
MIT Sloan School of Management

MIT Sloan Working Paper 4543-05
CISL Working Paper No. 2005-05

May 2005

Multi-dimensional Ontology Views via Contexts
in the ECOIN Semantic Interoperability Framework

Aykut Firat, Stuart Madnick, Frank Manola

© 2005 by Aykut Firat, Stuart Madnick, Frank Manola.
All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without

explicit permission, provided that full credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=729383

Multi-dimensional Ontology Views via Contexts
in the

ECOIN Semantic Interoperability Framework

Aykut Firat, Stuart Madnick, Frank Manola

Working Paper CISL# 2005-04

May 2005

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

2

Multi-dimensional Ontology Views via Contexts in the
ECOIN Semantic Interoperability Framework

Aykut Fırat
Northeastern University

Boston, MA 02115, USA
a.firat@neu.edu

Stuart Madnick
Massachusetts Institute of Technology

Cambridge, MA 02142, USA
smadnick@mit.edu

 Frank Manola
Independent Consultant

Wilmington, MA 01887, USA
fmanola@acm.org

Abstract
This paper describes the coupling of contexts and
ontologies for semantic integration in the ECOIN semantic
interoperability framework. Ontological terms in ECOIN
correspond to multiple related meanings in different
contexts. Each ontology includes a context model that
describes how a generic ontological term can be modified
according to contextual choices to acquire specialized
meanings. Although the basic ECOIN concepts have been
presented in the past, this paper is the first to show how
ECOIN addresses the case of “single-ontology with
multiple contexts” with an example of semantic integration
using our new prototype implementation.

Introduction
With the globalization of information over the internet,
achieving semantic interoperability among heterogeneous
and autonomous systems has become an increasingly
important endeavor. A key issue in applying ontologies in
practical semantic interoperability problems has proven to
be reducing the amount of work needed to agree on a
shared model, to describe the different assumptions made
by sources and receivers, and to express (or generate) the
mappings required to transform the data when moving it
between different sources and receivers. In this paper, we
discuss the ECOIN1 approach and how it is able to address
this important issue.

In the ECOIN semantic interoperability framework,
ontologies describe both the shared domain model and the
ways in which contexts can specialize the shared model.
This is done by providing a terminology with generic
meanings, which are modified in local contexts to express
specialized meanings. A context model coupled with the
shared model explicitly specifies possible modification
dimensions of an ontological term. For example, the
meaning (and representation) of a generic term like airfare
can be modified along the currency, coverage, and
inclusion dimensions. A context, then, expresses the
specific specializations of the shared model that define a

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

1 ECOIN stands for Extended Context Interchange (see [Firat, 2003]).

given local model (and hence a local model is described by
the combination of the shared model and a particular
context.) In the airfare example, for instance, the meaning
of airfare objects is made explicit by local sources when
they specify the currency used (e.g. USD); and declare
whether the coverage is one-way or round-trip and what is
included in the airfare (e.g. tax and shipping).
 In the rest of this paper, we first review the ECOIN
framework. We then elaborate on this approach in more
detail by using a practical example from the air-travel
domain and continue with a brief overview of the related
work which is contrasted with the ECOIN approach.
Finally, we discuss the benefits of our approach in
reducing the amount of work needed to (a) construct a
shared model, (b) describe local models, and (c) express
mappings between contexts.

The ECOIN Framework
The ECOIN framework is a generic logic-based data model
that provides a template for the integration of
heterogeneous data sources. This template is defined as
follows:

Definition: (ECOIN Framework)
An ECOIN framework is a quadruple (O, S, C, M) where
each component is a set of logical predicates. O
corresponds to ontology that includes both the domain and
context model; S corresponds to source declarations; C
corresponds to context (instances); and M corresponds to
mappings (conversion function network) defined between
contexts.

In this framework, sources (S) and contexts (C) are
described with respect to the ontology (O). Mappings (M)
are structured according to the context model to enable
translation between different contexts. Below each
component is described in detail.

Ontology
Ontology in ECOIN includes both the domain and context
model. As in other data integration frameworks, an ECOIN
domain model is used to define a common type system for
the application domain (e.g., financial analysis, travel

 3

information) corresponding to the data sources that are to
be integrated. Like many other conceptual models, an
ECOIN domain model consists of a collection of (object)
types, which may be related in a subtype hierarchy. Types
have attributes to represent both the individual properties
of objects and relationships between objects (both things
and their properties are uniformly represented as objects).

The types in an ECOIN domain model are semantic
types, in that they represent the generic semantics of the
concepts used in the various data sources. A semantic type
is impartial to the exact representation or meaning of its
instances in specific contexts and encapsulates all. The
various specializations of these concepts used by different
sources or receivers are described using a special kind of
property called a modifier. The modifiers in an ontology
are chosen to explicitly describe the contextual

specializations of the generic types used by the sources and
receivers. For example, in Figure 1 the generic ontological
term airfare represented by the large cube can be
specialized along three modification dimensions of
{Coverage, Currency, Inclusion}. Different values of these
modifiers identify the different component cubes of the
overall airfare cube.

The modifiers in an ontology collectively define its
context model; and the collection of modifier objects that
describe the specializations that can be made by a given
source or receiver defines its context. Context declarations
are source independent, thus multiple sources or receivers
may use the same context (use the same specializations for
various values), but often different sources use different
contexts.

Modifiers themselves are semantic types, thus can be
subject to specialization (e.g. how do you represent
currency? USD vs. $.) This can be handled via defining
modifiers of modifiers. In Figure 2, this situation is
illustrated by a CurrencyFormat modifier for the Currency
modifier.

For objects without modifiers, the context model implies
a current existence of a common representation and
meaning across the sources and receivers. If this
assumption changes at a later time, new modifiers can be
introduced, further slicing and dicing the generic concepts.

In Figure 3, we illustrate a simplified ontology for the air
travel domain. The domain and context model
corresponding to the figure are represented in ECOIN with
the following logical predicates: (The omitted predicates
are indicated with three dots.)

Ontology

Domain Model
Types:
semanticType(country). semanticType(idType)….
semanticType(coverageType).

Type hierarchy:
isa(airfare, moneyAmt). isa(tax, moneyAmt).

Attributes/Relationships:
cxnCountry(ticket,country),.…,hasID(ticket, idType).

Context Model
Modifiers:
lformat(airport, Context, airportFormat).
dformat(date, Context, dateFormat).
inclusion(airfare, Context, inclusionType).
coverage(airfare, Context, coverageType).
currency(moneyAmt, Context, currencyType).
The variable ‘Context’ in the Context Model signifies that
a modifier is defined with respect to a given context, thus
may acquire different values in different contexts.

NN
OO

TT AA

XX

Figure 2 Modifiers themselves can be modified

UUSSDD UUSS
 $$

Currency Format

RROOUUNNDD--TTRRIIPP

$

round-trip

no tax

one-way

 tax
 £

AAIIRRFFAARREE

C
urrency

Inclusion

AAIIRRFFAARREE iinn
CCoonntteexxtt CCnn

AAIIRRFFAARREE iinn
CCoonntteexxtt CC11

Coverage

M
odifiers

Figure 1 Multi-dimensional modification
of the ontological term airfare

 4

Sources
Sources in the ECOIN framework are uniformly treated as
relational sources (i.e., as having relational schemas).
Many non-relational sources, such as HTML and XML
web sites and web services, can be transformed into
relational sources via wrappers [Firat at al. 2000]. A
wrapped web source, for example, can be represented in
logical predicates as (refer to Figure 5):

cheaptickets(Id, Airline, Price, Tax, DepDate,
ArrDate, DepCity, CxnCountry, ArrCity)

In the ECOIN framework, these are called primitive
relations, because these sources are not yet tied to an
ontology. These primitive relations are elevated into
semantic relations by annotating the semantic type and
context of each primitive relation.
The semantic relation cheaptickets’ can then be expressed
as follows2:

cheaptickets’(Id’, Airline’, Price’, Tax’, Depdate’,
ArrDate’, DepCity’, CxnCountry’,ArrCity’) ←

Id’=object(idType, Id, c_ct, cheaptickets(Id, Airline,
Price, Tax,Depdate,ArrDate, DepCity, CxnCountry,
ArrCity)), …,ArrCity’ = object(…).

With this elevation each column of the cheaptickets
relation is indirectly tied to the air travel ontology. For the
Id column, for instance, this is accomplished by
associating the value Id with the idType semantic type in
the cheaptickets context c_ct. Id’ in the above declaration
is the semantic object corresponding to the primitive object
Id from the cheaptickets relation.

2 Notation: We add a single quote ‘ to semantic objects/relations
to distinguish them from primitive ones.

In addition, the attribute relationships defined by the
ontology are instantiated as part of source declarations. For
example, the cxnCountry relationship would be declared
for this source as follows:
cxnCountry(T’,C’)←cheaptickets’(T’,_,_,_,_,_,_,C’,_).3
This declaration says that the cxnCountry of a semantic
object T’ is another semantic object C’, both of which can
be obtained from the semantic relation cheaptickets’. This
is also known as the Global As View (GAV) approach of
relating sources and the global model.

Context (Instances)
For sources, contexts define the specializations used for
the underlying data values; and for receivers contexts
describe the specializations assumed in viewing the data
values. These specializations may be about the
representation of data (e.g. European vs. American style
date formats) or nuances in meaning (e.g. nominal vs.
bottom-line prices).

To define a source or receiver context, modifier
assignments need to be made. For example, the context
labeled as c_ct can be described with the following
predicates :

currency(Airfare’, c_ct, Currency’) ←
transitFee(Ticket’,Airfare’),
cxnCountry(Ticket’,Country’) ,
countryCurrency(Country’, Currency’).4

3 Underscores, as in Prolog, are used to designate any value.
4 Here, countryCurrency is a semantic relation that relates
countries and currencies.

airfare date airport tax

moneyAmt

idType

ticket country

Figure 3 Simple Ontology for the Air Travel Example

return

depart
origin

destination

hasTax hasID

transitFee
shippingCost
serviceFee

cxnCountry

dateFormat airportFormat inclusionType coverageType

currencyType

currency

lformat dformat inclusion coverage

Attribute

Modifier

IS-A

 5

currency(MoneyAmt’, c_ct, Currency’) ← Currency’ =
object(currencyType, “USD”, c_ct,
constant("USD")).
inclusion(Airfare’, c_ct, Inclusion’) ← Inclusion’ =
object(inclusionType, “nominal”, c_ct,
constant("nominal")).
coverage(Airfare’, c_ct, Coverage’) ← Coverage’ =
object (coverageType, “oneway”, c_ ct,
constant("oneway")).
lformat(Airport’, c_ct, LFormat’)← LFormat’ =
object(airportFormat, “airport”, c_ct,
constant("airport")).
dformat(Date’, c_ct, DFormat’) ← DFormat’ = object
(dateFormat, “American”, c_ct,
constant("American")).
These modifier declarations, which use attribute
declarations, semantic relations, and some other constructs,
explicitly specify which view of the ontology is adopted by
the cheaptickets source. Accordingly, the ontology
corresponding to the cheaptickets source treats airfare as
the one-way nominal price of a ticket in US dollars.
Currency in the cheaptickets context is US dollars except
for transitFees which are given in the currency of the
transit country. The arrival and departure locations are
expressed as airport codes, and date is given using the
American style.

Mappings
Mappings in ECOIN ensure that a view of the ontology
adopted in a context is appropriately mapped to a
corresponding ontological view in another context. This is
accomplished by defining a conversion function network
for each ontological term. Conversion functions are
atomically defined for each modifier dimension as
illustrated in Figure 4.

As an example, the conversion function for the currency
modifier dimension is encoded declaratively in terms of
logical predicates as follows:
ƒcurrency(X, VS, SC, VCurrencyS, VCurrencyT, TC, VT)
←

value(Today, SC, VToday), system_date(VToday),
value(CurrencyS,SC,VCurrencyS),
value(CurrencyT,SC,VCurrencyT),
currencyrates’(CurrencyS,CurrencyT, Today,
Rate),
value(Rate, SC, VRate), mul(VS, VRate, VT).

For semantic airfare objects, this function uses the
modifier value VCurrencyS in source context SC, and
modifier value VCurrencyT in target context TC to
translate the source value VS of semantic object X to value
VT in target context. The value(A,C,B) predicate used
above is read as “the value of semantic object A in context
C is B”. The function is also using another semantic
relation currencyrates’; a system function
system_date(VToday) and an arithmetic predicate mul to
express multiplication.

As in the currency conversion function example above,
conversion functions can sometimes be defined
parametrically, thus may cover all of the modifier value
pairs with a single function. When this can not be done,
conversion functions can be defined as a network to
minimize the number of declarations, leaving the tasks of
combining, inverting, and simplifying tasks to the

mediator. Furthermore, most conversion functions are
orthogonal, i.e. they can be applied in any order. When
they are not orthogonal, priorities are used to determine the
order they are to be executed. The details of conversion
function network organization can be found in [Firat et al.
2005].

Practical Application
Consider the simplified scenario shown in Figure 5 having
a single source cheaptickets and a single receiver (user)
with conflicting assumptions. (This scenario, including the
technical details of query mediation, is discussed more
thoroughly in [Firat et al. 2005].) Surprisingly, even the
semantic differences between a single source and a
receiver provide enough complexity to highlight some of
the interesting issues. Under this scenario, the user is an
international student looking for a round trip airfare from
Boston to Istanbul, with departure on June 1st and return
on August 1st 2004. He wants to obtain the price and
airline information for his trip and formulates the
following SQL query Q1 using column names from the
source:

Q1: SELECT Airline, Price
FROM CheapTickets

Inclusion

Coverage C
urrency

$

£ round-trip
one-way

no tax

tax

Figure 4 Organization of Conversion Functions
for the Ontological term Airfare

AAIIRRFFAARREE

 6

Context of User

* Fares are expected to be bottom-line price
 (round trip, includes taxes, ticket shipment, and transit fees)
* Date is expressed in European style (dd/mm/yy)
* Departure and Destination locations are expressed as city names
* Currency is US $
* Today’s date: 01/05/04

cheaptickets
ID
(I)

Airline
(A)

Price
(P)

Tax
(T)

DepDate
(DD)

ArrDate
(AD)

DepCity
(DC)

CxnCountry
(CC)

ArrCity
(AC)

1 British Airways 495 75 06/01/04 08/01/04 BOS United Kingdom IST
2 Lufthansa 525 79 06/01/04 08/01/04 BOS Germany IST
… … … … … … … … …

SELECT Airline, Price
FROM cheaptickets
WHERE DepDate = “01/06/04” and
ArrDate= “01/08/04” and DepCity= “Boston”
and ArrCity= “Istanbul”;

FromCu
r

ToCu
r

ExchangeRat
e

Date

£ $ 1.75 05/10/04
… … … …

Context of Ancillary Sources

Date is expressed in American style City Airpor

t
Boston BOS
Istanbul IST

cityairport currencyrates

Query

Figure 5 Airfare Example Scenario

Context of cheaptickets
* All fares are for each way of travel and do not include fees and taxes. * Ticket shipping cost is $20
* Date is expressed in American style (mm/dd/yy) * Service fee of $5 is charged
* Departure and Destination locations are expressed as three letter airport codes
* Currency is US dollars except for transit fees, which are in the currency of the country that issues the fee.
* Direct air transit fee of £27 is applied if the plane has a connecting flight from United Kingdom

WHERE DepDate = “01/06/04” and ArrDate = “01/08/04”
and DepCity = “Boston” and ArrCity = “Istanbul”;

As a result of the contextual differences illustrated in
Figure 5, without any mediation the user's query would
return an empty answer, because cheaptickets has city
codes instead of city names; and dates are in American
format (refer to sample data). Even if these specific
differences were dealt with, for example by writing a new
query Q2 with changed city codes and date formats (which
itself might be a significant challenge for the user,
especially if unfamiliar with the details of each of the
multiple sources involved):
Q2: SELECT Airline, Price
FROM CheapTickets
WHERE DepDate = “06/01/04” and ArrDate = “08/01/04”
and DepCity = “BOS” and ArrCity = “IST”;

the results returned would be:

Airline Price
British Airways 495
Lufthansa 525

which is not the correct bottom line price the user expects.
Given these results, the user may incorrectly think that
British Airways is the cheaper option. If the original query
Q1 were submitted to the ECOIN system, however, the
semantic conflicts between the sources and the receiver
would be automatically determined and reconciled, and Q1
would be rewritten into the following mediated query:

MQ1:SELECT Airline, 2*(Price+Tax+27*exchangeRate)+25
FROM cheaptickets, currencyrates,
(select Airport from cityairport where city=“Boston”) dCode,
(select Airport from cityairport where city=“Istanbul”) aCode
WHERE DepDate = “06/01/04” and ArrDate=”08/01/04” and
DepCity= dCode.Airport and ArrCity=aCode.Airport
and CxnCountry= “United Kingdom” and fromCur= “GBR”
and toCur= “USD” and Date= “05/10/04”;
UNION
SELECT Airline, 2 * (Price+Tax) +25
FROM cheaptickets,
(select Airport from cityAirport where city=”Boston”) dCode,
(select Airport from cityAirport where city=”Istanbul”) aCode

 7

WHERE DepDate = “06/01/04” and ArrDate=”08/01/04” and
DepCity= dCode.Airport and ArrCity=aCode.Airport and
CxnCountry <> “United Kingdom”;

In the mediated query MQ1, in addition to representational
conflicts such as format differences in date and city codes,
semantic conflicts in the interpretation of airfare (price) are
also resolved. Mediating such semantic conflicts involves
creating a conflict table by comparing the modifiers
involved in the query; identifying which mappings to use
from the conversion function network to resolve the
conflicts; and applying symbolic equation solving
techniques to a number of equational relations for
inversion, composition and simplification under the
Abductive Constraint Logic Programming framework
[Firat et. al. 2005].

The ECOIN system further processes this mediated
query by an optimizer to produce an efficient plan, and
executes it by a query processor, which submits subqueries
to individual sources that can optimally execute the
subqueries and perform the data transformations. The final
results reported by the system below now allow the user to
make the right choice and choose Lufthansa over British
Airways:

Airline Price
British Airways 1260
Lufthansa 1233

As this practical application shows, despite sharing the
same ontology, the users and sources are not locked into a
single integrated view. Multiple integrated views can co-
exist with a well defined context model coupled with the
ontology.

Related Work and Discussion
One of the fundamental issues of information integration is
achieving interoperability between multiple local models.
There have been various approaches proposed in the past.
Although there are some similarities, ECOIN has a number
of important distinct differences and advantages.
 In database integration, for instance, local models are in
the form of database schemas and achieving
interoperability among multiple schemas constitutes the
fundamental problem. The traditional centralized solution
maps local models (schemas) to a shared standard ontology
(global schema) to eliminate representational and semantic
disparities. This approach has been criticized for lack of
scalability and difficulty of maintenance over time.
Furthermore, it is seen as overly restrictive and inflexible
in trying to reconcile local models that suit different needs
in a single shared model [Bouquet and Serafini 04].

Modularized versions of the traditional centralized
approach with the explicit use of “contexts” appears in
[McCarthy and Buvac 97], and in CYC [Lenat et al., 1990;
Guha, 1991]. In these approaches, axioms and statements

are true only in a context. This is expressed by a modality5
called ist(c,p)6. For example,

c0: ist(context-of(“Sherlock Holmes stories”), “Holmes is
a detective”).

means that the statement “Holmes is a detective” is true in
the context of Sherlock Holmes stories. The preceding c0
denotes that this statement is asserted in an outer context,
thus points out to the nested composition of context
dependent statements. Formulas between contexts can be
related together with the use of lifting axioms. In
[McCarthy and Buvac 97], an example of integrating Navy
and General Electric (GE) databases, which differ on the
definition of engine prices, is given. In the Navy database
price includes assortment of spare parts and warranty,
whereas in GE price is the plain engine price. Contexts
defined in this example are cGE, cnavy corresponding to the
GE and navy databases and cps, the problem solving
context. The details of this example are shown in Table 1
(i.e. the query posed in the problem solving context, the
existing facts expressed in their own context, and lifting
axioms that define translations between different contexts).

Query
cps: ist(cnavy, price(FX-22-engine, $3611K))
Facts
ist(cGE, price(FX-22-engine, $3600K)).
ist(cGE, price(FX-22-engine-fan-blades, $5K)).
ist(cGE, price(FX-22-engine-two-year-warranty,
$6K)).
ist(cnavy,spares(FX-22-engine,FX-22-engine-fan-
blades)).
ist(cnavy, warranty(FX-22-engine,FX-22-engine-two-
year-warranty)).
Lifting axioms
value7(cGE, price(x)) = GE-price(x)
value(cnavy, price(x)) = GE-price(x) + GE-
price(spares(CNavy, x)) + GE-price(warranty(CNavy, x)).

Table 1 Navy and General Electric Integration Example

An opposite approach, called “compose and conquer”
[Bouquet et. al. 01], is based on the premise that the
existence of a global ontology is not viable in open settings
such as the envisioned Semantic Web. In the proposed
solution, relations between local models are established on
a peer-to-peer basis, as a collection of constraints on what
can (or cannot) be true in a local model given that there is
some relation with what holds in another local model. This
approach has been used in [Ghidini and Serafini 98, 00], in
integrating information systems. They provide an example

5 The classification of propositions on the basis of whether they
assert or deny the possibility, impossibility, contingency, or
necessity of their content.
6 Read as “p is true in context c”
7 value(c,t) is a function which returns the value of term t in
context c

 8

that integrates the databases of four fruit sellers with
different contexts. Conflict resolution between contexts is
done pair wise for each database, since they do not
subscribe to a common global theory. In the example, one
of the sellers (1) provides fruit prices without including
taxes, the other denoted as the mediator (m) considers
prices with taxes (7% percent). This conflict is resolved by
defining a view constraint as following:

1: has-price(x,y) → m:∃y′ has-price(x,y′) ∧ y′ =y
+(0.07*y)

This view constraint establishes the link between differing
price definitions of source 1 and mediator m.
 While this approach offers important benefits, especially
in providing a viable architecture for open settings, the
lack of a shared model creates a number of serious
problems. Even finding a way to query disparate data
sources, connected on a peer-to-peer basis, becomes a non-
trivial task. Furthermore, the coordination of establishing
relationships between local models on a peer-to-peer basis
is problematic. ECOIN provides a much simpler solution.

Contextual Coupling of Ontology and Local
Models in ECOIN
The ECOIN strategy of relating local models favors the
use of ontologies to relate local models, albeit in a much
more flexible way than the traditional centralized
approaches. It may be too early to predict how the
Semantic Web will ultimately evolve, but it is perceivable
that similar local models will be linked via ontologies,
which in turn may be treated as local models and linked
via higher level ontologies thus achieving gradual semantic
interoperability. Given such a possibility, the ECOIN
approach introduces a contextual coupling of ontology and
local models.

Our approach may seem similar to the efforts discussed
in [McCarthy and Buvac 97], [Lenat et al., 1990; Guha,
1991], [Kashyap and Sheth 96], [Bouquet et al. 2004] at
the surface level, but there are important differences.
While we like the explicit treatment of contexts in these
efforts; and share their concern for sustaining an
infrastructure for data integration, our realization of these
differ significantly. First, the ontology in ECOIN only
defines generic terms without specifying their exact
semantics, which has no equivalent in the aforementioned
approaches. Second, lifting axioms [Guha 1991] in our
case operate at a finer level of granularity: rather than
writing axioms which map “statements” present in a data
source to a common knowledge base, they are used for
translating “properties" of individual “data objects" and
organized as a conversion function network between
contexts. These differences account largely for the
scalability and extensibility of our approach.

Compared with the Context-OWL (C-OWL) approach
discussed in [Bouquet et al. 2004], our effort is more
focused on query mediation than trying to come up with a
general theory of contextual reasoning. Furthermore, the
contextual mappings in our case go beyond the rather
limited set of mappings that exist in C-OWL (i.e.
equivalent, onto (superset), into (subset), compatible, and
incompatible). The limited expressiveness of the C-OWL
language fails to address the contextual differences such as
those possible with ECOIN.

The description logic based context representation as
contextual coordinates in [Kashyap and Sheth 96] has
compelling similarities with our approach. While the desire
to dynamically express the context of data is paramount in
both approaches, there are also important
conceptualization differences. While the contextual
coordinates denote aspects of the context in [Kashyap and
Sheth 96], modifiers denote aspects of the ontological
terms in ECOIN. Our conceptualization results in a simpler
context model, which works very well for query mediation
by allowing us to organize, compose, invert and simplify
conversion functions that maps between different contexts.

Compared with the “compose and conquer” approach,
the ECOIN approach is similar in its desire to perform peer
to peer mappings (although mappings need not be defined
between every peer). Unlike “compose and conquer”,
however, ECOIN assumes the existence of an ontology to
tie the sources, but this ontology does not act like a “global
schema”. The ontology acknowledges the minimal
agreements between the local models, and defines a well-
defined (yet extensible) context model to facilitate the
reconciliation of possible conflicts between local models.
With these differences in mind, the benefits of the ECOIN
approach can be summarized as follows.

First, ontology developers do not have to standardize the
exact meaning and representation of ontological terms; but
only need to agree on generic identities without exposing
the specific details. A major advantage of this approach is
that ontology developers frequently find it straightforward
(if not necessarily "easy") to agree on the generic concepts;
it is getting all the precise details worked out that creates a
lot of the work. Moreover, it's often the case that
differences in these precise details are only discovered
later (sometimes even after the system is in operation).
The ECOIN approach enables these details to be factored
out, reducing the amount of work needed to introduce
these details all at once.

Second, allowing the same ontological term to assume
nuances of meaning and varying representations in local
contexts saves the ontology from being cluttered with non-
essential terms such as airfareIn$, airfareWithTax,
airfareRoundTrip, etc. In ECOIN, only the essential term
airfare with its modification dimensions belongs to the
ontology, and takes its specialized meanings in local
contexts with corresponding modifier values.

Third, because the ontology is impartial to the precise
semantics defined in the various contexts, mappings are

 9

not defined between the sources and the ontology as it is
done in most current approaches to information
integration. Instead, mappings are structured with respect
to a context model and defined for each modification
dimension as a conversion function network. This
modularization of mappings allows a mediator to create
custom point to point translations between contexts by
selecting or composing appropriate mappings from the
conversion function network. These capabilities of
ECOIN have been demonstrated in an example application
requiring the integration of counter-terrorism intelligence
information, where ECOIN was able to generate over
22,000 conversion programs to enable semantic integration
amongst 150 data sources and receivers using just six
parameterized conversion rules [Zhu and Madnick 2004].

 Conclusion
The ECOIN semantic information integration framework
couples ontologies and contexts in a unique way for the
semantic integration of disparate data sources. The
approach presupposes the existence of an ontology, but
unlike traditional approaches this ontology does not
provide a rigid specification of the meanings and
representations of its terms. In this novel
conceptualization, ontological terms are modified
according to a context model, thus correspond to multiple
integrated views according to contextual choices.

We have implemented these ideas in a prototype [Firat
2003] using the Eclipse Prolog engine [Cheadle et al.
2003] and procedural programming languages. This
prototype provides mediated access to traditional
databases, as well as semi-structured web sites, and web
services, creates and maintains metadata that are used in
ECOIN through graphical interfaces, and supports merging
multiple applications.

We believe that semantic information integration should
have the dual purpose of: (1) reconciling semantic
heterogeneity across information sources; and (2)
supporting semantic heterogeneity across information
receivers. The ECOIN approach achieves this objective by
providing an integration framework that requires minimal
agreement on a generic ontology, and allowing the local
models to modify the ontology to fit their context.

References
Bouquet P., and Serafini, L. (2004). Meaning Coordination

and Negotiation, Working Notes of the ISWC Workshop on
Meaning Coordination and Negotiation, 3rd International
Semantic Web Conference, Hiroshima, Japan.

Bouquet P., Ghidini C., Giunchiglia F., and Blanzieri E.
(2001). Theories And Uses Of Context In Knowledge
Representation And Reasoning, Technical Report #
0110-28, Istituto Trentino di Cultura.

Bouquet P., and Serafini L. (2003). On the Difference
between Bridge Rules and Lifting Axioms. Modeling and

Using Context, 4th International and Interdisciplinary
Conference, CONTEXT: 80-93

Bouquet P., Giunchiglia F., Harmelen, F., Serafini, L., and
Stuckenschmidt, H.(2004). Contextualizing Ontologies,
Journal of Web Semantics , vol. 26, 2004: 1-19.

Cheadle, A. M., Harvey, W., Sadler, A.J., Schimpf, J.,
Shen, K., and Wallace M. G. (2003). ECLiPSe: An
Introduction by. IC-Parc, Imperial College London,
Technical Report IC-Parc-03-1.

Firat, A. Madnick S., Siegel M., Grosof, B., and Manola,
F. (2005) Reconciling Semantic Heterogeneity with
Symbolic Equation Solving Techniques, manuscript
submitted for publication.

Firat, A. (2003). Information Integration using Contextual
Knowledge and Ontology Merging, Ph.D. Thesis,
Massachusetts Institute of Technology.

Firat, A., Madnick, S., and Siegel, M. (2000). The
Caméléon Web Wrapper Engine, In Proceedings of the
VLDB2000 Workshop on Technologies for E-Services,
1-9.

Ghidini, C., and Giunchiglia, F. (2001). Local Models
Semantics, or Contextual Reasoning = Locality +
Compatibility. Artificial Intelligence. 127(2):221-259.

Ghidini, C., and Serafini, L. (1998). Information
Integration for Electronic Commerce. In Agent
Mediated Electronic Commerce. First International
Workshop on Agent Mediated Electronic Trading,
AMET-98, Volume 1571 of LNAI. Springer.

Guha R. V. (1991). Contexts: a formalization and some
applications, MCC Tech Rep ACT-CYC42391.

Kashyap, V.; Sheth, A.P. (1996) Semantic and Schematic
Similarities between Database Objects: A Context-Based
Approach,VLDB Journal 5(4):276-304.

Lenat, D., R. V. Guha, K. Pittman, D. Pratt, and M.
Shepherd. (1990). Cyc: Towards programs with common
sense. Communications of the ACM 33(8).

McCarthy, John and Buvac, S, 1997. Formalizing context
(expanded notes). In: Aliseda, A., van Glabbeek, R. and
Westerstrahl, D., Editors, 1997. Computing natural
language, Center for the Study of Language and
Information, Stanford, CA.

Zhu, H., and Madnick, S. 2004. Context Interchange as a
Scalable Solution to Interoperating Amongst
Heterogeneous Dynamic Services, Proceedings of the
Third Workshop on eBusiness (Web2004)

