A DETAILED PERFORMANCE COMPARISON OF DISTILLATE FUELS IN THE TEXACO STRATIFIED CHARGE ENGINE

by

Gordon D. Marsh

B.S.

United States Coast Guard Academy

(1971)

Submitted in Partial Fulfillment

of the Requirements for the

Degrees of Ocean Engineer

and

Master of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology

May 1976

A DETAILED PERFORMANCE COMPARISON OF DISTILLATE FUELS IN THE TEXACO STRATIFIED CHARGE ENGINE

-2-

by

Gordon D. Marsh

Submitted to the Department of Ocean Engineering on 9 May 1976 in partial fulfillment of the requirements for the degrees of Ocean Engineer and Master of Science in Mechanical Engineering.

Abstract

A stratified charge engine employing the Texaco Controlled Combustion System has been operated over a large range of load conditions on iso-octane, methanol, and a wide boiling point $(100-600^{\circ}F)$ residual fuel. Basic performance, emissions and combustion parameters were measured over a range of overall equivalence ratios from $\phi = 0.1 - 1.0$ at three engine speeds; 1500, 2000 and 2500 RPM. The basic performance and emissions data were found to vary little between iso-octane and residual fuels, and to compare very well with similar data collected on the same engine design at other research facilities. The engine operation on methanol was not entirely satisfactory due to an improper match between the specific fuel injection system used for these experiments and the design requirements imposed by the much lower heating value and higher stoichiometric fuel-air mass ratio of methanol.

A direct, online data acquisition system, based on a Digital PDP 11/10 computer was developed to obtain accurate pressure-crankangle data for further combustion and thermodynamic studies. The acquisition program also computes a mean pressure - crankangle diagram and the statistics associated with cycle to cycle variation. The mean pressure - crankangle data is then integrated to compute indicated mean effective pressure. The opportunity to analyze pressure - crankangle data in this way substantially improves the accuracy and speed of data collection.

-3-

A simple thermodynamic model based on homogeneous charge engine combustion has been modified to compute the heat release and fuel fraction burnt from the pressure - crankangle data. The problems associated with calculation of these parameters in diesel or stratified charge engines are discussed. Recommendations are made for further development of the online data acquisition system and the thermodynamic model.

Thesis Supervisor: Dr. Joe M. Rife Title: Lecturer, Department of Mechanical Engineering

ACKNOWLEDGEMENTS

-4-

The author wishes to express his thanks to Dr. Joe M. Rife for his guidance and suggestions during the development of this thesis.

The author also wishes to acknowledge the help and advice of Professor J. B. Heywood , Dr. R.J. Tabaczynski and Mr. Don Fitzgerald, provided throughout the course of this research.

The author's personal financial support was provided by the United States Coast Guard.

This work was supported by the U.S. Army Tank-Automotive Systems Development Center via subcontract to M.I.T. from Texaco, Inc., under contract number DAAE07-74-C-0268. I thank the program supervisors, Mr. M. Alperstein of Texaco, Inc., and Mr. Walter Bryzik of the U.S. Army Tank-Automotive Systems Development Center for their advice and assistance.

TABLE OF CONTENTS

Title Page 1
Abstract 2
Acknowledgments
Table of Contents 5
List of Figures 6
List of Tables
I Introduction10
II Test Engine Instrumentation14
III Performance and Emission Results21
IV Pressure Analysis Volume Data Analysis
V Conclusion and Recommendations41
References
Appendix I - Performance and Emission Data Reduction Program46
Appendix II - Online Digital Pressure Data Acquisition53
Appendix III - Computer Analysis Programs
Tables
Figures

۰.,

LIST OF FIGURES

Figure Numbers

- 1. Texaco Controlled Combustion System (Schematic)
- 2. Roosa Master Injection Nozzle
- 3. Schematic of Combustion Process
- 4. Simplified PV^{γ} Plot
- 5. Photograph of Test Installation
- 6. Single Cylinder Engine Assembly
- 7. Dynamometer Hydraulic Scale
- 8. Cooling System
- 9. Lubrication System
- 10. Inlet and Exhaust System
- 11. Fuel System
- 12. Needle Lift Indicator
- 13. Typical Oscilloscope Trace
- 14. 1500 RPM Motoring Log P vs Log V
- 15. 2000 RPM Motoring Log P vs Log V
- 16. 2500 RPM Motoring Log P vs Log v
- 17. Schematic of Data Acquisition System
- Indicated Mean Effective Pressure vs. Equivalence Ratio, for Iso-octane.
- 19. Indicated Mean Effective Pressure vs. Equivalence Ratio, for 100-600 Fuel.

Figure Numbers

- 20. Indicated Specific Fuel Consumption vs. Equivalence Ratio, for Iso-octane.
- 21. Indicated Specific Fuel Consumption vs. Equivalence Ratio, for 100-600 Fuel.
- 22. Indicated Thermal and Volumetric Efficiency vs. Equivalence Ratio for Iso-octane.
- 23. Indicated Thermal and Volumetric Efficiency vs. Equivalence Ratio for 100-600 Fuel.
- 24. Exhaust Temperature vs. Equivalence Ratio for Iso-octane.
- 25. Exhaust Temperature vs. Equivalence Ratio for 100-600 Fuel.
- 26. Carbon Monoxide Emissions vs. Equivalence Ratio for Iso-octane.
- 27. Carbon Monoxide Emissions vs. Equivalence Ratio for 100-600 Fuel.
- 28. Hydrocarbon Emissions vs. Equivalence Ratio for Iso-octane.
- 29. Hydrocarbon Emissions vs. Equivalence Ratio for 100-600 Fuel.
- 30. Nitric Oxide Emissions vs. Equivalence Ratio for Iso-octane.
- 31. Nitric Oxide Emissions vs. Equivalence Ratio for 100-600 Fuel.
- 32. Indicated Mean Effective Pressure vs. Equivalence Ratio for Methanol.
- 33. Indicated Specific Fuel Consumption for Methanol.
- 34. Indicated Thermal and Volumetric Efficiency vs. Equivalence Ratio for Methanol.
- 35. Exhaust Temperature vs. Equivalence Ratio for Methanol.
- 36. Carbon Monoxide Emissions vs. Equivalence Ratio for Methanol.
- 37. Hydrocarbon Emissions vs. Equivalence Ratio for Methanol.
- 38. Nitrie Oxide Emissions vs. Equivalence Ratio for Methanol.

Figure Numbers

39A.	Volumetric Efficiency vs. Engine RPM.
39B.	Friction Mean Effective Pressure vs. Engine RPM.
40.	Log P vs.Log V for Iso-octane, $\phi = 0.76$, 1500 RPM.
41.	Log P vs.Log V for Iso-octane, $\phi = 0.45$, 1500 RPM.
42.	Log P vs. Log V for Iso-octane, $\phi = 0.28$, 1500 RPM.
43.	Log P vs. Log V for Iso-octane, $\phi = 0.83$, 2000 RPM.
44.	Log P vs. Log V for Iso-octane, $\phi = 0.48$, 2000 RPM
45.	Log P vs. Log V for Iso-octane, ϕ = 0.22, 2000 RPM.
46.	Log P vs. Log V for Iso-octane, $\phi = 0.81$, 2500 RPM.
47.	Log P vs. Log V for Iso-octane, $\phi = 0.52$, 2500 RPM.
48.	Log P vs. Log V for Iso-octane, $\phi = 0.25$, 2500 RPM.
49.	Log P vs. Log V for 100-600, $\phi = 0.77$, 1500 RPM.
50.	Log P vs. Log V for 100-600, $\phi = 0.43$, 1500 RPM.
51.	Log P vs. Log V for 100-600, ϕ = 0.27, 1500 RPM.
52.	Log P vs. Log V for 100-600, ϕ = 0.85, 2000 RPM.
53.	Log P vs. Log V for 100-600, $\phi = 0.47$, 2000 RPM
54.	Log P vs. Log V for 100-600, $\phi = 0.26$, 2000 RPM.
55.	Log P vs. Log V for 100-600, $\phi = 0.82$, 2500 RPM.
56.	Log P vs. Log V for 100-600, $\phi = 0.50$, 2500 RPM.
57.	Log P vs. Log V for 100-600, $\phi = 0.28$, 2500 RPM.
58.	Fuel Mass Fraction Burnt vs. Crankangle for fixed $\phi_{\rm b}$.
59.	Fuel Mass Fraction Burnt vs. Crankangle for variable $\phi_{\rm L}^{}.$
60.	PV^{γ} vs. Crankangle with Burnt and Unburnt Gamma Values.

-8-

LIST OF TABLES

- 1. Engine Specifications
- 2. Injection System
- 3. Summary of Instrumentation
- 4. Summary of Fuel Properties
- 5. Engine Operating Conditions for Emission Results
- 6. Matrix of Averaged Pressure Crankangle Data
- A-1. Summary of Interactive Data Acquisition and reduction Programs
- A-2. Summary of Pressure Crankangle Data Tile Programs
- A-3. Summary of TCCS Combustion Analysis Programs
- A-4. Summary of General Thermodynamic Properties Subroutines

I INTRODUCTION

A stratified charge engine is defined as a spark ignition, internal combustion engine with a non-uniform fuel air mixture in the combustion chamber. Stratified Charge engines have been recognized for good fuel economy potential, low emissions and the ability to burn a wide range of fuel types. $(1)^*$ In this thesis, we analyse the performance of an engine based on the Texaco Controlled Combustion System (TCCS).

Several features specific to this design make the engine a strong candidate for small, low power applications. Load control can be achieved by changing the amount of fuel injected and inlet air throttling is unnecessary in most applications. As a result, the engine can be run at very lean overall equivalence ratios giving excellent fuel economy and low emissions. Fuel is injected late in the compression stroke just before the combustion process and is ignited with a spark discharge. The residence time at elevated temperatures is therefore shorter than the time for compression ignition and hence the engine does not display either octane or cetane requirements.

As illustrated schematically in Figure 1, the Texaco Controlled Combustion System uses an open combustion chamber with high air swirl, direct fuel injection and electronic ignition. Air swirl is generated by the inlet air flow, and amplified

*Numbers in parenthesis refer to the bibliography at the end of this paper.

-10-

during the compression stroke by constraining the vortex in the combustion chamber. The combustion chamber is essentially a cup with a cylindrical upper section and a toroidal bottom formed in the head of the piston. Fuel is injected with a Roosa Master Pencil Nozzle with a flat seat and a single hole orifice as shown in Figure 2. The positive ignition system uses a high energy multiple spark unit with controlled duration.⁽²⁾ The spark plug electrodes are carefully aligned to promote the formation of a stable flame front.

High pressure injection of fuel into the swirling air begins near the end of the compression stroke. Air swirl in the combustion chamber promotes mixing and controls the penetration and trajectory of the fuel spray in the cup. The combustible fuel-air mixture formed by turbulent mixing and air entrainment in the fuel jet is then ignited by the long duration spark discharge and burns downstream of the spark plug as shown in Figure 3.

Following B.C. Jain⁽³⁾ we divide the combustion process into three stages; a rapid combustion phase controlled by the injection rate and a slower "burn up" phase which is controlled by the rate on air entrainment and mixing of burning products and air downstream of the spark plug, and a heat transfer dominated phase which follows after mixing is complete. This sequence is illustrated on the diagram shown in Figure 4. During an isentropic compression or expansion of an ideal gas the value of PV^{γ} remains

-11-

constant. After a delay covering the jet transit time for the injector to the flame front, the value of PV^{γ} rises rapidly. This rapid combustion phase appears to be controlled by the injection rate. After the last fuel injected passes the spark plug, the rate of change of PV^{γ} is substantially slower and the rise is controlled by the rate of mixing of the plume of rich products with the surrounding air and residual gas. This phase ends when all mixing is complete or the exhaust valve opens. Any fall in the PV^{γ} curve prior to the exhaust valve opening can be attributed to heat losses.

This research project is a part of a larger program which includes work on a jet mixing model, a performance model and photographic studies with a rapid compression machine.⁽⁴⁾ The following areas of research are covered in this thesis;

- The completion of the engine test setup and the development of all necessary instrumentation to record the variables of interest.
- (2) TCCS engine performance and emissions are presented for the three test fuels over a wide range of operating conditions. Differences in fuel characteristics are also presented.
- (3) The problems associated with heat release calculations in stratified charge and diesel engines

-12-

reviewed, with the further development of an existing thermodynamic model to predict heat release and mass fraction of fuel burnt outlined. 1

- (4) Log P vs Log V diagrams and plots summarizing the output of the thermodynamic model are presented for a matrix of comparable test data.
- (5) The development of computer programs to process raw data and accomplish online pressure data acquisition, along with listings of all computer programs are included as appendixes.

-13-

II TEST ENGINE AND INSTRUMENTATION

Single Cylinder Test Engine

The engine used in these experiments is located in the Sloan Automotive Laboratory at MIT, and is arranged as shown in Figure 5. The single cylinder test engine is based on a CFR - 48 crankcase that has been modified to accept a cylinder sleeve assembly, head, piston, crankshaft and overhead cam and valve train assembly for the 3 7/8 inch bore by 3 7/8 inch stroke LIS - 183 TCCS geometry, as shown in Figure 6. Engine specifications and dimensions are shown in Table 1. The engine is coupled to a dynamatic eddy current dynamometer equipped with a hydraulic scale, as shown in Figure 7. The basic instrumentation is listed in Table 3 and whenever possible redundant measurements have been introduced to provide alternate data sources and to qualify experimental results.

The basic engine support facilities were constructed by Lazarewicz⁽⁵⁾ and follow standard practices as shown in Figures 8 through 11. The engine cooling system is arranged to enable heat rejection measurements. A rotameter and throttling valve on the return line from the engine allows both flow regulation and measurement while holding system pressure above 5 psig, as shown in Figure 8. Maximum water temperature at the engine cylinder outlet was held at 190 $\pm 5^{\circ}$ F. The lubrication

-14-

system shown in Figure 9 consists of two separate loops; a low pressure circulating loop for temperature control and a high pressure bearing feed and filter loop. The operating oil temperature and pressure were held at 165°F and 42 psig respectively. A pressure alarm incorporated in the filter system activates a siren and cuts off the fuel supply and ignition system when pressure falls below 20 psig. Inlet air flow is measured with an ASME square edge orifice with flange taps and water manometers as shown in Figure 10. Following recommendations made by Lazarewicz, the inlet and exhaust systems were rebuilt and the inlet settling tank and air heater were closely coupled to the engine with a short inlet pipe.

Injection and Ignition Systems:

Fuel system specifications appear in Table 3 and fuel flow is measured gravimetrically as shown in Figure 11. Transfer pump pressure is held at 25 psig. Fuel injector leakoff and the injector pump bleed are returned to the fuel reservoir mounted on a standard laboratory scale.

Ignition and injection timing, intensity and duration are monitored with a 565 Techtronix Oscilloscope. Ignition timing can be precisely set by a means of a vernier scale and adjustment arm. Injection timing is varied through the use of an American Bosch TMB - 12 Manual Timing mechanism. A pressure transducer

-15-

is mounted just ahead of the fuel injector in the high pressure supply line and the Needle Lift Indicator shown in Figure 12 has been developed to replace the standard fuel injector needle lift and cracking pressure adjustment assembly⁽⁵⁾. Both outputs are displayed on the oscilloscope cathode ray tube along with the cylinder pressure crankangle markers and BDC reference pulse as indicated in Figure 13. As presently designed, resolution of fuel injector timing is limited to 2 CA^O by the time base necessary to include one entire revolution on the CRT display. The first peak in the pressure trace corresponds to the point of initial needle lift, however; as indicated by the needle lift trace, the injector does not open appreciably for about 2 CA°. Determination of injector cutoff and any secondary injection is only possible with the Needle Lift Indicator. Substantial signal processing problems occur with the linear displacement amplifier and a new design is recommended.

Emission Sampling System:

Engine emissions are measured using the Sloan Laboratory Exhaust Gas Analysis Cart (Table 3). The exhaust sample is removed from an engine exhaust tank consisting of several cylinder volumes and pulled through a heated teflon line and filter to the Gas Analysis Cart. Stainless steel pipe is used between the

-16-

engine and exhaust surge tank to reduce the potential for hydrocarbon reactions induced by "rust" and the elevated temperatures of the exhaust flow. An additional spun glass particle filter was installed in the sampling line when it was discovered that at high loads and equivalence ratios near $\phi = 1.0$, the gas analysis equipment was severely contaminated with carbon. This technique appears to have solved this immediate problem.

The development of a computer program to calculate basic engine performance and emissions from the recorded data is described in Appendix I with the complete program listing in Appendix III.

Pressure Volume Measurement:

Accurate combustion pressure and volume measurements are absolutely required for mathematical engine simulation, calculation of heat release rates, engine pumping losses and the compiliation of statistics associated with cyclic variations and peak pressures. Acceptable pressure volume records can only be obtained when the entire monitoring system receives careful attention. First, high resolution signal recording equipment is required if the effort expended to obtain accurate pressure and volume measurements is to be worthwhile. Oscilloscopes were used in these experiments for qualitative analysis but they lack the accuracy required for quantitative resolution. The real time digital computer with analog to digital converters can provide the

-17-

resolution necessary; and for these experiments, an online digital data acquisition was developed for Sloan Laboratory PDP 11 Computer Facility. The analog to digital converter provides resolution to within 0.48 psi over a range of 0-1000 psia, well in excess of current engine pressure transducer performance as described in following paragraphs. The sampling intervals were 5 CA° . Appendix II provides details of the system hardware and the development of the software used for online computer sampling. Appendix III contains a listing of the pressure-crankangle data management program and the assembly language program that actually performs the data acquisition.

In these experiments the cylinder head geometry prevented the use of a large diaphragm, water cooled pressure transducer and a Kistler 609A piezoelectric pressure transducer was chosen. Considerable experimental art is required to obtain acceptable performance from available pressure measuring equipment, including this specific unit. For example, quartz piezoelectric transducers are high impedance devices and contamination of the electrical connectors can significantly degrade performance. All connections must be thoroughly cleaned with a freon base solvent and sealed with heat shrink tubing. Transducers are also subject to the thermal cycling that is fundamental to the combustion process in engines. In a chopped flame test by Jain and

-18-

Lazarewicz⁽⁵⁾, the 609A transducer showed an apparent 6 psi response when directly exposed to an acetylene flame at typical engine frequencies. This response was reduced with a coated diaphragm and a thin coating of silicone rubber was applied as recommended in the literature^(6, 7). The transducer was installed in a recessed adapter inserted through the water jacket of the cylinder head. The adapter cavity is designed to minimize attenuation and protect the transducer from engine temperature fluctuations. The engine coolant also serves to cool the transducer.

Careful preparation of the transducer is wasted if the cylinder volume is not known with similar accuracy. The cylinder volume is computed from engine dimensions and recorded crankangle data. Cylinder clearance volumes were determined by careful measurement of pertinent engine dimensions. The piston top dead center was located and the flywheel position pointer adjusted with a depth micrometer as recommended by Lancaster $(^{7})$. A crankshaft driven rotary pulse generator, supplying 720 pulses plus a marker every revolution was then aligned with the flywheel with an accuracy of approximately 1/4 degree. The alignment was tested by analyzing pressure crankangle diagrams and Log P - Log V plots of motoring runs as shown in Figures 14, 15 and 16 . Lancaster provides a detailed explanation and interpretation of the plot orientations $(^{7})$.

-19-

A clamped disk balanced pressure indicator was also mounted through the engine water jacket to provide a technique for dynamic calibration for the cylinder pressure transducer. The balance pressure indicator is a pressure activated switch with a reference pressure applied to one side of a thin membrane disk and the cylinder pressure to the other. The balanced pressure indicator is connected to the oscilloscope display as shown in Figure 17. When the cylinder pressure rises above the reference pressure plus the disk contact pressure, the disk is deflected to ground the center electrode. The change in potential is converted by the cathode ray tube grid modulator to momentary changes in signal intensity on the oscilloscope display as shown in Figure 13. These pulses are then used to dynamically calibrate the signal from the piezoelectric transducer.

-20-

III BASIC PERFORMANCE AND EMISSIONS

16.85

The multifuel capability of the TCCS engine was investigated using methanol, iso-octane and a wide boiling point (100-600°F) fuel. Properties of these test fuels are summarized in Table 4. Performance and emissions data in Figures 18 through 39 represents engine operation over the range of fuel-air ratios and engine loads summarized in Table 5. The engine was naturally aspirated and exhausted to ambinet pressure throughout the test series. All performance data was measured with injection timing set for maximum brake torque and ignition system timing set to commence 2 CA^O prior to the start of injection. The injection duration exceeded the ignition duration of 20 CA^O except at light load. The overall equivalence ratio was used as the absissa in Figures 18 through 38. The equivalence ratio was determined using two techniques; the measured fuel and air flow and b) calculated from the a) exhaust gas composition using the method of Stivender⁽⁸⁾. Data was considered reliable when the difference between these two values was less than 0.025. A deviation greater than this was always traced to operator error, air leaks or faulty equipment. The engine was not operated at fuel air ratios above stoichiometric. Previous experience with this engine has shown that any performance gain above $\phi = 1.0$ are achieved with substantially

-21-

increased hydrocarbons, CO and degraded fuel economy⁽⁵⁾.

Engine Performance with Iso-Octane and Wide Boiling Point Fuel:

The indicated mean effective pressure (IMEP) versus equivalence ratio for iso-octane and the 100-600, wide boiling point fuel are shown in Figures 18 and 19. The maximum IMEP is not developed, with either fuel, in the range of equivalence ratios shown; rather, the effective upper limits for engine operation are determined by a "smoke limit" near $\phi = 1.0$. In addition, there is a distinct flattening of the power curve near stoichiometric conditions. The secondary dependence on RPM exhibited by the IMEP curves can be traced to several factors. The volumetric efficiency increases with speed in the range tested as shown in Figure 39. PV plots also show a slight decrease in heat transfer with increasing speed during the heat transfer dominated phase of combustion. As will be discusses in the following chapter, the burning angle appears to decrease slightly with increasing RPM, and this would also serve to increase the IMEP. The data for iso-octane and 100-600 split differently with speed. Similar results have been observed by Texaco⁽⁹⁾. This difference cannot be satisfactorily explained with the basic data comparison presented in this thesis and additional study to resolve this potential conflict is recommended. The indicated specific fuel consumption (ISFC) is shown for

-22-

iso-octane in Figure 20 and for 100-600 in Figure 21. The data sets are of similar character with a clear minimum at an equivalence ratio near $\phi = 0.3$ and a steep rise at leaner equivalence ratios. This rise in ISFC at lean fuel air ratios is accompanied by increased cyclic variations and incomplete combustion; and appears to be a characteristic of the fuel injection system used with this engine.

The indicated thermal efficiency (η_i) provides the best comparison of the actual combustion process since it properly accounts for the different heating values of the three fuels used in these experiments. The indicated thermal efficiency is equal to the reciprocal of the ISFC x lower heating value and the indicated thermal efficiency is equivalent for engine operation on both fuels, with a miximum value of approximately 50% reached near $\phi = 0.3$ as shown in Figures 22 and 23.

The volumetric efficiency (η_{i}) changes with load to reflect changes in the quantity, composition and state of the residual gas in the combustion chamber as shown in Figures 22 and 23. The effect of engine speed is shown in Figures 22, 23 and 39. The effect of load is shown in brackets on Figure 39.

The exhaust temperature data follows the same trends as described for the IMEP data as shown in Figures 24 and 25. The friction mean effective pressure (FMEP) versus RPM

-23-

for the single cylinder test engine is shown in Figure 39. This data is representative and the actual FMEP showed little variation throughout the test series.

Emissions with Iso-Octane and Wide Boiling Point Fuel:

The TCCS concept is designed to burn the fuel immediately after injection in a fuel rich, mixing controlled plume in order to achieve multifuel capability and low emissions. In the course of these experiments, it was consistently observed that emissions, particularly hydrocarbon and carbon monoxide , are more sensitive to small variations in engine operating conditions than the basic performance data. Careful system timing is required to obtain satisfactory emissions levels and the convention adopted places the start of ignition immediately ahead of injection. However, if timing is adjusted so that fuel injection preceeds ignition higher IMEP levels are achieved with a corresponding significant increase in hydrocarbon emissions at equivalence ratios of ϕ > 0.6. This system sensitivity is thought to be the source for data scatter at high load conditions and all lines were drawn using a least square regression analysis technique.

The increased cyclic variations and degraded emissions observed at very low load test conditions are thought to be caused by an injection - ignition system phenomena. Two

-24-

potential mechanisms for cyclic variations are advanced. High speed movies of TCCS combustion in a Rapid Compression Machine show that the ignition arc discharge time is short compared arc cycle time⁽¹⁰⁾. This ignition characteristic the to suggests that the initial fuel jet may pass the spark plug in the interval between ignition pulses and a stable flame front may not be formed in the leading edge of the fuel jet. This mechanism introduces the possibility of cycle variation in the initial stages of combustion. At light load conditions the injection duration is less than the ignition duration, and with small injection quantities, the unburnt fuel vapor that passes the electrodes before a stable flame front is formed can rapidly mix to a fuel air ratio below the limit of combustion. This mechanism may partially account for the degradation of hydrocarbon emissions at low load.

A second possible mechanism is traced to fuel injector characteristics. As indicated in Figure 13, needle lift is not always crisp and there is often a 2 CA^O period at the start of injection when the needle opens only a small amount. This starting transcient may have substantially influenced the initial stages of fuel jet formation. As shown by Jain, a low momentum jet would be swept outside of the electrode radius by air swirl. The percentage of fuel vapor missing the plug electrodes would increase for light load conditions with the

-25-

smaller fuel quantities required. As in the previous case, this phenomenon introduces a mechanism for cycle variation and hydrocarbon and CO formation in the combustion chamber.

Carbon monoxide emissions are shown in Figure 26 for isooctane and in Figure 27 for 100-600. The lowest CO levels are obtained at an equivalence ratio near $\phi = 0.45$. The CO levels observed with iso-octane are approximately 50% lower than observed with 100-600 at a given equivalence ratio. The mean minimum value observed with iso-octane 4 gr/ihp-hr or 3.5 gr/ihp-hr less than that observed with 100-600.

The hydrocarbon emissions show a sharp increase at equivalence ratios less than $\phi = 0.3$ for both fuels, as seen in Figures 28 and 29. This sharp rise is accompanied by increased cyclic variations which are attributed to the injection and ignition dynamic effects discussed previously. A small rise in HC emissions is also observed near stoichiometric equivalence ratios.

Nitric oxide emissions are shown in Figures 30 and 31. The trends indicated by the data have the same characteristic shape as demonstrated in homogeneous charge spark ignition engines; however, the peak occurs near an overall equivalence ratio of $\phi = 0.6$ whereas in a homogeneous charge engine the measured levels are generally higher and the maximum level occurs near stoichio-metric fuel-air ratios.

-26-

Methanol Performance and Emissions:

Methanol was chosen as the third test fuel because it represented a severe test of TCCS multifuel capability. The fuel properties of methanol are significantly different from iso-octane or the wide boiling point fuel. Methanol has a much lower specific heating value and a higher stoichiometric air-fuel ratio and thus requires injection quantities nearly twice as large to achieve the same equivalence ratio. A Bosch injection system was used in these tests and the pump and nozzle geometry were selected for the reference fuels. No attempt was made to modify the pump or nozzle for the methanol experiments. As a result, the fuel system was operated off design.

The performance and emissions data for methanol are presented in Figures 32 through 38. Since the fuel system was not optimized for this fuel, wide scatter in emissions data was observed. The basic performance plots in Figures 32 through 35 show the trends to be expected with a properly matched fuel injection system. Figure 32 showing IMEP data exhibits no sensitivity to RPM; however, "misfire" increased with higher RPM at high load conditions. The indicated specific fuel consumption, volumetric efficiency, and thermal efficiency data, as shown in Figures 33 and 34 has trends very similar to the

-27-

corresponding trends observed with oso-octane and 100-600 fuel. The indicated thermal efficency (η_i) is almost identical to Figures 22 and 23; the maximum value of approximately 50% occurs at an equivalence ratio near $\phi = 0.3$. This demonstrates that the Texaco controlled combustion process is compatible with alcohol fuels; however, fuel system modifications are necessary to properly match the engine with this fuel type.

Comparison of M.I.T. and Texaco Data

The single cylinder engine emissions and performance data compare favorably with the TCCS engine data observed at the Texaco Engine Development Laboratory⁽⁹⁾. The maximum IMEP observed at MIT with 100-600 fuel exceeded the values observed at Texaco by nearly 5% at a given equivalence ratio. The two engines exhibited identical values of volumetric efficiency at each given operating point. Comparative plots by Lazarewicz showed good agreement with all emissions data except hydrocarbon emissions⁽⁵⁾. In these experiments, the level of hydrocarbon emissions observed was considerably reduced when compared to values obtained by Lazarewics; however, the level is still higher than observed at Texaco. This difference in HC levels can be explained by the different sampling techniques used at the two facilities. The Texaco data was acquired in bag samples before analysis, while at the Sloan Laboratory a heated teflon line is used to sample directly from the exhaust tank. The heated

-28-

sampling line used at MIT eliminates the potential for condensation of hydrocarbons, and in general, higher hydro carbon levels are measured in experiments with a heated sampling line.

IV ANALYSIS OF PRESSURE VOLUME DATA

Accurate records of cylinder pressure-volume data are an important tool for evaluating performance. The indicated mean effective pressure and pumping mean effective pressure can be computed by integrating the average pressure-volume diagram. In addition, logarithmetic plots of P, V data provide estimates of the combustion delay time, the duration of effective heat release, and the ratio of specific heats, γ , during the isentropic compression and expansion phases. Finally, pressurevolume data is required as an input for the thermodynamic models used to compute heat release and fuel burning rates.

Logarithmetic Pressure Volume Diagrams:

A matrix of comparable test data for engine operation on iso-octane and 100-600 is presented in Table 6 and logarithmetic P-V diagrams are shown in Figures 40 through 57. When pressurevolume data is plotted on a logarithmetic diagram, the isentropic portions of the compression and expansion process appear as straight lines. The slope of the linear segments is equal to $(-1) \cdot \gamma$, where γ is the ratio of specific heats. The beginning and end of combustion are marked by a departure from and return to the straight isentropic compression and expansion lines; since the effect of combustion is equivalent to heat being added with a consequent change in γ . These points are indicated in Table 6. The apparent burning time for the iso-octane and 100-600 fuels is nearly the same and decreases with increasing RPM. The apparent average burning time is 5.2 ms at 1500 RPM, 3.5 ms at 2000 RPM and 2.7 ms at 2500 RPM. Decreases in engine load only slightly decrease the time required for burning.

The combustion delay time can be determined if the start of injection is known. The injection is tabulated in Table 6 and indicated in each figure. In previous work, this delay has been attributed to the required jet transit time of the fuel from the injector to the stable flame front established at the spark plug electrodes⁽³⁾. However, as shown in Table 6 the fuel used also influences the delay time. This indicates droplet evaporation rates may also influence the combustion process. The small dip in the log P log V diagrams during the injection period also indicates the effects of fuel vaporization and this dip is more pronounced when the engine is operated on iso-octane due to its higher latent heat of vaporization.

Heat Release Calculations:

The rate of fuel burning is a basic parameter in most engine models and techniques for calculating fuel burning rates from engine pressure data have received considerable attention. Our understanding of combustion in homogeneous fuel air mixtures

-31-

is well developed; however, the increased complexity of heterogeneous charge engine combustion precludes a strictly thermodynamic solution which does not account for mixing in the combustion chamber. This statement applies to both stratified charge and diesel engines and most of the previous work has been done with diesel combustion systems. Until recently, efforts to predict heat release rates in a diesel engine were highly empirical. Lyn has developed relationships to predict heat release rates in an open chamber diesel based on the fuel injection rates ⁽¹¹⁾. Borman and Kreigher have developed a thermodynamic model to predict burning rates from diesel engine pressure data⁽¹²⁾. In the Borman model, the fuel was assumed to be homogeneously mixed at each time step. This assumption implies very lean equivalence ratios at the start of injection which increase to the overall equivalence ratio. This is physically inconsistent since mixing considerations of the fuel jet imply initially rich combustion followed by progressive mixing down to the final lean overall equivalence ratio. Still other investigations have assumed micro mixtures of burning droplets in which all combustion takes place at stoichiometric considerations⁽¹³⁾. The TCCS performance model developed by Jain assumed that burning took place at equivalence ratios determined by jet mixing and air entrainment and used a specified constant equivalence ratio for the burnt products during its

-32-

rapid combustion phase⁽³⁾. These assumptions are critical and control the shape of the burning rate diagram computed from pressure-volume data.

The thermodynamic model used in these experiments to predict the cumulative mass of fuel burnt from pressure-volume data is an extension of the two zone homogeneous charge combustion model as outlined below. The closed system is defined as all air, residual gas and fuel vapor in the cylinder prior to ingition. The mass conservation equation can be written as:

$$\bar{v} = v/M = x\bar{v}_b + (1-x)\bar{v}_u$$
 4.1

and the first law as:

$$\bar{e} = (E_0 - W - Q)/M = x\bar{e}_b + (1 - x)\bar{e}_u$$
 4.2

where

x = charge mass burnt/total charge mass $E_0 = total energy of the charge at time t_0$ M = the total charge mass, air + fuel + residual gas Q = the cumulative heat since t v = the combustion chamber volume W = the work done since te = the average specific energy

$$\bar{v}$$
 = the average specific internal energies
 \bar{e}_{b}, \bar{e}_{v} = the appropriate average specific volumes
 \bar{v}_{b}, \bar{v}_{u} = the appropriate average specific internal energies

Subscripts:

b refer to the burnt zone

u refer to the unburnt zone

Further more at a given equivalence ratio ϕ ;

 $\overline{v}_u = \overline{v}_u (P, T_u)$ 4.3

$$\overline{v}_{b} = \overline{v}_{b} (P, T_{b})$$
4.4

 $\bar{e}_u = \bar{e}_u (P,T_u)$

 $\bar{e}_b = \bar{e}_b (P,T_b)$

4.6

4.5

where

P = the cylinder pressure

 T_u, T_b = the appropriate average zone temperatures.

Assuming the unburnt zone undergoes adiabatic quasistatic compression and expansion, T_{u} is calculated from;

$$\left(\frac{\partial T}{\partial p}\right)_{s} = \left[v_{u}(P_{1}T) - \left(\frac{\partial h_{u}}{\partial p}\right)_{T}\right]$$
 4.7

Equations 4.1 and 4.2 can be combined to eliminate x, \overline{T}_b is then found by iterative technique. Once \overline{T}_b is known, x, the mass fraction burnt can then be calculated from either 4.1 or 4.2.

This model has been expanded by Martin for use in a heterogeneous charge engine. The burnt zone is considered as burnt products + residual gas uniformly mixed at an externally designated equivalence ratio ϕ_b at each time step. The unburnt zone is divided into two components; unburnt air + residual gas, and the injected but unburnt fuel vapor. Heterogeneous combustion models require a relationship between the fuel fraction burnt and the charge mass burnt since combustion takes place at other than the overall equivalence ratios. The following ratios can be defined:

- y = unburnt fuel mass/charge mass
- z = fuel mass burnt/total fuel mass

The equation for specific volume and specific energy of the unburnt zones are then written as:

$$\bar{v}_{u} = (y\bar{v}_{uf} + (1-x-y))\bar{v}_{ua})/(1-x)$$
 4.8

4.9

 $\bar{e}_{u} = (y\bar{e}_{uf} + (1-x-y)\bar{e}_{ua})/(1-x)$

Equations for y and z are then expressed in dimensionless ratios.

$$y = \frac{F\overline{\phi} (1-R)}{1+F\phi} - \frac{F\phi_b (1-R)}{1+RF\overline{\phi} + (1-R)F\phi_6} \times 4.10$$
$$z = \frac{\phi_b (1+F\overline{\phi})}{\overline{\phi} (1+RF\overline{\phi} + (1-R)F\phi_b)} \times 4.11$$

where

 ϕ_b = the burnt zone equivalence ratio at time t $\overline{\phi}$ = the average overall equivalence ratio at time t F = the stoichiometric fuel-air ratio

R = the residual fraction

The computational procedures used to solve for x is the same as in the homogeneous charge model; and z can then be found with Eauation 4.11; however, particular attention must be paid to the change in $\overline{\phi}$ and ϕ_b with time. The overall equivalence ratio only varies during the injection process, and its change is directly related to the fuel injected in each time step. But it will be shown that proper selection of the burnt zone equivalence ratio is not straightforward.

As originally developed by Martin, the modified model assumed a constant unburnt equivalence ratio equal the final overall equivalence ratio and that fuel burned immediately upon injection⁽⁴⁾. Early efforts to use the model in this form with ϕ_b held constant predicted a slow start of combustion prior to
the actual rapid combustion phase, and a final burnt fuel fraction greater than one. The model has been refined by including the variations in unburnt equivalence ratio during injection, and by assuming that the injected but unburnt fuel can be treated as fuel vapor. Procedures for allowing the burnt zone equivalence ratio to change with time have also been included in the computer program.

Sensitivity of the thermodynamic model to $\boldsymbol{\varphi}_{b}$ is shown in Figure 58. These computations assume no mixing, and the burnt gas equivalence ratio $\boldsymbol{\varphi}_{b}$ is held constant. The computations are based on pressure-volume data and on overall equivalence ratio of $\overline{\phi}$ = 0.45 at 1500 RPM. Four values of ϕ_{b} are shown, the overall average equivalence ratio, stoichiometric and two rich mixtures. When burning is assumed to take place at the overall equivalence ratio $\overline{\phi}$ = 0.45, the fuel fraction burnt does not reach 1.0 and the burning time is much larger than predicted by the log P - log V diagram. This homogeneous premixed case is clearly one limiting example. With either rich or stoichiometric burnt gas equivalence ratio, the rapid combustion phase does not significantly vary, however, the curves diverge widely and exceed a value of unity during the mixing controlled combustion. During this period, the mixing rates and burning rates are comparable, by definition, and a mixing model is clearly needed

-37-

to account for the change in ϕ_b due to air entrainment by the burning plume if the mass burned is to be correctly related to the physical processes in the engine.

The fuel-air mixtures in the combustion chamber is heterogeneous, and combustion is not limited, a priori to any single equivalence ratio at a given time, the burnt and unburned gases may continually mix throughout the combustion process. As already noted the choice of $\boldsymbol{\varphi}_h$ for each time step during the mixing controlled combustion phase is important and an accurate entrainment model is required. The air entrainment model proposed by Blizard and Keck and developed for the TCCS engine by $Jain^{(3)}$ is used to calculate the mass burned for the same PV data used in the sensitivity study as shown in Figure 59. Entrainment rates predicted by this model were high and the overall equivalence ratio was reached in 15 CA°, introducing an unrealistic dip in the mass fraction burnt curve. As indicated by the two previous examples, the calculation of burning rates in a stratified charhe engine requires additional development to include mixing before plausible results will be obtained. We postulate that a model developed to predict NO may serve as a tool to aid in untangling the mixing phenomena. The mechanisms of NO formation in homogeneous charge engines are relatively well understood $^{(14)}$; and the extension of a homogeneous model to

-38-

stratified charge engines appears to be plausible.

PV^{γ} Results

An examination of the value of PV^{γ} just before, during and after combustion gives a very good idea of the net heat input or output to the working fluid due to heat release as a result of chemical reaction and/or heat loss $^{(3)}$. Figure 60 is a plot of \mathtt{PV}^γ for the same pressure time data as analyzed in Figures 58 and 59. The cylinder pressure and volume at the start of injection is used as the reference (P_0V_0) . The values of the specific heat ratio before and after combustion were determined from Figure 41. The solid line represents heat release at constant $\gamma_{\rm u}$ while the dashed line represents heat release at $\gamma_{\rm h}.$ When the end boundary conditions are applied, namely that the process must start as unburnt and end with its maximum coincident with the burnt maximum, the lines define a very narrow region within which the true heat release curve must fall. The dotted line represents the results of the thermodynamic program discussed in the last section with the burnt products equivalence ratio held at stoichiometric. The rise of this line above the peak value evident in the burnt curve is explained by the rise in the value of fuel mass fraction burnt in Figure 58 to greater than 1.0.

Several conclusions can be drawn from plots of this nature.

-39-

The dip in the unburnt curve during the injection period provides further evidence of fuel vaporization, a fact also discussed in the section covering logarithmetic data plots. If the above curves are normalized using the maximum difference in burnt and unburnt curves, a line starting as unburnt and changing to the burnt curve near TDC closely approximates the actual cumulative fuel fraction burnt curve. PV^{γ} plots with γ determined from log P, log V plots can be used to qualify results from a more complete thermodynamic analysis. Note that when normalized PV^{γ} curves are compared to the results of the Figure 58, only the fuel fraction burnt curves in which 0.95 < $\phi_b^{<}$ 1.1 during the rapid combustion phase fall within the defined boundary region.

The method discussed above can, with careful normalization, provide a very good estimate of cumulative heat release. These estimates can, by comparison with data from detailed thermodynamic, be used to qualify assumptions made in the necessary mixing models.

-40-

V CONCLUSIONS AND RECOMMENDATIONS

1.

2.

3.

The multifuel capability of the TCCS concept has been demonstrated by tests with iso-octane, a wide boiling point fuel and methanol. The thermal efficiency of the engine is independent of the fuel used. However, proper matching of the fuel injection system is required to achieve satisfactory exhaust emissions levels.

The limits on engine operating range are determined by hydrocarbon and CO emissions. The equivalence ratio upper limit is determined by a "smoke limit" near stoichiometric and the lower limit near $\phi = 0.3$ is determined by cyclic variations and high hydrocarbon emissions.

Detailed emissions data has been acquired for the three test fuels. Emissions with iso-octane and the wide boiling point fuel exhibit similar trends and compares favorably with previous available data.

Further research is required to explain the effects of RPM and different fuel types on indicated mean effective pressure at high load conditions with the TCCS system.

-41-

Techniques for obtaining online digital data with a small laboratory computer have been demonstrated. The pressure-volume data obtained has been shown to be sufficiently accurate for use in performance models.

It has been shown that accurate pressure-volume data can be used to provide a good estimate of cumulative heat release through the use of logarithmetic and PV^{γ} plots.

The problems involved in predicting heat release rates have been discussed and the importance of mixing in diesel and stratified charge combustion clearly demonstrated. A detailed thermodynamic analysis of burning rates will require better modelling, both for the mixing of the fuel jet with air before it is entrained in the flame front and for the entrainment of air by the burning plume.

It is recommended that a NO_x prediction model be developed for this engine. This model will aid in understanding the role of mixing in stratified charge combustion and can be used to qualify mixing models developed for heat release calculations.

-42-

5.

6.

7.

8.

9. Parametric studies involving off design operation are required to explain the sensitivity of hydrocarbon emissions to small variations in injection and ignition phasing.

-43-

REFERENCES

- Alperstein, M. et al., "Texaco's Stratified Charge Engine -Multifuel, Efficient, Clean and Practical," SAE paper 740563.
- Canup, R. ED, "The Texaco Ignition System A New Concept for Automotive Engines," SAE Paper 750347.
- 3. Jain, B.C., "Performance Modelling of the Texaco Controlled Combustion Stratified Charge Engine," PhD. Thesis, MIT, 1975.
- 4. Martin, M.K., "Photographic Study of Stratified Combustion Using a Rapid Compression Machine," S.M. Thesis, MIT, 1975.
- Lazarewicz, M.L., "Performance of Texaco Stratified Charge Engine on Gasoline," S.M. Thesis, MIT, 1975.
- Brown, W.L., "Methods for Evaluating Requirements and Errors in Cylinder Pressure Measurement," SAE Paper 67008.
- 7. Lancaster, D.R., Krieger, R.B., and Liensch, J.H., "Measurement and Analysis of Engine Pressure Data", SAE Paper 70026.
- Stevender, D.L., "Development of A Fuel Based Mass Emission Measurement Procedure," SAE Paper 710604.
- Personnel Communication M. Alperstein, Ltrs. dated 12 and 24 February, 1976, providing experimental data sheets.
- Wong, V., "A Photographic and Performance Study of Stratified Combustion Using a Rapid Compression Machine," S.M. Thesis, MIT May, 1976

- Lyn, W.T., "Study of Burning Rate and Nature of Combustion in Diesel Engines," IX Internation Symposium on Combustion, 1962.
- 12. Kreiger, R.B. and Borman, G.L., "The Computation of Apparent Heat Relsease for Internal Combustion Engines," ASME Paper 66-WA/DGP-4.
- Chiu, W.S. et al., "A Transient Spray Mixing Model for Diesel Combustion," SAE Paper 760128.
- 14. Komiyama, K., "Predicting NO_x Emissions and Effects of Exhaust Gas Recirculation in Spark-Ignition Engines," SAE Paper 730475.
- 15. Leary, W.A, "Metering of Gases by Means of the ASME Square Edged Orifice with Flange Tops," MIT Sloan Laboratory Notes, 1951.
- Leary, W.A., "Hydraulic Scale Data," MIT Sloan Laboratory Notes, 1946.
- Spindt, R.S., "Air-Fuel Ratios from Exhaust Gas Analysis,"
 SAE Paper 650507.
- 18. "LP511 Laboratory Peripheral System User's Guide," Digital Equipment Corp. - HLPGA-C-D.

APPENDIX I

PERFORMANCE AND EMISSIONS DATA REDUCTION PROGRAM

An interactive data reduction program was written for the Sloan Laboratory PDP 11/10 data analysis facility. The program consists primarily of I/O and is designed specifically for the TCCS engine; however, modifications for other single cylinder engines are possible. All inputs are requested in the same units that are used on the experimental data sheet. Equations used to compute air flow rate in grams/second, coolant flow rate, volumetric efficiency, brake horsepower, and engine emissions require clarification.

Air Flow:

The equation for the flow rate of air through the ASME square edged orifice meter with flange taps is given by the following equation (15).

$$W = 51.94 D_2^2 KY \sqrt{\frac{P_1}{T_1}} GY \Delta P$$

w = mass flow rate grams/second

- P_2 = orifice diameter inches
- K = flow coefficient
- Y = expansion factor

 P_1 = static pressure before orifice in in. Hg

 $T_1 = temperature before orifice {}^{o}R$

-46-

G = specific gravity of gas

y = super compressibility factor

 $p = pressure drop across orifice in in. H_20$

The computer form of this equation will work with two orifice diameters $D_2 = 0.515$ and $D_2 = 0.71$. The program assumes the following variable values:

$$Y = 1 - 7.3 \times 10^{-4} \Delta p$$

$$G_{wet} = G_{dry} \left[\frac{1+w}{1+1.608w}\right]$$
$$Y = 1$$

The maximum and minimum Reynolds number can be written as functions of Y and D₂ with N_v = 0.85, RPM Max = 3000 RPM Min = 1000, and inlet air temperature = $90^{\circ}F$

$$\operatorname{Re}_{\min} = \frac{17174.72}{D_2}$$
 $\operatorname{Re}_{\max} = \frac{68701.3}{D_2}$

and appropriate values of K as a function of ${\rm D}_{2}$ determined

$$0.0366$$

K = 0.6152 D₂

Coolant Flow Rates:

The equation for coolant flow rates was determined by linear regression analysis of calibration data points. 46°F water was used and a density correction was applied to obtain the least squared curve fit given below, good at 175°F.

- $\dot{m} = 0.0479$ (h) 0.0081
- r = 0.994
- $\dot{m} = 1bm/sec$
- h = rotameter height
- r = goodness of fit

Volumetric Efficiency:

The engine volumetric efficiency is strictly a function of engine dimensions and operating conditions as shown below:

$$\mathcal{P}_{v} = \frac{\dot{m}(\frac{2}{N})}{(\frac{P_{I}V}{T_{I}R})}$$

m = air flow rate in 1bm/min

N = revolutions/min

 P_{T} = inlet air pressure

V = cylinder volume

R = specific gas constant

 T_{T} = inlet air temperature

after the inclusion of engine geometry and unit conversions

$$\eta_{v} = \frac{3.\text{TDTm}_{a}(T_{I}+460)}{\text{N}[0.0193 \text{ P}_{atm} - 0.361 \text{ P}_{I}]}$$

Engine Power Output:

The mean effective pressure and horsepower are determined

from the following equations (16).

$$hp = \frac{mep \ LAN}{66000}$$
$$hp = \frac{N \triangle h}{K}$$

After including specific engine geometry and an overall dynamometer constant of K = 6000

 $mep = 2.88847 \Delta h$

$$hp = \frac{N\Delta h}{6000}$$

where

A = area of engine piston, in.²
L = stroke, ft.
N = engine RPM
mep = mean effective pressure, psi.

 Δh = dynamometer scale height, in Hg.

Specific Emissions:

The average exhaust composition is a function of the equivalence ratio. A model developed by Stivender (8) is used to determine the exhaust based equivalence ratio as a check of the equivalence ratio measured from inlet flow rates; and to compute the engine emissions in grams of pollutant/indicated horsepower hour. Required inputs are the indicated specific fuel consumption (ISFC), emissions concentrations on a volume basis and the fuel carbon:hydrogen ratio. The model as presented does not apply to alcohol fuels and a method presented by Spindt (17) was used for the methanol experiments.

The model fits one undetermined equilibrium constant for the water-gas reduction to direct measurements:

$$K = \frac{[H_2O] [CO]}{[CO_2] [H_2]} = 3.8$$

The combustion reaction for a typical hydrocarbon fuel with air may be expressed in the following form:

$$CH_{y} + (n) 0_{2} + (3.76n)N_{2} \rightarrow (a) CO_{2} + (1-a-6c) CO + (b) H_{2}O + (c) C_{6}H_{14} + (d) NO \rightarrow (y/2-b-Tc)H_{2} + (n-a-(1-a-6c)/2 - b/2 - d/2) O_{2} + (3.76_{p}-d/2)N_{2}$$

The molecular weight of fuel as it appears in the above equation can be written as

$$M_{f} = 12.01 + 1.008 \text{ y}$$

The molecular weight of air is assumed as

$$M_{a} = 28.96$$

The air fuel ratio can then be written by a carbon and

oxygen balance as

$$\frac{A}{F} = 4.76 \frac{M_{e}}{M_{a}} \left[\frac{[CO_{2}] + [O_{2}]}{[HC] + [CO]} \frac{\frac{[CO] \rightarrow [H_{2}O] + [NO]}{2}}{[HC] + [CO] + [CO_{2}]} \right]$$

The HC concentration is measured wet. All other pollutant concentrations are dry and must be corrected by the following relationship

$$[]_{wet} = []_{dry} (1 - [H_2 0])$$

An empirical correlation used to determine the exhaust water concentration where the concentrations were wet and K = 3.8, as shown below

$$[H_2 0] = \frac{.5y([C0_2] - [C0])}{(\frac{[C0]}{3.8[C0_2]} + 1)}$$

Specific pollutant emissions can be written as

IS "X" (gr/ihp-hr) =
$$\frac{M_x}{M_f} \left[\frac{[X]_{wet}}{[HC] + [CO] + [CO_2]} \right]$$
 ISFC

where "X" is the species of interest. When the above equation is used to indicate $C_6^{H}_{14}$ emissions the ["X"] term is [HC]/6 since [HC] is determined by a count of single carbons.

For output consistency fuel consumption is based on the observed air flow and the equivalence ratio calculated from the exhaust products. The computer program listing is included in Appendix III.

APPENDIX II

ONLINE DIGITAL PRESSURE DATA ACQUISITION

Accurate pressure volume data was required and an online digital acquisition system was developed for these experiments. The advantages of direct data acquisition include improved accuracy and speed. With these routines, a large number of data records can be collected and statistically analyzed. Consequently, failure of the experimental techniques can be detected by immediate review and preliminary analysis of the digital data. The online data acquisition system and program described in this appendix is based on a Digital Equipment Company (DEC) 11/10 computer with 16 K of core memory, a DEC RK -05 random access disk, two teletype terminals and the DEC Laboratory Peripheral System (LPS). The DEC LPS consists of an 8 channel multiplexed analog to digital converter with variable gain preamplifiers, and internal timing clock, and two Schmidt triggers. This system has the capability to sample each channel along with its multiplexed pair simultaneously and then perform sequential converstion on the two signals. The sample window length is 5 nano-seconds and each signal conversion takes 25 µS. Maximum sampling rate on a single channel is 45 Hz, with 12 bit conversion.

A schematic of the data acquisition system is shown in Figure 17. The reference marker pulse at the start of the compression

-53-

stroke is input to channel 0 with the cylinder pressure input to channel 10. Marker pulses every 5 CA^O are used as an input to the Schmidt trigger. It appears that further system refinements will permit 1 CA^O sampling increments for a single pair of inputs.

Accurate pressure records must be matched with accurate crankangle records to be of further use and variations in crankshaft angular velocity precludes accurate determination of the cylinder volume when the pressure signal is only logged against time. Consequently, combustion pressure and crankangle position signals make up a data pair and are sychronized with the aid of the Schmidt trigger. Each sample interval consists of 144 data pairs comprising two engine revolutions. The actual crankangle position is not known at the start of a sampling interval and the sampled data is reordered at the end of each data sample interval using a reference signal at 185[°] before top dead center.

Two techniques can be proposed for obtaining average engine performance. The first involves a complete heat release analysis of individual combustion records followed statistical averaging of these results. The extended interval between sampled data sets and the computational expense required by this method precludes its use. Consequently, a second technique involving the computation of mean cylinder pressure records from consecutive data sets was used. These mean records are then analyzed to obtain engine performance. If a Gaussian distribution

-54-

is assumed, the probability density function can be expressed as:

$$\rho(\mathbf{X}) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[\frac{-(\mathbf{X}_{o} - \overline{\mathbf{X}})^{2}}{2\sigma^{2}}\right]$$

The following equations are used to calculate the statistical properties of data variations from N records of data:

Mean
$$(\mu_1)$$
 $\bar{x}_i = \frac{1}{N} \sum_{j=i}^{N} x_{ij}$

 \overline{X} represents the average value of the i the element of the data i vector X.

N

Variance:
$$(\sigma^2) = \frac{1}{(N-1)} \sum_{j=1}^{N-1} (x_{ij} - \bar{x}_i)^2$$

Rearranging these equations, the standard deviation can be computed with a single pass of the data:

$$S_{i} = \sqrt{\frac{1}{N-1} \left[\sum_{j=1}^{N} X_{ij}^{2} - \frac{1}{N} \left(\sum_{j=i}^{N} X_{ij}^{2} \right)^{2} \right]}$$

This routine permits calculation without an unmanageable number of element arrays. However, the standard deviation as calculated is not normalized and can only be expressed as a percent of the observed element mean.

Assuming that we are sampling from a normal population it is possible to construct exact confidence intervals for μ ,

the true mean, even when σ is unknown, by use of the Student - t distribution. A 1- α confidence interval for μ_i is expressed as:

$$\bar{\bar{x}}_{i} - t_{\alpha/2} \left(\frac{s_{i}}{\sqrt{N}} \right) < \mu_{i} < \bar{\bar{x}}_{i} + t_{\alpha/2} \left(\frac{s_{i}}{\sqrt{N}} \right)$$

For a large sample size the distribution of S can be closely approximated as normal and a 1- α confidence interval is:

$$\frac{S_{i}}{1 + \frac{Z_{\alpha/2}}{\sqrt{2N}}} < \sigma_{i} < \frac{S_{i}}{1 - \frac{Z_{\alpha/2}}{\sqrt{2N}}}$$

where

$$Z_{i} = \frac{S_{i} - \sigma_{i}}{(\sigma_{i}/\sqrt{2N})}$$

In addition to the statistical information outlined above, the outline data acquisition program integrates the mean pressure volume diagram to calculate the indicated mean effective pressure and the pumping mean effective pressure by using Simpson's Rule for non evenly spaced ordinates as shown below:

$$W = \sum_{j=1,3,5..}^{N} [(V_{j+2}(\theta) - V_{j}(\theta) (5P_{j}(\theta) + 8P_{j+1}(\theta) - P_{j+2}(\theta))]$$

Note that cylinder volume is a geometric function of crankangle position.

Log P and Log V vectors are also displayed for cycle evaluation and the program listing containing in stream documentation is included in Appendix III. The assembly language commands for the sampling subprogram are explained in Reference(18).

APPENDIX III

COMPUTER ANALYSIS PROGRAMS

Listings for all computer programs and subroutines used in these experiments are included in this appendix. The programs and subroutines can be grouped in four areas as indicated by Tables A-1 through A-4. All programs contain in-stream documentation of major equations and computational schemes and each subroutine contains a brief section describing its purpose, calling sequence, and the definition and dimensions of arguments. All programs with the exception of subroutine SAMPLE are written in ANS Fortran IV. Subroutine SAMPLE is written in DEC Assembly Language.

Summary of Interactive Data Acquisition and Reduction Programs

ProgramPurposeREZLTSCalculates basic performance
and emissionsfrom experimental dataONLINEPerforms online pressure data ac-
quisition and calculates mean pressure

crankangle statistics

Subroutine

SAMPLE

Provides assembly language commands used to control analog to digital conversion

Summary of Pressure Crankangle Data File Preparation and Control Programs

Program

Purpose

ANALIZ Prepares pressure crankangle data files and basic performance information for additional thermodynamic analysis.

Subroutine	
RECALL	Returns pressure-crankangle data from ONLINE for further calculations
XPRNT1, XPRNT2	Provides printout of internal variables in XCLC2 for each time increment.

STORE

Provides file storage options for output from ANALIZ.

Summary of TCCS Combustion Analysis Program

Subroutine	Purpose				
XCLC2	Calculates fuel fraction burnt, and PVY versus crankangle from pressure- crankangle data				
GASVEL	Calculates the average gas velocities at the periphery of the piston cup*				
HEAT2	Calculates heat transfer rate in TCCS engine during combustion				

PLUME

Calculates air entrainment rates for burning gas plume**

* Appendix B, Reference (4).
**Appendix II, Reference (3).

-61-

Summary of General Thermodynamic Property Subroutines*

Subroutine

Purpose

AFTEMP

Calculates adiabatic flame temperature from given initial state

Calculates burnt gas properties at low (<1000°K) temperatures

CLDPRD

DERIVS

Calculates derivatives of properties; for HPROD

HPROD

Calculates burnt gas properties at temperatures >1100°K

TEMP

Calculates T(h,P) for burnt gas

TSUBU2

Calcualtes T(P) from given initial state of unburnt gas following an isentropic process(assumes no fuel vapor)

UPROPZ

Calculates properties of unburnt gas (assumes no fuel vapor)

*Appendixes C and D; Reference (4)

-62-

LKIVS

REZLTS

THIS PROGRAM WILL REDUCE THE EXPERIMENTAL DATA AS IT IS REQUESTED. ALL INPUTS WILL BE PROMPTED.

DIMENSION T(5), FULFLO(5)

INTEGER RUN REAL MECEFF, NO, IHP, IMEP, ISFC, ITEFF, ISCO, ISNO,NL,ISHC DATA DORF/0,71 /

TYPE 500

500 FORMAT(' THE FOLLOWING INPUTS ARE REQUIRED TO REDUCE THE', 1' ENGINE DATA')

TYPE 514

C

C

CC

514 FORMAT(' ENTER THE FUEL DATA AS REQUESTED'/' WHAT IS THE ', 1'H:C RATIO')

ACCEPT 111,HCR 111 FORMAT(F15.7)

TYPE 515

515 FORMAT(' WHAT IS THE STOIC FUEL AIR RATIO? ') ACCEPT 111, STOIC

TYPE 516

516 FORMAT(WHAT IS THE LOWER HEAT OF COMBUSTION? ') ACCEPT 111, QC

TYPE 517

517 FORMAT(' WHAT IS THE FUEL SPECIFIC GRAVITY AT TEST', 1' TEMP.? ')

ACCEPT 111, SPGR DO 11 I=1, 23

11 TYPE 200

200 FORMAT(/)

- RPML = 100. 1 ACCEPT 5011, NULL
- 5011 FORMAT(I2)

TYPE 501

501 FORMAT(' ENTER THE RUN #(I2) ',*)

	ACCEPT 100, RUN
100	FORMAT(12)
	IF (RUN , EQ. 0) GO TO 99
	TYPE 502
502	FORMAT(' THE DATE(A8) (**)
	ACCEPT 101, DA, TE
101	FORMAT(A4,A4)
	TYPE 503
503	FORMAT(THE FUEL USED (A8) (, \$)
	ACCEPT 101, FU,EL
	TYPE 504
504	FORMAT(' ENTER THE RPM (F5.0) (, \$)
	ACCEPT 111, RPM
	TYPE 505
505	FORMAT(' THE INJECTION START (13) ', \$)
	ACCEPT 102, INJS
102	FORMAT(13)
	TYPE 506
506	FORMAT(' THE END OF INJECTION (12) (,\$)
	ACCEPT 103, INJF
103	FORMAT(13)
	TYPE 507
507	FORMAT(' THE INJECTOR CRACKING PRESSURE (14)
	ACCEPT 104, INJP
104	FORMAT(14)
	TYPE 508
508	FORMAT(' THE AMOUNT OF NEEDLE LIFT ',\$)
	ACCEPT 111, NL
	TYPE 509
509	FORMAT(' THE IGNITION START (13) ', \$)
	ACCEPT 102, IGNS
	TYPE 510
510	FORMAT(' THE END OF IGNITION (12) ',\$)
	ACCEPT 103, IGNF
	IF (RPM .EQ. RPML) GO TO 2

-64-

'y\$)

	K=0				
	TYPE 511	. P. ,			
511	FORMAT(/ WHA	AT IS THE ATM	SPHERIC PRESSURE	TN MM OF HG	
· ·	ACCEPT 111, PATM		the second		. 7 47 7
	TYPE 512				
512	FORMAT(' HOU	A MANY GRAINS	OF WATER VAPOR AN	RΕ',	
	1' THERE ',\$)				
	ACCEPT 111, WGR TYPE 5161				
5161	FORMAT(' WHAT IS TH	HE PRESS INTO	THE ORIFICE IN TH	V OF H20 (
	ACCEPT 111, PINOR GO TO 3				
2	K = 1				
3	$\begin{array}{rcl} RPML &=& RPM \\ TYPE & 5171 \end{array}$				
5171	FORMAT(' WHAT IS TH	E PRESS DROP	ACROSS THE ORTETO	TE TN TH OF '.	
	1'H20 (,\$)		THE STORE IN		
	ACCEPT 111, PDEL	· · ·			
	TYPE 518				
518	FORMAT(' WHAT IS TH 1'OF H2O? ',\$)	IE PRESS DROP	IN THE INTAKE MAN	VIFOLD IN IN '	,
	ACCEPT 111, FINL				
	TYPE 519				
519	FORMAT(/ WHA	AT ARE THE DY	O PRESSURES IN IN	CHES OF HG'/	
	1' FOR BRAKE	1 y\$)			
	ACCEPT 111, PDYB				
	TYPE 520				
520	FORMAT(' FOF	FRICTION '	\$)		
	ACCEPT 111, FDYF				
m	TYPE 521				
521	FORMAT(' FOR	BRAKE ZERO	'y\$)		
	ACCEPT 111, FDYBZ				
E	TODMATCA	1			
and which the	FURMALC' FOR	FRICTION ZEF	(0 'y\$)		
	HUGERI III' FUYFZ				

-65-

							4 ·
	TYPE 523						
523	FORMAT(' 1' WAT	WHA ER IN '	T ARE THE F(,\$)	DLLOWING	TEMPERAT	JRES IN DEG	F'/
	ACCEPT 111, TYPE 524	TWIN					
524	FORMAT(WATI	ER OUT ',\$)			
	ACCEPT 111,	TWOUT	· · ·				
	TYPE 525						
525	FURMAI('		FICE INLET	(9\$)			
	TYPE 524	TURIN					
526	FORMAT(INL	ET MANIFOLD	(•\$)			
	ACCEPT 111, TYPE 527	TAIRIN					
527	FORMAT(EXH	AUST (,\$)				
	ACCEPT 111;	TEXH					
528	FORMAT(WHA	T IS THE WA		RATE -SC	ALE READING	
	ACCEPT 111,	WTRFLO				71	7 44 7
529	FORMAT(HOW	MANY FUEL	CHECKS W	JERE MADE?	′y\$)	
1041	FORMAT(T1)						
	TYPE 530						
530	FORMAT(' EN	TER THE	FUEL FLOW D	ATA, MAS	S IN GRAM	3, TIME IN	SEC, ',
	1'FOR EACH	CHECK (2)	F10.2)')				η.
	DO 12 I=1,	NCK					
12	ACCEPT 105,	FULFLO	I), T(I)				
103	TYPE 531	• ***			· · · ·		
531	FORMAT(WHA	T ARE THE FI	MISSIONS	DATA. HC		ты /.
	1'FFM, 02,	CO2 AND	CO IN % (F1	0.2/) /)			
	ACCEPT 111,	HC			,		
	ACCEPT 111,	NO		· .			
	AUCEPT 111,	02					

and a second second strategies of the second s

-66-

i

ACCEPT 111, CO2 ACCEPT 111, CO

THIS EQUATION IS DERIVED FROM THE PAPER "THE METERING OF GASES BY MEANS OF THE ASME SQUARE EDGED ORIFICE WITH FLANGED TAPS." BY LEARY W. A.

W=31.76*DORF**2.0366*((PATM*0.03937-PINOR*0.07369) 1*((1. + WGR/7000.)/(1. + 1.608*WGR/7000.))*PDEL/ 1(TORIN + 460.))**0.5 THIS CALCULATES THE AIR FLOW IN GRAMS PER SEC

T1=0. F =0. DO 13 I=1,NCK T1 = FULFLO(I)/T(I) F = F + T1 FM = F/FLOAT(NCK)

THIS IS THE MEASURED FUEL FLOW RATE

FAR = FM/W

THIS IS THE MEASURED FUEL AIR RATIO

PHIM = FAR / STOIC

THIS IS THE MEASURED EQUIVALENCE RATIO

FPERST = FM * 120000.0/(RPM * SPGR)

THIS IS THE FUEL INJECTED PER STROKE IN MM**3

CALCULATE THE WATER FLOW RATE USING A LEAST SQUARES FIT FOR THE ROTAMETER CALIBRATION DATA ON 28 JAN 76 -67-

С

C C

С

C

WTRFLD = 0.0479 * WTRFLD - 0.0081 HREJ = WTRFLO * 60. * (TWOUT-TWIN)BMEP = 2.88847 * (PDYB-PDYBZ)FMEP = 2.88847 * (PDYFZ-PDYF)IMEP = BMEP + FMEPBHP = RFM * (PDYB-PDYBZ)/6000.0 FHP = RPM * (PDYFZ-PDYF)/6000.0IHP = BHP + FHPMECEFF= BMEP/IMEP VOLEFF= W * 3.707 * (TAIRIN + 460.)/(RPM * (FATM * 0.01934 1-FINL * 0.0361)) SAC =W# 3600./(453.592*IHP) ALL EMISSION EQUATIONS ARE BASED ON SAE PAPER 710604 BY D. L. STIVENDER ---- NOTE THAT THE HC ARE MEASURED IN TERMS OF CARBON ATOMS AND THAT AS MEASURED HC IS WET WHILE ALL OTHER QUANITIES ARE MEASURED DRY. HC = HC/10000.0NO = NO/10000.0FMWT = 12.01 + 1.008 * HCRCH20 = HCR * 0.5 * (CO2 + CO)/(CO/(CO2 * 3.8) + 1.0)CH20 = CH20/100.0H20 = CH20/(1.0 + CH20)WDR = 1.0 - H20H20 = H20 * 100.0AFR=4.76*(28.96/FMWT)*((CO2+O2+(CO+NO)*0.5) 1*WDR+0.5*H20)/(HC+(CO+CO2)*WDR) FAREX = 1.0/AFRTHIS IS THE CALCULATED FUEL AIR RATIO PHIEX = FAREX/STOIC

89

С

С

C

C

C C

С

С

C C

THIS IS THE CALCULATED EQUIVALENCE RATIO

CALCULATE THE FUEL CONSUMPTION BASED ON THE AIR FLOW AND THE CALCULATED AFR TO MAKE THE EMISSIONS OUTPUT CONSISTENT.

FM = W * FAREXSFC = FM * 3600.07 IHP ISFC = SFC / 453.592BSFC = ISFC * IHP / BHPITEFF = 2545.0 / (ISFC * QC)DEM = 1./(HC + CO *WDR + CO2*WDR)ISCO = (28.01/FMWT) * DEM * WDR * CD * SFC ISNO = (48.008/FMWT) *DEM *NO * WDR * SFCISHC = (83.25/FMWT) * DEM * (HC/6.) * SFC COMMENCE OUTPUT $IX = 13 + K \times 3$ DO 14 I=1,IX TYPE 200 TYPE 5311, RUN, DA, TE, FU, EL 5311 FORMAT(PERFORMANCE SUMMARY FOR THE TCCS ENGINE // 1' TEST RUN ', 12, 5X, A4, A4, ' USING ', A4, A4, ' FUEL () **TYPE 532** 532 FORMAT(RFM INJ START INJ FINISH INJ PRESS í y 1'NEEDLE LIFT IGN START IGN FINISH') TYPE 533, RPM, INJS, INJF, INJF, NL, IGNS, IGNF 533 ",F5.0,7X,I3,12X,I3,11X,I4,12X,F5.3,10X,I3,12X,I3) FORMAT(' TYPE 534, PHIM, PHIEX 534 FORMAT(' THE MEASURED EQUIVALENCE RATIO= /,F5.3, THE CALCULATED EQUIVALENCE RATIO = (,F5.3) 11 TYPE 535, IMEP, BMEP, FMEP 535 FORMAT(IMEP= (,F10.2,3X, 'PSI',5X, 'BMEP=',F10.2,

С С С С

C

С

С С

С

14

1 3X, 'PSI', 5X, 'FMEP=', F10, 2, 3X, 'PSI') TYPE 536, IHP, BHP, FHP 536 FORMAT(IHP = ',F10.2,11X,'BHP =',F10.2,11X,'FHP =', 1 F10.2TYPE 537, MECEFF, ITEFF, VOLEFF 537 MECH EFF =',F10.3,' IND THERM EFF =',F10.3,' VOLUME', FORMAT(1 1'TRIC EFF=',F10.3) TYPE 538, HREJ, TEXH 538 HEAT REJECTION TO H20=',F10.2,' BTU/MIN',GX,'EXH', FORMAT(1'AUST TEMP=',F10,1,3X,'DEG F') TYPE 539, FPERST 539 FORMAT(THE FUEL INJECTED / STROKE =/,F10,5,3X,/MA**3() TYPE 540, ISFC, BSFC, SAC 540 ISFC=',F10.3,5X,'BSFC=',F10.3,5X, FORMAT(1'ISAC=',F10.3,5X,'(LBM/HP-HR)') TYPE 541, ISCO, ISNO, ISHC 541 FORMAT(ISCO=',F10.2,5X,'ISNO=',F10.2,5X, 1'ISHC=',F10.2,5X,'(GR/IHP-HR)') **TYPE 542** 542 FORMAT(NOX IS IN TERMS OF NO2 AND THE HC IS IN ', 1'TERMS OF EQUIVALENT HEXANE ') DO 15 I=1,13 TYPE 200 15 CONTINUE GO TO 1 99 STOP END

-69a-

ONLINE

С

С

C C

С

С С

С

С

С

С

С

С

С

802

98

800

801

THIS PROGRAM IS DESIGNED TO COLLECT ON LINE DATA AND TO PERFORM INITIAL DATA PROCESSING INVOLVING STATISTICAL ANALYSIS AND A WORK CALCULATION. THE PROGRAM PROVIDES BOTH PRINT OUT AND DISK STORAGE OPTIONS.

DIMENSION IPRES(144), IBUF(288), PSTAT(144,2), DAT(3), TH1(146) REAL MEP, HP CNTP IS THE CONTACT PRESSURE THAT IS REQUIRED TO CLOSE THE BALANCE PRESSURE INDICATOR ALL DIMENSIONS FOR THE ENGINE ARE IN CM AND CM**3 DATA CNTP, PSCALE/ 0.0, 200. / DATA BORE, STROKE, CONLEN, VIDC/9.843, 9.843, 16.83, 74.89 / DATA PIOVR8, DTR, ATM, CCTIN3/ 0.392699, 0.017453, 14.696, 0.06102 / VOL(THR) = VTDC + B1*(B3 - COS(THR) - SQRT(COS(THR)**2 + B2))DVDTHR(THR)=B1*CCTIN3*SIN(THR)*(1.+COS(THR)/SQRT(COS(THR)**2+B2)) B1 = FIOVR8 * BORE * STROKE *BORE B2 = (CONLEN #2. / STROKE) ##2 - 1.0 B3 = 1.0 + 2.0 * CONLEN / STROKE **TYPE 802** FORMAT(!!!WARNING!!!'/ 1' THE ST1 MUST BE SET TO JUST FIRE BY SLOWLY INCREASING IT FROM ', 1' THE LEFT STOP. 1/1 THE REF PULSE IS THE SCOPE TRIGGER', 1' FULSE SET TO GO MAX AT -185" TDC') **TYPE 800** FORMAT (// WHAT IS THE RUN NUMBER (I2) ? (,\$) ACCEPT 801, IRUN, DAT(3) FORMAT(12, 10X, A4) CALL DATE(DAT)

TYPE BO4 804 FORMAT(// WHAT ANGLE DOES THE BALANCE PRESSURE INDICATOR // 1' CORRESPOND TO (NEAREST 5 DEGREE) ? (I4) / , \$) ACCEPT 807, IBPI 807 FORMAT(14) TYPE 808 808 FORMAT(// WHAT PRESSURE IS THE BALANCE PRESSURE INDICATOR ', 1' SET AT ? (F5.2) ', \$) ACCEPT 809, BPI 809 FORMAT(F5.2) BPI = BPI + CNTP**TYPE 8111** 8111 FORMAT(' WHAT IS THE RPM ? ',\$) ACCEPT 8112, RPM 8112 FORMAT(F10.3) 500 **TYPE 812** FORMAT(// HOW MANY SAMPLES DO YOU WANT ? (13) // #) 812 ACCEPT 813, ISAMP 813 FORMAT(13) **TYPE 810** 810 FORMAT(/' DO YOU WANT TO SEE A FULL CYCLE ? YES=1 NO=0 (,\$) ACCEPT 906, LOOK1 TYPE 8131 FORMAT(' 8131 RELEASE WHEN READY TO RUN (, \$) ACCEPT 8132, NULL 8132 FORMAT(12) TYPE 8133 8133 FORMAT(ONLINE SAMPLING UNDERWAY DO NOT DISTURB ////) ICOUNT = 0DO 5 I= 1, 288 IBUF(I) = 05 CONTINUE $DO \ 6 \ I = 1,144$ DO 6 J = 1,2PSTAT(I,J) = 0.0

-71
```
CONTINUE
L00K=0
DO 1 I=1,288
IBUF(I)=0
JUMP ON BOARD AND COLLECT SAMPLES FOR 2 REVOLUTIONS USING CHANNEL
0 AND 10 (OCTAL)
CALL SAMPLE(IBUF, 144)
FIND THE REF FULSE ON CHANNEL O
IR = 1
IMAX = IBUF(1)
DO 2 I=3,287,2
IF(IBUF(I) .LT. IMAX) GO TO 2
IMAX = IBUF(I)
IR = I
CONTINUE
REORDER THE PRESSURE DATA STARTING AT THE REF PULSE
IR = IR + 1
J = 0
DO 3 I=IR,288,2
J=J+1
IFRES(J) = IBUF(I)
DO 4 I=2, IR, 2
J = J + 1
IPRES(J) = IBUF(I)
ICOUNT =ICOUNT + 1
IF(ICOUNT .EQ. ISAMP) LOOK=LOOK+LOOK1
CALIBRATE THE DATA USING BPI, IBPI, PSCALE AND STORE THE ARRAY TO
COMPUTE THE FINAL PRESSURE STATISTICS
```

6

1 C

С С

С

C C

С

2 C C

С

3

Δ

C C

C

100

-72-

```
IF(LOOK ,EQ, 0 ) GO TO 41
TYPE 701, ICOUNT
FORMAT(/// ICOUNT= ',I3)
CONTINUE
I = (185 + IBPI) / 5 + 1
RBPI = (FLOAT(IPRES(I)) - 2047.) / 409.5
TH=-185.0
DT= 5.0
DO 10 I= 2,74
        TH=TH + DT
        K=I-1
        TH1(K) = TH
        PRESS= ((FLOAT(IPRES(I))-2047.)/409.5-RBPI) * PSCALE + BFI
IF(LOOK .EQ. 0 ) GO TO 42
TYPE 702, TH, PRESS
        FORMAT(' THETA= ',F5.0, 5X,' PRESSURE = ',F7.3,3X,
1
        (FSI()
CONTINUE
        PSTAT(K,2) = PSTAT(K,2) + PRESS
        PSTAT(K,1) = PSTAT(K,1) + PRESS**2
CONTINUE
TH=0.0-TH
DO 11 I=75,144
K=I-1
        TH=TH + DT
        TH1(K)=TH
        PRESS= ((FLOAT(IPRES(I))-2047.)/409.5-RBPI) * PSCALE + BPI
        PSTAT(K_{12}) = PSTAT(K_{12}) + PRESS
       PSTAT(K,1) = PSTAT(K,1) + PRESS**2
IF(LOOK .EQ. 0 ) GO TO 43
TYPE 702, TH, PRESS
CONTINUE
CONTINUE
DO 12 I=1,1
```

С

701

702

42

10

43

11

41

-73-

```
TH=TH +DT
                PRESS= ((FLOAT(IPRES(I))-2047.)/409.5-RBPI) * PSCALE + BPI
                K=144
                TH1(K) = TH
                PSTAT(K_{2}) = PSTAT(K_{2}) + PRESS
                PSTAT(K,1) = PSTAT(K,1) + PRESS**2
        IF(LOOK .EQ. 0 ) GO TO 44
        TYPE 702, TH, PRESS
44
        CONTINUE
12
        CONTINUE
        IF ( ICOUNT .EQ. ISAMP ) GO TO 400
С
С
        THIS CHECKS TO SEE HOW MANY SAMPLE DATA SETS HAVE BEEN COLLECTED
С
        IF NOT MAX COLLECT AGAIN
С
        GO TO 100
С
        PROCESS THE PSTAT ARRAYS TO DETERMINE THE PRESSURE STATISTICS
C
400
        SAMF = FLOAT(ISAMP)
        DO \ 30 \ I = 1,144
        PSTAT(I,1)=SQRT(ABS(1./(SAMP-1.)*(PSTAT(I,1)-PSTAT(I,2)**2/SAMP)))
                PSTAT(I,2) = PSTAT(I,2)/SAMP
30
        CONTINUE
С
C
        CALCULATE THE MEAN EFFECTIVE PRESSURE, LIST THE OUTPUT AND PREPARE
        DATA FILES FOR STORAGE ON THE DISK.
        THE FOLLOWING SECTION CALCULATES THE CYLINDER VOLUME AND THE WORK AT
        EACH INCREMENT AND PROVIDES FOR PRINT OUT
        VDSP = 2 \cdot * B1
        TYPE 900
900
        FORMAT(///////////
                                ON LINE DATA PROGRAM SUMMARY ()
```

C

C

С

С С

С

C

```
TYPE 901, IRUN, DAT(1), DAT(2), DAT(3), RPM
901
        FORMAT('
                        RUN NUMBER (, 12, 5X, A4, A4, A4, 5X, F7, 2, 3X, (RPM())
        TYPE 902
902
        FORMAT(//
                      THETA
                                 VOLUME/VOLUME MAX
                                                       MEAN PRESSURE
        1'STAND DEVIATION
                              LOG(VOL/VOL MAX)
                                                    LOG(PRESS ATM) ()
С
        DO 40 I = 1,73
                CYVOL = VOL(TH1(I)*DTR)/(VDSP+VTDC)
                CYLN = ALOG10(CYVOL)
                PRLN = ALOGIO(PSTAT(I,2)/ATM)
        TYPE 903, TH1(I), CYVOL, PSTAT(I,2), PSTAT(I,1), CYLN, PRLN
40
903
        FORMAT(6X,F5.0,10X,F7.4,12X,F7.3,13X,F7.3,13X,F8.5,10X,F8.5)
С
        IF( LOOK .EQ. 0 ) GO TO 402
        IO 401 I = 74,144
                CYVOL = VOL(TH1(I)*DTR)/(VDSF+VTDC)
                CYLN = ALOG10(CYVOL)
                PRLN = ALOG10(PSTAT(I,2)/ATM)
        TYPE 903, TH1(I), CYVOL, PSTAT(I,2), PSTAT(I,1), CYLN, PRLN
401
402
        CONTINUE
        W=0.0
        DO 51 I=1,71,2
        V01=V0L(TH1(I)*DTR)
        V02=V0L(TH1(I+2)*DTR)
        F=( V02-V01 )* CCTIN3/12.
        F=F * (5.*PSTAT(1,2)+8.*PSTAT(1+1,2)-PSTAT(1+2,2))
51
        W=W+F
        WF=0.0
        DO 52 I=73,141,2
        V01=V0L(TH1(I)*DTR)
        V02=V0L(TH1(I+2)*DTR)
        F=( V02-V01 )* CCTIN3/12.
        F=F * (5.*PSTAT(I,2)+8.*PSTAT(I+1,2)-PSTAT(I+2,2))
52
        WP=WP+F
        V01=V0L(TH1(143)*DTR)
```

75-

	V02=V0L(TH1(1)*DTR)
	F=(V02-V01)* CCTIN3/12.
	F=F * (5.*PSTAT(143,2)+B.*PSTAT(144,2)-PSTAT(1,2))
	WP=WF+F
	PMEP=WF/(VDSP*CCTIN3)
С	
	MEP = W/(VDSP*CCTIN3)
	HP = W * RPM / 792000.0
	TYPE 904, MEP, PMEP, HP
904	FORMAT(// THE IMEP = $^{+}$ F6.2,10X, THE PMEP = $^{+}$ F7.2,10X,
	1'THE IHP = '+F6+3////////
	ISTR=1
	TYPE 905
905	FORMAT(//// DO YOU WANT TO STORE THE DATA? 1=YES O=NO (I1) (**)
	ACCEPT 906, ISTR
906	FORMAT(I1)
	IF (ISTR , EQ. 0) GO TO 97
	1 Y.F.E. 909
909	FORMAT(// ASSIGN A FILE TO THE DATA, IN THE FORM DEV:RUN#.DAT(/)
	CALL ASSIGN(11, 'DEV:FILE.EXT',-1)
	DEFINE FILE $11(150,2,U,IT)$
C	
C ·	STACK ALL DATA INTO ONE ARRAY FOR STORAGE ON THE DISK
	DD 80 T=1-7
	$DO_{1} = 1.73$
	IX = J + 73*(T-1)
80	WRITE(11/IX) ESTAT(1.1)
	WRITE(11/147) MFP
	WRITE(11'148) HP
	WRITE(11'149) RPM
	WRITE(11'150) PMEP
С	
	GO TO 99
97	TYPE 910

-76-

, ,

910 FORMAT(// DO YOU WANT TO COLLECT MORE DATA? 1=YES 0=NO(,\$) ACCEPT 906, ITALK IF (ITALK .EQ. 1) GO TO 500 C

99 STOP

END

-77-

	22	
.TITLE O	NLINE DATA AC	QUISITION PROGRAM "SAMPLE"
+ MUALL	• REGDEF	
• REGDEF		
+CSECT SAMP	LE	
LPSADS=17040	() ŷ	VECTOR STATUS ADDRESS
LPSADB=17040	2 1	VECTOR BUFFER ADDRESS
TST (R5)+		
MOV (R5)+, R	Q \$	GET BUFFER POINTER
MOV @(R5)+,	R2 \$	GET NUMBER OF POINTS
CLR @#IPSADS		
CLR @#LFSADB		이 전에 좋아 가지 않는 것이 많아야 한다.
MOV #40020.	PH PSANS :	OPEN CH OSIO DUAL SAMPLE & HOLD & STI
TSTR RALPSAD	G A	WATT FOR THE FIRST CAMPLE CONNERSTON
BF1 15		WHEN I DIV THE TEROT OF THE CONVERSENCE
TNC PHI PSANS		
MOU DALESADE	· (E0)+	
TSTB @#LPSAD	5	WATT FOR THE SECOND OH CONVERSION
BPL 2\$		
MOV PHLPSATE	· (RO)+	
DEC R2		DECREMENT COUNTER
BGT 1\$		GO WATT FOR ST1 AGAIN
CLR @#LPSADS		
CLR @#LPSADB		
RTS PC		
.END		

-78-

1\$:

2\$:

ANALIZ

00000

THIS PROGRAM WILL PREPARE DATA FILES FOR XCLC2 USING SUBROUTINE RECALL AND STORE & LIS-183 ENGINE DATA

	DIMENSION P(100), TH(100), Z(100), W(100), Q(100), PHITAB(100)	00000050
	DIMENSION P2(100), TH2(100), GAMMA(100), PVG(100)	
	LOGICAL TALK	00000060
	INTEGER UNIT	00000070
	COMMON /CHARGE/ PHIAV, DEL, PSI, RESERK, CHMASS, DIOWER, CELEL	00000080
	COMMON /ENGINE/ BORE, STROKE, CONLEN, VIDC, HIDC, VCUP, ACUP,	00000090
	* RSUBC, RTCAP, RTSML, DSUBC, WO, RPM, TWALL	00000100
	COMMON /VERBOS/ TALK, UNIT	00000110
	COMMON /HTDATA/ P1, T1, V1, PM	
	COMMON /XPRNTC/PRES, THETA, VBAR, WOVRM, QOURM, VHAU, UBAU, UB,	
	* EUAV, EBAV, EB, TU, TBAV, TB	
C		00000120
	DATA NREAD, NRITE, NPNCH / 5, 5, 7 /	00000130
C		00000140
С		00000410
C	READ IN PRESSURE DATA, AND SET UP ARRAY OF CRANK ANGLES	00000420
С		00000430
	CALL RECALL(P2,TH2,RPM)	
	TYPE 107	
107	FORMAT(///' WHAT IS THE FUEL H:C RATIO (,\$) ACCEPT 901, XCR	
	DEL=1.7XCR	
	TYPE 108	
108	FORMAT(WHAT IS THE LOWER HEATING VALUE FOR THE FUEL (,s)	
	ACCEPT 901, RLOWER	
	TYPE 101	
101	FORMAT(' WHAT IS THE ISFC ',*)	
	ACCEFT 901, SFC	
	TYPE 102	
102	FORMAT(' WHAT IS THE ISAC ',\$)	

-79-

	TYPE 107			
103	FORMAT(' WHAT IS THE	MEASURED IHP	19串)	
C	HOULET JUIJ ANE			
C	CALCULATE THE FUEL AND	AIR MASS		
. - .	FMASS =SECXYHEXAST 500	/(70 VPPM)		· ·
	AMASS = SAC * XHP * 453.59	2/(30,¥PPM)		
	STOIC=(12.01+1.008*XCR)/((1,+XCR/4,))	*137.945)	
	FHIAV=(SFC/SAC)/STOIC			
С				· · ·
90	TYPE 104			
104	FORMAT(' WHAT IS THE	BURNT PRODUCT	S EQUIVALENCE RAT	ΓΩ (•\$)
	ACCEPT 901, PHITE			
	PSI = 3.764			00000170
	CFUEL = 0.00058			00000210
C				00000220
	BORE = 9.843			00000230
	STROKE= 9.843			00000240
	CONLEN= 16.83			00000250
	V110 = 74.89			00000260
	HFUC = .124			00000270
	VUUP = 62.19			00000280
	$\frac{1}{2} \frac{1}{2} \frac{1}$			00000290
	$\frac{1}{2} \frac{1}{2} \frac{1}$			00000300
	RTSML = 1.118			00000310
	DSUBC = 2.159			00000320
С				00000330
	TWALL = 400.			00000370
С				00000380
	TALK = .TRUE.			00000390
	UNIT = 5			00000400
	TYPE 105			
105	FORMAT(' WHEN WAS TH	E START OF INJ	ECTION (,\$)	

-80-

-

ACCEPT 901, THINJ **TYPE 1050** 1050 WHEN WAS THE END OF INJECTION (,\$) FORMAT(ACCEPT 901, EINJ **TYPE 106** 106 FORMAT(' WHAT DO YOU THINK THE RESIDUAL FRACTION WAS 1,\$) ACCEPT 901, RESFRK QLOWER=QLOWER/1800. WO = RFM * 0.37803832CHMASS = AMASS+FMASSCHMASS = CHMASS/(1,-RESFRK) С С FIND THE START OF INJECTION AND THE NUMBER OF POINTS BEFORE С THE EXHAUST VALVE OPENS С DO 10 I=1,73 IF(TH2(I) .LT. THINJ) GO TO 10 K = I GO TO 11 10 CONTINUE 11 DO 12 I=K,73 IF(TH2(I) .LT. 130.) GO TO 12 KN=I GO TO 13 12 CONTINUE 13 I1 = 0DO 14 I=K,KN I1 = I1 + 1TH(I1) = TH2(I)P(I1) = P2(I)14 CONTINUE NFTS = I1DO 15 I=1,I1 IF(TH(I) .LE. EINJ) GO TO 15 I3 = I

-81

	GO TO 16	A		
15	CONTINUE			
С				۵.
C	INITIALIZE ARRAY CONTAINING BURN	T PRODUCT PHI'	S	0000
16	DO 20 I = 1, NPTS			0000
	PHITAB(I) = PHITB			0000
20	CONTINUE			0000
	CALL YOLCO (D. TH. DUTTAD NOTO			0000
901	FORMAT(F15.6)	139 Z9 W9 Q9	GAMMA, PVG)	0000
109	FORMAT(///)			
	CALL STORE(P,TH,Z,GAMMA,PHITAB	FVG,NPTS)		
1000	CALL EXIT			0000
	END			0000

.

.

)0500)0510)0520)0530)0540)0550)0550

-

-82-

SUBROUTINE RECALL

THIS SUBROUTINE WILL RETRIEVE DATA FROM STORAGE FOR FURTHER COMPUTATION AT A LATER DATE

USAGE

CALL RECALL(P, TH, RPM)

RETURNS

P - AN ARRAY OF PRESSURE VALUES IN ATM

TH - AN ARRAY OF CRANK ANGLE DATA AT WHICH THE FRESSURES OCCUR (DEG)

RPM - THE ACTUAL CALCULATED RPM SUBROUTINE RECALL(P, TH, RFM) DIMENSION P(75), TH(75), PSTAT(73,2) DATA ATM, DELTA / 14.696, 5.0 / TH(1) = -180.0

GENERATE THE THETA ARRAY

DO 1 I=2,73

```
TH(I) = TH(I-1) + DELTA

TYPE 10

FORMAT(' WHAT DATA FILE DO YOU WANT TO USE'/)

CALL ASSIGN(12,'DEV:FILE.EXT',-1)

DEFINE FILE 12(150,2,U,IT)

DO 2 I=1,2

DO 2 J=1,73

IX = J + 73 * (I-1)

READ(12'IX) PSTAT(J,I)

READ(12'147)XMEP

READ(12'148)XHP

READ(12'149)RPM

READ(12'150)PMEP

TYPE 9
```

10

9 FORMAT(' DO YOU WANT TO SEE THE DATA YES=1 NO=0 (,\$) ACCEPT 8, MP 8 FORMAT(I1) IF (MF .EQ. 0) GO TO 16 TYPE 11 FORMAT(// 11 DATA SUMMARY 1/ 11 THETA PRESSURE STANDARD DEVIATION') TYPE 13, (TH(I), PSTAT(I,2), PSTAT(I,1), I=1,73) 13 FORMAT(8X,F6,1,7X,F7,2,14X,F7,3) TYPE 14, XMEP, PMEP, XHP, RPM FORMAT(IMEP= ',F10.3,3X,'FMEP= ',F10.3,3X,'HP= ', 14 1F10.2,3X, 'RPM= ',F7.2) С C CONVERT PRESSURE TO ATM С 16 DO 15 I=1,73 15 P(I) = PSTAT(I,2)/ATMRETURN END

-84

Ū,	PRINT HEADER INFORMATION FOR THIS INVOCATION OF XCLC	00000100
	SUBROUTINE XPRNT1 (ENOT)	
	COMMON /XPRNTC/ Py TH, UNURH, WOURH, DOUBH, UNAU, UBAU, UBA	
	X FHAU, FRAU, FR. TH. TRAU, TR	000000000
	COMMON ZVERBOSZ TALK. NETTE	00000080
	COMMON /CHARGE/ BUT, DELL DETL DEZERT SUBJECT DE DURE DE MAR	00000070
<i></i>	CONTOR / CHEROLY FALLY DELY FOLY RESERVY CHMASSY ULUWERY IREFY CFU	ET0000080
0	HETTE CHETTER LAND THE STREET STREET	00000130
	WATTE VRATE IVOV PMIVLHMASSVERUI	ŬŬŬŬŬĹ4Ŭ -
	TOO FORMAT (IH , FHI = ,FS,2,5%, CHARGE MASS = ,F7,4,	00000150
	1 GRAMS//SX/ INITIAL ENERGY =//F6.1// CAL/G////	00000160
U		00000170
Ü,	PRINT OUT TABLE HEADINGS AND FIRST LINE	00000180
Ĉ,	이 그는 사람들이 가슴다. 옷을 물러 가지 못했지 않았다. 영화가 가지 않는 것이 없는 것이 없는 것이 없다.	00000100
	WRITE (NRITE, 200)	00000170
	200 FORMAT (IH of THETA', 4X, 'F', 4X, 'U'M', 5X, 'U'M', 5X, 'U'M',	
	1 $5X \cdot U = \Delta U \cdot SX \cdot U = \Delta U \cdot SX$	00000210
	2	00000220
	X X X X X X X X X X X X X X X X X X X	00000230
	A Product of Checks (HTM) (UL/0) (UAL/0) (UAL/0) /	00000240
	W (UUZB) (UUZB) (UUZB) (UALZB) (UEB K)/y	00000250
	\sim	00000260
	KL I UKN	00000290
	END	
6		00000300
ι,	PRINT PROPERTIES FOR MIXED CASE	00000310
	SUBROUTINE XPRNT2 (X,GAMMA,PHITB,PVG)	
	COMMON /XFRNTC/ F, TH, VOVRM, WOVRM, QOVRM, VUAV, VBAV, VB,	00000080
	* EUAV, EBAV, EB, TH, TRAV, TR	000000000
	COMMON /VERBOS/ TALK, NETTE	
	COMMON /CHARGE/ PHT, DEL, PST, RESERV, CHMASS, DIDLER, TREE, CEN	
	URITE (NRITE, SOO) THER. UNUEW. HOUSE, ONLINE HEAD FRANK FLAN FRANK	
		00000340
	TOPTORY THE TEACTER AND A TEACTER AND A TEACH AND A TE	00000350
	000 I ONULLE VILL ALO+TAL X+724.0+745ALX+74LALX+74LA+74LA+74LA+20 Dimension	00000360
		00000354
		ÜÜÜÜÜÜ4ÜÜ

-05-

	SUBROUTINE STORE(P, TH, Z, GAMMA, PHITAB,	FVG, NPTS	3)	
	AND YOLGO	THE OUTPI	JT FROM TEX	JOB
	AND XULUZ			
.*****	{*** *********************************	ste ste ste ste ste ste ste ste ste	le de	
	SUBROUTINE STORFIE, ΤΗ, 7, ΟΔΜΜΑ, ΟΠΙΤΑΟ.	*********	ጙ <i>ቚቚቚቚቚቚቚቚቚቚቚ</i> ፝፞፞፞	*****
	DIMENSION $P(50)$. $TH(50)$. $Z(50)$. GAMMA(50).	PUTTAD/E	9 / 9)	
51 1		LUT (HDCOC		
	TYPE 100			
100	FORMAT(DO YOU WANT TO STORE THE DATA	YES=1	(dt)	
	ACCEPT 200, NO	1	9.47	
200	FORMAT(I1)			
	IF(NO .EQ. 0) GO TO 99			
	TYPE 101			
101	FORMAT(' ASSIGN A FILE TO THE DATA'//)			
	CALL ASSIGN(13, 'DEV:FILE.EXT',-1)			
	DEFINE FILE 13(301,2,U,IT)			
	XNPT = FLOAT(NPTS)			
	XNPT = XNPT + 0.01			
	STACK ALL THE DATA			
a l	115 7 7 7 7 4 7 4 4 5 55 16.7			
	WKTIE(13 1)XNFT			
	1X = 1			
	TV IV I=IVRFIS			
0				
	$\frac{11}{11} = 1.0 \text{ PTC}$	1		
. *	IX = IX + 1			
11	WRITE(13(TX) P(T))			
	DO 12 I=1, NPTS			

-86-

•

			、 、					
						· . ·		
						de la companya de la		
						· · ·		
12	WRITE(13'IX)	Z(I)						
	DO 13 I=1,NFT	`S		1. ·				
	IX = IX + 1		i 1 .					
13	HETTE(13(TY)	PUTTADITY						
1.0								
	TO TA T-TAKLI	5						
	IX = IX + 1							
14	WRITE(13'IX)	GAMMA(I)						
	DO 15 I=1,NFT	S						
	TX = TX + 1							
15		DUCITY					5	
1.0	WRITE(IS IX)	PVG(I)						
77	RETURN							
	END				•			
					,			
		· •						Å
			ă și					7 -
								•
	· · · · · ·							

,

C***	********************* VERSION 2.0 *** 03-24-76 **********************************	*00000010
C		00000020
L.	SUBRUUTINE XCLC2	00000030
C		00000040
C	FURPOSE:	00000050
C .	TU CALCULATE MASS FRACTION OF FUEL BURNED VERSUS CRANK	00000060
C	ANGLE FOR A TCCS STRATIFIED CHARGE ENGINE FROM GIVEN	00000070
C	PRESSURE-TIME DATA	00000080
		00000090
C	USAGE:	00000100
C S	CALL XCLC2 (F, TH, PHITAB, NPTS, INJ, Z, W, Q, GAMMA, PVG)	00000110
C C	DECODITION OF TABLUT	00000120
C C	DESURIFIIUN OF PARAMETERS:	00000130
	DIVEN;	00000140
с с	F - A VECTOR OF MEASURED COMBUSTION CHAMBER PRESSURES	00000150
	(AIM ABSOLUTE)	00000160
	THE A VECTOR OF CRANK ANGLES (DEGREES ATDC) AT WHICH	00000170
с с	THE CORRESPONDING PRESSURE DATA POINTS WERE TAKEN	00000180
	PHILAB- VECTUR OF AVERAGE BURNT PRODUCT EQUIVALENCE RATIOS	00000190
Č	NETS - NUMBER OF DATA POINTS IN THE HEATONS INJECTION	00000200
C	TALL THE FAD OF THE THE FULL FOR THE VELIURS FY THY XY WY & Q	00000210
C i	GIUEN IN COMMON ADEA (CHARCELL)	
č	PHTAU - AUFRAGE FOUTUALENCE BATTO OF TUE OUADOF	00000220
C.	DEL - MOLAR CIU RATIO OF THE CHARGE	00000230
Č	PST - MOLAR NO BATTO OF THE CHARGE (ADDRESS) - THE CHARGE	00000240
č	RESERK- MASS FRACTION OF THE CHARGE (APPRUX 3.76 FOR AIR)	00000250
c	CHMASS- TOTAL MASS OF CHASSE (CRAMON	00000260
Ĉ		00000270
č	CEUEL - SPECIEIC HEAT (KCALZG-DEG K) OF THE LIGHTE EUER	00000280
C	GIUEN IN COMMON ADEA (ENCINE (+	00000290
č	BORE - ENGINE ROPE (CM)	00000300
ē	STROKE- ENGINE STROKE (CM)	00000310
С		00000320
Ĉ	UTTO - UNLIME OF THE CHAMPED AT THE COMPANY	00000330
-	THE UNHIDER HI INC. (UNAKS)	00000340

-88-

HTDC - FISTON CLEARANCE HEIGHT AT TOP DEAD CENTER (CM)	00000350
VCUP - CUP VOLUME (CM**3)	00000360
ACUP - CUP SURFACE AREA (CM**2)	00000370
RSUBC - CUP RADIUS (CM)	00000380
RICAP - RADIUS FRUM CUP CENTER TO CENTER OF TORUS CROSS	00000390
DECITOR (CH)	00000400
RISHL - RADIUS OF TORUS CRUSS SECTION (CM) DSUBC - CUR DEDTU FROM TOR TO TORUS METRICAL	00000410
WO - BDC SHIPL PATE (DAD OF ALDPLANE (CM)	00000420
RPM - ENGINE COFED (DEUCLITTONO DEE VINUTE)	00000430
THALL - CYLINDED HALL TEMPERATURE (REG. W)	00000440
GIVEN IN COMMON AREA ZUERBORZ +	00000450
TALK - A LOGICAL WA HARTARIE - HOLD TO OFT DETAILOUT HART	00000460
TE TRUE, DETAILED LIGITING OF PROPERTIES OF DUBLES	00000470
UNBURNED ELEMENTS WILL BE PRODUCED ON THE CORTEMN F	HNU 00000480
WHOSE NUMBER IS GIVEN BY THE HADIADIE MUNITER	
TE FALSE. NO LISTINGS ARE PRODUCED	00000000
UNIT - AN INTEGER*4 VARIABLE GIVING THE FORTEAN ETLE NUMBE	
TO WHICH LISTINGS ARE TO BE WRITTEN	
	0000000000
RETURNS:	000000550
Z - VECTOR OF CUMULATIVE MASS FRACTION BURNED AT TIME T	H(I)00000560
₩ - VECTOR OF CUMULATIVE WORK DONE AT TIME TH(I) (CAL)	00000570
Q - VECTOR OF CUMULATIVE HEAT LOSS (CAL)	00000580
PHITAB- VECTOR OF AVERAGE BURNT PRODUCT EQUIVALENCE RATIOS	00000190
CORRESPONDING TO THE ANGLES TH(I)	00000200
GAMMA - VECTOR OF WEIGHTED GAMMA	
PVG - VECTOR OF F*VOL**GAMMA	
PEMARKC +	
	00000640
2) BURNT ZONE ACCUMED UNITEDED ACCUMENTS OF STREET	00000650
3) ANY FOR ASSUMED TO BE AT AUEDAGE COUTUM ENDE DATES OF AU	00000660
WY THAT WERE TO DE HI HVERHOE EQUIVALENCE RAILU UN CH	AKUL00000661
SUBROUTINES AND FUNCTION SUBBROORAMS BEOUTDED.	00000670
THE REPORT OF THE ADDITION TO A DODITION AND REMOTIVED.	00000680

-89-

C	HPROD, AFTEMP, UPROP2, ADCOMP, TSUBU2, HEAT2, XPRINT2, GASVEL	00000690
c	METUOD +	00000700
c		00000710
	SIMPLE THERMUDINAMIC MUDEL USING MASS AND ENERGY CONSERVATION	00000720
с с	CORRELATIONS	00000730
с С	CORRELATION)	00000740
C	***	00000750
ውጥጥጥሳ		k00000760
c	SUBROUTIRE ACEUZ (F) THY PHILAB, NPTS, INJ, Z, W, Q, GAMMA, PVG)	00000770
1.2	DIMENSION PONDICS, THANDICS, TANDICS, HANDICS, TANDICS, THE	00000780
	\mathbf{x} = $\mathbf{P}(\mathbf{N} \mathbf{P}(\mathbf{S})) + \mathbf{P}(\mathbf{N} \mathbf{P}(\mathbf{S})) + \mathbf{Q}(\mathbf{N} \mathbf{P}(\mathbf{S})) + \mathbf{Q}(\mathbf{N} \mathbf{P}(\mathbf{S}))$	00000790
	COMMON ZCHARGEZ RHIALL DEL RET DECEDE RUMARD CLARKER STUR	00000800
	COMMON /ENGINE/ BORE, STROKE, CONLEND UTTO, UTTO, LOUR AGUE	00000820
	* BSURCE DIGAR DIGAR DIGAR DOUDS HILLY VEUP, ACUP,	00000830
	COMMON ZUERBOSZ TALK, UNIT	00000840
	COMMON /HTDATA/ P1. T1. U1. PM	00000850
	COMMON /XPRNTC/ PRES, THETA, UBAR, WOURM, DOURM, UNALL, UDALL, UDALL	000000000
	* FIAU, FRAU, FR. TH. TRAU, TR	00000870
C	TOUL & TUAL TO & UDA & UDA	0880000
	LOGICAL FIRST, TALK	00000890
	REAL K1, K2, K3	00000700
	INTEGER UNIT	00000910
C		00000930
	DATA ERLIM /.001/, MAXITS /20/, MAXHTR /3/	00000730
	DATA FIDVR8 /.39269908/, DTR /.01745329/	000000740
	DATA R /1.9869/, PSCALE /2.42173E-2/	00000960
	DATA TBMIN, TBMAX /400., 4000./	00000961
C		00000970
C	SET UP STATEMENT FUNCTIONS FOR COMBUSTION CHAMBER VOLUME, THE	00000980
C	DERIVATIVE OF VOLUME WITH RESPECT TO CRANK ANGLE, AND PISTON	00000990
C C	CLEARANCE HEIGHT, ALSO ONE TO LIMIT O <= X <= 1	00001000
0		00001010
	VUL(THR) = VTDC + B1*(B3 - COS(THR) - SQRT(COS(THR)**2 + B2))	00001020
	$\mu_{\text{U}}(\text{HR}) = \text{B1*SIN(THR)*(1. + COS(THR)/SQRT(COS(THR)**2 + B2))}$	00001030

• • • •

-90-

С	HT(THR) = HTDC + S1*(B3 - COS(THR) - SQRT(COS(THR)**2 + B2)) CLIP(XX) = AMAX1(0.0 , AMIN1(1.0,XX))	00001040 00001050 00001050
C C C	SET UP PARAMETERS FOR THE STATEMENT FUNCTIONS AND COMPUTE WORK DONE	00001070
	B1 = PIOVR8*BORE*BORE*STROKE B2 = (CONLEN*2./STROKE)**2 - 1.0 B3 = 1.0 + 2.*CONLEN/STROKE	00001100 00001110 00001120
С	S1 = STROKE/2.0 GAMMAB = 0.	00001130 00001135 00001140
	W(1) = 0. FLAST = P(1)*PSCALE*DVDTHR(DTR*TH(1)) DO 10 I = 2, NFTS	00001150 00001160 00001170
	F = F(I)*FSCALE*DVDTHR(DTR*TH(I)) W(I) = W(I - 1) + .5*(FLAST + F)*(TH(I) - TH(I-1))*DTR FLAST = F	00001180 00001190 00001200
	COMPUTE AMASS, FMASS, AND RMASS	00001210
	EPS = (4.0*DEL)/(1.0 + 4.0*DEL) $F = (8.*EPS + 4.)/(28.*PSI + 32.)$ $AMASS = (1RESERK)*CHMASS/(1.+PHIAU*E)$	00001350 00001360
	FMAST = AMASS * F * PHIAV RMASS = CHMASS - AMASS - FMAST DMASS = FMAST / FLOAT(IN.)	
C C	RESID = RESFRK SET EMASS = THE EIRST IN CETTON INCREMENT	
C	FMASS = DMASS CHMASS = AMASS + EMASS + EMASS	
	RESFRK = RMASS/CHMASS	

-91-

;•• ;

	PHIAT = PHIAV	
	CET UD TAITTAL HALVED DEBORD I DEBORD INTERNA	00001220
	SET OF INITIAL VALUES BEFORE LOOPING THROUGH TIKE	00001230
	7(1)	00001240
	$\mathcal{L}(1) = 0$	00001250
		00001260
	HEIA = (H(1))	00001270
	PBEC = P(1) $PHIB = PHI (AB(1))$	00001280
	FRES = F(I)	00001290
	LVUL = VUL(DTR*THETA)	00001300
	VBAR = CVOL/CHMASS	00001310
		00001320
	INITIALIZE CONSTANTS RELATING X, Y, AND Z	00001330
		00001340
	CALCULATE INITIAL TEMPERATURE OF UNBURNED CHARGE	00001440
		00001450
	$\frac{RHO}{RHO} = (AMASS + RMASS)/CVOL$	00001460
	IMOL = PSI + (1.0 - RESFRK)	00001470
	IF (PHIAV .LE. 1.0) TMOL = TMOL + (1.0 + PHIAV*(1EPS))*RESFRK	00001480
	IF (PHIAV .GT. 1.0) TMOL = TMOL + (2.0 - EPS)*PHIAV*RESFRK	00001490
	XMAV = (32. + 28.*PSI + (8.*EPS + 4.)*PHIAV*RESFRK)/TMOL	00001500
	TU = PRES*PSCALE*XMAV/(RHO*R)	00001510
		00001530
	GET INITIAL PROPERTIES OF THE FUEL	00001540
	<u>이 있는 것은 가슴 것</u> 같은 것은 것을 가지 않는 것이 가슴을 가지 않는 것이 가지 않는 것이 같이 했다.	00001550
	VUFAV = TU*82.057*DEL/(96.08*DEL + 8.06)/PRES	00001560
	EUFAV = (ARS(RLOWER) - (115.596-21.542*EFS)/(8.*EFS + 4.))*1000.	00001570
	그는 것을, 정말을 잘 했다는 것을 줄 수 있는 것이 같아. 물고 통 것이 있는 것이 없다.	00001580
	GET INITIAL PROPERTIES OF UNBURNED CHARGE	00001590
		00001600
	CALL UPROP2 (PRES, TU, PHIAV, DEL, PSI, RESID , ENTHLP, CSUBP,	00001610
>	CSUBT, RHO, DRHODT, DRHODP)	00001620
	EO = ENTHLF*1000 FRES*FSCALE/RHO	00001630
	VUAV = 1.0/RHO	00001631
	EUAV = EO	00001632

-92-

C C C

С С С С С С

C C C

GAMMAU = (TU*DRHODT*DRHODT*PSCALE)/(RHO*RHO*DRHODP*CSUBP) GAMMAU = 1.0 / (1.0 - GAMMAU) GAMMA(1) = GAMMAU	00001660 00001670
PNUT = PRES	
$\nabla NUT = U \nabla U L$	
TF(TALK) = TO	
I) (THER) CHEL AFRAII (EU)	00001860
GET THE ACTUAL PHIAV AT CURRENT THETA	
PHIAV = FMASS / (AMASS * F)	
C1 = (1.0 + PHIAV*F)/((AMASS+FMASS)/CHMASS)	
C2SAVE= (1.0 + F*PHIAV*RESFRK)/(1.0 - RESFRK)	00001380
C2 = C2SAVE + F*PHIB	
K1 = F*FHIAV/C1	
K2 = F*FHIB/C2	
K3 = K2/K1	
	00001680
GET INITIAL HEAT TRANSFER RATE	00001690
P1 = PPFC	00001700
$U_1 = CUO$	00001710
T1 = TII	00001720
PM = PRES	00001730
CALL AFTEMP (PRES, TU, TU, TU, 298., CEUEL, DIDNER, PHTR. DEL.	00001750
* PSI, RESFRK, TBAV)	00001760
CALL HEAT2 (PRES, THETA, TU, TBAV, 0.0, DQBDTL, DQUDTL)	00001770
CALL HPROD (PRES, TBAV, PHIB, DEL, PSI, ENTHLP, CSUBP, CSUBT, RHO	,00001780
* DRHODF, DRHODF)	00001790
VBAV = 1.0/RHO	00001800
EBAV = ENTHLF*1000 FRES*FSCALE/RHD	00001810
QOVRM = 0.	00001820
WUVK¶ = V.	00001830
	00001850
IF (IALN) CALL XFRN12 (Z(1),GAMMA(1),FHITAB(1),FVG(1))	

-93-

•

C C C

C C C

С

с с с		2 2 2	00001870 -00001880 00001890
С С С С	START LOOP THROUGH TIME; INITIALIZE PROPERTIES CONSTANT GIVEN TIME	FOR	00001900 00001910 00001920
C C	DO 200 I = 2, NPTS		00001930
C	CORRECT THE CHARGE MASS DURING INJECTION		
	IF(I .GT. INJ) GO TO 88 FMASS = FMASS + DMASS CHMASS = FMASS + AMASS + RMASS FHIAV = FMASS/(AMASS*F) RESFRK = RMASS/CHMASS FHITAB(I) = PHITAB(I-1) MAE = FMASS / (PHITAB(I)*F)		
88 89	IF(I .LT. (INJ+3)) GO TO 87 CHT = HT(DTR*TH(I-1)) CY = CLIB(Y)		
	CALL PLUME(CHT, DELT, VBAV, VUAV, CX, AENT) MAE = MAE + AENT PHITAB(I) = FMASS / (MAE*F) TE (PHITAB(I) ALT, PHIAT) PHITAB(I) = PHIAT		
87	CONTINUE TBLAST = TBAV		00001940
	QLAST = Q(I - 1) PLAST = PRES TULAST = TU		00001970
С	THETA = TH(I) PRES = P(I) DELT = (THETA - TH(I-1))/(6.0*RPM)		00002000 00002010 00002020 00002020 00002030

	CVOL = VOL(DTR*THETA)	00002040
	PM = P1*(V1/CV0L)**GAMMAH	0000000000
	VBAR = CVOL/CHMASS	00002040
	WOVRM = W(T)/CHMASS	00002000
	QOVRM = (QLAST + DQBDTL*DELT)/CHMASS	00002020
	TU = TSUBU2 (PRES, PLAST, THLAST, FRITM)	00002000
	VUFAV = TU + 82.057 + DFL/(93.08*DFL+8.03)/PEFE	~~~~~
7	PHIB = PHITAB(I)	00002100
	C1 = (1 + PHIAV*F)/((AMASS+FMASS)/CHMASS)	V V V V X. 1. V V
	C2SAVE = (1.0 + F*PHIAV*RESERK)/(1.0 - RESERK)	00001300
	C2 = C2SAVE + F*FHIB	00002110
	K2 = F * F + T B / C 2	000002120
	K3 = (PHTR*C1)/(PHTAU*C2)	00002120
		00002121
	CALCHLATE AVERAGE PROPERTIES OF UNRUPHED CHARGE	00002100
		00002180
	CALL UPROP2 (PRES. TH. PHTAT, DEL. PST. PECTO . ENTER D. COUDD	00002170
	* CSUBT. RHO. DEHODT. DEHODES	00002100
	VIAV = 1.07 KHO	00002190
	EUAV = ENTHLP*1000 PRES*PSCALEZEND	00002200
	$V[1]T[= K1 * U[F] \Delta U + (1, 0) = K[1] * U[I] \Delta U$	00002210
	$U12TI = K2 \times U1E \Delta U = (1 \Delta = K2) \times U1\Delta U$	00005511
	FUTTE KT FUFAU + (1.0 - KT) FUAU	
	FU2TI = K2*FUFAU + (1.0 - K2)*FUAU	00002213
	FBAR = FO - UNURM - ODURM	00002214
		00002230
	SOLVE CONSERVATION FOLIATIONS	00002240
	FIRST TIFEATE TO GET AUEDAGE DUENED GAG TEMPERATURE	00004200
	TINGT ITERATE TO GET AVERAGE BORRED GAS TEAPERATORE	00002280
107	DO INO THEAT - 1. HAVLING	00002270
	DO 110 MCOUNT - 1. MAYITC	00002280
	CALL HERON (PERC. TRIACT, BLITD, MEL BAT FARME ACUSE	00002290
	* CCHNT, DUG, DDUGT, DD	00002300
	$ \begin{array}{c} \bullet \\ \bullet $	00002310
	$\frac{\partial \nabla \partial \partial \partial D}{\partial F R D T R} = \partial \nabla F R D D C T V (R D D R R D D R D C V D C C V D C C V D C T V D D D T D C V $	00005321
	DEDUTE - COODE - EKEONEOCHEENDVBDIB	00002322

Ś

99

С С С

	VBAV	= 1.7 RHO			00002330
	EBAV	= ENTHLP*1000 P	RES*PSCALE/RHO		00002340
	DGDTB	= (VBAR - VUITL)/((EBAR - EUITL)*(UBA)		00002370
*		<pre>% *((VBAV - VU2TL)*</pre>	DEBDTB - (EBAV - EUS	TL)*DUBDTB)	00002380
	G	= (VBAR - VU1TL)*(EBAV - EU2TL)/		00002390
*		((EBAR - EU1TL)*	(VBAV - VU2TL)) -	1.0	00002391
	TBAV	= TBLAST - G/DGDTB			00002400
	IF (A	BS(1 TBAV/TBLAST) .LT. ERLIM) GO TO	120	00002410
	TBAV	= AMAX1 (TU , AMIN	1 (TBMAX, TBAV))		00002401
	TBLAST	= TBAV			00002420
)	CONTINUE				00002430
					00002440
	THEN CALC	ULATE X DIRECTLY. A	ND LIPDATE HEAT TRANS	are d	00002450
	ESTIMATE			91 IGTX	000024400
					00002470
)	X = (VBAR)	- VUITI)/(URAU - U	11271.5		00002400
	CALL HEAT	2 (PRES, THETA, TH.	TRAU. UBAUXCHMASSY	1 TP/X1.	100002400
*		DORDIT. DOUDTS	12011010 0201101001111100040	has she f - 1 / 1 / 9	
	Q(I) = Q	LAST + .5*COOBDT +	DOBDTI JADELT		00002000
	QOVRM = Q	(I)/CHMASS	And And And And T. Sum 2. The And Sum Sum 1		00002520
	EBAR = E	O - WOVRM - DOVRM			00002530
	TBLAST =	TBAV	• • • • • • •		00007540
)	CONTINUE				00002340
	GAMMAB=TELAST*D	RHODT*DRHODT*PSCALE	ZIRHOXRHOXDRHODE*CSI	IRP Y	00002000
	$GAMMAB = 1 \cdot 70$	1 GAMMAR)		A.11 /	00002502
	DQBDTL = DQB	DT			000025704
	Z(I) = K3*	X*EMASS/EMAST			00002000
	XF = CLTP(Z(T))				00002001
	$GAMMA(I) = ((1, \cdot))$	-XF)*GAMMAU+XF*GAMM	ធម		
	PVG(T) = (P(T))*CUDI **GAMMA(T))/C	PNOTAUNOTAACAMMAATAA		
	TE (TALK) CAL	1. XPRNT2(7(T)) GAMM	A(T) PHITAR(T) - PUC(T)	· > 1	000000000
	CONTINUE			11 .	00002090
					000002440
	RETURN				00002010
	END				00002820
					00002000

Ū.

-96-

		in the second
C****		
C	······································	***00000010
C	CUEDOUTTNE CAOUEL	00000020
L ·	SUBRUUTINE GASVEL	00000030
С		00000040
C	PURPOSE:	00000050
C	TO CALCULATE LOCAL MEAN GAS VELOCITIES IN THE TOOS ENGINE	00000040
C.		00000000
č.	USAGE	00000070
č		00000080
0	CHEL CHSVEL (THETA, VOLB, VR3, VI3, VZ3)	00000090
C		00000100
C	DESCRIPTION OF PARAMETERS:	00000110
C	GIVEN:	00000120
C ·	THETA - CRANK ANGLE (DEG ATDO)	
č		00000130
Č	GTUEN TN COMMON ADEA (CHARACTER CAS IN CILINDER (CMARAS)	00000140
	DIVER IN COMMON AREA VENGINEV :	00000150
C	BORE - ENGINE BORE (CM)	00000160
C	STROKE- ENGINE STROKE (CM)	00000170
C	CONLEN- CONNECTING ROD LENGTH (CM) CENTER TO CENTER	00000120
C	VTDC - VOLUME OF THE CHAMBER AT TOC (CMWWT)	00000100
C		00000130
č	UCHE – CHE HOLLME (CAMPAZ)	00000200
~	\sqrt{O}	00000210
U G	ACUP - CUP SURFACE AREA (CM**2) (NOT USED)	00000220
C	RSUBC - CUP RADIUS (CM)	00000230
C	RTCAP - RADIUS FROM CUP CENTER TO CENTER OF TORUS CROSS	00000240
C	SECTION (CM)	00000250
С	RTSML - RADIUS OF TOPUS CROSS SECTION (CM)	
C	DSUBC - CUP DEPTH FROM TOP TO TOPUS MIDDLANE (CM)	00000200
C i	HO DDC CUTCH CATE (CARA)	00000270
0	WO - BUC SWIKL KATE (KAU/SEC)	00000280
	REM - ENGINE SPEED (REVOLUTIONS PER MINUTE) (NOT USED)	00000290
	TWALL - CYLINDER WALL TEMPERATURE (DEG K) (NOT USED)	00000300
С	RETURNS:	00000310
C	VR3 - AVERAGE RADIAL VELOCITY AT CUP FDGE (CM/SEC)	000003200
C	VT3 - AVERAGE AZIMITHAL (SWIRL) VELOCITY INSTDE	00000320
С	THE CHP (CM/CEC)	
Ċ.	U73 = AUEDAGE AVIAL LELOCITY AT OUD VOLUME ANT	00000340
	VAS HVERHUE HAIHL VELULIT AT CUP MUUTH (CM/SEC)	00000350
· .		•

С		AAAAAMIAA
Ċ	SUBROUTINES AND EUNCTION SUBBEDGEAME HEED! NONE	00000360
C		00000370
C	DEMADKC +	000000380
6		00000390
C .	2) NOT CODESCIER FOR ACUBLEMS IN MIKE MARTIN AT 253-2411	00000400
	27 NOT CORRECTED FOR CONDITIONS ARISING FROM COMBUSTION	00000410
C		00000420
C.	METHOD:	00000430
C .	SIMPLE CONTROL VOLUME ANALYSIS USING CONTINUITY EQUATION	00000440
С		00000450
C**	{************************************	**00000440
С		00000470
	SUBROUTINE GASVEL (THETA, VOLB, VR3, VT3, V73)	00000480
	COMMON /ENGINE/ BORE, STROKE, CONLEN, UTDC, HTDC, UCUE, ACUE,	00000400
	* RSUBC, RTCAP, RTSML, DSUBC, WO, REM, TWALL	00000490
	REAL K. I. M. LOVAPI. INTORI	
	DATA ET /3.14159265357. DTR / 0174532007	000000000
С	#1111 1 # 1 0 4 # 4 # 0 1 W 0 0 0 0 1 4 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000020
n	TAITTALTZE CONCEANTE OF THE GEOMETRY	000000030
č	TRITHLIZE CUNSTANTS OF THE GEUMETRY	00000540
C.		00000550
		00000560
	M = 4.0*CONLEN*CONLEN/(STROKE*STROKE) - 1.0	00000570
	$LOVAP1 = 2.0 \times CONLEN/STROKE + 1.0$	00000580
	B = RSUBC/R	00000590
	VSCALE = SQRT(1.025/M) * (1.0 + 1.0/SQRT(M*M + 4.*M + 1.0))	00000600
	RRAT = RTCAP/RTSML	00000610
С		00000620
	K = VCUP/(PI*R*R)	00000630
	XO = (HTDC + STROKE)/K	00000440
	INTGRL = PI*RRAT*(RTSML**5)*(.375 + .5*RRAT*RRAT)	00000450
	G = DSUBC*(B**4)/K + 4.0*TNTGEL/(K*E**4)	00000440
С		
C	CALCULATE QUANTITIES DEPENDENT UPON THETA	000000000
С		000000000
	COSTH = COS (DIEXTHETA)	00000690
		00000700

-98-

SINTH = SIN (DTR#THETA) 0000071(S = SQRT (COSTH#COSTH + M) 0000072(TEMP = LOVAP1 - COSTH - S 0000073(HT = HTDC + .5*STROKE*TEMP 0000073(CVOL = VTDC + .5*STROKE*FI#R#R#TEMP 0000073(VPRAT = - SINTH*(1.0 + COSTH/S)/VSCALE 0000073(X = HT/K 0000073(BTOM2 = 1.0/(B*B) 0000073(CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 0000083(VRRAT = (BTOM2 - 1.0)*UFRAT*RSUBC/(2.0*K*X*(1.0 + X)) 0000083(VZRAT = (BTOM2 - 1.0)*UFRAT*RSUBC/(2.0*K*X*(1.0 + X)) 0000083(VZRAT = BTOM2 - (BTOM2 - 1.0)*UFRAT*RSUBC/(2.0*K*X*(1.0 + X)) 0000083(VTRAT = BTOM2 - (BTOM2 - 1.0)*(VRAT*RSUBC/(2.0*K*X*(1.0 + X))) 0000083(VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X))) 0000083(GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 0000087(VR3 = VRAT*VPMAX 0000070(VT3 = VTRAT*WPMAX 0000072(VZ3 = VZRAT*VPMAX 0000072(VZ3 = VZRAT*VPMAX 0000073(
S = SQRT (COSTH#COSTH + M) TEMP = LOVAP1 - COSTH - S 00000724 00000734 HT = HTDC + .5*STROKE*TEMP (OUCOD756 00000736 CVOL = VTDC + .5*STROKE*PI*R*R*TEMP (OUCO0776 00000736 VPRAT = - SINTH*(1.0 + COSTH/S)/VSCALE 00000776 X = HT/K (DUCO000776 00000776 X = HT/K (DUCO000776 00000776 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000836 VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000836 VZRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000836 VTRAT = BTOM2 - (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0 + B*B*X)) 00000836 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000836 GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000837 VPMAX = PI*RFM*STROKE*VSCALE/30. 00000837 VR3 = VTRAT*WO*MAX 00000376 VT3 = VZRAT*VPMAX 00000976 VT3 = VZRAT*VPMAX 00000976 VZ3 = VZRAT*VPMAX 00000976 VZ3 = VZRAT*VPMAX 00000976	SINT	H = SIN (DTR*THETA)	00000710
TEMP = LOVAP1 - COSTH - S 00000736 HT = HTDC + .5%STROKE*TEMP 00000736 CVDL = VTDC + .5%STROKE*PI*R*R*TEMP 00000736 VPRAT = - SINTH*(1.0 + COSTH/S)/VSCALE 00000736 X = HT/K 00000736 DTDM2 = 1.0/(B*B) 00000756 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000836 VZRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000836 VZRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000836 VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0 + B*B*X)) 00000836 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000836 GET APFROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000837 VPMAX = PI*RPM*STROKE*VSCALE/30. 00000837 VR3 = VTRAT*WO*RSUBC 00000837 VZ3 = VZRAT*VPMAX 00000927 VZ3 = VZRAT*VPMAX 00000937 RETURN END 00000937	S	= SQRT (COSTH*COSTH + M)	00000720
HT = HTDC + .5*STROKE*TEMP 00000740 CVDL = VTDC + .5*STROKE*PI*R*R*TEMP 00000760 VPRAT = - SINTH*(1.0 + COSTH/S)/VSCALE 00000770 X = HT/K 00000780 BTOM2 = 1.0/(B*B) 00000800 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000830 VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K***(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K***(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT*((1.0 + X)*(1.0 + B*B*X)) 00000830 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00008360 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00008360 GET AFFROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 000008360 VPMAX = PI*RFM*STROKE*VSCALE/30. 000008360 VT3 = VTRAT*WOMAX 00000970 VT3 = VZRAT*VPMAX 000009730 VZ3 = VZRAT*VPMAX 000009730 NETURN END 000009730	LEWL	= LOVAP1 - COSTH - S	00000730
HT = HTDC + .5*STROKE*TEMP 00000756 CVOL = VTDC + .5*STROKE*PI*R*R*TEMP 00000766 VPRAT = - SINTH*(1.0 + COSTH/S)/VSCALE 00000776 X = HT/K 00000786 BTOM2 = 1.0/(B*B) 00000866 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000836 VRRAT = (BTOM2 - 1.0)*UPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000836 VZRAT = (BTOM2 - 1.0)*UPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000836 VZRAT = (BTOM2 - 1.0)*UPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000836 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000866 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 000008670 GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000886 VPMAX = PI*RFM*STROKE*VSCALE/30. 00000870 VT3 = VTRAT*W0*RSUBC 000006720 VZ3 = VZRAT*VPMAX 00000920 VZ3 = VZRAT*VPMAX 00000920 RETURN END 00000926			00000740
CVOL = UTDC + .5*STROKE*PI*R*R*TEMP 00000760 VPRAT = SINTH*(1.0 + COSTH/S)/VSCALE 00000760 X = HT/K 00000780 BTOM2 = 1.0/(B*B) 00000800 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000820 VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0 + B*B*X)) 00000830 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000830 GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000870 VPMAX = PI*RPM*STROKE*VSCALE/30. 00000870 VT3 = VTRAT*WO*RSUBC 00000970 VT3 = VTRAT*WO*RSUBC 00000970 VZ3 = VZRAT*VPMAX 00000970 VZ3 = VZRAT*VPMAX 00000970 OV000970 00000970 00000970 VZ3 = VZRAT*VPMAX 00000970 O0000970 00000970 00000970 VZ3 = VZRAT*VPMAX 00000970	HT	= HTDC + .5*STROKE*TEMP	00000750
VPRAT = SINTH*(1.0 + COSTH/S)/VSCALE 00000770 X = HT/K 00000790 BTOM2 = 1.0/(B*B) 00000800 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000820 VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0 + B*B*X)) 00000830 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000830 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000830 GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000830 VPMAX = PI*RPM*STRDKE*VSCALE/30. 00000830 VT3 = VTRAT*WO*RSUBC 00000920 VZ3 = VZRAT*VPMAX 00000920 VZ3 = VZRAT*VPMAX 00000920 VZ3 = VZRAT*VPMAX 00000920 00000920 00000920 00000920 VZ3 = VZRAT*VPMAX 00000920 00000920 00000920 00000920 VZ3 = VZRAT*VPMAX 00000920 VZ3	CVOL	= VIDC + .5*STROKE*PI*R*R*TEMP	00000760
X = HT/K 00000780 BTOM2 = 1.0/(B*B) 00000080 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000830 VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT*((1.0 + X)*(1.0 + B*B*X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0 + B*B*X)) 00000830 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0 + X))/(X0*(1.0 + X)) 00000830 GET APPROPRIATE MAXIMUM PISTON SFEED AND CALCULATE VELOCITIES 00000830 VPMAX = PI*RPM*STROKE*VSCALE/30. 00000830 VT3 = VTRAT*WO*RSUBC 00000930 VZ3 = VZRAT*VPMAX 00000930 RETURN END 00000930	VPRA	$\Gamma = -SINTH*(1.0 + COSTH/S)/VSCALE$	00000770
X = HT/K 00000790 BTOM2 = 1.0/(B*B) 00000800 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000800 VRRAT = (BTOM2 - 1.0)*VFRAT*RSUBC/(2.0*K*x*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VFRAT*RSUBC/(2.0*K*x*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VFRAT/((1.0 + X)*(1.0 + B*B*X)) 00000830 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000830 GET AFFROFRIATE MAXIMUM PISTON SFEED AND CALCULATE VELOCITIES 00000830 VPMAX = PI*RFM*STROKE*VSCALE/30. 00000830 VR3 = VTRAT*WO*RSUBC 00000920 VZ3 = VZRAT*VPMAX 00000920 VZ3 = VZRAT*VPMAX 00000920 RETURN END 00000930			00000780
BTOM2 = 1.0/(B*B) 00000800 CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES 00000830 VRRAT = (BTOM2 - 1.0)*VFRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VFRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VFRAT/((1.0 + X)*(1.0+ B*B*X)) 00000830 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000830 GET AFFROFRIATE MAXIMUM PISTON SFEED AND CALCULATE VELOCITIES 00000830 VPMAX = PI*RFM*STROKE*VSCALE/30. 00000830 VTR3 = VTRAT*W0*RSUBC 00000920 VZ3 = VZRAT*VPMAX 00000930 RETURN 60000930 RETURN 60000930	X	= HT/K	00000790
CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0+ B*B*X)) VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES VPMAX = PI*RPM*STROKE*VSCALE/30. VFM3 = VTRAT*WO*RSUBC VT3 = VTRAT*WO*RSUBC VT3 = VZRAT*VPMAX C000093(C00009	BTOM	2 = 1.0/(B*B)	000000800
CALCULATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES00000820VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*x*(1.0 + x))00000830VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + x)*(1.0+ B*B*x))00000830VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X))00000830GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES00000830VPMAX = PI*RPM*STROKE*VSCALE/30.00000830VR3 = VRRAT*VPMAX00000930VT3 = VTRAT*WO*RSUBC00000930VZ3 = VZRAT*VPMAX00000930RETURN END00000930			00000810
VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000830 VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0+ B*B*X)) 00000840 VTRAT = BTOM2 - (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0+ B*B*X)) 00000850 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X))) 00000860 GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000830 VPMAX = PI*RFM*STROKE*VSCALE/30. VPMAX = VRRAT*VPMAX 00000970 00000970 00000970 VT3 = VTRAT*W0*RSUBC 00000920 00000920 00000920 00000920 VZ3 = VZRAT*VPMAX 00000920 00000920 00000920 00000920 00000920 RETURN END END END END 00000920 00000920	CALCU	JLATE DIMENSIONLESS VELOCITY RATIOS AS IN NOTES	00000820
VRRAT = (BTOM2 - 1.0)*VPRAT*RSUBC/(2.0*K*X*(1.0 + X)) 00000840 VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0+ B*B*X)) 00000850 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000850 GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000850 VPMAX = PI*RFM*STROKE*VSCALE/30. 00000850 00000850 00000850 VFMAX = VTRAT*WO*RSUBC 00000850 00000950 00000950 VZ3 = VZRAT*VPMAX 00000920 00000920 00000920 RETURN END ND 00000930 00000930			00000830
VZRAT = (BTOM2 - 1.0)*VPRAT/((1.0 + X)*(1.0+ B*B*X)) 00000850 VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000850 GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000830 VPMAX = PI*RPM*STROKE*VSCALE/30. 00000890 00000890 VR3 = VTRAT*VPMAX 00000910 VT3 = VTRAT*WO*RSUBC 00000920 VZ3 = VZRAT*VPMAX 00000930 RETURN END 00000930	VRRA	$\Gamma = (BTOM2 - 1.0) * VFRAT*RSUBC/(2.0*K*X*(1.0 + X))$	00000840
VTRAT = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X)) 00000860 GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES 00000870 VPMAX = PI*RPM*STROKE*VSCALE/30. 00000890 VR3 = VRRAT*VPMAX 00000910 VT3 = VTRAT*WO*RSUBC 00000920 VZ3 = VZRAT*VPMAX 00000920 RETURN 00000920 RETURN 00000920	VZRA.	$\Gamma = (BTOM2 - 1.0) * VFRAT / ((1.0 + X) * (1.0 + B*B*X))$	00000850
GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES00000870 00000880VPMAX = PI*RPM*STROKE*VSCALE/30.00000890 00000900VR3 = VRRAT*VPMAX00000900 00000910VT3 = VTRAT*WO*RSUBC00000920 00000930VZ3 = VZRAT*VPMAX00000920 00000930RETURN END00000930 00000930	VTRA'	$\Gamma = BTOM2 - (BTOM2 - 1.0)*(X*(1.0+X0))/(X0*(1.0+X))$	000000040
GET APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES00000880VPMAX = PI*RPM*STRDKE*VSCALE/30.00000890VR3 = VRRAT*VPMAX00000900VT3 = VTRAT*WO*RSUBC00000920VZ3 = VZRAT*VPMAX00000920VZ3 = VZRAT*VPMAX000009200000092000000920VD3 = VZRAT*VPMAX00000920VD3 = VZRAT*VPMAX00000920VD3 = VZRAT*VPMAX00000920VD3 = VZRAT*VPMAX00000920VD000092000000920VD0000092000000920			0000000000
VPMAX = PI*RPM*STROKE*VSCALE/30. 00000890 VR3 = VRRAT*VPMAX 00000900 VT3 = VTRAT*WO*RSUBC 00000920 VZ3 = VZRAT*VPMAX 00000920 RETURN 00000930 00000930 END 00000930 00000930	GET (APPROPRIATE MAXIMUM PISTON SPEED AND CALCULATE VELOCITIES	00000880
VPMAX = PI*RPM*STROKE*VSCALE/30. 00000900 VR3 = VRAT*VPMAX 00000910 VT3 = VTRAT*WO*RSUBC 00000920 VZ3 = VZRAT*VPMAX 00000920 RETURN 00000930 00000930 END 00000930 00000930			000000000
VR3 = VRAT#VPMAX 00000910 VT3 = VTRAT#WO#RSUBC 00000920 VZ3 = VZRAT#VPMAX 00000930 RETURN 00000940 00000940 END 00000950 00000950	VEMAX	<pre>< = PI*RPM*STROKE*VSCALE/30.</pre>	000000000
VT3 = VTRAT#WO#RSUBC 00000920 VZ3 = VZRAT#VFMAX 00000930 RETURN 00000940 00000940 END 00000950 00000950	VR3	= VRRAT#VPMAX	00000900
VZ3 = VZRAT*VPMAX 00000930 00000930 00000940 00000930 00000930	VT3	= VTRAT*WO*RSUBC	000000000
RETURN 00000950	VZ3	= VZRAT*VFMAX	00000920
RETURN 00000950			00000930
END	RETUR	N .	000000000
	ENI		00000300

С

С

С С С

C C

С

С

-99-

C****	******************* VERSION 1.0 *** 11-03-74 ******************************	*00000010
C		00000020
C .	SUBRUUTINE HEAT2	00000030
		00000040
C S		00000050
	TO CALCOLATE HEAT TRANSFER IN A TCCS STRATIFIED CHARGE ENGINE	00000060
C .		00000070
C ·		0800000
0	CALL HEAT2 (P) THETA, TU, TB, VOLB, DQBDT, DQUDT)	00000090
		00000100
C C	DESCRIPTION OF PARAMETERS:	00000110
0		00000120
	F - ABSULUTE CYLINDER FRESSURE (ATM)	00000130
	THE TA - CURRESPONDING CRANK ANGLE (DEG ATDC)	00000140
0	TO $-$ AVERAGE UNBURNED GAS TEMPERATURE (DEG K)	00000150
	B = AVERAGE BURNED GAS TEMPERATURE (DEG K)	00000160
	VULB - VULUME UF THE BURNED GAS (CM**3)	00000170
с С	DIVEN IN COMMON AREA VENGINEV :	00000180
	BURE - ENGINE BORE (CM)	00000190
	STRUKE- ENGINE STROKE (CM)	00000200
0	CONCER- CONNECTING KUD LENGTH (CM) CENTER TO CENTER	00000210
С. С	VIUC - VOLUME OF THE CHAMBER AT TDC (CM**3)	00000220
E i	HILUG - CLEARANCE HEIGHT AT TIC (CM)	00000230
0	$\nabla U F = U F \nabla U L U M L (C M K K 3)$	00000240
C	ACUP - CUP SURFACE AREA (CM**2)	00000250
C C	RSUBU - CUP RADIUS (CM)	00000260
C	RICHE - RADIUS FRUM CUP CENTER TO CENTER OF TORUS CROSS	00000270
	SECTION (CM)	00000280
C	RISHL - RADIUS OF TORUS CROSS SECTION (CM)	00000290
C	DSUBC - COP DEPTH FROM TUP TO TORUS MIDPLANE (CM)	00000300
C ·	WV - BUU SWIRL RATE (RAD/SEC)	00000310
C	THAT - ENGINE SPEED (REVOLUTIONS PER MINUTE) (NOT USED)	00000320
c	$\frac{1}{1}$	00000330
с С	DI DECOUER AT EREFERING THE	00000340
0	FI - FRESSURE AT REFERENCE TIME (ATM)	00000330

-100-

- TEMPERATURE AT REFERENCE TIME (DEG K) 11 00000360 - VOLUME AT REFERENCE TIME (CM**3) V1 00000370 PM - EQUIVALENT PRESSURE IN THE MOTORING ENGINE (ATM) 00000380 **RETURNS:** 00000390 DQBDT - HEAT TRANSFER RATE FROM BURNED GAS TO THE WALL 00000400 (CAL/SEC) 00000410 DQUDT - HEAT TRANSFER RATE FROM UNBURNED GAS TO THE WALL 00000420 (CAL/SEC) 00000430 00000440 SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED: 00000450 GASVEL 00000460 00000470 REMARKS: 00000480 1) ASSUMED TOROIDAL FLAME FRONT 00000490 2) REPORT ANY PROBLEMS TO MIKE MARTIN AT 253-2411 00000500 00000310 METHOD: 00000520 WOSCHNI'S CORRELATION (SEE SAE PAPER NUMBER 670931) 0000000000 00000540 000000560 SUBROUTINE HEAT2 (P, THETA, TU, TB, VOLB, DOBDT, DOUDT) 00000570 COMMON /ENGINE/ BORE, STROKE, CONLEN, VIDC, HIDC, VCUP, ACUP, 00000580 RSUBC, RTCAP, RTSML, DSUBC, WO, RPM, TWALL 00000590 COMMON /HTDATA/ P1, T1, V1, PM 00000600 00000610 DATA PI /3.14159265/, DTR /.01745329/ 00000620 DATA PSCL /.967836/ 00000630 DATA ERLIM /.005/, MAXITS /50/ 00000640 00000650 VOL(THR) = VTDC + VDSP*(H1 - COS(THR) - SQRT(COS(THR)**2 + H2)) 00000660 HT(THR) = HTDC + HDSF*(H1 - COS(THR) - SQRT(COS(THR)**2 + H2)) 00000670 00000680 H1 $= 1.0 + 2.0 \times CONLEN/STROKE$ 00000690 H2 = (2.0*CONLEN/STROKE)**2 - 1.0 00000700

С

С

C

С

С

C

C

С

C

C

C

C

С

C

С

С

С

VDSP = STROKE*PI*BORE*BORE/8.0	00000710	
HDSP = STROKE/2.0	00000720	
	00000730	
CALCULATE HEAT TRANSFER AREAS. FOR NOW, USE SIMPLE APPORTIONMENT	00000740	
PAD = PODC (D A)	00000750	
	00000760	
CHI = HI(UTR*THETA)	00000770	
UOUL = OUL(DIR*THETA)	00000780	
$\nabla B = AMINI (COUL, AMAXI(0,,VOLB))$	00000790	
AREA = ACUP + PI*RAD*(RAD + 2.0*CHT)	000008000	
AB = AUUF	00000810	
$IF (\nabla B + UE + \nabla UUF) AB = AUUF * (\nabla B / \nabla CUF) * * -666666666666666666666666666666666$	00000820	
AU = AKEA - AB	00000830	
	00000840	
GET CAC HELOCITIES THE SHE	00000850	
OFT ONS VELOCITIES INSIDE THE CUP	00000860	
CALL GASUEL (THETA, HOLD, HEZ, HIZZ, HZZ)	00000870	
OHEL OHOVEL (INLIH) VOLDI VKSI VISI VISI V25)	00000880	
CALCHEATE THE HEAT TRANSFER COFFEETATENT HATNA HAADMANT (A PARTICIPAL	00000890	
(CONVERT TO CALZCM**2 SEC DEG K)	00000900	
	00000910	
01 = 2.28	00000920	
C2 = 3.24E-3	00000930	
$CM = .01 \times SDET(UT3 \times UT3 + UE3 \times UE3 + UT3 \times UT3)$	00000940	
=	00000900	
DELP = AMAX1(P - PM , 0.)	00000980	
FACTR = 110 * (BORE / 100 *) * * (-*2) * (E*ESC() * * (.8))	000000770	
FACTR = FACTR*((C1*CM + C2*T1*(CU01/U1)*(DFLP/P1)))**(P	00000780	
	00000770	
HB = FACTR*(TB**(53))/36000.	00001010	
HU = FACTR*(TU**(53))/36000.	00001020	
	00001030	
THEN CALCULATE HEAT TRANSFER RATES AND RETURN	00001040	
	00001050	

С С С

0000

0000

С

С

C C C

-102-

DQBDT = AB*HB*(TB - TWALL)DQUDT = AU*HU*(TU - TWALL)

RETURN END

С

00001060 00001070 00001080 00001090

-103-

SUBROUTINE FLUME

THIS ROUTINE WILL CALCULATE THE AMOUNT OF AIR ENTRAINED IN THE BURNING PLUME OF COMBUSTION PRODUCTS IN A TCCS ENGINE USING THE MIXING MODEL PROPOSED BY JAIN.

USAGE:

1

C

С

С С С

C C

C

C

C

C

CALL FLUME(CHT, DELT, VBAV, VUAV, CX, AENT)

DESCRIPTION OF PARAMETERS:

GIVEN:

CHT -COMBUSTION CHAMBER HEIGHT

DELT -TIME INTERVAL FOR ENTRAINMENT

VBAV -SPECIFIC VOLUME OF THE BURNT GAS

VUAV -SPECIFIC VOLUME OF THE AIR AND RESIDUAL

CX -A CLIPPED FRACTION OF CHARGE MASS BURNT

RETURNS:

AENT -THE MASS OF AIR ENTRAINED IN THAT TIME STEP

INTERNALLY DEFINED VALUES:

RSP -THE SPARK PLUG RADIUS

DVAL -THE INTAKE VALVE DIAMETER

LVAL -THE INTAKE VALVE LIFT

EFFV -THE AVERAGE VOLUMETRIC EFFICIENCY

ALPHA -AN ADJUSTABLE ENTRAINMENT COEFFICIENT

SUBROUTINE FLUME(CHT, DELT, VBAV, VUAV, CX, AENT) COMMON/CHARGE/PHIAV,DEL,PSI,RESFRK,CHMASS,QLOWER,CFUEL COMMON/ENGINE/BORE,STROKE,CONLEN,VTDC,HTDC,VCUP,ACUP, * RSUBC,RTCAP,RTSML,DSUBC,WO,RPM,TWALL

<pre>REAL LVAL RSF = 1.9 DVAL = 4.0 LVAL = 1.558 EFFV = 0.87 ALPHA = 0.05 PL = RSURC - RSP DCF = 2.* RSUBC RPL1 = PL RFL2 = RSP RFL3 = BORE/2 RSP VB1 = 19.75 * RSF * FL**2 VB2 = 12.57 * CHT * RSP**2 + 0.7854 *(RSUBC - CHT)*DCP** VB3 = 0.785 * CHT * DORE**2 + 0.7854 *(BORE/2RSP+PL-CHT]*DCP**2 VBA = VBA0 * CHMASS * CX IF (VBA .LE. VB1) GD TO 120 IF (VBA .LE. VB2) GO TO 110 IF (VBA .LE. VB2) GO TO 110 IF (VBA .LE. VB3) GO TO 100 SE3 = 0.7854 * DCP**2 SE = 5E3 GO TO 900 RFL = RFL1 + (RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSP + RFL) * CHT +0.7854 * DCP**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.20*(RSF+RFL)*CHT + 3.14 * (3.*(RSP-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SORT(VBA/19.75*RSP) SE = 39.4 * RSP* RFL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SORT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>							
RSP = 1.9 DVAL = 1.9 DVAL = 4.0 LVAL = 1.958 EFFV = 0.87 ALPHA = 0.05 PL = RSUBC - RSP DCP = 2.* RSUBC RPL1 = PL RFL2 = RSP RPL3 = BORE/2 RSP VB1 = 19.75 * RSP * FL**2 VB2 = 12.57 * CHT * RSP**2 + 0.7854 *(RSUBC - CHT)*DCP** VB3 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2RSP+PL-CHT J*DCP**2 VBA = VBAV * CHMASS * CX IF (VBA .LE. VD1) GO TO 120 IF (VBA .LE. VD2) GO TO 110 IF (VBA .LE. VB3) GO TO 110 SE3 = 0.7854 * DCP**2 SE = 5E3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSP + RFL) * CHT +0.7854 * DCP**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.20*(RSP+RPL)*CHT + 3.14 * (3.*(RSP-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19.75*RSP) SE = 39.4 * RSP* RFL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	REAL LUAL						
DUAL = 4.0 LUAL = 1.558 EFFV = 0.87 ALPHA = 0.05 PCP = 2.* RSUBC - RSP DCP = 2.* RSUBC RPL1 = FL RFL2 = RSF RFL3 = BORE/2 RSP VB1 = 19.75 * RSF * FL**2 VB2 = 12.57 * CHT * RSF**2 + 0.7854 *(RSUBC - CHT)*DCP** VB3 = 0.785 * CHT * BORE**2 + 0.7854*(BORE/2RSF+FL-CHT J*DCF**2 VBA = UBA0 * CHMASS * CX IF (VBA .LE. VB1) GD TO 120 IF (VBA .LE. VB2) GO TO 110 IF (VBA .LE. VB3) GD TO 120 IF (VBA .LE. VB3) GD TO 100 SE3 = 0.7854 * DCF**2 SE = 5E3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GD TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	RSP = 1.9		а.				
LUAL = 1.558 EFFU = 0.87 ALPHA = 0.05 PL = RSUBC - RSP DCP = 2.* RSUBC RPL1 = FL RFL2 = RSP RFL3 = BORE/2 RSP VB1 = 19.75 * RSP * FL**2 VB2 = 12.57 * CHT * RSF**2 + 0.7854 *(RSUBC - CHT)*DCP** VB3 = 0.785 * CHT * BORE**2 + 0.7854*(BORE/2RSP+PL-CHT J*DCP**2 VBA = VBAU * CHMASS * CX IF (VBA .LE. VB1) GO TO 120 IF (VBA .LE. VB2) GO TO 110 IF (VBA .LE. VB3) GO TO 100 SE3 = 0.7854 * DCF**2 SE - SE3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSP + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSP-RFL)+RSUBC)*(RPL- GO TO 900 RFL = SQRT(UBA/19.75*RSP) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	IIVAI = 4.0		5 12				
EFFU = 0.87 ALPHA = 0.05 PL = RSUBC - RSP DCP = 2.* RSUBC RPL1 = PL RFL2 = RSP RFL3 = BORE/2 RSP VB1 = 19.75 * RSP * FL**2 VB2 = 12.57 * CHT * RSP**2 + 0.7854 *(RSUBC - CHT)*DCP** VB3 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2RSP+PL-CHT !*DCP**2 VBA = VBAV * CHMASS * CX IF (VBA .LE. VB1) GD TO 120 IF (VBA .LE. VB2) GO TO 110 IF (VBA .LE. VB3) GO TO 100 SE3 = 0.7854 * DCP**2 SE = 5E3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE=6.20 * (RSP + RFL) * CHT +0.7854 * DCP**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSP-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(UBA/19.75*RSP) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END							
ALPHA = 0.05 PL = RSUBC - RSP DCP = 2.* RSUBC RFL1 = PL RFL2 = RSP NFL3 = BORE/2 RSP VH1 = 19.75 * RSP * FL**2 VH2 = 12.57 * CHT * RSP**2 + 0.7854 *(RSUBC - CHT)*DCP** VH3 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2RSP+FL-CHT I*DCP**2 VH3 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2RSP+FL-CHT I*DCP**2 VH3 = UBAU * CHMASS * CX IF (UBA .LE. UB1) GD TO 120 IF (UBA .LE. UB2) GO TO 110 IF (UBA .LE. UB2) GO TO 110 IF (UBA .LE. UB3) GO TO 100 SE3 = 0.7854 * DCF**2 SE = SE3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((UBA-UB2)/(UB3-UB2))**0.333 SE=6.20 * (RSP + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((UBA-UB1)/(UB2-UB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(UBA/19.75*RSP) SE = 39.4 * RSP* RPL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(UBAV*VUAV))*SE*UE*DELT RETURN END	EFFV = 0.87						
<pre>FL = RSUBC - RSP DCP = 2.* RSUBC RFL1 = FL RFL2 = RSP NFL3 = BORE/2 RSF VB1 = 19.75 * RSF * FL**2 VB2 = 12.57 * CHT * RSF**2 + 0.7854 *(RSUBC - CHT)*DCF** VB3 = 0.785 * CHT * BORE**2 + 0.7854*(BORE/2RSF+FL-CHT) *NCF**2 VBA = VBAU * CHMASS * CX IF (VBA .LE. VB1) GD TD 120 IF (VBA .LE. VB2) GO TD 110 IF (VBA .LE. VB2) GO TD 110 IF (VBA .LE. VB3) GO TD 100 SE3 = 0.7854 * DCF**2 SE = SE3 GO TD 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.20*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL-GO TD 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	ALPHA = 0.05	- 					
DCP = 2.* RSUBC RPL1 = FL RFL2 = RSP NFL3 = BORE/2 RSP VD1 = 19.75 * RSP * FL**2 VD2 = 12.57 * CHT * RSP**2 + 0.7854 *(RSUBC - CHT)*DCP** VD3 = 0.785 * CHT * BORE**2 + 0.7854*(BORE/2RSP+PL-CHT J*DCP**2 VDA = UBAU * CHMASS * CX IF (UBA .LE, VD1) GO TO 120 IF (UBA .LE, VB2) GO TO 110 IF (UBA .LE, VB3) GO TO 100 SE3 = 0.7854 * DCP**2 SE = SE3 GO TO 900 RFL = NFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSP + RFL) * CHT +0.7854 * DCP**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSP-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19.75*RSP) SE = 39.4 * RSP* RFL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	PLS = RSURC - RGR						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	DCP = 2.* RSURC						
<pre>RFL2 = RSP RFL3 = BORE/2 RSP VB1 = 19.75 * RSF * FL**2 VB2 = 12.57 * CHT * RSF**2 + 0.7854 *(RSUBC - CHT)*DCF** VB3 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2RSF+FL-CHT)*DCF**2 VRA = VBAU * CHMASS * CX IF (VBA .LE. VB1) GO TO 120 IF (VBA .LE. VB2) GO TO 110 IF (VBA .LE. VB3) GO TO 100 SE3 = 0.7854 * DCF**2 SE = SE3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	RPI1 = PI						
<pre>NFL3 = BORE/2 RSP VD1 = 19.75 * RSP * FL**2 VD2 = 12.57 * CHT * RSP**2 + 0.7854 *(RSUBC - CHT)*DCP** VD3 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2RSF+FL-CHT 1*DCP**2 VBA = VBAU * CHMASS * CX IF (VBA .LE. VD1) GO TO 120 IF (VBA .LE. VB2) GO TO 110 IF (VBA .LE. VB2) GO TO 110 SE3 = 0.7854 * DCF**2 SE = SE3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSP + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSP-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19.75*RSP) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>							
<pre>NLC = BORE/2: - RSP VD1 = 19.75 * RSP * FL**2 VD2 = 12.57 * CHT * RSP**2 + 0.7854 *(RSUBC - CHT)*DCP** VD3 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2:-RSF+FL-CHT *DCP**2 VRA = VBAU * CHMASS * CX IF (VBA .LE. VB1) GD TO 120 IF (VDA .LE. VB2) GD TO 110 IF (VDA .LE. VB3) GD TO 100 SU3 = 0.7854 * DCP**2 SE = SE3 GD TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCP**2 GD TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GD TO 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>							1
<pre>V01 = 19.75 * RSP * FL**2 V02 = 12.57 * CHT * RSF**2 + 0.7854 *(RSUBC - CHT)*DCF** V03 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2RSP+PL-CHT 1*DCF**2 V0A = V0AU * CHMASS * CX IF (V0A .LE. V01) GO TO 120 IF (V0A .LE. V02) GO TO 110 IF (V0A .LE. V03) GO TO 100 SU3 = 0.7854 * DCF**2 SE = 5E3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((V0A-V02)/(V03-V02))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((V0A-V01)/(V02-V01))**0.333 SE=6.20*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSU0C)*(RFL-GO TO 900 RFL = SQRT(V0A/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(V0AV*V0AV))*SE*UE*DELT RETURN END</pre>	Und a to me i man		î ?				
<pre>>UB2 = 12.57 * CHT * RSF**2 + 0.7854 *(RSUBC - CHT)*DCF** VB3 = 0.785 * CHT * DORE**2 + 0.7854*(BORE/2RSF+PL-CHT 1*DCF**2 VBA = VBAU * CHMASS * CX IF (VBA .LE. VB1) GD TO 120 IF (VBA .LE. VB2) GD TO 110 IF (VBA .LE. VB3) GD TO 100 SE3 = 0.7854 * DCF**2 SE = 5E3 GD TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GD TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GD TO 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	$VUI = 19.70 \times RSP \times PL$	(*2					
VU3 = 0,785 * CHT * DORE**2 + 0,7854*(BORE/2,-RSF+FL-CHT J*DCF**2 VRA = VBAU * CHMASS * CX IF (VBA ,LE, VB1) GO TO 120 IF (VBA ,LE, VB2) GO TO 110 IF (VBA ,LE, VB3) GO TO 100 SE3 = 0,7854 * DCF**2 SE = SE3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6,20 * (RSF + RFL) * CHT +0,7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6,28*(RSF+RFL)*CHT + 3,14 * (3,*(RSF-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19,75*RSF) SE = 39.4 * RSF* RFL UE = 0,23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	V02 = 12.57 * CHT * RSF	**2 + 0	.7854	* (RSUE	C - CHT) *DCF*	*
<pre>J#NCP**2 VBA = VBAU * CHMASS * CX IF (VBA .LE. VB1) GD TD 120 IF (VBA .LE. VB2) GD TD 110 IF (VBA .LE. VB3) GD TD 100 SE3 = 0.7854 * DCP**2 SE = SE3 GD TD 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GD TD 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.20*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GD TD 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STRONE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	$v_{13} = 0.785 \text{ K CHT } \text{ POF}$	E**2 +	0.7854	* (EORE	/2RSF	+FL-CH	T
<pre>VBA = VBAU * CHMASS * CX IF (VBA .LE. VB1) GD TD 120 IF (VBA .LE. VB2) GD TD 110 IF (VBA .LE. VB3) GD TD 100 SE3 = 0.7854 * DCF**2 SE = SF3 GD TD 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GD TD 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GD TD 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	J.*/ICF**2						лс,
<pre>IF (VBA .LE. VB1) GD TD 120 IF (VBA .LE. VB2) GD TD 110 IF (VBA .LE. VB3) GD TD 100 SE3 = 0.7854 * DCF**2 SE = SE3 GD TD 900 RPL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GD TD 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GD TD 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STRDKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	VBA = VBAV * CHMASS * C	X X					
<pre>IF (UBA .LE. UB2) GO TO 110 IF (UBA .LE. UB3) GO TO 100 SE3 = 0.7854 * DCF**2 SE = SE3 GO TO 900 RPL = RFL2+(RFL3-RFL2)*((UBA-UB2)/(UB3-UB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((UBA-UB1)/(UB2-UB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(UBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFU*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	IF (VBA .LE. VB1) GD T	0 120					
<pre>1F (UBA .LE. UB3) GO TO 100 SE3 = 0.7854 * DCF**2 SE = SE3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSP + RFL) * CHT +0.7854 * DCF**2 GD TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	IF (VDA .LE. VB2) GO T	0 110					
<pre>SE3 = 0.7854 * DCF**2 SE = SE3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	IT (VRA .LE. VB3) GO T	0 100					
<pre>SE = SE3 GO TO 900 RFL = RFL2+(RFL3-RFL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSF + RFL) * CHT +0.7854 * DCF**2 GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL- GO TO 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	SU3 0.7854 * DCF**2	- • •					
GO TO 900 RPL = RPL2+(RPL3-RPL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSP + RPL) * CHT +0.7854 * DCP**2 GO TO 900 RPL = RPL1 + (RPL2-RPL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSP+RPL)*CHT + 3.14 * (3.*(RSP-RPL)+RSUBC)*(RPL GO TO 900 RPL = SQRT(VBA/19.75*RSP) SE = 39.4 * RSP* RPL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	SE SE3						
<pre>RPL = RPL2+(RPL3-RPL2)*((VBA-VB2)/(VB3-VB2))**0.333 SE = 6.20 * (RSP + RPL) * CHT +0.7854 * DCP**2 GO TO 900 RPL = RPL1 + (RPL2-RPL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSP+RPL)*CHT + 3.14 * (3.*(RSP-RPL)+RSUBC)*(RPL- GO TO 900 RPL = SQRT(VBA/19.75*RSP) SE = 39.4 * RSP* RPL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	60 10 500						
<pre>SE = 6.20 * (RSP + RPL) * CHT +0.7854 * DCP**2 GD TO 900 RPL = RPL1 + (RPL2-RPL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSP+RPL)*CHT + 3.14 * (3.*(RSP-RPL)+RSUBC)*(RPL GD TO 900 RPL = SQRT(VBA/19.75*RSP) SE = 39.4 * RSP* RPL UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	RFL = RFL2+(RFL3-RFL2)*	((VBA-U	B2)/(U	183-087	11440 7	-7-7	
GO TO 900 RFL = RFL1 + (RFL2-RFL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL GO TO 900 RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	SE = 6.20 * (RSP + RFI)) * CHT	40.70		() T T T T T T T T T T T T T T T T T T T	000	
<pre>RPL = RPL1 + (RPL2-RPL1)*((VBA-VB1)/(VB2-VB1))**0.333 SE=6.28*(RSF+RPL)*CHT + 3.14 * (3.*(RSP-RPL)+RSUBC)*(RPL GO TO 900 RPL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RPL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END</pre>	GD TO 900		1.7.1.7.0	ህ ተ ተ ቢ			
SE=6.28*(RSF+RFL)*CHT + 3.14 * (3.*(RSF-RFL)+RSUBC)*(RFL) $GD TD 900$ $RFL = SQRT(VBA/19.75*RSF)$ $SE = 39.4 * RSF* RFL$ $UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5$ $AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT$ $RETURN$ END	RPL = RPLI + (RPL2 - RPI))*((UPA		(1100.11	THANDON		
GO TO 900 RPL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RPL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	SE=6.28*(RSP+RPL)*CUT 1	7 1 4 4	VD1.//		вт))жжо	• 333	
RFL = SQRT(VBA/19.75*RSF) SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	GO TO 900	0+14 X	(3.*(RSF-RF	L)+RSUB	C)*(RP	
SE = 39.4 * RSF* RFL UE = 0.23*EFFV*STROKE*RFM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALFHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	RFL = SORT(URA/19.75*00)	EN					
UE = 0.23*EFFV*STROKE*RPM*BORE**2/(DVAL*LVAL)*0.5 AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END	SF = 39.4 + pcp+ pro						
AENT = ALPHA * SQRT(1./(VBAV*VUAV))*SE*UE*DELT RETURN END			1.1.1				
RETURN END		PM*BORE	**2/([VAL*LV	AL)*0.5		
END	PETTORA	(VEAV*V	UAV))*	SE*UE*	DELT		
	INF. FUININ						
	L NU						

-105-

C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**AFTP	10	
С	SUBROUTINE AFTEMP	AFTE	30	
С		AFTE	40	
C	PURPOSE:	AFTP	50	ł
C O	TO CALCULATE ADIABATIC FLAME TEMPERATURES FOR HC-AIR	AFTF	60	
C	COMBUSTION	AFTE	70	
. С С		AFTF	80	
0	USHOE :	AFTF	90	
<u> </u>	CALL AFTEMP (P,TA,TR,TF,TREF,CFUEL,QLOWER,PHI,DEL,PSI,	AFTE	100	
C C	RESFRK, TPROD)	AFTF	110	
0		AFTE	120	
C .	DESCRIPTION OF PARAMETERS:	AFTP	130	
C C		AFTE	140	
C	F - ABSULUTE FRESSURE (ATM)	AFTF	150	
C C	THE - INDUCTED AIR TEMPERATURE (DEG K)	AFTF	160	
C ·	TE - FUEL TEMPERATURE OF THE RESIDUAL FRACTION (IN DEG K)	AFTF	170	
C I	TETE TEMPERATURE (DEG K)	AFTF	180	
C .	TREF - TEMPERATURE AT WHICH HEATING VALUE WAS MEASURED	AFTP	190	
č	(1120 N)	AFTP	200	
c	OLOUFED LOUF UNATING UNITE OF THE FUEL (NUML/G -DEG K)	<u> AFTF</u>	210	
C C	COWER - LOWER HEATING VALUE OF THE FUEL (KCAL/G)	AFTF	220	
č	DEL - MOLAE C'H BATTO	AFTF	230	
C	PCT = MOLAD MIAD DATTO	AF TF	240	
č	PERENT PERTUNAL EDACTION AC A MACO EDACTION OF TOTAL STREET	AFTP	250	
č	RETURNS:	AFTF	260	
C	TEPOD - TEMPERATURE OF THE RECHLEMANT CONDUCTION RECOVERED	AF FF	270	
č	(DEG K)	AFTP	280	
č		AFTF	290	
C	SURPOUTINES AND EUNETION CURRENCE DECOURSES	Fit 1 F	300	
C	HEEDINTERES HAR FORCITOR SUBFROORANS RENOTRED:	AFTP	310	
č		AFTP	320	
C	REMARKS t	AFTF	330	
č	1) TREE MUST RE ≤ 400 DEC K EOD DECOMADUE ADDUE ADDUE	AFTP	340	
	SINCE	METE	350	

ē.

-106-

IN THE PRESENT IMPLEMENTATION THE ENTHALPIES OF FORMATTON	A	*** / //
OF CO2 AND H20 ARE ASSUMED TO BE TEMPERATURE INDEPENDENT	ACT 10	300
	AFTR	370
METHOD:	ACTO	1070
SEE MATHEMATICAL NOTES	AFTE	400
	AFTE	420
***********	*ACTD	470
SUBROUTINE AFTEMP (P,TA,TR,TF,TREF,CFUEL,OLOWER,PHT,DEL,PST.	AFTD	400
1 RESFRK, TPROD)	AFTE	100
	ACTO	440
DATA ROVR2/,99345E-3/,CPGUES/,30E-3/	APTO	170
DATA DHC02, DHH20/-94,054,-57,798/	AETE	400
	AFTE	400
STATEMENT FUNCTION FOR ENTHALPY OF ATR	AFTE	500
$HSUBA(T) = (7 \cdot * (1 \cdot + FSI) * T + 4460 \cdot / (EXF(2230 \cdot / T) - 1 \cdot)$	AFTE	500
1 + PSI*6680./(EXP(3340./T)- 1.)) * ENUE2/ATEUT	A.E. Y.E.	510
	AFTE	020
EPS = (4.*DEL)/(1. + 4.*DEL)	ACTO	530
AIRWT = 32. + 28.*EST	Arrite	UNU MER
FUELWT = (8.*FPS + 4.)*PHT	141° 1 1°	
TOTWT = AIRWT + FUELWT	AETE	500
	A 100 - 40 1 1	070
GET ENTHALPY OF THE RESIDUAL	AFTR	COV
	AFTE	390
CALL HPROD(P,TR,PHI,DFL,PST,HSUBP,DUMY,DUMY,DUMY,DUMY,DUMY)	ADTO	440
HSUBP = RESFRK*HSUBP	AFTE	610
	AFTE	620
ADD THE ENTHALPY OF THE AIR	OFTE	440
그는 동네를 통한 것이 같은 것을 하는 것이 같이 가지 않는 것이 같아. 이 것이 있는 것이 없는 것이 없 않는 것이 없는 것이 않이	AFTE	650
HSUBP = HSUBP + HSUBA(TA)*(1.0 - RESFRK)*AIRWT/TOTWT	AFTE	660
	AFTP	670
GET HEAT OF FORMATION OF THE FUEL AND ADD TOTAL FUEL ENTHALPY	AFTE	680
	AFTE	690
DHFUEL = ABS(QLOWER) + (EPS*DHCO2 + 2.*(1EPS)*DHH2O)/FUELWT*PHT	AFTE	700
HSUBP = HSUBP + (1 RESFRK)*(DHFUEL + CFUEL*TF)*FUELWT/TOTWT	AFTE	710

-107-

•
SET PARAMETERS FOR TEMP TGUESS = TA + ABS(QLOWER) ERMAX = .001 MAXITS = 50	/CFGUES*FUELWT/TOTWT	AFTE 72 AFTE 73 AFTE 74 AFTE 75 AFTE 75 AFTE 76 AFTE 77	10 10 10 10 10 10
CALL TEMP(P,TGUESS,PHI,DE	L,PSI,HSUBP,TPROD,ER	AFTE 78 MAX,MAXITS,IER) AFTE 79 AFTE 80	0
RETURN END		AFTP 81	ŏ

C C C

с

С

-108-

C**	**************************************	**CLDF	1.0
C C	CUDDOUTTNE OF DEED	CLDF	20
	SOBKOULINE CLUPKD	CLDF	30
L'	DIDBAGE A	CLDP	40
C i		CLDF	50
	TO CALCULATE THE SPECIFIC ENTHALPY OF THE PRODUCTS OF HC-AIR	CLDP	60
C	COMBUSTION AT TEMPERATURES AND PRESSURES WHERE DISSOCIATION	CLDP	70
C C	OF THE PRODUCT GASES MAY BE IGNORED. THE DENSITY OF THE	CLDP	30
5	PRUDUCT GAS IS ALSO CALCULATED, AS ARE THE PARTIAL	CLDP	90
C	DERIVATIVES OF BOTH OF THESE QUANTITIES WITH RESPECT TO	CLDF	100
C	PRESSURE AND TEMPERATURE.	CLDF	110
C		CLDP	120
C	USAGE :	CLDF	130
C	CALL CLDPRD(P,T,PHI,DEL,PSI,ENTHLP,CSUBF,CSUBT,RHO,DRHODT,	CLDP	140
C	DRHODP, IER)	CLDP	150
C		CLIDE	160
C	DESCRIPTION OF PARAMETERS:	CLDP	170
С	GIVEN:	CLDF	180
C	P - ABSOLUTE PRESSURE OF FRODUCTS (ATM)	CLDP	190
C	T - TEMPERATURE OF PRODUCTS (DEG K)	CLIP	200
C	PHI - EQUIVALENCE RATIO (FUEL/AIR RATIO DIVIDED BY THE	CLUP	210
С	CHEMICALLY CORRECT FUEL/AIR RATIO)	CLDP	220
С	DEL - MOLAR C:H RATIO OF THE PRODUCTS	CITE	17 TX 15
C	PSI - MOLAR N:O RATIO OF THE PRODUCTS	CLIP	240
C	RETURNS:	C'I DE	250
С	ENTHLP- SPECIFIC ENTHALPY OF THE GAS (KCAL/G)	CL DD	240
C	CSUBP - PARTIAL DERIVATIVE OF ENTHLP WITH RESPECT TO T	CINP	270
С	AT CONSTANT P (CAL/G-DEG K)	CUTE	200
С	CSUBT - PARTIAL DERIVATIVE OF ENTHIP WITH RESPECT TO P	CLUE	200
C	AT CONSTANT T (CC/G)		300
C	RHO - DENSITY OF THE MIXTURE (G/CC)	CI TIC	310
C	DRHODT- PARTIAL DERIVATIVE OF RHO WITH RESPECT TO T AT	CLUP	310
С	CONSTANT F (G/CC-DEG K)	CLDP	320
С	DRHODP- PARTIAL DERIVATIVE OF RHO WITH RESPECT TO P AT	CLDD	200
С	CONSTANT T (G/CC-ATM)	CLOP	040
		L. L. L. F.	300

-109-

С	IER - FLAG, SET TO 1 FOR T<100 DEG K	LDP	360	
C	2 FOR T> 6000 DEG K	DP	370	
С	O OTHERWISE	LDF	380	
С		DP	390	
С	REMARKS:	I NP	400	
С	1) ENTHALPY DATUM STATE IS AT T = 0 ABSOLUTE WITH C	LDP	410	
С	02,N2,H2 GASEOUS AND C SOLID GRAPHITE	DP	420	
С	2) IN CASE OF PROBLEMS CONTACT MIKE MARTIN AT 253-2411 C	DF	430	
С	(ROOM 3-339 D)	LDP	440	
C		I TIF	400	
С	SUBROUTINES AND FUNCTION SUBPROGRAMS NEEDED: NONE	TIP	460	
С		DP	470	
С	METHOD:	LDF	480	
С	DESCRIBED IN AFFENDIX IV OF WRITEUP	DF	490	
C	$\overline{\mathbf{c}}$	LDP	500	
C*	***************************************	DF	510	
	SUBROUTINE CLDPRD(F,T,PHI,DEL,PSI,ENTHLP,CSUBF,CSUBT,RHO, C	LDP	520	
	1 DRHODT, DRHODF, IER)	LDP	530	
С		DE	540	
	LOGICAL RICH, LEAN	TIP	550	
	DIMENSION A(6,6,2),X(6)	LDP	560	
	DIMENSION A1(36), A2(36)	DP	570	
	EQUIVALENCE $(A1(1), A(1, 1, 1)), (A2(1), A(1, 1, 2))$	LDF	580	
	REAL*4 MBAR,K	LDP	590	
С		LDP	600	
С	INITIALIZE PARAMETERS, AND CHECK TO SEE IN WHAT TEMPERATURE C	LDP	610	
С	RANGE WE ARE SO THAT THE CORRECT FITTED COEFFICIENTS WILL BE C	LDP	620	
С	USED. FLAG TEMPERATURES TOO BIG OR TOO SMALL	LDF	630	
С		LDF	640	
	DATA A1/11.94033,2.088581,-0.47029,.037363,589447,-97.1418, C	LIF	650	
	1 6.139094,4.60783,9356009,066669498,0335801,-56.62588, C	LDP	660	
	2 7.099556,1.275957,2877457,.022356,1598696,-27.73464, C	LIF	670	
	3 5,555680,1,787191,-,2881342,01951547,1611828, 76498, C	LDP	680	
	4 7.865847,.6883719,031944,00268708,2013873,893455, C	LIF	690	
	5 6.807771,1.453404,328985,02561035,1189462,331835/ C	LDF	700	

 \mathbf{x}

-110-

.

.

DATA A2/4.737305,16.65283,-11.23249,2.828001,.00676702,-93.75793,	CLDP 710
7. 7.809672, 2023519, 3.418708, -1.179013, 00143629, -57.08004,	CL DP 720
8 6.97393,8238319,2.942042,-1.176239,.0004132409,-27.19597,	CLDF 730
9 6,991878, 1617044, -, 2182071, 2968197, -, 01625234, -, 118189.	CLDP 740
& 6,295715,2,388387,-,0314788,-,3267433,00435925,103637	CLDP 750
- 7.092199,-1.295825,3.20688,-1.202212,0003457938,013967/	CLIP 760
	CLDP 770
$RICH = PHI \cdot GT \cdot 1 \cdot O$	CLDP 780
LEAN = .NOT. RICH	CI DP 790
EPS = 4.*DEL/(1. + 4.*DEL)	CLIDE BOO
IER = 0	CLDP 810
IF (T . LT. 100.) IER = 1	CLIPE 820
IF (T , GT, 6000.) IER = 2	CLDP 020
IR = 1	
$IF (T \cdot LT \cdot 500 \cdot) IR = 2$	CLDF 850
	CIND DAA
GET THE COMPOSITION IN MOLESZMOLE OXYGEN	CLUP 000
	CLDF 990
IF (RICH) GO TO 10	
X(1) = EPS*PHI	
$X(2) = 2 \cdot * (1 \cdot - EPS) * PHI$	
X(3) = 0.	CIND 000
X(4) = 0.	CL THE OTA
X(5) = 1 PHI	CLIP 930
GO TO 20	CLOD OSO
10 Z = 1000./T	
K = EXP(2.743 + Z*(-1.761 + Z*(-1.611 + Z*.2803)))	CLUP 960
$ALPHA = 1 \cdot - K$	CINE 970
BETA = (2.*(1 EPS*PHI) + K*(2.*(PHI - 1.) + FPS*PHI))	
GAMMA = 2.*K*EPS*PHI*(PHI - 1.)	CL DP 990
C = (- BETA + SQRT(BETA*BETA + 4.*ALPHA*GAMMA))/(2.*ALPHA)	CLIDETOCO
X(1) = EPS*PHI - C	CL DELATA
X(2) = 2.*(1 EPS*PHI) + C	CL DF 1020
X(3) = C	CL DE 1030
$X(4) = 2 \cdot * (PHI - 1 \cdot) - C$	
	₩₩₩₩

С

C C C

-111-

	20	X(5) = 0		CLDP1050
	20	A(0) = PSI		CLDF1060
				CLDP1070
		CUNVERT COMPOSITION TO MOLE FRACTIONS AND CALCULAT	E AVERAGE	CLDP1080
		MULEUULAR WEIGHT		CLDF1090
				CLDF1100
		IF (LEAN) TMOLES = $1 + PSI + PHI*(1 - EPS)$		CLDP1110
		IF (RILH) IMULES = PSI + PHI*(2,-EPS)		CLDF1120
	-7.0	$10 \ 30 \ J = 1.95$		CLDF1130
	30	X(J) = X(J)/IMULES		CLDF1140
		MBAR = ((8.*EPS + 4.)*PHI + 32. + 28.*PSI)/TMOLES		CLDF1150
				CLDF1160
		CALCULATE H, CF, AND CT AS IN WRITEUP, USING FITTE	D	CLDF1170
		CUEFFICIENTS FROM JANAF TABLES		CLDF1180
				CLDF1170
		ENTHLP = 0.		CLDF1200
		CSUBF = 0.		CLDF1210
				CLDF1220
		ST = T/1000.		CLDF1230
		$\frac{10}{10} 40 J = 176$		CLDF1240
		IH = (((A(4)J)K)/4(K)/4(K)) + A(3(J)K)/3(K)/3(K))		CLDF1250
	1	$+ A(2_yJ_yIR)/2_v) *ST + A(1_yJ_yIR))*ST$		CLDF1260
		IUP = ((A(4,J)IR)*ST + A(3,J)IR))*ST		CLDF1270
	-	+ A(2yJyIR) J * 51 + A(1yJyIR)		CLDF1280
		TH = TH - A(5, J, IR)/ST + A(6, J, IR)		CLDF1290
		$\frac{10P}{P} = \frac{10P}{P} + \frac{A(5)J(1R)}{P} \frac{S(2R)}{S(2R)}$		CLDF1300
	• •	ENTHLF = ENTHLF + THXX(J)		CLDP1310
. '	40	USUBP = USUBP + TCP * X(J)		CLDP1320
				CLDP1330
		COUDE - COUDEVIDERK		CLDF1340
				CLDF1350
		NUW CHLOULAIE KHU AND IIS PARIIAL DERIVATIVES		CLDF1360
		WOLIND FERTEUL DHD LHW		CLDP1370
				CLDF1380
		KHU == + VIZIB/XMBARXE/1		CL DF1390

С С С

С С С С

-112-

SUBROUTINE DERIVS(P,T,PHI,EPS,PSI,A,X,Y,U,AMWT,CSUBP,CSUBT, 1 DRHODT,DRHODE)	DRVS	010
	DEUC	020
THIS ROUTINE EXISTS SOLELY FOR USE BY HEROTH MANY OF HUDGE	noue	0.00
INTERNAL PARAMERERS IT USES. IT IS ESSENTIALLY USELESS FOR AN		040
OTHER PURPOSE. THE EQUATIONS USED CAN BE FOUND IN AFPENDIX IT	nevs	040
OF THE WRITEUP	nevs	070
	DRVS	080
LOGICAL RICH, LEAN	DRVS	090
DATA ROVR2/.99345/	DRVS	100
DATA SCALF/41+29287/	DRVS	110
	DRVS	120
I = FAI + 0E + I + 0	DRVS	130
LLAR = +ROI + RICH	IIRVS DEUIC	1.40
C3 = (117. + 30.*EPS)*1000.		100
$C4 = 1.35E5 \times EPS$	00000	170
C5 = 2.0 - EPS + PSI	neus	180
C6 = 5.0 - 2.*EPS + 2.*PSI	neus	190
	DRVS	200
DUDTFX = 6.3E4*U/T**2	DRVS	210
DUDPTX = -U/P	DRVS	220
DUDXFT = -U/(X*(1 2.*EFS*X))	DRVS	230
	DRVS	240
$\frac{1}{1} = \frac{1}{2} (3 \cdot 4 \pm 4 \times 2 \cdot / 3 \cdot) \times A / 1 \times X 2$	DRVS	250
$\mu H \mu \Gamma I = -H I (3 \cdot \pi \Gamma)$	DRVS	260
AP = FPCWA	LIKVS	270
T5 = 3.3(5)	LIRVS	280
DXDA = T5*(T5 + 2.*C6*AP)/(T5*(1. + 2.*AP) + 2.*C6*AP**2)**2	TEUS	290
	TIFUS	310
Z = (1 FHI)/X	nRUS	320
IF (LEAN) DYDX = (1. + .72*Z)/(1. + .36*Z)**2	DRVS	330
IF(RICH) DYDX = (1 1.28*Z + .90*Z**2)/(164*Z + .3*Z**2)**	2 DRVS	340
	TIEVS	350

000000

С

-114-

DYDTF = DYDX*DXDA*DADTF	DRVS 360
DYDFT = DYDX*DXDA*DADFT	DRVS 370
DUDIF = DUDXPT*DXDA*DADTF + DUDTPX	DRVS 380
DUDFT = DUDXFT*DXDA*DADFT + DUDFTX	DRVS 390
	DRVS 400
DHFDFT = C3KDYDFT + C4KDDDFT	DRVS 410
DC2DPT = -2.*(3.*DYDFT + DUDFT)	DRVS 420
DUIDFT = 5 * * DYDFT + 3 * * DUDFT	DRVS 430
$\mathbf{D}\mathbf{H}\mathbf{F}\mathbf{D}\mathbf{F}^{H} = \mathbf{U}3 + \mathbf{D}\mathbf{Y}\mathbf{D}\mathbf{F} + \mathbf{C}4\mathbf{X}\mathbf{D}\mathbf{D}\mathbf{T}\mathbf{F}$	DRVS 440
DC2DTP = -2.*(3.*DTDTP + DUDTP)	DRVS 450
$\mathbf{n}\mathbf{C}\mathbf{T}\mathbf{n}\mathbf{U}\mathbf{h} = 2^{*}\mathbf{x}\mathbf{n}\mathbf{A}\mathbf{n}\mathbf{U}\mathbf{h} + 3^{*}\mathbf{x}\mathbf{n}\mathbf{n}\mathbf{n}\mathbf{U}\mathbf{h}$	DRVS 460
	DRVS 470
100 = (3000 - 2000 + xEPS + 300 + xPSI)/(1	DRVS 480
EARD = EXF(1V071) $TU = TU07(EADC) = 1$	DRVS 490
	DRVS 500
$U(\nabla U) = (\nabla U \times EARG) (1 \times (EARG - 1.)) \times 2 \times 700$	DRVS 510
$\Delta M C P = (P, \Psi C P C + A) \Psi P U T + 70 + 00 W P O T$	DRVS 520
C1 - 7 40CT L C 447ACTL T 324 T 284AC51	DRVS 530
$G_{2} = 2 + 4 G_{2} + 2 + 4 G_{1} + 3 + 4 G_{2}$	DRVS 540
$U_{4} = 2 \cdot \pi (F_{5}) = 3 \cdot \pi (F_{5}) = 0$	DRVS 550
	DRVS 560
$\frac{1}{1} = \frac{1}{1} + \frac{1}{2} + \frac{1}$	DRVS 570
TF (RTCH) C2 = C2 + 2 * (1 + 1 (2 + - 3 * * EF5) * EH1)	DRVS 580
$\mathbf{x}_{1} \mathbf{x}_{2} = \mathbf{x}_{2} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4} + \mathbf{x}_{4} = \mathbf{x}_{4} + \mathbf{x}_{4} $	TKA2 280
	DRVS 600
$\frac{1}{1} + \frac{1}{1} + \frac{1}$	DRVS 610
CCUDT = DOUDQ/AMCDW/TWDC1DDT I TUWDCODDT I DUCTOTAL	1005 620
COORT - KOAKSNHUCHWAARADOTDEL + LAWDCSDEL + DHEDELDWSCUT	DRVS 630
IF (LEAN) $G = 1. + (1 EPS) * PHT + PST + Y + U$	DRVS 640
TF (RTCH) G = (7 FRC) PRIT \perp DCT \perp V \perp U	UKV5 600
G = -AMCP/Gxx2	
PMDTP = G*(PYDTP + DUDTP)	URV5 670
DMDPT = G*(DYDPT + DUDPT)	1405 680
METTANT T SZTEN ANT AT TE T ALLET TY ALLET TY	UKV5 690
	DRV5 700

С

С

С

С

С

С

-115-

DRHODT = .012187*F/T*(DMDTF - AMWT/T) DRHODF = .012187/T*(AMWT + F*DMDFT)

RETURN

С

DRVS 710 DRVS 720 DRVS 730 DRVS 740

C)	**************************************	0 010
С	相臣民	0 020
C	SUBROUTINE HPROD	0 030
С	HPR 1	0 040
С	PURPOSE :	0 050
С	TO CALCULATE THE SPECIFIC ENTHALPY OF THE PRODUCTS OF HYDRO- HPR	0 060
С	CARBON-AIR COMBUSTION AS A FUNCTION OF TEMPERATURE AND PRES- HFR	0 020
С	SURE, USING AN APPROXIMATE CORRECTION FOR DISSOCIATION, HER	0 080
С	THE PARTIAL DERIVATIVES OF H WITH RESPECT TO THESE VARIABLES HPR	0 090
С	ARE ALSO CALCULATED, ALONG WITH THE GAS DENSITY AND ITS PAR- HPR	0 100
C	TIAL DERIVATIVES	0 110
С		0 120
С	USAGE:	1 1 3 0
С	CALL HPROD(F,T,PHI,DEL,FSI,ENTHLP,CSUBF,CSUBT,RHO,DRHODT, HPR	1 140
С	DRHODE)	0 150
С		0 160
С	DESCRIPTION OF PARAMETERS:	0 170
С	GIVEN:	0 180
С	P - ABSOLUTE PRESSURE OF PRODUCTS (ATM)	0 1.20
С	T - TEMPERATURE OF PRODUCTS (DEG K)	0 200
С	PHI - EQUIVALENCE RATIO (FUEL/AIR RATIO DIVIDED BY THE HPR	1 210
С	CHEMICALLY CORRECT FUEL/AIR RATIO)	0 220
С	DEL - MOLAR C:H RATIO OF THE PRODUCTS	0 230
С	PSI - MOLAR N:O RATIO OF THE PRODUCTS	1 240
C	RETURNS:	1 250
Ç	ENTHLP- SPECIFIC ENTHALPY OF THE PRODUCTS (KCAL/G)	0 260
С	CSUBE - PARTIAL DERIVATIVE OF ENTHLP WITH RESPECT TO T	1 270
C	AT CONSTANT P (CAL/G-DEG K)	0 280
C	CSUBT - PARTIAL DERIVATIVE OF ENTHLP WITH RESPECT TO P	3 290
C	AT CONSTANT T (CC/G)	300
C	RHO - DENSITY OF THE PRODUCTS (G/CC) HFR	310
C	DRHUDT- PARTIAL DERIVATIVE OF RHO WITH RESPECT TO T AT	0 320
C	CONSTANT P (G/CC-DEG K)	330
C	DRHODP- PARTIAL DERIVATIVE OF RHO WITH RESPECT TO P AT HPR	1 340
C	CONSTANT T (G/CC-ATM)	3 350 /

.

-117-

0	New York, 2017년 1월 1997년 1월 19			
C	DEMARKO+	村臣民力	360	
c		HERU	370	
c	17 ENTRIPERT DEFUN STATE IS AT $T = 0$ ABSULUTE WITH	HERD	380	
č	2) IN CASE OF BEODUS AND C SULLU GRAPHITE 2) IN CASE OF BEODUSKO CONTACT ATLE AND THE AND	HERD	390	
~	AV IN CHOC OF PROBLEMS CUNTACT MIRE MARTIN AT 253-2411	HFRD	3000	
с С	(KOON 3-337 II)	HERO	410	
5	CUDEOUTTANCO AND CUNOTICAL SUBBRIDGE AND BEAUT	村把农自	420	
C C	SUBRUUTINES AND FUNCTION SUBPRUGRAMS REQUIRED;	HERD	430	
5	new too a chinekin	HPRD	440	
0		MERO	450	
0		HERD	460	
0	SEE MAKIIN & HEYWOOD 'APPROXIMATE RELATIONS FOR THE THERMO-	HERD	470	
	DYNAMIC PROPERTIES OF HYDROCARBON-AIR COMBUSTION PRODUCTS	HPRD	4:30	
6		HERU	490	
0.38	***************************************	XHPRU	200	
5		MERD	510	
	SUBRUUTINE HEROD(F, T, PHI, DEL, PSI, ENTHLP, CSUBF, CSUBT, RHO, DRHODT,	HFRO	520	
	1 DRHUUP	HFRO	530	100
~	LOGICAL RICH, LEAN, NOTHOT, NOTWRM, NOTCLD	HERD	540	
6	에는 <u>이 것 같은 것 같은 것 같은 것</u> 같은 것 것 같은 것 같은 것 같은 것	HERD	550	
C	INITIALIZE PARAMETERS USED IN THE CALCULATION	HFRD	560	
C		HERD	570	
	UAIA AHECU2, AHEH20, AHECO/-93, 965, -57, 103, -27, 200/	HFRD	580	
	DATA RUVR2/.99345E-3/	HPRD	590	
~	DATA TCULU, THOT /1000.,1100./	HFRU	600	
6		HERD	610	
	$KLCH = PHL \cdot GE \cdot 1 \cdot O$	HPRD	620	
	$LEAN = \cdot NOT \cdot RICH$	HFRU	630	
	NUIHUI = T + L T + THOT	MPRO	640	
	NOTCLD = $T \cdot GT \cdot TCOLD$	HERU	650	
	NOTWRM = .NOT. (NOTCLD .AND. NOTHOT)	HFRO	660	
~	EPS=(4.*DEL)/(1. + 4.*DEL)	HPRO	670	
C	그는 것 같은 것을 잘 못 하는 것을 것 같은 것이 같이 있는 것이 없는 것이 있는 것이 있는 것이 없다.	HERD	680	
C	USE SIMPLE ROUTINE FOR LOW TEMPERATURE MIXES	MPRO	690	
C	이 집안 집을 물고 있는 것을 가지 않는 것이 있는 것을 가지 않는 것이 없다.	HERD	200	

.

C C C

•

-118-

	IF (NOTCLD) GO TO 5	HPRO	710
	CALL CLDFRD(F,T,FH1,DEL,FSI,ENTHLF,CSUBF,CSUBT,RH0,DRH0DT,	MFRD	720
	1 DRHODF, IER)	HPRÚ	730
	RETURN	HERD	740
		HEED	750
	CALCULATE EQUILIBRIUM CONSTANTS FOR DISSOCIATION	HPRU	260
	(NOTE THAT UNITS ARE INVERSE PRESSURE TO THE 1/2 POWER)	HPRD	770
		HPRA	780
5	$AK1 = .39E-4 \times EXP(3\times EPS + 34000./T)$	HF 放O	790
	$AK2 = .14E-3 \times EXP(1.3\times EPS + 29000.7T)$	HPRD	0.08
		HPRD	G1 0
	CALCULATE A, X, Y, AND U AS IN NOTES	MERCO	820
		HPRU	830
	A = ((2 EPS + PSI)/(4.*P*AK1*AK1))**(.333333333)	和户权的	840
		HPRD	850
	$\mathbf{I}_1 = 2 \cdot - \mathbf{E}_1 \cdot \mathbf{E}_2 \cdot \mathbf{E}_2$	HPRO	$6 \dot{o} 0$
		HFRD	370
		州护 农力	880
	$X = A \times (3 \cdot \times 11 + 12 \times 13) / (3 \cdot \times (1 \cdot + 2 \cdot \times 13) \times 11 + 2 \cdot \times 12 \times 13 \times 13)$	MPRD	890
	7	HFRD	900
		HFRD	910
	$\frac{1}{1} \left(\frac{1}{1} + \frac{1}{2} + 1$	HPRD	220
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	HP K1	930
	$U = (2 \cdot - CFS + FSI)*(1 \cdot - 2 \cdot * EFS*X)/(4 \cdot * AK1*AK2*F*X)$	HPRO	940
	PALOU ATE THE ENTHALOY OF FORMATTON FOR THESE ADDROVENATE	HFRU	950
	COMEDETTION	MERU	960
	COULOSTITON	HP KU	- 7 -7 Q
	ENTERP - 1000 VERTERAV(117 \pm 70 VERGAVY 1 475 VERGAVIA	HEKU	280
	$\mathbf{VION} = \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V} \mathbf{V}$	FIF KAL	770
	$\frac{1}{1} - \frac{1}{2} + \frac{1}$	种植物 [1]	1000
	TT - ZAMEDI T JAMET DAMET DAME TT - RET - ZAMET - DAMET		
		FIF 1C()	020
	TE (LEAN) ON TO TO	FD* FCU .	10.50
	$\mathbf{x} = \mathbf{x} = $	LICE D	1040
		1.1. I. 1.1	1. M

С

С С С

С

С

С

С

С

С

C

-119-

RCVT = 2. + 2.*(7. - 4.*EPS)*PHI + T1 RCVV = 4. + (2.- 3.*EPS)*PHI + T2 XCO2 = 2.- (2.- EPS)*PHI XCO = 2.*(PHI - 1.)ENTFOR = ENTFOR - 1000.*ROVR2*6.5*(PHI - 1.)/EPS GO TO 20 10 RCVT = 7. + (9. - 8.*EPS)*PHI + T1 RCVV = 1. + (5.- 3.*EPS)*PHI + T2 XCO = 0.XCO2 = EPS*PHI 20 ENTFOR = ENTFOR + (XCO2*AHFCO2 + XH2O*AHFH2O + XCO*AHFCO) ADD IN TRANSLATIONAL, VIBRATIONAL, AND ROTATIONAL TERMS TO GET TOTAL ENTHALPY TV = (3000.- 2000.*EPS + 300.*PSI)/(1.- .5*EPS + .09*PSI) TV = TV/(EXP(TV/T) - 1.)AMCP = (8,*EPS + 4,)*PHI + 32, + 28,*PSI ENTHLE = (ROVR2*(RCVT*T + RCVV*TV*2.) + ENTFOR)/AMOP CALCULATE AVERAGE MOLECULAR WEIGHT, AND GET DENSITY BY USING THE PERFECT GAS LAW IF (LEAN) AMWT = AMCP/(1. + (1.- EPS)*PHI + PSI + Y + U) IF (RICH) AMWT = AMCP/((2, - EPS)*PHI + PSI + Y + U) $RHO = .012187 \times AMWT \times P/T$ GET PARTIAL DERIVATIVES BY WAY OF A SUBROUTINE CALL CALL DERIVS(P,T,PHI,EPS,PSI,A,X,Y,U,AMWT,CSUBP,CSUBT,DRHODT, 1 DRHODP)

C

C

C

C

C

С

C

С

C

С

С

C

С

r

С

HFRD1060 HFR202020 HPRU1080 HFR01020 HFR91100 HER01110 HERD1120 HPRD1130 MPR01140. HFR01150 HPR01160 HFR01170 HFRD1180 HPR01120 HER01200 HFRD1210 MPR11220 HPRD1230 HPR01240 HFR01250 MPR01260 HPR01270 HFRD1280 HPRD1220 HFRD1300 HFR01310 HFR01320 HER01330 HFR01340 HFR01350 HFR01360 HPR01370 HPR01380 HFR01390 HERD1400

-120-

		ана, стар а		
IF CALCULATING AVERAGE OF THE SIMPLE ROUTINE	FOR AN INTERMEDIA RESULTS FROM THIS	ATE TEMPERATURE, 3 ROUTINE AND THO	USE A WEIGHTED SE FROM THE	HFR01410 HFR01420 HFR01430 HFR01440
IF (NOTWRM) RET	LURN			HPRD1450
CALL CLDFRD(P) W1 = (T - TCOLI W2 = $1.0 - W1$	F,PHI,DEL,PSI,TH,T)/(THOT - TCOLD)	TCP,TCT,TRH0,TDRT	, (DRE,IER)	HPRD1470 HPRD1480 HPRD1490 HPRD1500
ENTHLF = W1*ENT CSUBF = W1*CSUB CSUBT = W1*CSUB RHO = W1*RHO + DRHODT = W1*DRH DRHODF = W1*DRH	THLP + W2*TH 3P + W2*TCP 3T + W2*TCT W2*TRHO 10DT + W2*TDRT 10DP + W2*TDRP			HPRD1510 HPRD1520 ' HPRD1530 HPRD1530 HPRD1530 HPRD1560 HPRD1520
RETURN END				MPR01590

-121-

С

С

C

C***	**************************************	4 T C M C	10	
С	SUBROUTINE TEMP	* 1 C.FIF	1.0	
С		1 6. 111	~~~~	
С	PURPOSE:			
С	TO CALCULATE THE TEMPERATURE OF THE PRODUCTS OF HO ATD	TE.OF	40	
Ĉ	COMBUSTION. FOR GIVEN SPECIETC ENTRALEY OF THE PRODUCTS OF HU-MIR	TEMP	50	
C	FOR GIUEN ARCHUTE OFFOCUSE	1 E.M.F	60	
ř.	TOR OIVER ADSOLUTE FRESSURE	TEMP	70	
r :	LICACE +	TEMP	80	
C ·		TEMP	90	
С. С	CALL TEMP(P, TOUESS, PHI, DEL, PSI, ENTHLP, T, ERMAX, MAXITS, IER)	TEMP	1:00	
		TEMP	110	
	DESCRIPTION OF PARAMETERS:	TEMP	120	
U a	GIVEN:	TEMP	130	
C	P - ABSOLUTE PRESSURE OF THE PRODUCTS (ATM)	TEMP	140	
C ,	TGUESS- INITIAL GUESS FOR T (DEG K)	TEMP	150	
С	PHI - EQUIVALENCE RATIO OF THE PRODUCTS	TEMP	140	
С	DEL - MOLAR C:H RATIO OF THE FRODUCTS	TEMP	170	
C	PSI - MOLAR N:O RATIO OF THE PRODUCTS	TEMP	180	
С	ENTHLP- ENTHALPY OF THE PRODUCTS (KCALZG)	TEME	100	
С	ERMAX - MAXIMUM ALLOWABLE RELATIVE FEROR IN REGULTANT T	Y PT 2 CP	170	
С	MAXITS- MAXIMUM NUMBER OF ALLOWARLE ITERATIONS WITHOUT	TEME	210	
С		I K.FIF		
С	TER - FLAG, SET TO 1 TE NO SUCCESS LITTUIN MANTTO TERRATIONS	1 E.M.	220	
С	RETURNS:	1 1. 61-	2.50	
C		1.1:1.1.1.	A: 4 Q	
č	TENFERATORE OF THE FRODUCTS (DEG R)	TEMP	250	
Č ·	SUBEDUTINES AND EUNCTION CUREDOCDANC DECUTEERA	TEMP	260	
r i	LIDEOD	TEMP	270	
0	ΠΓΙζΟμ	TEMP	280	
r i	METLION +	TEMP	290	
2		TEMP	300	
0	NEWTUN-RAPHSUN TTERATION	TEMP	310	
C		TEMP	320	
ህ ጥ ጥ ጥ ጥ	***************************************	*TEMP	330	
	SUBROUTINE TEMP(P,TGUESS,PHI,DEL,PSI,ENTHLP,T,ERMAX,MAXITS,IER)	TEMP	340	
	T = TGUESS	TEMP	350	

-122-

	IER = 0			TEMP	360	
	$DO = 10^{\circ}$ T = 1 MANTTO			ТЕИР	370	
	10 10 1 = 17MAX115			TEMP	380	
	CALL HPROD(P,T,PHI,DEL	,FSI,AHG,CSUBF,CSUBT	F,RHO,DRHODT,DRHODP)	TEMP	390	
				TEMP	400	
	I = I + (ENIHLP - AHG)	/(CSUBP * 1.0E-3)		TEMP	410	
	IF(ABS((T - TOLD)/ T)	+LE+ ERMAX) GO TO	20	TEMF	420	
10	CUNTINUE			TEMP	430	
	TT (PT (PT)			TEMP	440	
70				TEMP	450	
20	KE I UKN			TEMP	460	

С

С

-123-

FUNCTION TRUPUS	00000020
ORCITOR ISOBUZ	0000003
PURPORE *	0000004
	0000005
STRATIETER CHARGE ENGINE FOR DURBURNED CHARGE IN A TCCS	0000006
OP COMPERSION	0000007
OK CONFRESSION	0000008
	0000009
	0000010
IEMPU = ISUBU2 (P, PNOT, TNOT, EMAX)	0000011
	0000012
DESURIFIIUN UF FARAMETERS:	0000013
	0000014
F - ABSULUTE PRESSURE (ATM) AT END OF PROCESS	0000015
PNUL - ABSOLUTE PRESSURE (ATM) AT START OF PROCESS	0000016
INUL - ABSOLUTE TEMPERATURE (DEG K) AT START OF PROCESS	0000017
EMAX - MAXIMUM ALLUWABLE RELATIVE ERROR IN TSUBU2	0000018
GIVEN IN COMMON AREA /CHARGE/ :	0000019
FHI - AVERAGE EQUIVALENCE RATIO OF THE RESIDUAL	0000020
MEL - MULAR CIH RATIO OF THE FUEL	0000021
PSI - MOLAR N:O RATIO OF THE CHARGE (APPROX 3.76 FOR AIR)	0000022
RESFRK- MASS FRACTION OF THE CHARGE THAT IS RESIDUAL	0000023
CHMASS- TUTAL MASS OF CHARGE (GRAMS)	0000024
QLOWER- LOWER HEATING VALUE OF THE FUEL (KCAL/G) AT 293 DEG K	0000025
CFUEL - SPECIFIC HEAT AT CONSTANT PRESSURE (CAL/G-DEG K) OF	0000026
THE FUEL VAPOR	0000027
	0000028
	0000029
ISUBUZ - FINAL TEMPERATURE (DEG K)	0000030
	0000031
SUBRUUTINES AND FUNCTION SUBPROGRAMS REQUIRED:	0000032
UP KUP 2	0000033
T1 T2 1 4 T1 1 7 1 4	0000034
REMARKS I	0000035

.

-124-

	• 57			
<i></i>		- i had is		
		1) REPORT ANY PROBLEMS TO MIKE MARTIN AT 253-2411 OR ROOM 3-339D		00000360
				00000380
		METHOD:	1	00000390
		HUHELIVE FREDICIOR-CORRECTOR METHOD		00000400
***	**	*****		00000410
		FUNCTION TSUBU2 (P, PNOT, TNOT, FMAX)	******	20000420
		COMMON /CHARGE/ PHI, DEL, PSI, RESFRK, CHMASS, DIOWER,	CEUEL	00000450
				00000450
		DATA PSCALE /2.42173E-2/		00000430
				00000470
		LOGICAL DONE		00000480
		$IUNE = \cdot FALSE \cdot$		00000490
		T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		00000500
		INITIALIZE PARAMETER VALUES	· · · ·	00000510
		TCUDUD - TNOT		00000520
			. (00000530
		IF (F +EU+ FNUT) RETURN		00000540
		PO(D - PNOT)	· (00000550
			- (00000560
			(00000370
			(00000580
		CHECK STEPSIZE		00000290
			(00000600
1	0	IF $(ABS(P - POLD), GT, ABS(DFLP))$ GO TO 20		00000610
			. (0000620
		IF TOO BIG, REDUCE AND STONAL DONE	· · · · · · · · · · · · · · · · · · ·	0000630
			(0000640
	1	DELP = P - POLD	(00000650
		DONE = .TRUE.		00000660
			· · · · · · · · · · · · · · · · · · ·	0000670
		DO PREDICTOR-CORRECTOR		0660000
			(, //	0000690
			ζ.	0000700

20	CALL UPROP2 (POLD, TOLD, PHI, DEL, PSI, RESFRK, XH, CP, CT, RHO, * RT, RP) G1 = (1./RHO - CT)/CP TSTAR = TOLD + DELP*G1*PSCALE PNEW = POLD + DELP CALL UPROP2 (PNEW, TSTAR, PHI, DEL, PSI, RESFRK, XH, CP, CT, RHO, * RT, RP) G2 = (1./RHO - CT)/CP TNEW = TOLD + DELP*FSCALE*(G1 + G2)/2. ERROR = ABS((TNEW - TSTAR)/TNEW)	00000710 00000720 00000730 00000740 00000750 00000760 00000770 00000780 00000790 00000790
	IF ERROR TOO LARGE, CHANGE STEPSIZE IF (ERROR .LT. EMAX) GO TO 30 DONE = .FALSE. DELP = DELP*.8 GO TO 20	00000810 00000820 00000830 00000840 00000850 00000860 00000870
30	OTHERWISE, UPDATE P AND T POLD = PNEW TOLD = TNEW IF (DONE) GO TO 40	00000880 00000890 00000900 00000910 00000920
	SEE IF ERROR TOO SMALL TO JUSTIFY THIS STEPSIZE IF (ERROR .GE. EMIN) GO TO 10 IF SO, INCREASE STEPSIZE	00000940 00000950 00000960 00000970 00000980
40	DELF = DELF*1.25 GO TO 10 TSUBU2 = TOLD RETURN END	00001000 00001010 00001020 00001030 00001040

,

C C C

C C C

C C C

C C C

- -126-

C****	***************** VERSION 1.0 *** 11/13/74 ************************************	*00000010
С	በመጠቀም የሚያስት የሚያ የሚያስት የሚያስት የሚያ የሚያስት የሚያስት የሚያ	00000010
C	SUBROUTINE UFROF2	00000030
С		00000040
С	TO CALCULATE THE ENTHALPY AND DENSITY OF A HOMOGENOUS MIXTURE	00000050
С	OF AIR AND RESIDUAL GAS AS A FUNCTION OF TEMPERATURE AND	00000040
Ç	PRESSURE FOR GIVEN EQUIVALENCE RATIO OF THE RESIDUAL	00000070
C		00000080
C	USAGE:	00000090
C .	CALL UPROP2 (P, T, PHI, DEL, PSI, RESFRK, ENTHLP, CSUBP, CSUBT	,00000100
C	RHO, DRHODT, DRHODP)	00000110
		00000120
0	DESURIFIIUN OF FARAMETERS:	00000130
C	\mathbf{D} = $\Delta \mathbf{D} \mathbf{C} \mathbf{D}$ $\mathbf{U} \mathbf{T} \mathbf{T}$ = $\mathbf{D} \mathbf{C} \mathbf{C} \mathbf{U} \mathbf{D} \mathbf{T}$ = $\mathbf{D} \mathbf{T} \mathbf{C}$	00000140
0	T ABSOLUTE FRESSURE OF MIX (ATM)	00000150
C C	U - LEMPERATURE OF MIX (DEG K)	00000160
C .	DEL KOLAD CILL DATIO OF THE RESIDUAL GAS	00000170
C	RELATION OF THE RESIDUAL GAS	00000180
c	PSI - MULAK NIU RAIIU UF THE MIX	00000190
č	FNTH P- SPECIEIC ENTHALPY OF THE MIX (MOAL ON)	00000200
c	CEURE - EXETTAL DEDILIATTUE OF FUELLE UNTIL STREAM	00000210
Č	AT CONSTANT D (CAL (C DEC 14)	00000220
č	CSURT - PARTIAL DEPTUATIVE OF ENTINE UTTU PEOPEOT TO D	00000230
C	AT CONSTANT T (CC/C)	00000240
C	RHO - DENSITY OF THE PRODUCTS (C/CC)	00000250
C	DRHODT- PARTIAL DERIVATIVE OF RHO WITH RESPECT TO T AT	00000260
С	CONSTANT P (G/CC-DEC K)	00000270
С	DRHODP- PARTIAL DERIVATIVE OF RHO WITH RESPECT TO B AT	00000280
C	CONSTANT T (G/CC-ATM)	00000290
C		00000.300
C	REMARKS:	00000310
C	1) ENTHALPY DATUM STATE IS AT T = 0 ABSOLUTE WITH	00000320
C	02,N2,H2 GASEOUS AND C SOLID GRAPHITE	00000340
С	2) REPORT ANY PROBLEMS TO MIKE MARTIN AT 253-2411	00000350
		V V V V V M MV

-127-

C	(FODM 7-770 D)	
Č.		00000360
č	SUBROUTINES AND EUNCTION SUDDOODANG VERSENA VIEW	00000370
C	SOBEROBRANE NOR TOR SOBEROBRANS NEEDED: NONE	00000380
Č	METHOD!	00000390
č		00000400
Č.	ZERO ORDER EGOILIBRIUM MULEL (MAJUR SPECIES ONLY)	00000410
		00000420
U T T 7		*00000430
	SUBROUTINE UPRUPZ (P, T, PHI, DEL, PSI, RESFRK, ENTHLP, CSUBP,	00000440
	CSUBT, RHO, DRHODT, DRHODF)	00000450
		00000460
	DIMENSION $A(6,6,2), X(6)$	00000470
	DIMENSION A1(36), A2(36)	00000480
	EQUIVALENCE (A1(1),A(1,1,1)), (A2(1),A(1,1,2))	00000490
~	NEAL MRAR + K	000000000
C		00000510
U C	INITIALIZE PARAMETERS, AND CHECK TO SEE IN WHAT TEMPERATURE	00000520
с –	RANGE WE ARE SO THAT THE CORRECT FITTED COEFFICIENTS WILL BE	00000530
C	USED. FLAG TEMPERATURES TOO BIG OR TOO SMALL	00000540
C		00000550
	HATA A1/11.94033, 2.088581, -0.47029, .037363,589447, -97.1418	00000560
	1 6.139094, 4.60783,9356009, .06669498, .0335801, -56.62588,	00000570
	2 7.099556, 1.275957,2877457, .022356,1598696, -27.73464,	00000590
	3 5.555680, 1.787191,2881342, .01951547, .1611828, .76498,	00000590
	4 7.865847, .6883719,031944,00268708,2013873,893455.	00000400
	5 6.807771, 1.453404,328985, .02561035,1189462,3318357	00000410
	DATA A2/4.737305, 16.65283, -11.2325, 2.828, .00676702, -93.75793	*00000A20
	7 7.809672,2023519, 3.418708, -1.179013, .00143629, -57.08004.	00000430
	8 6.97393,8238319, 2.942042, -1.176239, .0004132409, -27.10597	.00000440
	9 6.991878, .1617044,2182071, .2968197,01625234,118189,	00000640
	& 6.295715, 2.388387,0314788,3267433, .00435925, .103637,	00000440
-	-7.092199, -1.295825, 3.20688, -1.202212,0003457938,017947	
U		00000670
	$RICH = PHI \cdot GT \cdot 1 \cdot O$	
	$LEAN = \cdot NOT \cdot RICH$	00000070
		00000000

С

-128-

١

EPS = 4.*DEL/(1. + 4.*DEL)00000710 IER = 000000720 IF (T .LT. 100.) IER = 1 00000730 IF (T .GT. 6000.) IER = 2 00000740 IR = 100000750 IF (T .LT. 500.) IR = 2 00000760 00000770 GET THE COMPOSITION IN MOLES/MOLE DXYGEN 00000780 00000790 PCTRES = RESFRK000000800 PCTNEW = 1.0 - RESFRK 00000810 IF (RICH) GO TO 10 00000820 00000830 X(1) = EPS*PHI*PCTRES 00000840 X(2) = 2.*(1.0 - EPS)*PHI*PCTRES 00000830 X(3) = 0.000000360 X(4) = 0.00000870 X(5) = (1. - PHI)*PCTRES + PCTNEW 00000880 GO TO 20 00000890 00000900 10 Z = 1000./T00000910 К = EXF(2.743 + Z*(-1.761 + Z*(-1.611 + Z*.2803)))00000920 ALFHA = 1.0 - K00000930 BETA = 2.*(1.- EPS*PHI) + K*(2.*(PHI - 1.) + EPS*PHI)00000940 GAMMA = 2.*K*EPS*PHI*(PHI - 1.) 00000930 = (-BETA + SQRT(BETA*BETA + 4.*ALPHA*GAMMA))/(2.*ALPHA) С 00000960 X(1) = (EPS*PHI - C)*PCTRES 00000970 X(2) = (2.0*(1. - EPS*PHI) + C)*PCTRES00000980 X(3) = C*PCTRES00000990 X(4) = (2.0*(PHI - 1.) - C)*PCTRES00001000 X(5) = PCTNEW00001010 20 X(6) = PSI00001020 00001030 CONVERT COMPOSITION TO MOLE FRACTIONS AND CALCULATE AVERAGE 00001040 MOLECULAR WEIGHT 00001050

С

С

C

С

С

С

С

С

12 Ó

IF (LEAN) TMOLES = PSI + PCTNEW + PCTRES*(1. + PHI*(1EPS))	00001060
IF (RICH) TMOLES = PSI + PCTNEW + PCTRES*(PHI*(2 EPS))	00001080
$DO \ 3O \ J = 1, 6$	00001090
X(J) = X(J) / TMOLES	00001100
30 CUNTINUE	00001110
MBAR = ((8,*EFS + 4,)*PHI + 32, + 28,*PSI)/TMOLES	00001120
	00001130
LALCULATE H, CF, AND CT AS IN WRITEUP, USING FITTED	00001140
COEFFICIENTS FROM JANAF TABLES	00001150
	00001160
$E_N IHLF = 0.$	00001170
CSUBF' = 0	00001130
CDUBI = 0,	00001190
DO AO I = 1/1000	00001200
$\frac{100}{10} + \frac{1}{10} = \frac{1}{10$	00001210
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	00001220
TCP $H(2)J(R)/2 \cdot J(R) + A(1)J(R) - J(R)$	00001230
$\frac{1}{1}$	00001240
$TH = TH = \Delta(E_{1} + D) + A(1_{1} + D)$	00001250
TCD = TH = H(J)J(K)/ST + A(S)J(K)	00001260
$\frac{1}{10} = \frac{1}{10} + \frac{1}{10} \frac{1}{1$	00001270
CQUBP = CQUPP + THXX(J)	00001280
$\frac{1}{2} \frac{1}{2} \frac{1}$	00001290
	00001300
	00001310
COODI / HINK	00001320
NOU CALCULATE DUO AND TTO DADATA DEPARTMENT	00001330
USING PERFECT CAS LAU	00001340
$\omega \omega x \partial \omega = 0$	00001350
	00001360
DRHODT = -RHO/T	00001370
DRHODP = RHOZP	00001380
	00001390
	00001400

-130-

.1

С

C C C C C

C C C C C

С

С

00001410 00001420 00001430

-131-

-132-

Table 1

Engine Specifications

DIMENSIONS*

bore	3.875 in.
stroke	3.875 in.
connecting rod	6.625 in.
clearance volume	4.570 in. ³

VALVE TIMINGS

	OPENS		CLOSES	5
inlet valve	10 BTDC	(1)	55 ABDC	(2)
	0	(2)	45	(1)

exhaust	valve	55	BBDC	(1)	10	ATDC	(2)	
		45		(2)	0		(1)	

(1) at 0.006 in, valve lift (2) valve face flush with head

 st defined in Figure () and Appendix B of ()

:1

1.1.6

17 19 10

Table 2

-133-

Injection System

-	-
	IMD
1 1	11.11

pump: APE - B Bosch

cam: 6/1

plunger: 7mm.

reaction value: 20 mm^3

NOZZLE

	nozzle:	Roosa-Ma	ster	XNM 1	.029
orifice	diameter	c		.023	in.
orifice	L/D		1	.0	
nozzle c	racking p	pressure	2000)	
need1e	lift			.010	in.

. . .

-134-

Table 3

Summary of Instrumentation

Temperatures

Water Outlet

Air Orifice Inlet Air Inlet

Exhaust

Water Inlet

Crankcase Oil

Fuel Returns

Bearing Oil

Fuel Inlet

Instrument - All Points

Chromel - Alumel Thermocouple

Omega DS - 500 Digital Readout

Resolution 1°F

Pressures

in a state of the second s	Method	Resolution
Inlet Air	Water Manometer	.1 in.
Crankcase Vacuum	Water Manometer	.1 in.
Oil Pressure	Panel Gage	2 PSI
Exhaust	Mercury Manometer	.1 in.
Dynamometer Load	Mercury Manometer	.1 in.
Injection Line	Kistler 601 Piezoelectric	
	transducer, Kistler 504E	30 PSI*
	Charge Amplifier	
Combustion Chamber	Kistler 609A Piezoelectric	
	Transducer, Kistler 503D	.2 PSI**
	Charge Amplifier	

Table 3 (cont)

Flow Rates

e redeserve a c	statistic transformer Method	Resolution
Air Inlet	ASME Square Edged Orifice	
	with water manometers	0.05 g/sec
Fuel	Laboratory Scale and Timer	0.01 g/sec
Cooling Water	Rotameter	.2 1bm/sec
Position		

Crankangle

720 pulses per revolution plus Marker

Trump Ross Rotary Pulse Generator

Fuel Injector Needle Lift

AVL NH1 - 100 B LDT $1 \ \mu m$

Gas Analysis Cart

Exhaust

Hydrocarbons	Scott Model 215 FID HC Analyzer
Nitric Oxides	TELCO Model 10 A Chemilumenscent NO Analyzer
Carbon Dioxide Carbon Monoxide	Beckman Model 315A NDIR CO ₂ Analyzer Beckman Model 315A NDIR CO Analyzer
Oxygen	Scott Model 150 Paramagnetic O ₂ Analyzer

* Accuracy is effectively limited by the system transfer function and the 565 oscilloscope.

** See Text

.2 CA^o

Table 4

Summary of Fuel Properties

	Methano1	Iso-Octane	Cross-cut
	сн ₃ он	C8H18	Distillate
Molecular Wt.	32	114	∿125
H:C Ratio	4:0	2,25	1,828
Specific Gravity	.796	.692	.80
Boiling Point ^O F	149	211	(106-648)
Lower Heating Value (Btu/1bm)	8580	19080	18038
Stoichiometric F/A Ratio	0.155	0.0665	0.0692

FIA - %

Aromatics		29.5
Olefins Saturates	la se a construction de la constru La construction de la construction d La construction de la construction d	3.0 67,5
Octane No. RON	106 100	76.6
Cetane No.		28,3

	Engine Operating C	onditions for	Emission Resu	lts	
RPM	а такана страна страна. Ф	θ s	IMEP	ISFC	
1500	0.759	-24	104.7	0.384	
	0.625	-23	93.2	0,358	
	0.446	-23	81.9	0.290	
	0.278	-23	56.8	0.284	* g ⁱ na ' a ' n
	0.261	-23	53.6	0,263	
	0.172	-23	39.1	0.249	
	0.143	-20	24.7	0,331	
	0.113	-23	17.5	0,379	
2000	0.828	-26	122.2	0.353	
	0.650	-26	108.9	0.320	
	0.475	-26	91.3	0,289	
	0.348	-24	73.1	0.269	
	0.218	-23	44.2	0.285	
	0.161	-24	25.9	0,362	
2500	0.811	-29	130.3	0.349	
i i na sense an anna an a	0.639	-28	119.3	0.349	
	0.524	-28	105.4	0,286	
	0.371	-28	82.0	0,262	
	0.249	-28	55.5	0.265	
	0.193	-28	38.1	0.306	
	0.124	-28	21.7	0,344	

 θ_s = Start of Injection

Ignition Always Preceeded by 2 CA^O

Table 5

Table 5 (con't)

Cross Cut Distillate

	RPM	ф	θs	IMEP	ISFC
	1500	0.924	-22	112.1	0.432
		0.762	-20	105.4	0.392
		0.600	-20	93.0	0.358
		0.442	-19	79 . 7	0.299
		0.426	-20	76.3	0.317
, gen harra Santos		0.282	-19	55,5	0.284
		0.211	-19	41.3	0,290
		0.129	-18	22.8	0.327
	2000	0.927	-25	112.9	0.416
		0.859	-23	112.4	0.390
		0.692	-23	98.5	0,372
		0.472	-23	88.4	0.296
		0.334	-23	63.6	0.303
n in in in		0.258	-23	51,4	0.290
		0.180	-23	34.9	0.304
		0.184	-20	32.4	0,338
	2500	1.000	-26	122.5	0.439
		.850	-26	120.7	0.391
		.685	-25	108.9	0.353
		.546	-26	95.6	0.324
		.367	-25	69.3	0.303
		.291	-26	56.6	0.300
		.212	-23	39,7	0.314
		.218	-20	19.4	0.387

Table 5 (cont)

		<u>Methanol</u>		
RPM	ф	θs	IMEP	ISFC
1500	0.767	-25	106.9	0.878
	0.636	-28	101.7	0.755
	0.486	-26	89.0	0.676
	0.394	-26	77.7	0.637
	0.324	-26	66.4	0.616
ing Solution bank binds are say. S	0.261	-24	50.8	0.655
	0.219	-24	40.7	0,697
2000	0.811	-28	108.9	0.900
	0.741	-28	106.9	0.838
	0.654	-28	104.6	0.766
	0.591	-28	100.5	0.731
	0.504	-28	92.7	0.682
	0.414	-28	84.6	0.632
	0.364	-25	72,5	0.643
	0.291	-25	58.6	0.640
	0.221	-25	26.9	1.077
2500	0.696	-35	106.3	0.824
	0.641	-35	102.3	0.795

-139-

Table 6

Matrix of Averaged Pressure Crankangle

Iso-Octane

RPM	^ф е	^ф е	IMEP	IMEP i	θ_{is}	θ _{ie}	θ _{bs}	θ _{be}
1500	0.77	0.76	104.7	106.6	-24	9	-12	35
	0.46	0.45	81.9	82.3	-23	0	-13	35
	0.29	0.28	56.8	60.0	-23		-12	24
2000	0.83	0.83	122.2	118.3	-25	13	-12	28
	0.49	0.48	91.3	88.5	-24	3	-9	24
	0.22	0.22	44.2	44.3	-23	-5	-7	23
2500	0.78	0.81	130.3	122.4	-29	15	-8	30
	0.52	0.52	105.4	99.6	-28	7	-9	30
	0.25	0.25	55.4	47.4	-28	-4	-9	29

Subscript Nomenclature

o = Observed from fuel air flow

e = Measured from exhaust gas composition

M = Dynamometer measurement

i = Integrated average pressure data

is = Injection start

ie = Injection end

bs = Start of heat release from Log P Log V plots

be = End of effective heat release from Log P Log plots

an a			<u>Cross</u> Cu	it Distille	<u>ite</u> ali kasa melarak Anto ing kasa dista	anterioren en estatuer 1. desena directo directo di contra di	aanaan ahaa kuu Ahaa shafi sharaa	an a	
	RPM	φ _o	^ф е	IMEP _M	IMEP	θ is	θ ie	θ _{bs}	θ _{be}
	1500	0.76	0.78	105.4	99.2	-20	10	-11	35
د. مُرَّيْ وَمَنْ مُرْسَلُونِ مُوْتُونَ اللَّهِ مِنْ مُوْتُونَ اللَّهِ مِنْ مُوْتُونَ اللَّهِ مِنْ مُوْتُونَ اللَّ		0.43	0.43	76.3	73.3	-20	4	-13	36
		0.27	0.27	51.4	47.2	-20	-5	-11	35
	2000	0.87	0.85	121.0	114.6	-24	15	-14	29
		0.49	0.47	88.4	84.9	-23	-2	-14	26
		0.26	0.26	51.4	46.5	-23	-12	-15	31
	2500	0.83	0.82	121.3	124.8	-26	15	-14	31
		0.52	0.50	95.0	100.1	-26	0	-14	24
		0.29	0.28	56.1	59.7	-26	-9	-13	26

Table 6 (cont)

-141-

ેલ્ફ્રેન્સ સ્ટ્રાન્ડ્રેન્સ્ટ્રે સ્ટ્રેન્સ્ટ્

FIG. 1 _TEXACO CONTROLLED COMBUSTION SYSTEM (SCHEMATIC)

CRACKING PRESSURE ADJUSTMENT SCREW

Fig.2 ROOSA-MASTER INJECTION NOZZLE

SCHEMATIC OF THE COMBUSTION PROCESS FIG. 3

-144-

Simplified PV $^{\gamma}$ plot (Theory). $\Delta \theta_{inj}$ and $\Delta \theta_{rc}$ are injection and rapid combustion durations respectively.

FIGURE 5 PHOTOGRAPH OF TEST INSTALLATION

FIG. 6a SINGLE CYLINDER ENGINE ASSEMBLY

FIG.6b SINGLE CYLINDER TEST ASSEMBLY

-148-

FIG. 7 DYNAMOMETER HYDRAULIC SCALE

-149-

FIG.8 COOLING SYSTEM

-150-

FIG. 9 LUBRICATION SYSTEM

-151-

FIG. 10 INLET AND EXHAUST SYSTEM

FIG.12

INJECTOR LIFT TRANSDUCER ASSEMBLY

FIG.13-TYPICAL OSCILLOSCOPE TRACE

FIG.14 1500 RPM MOTORING LOG P VS LOG V

-156-

FIG. 17 SCHEMATIC OF DATA ACQUISITION SYSTEM

-159-

FIG.19 INDICATED MEAN EFFECTIVE PRESSURE VS EQUIVALENCE RATIO, FOR 100-600 FUEL

EQUIVALENCE RATIO, FOR ISO-OCTANE

-162-

FIG. 22 INDICATED THERMAL AND VOLEMETRIC EFFICIENCY VS EQUIVALENCE RATIO FOR ISO-OCTANE

FIG. 23 INDICATED THERMAL AND VOLUMETRIC EFFICIENCY VS EQUIVALENCE RATIO FOR 100-600 FUEL

-166-

-168-

-169-

RATIO FOR IO0-600 FUEL

EQUIVALENCE RATIO FOR METHANOL

-174-

-176-

RATIO FOR METHANOL

14

RATIO FOR METHANOL

18 METHANOL 16 14 HC EMISSIONS (C6 H14) GR/IHP-HR 12 10 ▲ 1500 RPM • 2000 RPM 8 6 4 2 0 0 .2 .4 .6 .8 ١. EQUIVALENCE RATIO

> FIG. 37 HYDROCARBON EMISSIONS VS EQUIVALENCE RATIO FOR METHANOL

-179-

-180-

FIG. 39 FRICTION MEAN EFFECTIVE PRESSURE VS ENGINE RPM

-181-

= 0.76, 2500 RPM

-182-

-184-

-186-

-187-

-189-

-190-

-191-

-192-

-193-

-194-

-199-

-200-

-201-

-202-