forecast file
t f = text input(end−6:end−4);
t f = str2num(t f); 30

% Increment the initial minute by the forecast time
min out = min+t f;

112

% Determine the house increment
hour inc = floor(min out/60);

% Determine the output minute
if min out >=60

min out = mod(min out,60); 40

end

% Increment the hour by the minute excess
hour out = hour + hour inc;

% Determine the day increment
day inc = floor(hour out/24);

% Determine the output hour
if hour out>=24 50

hour out = mod(hour out,24);
end

% Determine the output day
day out = day+day inc;

% Write the full path name for the actual file into a string
actual weather = sprintf('%s%s%02d%02d%s%02d%02d%s',. . .

actdir, '/w', month,day out,year str,hour out,min out,'.001.txt');

B.17 csi score.m

function [csi] = csi score(forecast, actual, window size, thresh)
% Function to compare a forecast file with the actual file at that time.
% Takes as inputs the forecast file, the actual file, the size of the
% verification area and the rainfall rate threshold and returns the CSI
% score for that file pair. The window size input can be either a single
% integer (for a square verification area), the string ’cross’ (for a cross
% verification area), or the string ’rect’ (for a 3 row by 5 column
% rectangle verification area).

% Check to ensure that the window exists 10

if window size < 1
disp('window_size must be greater than or equal to 1')
csi area = NaN;
return

end

113

% Load files
fcst = load(forecast);
act = load(actual);

20

% Determine size of files, assumes they are the same size
[n,m] = size(act);

% Eliminate NaN locations in the forecast and actual file
fcst(isnan(fcst)) = 0;
act = act > thresh;

% Define verification area weighting functions
if sum(size(window size)) == 2

weights = ones(window size) / window size^2; 30

elseif strcmp(window size, 'cross')
weights = [0 0.2 0 ; 0.2 0.2 0.2; 0 0.2 0];

elseif strcmp(window size, 'rect')
weights = (1/15).∗ones(3,5);

end

% Initialize convolution variable
sz = act;

% If the verification area is larger than 1x1, smooth the binary actual 40

% field by the verification area
if size(weights)˜=[1 1]

sz = conv2(act, weights, 'same');
end

% Initialize counters
correct no = 0;
hit = 0;
miss = 0;
false alarm = 0; 50

% Loop over all rows and columns in the images
for x=1:m

for y=1:n
% If there was actually rain within a “window size” area around the
% pixel in question, sz will be greater than zero, and if fcst is
% also greater than that threshold, increment the hit counter
if sz(y,x) > 0 & fcst(y,x) > thresh

hit = hit + 1;
% If both the actual and the forecast are less than the 60

114

% threshold, increment the correct no counter
elseif act(y,x) == 0 & fcst(y,x) <= thresh

correct no = correct no +1;
% if the actual is less than the threshold and the forecast is
% greater than the threshold, increment the false alarm counter

elseif act(y,x) == 0 & fcst(y,x) > thresh
false alarm = false alarm + 1;
% If the actual exceeds the threshold but the forecast does
% not, increment the miss counter

else 70

%act(y,x) == 1 & fcst(y,x) <= thresh
miss = miss + 1;

end
end

end

% The CSI is the ratio of the hits to the total of the hits, misses and
% false alarms
csi = hit/(hit+miss+false alarm);

115

