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ABSTRACT

A mathematical model has been formulated to describe
the electromagnetic field, fluid flow, heat transfer and
solidification phenomena in electroslag refining systems.

The formulation is based on the simultaneous state-
ment of HMaxwell's equations written for the MHD approximation,
the equations for turbulent fluid flow in the slag as caused
by both electromagnetic and natural convection forces (due
to temperature gradients) and the differential thermal
energy balance equations with allowances made for the spatial
distribution of heat generation rate in the slag, for the
moving interfaces, for the transport of heat by metal droplets
falling through the slag and for the release of latent
heat in the mushy zone. The effective viscosity and the
effective thermal conductivity in the slag are calculated
by using a two eguation model for turbulence. The equations
are first stated in vector notations and then simplified
for an axi-symmetric cylindrical coordinate system. An
outline of the computational approach is also included.

The theoretically predicted pool profiles and
temperature fields are found to be in reasonable agreement
with experimental measurements reported in literature for
a laboratory scale system. The predictive capability of the
model makes it possible to relate the heat generation pattern,
the temperature and the velocity fields, the casting rate
and the pool profiles to the operating power and current, to
the amount of slag used and to the geometry of the system.

Thesis Supervisor: Dr. Julian Szekely

Title: Professor of Materials Engineering
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CHAPTER I

INTRODUCTION

In recent years there has been a growing interest
in the development of mathematical models for the repre-
sentation of heat transfer and fluid flow phenomena in the
electroslag refining process. While the earlier models
concentrated on the calculations of pool profiles and tem-
perature fields in the ingot, a more fundamental approach
was taken in recently reported models where allowance has
been made for the thermally and electromagnetically driven
flow in the system. However, these latter models were
primarily of theoretical interest because the shape and size
of the mélten metal pool had to be specified and because
heat transfer in the mushy zone and in the ingot was
neglected.

The work to be described in this thesis represents
an attempt towards developing a predictive model for flow
and thermal characteristics of the ESR process. The model
developed in this work seeks mathematical representations
for the electromagnetic field, for the turbulent recircu-
lating flow in the slag (due to both electromagnetic and
natural convection forces) and for heat transfer with
phase change. It therefore involves the simultaneous
statement of Maxwell's equations, equations for turbulent
motion and the differential thermal energy balance equations.

The model is then used to make predictions for a laboratory
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scale system reported in literature. The predictive
capability of the model is utilized to investigate the
interdependence of prinéipal operating parameters.

Regarding the organization of this thesis, it
is divided into six chapters in the following manner:

In Chapter 2, a literature survey is presented,
which reviews mathematical models on ESR and on turbulent
recirculating flow in metallurgical systems.

The formulation of the mathematical model is given
in Chapter 3. After discussing the basic processes involved
and the assumptions made, the governing differential equations
are first written in vectorial forms so that some general
conclusions can be drawn regarding the behavior of ESR
systems. Then they are presented in the cylindrical
coordinate system with axial symmetry. Boundary conditions
are discussed and some dimensionless parameters are derived.

Numerical procedure used to solve the governing
differential equations is outlined in Chapter 4.

Computed results on current distribution, heat
generation pattern, velocity and temperature fields and
pool profiles are discussed in Chapter 5. Wherever possible,
these results are compared with experimental measurements
available in literature.

Concluding remarks and some suggestions for further

work in modelling of ESR process are made in Chapter 6.
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Appendix A contains a brief note on phasor notation
used for AC operation. Derivations of vorticity boundary
conditions are discussed in Appendix B. Calculation of
radiation view factors is outlined in Appendix C. The use
of a temperature dependent electrical conductivity for slag
is discussed in Appendix D and a listing of the computer

program is presented in Appendix E.



17.

CHAPTER II
LITERATURE SURVEY

The past decade has seen a rapid increase in the
application of electroslag process in this country and in
other industrialized nations. During the same period
numerous papers dealing with both physical and mathematical
modelling of ESR have been published. These models have
resulted from a need to have a better understanding of the
relationships among key process parameters so as to be able
to devise effective strategies for controlling structure
and composition of remelted ingots.

Mathematical models for the ESR process can be
classified into two groups -- (1) those dealing with physical
phenomena such as heat transfer, fluid flow and solidifica-

1-22

tion (i.e. thermal and fluid flow models) and (2) those

dealing with chemical and electrochemical reactions (i.e.
chemical models) 23-26. The review presented here is
restricted to thermal and fluid flow models for this is the
category into which the present work falls.

From the point of view of mathematical modelling,
the electroslag refining process represents a complex
group of problems involving turbulent recirculating flow
driven by electromagnetic and buoyancy forces, heat and
mass transfer phenomena and phase change (both melting and

solidification) with free boundaries. Because of the way

ESR model described in this thesis has evolved, it appears
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best to divide this chapter into two sections. The first
section reviews mathematical models for ESR and the second
section presents an overview of literature on the mathemati-
cal modelling of turbulent recirculating flows in metallur-

gical systems.

2.1 Mathematical Models for ESR
Some of the earliest modelling work on ESR dealt
with temperature distributions in the electrode. These

'3

involved the solution of one dimensional or two dimen-

sional 1,7

heat conduction problems with experimentally
established boundary conditions. While these models were
helpful in visualizing the relative magnitudes of various
heat transfer mechanisms (i.e. conduction, convection and
radiation) so far as the electrode was concerned, they

could not provide insight into the local or the overall

heat transfer rate between the electrode and the slag.

The heat transfer coefficient between the electrode and the
slag was, instead, used as an adjustable parameter to
interpret measured temperature distributions in the electrode.

4-12,18 . ve concen-

Most of the early models on ESR
trated on the representation of thermal field in the ingot.
While these models may differ in the form (e.g. transient
vs. quasi steady state) or in the type of boundary condi-

tions chosen (e.g. specified flux vs. specified temperature

at the slag-metal interface) or in the way the release of
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latent heat is accounted for (e.g. adjustment of specific
heat in the mushy zone vs. use of solidification models),
the unifying themes behind these models are:

1) transport processes taking place in the slag
are ignored with the boundary condition at the slag-metal
interface being considered adjustable.

2) casting rate is used as an input to the model.

and 3) an effective thermal conductivity is used to
account for convection in the metal pool.

These models then reduce to a set of heat conduc-
tion equations (with movement of slag-metal interface being
accounted for) for the metal pool, for the mushy zone and
for the solid ingot with appropriate boundary conditions.
Some of these earlier models have been reviewed by Mitchell
et al. 2 and by Ballantyne and Mitchell 12. The models
presented by Sun and Pridgeon 4, Carvajal and Geiger 8,

5’10, Ballantyne and Mitchell 12 and Jeanfils

Paton et al.
et al. 18 are transient in nature. Wwhile all these authors
used the transient models to study the development of iso-
therms from the initial stages of remelting up to the
attainment of quasi-steady state, Jeanfils et al. 18
also utilized their model to investigate the response of
the system (as characterized by change in pool depth and

mushy zone thickness) to specified changes (e.g. ramp,

sinusoidal) in the melt rate.
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Elliott and Maulvault 1L noted that the thermal
conditions in an ESR system became reproducible in time
after the ingot had grown to sufficient length (e.g. about
2.5 times the radius of the ingot when casting steels
and other metals with similar conductivities) and developed
a quasi steady state model for calculating thermal field
in the ingot. This reduced the dimensionality of the
problem without seriously affecting the scope of the model.
Furthermore, the numerical scheme chosen by Elliott and
Maulvault 11 allowed for arbitrary grid éonfigurations.
This in turn enabled them to concentrate the nodes in
critical areas without excessive grid requirements.

Apart from being successful in the interpretation
of experimental measurements on pool depth and on local
solidification time in the mushy zone, thes= models 4-12,18
illustrated the influence of casting rate and the effective
thermal conductivity on thermal fields in the ingot. Further-
more many of these papers provided measurements which were
needed for model validation.

The inability of these models to generate predictive
relationships among key process parameters such as power
input, geometry, slag depth on one hand and melting rate,
pool depth, width of the mushy zone etc. on the other hand
stems from ignoring transport processes in the slag. The

calculation of thermal fields in the slag necessitates the
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solution of electromagnetic field equations in order to
obtain the local rate of heat generation in the slag.
Furthermore there is vigorous convection in slag. The
driving force for flow is provided by both electromagnetic
and buoyancy forces and the flow, in general, is turbulent.
The use of a spatially independent effective conductivity
will not provide a realistic representation of convection in
the slag. Thus a predictive model for the ESR process will have
to seek additional mathematical representations for the elec-
tromagnetic force field, turbulent fluid flow field and for
convective heat transfer in the slag.

This more fundamental approach has been taken in

models published by Dilawari and Szekely 13'14'15, Kreyenberg

16a.ndInoue and Iwasaki 21. A review of

and Schwerdtfeger
these recent models as well as a survey on measurements of
temperature and electric potential reported in the literature
have been made by Kawakami and Goto 17.

The basic approach taken by the three groups of
investigators is to first calculate the current paths for
an assumed electrode melting tip shape (flat in references
13-16 and conical in reference 21) and then to solve fluid
flow and convective heat transfer equations. Among these,
Kreyenberg and Schwerdtfeger 16 considered fluid flow and

heat transfer in the slag phase only while the other two

groups examined the behavior of both metal and slag phases.
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The approach of Kreyenberg and Schwerdtfeger 16 necessi-
tated an assumed temperature distribution at the
slag-metal interface. This assumed boundary condition was
found to have a strong effect on calculated flow and temper-
ature fields in the slag. The formulation presented by
Dilawari and Szekely 15 was particularly comprehensive since
it allowed for the turbulent nature of flow (in both liquid
pools) and accounted for heat transfer between the slag and
the falling metal droplets. Although the models put forward
by Dilawari and Szekely 15 and Inoue and Iwasaki 21 were of
fundamental interest, their practical use was limited
because the shape and the size of the molten metal pool
had to be specified and heat transfer in the mushy zone
and in the solid ingot was neglected. These models,
therefore, could not be addressed to the metallurgically
important question of how to relate the shape and the size
of the metal pool and the mushy zone to the operating para-
meters. Furthermore, the arbitrarily assumed pool shape
precluded a meaningful comparison of experimentally measured
temperature profiles below the slag-metal interface with
predictions based on the model.

The work described in this thesis represents a
significant step in our continuing efforts to develop a
predictive model for ESR operations. The nature of the model,

its scope and limitations are detailed in subsequent chapters.
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Some applications of the model described in this thesis
have already been published 19'20’22.
Before closing this section it should be pointed

27,28 to calculate

out that some studies have been made
segregation in ESR by solving interdendritic flow and
temperature fields in simulated ESR ingots. The latter
paper, in fact, investigated the suppression of macro-
segregation by rotating the ingot. 1In both these papers,
no account was taken of motion in the metal pool above

the liquidus isotherm and electromagnetic effects were
either avoided or ignored. Recently, however, Mehrabian
and Ridder 23 have extended their model to account for
motion in the metal pool (laminar motion caused by natural
convection) and have elaborated on the important influence
of fluid motion inthe metal pool on solute redistribution
in ingots. It will be a worthwhile exercise to combine
some aspects of the model to be described in this thesis
with models for calculating segregation so as to minimize
uncertainties in specifying various boundary conditions

in the latter models.

2.2 Turbulent Recirculating Flows in Metallurgical Systems
Some of the recent models of ESR (13-16, 19-22)

have involved the solution of turbulent recirculating flow.

These models have benefited greatly from experiences gained

with modelling of such flows in connection with various
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metallurgical processes such as continuous casting (Szekely

and Yadoya 30), argon stirring (Szekely et al.34), deoxi-

31

dation in the ASEA-SKF furnace (Szekely and Nakanishi ),

induction stirring and melting (Szekely and Chang 32,
Tarapore and Evans 33) etc. It is to be noted that the
computation of flow profiles in the latter two cases involved
the simultaneous solution of Maxwell's and the Navier-Stokes
equations. A growing interest in ladle metallurgy 37 opera-
tions to achieve bath homogenization (with respect to temper-
ature and composition), deoxidation, degassing, inclusion
removal, desulfurization etc. is likely to enhance the
application of transport fundamentals in these systems.
A detailed review of mathematical and experimental tools
available for the study of transport phenomena in agitated
ladle systems has been presented by Szekely 38.

The basic approach in the papers mentioned above
has been to model the eddy transport terms through the use
of an eddy viscosity (i.e. Boussinesq's proposal) which
in turn is computed by solving additional equations.
Unlike boundary layer flows or simple one dimensional flows
where the spatial dependence of eddy viscosity can be
given by an algebraic expression (e.g. mixing length hypo-
thesis) or by a one equation model (which uses a differential

equation for k, the turbulence kinetic energy and some

suitable algebraic expression for 1, the length scale of
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turbulence), turbulent recirculating flows, in general,
require a two equation model (which uses two differential
equations - one for k and another for some appropriate
parameter of turbulence). Launder and Spalding 36 have
reviewed various mathematical models of turbulence. Except
Szekely and Yadoya 30 who used a one equation model, the
rest of the papers listed above used a two equation model
(Spalding's k-W model, where W is a statistical character-
istic of turbulence). The computational algorithm employed
in these papers used the Stream function-vorticity technique

as detailed by Gosman et al. 39

Experimental proof for
the predictions reported in these papers was in terms of
tracer dispersion rates or in terms of surface velocities
(for both laboratory and industrial systems) and thus was not
very direct. Szekely et al. 34 measured velocity and
turbulence kinetic energy in the water model of an argon
stirred ladle. This study however was not conclusive
because of the uncertainties regarding boundary conditions
at the gas-liquid interface and because of inherent experimental
inaccuracies involved in determining low velocities using a
hot film anemometer.

In a recent study Szekely et al. 35 have reported
accurate measurements (using a laser doppler anemometer) of

time averaged and fluctuating velocities in a system in

which recirculating motion was created by a moving belt.
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They also refined the mathematical model by incorporating
wall functions to represent momentum transfer in the
vicinity of solid surfaces. This refinement is all the more
necessary because the transport processes taking place in
the vicinity of bounding surfaces are usually of more
practical interest. A good agreement between measurements
and predictions is found in this paper. 3

In conclusion, it may be stated that while a great
deal more work needs to be dcne to characterize gas agitated
systems, the mathematical treatment of turbulent recircu-
lating flows in single phases and for axial symmetry is

relatively well developed and is supported by measurements

made in both laboratory and plant scale systems.
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CHAPTER III
FORMULATION OF MATHEMATICAL MODEL

In this chapter, a mathematical model is developed
to describe flow and heat transfer phenomena in ESR systems.
A brief description of the electroslag refining process is
first presented so as to provide a clear perspective on the

processes and components involved in the system.

3.1 Process Description

A detailed technical description of the ESR process
is available in literature 40,41. Figure 3.1 shows a
sketch of a typical ESR system. As seen here a solid
consumable electrode of the primary metal which may be
cast or wrought or be composed of scrap is made one pole
of a high current source (AC or DC) and a water cooled base
plate is the other pole. A slag bath contained in the water
cooled mold acts as ohmic resistance and the Joule heating pro-
duced in it melts the electrode tip. The metal droplets
fall through the slag and collect in a pool on the base
plate to solidify. The electrode is fed into the slag
bath and the liquid metal solidifies progressively
forming an ingot which now acts as the secondary elec-
trode. An important feature of the process is that a
slag skin is formed at the inner surface of the mold,
which provides an electrical insulation separating the

mold from the molten slag, the metal pool and the solid-
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fying ingot. The most usual slag compositions fall within
the system CaF2 + Ca0 + A1203 and fulfill the basic
requirements imposed by electrical and thermal conducti-
vity, high temperature stability and phase behavior.

Refining takes place because of reactions between
the metal and the slag in three stages:

i) during formation of a droplet on the electrode
tip

ii) as the droplet falls through the slag, and

iii) at the slag-molten metal pool interface.

By suitable choice of slags, chemical and electro-

chemical reactions can either be encouraged or inhibited.

3.2 Summary of Basic Processes
The basic processes taking place during electroslag
refining can be summarized as follows:

1) Passage of electric current through conducting

media. This gives rise to spatially distributed joule

heating in the slag. The interaction between current and
the induced magnetic field results in Lorentz forces which
cause circulation in slag and in metal pools.

2) Heat transfer, melting and solidification.

Convective heat transfer takes place in the slag and in
the metal pool. Metal droplets extract heat from the slag
and get superheated. This superheat is released in the

molten metal pool. Heat transport in other portions of
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an ESR unit is characterized by conduction with account
being taken of the movement of various interfaces. The elec-
trode tip melts and solidification takes place in the
mushy zone. Heat is removed through the mold by cooling
water and there is radiative exchange of thermal energy
between the free surface of the slag, the outer surface
of the electrode and the inner surface of the mold.

3) Recirculation. There is recirculating motion

in the slag and in the metal pool due to the combined effect of
electromagnetic (Lorentz)and buoyancy (due to thermal
gradients) driving forces. The fluid motion is, in

general, turbulent.

4) Chemical and electrochemical reactions.

This aspect of the ESR operation is not considered in
the present work. The implications of ignoring chemical
and electrochemical effects while modelling the thermal

character of ESR are detailed in the next section.

3.3 Assumptions Made in Model

The physical concept of the process model is
sketched in Fig. 3.2 which shows the coordinate system
and the assumptions made regarding the geometry of the
system.

The assumptions are as follows:

1) Cylindrical symmetry,
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2) Slag-electrode and slag-metal boundaries are
represented by horizontal surfaces. The assumption of a
planar electrode melting tip is thought to be reasonable
for large scale systems 42. However, we have retained
this assumption even for the small scale system considered
in this work.

Other key assumptions made in the model are as
follows:

3) Quasi- steady state.

4) The slag-metal interface is modelled as a rigid
wall. This is thought to be reasonable in view of the
modelling work reported by Campbell 42.

5) Fluid flow equations are solved for the
slag phase only. Motion in the metal pool is accounted
for by using an effective thermal conductivity. However,
an attempt is made to deduce this parameter from the cal-
culated flow field in the slag phase.

6) In most of the calculations electrical con-
ductivity of the slag is assumed uniform. However, in
some calculations the temperature dependence of electrical
conductivity of slag is approximately accounted for.

7) The effect of metal droplets on the motion
of the slag is neglected.

8) Effects associated with chemical and electro-

chemical reactions are not considered. There are two



aspects to these effects. The first is the influence of
these processes on the nature of heat release in the slag
and on motion of the slag. The second is the refining of
metal as it is melted, passed through the slag, and
collected in a pool at the top of the ingot. Since the
present work is concerned with the flow and the thermal
characteristics of ESR, the second aspect (i.e. refining)

is not important here. It should be recognized, however,

32.

that even though the amount of matter involved in exchange

reactions is quite small as compared to the total amount

of metal being transferred from the electrode to the ingot,

the thermal effects arising from concentration polarization

and the enthalpy involved in various exchange reactions may

influence the net heat supply rate in the regions of the

slag near its interfaces with the electrode and the metal

pool. These, in turn, will affect the melting rate of the

electrode and the depth of molten metal pool.

9) The interaction between the electromagnetic

force field and the turbulent fluctuations is neglected in

absence of satisfactory methods for treating it.
10) An insulating slag skin is assumed to form
on the interior surface of the mold.

Mathematical statements of these assumptions

together with assumptions made in formulating the boundary

conditions will be presented at appropriate places.
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3.4 Statement of the Mathematical Tasks

In context of the assumptions outlined above,
the model to be developed in this work seeks mathematical
representation for the following physical phenomena:

(1) Electromagnetic field

This is represented by the magnetohydrodynamic form
of Maxwell's equations written for different portions of
an ESR system and interconnected through boundary conditions.
Solution of these equations gives spatial distributions
of current densities, Joule heat and Lorentz forces.

(2) Recirculating flow in slag

This is represented by the turbulent Navier Stokes
equations with due allowance for body forces (electro-
magnetic and natural convection). Turbulent viscosity
is computed by solving two additional differential
equations.

(3) Heat transfer and phase change

The mathematical statement of heat transfer phenom-
ena in the system is given by convective heat transport
equations. The convection terms in these equations account
for heat transfer due to turbulent recirculating flow in
the slag and heat transfer due to movement of various
interfaces. In the slag, allowance has to be made for
Joule heat generation and heat extraction by metal droplets
and in the mushy zone account has to be taken of the release

of latent heat.
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3.5 Governing Equations for Flow and Heat Transfer
Phenomena in the Electroslag Refining Process

Equations mentioned in the previous section are
now presented. First the vectorial forms of these equations
are given in order that some general conclusions can be
obtained and then the equations are stated in the cylindrical

coordinate system with axial symmetry.

3.5.1 Maxwell's Equations

Upon applying the MHD approximation, Maxwell's

equations take the following form 43:

(Faraday's Law) V X E = = 3? (3.1)
h - 9t

(Ampere's Law) vV x H= J (3.2)
V.B=0 (3.3)
Vv +«-J=20 (3.4)

Here,
E is the electric field, Volt/m
B is the magnetic flux density, Weber/m2 (oxr
Teslas)
H is the magnetic field intensity, Amp/m

is the current density, Amp/m2

g
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t is time, s

Furthermore, we have
J =0¢(E + y X ?) (3.5)

~

and

B = uoy (3.6)

Where ¢ is the electrical conductivity in 1/Ohm-m, Mo
is the magnetic permeability of free space in Henry/m
and y is the velocity of medium in m/s.

In brief, the meaning of these equations is as
follows:

Eq. (3.1) relates the change in the magnetic flux
density to the induced emf. Eg. (3.2) is Ampere's
circuital law which relates the induced magnetic field
intensity to current in the circuit. Egs. (3.3) and (3.4)
represent the continuity of the magnetic lines of force

and conservation of current respectively.

Egs. (3.1) through (3.6) can be combined 43 to
give:
3H 2
— = nV°H + V x (V x H) (3.7)
ot - - ~ N
1
where n = —— is called the magnetic diffusity.
UUO

Terms arising from the spatial dependence of ¢ have been
neglected. Egq. (3.7), along with Eg. (3.4), contains all

the information about H included in Maxwell's equations.
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By using dimensional relation, the ratio of the terms on

the r*h*s of Eq. (3.7) is:

Ux (Vv x H) _ Mmagnetic convection - O{VOHO/L'\
In Vzgl magnetic diffusion nu /L2
0 )
=0 (Rem) (3.8)
where Rem = Vb Louo is called magnetic Reynolds number.
L and VO are characteristic length and velocity respec-

tively. In Eg. (3.8) the symbol 0(Q) stands for the order
of magnitude of a physical quantity Q. For ESR systems,
in general, Rem << 1 and hence the convection term can

be neglected 13. The magnetic field equation then reduces

to,

-~ = nv°H (3.9)

The electromagnetic body force (in N/m3) is given by:

=Jd xB= J x H (3.10)

Fbe U0

In cylindrical coordinate system with axial symmetry

(H = H =_a_.

= 0), Egq. (3.9) can be written as
r z 36

SH 3~ 3 3°H
ou, —9 - L (pmg| + —2 (3.11)
ot 5r r 3r ~
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In order to account for AC operation, phasor notation 43,44
(explained in Appendix A) is used. In this notation
Hy = ;Ieejwt
I = Jet
r r
and J, = Qzej“’t (3.12a,b,c)

~ ~

Where ﬁe, Jr’ Jz are the complex amplitudes of Hg Jr and
Jz respectively, w is the angular frequency and j is Vy—=1.
The momentary physical values of Hg . Jr and Jz are the
real parts of the complex functions given above.

In phasor notation, Eg. (3.11) takes the following

form:
. 3 -1 3 . 2°H,
jouwH, = — | — — (rH.)| +
078 gy Lr sr O 32° (3.13)

which has to be solved for the real and imaginary parts.
After solving Eg. (3.13) with appropriate boundary condi-

tions, Eg. (3.2) can be used to calculate current densities

as follows:

and J_ = - 3 (rHe) (3.14a,b)
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. . 43,44 . 2T
Using Eg. (3.10) and averaging over the period -

gives the following relationships for the time averaged

components of electromagnetic body force:

_ _ 1i FaY ”
Fr = 5 Ho Re(Her)
and F. = £ 1. Re(H.T.) (3.15a,b)
VA 2 "0 6 r ° !

where Re stands for the real part and the overhead bar
denotes the complex conjugate. Similarly the time averaged

heat generation rate per unit volume is given by:

Fa)

A X X._
J J_+ J_J_|
-]2;Re [ rr Z ’] (3.16)
g

The electrical power input to the system is computed by

Q =

using:

W = 27 Qj(r,z) r dr dz (3.16a)

3.5.2 Fluid Flow Egquations

Turbulent motion in the system is represented by
the time-smoothed equations of continuity and motion (i.e.
Navier-Stokes equations) written below in vectorial

4"'
from 7

<]
<
1}
o

(3.17)
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pLY @Z) v = -7P - 77 + b
inertial force pressure viscous and body
force Reynolds force
forces
(3.18)
Here

o) is the (average) density of the fluid

v is the velocity vector

P is the pressure

T is the stress tensor, which includes both
viscous and Reynolds stresses TEGZTGET)

?b is the body force (per unit volume) vector
which incorporates both electromagnetic and
buoyancy driving forces and is given by
’g‘b = JxB + o[1-8 ('ff—To)]g (3.19)

Here

g is the coefficient of volume expansion

g is the acceleration due to gravity

T is the temperature at a given location
in the fluid

To is a reference temperature

The overhead bar in the above equations represents time-

smoothed parameters. An assumption inherent in writing

equations

(3.17) and (3.18) is that the density variations

due to temperature gradients are of importance only in
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producing buoyancy forces and density p is supposed to
be evaluated at the reference temperature TO.

Following Boussinesqg 45, turbulent or Reynolds
stresses can be computed using the same relationships
which exist for viscous stresses in a Newtonian fluid
but by replacing molecular viscosity of the fluid with a
scalar turbulent viscosity. As mentioned in the previous
chapter, turbulent viscosity is computed by using a suitable
model of turbulence. In the present work a two equation
model of turbulence, called the k - ¢ model 46 is used.
Here k is the turbulence kinetic energy per unit mass
and € is the dissipation rate of turbulence energy.
As pointed out by Launder and Spalding 46, a wide variety
of flows may be adequately represented by this model without
adjustments to model parameters in the near wall regions.
Also a comparison of the predictions of various models, with

46 the k ~ ¢ model

each other and with experiments has shown
to be surpassed only by more complex "Reynolds - Stress"
models. It should be noted, furthermore, that the equation
for € contains fewer terms, the exact form of the equation

can be derived relatively easily and that € appears directly

as an unknown in the equation for k. The model postulates:

u, =Cy0k?/e (3.20)
(turbulent viscosity)

Here C_, is a dissipation constant.

d
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Distributions of k and € in the flow field are represented

by transport equations for scalar quantities. In vectorial

form, these can be represented as 36’46:
- Heff
P(V=-Vop) = Vs v + S (3.21a,b)
M . o ~ ¢
¢
convective transport viscous and source
turbulent

diffusive transport

Here ¢ represents k or ¢, c¢ is the effective Prandtl
number for transport of ¢, Hoss is the effective viscosity
and is the sum of molecular viscosity (u) and turbulent
viscosity (ut) and S¢ represents the net rate (volumetric)
of generation of ¢.

Cguation of motion and the transport equations for

k and € will now be given for an axisymmetric cylindrical

coordinate system.

Upon introducing the vorticity, &

A 3.2
z 3r ’
and the stream function, V¥
A
A (3.23a,b)
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the equation of motion [Eg. (3.18)] can be written as the

vorticity transport equation given below 39.
2 3 B3y, _ B (E3v) _ [ .3 &
|5z G3) T 35%32) T 5z2\F 3z Mess?
oF 3F 1
o8 (3, & o 2 TFe ) _
5t|F srPess?) | T T { r z J =0 (3.24)

Using Egns. (3.19), (3.15a,b) and (3.14a,b), the last term

in the above equation can be shown to take the following

form:
(3.1‘_". 8'571 N m )
20 2 _ _X | _ . 2 3T
r { 5T = J = [ruORe(HeJr) + r pBg(ar)J (3.25)
electromagnetic buoyancy
contribution contribution

In addition the following relationship exists between £ and
[V

3

Ay

3 ( 1 3y
S * 5z or oz

1 I
+ 5.5( == J = 0 (3.26)

Q2

r

Transport equations for k and €, in the axisymmetric

cylindrical coordinate system, are given below:

Transport Equation for k
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and D = pe (3.29b)

Transport Equation for ¢

> {o2w) _ o f aw) _ af. Yess pe) _ 3 f Fefr 3e) _
3?{8 ar} BrlE 3z 3zt o, 3z 3T 0. ar =S,
(3.30)
where
£ g?
Se =6 xS Pk (3.31)

As seen from Egn. (3.28), the source Sk of the turbulence
kinetic energy is made up of two terms G and D. The
generation term, G, represents kinetic energy exchange
between the mean flow and the turbulence. The dissipation
term, D, represents the rate at which viscous stresses
perform deformation work against the fluctuating strain
rate. The origin and the form of these terms are discussed
by Tennekes and Lumley 47 and by Hinze 48.

The source of g, Se is also made up of a positive

and a negative term. As in the previous case for S the

kl
terms in Eqn. (3.31) represent interaction of turbulence

with the mean flow and the self interaction of turbulence.

The parameters o g Cl, C, originate because of the

k" “e 2
assumptions made in representing diffusive action of
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turbulence by means of a gradient law (e.g.pu'k'=

“t o3k .
- and in modelling source terms. The

Oy Yy
significance of these parameters and their estimation are

discussed in reference 36.

3.5.3 Heat transfer equations
Equations for heat transfer phenomena taking
place in different portions of an ESR system are given

below.

3.5.3A Heat transfer in slag

The vectorial form of the convective heat transfer

equation is written as 45:
pCp(Y-YT) = Y'Keff YT + ST (3.32)
convective laminar and source
transport turbulent diffusive
transport
Here
Cp is the specific heat of slag
T is the time-smoothed temperature
ST is the net volumetric heat generation rate
in the slag
Keff is the effective thermal conductivity in the

slag.



46.

S the source term in Egn. (3.32) consists of two terms

TI
as shown below:

(3.33)

where Qj is the volumetric rate of Joule heat generation
given by Egn. (3.16) and Qd is the rate at which heat is

extracted (per unit volume) from the slag by the falling
metal droplets. An expression for Qd will be derived

subsequently. X in Egn. (3.33) is defined as follows:

>
]

1 when r <R
- e

>
i

0 when r2>Re (3.34a,b)

where R, is the radius of the electrode. Conditions
(3.34a,b) reflect the fact that droplets remove heat from
the central column of the slag which has a radius equal to
that of the electrode.

The effective thermal conductivity, Keff is given

by
Keff = K + Kt (3.35)
molecular turbulent
conductivity conductivity

After My the turbulent viscosity, has been calculated using

the k-t model, K_ can be evaluated by using,

t

s =Rt . (3.36)
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where 9y is the turbulence Prandtl number. The convective
transport term in Egn. (3.32) accounts for the fluid velocity
as well as the rise of the slag.

In the axisymmetric cylindrical coordinate system

and using Egns. (3.23a,b), Egqn. (3.32) can be written as:

) (7 2v) _ 2[5 2v
E{T ’a"r‘} Br{T az]

- d

where Vc is the casting rate.

3.5.3B Heat transfer in other portions of ESR
The temperature distribution in the electrode,
the molten metal pool, the mushy zone and the solid ingot

can be expressed by the following general equation:

picpi(Yi.YT) = Y'KiYT + ST,i (3.38a,b,c,d)

where, 1 = e (electrode), 2(metal pool),

m (mushy zone), s (solid ingot)
and Yi accounts for the rise of the ingot surface
(i.e. casting rate) and the downward movement of the
electrode. Yi has only the axial (i.e. z-direction)
component.

For the coordinate being used, Egn (3.38) can

be written as:



48.

Q

T

_ 3
rpl Cpl Vi 52 - s—f (Kl r r) + 5 (Kl r aZ) + r ST,l
(3.3%2a,b,c,d)
For the electrode, we have
VvV =V, +V (3.40)

S =0 (3.41)

For the metal pool

v, =V, (3.42)
St = 0 (3.43)
K, = effective thermal conductivity in

the metal pool

i

(L +4) Ko (3.44)

where ng is the atomic thermal conductivity of molten
metal. The evaluation of A will be discussed in Chapter
v,

For the mushy zone

vV =V (3.45)

S =V o A —= (3.46)
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where A 1is the latent heat of fusion and fs is the fraction
of solids in the mushy zone. ST m represents the rate of

14
heat release (per unit volume) due to solidification.

For simplicity, a linear relationship will be

*
assumed between fs and T , i.e.

T - T
g, o= B (3.47)
Tl,m-Ts,m
where T and T are the liquidus and solidus temper-
2.,m s,m

atures of the metal. Then Eq. (3.36) can be written as

V. p_ A
s, =--CS0n aT (3.48)

Vs = Vo (3.49)

S =0 (3.50)

It is to be noted that Joule heating has been ingnored
everywhere except in the slag. This is reasonable because
electrical conductivity of the metal is very large.

The melting rate of the electrode is calculated

by making a heat balance at the slag-electrode interface;

*
The use of more complex relationships (e.g. solidification
models) can be easily accommodated.
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3T
= - A
Vie = (dge ~ Kg 73 e) /(P r) (3.51)
where
9ge is heat flux from the slag to the
electrode surface
Ke é% is heat flux conducted into the electrode
e
Ae is the latent heat for melting of elec-
trode.
q in Eq. (3.51) is evaluated either by using wall flux

se
relation to be described later or by using

oT
se 2z s2

3.5.4 Droplet Behavior

In this section, expressions are developed to
calculate heat transport by metal droplets falling through
the slag. The treatment given here follows that of

Dilawari and Szekely 15.

3.5.4A Droplet radius, rq

For large electrodes, it has been suggested by

Campbell 42 that metal droplets are formed at discrete

locations on the tip of the electrode. The droplet



radius ry is, therefore, assumed independent of R,. Then
from dimensional arguments and by using experimental

results, Campbell has given the following relationship,
1/2
r, = {Z'O‘W j (3.53a)

where vy is the interfacial tension between liquid slag

and liquid metal, Ap is the difference in density between

the two liquids ang g is the acceleration due to gravity.

For small electrodes, the following relation is
deduced by equating gravitational and surface tension

forces:
1/3

(3.53Db)

.- l.5yRe
d

glp

3.5.4 B Droplet motion in the slag

Considering the slag to be stagnant (it is shown
later that the slag velocity is substantially lower than
the average falling velocity of the drop) and assuming
the droplet to be a rigid sphere the equation describing

the droplet motion takes the following form 49

2
3 0 du _ 3 _ 2 U
4/3 U F) (pd + > ) T - 4/3 TIg Apg CD ﬂrd 0 >
(3.54)
where

is the density of metal droplet

o) is the density of slag

51.



CD is the drag coefficient
U is the velocity
and Ap is the difference in densities of the drop

and the slag (i.e. g — P ) .

Eq. (3.54) can be written as follows:

du CD o
= - 3/8 — = dt (3.55)
U2 _ a2 rg Dd + 0.5p
gr
where a2 = 8/3 dp 7 d (3.56)
e Cp

On integration, Eg. (3.55) yields:

= 2 VAB t
eZ VvAB t + 1
where A= Ap/(pd + 0.5¢) 1 g
CD o}
and B = 3/8 r—d— BF—O—T—S*Q- (3.58a,b)
It follows from Eg. (3.57) that the terminal
velocity of the droplet is given by:
- /A
U, =v/3 (3.59)
Thus Egq. (3.57) can be written as
ct _
G =0 (3.60)
t eCt + 1



53.

where C = 2A/Ut (3.61)

If Ll is the distance from the electrode tip

to the slag-metal interface and T is the residence time

of the droplet, then

T
Ll = J U dt (3.62)
' 0

Substituting Eq. (3.60) in the above equation gives:

2
CT) ) CLl/Ut

1+ e e (3.63)

4 eCT

from which, the following expression can be deduced,

1/C 1n [ (m-1) + v/m%~- 2m ] (3.64)

-
I

2
where m = 2e2ALl/Ut (3.65)

In the equations given above, C the drag

DI

coefficient is not known and thus Ut is unknown. Following

Dilawari and Szekely 15, Ut is estimated by using a correla-
tion proposed by Hu and Kintner >0 who studied the steady
motion of single drops of various organic liquids falling
through stationary water. They concluded that the droplet

motion can be represented in terms of two variables

defined below:

C., We P 0.15

[
]

»<
|

= (Rey/p 2" 1) + 0.75 (3.67)
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where
v a e
We = Weber number =
y
DY3 0
p = a physical property group = —s —
d 4
gy Ap
= _ U d.p
Red = droplet Reynolds number = "t d
u
dd = diameter of a droplet
From Eq. (3.54) one can derive,
Ap gdd
C = 4/3 — —5 (3.68)
D 2
¢ Ut

Using definitions of CD and We, Eg. (3.66) can

be written as;

2
gdq 4e

Y

Y = 4/3 P (3.69)
Thus Y depends on physical properties of the system only.
Hu and Kintner >0 proposed the following relationships

between Y and X:

(O.75Y)0'784

>
!

for 2<¥Y<70

(22.22Y)O'422 for Y>170 (3.70a,b)

e
1
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Once X is calculated using one of the above egquations,

Ut can be calculated as follows:

(X - 0.75) p0-13
a

Red

which gives

Re ,u
U, = d (3.71)

dd o)

3.5.4C Rate of heat removal by droplets from the slag

By assuming that heat transfer from the slag to
a droplet can be characterized by a single heat transfer
coefficient, h and an average temperature of the slag
between the electrode tip and the slag-metal interface
(TB), one can write the following equation for heat

balance on a single drop:

4/3 1r° 0. C &_h(T_T)MZ 3.72)
fa fa “pa T, T g = Tg) 47Ty (3.
t
With the initial condition, t = 0, T, = T where, T
. a me d

is the temperature of the drop and Tme is the melting
temperature of the electrode.
The heat transfer coefficient, h can be estimated

using the average velocity, U ( =Ll/T ) of the droplet

av
in the slag, from suitable correlations 51. In the
present work a correlation proposed by Spelles 52 is used.

This correlation is given below:
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ha, 1/2 1/3
—= = 0.8 (dq U 0/ ) <CPU/K) (3.73)

where p, K, Cp,u are respectively the density, the
thermal con&uctivity, the specific heat and the viscosity
of the slag.

Eq. (3.72) can be integrated to give the following

expression for the final temperature, Tf of a droplet:

_ _ _ -ST
T. =T ( TB Tme ) e (3.74)

where
3h
S = (3.75)

T3 Cp5,af a

The rate at which heat is removed from the slag by the

falling droplets is given by:

Qs = WRe Vme Pa Cp,d ( Tf - Tme ) (3.76)

Where vme' as defined by Eq. (3.51) is the melting rate of

the electrode. Q appearing in Eq (3.33) is obtained

dl

from:

_ S

i.e. droplets are assumed to remove heat uniformly from
the volume of slag forming a central column of radius Re

and height Lj.
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3.6 The Boundary Conditions

In this section expressions are developed for the
dependent variables (or their gradients) on the bounding

surfaces sketched in Fig. 3.2.

3.6.1 Boundary conditions for the magnetic field equation
Boundary conditions for Eq. (3.13) have to express
the following physical constraints 43:

(1) the continuity of the tangential component

of the electric field across the phase boundaries, i.e.
n x [§ - E ] =20 (3.78)

where n is the unit vector normal to the boundary separating
media 1 and 2. Eg. (3.78) is obtained by applying the
integral form of Eg. (3.1) across the phase boundary.

(2) the statement of Ampere's Law [obtained

by applying Stoke's theorem to Eq. (3.2)], i.e.
% ? - Al = [ g . d§ (3.79)

Eg. (3.79) states that the line integral of H around
the path enclosing an area through which a current is
passing is equal to the current.

Constraints 1 and 2 are the statements of physical
laws derivable from Maxwell's equations. In addition, the
following assumptions have to be made:

~

(3) axial symmetry gives Hy = 0 at r =0 (3.80)
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(4) at the free slag surface (z = Zl' Ref_rj,Rm)

J =20
z
(5) at the upper boundary of electrode (z = 0,
0< r< Re) Jr = 0
(6) at the lower boundary of ingot (z=Z6,
0< r< Rm) Jr = 0,

Mathematical statements for these assumptions

~

in terms of the magnetic field intensity, He are given

below:
(L) at z =0, 0 < r< R,, (upper boundary ofelec-
trode)
9 Hy
— = 9 (3.81)
0z
(7, =0)
(2) atr=R,, 02 2zZ Zq (surface of electrode

above slag)

>

Hy = IO/(ZWRe) (3.82)

(Statement of Ampere's Law)

where IO is the maximum value of the total current.

(3) at r = Re’ Zl <z < 22 (vertical surface of

electrode immersed in slag)

| = Iy (3.83)
e

Q|
Qe

5> w
=

(Continuity of

N



(4)

(5)

interface)

which gives,

slag)

(7)
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(slag-mold interface)

m 1 6
~ I
Ho o= — (3.84)
2me
(Ampere's Law)
at z = Z, , 0 < r< R, (slag- electrode
_l_3r = }_Sr
o e o sg
(Continuity of Er)
3H 3H
& - 8 (3.85)
9% o 9z ' g
at z = Zl’ Re < r< Rm (free surface of
~ I
H = 9 (3.86)
2rr
~ l 8 ~
(from J_ = T 5T ( rHe ) = 0 )
at z = Z3, 0 < r«< Rm (slag-metal interface)
3 S E
Gi -2 = % 0 (3.87)
3z sq 9z |,

{continuity of E_ )
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02 r< R (lower boundary

6’ Y
of ingot)
BHe
- = 0 (3.88)
(Jr = 0)

It is to be noted that boundary conditions are

stated in terms of He from which real and imaginary parts

can be separated.

3.6.2 Boundary conditions for the fluid flow equations

In a physical sense the boundary conditions for
the fluid flow equations have to express the following:

(1) symmetry about the centerline

(2) The "no-slip" condition for the velocity
at the solid boundaries (i.e. zero velocity at the station-
ary solid boundaries). As discussed in section 3.3,
the slag-metal interface is assumed to be a rigid interface

(3) At the free surface of the slag, the fluxes
of momentum and turbulence quantities (k and €) are assumed
to be zero.

Since we use the vorticity transport equation, the
above conditions have to be stated in terms of vorticity
(¢) and stream function (¢). Furthermore, boundary
conditions have to be stated for k and ¢ as well. The

expressions for boundary conditions in terms of £ and ¥
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are derived in texts on computational fluid dynamics 39,40

and a brief summary of these derivations are given in
Appendix B. In this chapter, only the final form of the
expressions are given. Also the wall function treatment
for the turbulence guantities is discussed in the next
chapter. With reference to Fig. 3.2 the boundary condi-

tions for the flow equations are as follows:

(1) at r

]
o
-~
[\
I A
N
| A
[N]

()
gy _ 8 0 2
and (f) = 5 { + > 1/ (x, ry )

(3.89a,b)
where suffixes 0, 1, 2 denote the points on the axis of

symmetry and the adjacent grid nodes in the r-direction

respectively.
(2) at z = Zl’ Re < r< Rm (free slag surface)
U] - - T 0 (3.90)

v = 0 follows from VZ = 0 and £ = 0 follows from

avr avz
U (—— + —)
eff 3z or

= 0 and from the definition of £ (Eq.3.22).

*
Derivation given in Appendix B
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0< r=< Ry (slag-electrode inter-

2’
face)
Y =0 (3.91a)
* %
k=¢c¢ =0 (3.91b)
and
3 (v, -v.) 1 € *
3 _ 0 1 -= (%) (3.91c)
(5 = !

where suffixes 0 and 1 refer to a grid node on the boundary

and to the adjacent node in z - direction, respectively.

(4) at z = Z,, 0<r< R, (slag-metal interface)
Y =0 (3.92a)
* %
k=¢ =20 (3.92b)
and
3 ¥y - ¥y "
A S S
(;) = 5 5 () (3.92c)

2
0 or (zl zo)

where suffixes have the same meaning as in the case of

Egq. (3.91lc).

*
derivation given in Appendix B

* %
alternate and more realistic formulation through the use of

wall functions is discussed in next chapter.
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(5) at r = Re’ <z < Z (vertical surface

2y 2 2

of electrode immersed in slag)

v =0 (3.93a)
* %k
k=¢=20 (3.93b)
and
E - 3 reTv) 1
r o _ 2 2 'r
0 (rl rO) rory 1
pgB - -
+ o (rl ro) (TO Tl) (3.93c)
eHeff,1

where suffixes 0 and 1 refer to a grid point on the boundary

and to the adjacent node in r - direction, respectively.

(6) at r = Rm’ Zl <z < Z3 (slag-mold interface)
p =0 (3.94a)
* %
k=€ =20 (3.94Db)
and
(i) -3 ( wO —Zwl) - % (é)
r 0 _ r
0 (rl ro) rorl 1
098 - -
+ . (rl rO) (TO Tl) (3.94c¢)
u

*
derivation discussed in Apendix B

* %k
alternate and more realistic formulation through the use of

wall functions is duscussed in next chapter.



where suffixes have the same meaning as in the case of

Eg. (3.93c).

3.6.3 Boundary conditions for temperature

These boundary conditions have to express the
following physical constraints:

(1) symmetry about the centerline

(2) continuity of heat fluxes at all the external
surfaces and at the slag-metal interface.

(3) the electrode tip is at the liquidus temper-
ature.

Again, with reference to Fig. 3.2, boundary
conditions for the temperature equations can be written

as follows:

(1) atr=0, 0< 2z < Zg

3T _
.o (3.95)

(2) at z =20, 0 < r < R, (upper boundary of

e

electrode) and at z=Z6, Oir_<_Rm (lower boundary of ingot)

QU

3T _ (3.96)

2

(3) at r R, O < z < Z, (surface of electrode

above slag)

64.



_Kg.lle = b, [ TR, 2) - T +el T(Re,z)4
I
4 4
- esF S(z) Ts,av - e Fenm Tm ] (3.97)
IT
where
Ta is the temperature of the gas
S is the Stefan-Boltzmann constant
e r€gs€ are the emissivities of the dry elec-
trode surface, the free surface of the
slag and the inner surface of the mold
respectively.
Tm is the temperature of the inside surface
of the mold above the slag
Ts,av is the average temperature of the free
surface of the slag
Fes is the view factor between the electrode
element and the slag surface
Fem is the view factor between the electrode

element and the mold wall.

It is understood here that the temperatures are in the

absolute scale.

The first term in Egq. (3.97) represents

the convective exchange between the electrode surface

and the ambient gas whereas the second term represents
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the radiative exchange between the electrode surface, the
free slag surface and the inner surface of the mold. 1In
order to fascilitate the calculation of view factors, the

slag surface is represented by a single temperature,

T which is calculated from the following equation:
Slav Rnl
2RJ T(r,Zl)r dr
T = £ (3.98)
s,av 2 5
(R~ = R_ ")
m e
(4) at z = Zl’ Re <r< Rm (free surface of
slaqg)
oT _ 4 ! 4 ! 4
Keff 32 st - 68S[Ts,av —emFsme €ereTe,av ]
(3.99)
where Te av is the average temperature of the dry
14
electrode
t
Fsm is the view factor between the slag
surface and the mold wall
1
and F is the view factor between the free

surface of the slag and the dry surface

of the electrode.

As seen from Eq. (3.,99), the convective heat loss from
the slag surface to the ambient gas has been neglected.
Also, in order to simplify calculations the slag surface
and the electrode surface have been represented by their

averade temperatures.
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View factors appearing in Egns. (3.97) and (3.99)

are calculated using the techniques discussed by Leunberger

and Person 54. The calculation procedure is outlined in

Appendix C.
(5) at r =R, Z2; 22z = Z, (vertical surface
of electrode immersed in slag)
*
k3T = kg% (3.100)
Tlse

(6) atz=12,, 0<1rc<R (slag-electrode

T=T (3.101)

37 0 <rc« Rm (slag-metal inter-

face)
*
- X 8T + S_y = -g, 2% (3.102)

eff 3z s TR 2 L 3z )

where Qs is defined by Eg. (3.76) and x is defined by
Eg. (3.34a,b); i.e. the heat extracted by droplets from
the slag is given uniformly to the liguid metal over an

2
area TR _ .
e

*
Alternate expressions for these fluxes can be given by
wall function approach discussed in the next chapter.
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(8 at r =R, 1Z <z < Z

- 1 (slag-mold interface)

3

Since a solidified slag layer is assumed to exist
at the inside wall of the mold, the temperature condition

can be specified as T = TQ s (3.103a)

where TQ s is the melting temperature of the slag.
’

Alternatively one may write

*
g 2T - -
K 5T nW,s (T TW) (3.103b)
s
where h is the overall heat transfer coefficient

W,s
which describes the heat transfer from the molten slag/

slag skin interface to the cooling water in the mold.

Ty is the average temperature of the cooling water.

|
=
|
I
jny
()
|
|

(3.104)

where i stands for interfaces between various media
(i.e. metal pool, mushy zone, solid ingot) and the mold.
hW,i represents overall heat transfer coefficient at
these interfaces.

*
Alternate expressions for these fluxes can be given by
wall function approach discussed in the next chapter.
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3.7 General Nature of Solutions

The mathematical statement of the model is now
complete. Before presenting the detailed results, it is
worthwhile to discuss the general nature of solutions.
The governing equations (in vectorial form) for the

system are grouped together in Table 3.1.

3.7.1 The nature of stirring
Using Egns. (3.10),(3.2) and (3.6), the electro-

magnetic body force F e Can be written as follows:

1

Fpe = I%B = (7xB)>E
= ~7(Z= B?) + = (B-7)B (3.105)
~ “Ho Ho v v
I II
Upon operating with Vx (i.e. curl) on the r.h.s. of Eq.
(3.105), the first term vanishes. i.e.
1 2 _
Vx| =-V(s= B°)| =0 (3.106)
~ ~ Zuo

while in general,

Al
v x [ 3 (B-7)B| # 0 (3.107)
Hg ~ ~'=

It follows therefore that the term I (called the magnetic

pressure), cannot do any work on a circulating fluid and

that the second term (II) is responsible for doing work.



Table 3.1 Governing equations for fluid flow and heat

transfer in the ESR process

1. Maxwell's equations

3B
VXE = - =% SH ]
VxH=J ot ~
~ o~ OR

VeB =0 Ved =0
Ved =0

Constitutive equation

B = U,k

Ohm's law

J = OE
2. Equations for fluid flow (in slag)
Equation of continuity

AV

<

= 0

Equation of motion

0 (V+7)

<

= -Vp - VT + {%Re(ng) - p(l—B(T~To»g

i

Transport equation for k and ¢

Heff _ )

p(VeVd) = V-

70.
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3. Thermal energy equations

Heat transfer in slag

— l A T
VT + =—Re (J+J) - QdX

pC (Y.YT) = Y.Keff ~ 20

P

Heat transfer in other portions of ESR

p;C  (V,+VT) = V-K. VT + S,

i i
Py ’

where 1 = e (electrode), % (metal pool),

m (mushy zone), s (solid ingot)

and Vi accounts for movement of various interfaces.
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The inertial force in the equation of motion [Eg. (3.18)]

can be written as

T 2
PT DT = o) @D 4 07 (F ) (3.108)

Introducing the definition of vorticity,
£ =UxV (3.109)
we can rewrite Eg. (3.108) as follows:
p(EXV) = =pV(5 ) + o(V-T)V (3.110)
vortex force

From Egs. (3.105) and (3.110), the analogy between F e and

the vortex force 1is evident.

3.7.2 Relationship between velocity and current

Let us assume that the buoyancy driving force is
small compared to the electromagnetic driving force (i.e.
we operate with high current and with a small fill ratio)

then Egs. (3.18) and (3.19) can be combined to give:

s

p(VeV)V = -VP,

<y

- VeT + JXB (3.111)

where §t represents the sum of static pressure and gravita-
tional force. If the inertial forces dominate (i.e. at high
Reynolds number) then as a first approximation we may ne-
glect the first two terms on the r.h.s. of Eq.(3.111). The

order of magnitude of the remaining terms are:
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o1 oYy
! P (V V.l
~ L

(3.112a,b)

JXBj = JOX}JOJOL

where J0 is a characteristic current density of the system.

From Egs. (3.112a) and (3.112b) we can write

J.L (3.113)

i.e.

which indicates that the characteristic velocity is propor-
tional to the current. Figure 3.3, taken from Dilawari

and Szekely 15 shows the effect of current on the velocity
in the slag phase. As seen here, under the isothermal
conditions (i.e. in the absence of buoyancy driving
forces) the relationship between the velocity and the

current is linear.

3.7.3 Heat input vs. energy for stirring

From dimensional arguments it may be shown that:

. . . (T xB)*V
energy input for stirring ol =~~~ (3.115a)
energy input for heating 72 /0 :
Jow LV o~
- ol -0 00 (3.115b)
J
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*
L%0 J (3.115c)

For illustrative purposes, let us assume L = 0.5m,

o =250 (ohm—m)"l, o=3.0x10° kg/m?, I, =40 kA/m?

3
u 1/2 - -6,3~-1/2
(20 sag, = [ Lezs10?

. - x.25%250x4x10%
— 3x]_0 _l -

6.5x10 2 << 1

]

3.7.4 Dimensionless form of governing equations

Let us now make the vector form of the governing
equations dimensionless. This will generate parameters

characterizing the behavior of the system.

3.7.4A Dimensionless form of magnetic field equation

Let us introduce the following dimensionless variables:

* ~ % ~
Y = I:Y H = H/H0
= - 2
Ho IO/L JO IO/L (3.116)

then the magnetic field equation (Eq. (3.9) ) can be
written, in the phasor notation, as:

A X *2/\*

joH = ¥ H (3.117)

~

where

*
Using eqg. (3.114)
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= wouOL2

Q
1

2
L ouo

(1/w)

characteristic time for magnetic diffusion
characteristic period for electric current

(3.118)

3.7.4B Dimensionless form of flow equations

In addition to dimensionless variables already

defined in Eqg. (3.116) let us introduce

* —_— * — 2
Vo= /v, P- = (P-Py)/0V,
* 2 * 3
k = k/VO £ = sL/V0
* —_
T o= (T-Ty J/Ty 0™ Ty, s
g* = gL/HO (3.119)

then the equation of motion (Eg. (3.18) ) can be written as

* k% * % * % 1 ~x Tk * g—
(V+:V )V =-YP -V 1T +|N,ZRe(J xB ) +{N,=-N_(T -vy)}=
~ ~ ~ ~ o~ ~ ~ 12 ~ -~ 2 3 g

(3.120)
where
*

T = T/pVé = (viscous + Reynolds force)/(inertial

force)

(3.121)
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Nl = uOHé/pVé = (Lorentz force)/(inertial force) (3.122)

N2 = gL/Vé = (Gravitational force)/(inertial force) (3.123)
| 2

N3 = Bg(Tz’m--Tlls)L/V0 (3.124)

(Buoyancy force)/(inertial force)

T, =T
y = -0 4,s (3.125)

T T

L,m "%,s

similarly, the transport equations for k and € [Egs. (3.21la,b)]

can be written as

x k% 1 *x [ HofFg _* *} *
V*Vk = =—/—V- V k + S (3.126)
~ o~ Ref ~ { 0k~ k
DVOL
where Ref = m (Reynolds no.)
* EE + 1 Effective viscosity
Heff u Molecular viscosity
* 3
and
*
* Kk % * (M x %) *
VT = 2 T ‘| I v | + s, (3.128)
~ o~ ~ £ ~ R
here s = s 1L2/pV" (3.129)
w e T St /Y )

3.7.4C Dimensionless form of the heat transfer equation
Using dimensiconless variables defined in Egs. (3.116)
and (3.119), the convective heat transfer equation for slag

[Eg. (3.32)] can be written as,



il

where

eff

where Pr

Pe

* l * * * *
T)’-'—‘V'KeffVT

Pe . ~
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Ak Tk
L Re(37-3)

+ NT[2

(3.130)

_ Effective thermal conductivity

w7

U
Pr t + 1
u

%*

(ueff - 1) + 1

Pr

C u
L2 = Prandtl no.
X

2
Io /o

" Molecular thermal conductivity

(3.131)

PCVo Ty ,m ~ Ty, s/

Heat generation by Joule effect (3.132)

Heat transport by convection

oC_V L
= Peclet no. =
K

Ref Pr

Heat transport by convection

Heat transport by conduction

By using the approach outlined here on Egq. (3.38), we can

similarly define Peclet numbers for other portions of ESR.

For example, below the slag-metal interface, we can

define



o
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picp,lvc,o L
Pe = (3.133)
2
)
where
Vc 0 is a reference casting rate
’
and
KQ is effective thermal conductivity in

metal pool.

Similarly, a group of other dimensionless parameters
can be derived by considering the boundary conditions
(e.g. Biot number at the ingot-mold interface).

The dimensionless parameters developed here
and their physical interpretations are summarized

in Table 3.2.

3.8 Concluding Remarks

A mathematical model has been formulated to
describe the current distribution, fluid flow and heat
transfer phenomena in the electroslag refining process.

The model involves simultaneous statement of Maxwell's

~equations, equations for turbulent motion and convective

heat transfer equations. The limitations of the model,
in the form of assumptions made, are listed in section
3.3. On the positive side, the model accounts for some

of the features of the ESR process which are considered
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crucial from the point of view of flow and heat transfer
in the system. Thus, allowance has been made for both
electromagnetic and buoyancy driving forces, for the
spatial distribution of Joule heat release, for heat
transport by metal droplets and for the release of

latent heat in the mushy zone, etc.

Boundary conditions for the governing differential
equations have been stated in section 3.6. Finally, brief
discussions have been given on the general nature of the

solution and the dimensionless parameters for the system.



Nomenclature

B

Ca

Cp’cp,e’cp,l

C C C
p,m’ p,s’"7p,d

]

es em

82.

Magnetic flux density

Constants in k - € model

Dissipation rate constant

Specific heat of slag, electrode,
molten metal, mushy zone, solid
ingot and metal droplet

Drag coefficient

Diameter of a droplet

Dissipation term for turbulence

kinetic energy

Electric field

Fraction of solids in the mushy

zone

Body force (per unit volume) vector

Electromagnetic (Lorentz) body

force vector

Radial and axial components of

body force

Radiation view factors between the

electrode element and slag,



Nomenclature

Fl ’Fl
sm se

(cont'd)

83.

electrode element and mold

Radiation view factors between
the slag surface and the mold,
slag surface and the dry

surface of electrode

Acceleration due to gravity

Generation term for turbulence

kinetic energy

Heat transfer coefficient between

the slag and a droplet

Overall heat transfer coefficient

at the slag - mold interface

Overall heat transfer coefficients
for the regions defined in

equation (3.104)

Magnetic field intensity, its
component in the 6-direction,
complex amplitude of He,

reference value

Amplitude of total current,also

reference value for current
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Nomenclature (cont'd)

ol

K'Ke'KZ'Km'KS

ml

eff

84.

/=1

Current density components in
r- and z- direction and their

complex amplitudes
Complex conjugate of J
Reference current density

Kinetic energy (per unit mass)

of turbulence

Thermal conductivity of slag,
electrode, molten metal (effec-

tive value), mushy zone and ingot

Thermal conductivity (atomic)

of molten metal

Effective thermal conductivity
(sum of molecular and turbulent

contributions) in slag

Turbulent thermal conductivity

in slag

Depth of slag below the electrode,

characteristic length scale
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Nomenclature (cont'd)

n Normal vector

N Ratio of (Lorentz force/ inertial

force) Eg. (3.122)

N.2 Ratio of (Gravity force/
inertial force) Eg. (3.123)

NT Heat generation rate / Heat
transport by convection,
Egq. (3.132)

5,?0 Time - smoothed pressure, its
reference value

Pe Peclet no. for slag

PeQ Peclet no. for metal pool

Pd A physical property group
for droplets

Pr Prandtl no. for slag

Qj Rate of Joule heating (per unit
volume)

Qd Rate of heat extraction (per

unit volume) from slag by metal

droplets



Nomenclature (cont'd)

Q

S

Re
m
Re

Re

86.

Rate of heat extraction from slag

by metal droplets

Radial coordinate

Radius of a metal droplet
Radius of the electrode
Radius of the mold
Magnetic Reynolds number
Reynolds number for flow
Droplet Reynolds number

Source term for temperature

equation

Source terms for k, ¢

Time

Temperature in the slag (time

smoothed) , elsewhere

Temperature of gas above the

slag surface

Bulk temperature of the slag in

the region 0 <r< Rg



Nomenclature

Te

(cont'd)

87.

Final temperature attained by a

droplet

Temperature of a droplet

Liquidus temperature of the metal

Melting temperature of the slag

Melting temperature of electrode

Solidus temperature of the metal

Temperature of the cooling water

Average temperature of the slag

surface

Average temperature of the dry

electrode surface

Velocity of a metal droplet

Average velocity of a droplet

Terminal velocity of a droplet

Casting rate, its reference value

Rate of travel of electrode

Time-smoothed velocity vector,

its reference value
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Nomenclature (cont'd)

Vr,Vz

We

172972302

GREEK SYMBOLS

88.

Radial and axial components of

velocity vector

Input power

Weber no.

Variable defined in Eg. (3.67)

Variable defined in Eg. (3.66)

Axial coordinate

Position of free slag surface,
melting tip of electrode, slag-
metal interface, lower boundary

of ingot

Characteristic time for magnetic
diffusion / Characteristic period

for electric current

Coefficient of thermal expansion

of slag

Interfacial tension between liquid

metal and liquid slag

Stefan - Boltzmann constant



Nomenclature (cont'd)

GREEK SYMBOLS

ueff

p'pe'pl'pm'ps'pd

6,0 _,0
“e'"m

89.

Dissipation rate of turbulence

energy

Emissivity of electrode, slag,

mold

6 - component of the vorticity

vector

Magnetic diffusivity

Latent heat of fusion of metal

Defined by Eg. (3.44)

Viscosity of slag

Magnetic permeability of free space

Effective viscosity of slag

Stream function

Density of slag, electrode, metal
pool, mushy zone, solid ingot and

droplet

Electrical conductivity of slag,

elctrode and metal



Nomenclature (cont'd)

GREEK SYMBOLS

—l

Superscript

*

90.

Prandtl number for k, €

Turbulence Prandtl number

Sum of viscous and Reynolds

stresses

Residence time of a droplet

Angular frequency of current

Defined by Egs. (3.34a,b)

Dimensionless quantities
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CHAPTER IV

NUMERICAL SOLUTION OF GOVERNING EQUATIONS

This chapter presents an outline of the numerical
technique used for solving the differential equations
developed in the previous chapter. After discussing the
derivation of finite difference equations for the dependent
variables,a brief treatment on the use of wall functions for
representing heat and momentum transfer in the near wall
regions is presented. The computational scheme and the

computer program are discussed at the end of the chapter.
4.1 Summary of Governing Equations and Boundary Conditions

4.1.1 Equations for magnetic field

Let H and H denote the real and imaginary parts

6R 91
of HB respectively, then Eg. (3.13) can be decomposed to
give:
328
3 (1L 8, 2 ) 6R _ -
3?[; 5?(rHeR)J + ot = cquHeI (4.1)
and
N 32H
3 (1 3 ) 81 _ -
EE{}' 3r(rtHgy) | + N THgwHep (4.2)
It should be noted that,
~ ~ ~ \1/2
- 2 2
[Hg| = (H6R+ Hyr |
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and that the phase angle

\

_ _l( ~ A
By = tan 7| Hyp/Hggl (4.3a,b)

Similarly from Eg. (3.l4a,b) one can write;

SrR = Re(&r) = - aizR

SrI - Im(&r) =T 8221

3| = { 32+ 32 ]1/2 (4.4a,b,c)
and

= Re(T) =% Zirm )

Azl N Im(32) N % g%(rﬁez)

132i = { SZzR + 3221 1/2 (4.5a,b,c)

4.1.2 Equations for fluid flow and heat transfer

Egs. (3.24) , (3.27), (3.30) , (3.37), (3.39a,b,c,d)
constitute the mathematical statement of the fluid flow and
heat transfer phenomena in the system. These equations can
be represented by the following general elliptic partial

differential equation:

3(c ¢)
3¢ (3 ,8u, _ 3 .3v) _ 3f o " )
al¢raz * a¢[ 82(¢8r) 8r<¢az) §§L b¢r 3z -
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5 ( 3(C¢¢)1
g-ft b¢r T} -rs(b—o (4.6)

where ¢ stands for the dependent variables (%,w,k,s,T).

Values of the coefficients al¢,a¢, b¢, c¢ and the source

term S, are listed in table 4.1.

¢

4.1.3 Boundary conditions

Boundary conditions for the magnetic field intensity,

~

He are stated in Fig. 4.1. Boundary conditions for fluid
flow variables (i.e. %,w,k and €) are summarized in Fig.
4.2 and finally, boundary conditions for temperature are
given in Fig. 4.3. 1In these figures the symbols e,s®,%,m,

s stand for electode, slag, metal pool, mushy zone, and

solid ingot respectively.

4,2 Derivation of the Finite - Difference Equations

In this section, transformation of differential equations
listed in section 4.1 to finite - difference forms is presented.

This transformation involves the following steps:

1) The domain of integration is represented by a

two dimensional (r,z) array of points called a grid.

2) A set of algebraic equations is derived, from
the differential equations and the boundary conditions,
which connect the values of the dependent variables at

the grid nodes (points of intersection of grid lines)
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1

95.

Ea. (3.81)

‘Eq. (3.82)

Eq. (3.86)

f Eq. (3.83)

2 Eq. (3.85)

(3.80) st Eg. (3.84)
Eg. (3.87)
ZB———
2
| /|
24(r) _‘ﬁ’,,z”
m
Zs(r)
//
S
|
W‘/——-.
M
2,
Eg. (3.88)

Boundary conditions for the magnetic field intensity.
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Z,

Egq. (3.89%a,
b)

Z3

Fig. 4.

Egq. (3.90)

Eq.(3.93a,b,c)

Eg.

(3.91a,b,c)

Eq. (3.92a,b,c)

Eq.

96.

(3.94a,b,c)

Boundary conditions for fluid flow variables.



Eq. (3.96)
Eq. (3.97)
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Fg. (3.99)
Zl -
Eq. (3.100)
Z T Eq. (3.101)
Eq. (3.95) s
Eq. (3.102)
Z3 -_—
2
|
Z4(I’) /
m
Z.(xr)
5 _—”’,//’
s
|
/_\______—-’/__
M
Z
6 BEq. (3.96)

Fig. 4.3

Boundary conditions for temperature.

Egq. (3.103a)

Eg. (3.104)

97.
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with each other and with other quantities.

4.2.1 Expressions for interior nodes

Fig. 4.4 shows a part of the orthogonal grid; with
a typical node P and the surrounding nodes E,NE,N,NW,W,SW,
SE. The neighboring nodes need not be equally spaced.
The finite - difference equations are derived by using the
technigue described by Gosman et al 39. A brief outline
of this technique is presented with respect to the general
elliptic equation [Eq. (4.6)]. The derivation of finite
difference equations for the magnetic field intensity
(ﬁeR'ﬁez) is analogous and only the final results will be
given.

Let us proceed by integrating Eq. (4.6) over the
area enclosed by the small rectangle, shown by the dotted
lines in Fig. 4.4, which encloses the point P. The sides

of this rectangle lie midway between the neighbouring

grid lines. The double integral to be evaluated is

n ‘e
DT R IO SPOF 1N YOV 170 I
f f .?l¢r A * a¢t 82(¢ r) 3 (¢82)}_-drdz
r
s “w
convection terms /
r z
" (e— s (3050 ; a(cm}—i
- J J L -§ELb¢r_—7E;_—} + 5;{b¢r g _Idr<iz
r z
s “w )

diffusion terms
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4.4 A portion of the finite-difference grid.



r z
rn e
- | Jrscbdrdz = 0 (4.7)
r z
s “w
source term—/
Following the details given by Gosman et al 39 and after

some algebraic manipulation, we obtain the following

successive substitution formula for ¢ which is wvalid for

any interior point P in the integration field:

] . -
by = sowos,ma 23T %3P, T Pe R8s 051 Se g
b =
) ' b _)B.
j"—'N/SrEIW{ Aj * ccbIP(bq)lj * (b,P) J }
(4.8)
where
By = (By + Ap0)/Vy (4.9)
B, = By/{Vp(by L + b, )] (4.10)
with
= ¢IP -
Bg = 3 {(“’ R R el L
_%e,p ‘
By = 73 [( P Ysw ) * ot iy Vs Vs |
a, of
- P 1
Ay = .ig_[ eV e Vi) Vet Ve Vi Yy |
_ Zo,pf \
Bs = —3 l(uswww bopve) + | Vet ¥yVsEvE

100.

(4.11a,b,c,qd)
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- 1 _
AlE = 4al¢,P(rN rS) (4.12a)
A, = 1 (r.. - r.) (4.12b)
1w 2%14,p ‘N s
A= 0 (4.12¢)
A = 0 (4.124)
b + b r. - r
B, = ¢,E_ 4, N S (rp +Tp) (4.13a)
8 zE - zP
b + b r. - r
B = M 0P TN TS (. 4r (4.13b)
W . ., w'Tp
p W
b, + b zZ_ - Z
B, = o,N 9,2 E W (g + 1) (4.13¢)
8 rN - rP
b + b zZ_, - 2
By = ©,8 6,2 E W (rg +rp) (4.13d)
8 ;P - rS
and
V.= f(z -2)(r. -zr)r (4.14)
P 4 E W N S P M

The form of the convection coefficients Ajs' as given by

Egs. (4.lla,b,c,d) arises because of the "upwind differencing"

used in representing the convection terms in Eq. (4.7).
Similarly Egs. (4.1) and (4.2) can be integrated

over the area enclosed by the rectangle sw,se,ne,nw in

Fig. 4.4 and the two resulting algebraic equations can be
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aS

solved to give the following expressions for HeR and HeI

at any interior node P,

A ( r ~ r A
= =]
T9R, P Lo 0] — % GR,J] ’ DZ{ r %3 Hellj}}
j=N,S,E,W o) jo)
(4.15)
~ r ~ r ~
HGI,P = E { Dl{ D] GI,j] - 2{ Dj HeRrj]}
j=N,S,E,W o) o)
(4.16)
where
S
SZ + SZ
1 2
S
Sl + 82
Sl = Z Dj (4,19)
j=N,S,E,W
82 = 0.5 Mg @Op (4.20)
with
_ 2rP 1
DN T r + r ) (r.. - r )(r, - r.)
N P N P N S
5 - Z;P 1
S rgtrp (rp - rg)lry - rg)
1 1
P = Tz =z Tzo =z
E P Zg T %y
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D = )- 3 (4.21a,b,c,d)

4.2.2 Expressions for boundary nodes

The successive substitution formulae given by
Egs. (4.15), (4.16) and (4.8) are valid for interior nodes.
At the boundary nodes, the substitution relationships have
to be derived using the boundary conditions shown in Fig.
4.1, 4.2 and 4.3. These boundary conditions are of the
following general types:

(1) ¢ = oy
i.e. the value of the variable at the boundary is a specified

constant. For example, w.r.t. Fig. 4.1,

H6=0 ( at r=0, 0<z<Z6)

A IO

Hyg ZﬂRe ( at r=Re, Oizizl ) etc.
similarly w.r.t. Fig. 4.2

y=k=e=0 at all rigid boundaries

and w.r.t. Fig. 4.3

T=Tm,e atz=Zz, 0_<_r§Re
T = Tﬂ,s at r = Rm' 215_25_23
(2) £(¢.) =0
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i.e. a functional relationship is specified among the
dependent variables. The functional relationship f is

such that it is possible to solve explicitly for a variable
¢j at the boundary node in terms of variables at the sams

and adjacent nodes. For example, w.r.t. Fig. 4.2

0<r<R
—="—"m

3y = Yy)
(8] -2 thl g g,
0 1

r T2 _ 2 r
or (Zl ZO)
where suffixes 0 and 1 refer to a grid node on the boundary

and to the adjacent node in the z - direction, respectively.

(3) p %% + gF(¢) =0

where %% is the gradient, normal to the boundary surface.

These boundary conditions contain statements for the flux,
normal to the bounding surfaces. For example, the symmetry
boundary conditions, i.e.

9k _ 3g _ 3T _
or or or

fall in this class.

Other examples are (w.r.t. Fig. 4.3)

K<=| +

(
4 hwli(T -T,) =0 Lp-‘:Ki,q:hW,i , F(T)=T-T

W
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3T [_4 vy ! 4 ’
RKeff 32 <1 Ses Ts,av " ®nfsm Tm ™ fefse Te,av 0
at z = 1’ Re<r_<_Rn1
3¢ - 39|
(4) Py Bnll * TPy 5|,

i.e. continuity of fluxes (or electric field) across an

interface between media 1 and 2. For example, w.r.t. Fig.

4.1
1 3Hg]| 1 %Hg|
= —! = = ———l at z=7%2,, 0<r<R
g 9z | g 3z 2 - ="Te
e sl
and
Q
3T S 3T
-K = + X = =K, ==
eff 3z|_; g 2 3z,
at z==Z3, O_ir:iRm

Boundary conditions of type 1 are specified, once
and for all, at the beginning of the computation. The rest
of the boundary conditions need updating after every iteration.
Boundary conditions (3) and (4) involve calculating first
order derivatives in a direction normal to the boundary.
The calculation is illustrated below:

With reference to Fig. 4.5, let us suppose that AA'
represents a boundary surface and that we wish to evaluate
39 at node 0. Let 1 and 2 be adjacent nodes in the direction

on

normal to AA' and that 01 = n1 and 02 =n Let us denote

20
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the values of ¢ at nodes 0,1, and 2 by ¢0, ¢l, and ¢2

respectively. Assuming a quadratic profile for ¢ we can

write

6 = 95+ an + bn?2 (4.22)
Then,

9, = 9, + an; + bni (4.23)
and

¢, = ¢4 t an, + bng (4.24

From Egs. (4.23) and (4.24) we get,

2 _ _ 2 _
3 _ o n2(¢l ) nl(¢2 ¢0) (4.25)
(nz"nl)nlnz

3

|&

For the case when =0 (e.g. symmetry, free surface

|
n|0

Q

boundary conditions for k,tc) we get,

2 2
n 3 ( n
% = { _;_2_; J 17| —Z_L_Z )¢2 (4.26)
nz-nl n2"n

To illustrate let us consider the boundary condition for the

energy equation at the free slag surface, i.e.

r
= se tr4 e F' piee gt J (3.99)
S| 's,av m smm e se e,av

T
Keff 352

sl

By using Eg. (4.25) we get,
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2 _ _ 2 _
nZ(Tl TO) nl(T2 TO)

0 (ny “nylngng

n2T, -n?T. - (n2-n3)T
_naTy mmTy -y mny)Ty (4.27)

(nz"nl)nlnz

Putting this in Egq. (3.99) gives,

2 2 -
n n nin |
T=———2—-—-T-—1'—T-—-—];—£—<5€ T4 -€ ! 4—€F'T4
0 n2 —n? 1 n2 -p?2 2 n. +n S|"’s,av msmm e se e,av
2 1l 2 1 1 2 - -
(4.28)

Thus at the end of an iteration, temperature at a node
lying on the free surface of the slag can be updated using

the above egquation.

4.3 Wall Function Approach

One of the assumptions inherent in deriving the
successive substitution formulae [Eq. (4.3)] is that the
transport properties of the fluid vary so little between
grid points that its value at a point such as e in Fig.
4.4 can be given by the arithmetic mean of the values

at P and E. Thus,

'C
-©
=

b b

(4.29)
¢,e 2

It is known however that steep gradients of transport
properties occur near the walls which bound a turbulent

stream. In the immediate wvicinity of the wall, the fluid
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is in laminar motion and the effective viscosity and
thermal conductivity are very much lower than they are

at even a short distance from the wall. The behaviour

of the near wall region can be modelled either by using

the low Reynolds number modelling method or by using the
wall function method 46. The latter method has been used
more widely. It economizes computer time and storage and
allows the introduction of additional empirical information
in special cases, as when the wall is rough.

A brief treatment of wall function method for
turbulence quantities (k and € ) and for heat transfer in
the slag is given here. Fig. 4.6 shows the regions in the
slag where wall function method has to be used. These
regions which lie in the vicinity of various rigid walls
are indicated by inclined lines and numbers 1, 2, 3, 4.
Let us now illustrate the use of wall function approach
wer*t region 1 in Fig. 4.6. A portion of the grid in this
region is shown in Fig. 4.7.

Let us assume that region 1 represents a constant
shear layer with the value of shear stress being equal to

T Let n represent distance from the wall, in the direc-

W.
tion normal to the wall. Velocity distribution for this

region can be written in terms of a "logarithmic law" 55

_ 1 +
v, = = 2n ( En ) (4.30)
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4.7 TIllustration for wall function approach.
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where « = von Karman's constant = 0.4
E = a function of wall roughness, approximately
equal to 9 for a smooth wall
V+ = V/VT = dimensionless velocity parallel to
wall (z-direction for Fig. 4.7)
VT = friction velocity = TW/(pCdl/4kl/2)
A= anT - Cd1/4p kl/zn/u

= dimensionless distance from the wall.

For Eq. (4.30) to be valid, n* should be much
larger than unity. For turbulent flow in a pipe, Pun and
Spalding 55 suggest that n* > 11.5. 7Under these condi-
tions, T, can be evaluated by using the following rela-

tionship 55,

. = «C 1/4

1/2 1/2  1/4
W g ° Vp kp /%n [Epd kp Cq /ul]

1
(4.31)
The source term for the turbulence kinetic energy,

S. can be written as

k
S, = G-D (3.28)
3V Cdpzkz
= Ty e (4.32a)
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2,2
C.p7k
- 3V _ Td" ™ 3V
= TW 3n B-H (4.32b)
Tw

Near a wall, length scale of turbulence is porportional

to distance from the wall and one can write 55

_ 3/4 | 3/2
e, = ST KT/ (k8 (4.33)

Let us now discuss wall function for the transfer

of heat. By using the analogy between heat and momentum

transfer, it can be shown 56 that the local Nusselt number

*
NuX can be given by a relationship of the following type :

1
l/2Cf ReX Ty

NuX = (4.34)
O {1 +/1/2 Cf' (Ol/dt - 1) a’
where ReX is the local Reynolds number
9, is the Prandtl number of the fluid
Gt is the turbulence Prandtl number
Cf' is the coefficient of skin friction defined
as l/2Cf‘ = TW/pV2
and 'a' is a parameter which makes an allowance for

the transfer of heat through the wviscous

sublayer and depends on the ratio OZ/Gt.

*

Eg. (4.34) is valid in the absence of viscous dissipation
or any other source of heat and for a constant wall tem-
perature.
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The final expression for the local flux of heat through

the wall shown in Fig. 4.7 can be written as 55:
2
q T /oV
- 2 = w_ P (4.36)
- T _/ovV 2}
pcpvp('rp Ty) ot-{l + TW/pr

. _ _ -1/4

with P = 9 (02/6t 1) | Oz/ot) (4.37)

The differential equation (4.6) is inte-
grated over the area enclosed by the rectangle sw, se, Ne,
Nw in Fig. 4.7. 1In the case of turbulence kinetic energy,
diffusion through the wall is set equal to zero and source
term is given by Eg. (4.32b). Dissipation rate of turbulence
enerqgy, ep is calculated by using Eq. (4.33). In the case
of energy equation, heat flux through the wall is replaced

by Eq. (4.36).

4.4 Solution Procedure

The governing differential equations and their
boundary conditions have now been converted into a set of
algebraic equations. These equations will now have to be
solved by an iterative technique. The solution procedure
used in this work is the Gauss-Seidel method and uses
successive substitution as compared to the "block-methods"
which use matrix inversion techniques. Among the point
methods, the Gauss-Seidel method is known to yield rapid

convergence and is efficient from the view point of
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computer storage 39. In the following subsections, the
computational flowsheet will be provided together with a

description of the computer program.

4.4.1 Flowsheet for computation

The equations for magnetic field intensity [Egs.
(4.1), (4.2)] are first solved to calculate the electromag-
netic driving forces and the spatial distribution of the
Joule heating rate. This involves using Egs. (4.15) and
and % at the interior

(4.16) to update the values of H 61

nodes and to use algebraic equivalent of boundary condi-

BR

tions to update the values at the boundary nodes. After
convergence is obtained, the spatial distribution of
current densities and the volumetric Joule heating rate
are calculated using Egs. (3.14 a,b) and (3.16). Next,
the dependent variables for flow and heat transfer %, Y,
k, ¢, and T are taken up in the order indicated here.

The procedure adopted can be summarized as follows:

(1) Each cycle of the iterative procedure is made
up of IV subcycles where IV is the number of dependent
variables.

(2) In each sub-cycle the domain of integration is
scanned row by row and a single variable is updated.

If the node being considered is an interior node, Eq. (4.8)
is used; otherwise, the appropriate substitutional formula

for the boundary node is used.
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(3) When all of the sub-cycles have been completed,
a new iteration cycle is commenced.

(4) The procedure is repeated until the changes
in the values of the variables between successive itera-
tions are less than a small specified quantity.

A simplified conceptual flow chart of the computa-

tional scheme is shown in Fig. 4.8.

4.4.2 Introduction to computer program

In this subsection a brief description of the
computer program is given. The program was developed by
following the outlines of the basic computer program
published by Gosman et al 39. However, extensive modifi-
cations and additions had to be made to tailor it for
the present purposes. The program is subdivided into
a number of subroutines, each one designed to perform
a specific task. The listing of the computer program is
given in Appendix E. The main features of this program

are outlined in Table 4.2 which gives the names and the

functions of various subroutines.

4.4.3 Stability and convergence problems

The search for a solution to the mathematical
problem posed in Chapter III is based on the premise that
the model describes the physics of the system adequately

and that the set of differential equations together with
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Table 4.2 Description of the Computer Program

Name

MAIN

BLOCK DATA

CORD

INIT

FIELD

VF DROP

Function

Starts the computations and controls the
iteration procedure for flow and heat transfer

variables.

Supplies reference values for physical pro-
perties, values for operating parameters and
dimensions of the system as well as control

indices for the program.

Calculates coordinates of the grid nodes as
well as Dj of Egs. (4.13), (4.14) and Bj' of

Eg. (4.6).

Provides initial values for the dependent
variables and computes those prescribed boun-
dary conditions for which no iteration is

required.

Solves for magnetic field intensity. Computes
the distribution of current density and Joule

heat and total power usage.

Calculates radiation view factors and droplet

parameters.



EQN

VORITY

STRFUN

TURVAR

TEMPR

WALL

BOUND

CONVEC

SORCE

120.

Performs one cycle of iteration on the complete
(both interior and boundary nodes) set of suc-
cessive substitution equations by calling
various subroutines. Also updates physical

property values at the end of each iteration.

Computes vorticity at the interior nodes in

slag.

Computes stream function at the interior nodes

in slag.

Computes turbulence kinetic energy and the
dissipation rate of turbulence energy at the

interior nodes in slag.

Computes temperature at all the interior

nodes.

Computes shear stress and Nusselt no. at

rigid boundaries.

Computes dependent variables at those boundary

nodes where iteration is required.

Calculates Aj' of Eq. (4.6) and makes modifica-

tions for incorporating wall functions.

Calculates source term, S¢ o of Eg. (4.6)

14



VELDIS

VISCOS

PROP

PRINT

121.

Calculates velocity distribution in the slag.
Calculates effective viscosity in the slag.

Allows the use of temperature dependent thermo-
physical properties. Calculates the liquidus
and the solidus isotherms and the melting

rate of the electrode.

Calculates first order derivative by the

three point quadratic approximation.

Prints out calculated results.
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their boundary conditions constitute a complete and a
well-posed problem. Even when these conditions are ful-
filled it requires a great deal of numerical experimen-
tation to ensure that the solution procedure converges

to the "correct” solution. Another important aspect of
the solution procedure is the speed of convergence, since
the computation time has to be realistically limited.

A discussion on the factors which may influence the con-
vergence, accuracy and the economy of the procedure is
given by Gosman et al 39.

The computer program described earlier has evolved
in stages and has involved considerable numerical experi-
mentation. Following the practice in literature, the
method of under-relaxation is used to reduce the chances

(N-1) is the value of the variable

(N)

of instability. If ¢

calculated in the (N-1l)th iteration and ¢ is the
value which would be computed in the Nth iteration, then
the value which is actually used in iteration N is

computed from:

} () ) (N-1)
¢ = agg ¢ Q- oug) ¢ (4.38)

where a is called the under-relaxation parameter and

UR
is a number between 0 and 1. However, the rate of conver-

gence of an iterative solution procedure can sometimes be
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improved by over-relaxation 39. Mathematically, over-

relaxation can be represented by an equation analogous

to the above equation, i.e.,

(N)

- _ (N=-1)
where aOR , the over-relaxation parameter, lies between
1l and 2.

During numerical experimentation, the magnetic
field eguations were found to be very well behaved and
over-relaxation was found to greatly enhance the rate

of convergence. For the laboratory scale system discussed

in the next chapter, Aog = 1.5 for HGR and aOR = 1.2
for HeI were found to give the optimum convergence
rate.

In the case of other dependent variables (%, v,
k, ¢, T, over—relaxation for the stream function and under-
relaxation for the rest of the variables was found to be
the best practice. The attempt to over-relax the vorticity
equation lead to divergence.

To observe the convergence rate, two different
criteria for convergence were employed. In one following
Gosman et al 39, the maximum fractional change of ¢ in the

field was dictated to be less than a prescribed value,

i.e.;
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e S (4.40)

(e - ¢ /¢

Usually € has been set in the range of 0.001 to 0.005.
It sometimes happens that when the value of a
variable at a particular node is much smaller than the
values at surrounding nodes, fluctuations, in the small
value will occur which are unacceptable by the above cri-
terion, even though the rest of the field has converged.
In this case an alternative criterion used by some other

32,35

authors was employed. This is given as

T1e™M o o M-1)y

(4.41,
e

A

where ) means summation over all the interior nodes.
€2 has been set in the range 0.001 to 0.005.
The numerical solution was carried out on IBM 370

at MIT. Calculated results and discussions are given in

the next chapter.
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8y s34 7Dy 1%y

A%,B!

TN

BprPwrPinePis

B ,BW,B

E N'BS

DN,DS,DE,DW
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Coefficients in the general

elliptic equation (4.6)

Coefficients in the general

substitution formula, Eg. (4.8)

Coefficients in the convection
terms of the general substitution

formula, given by Egs.(4.lla,b,c,d)

Coefficients accounting for the
movement of interfaces, given by

Egs. (4.12a,b,c,d)

Coefficients in the diffusion
terms of the general substitution

formula, given by Egs.(4.13a,b,c,d)

Dissipation rate constant

Coefficient of skin friction

Terms in substitution formula

for magnetic field intensity

Coefficients defined by Egs. (4.21

a,b,c,d)

A functionof wall roughness appearing

in logarithmic law Eg. (4.30)
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Nomenclature (cont'd)

~ A

Hy | Hy |

zI

Nu
X

Re

126.

Complex amplitude of magnetic
field intensity in 8- direction,
its magnitude

A

Real and imaginary parts of Hy

Complex amplitude of current
density in r - direction, its

magnitude
Real and imaginary parts of Jr

Complex amplitude of current
density in z - direction, its

magnitude
Real and imaginary parts of JZ

Kinetic energy (per unit mass)

of turbulence

Local Nusselt number

Dimensional, dimensionless distance

normal to wall

Defined by Eg. (4.37).

Local Reynolds number
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Sl'SZ

GREEK SYMBOLS

“ur’%0OR

Py

§,.,6

1 2'63' 4

Radial coordinate

Defined by Egs.(4.19), (4.20)

Source term in the general

elliptic equation (4.6)

Temperature
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Dimensionless, dimensional vel-

ocity parallel to wall
Friction velocity

Axial coordinate

Parameters for under and over

relaxation
Phase angle of He

Domains for the wall function

approach

Dissipation rate of turbulence

energy

Convergence parameters defined

by Egs. (4.40),(4.41)
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Nomenclature (cont'd)

o) General notation for dependent
variables

g Vorticity

U] Stream function

Gz’ot Prandtl number, turbulence

Prandtl number

T Shear stress at wall

K von Karman's constant
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CHAPTER V

COMPUTED RESULTS AND DISCUSSION

The model developed in Chapter III is now used
to make predictions on the flow and thermal characteris-
tics in an ESR system. Computed results presented in
this chapter show typical temperature and velocity distri-
butions and pool profiles as well as the interdependence
of key process parameters, with the power input, £fill
ratio, amount of slag used and the position of the elec-
trode as the independent variables and the casting rate,
pool depth, velocity and temperature fields as the depen-
dent variables. Wherever possible these predictions will
be compared with experimental measurements available in

the literature 57.

5.1 Description of the System Chosen for Computation

The experimental results, to which the predictions
will be compared, are those reported by Mellberg57 who
studied the electroslag remelting of ball bearing steels
in a laboratory scale system, using electrodes of 0.057 m
diameter and a stationary water cooled copper mold of 0.1 m
internal diameter. Remelting was done with alternating
current and the mold was electrically insulated from the

base plate. The electrode composition is given in Table

5.1 and the remelting parameters are given in Table 5.2.
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5.2 Physical Properties and Parameters Used in Computation

The computer program described in Chapter IV and included
in the thesis as Appendix E allows for the temperature depen-
dence of physical properties (u,Cp,p,K) appearing in the model.
As described in Chapter II, in order to keep the equation for
magnetic field intensity decoupled from the flow and heat
transfer equations, the model uses average values for the
electrical conductivities of slag and metal. However, in some
of the calculations an approximate allowance has been made for
the temperature dependence of electrical conductivity of slag.
In the absence of specific information on the temperature
dependence of properties for the system being modeled, it was
decided to perform calculations with constant values for the
properties.

Physical property values used in the computation are
listed in Table 5.3. The liquidus temperature, the density
and the viscosity of the slag were estimated from data reported
in reference 40 and its electrical conductivity was estimated
from compilations made by Hajduk and El GammalSB. In the
absence of better information, values for the specific heat,
the thermal conductivity and the coefficient of volume expansion
of the slagwere taken the same as those used by Dilawari and

Szekelyls. The liquidus and the solidus temperature of the metal

were given by Mellberg57. Values for the other properties

were taken from Dilawari and Szekely15 and from Elliott
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and Maulvault ll. These values apply for pure iron or

for intermediate carbon steels. The value for atomic
thermal conductivity of molten metal was taken to be half
of that for solid metal.

The dimensions of the system and the values for
other parameters appearing in the model are shown in
Table 5.4. The values for the constants le C2, Cd’ O
Oc of the k - € model are those recommended by Launder
and Spalding 46. These recommendations were made on the
basis of extensive examination of free turbulent flows.
However, one must be aware that these are not universal
constants and may change in different situations. The
value for the convective heat transfer coefficient
between the electrode surface and the ambient was suggested
to be 17.2 W/(mzK) by Mendrykowski et al 3. From experi-
mental measurements, Maulvault 7 calculated this to be in
the range 19 - 32 W/m2 K. A wvalue of 25 W/m2 K was
chosen for the present case. Values for heat transfer
coefficients below the slag-metal interface were deduced

from suggestions made by Elliott and Maulvault 11 and

Ballantyne and Mitchell 12. As seen in Table 5.4, below
the slag-metal interface, heat removal by cooling water
is represented by three heat transfer coefficients.

Instead of using discontinuous values for heat transfer

coefficient, as has been done here, it will certainly be



Table 5.3

Physical Property Values Used

sL

K
m

pm’ D,S

thermal conductivity

of electrode, 31.39 \
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thermal conductivity of slag, 10.46
thermal conductivity of mushy zone, 31.39 }%%
thermal conductivity of solid ingot, 31.39
thermal conductivity of molten metal,l5.4R/
density of electrode, 7.2 x 103 A
3 k
density of slag, 2.85 x 10 —%
m
density of liguid metal, mushy zone,
solid ingot, 7.2 X 103
J
specific heat of electrode, 502 w
specific heat of slag, 837 o
! kgK

specific heat of liquid metal, mushy
zone, solid ingot, 753
liguidus temperature of metal,

solidus temperature of metal, 1523 X

liguidus temperature of slag, 1650 K

1723K -
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coefficient of cubical expansion of slag,

1 x lO_4 K_l

latent heat of fusion of metal, 247 kJ/kg

electrical conductivity of electrode,

metal, 7.14 x 105 mho/m

electrical conductivity of slag, 2.50x 10

mho/m
emissivity of electrode surface, 0.4
emissivity of free slag surface, 0.6

interfacial tension between molten slag

and molten metal, 0.9 N/m

viscosity of slag, 0.01 kg/m-s
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Table 5.4 Numerical Values of Parameters Used In Computation

Re electrode radius, 0.0285 m
Rm mold inside radius, 0.05 m
Zl free slag surface, 0.30m

Z2 melting tip of electrode, 0.32 m
Z3 slag-metal interface, 0.37 m
Z6 lower boundary of the ingot, 0.73 m
Cl constant in k -¢ model, 1.44
C2 constant in k - & model, 1.92
Cd dissipation rate constant, 0.09
Ok Prandtl number for k, 1.0
o€ Prandtl number for e, 1.3
Ky magnetic permeability, 1.26 x 107° Henry/m
hc heat transfer coeffieicnt between the
electrode and the gas, 25.1
_lzlg_
hw,l heat transfer coeffieicnt at the molten m K

metal-mold interface, 272
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heat transfer coefficient at the mushyw

zone-mold interface, 272

heat transfer coefficient at the ingot-

mold interface, 188 J

angular frequency of current, 377 radians/s

total current (rms value), 1.4 - 2.5 kA
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more realistic to use heat transfer coefficient as a
function of position if such information is available.

The evaluation of the parameter A which appears
in Eq. (3.44) remains to be discussed. As seen from Eq.
(3.44), (L + A ) represents the ratio of effective and
atomic thermal conductivities in the metal pool. 1In the
present work an attempt has been made to link this parameter
to operating conditions by evaluating it from the computed
flow field in the slag. Calculations were carried out for
turbulent fluid flow and heat transfer in both the slag
and the metal pool for the conditions when the shape of
the metal pool was assumed cylindrical and its size pre-
determined. This approach is analogous to the one taken
by Dilawari and Szekely l% A typical result on the compu-
ted ratios of effective and atomic thermal conductivities
in both the slag and the metal pools is shown in Fig.
5.1. This figure represents computation for an operating
current of 1.7 KA and for an assumed metal pool depth of
0.03 m. Calculations like these indicated that the average
ratio of the effective and atomic thermal conductivities in
the metal pool was about one third of the corresponding

ratio for the slag pocl, i.e.

Ky

K
() =1+ 8= 1 (=25 (5.1)
K K

ml avyg
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ELECTRODE

DEPTH FROM FREE SLAG SURFACE , cm

] i 1 { 10
o} | 2 3 4 5
RADIUS, cm

Computed ratio of effective and atomic thermal conduc-
tivities in both slag and metal pools for operation with
1.7 kA (rms) and for an idealized metal pool shape and

size.
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where, as mentioned before, K, and Km2 denote the
effective and the atomic thermal conductivities of the
metal pool whereas Keff and K denote the corresponding
quantities for the slag. An attempt such as Eg. (5.1)
appears crude at best and it is entirely possible that

the value of the coefficient in this equation would differ
from the value of 1/3 used in the present instance for
different geometries and for much different current levels.
Furthermore, according to the scheme chosen here, we only
account for the mixing or dispersive action of turbulence
in the metal pool, and the convective term in the equation
for heat transport is still unaccounted for. These criti-
cisms can not be taken care of unless the model is extended
to calegulate fluid flow in the metal pool. 1In the mean
time, however, it does appear more reasonable to calculate
the effective thermal conductivity in the metal pool from
the model itself (albeit in an approximate manner) than
selecting it to give a better agreement with the experi-
mental measurements. For the results presented here,

calculated values for A fell in the range 0.7 - 3.4.

5.3 Computational Details

The numerical scheme outlined in Chapter IV was used
to solve the governing equations. Fig. 5.2 shows the
grid which is typical of those used in the calculations

presented in this chapter. As shown in this figure,
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there are 51 I-lines ( z-direction ) and 12 J-lines

( r-direction ). While the spacing between the J-lines
was kept the same in all the computations reported here,
spacing between the I-lines was adjusted for various cases
to concentrate nodes in the critical areas. The computa-
tions were carried out using the IBM 370 digital computer
at MIT; the time interval involved in the computation

was in the range of 100-200 seconds.

5.4 Results and Discussions

A selection of computed results on the electro-
magnetic aspect of the process is first presented and
then results for the flow and thermal aspects are given.
In the following discussions ingots 15 and 17 refer to
operations with 1.7 kA and 1.55 kA (both rms values)

respectively.

5.4.1 Computed results on electromagnetic parameters
Fig. 5.3 shows the radial distribution of the
magnetic field intensity in the slag and in the metal
calculated at different axial positions and for an opera-
ting current of 1.7 kA (rms). Curves 1 and 2 refer to
calculations for the slag at vertical positions, 0.0l6 m
and 0.044 m below the electrode respectively. Curves
3 and 4 refer to calculations for the metal at positions,

0.045 m and 0.22 m below the slag-metal interface
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Computed magnetic field intensity for operation with
1.7 kA (rms).
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respectively. As seen in this figure, the radial distri-
bution of the magnetic field intensity in the metal is
linear and the distributions at the two locations are
identical. This implies that the current in the radial
direction is negligible and that the axial component of
the current is distributed uniformly across the cross
section (with a density of 216 kA/mz). In the slag, as
can be inferred from curves 1 and 2, the radial component
of current is finite and becomes small as the slag-metal
interface is approached. This is readily seen in Fig. 5.4
which shows the current density vectors (length of a vector
represents the rms value of current density) in the slag.
The current path diverges in the vicinity of the electrode-
slag interface but it becomes almost parallel as the slag-
metal interface approaches.

Fig. 5.5 shows the radial distribution of volumet-
ric Joule heat generation rate in the slag for the same
two axial positions as in Fig. 5.3 (i.e. 0.016 m and
0.044 m below the electrode). In the vicinity of the
slag-electrode interface, heat generation rate is gquite
high and the distribution is non-uniform. As is to be
expected from the discussions given in connection with
previous figures, the radial distribution of heat generation
rate becomes uniform when the distance from the slag-

electrode interface increases. The heat generation rates
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Computed current density vectors in slag for operation

with 1.7 kA
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5.5 Computed radial distribution of volumetric heat gener-

ation rate in slag for operation with 1.7 kA.

1 1.6 cm below electrode
2 4.4 cm below electrode
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are completely uniform in the ingot (65.45 kW/mB) and
in the upper portions of the electrode (621.6 kw/m3).

Fig. 5.6 shows the effect of electrode penetration
depth in the slag. Here the solid lines represent
calculations already shown in Fig. 5.5 whereas the broken
lines denote calculations where the electrode protrudes
0.0l m into the slag (as compared to 0.02 m for the
previous case). The total amount of slag used (1.5 kqg)
and the power input (73 kW) were the same in both the
cases. Curves 1 and 2 in this figure have the same
meanings as in Fig. 5.5 As seen here, the case with a
lower electrode penetration depth has a lower volumetric
heat generation rate in the bulk portion of the slag.

This is to be expected since the volume of slag below

the electrode is larger in this case. The different heat
generation patterns in the two cases will lead to different
temperature distributions in the slag. This will be
examined subsequently.

Fig. 5.7 shows the effect of the amount of slag
used on the heat generation rate in the slag. Once again
the solid lines represent the results already described
in Fig. 5.5 whereas the broken lines represent calculations
for a higher amount of slag (1.9 kg vs 1.5 kg for the
former case). The electrode penetration depth (0.02 m)

and the input power (73 kW) were the same in both the
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5.6 The effect of electrode penetration depth on heat

generation rate in slag.

—— depth of penetration of electfode 2 cm,power 73 kW
-—- depth of penetration of electrode 1 cm,power 73 kW
1 1.6 cm below electrode ‘

2 4.4 cm below electrode



149,

(kW/m3)

JOULE HEAT x 10°5%

i { ! }

0 l 2 3 4 5
RADIUS , cm

The effect of the amount of slag used on the heat

generation rate in slag.

amount of slag 1.5 kg
--—-- amount of slag 1.9 kg
1 1.6 cm below electrode
2 4.4 cm below electrode
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cases. As seen here, the larger volume of slag in the
second case gives rise to a lower volumetric heat generation
rate in the slag. Based on a uniform current distribution
over the entire cross section of slag, the volumetric

heat generation rate is 1.32 x lO5 kW/m3 for operation

5 kW/m3 for

with 1.9 kg of slag as compared to 1.87 x 10
the other case. For both the lower electrode penetration
depth and the larger amount of slag used, the resistance

of the system was found to increase in accordance with

the operating experience 62.

Fig. 5.8 shows the effect of fill ratio (cross
sectional area of electrode/c.s-area of mold) on current
distribution in the slag. The solid lines denote calcu-
lations for an electrode radius of 0.0285 m (Rel) whereas
the broken lines represent calculations for an electrode
radius of 0.015 m (Rep). The mold radius in both the
cases is 0.05 m and the total current in each case is
1.7 kA. As in the case of previous figures, 1 and 2
denote vertical positions 0.0l16mand 0.044 m below the
electrode-slag interface. In the vicinity of the elec-
trode and directly below it, there is an appreciable
difference in the current density in the two cases with the
lower fill ratio case having a much larger current density.
The difference narrows as the radius increases. From the

discussions given in section 3.7.2, we expect that a larger
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current density will give rise to increased velocity

in the slag. This effect of the fill ratio will be
examined subsequently. As the slag-metal interface is
approached, the current density tends to be uniform and
the difference in the two cases becomes small. Another
effect of the reduced fill ratio is that the "effective
cross section” for the passage of the current decreases,
thereby increasing the electrical resistance of the
system and the heat generation rate. Thus the total
power input for the case with 0.015 m electrode radius
(fi1l1 ratio = 0.09) is calculated to be 94 kW as compared
to 73 kW for the case with 0.0285 m electrode radius
(£fill ratio = 0.32). The experimental observation of
this effect is reported in the literature 61"62.

Before closing this subsection, it should be noted
that the computed current distribution and the heat
generation pattern, and consequently fluid flow and
temperature distrubution, will depend on the assumed shape
of the electrode tip and on the assumptions made regarding
the boundary conditions (e.g. insulating slag skin on the
inside wall of the mold , the presence of a solidified
slag crust on the submerged vertical wall of the electrode).
As mentioned in Chapter III, the model developed in this
work assumes a flat melting tip for the electrode and an
insulating slag skin on the interior surface of the mold.

The latter assumption is in accord with observations made
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40'41. The assumption of a flat melting

in literature
tip is made for computational convenience and ideally

the shape of the electrode tip should be calculated using
the mathematical model itself. However, this refinement
to the model can only be accomplished if a more realistic
understanding is developed of the melting process. This
will require both experimental and analytical work.

The effect of a solidified slag crust on the
submerged, curved surface of the electrode will be analo-
gous to the effect of a reduced £fill ratio since the
effective c.s-.-area for current will decrease. Then,
from discussions given in connection with Fig. 5.8, for
the same total current, power requirement will be higher
for this case and the current distribution will be less
uniform. From the preceding discussions, the presence
of a solidified slag crust on the electrode will be
expected to increase the velocity in the slag. These
observations are confirmed by calculations reported by

Dilawari and Szekely 14'59.

5.4.2 Computed results on fluid flow and heat transfer
Results will now be presented for the temperature

and velocity distributions in the system. Computed re-

sults on the temperature distribution will be compared

with the limited measurements available.
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It is noted that most of the calculations were
carried out using a constant electrical conductivity of
the slag. In some calculations, however, an allowance
has been made for the temperature dependence of the
electrical conductivity of the slag. The modifications
required to the governing equations in order to accomplish
this are discussed in Appendix D.

Fig. 5.9 shows a comparison between the experimen-
tally measured axial temperature profile at a radial posi-
tion r = 0.025 m and those predicted from the model. The
discrete data points denote measurements, the broken line
denotes predictions for the condition where the experimen-
tally measured casting rate was used as an input to the
model. The two solid lines denote predictions for the
condition when the casting rate was computed from the
model; curve I refers to calculations using a uniform
electrical conductivity in the slag while curve II refers
to calculations using a temperature dependent electrical
conductivity in the slag. As discussed in Appendix D,
temperature dependence of the electrical conductivity used
in the calculations was deduced from experimental measure-
ments reported by Mitchell and Cameron 60. Power input
in both thé cases 1is kept the same (73 kW). It is seen
that measurements correspond to a steeper axial temperature

gradient in the vicinity of slag-metal interface than that



155.

- 2000
INGOT NO. IS
r=2.5 cm
I800¢~ o
O
)
~ 1600
w
- a
-
<<
1400
w
o
=
- Ll
-
1200
|- 1000 1 1 | %
-2 0o 2. 4 6 8
DEPTH FROM SLAG-METAL INTERFACE, cm
- 5.9 Computed and measured axial temperature profiles for

ingot 15 (rms current=1.7 kA) at r=2.5cm;
—— casting rate (Vc) calculated from the model
- I uniform electrical conductivity in slag

II temperature dependent electrical conductivity in

slag

o --- experimentally measured value of Vc (0.74 m/hr)
! used as an input to the model

e measured values from Mellberg 57



156.

exhibited by the calculated results. This, as pointed

out by Melberg, may partly be due to inaccuracies involved
in experimentally defining the zero position. In general,
all three curves shown in Fig. 5.9 provide a reasonable
representation of the data points below the slag-metal
interface. Curve II provides a somewhat better agreement
with measurements primarily because in this case, calculated
casting rate (0.7 m/hr) and effective thermal conductivity
in the metal pool (27 W/mK) are lower than the corresponding
values for case I (casting rate = 0.76 m/hr, effective
thermal conductivity in metal pool = 30 W/mK).

One important derived quantity in these calcula-
tions 1is the radial temperature distribution at the slag-
metal interface. Since there is not much difference in
the three cases cited in Fig. 5.9, only the distribution
for case I is discussed. This is shown in Fig. 5.10.

As seen here there is quite an appreciable radial varia-
tion in the temperature (about 225°C in the present case).
It is noted that several authors, when modelling pool
profiles and the temperature fields in the ingot, used the
temperature at the slag-metal interface as an arbitrarily
adjustable boundary condition. The choice of this boundary
condition may be critical, because this represents the
coupling between the heat source in the slag and the heat

transfer processes that take place within the ingot.
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5.10 Computed temperature distribution at the slag-metal

interface for ingot 15.



158.

Fig. 5.11 shows an alternative way of expressing the

radial distribution of temperature at the slag-metal

T -T
interface. Here, n( mafT ) is shown plotted against
r max ~min
in{=<=) where T and T . are the maximum (1675°C) and
R max min

m
the minimum (1450°C) temperatures respectively and Ro

is the radius of the mold. From this figure, it can

be shown that
T - T . 1.375
x (—) (5.2)

This type of relationship has been used by other authors
to specify temperature distribution at the top of the
ingot.

Fig. 5.12 shows the computed solidus and ligquidus
isotherms for the three cases that were represented in
the previously given Fig. 5.9. Also shown, for the sake
of comparison is a sulfur print reported by Mellberg,
for corresponding operating conditions. It is seen that
the sulfur print falls between the solidus and the ligquidus
curves, as one would expect. As before, curve II which
represents computation with a temperature dependent
electrical conductivity in the slag gives a closer agreement
with the experimental measurements.

Fig. 5.13 shows a comparison between the experimen-
tally measured and the theoretically predicted temperature

profiles, for an ingot produced with a 1.55 kA current, at
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5.10 expressed in an
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the mid-radius position. Here again the solid line repre-
sents the predictions for a condition, when the casting
rate was computed, while the broken line corresponds to
predictions, where the experimentally determined casting
rate was used as an input for the model. It is seen once
again that there is reasonably good agreement between the
measurements and the predictions below the slag-metal inter-
face. The computed liquidus and solidus isotherms for these
two cases are shown in Fig. 5.14. Also given for the pur-
pose of comparison are some of the measured locations
of the isotherms. It is seen that the solidus and the
liguidus lines predicted by the two techniques are compar-
able, and that there is a somewhat better agreement between
measurements and predictions for the case in which the
casting rate is calculated from the model (0.€4 m/hr vs.
measured value of 0.62 m/hr).

Fig. 5.15 shows the computed isotherms in the
slag for ingot 15. The solid lines represent calculations
with a uniform electrical conductivity of the slag while
the broken lines represent calculations with a temperature
dependent electrical conductivity. As seen here, the latter
case gives a lower maximum temperature (1787 °C vs. 1832 °C
for the former case) with a little more uniform distribution.
This is as expected since the electrical conductivity of the

slag increases with temperature. It is seen that the
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5.14 Computed liquidus and solidus isotherms for ingot 17.

Legends same as in Fig. 5.13.
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hottest region of the system is in the central portion,
close to the electrode, but not in the immediate vicinity
of the electrode.

It has to be stressed that at the surface of
the electrode the temperature in the slag must equal the
melting point of the electrode material, hence the positive
axial temperature gradient in the immediate vicinity of
the electrode. This positive axial temperature gradient
is also consistent with the physical requirement that
thermal energy has to be transferred from the slag to the
electrode.

It should be noted that the temperature profiles
depicted in Fig. 5.15 result from the combined effect
of Joule heating and the convective fluid flow field in
the slag phase. If convection had been neglected, one
would have obtained unrealistically high temperatures
in the vicinity of the electrode surface. An important
effect of this convection, readily seen in Fig. 5.15,
is the quite uniform temperature field in the central core
of the slag; indeed, most of the temperature gradients
appear to be confined to the vicinity of the wall.

This knowledge of the temperature field is of
course guite important, if we wish to represent chemical
reactions between the droplets and the slag, that may

be temperature dependent.
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Fig. 5.16 shows the effect of electrode penetra-
tion depth in the slag on the isotherms in the slag.
The isotherms shown here are computed for an electrode
penetration depth of 0.0l m. The amount of slag used
(1.5 kg), the input power (73 kW) and the value used for
the effective thermal conductivity in the metal pool
(30 W/mK) are the same as in the case of Fig. 5.15.
Comparing Figures 5.15 and 5.16 reveals that the temper-
atures in the bulk portion of the slag below the electrode
are somewhat reduced when a lower electrode penetration
depth is used (maximum temperature 1807 °C vs. 1832 °C
for the other case). This is to be expected from the
discussions given in connection with Fig. 5.6 where it
was shown that a lower penetration depth resulted in a
lower volumetric heat generation rate in the bulk portion
of the slag. Also the casting rate is now reduced (0.61 m/hr
vs. 0.76 m/hr for the other case). As is to be expected
from the discussion given in connection With Fig. 5.9, the
agreement with measured temperatures below the slag-metal
interface was somewhat better. However, the temperature
profiles in the ingot are not shown here, for the sake of
brevity. Although the immersion depth of the electrode
appears to have an important effect on the casting rate
and hence on the position of liquidus and solidus iso-

therms, its effect on the temperature and velocity in
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the slag is less significant from the global viewpoint.
Also, it should be noted that in practice, the immersion
depth of the electrode is determined by the process itself.
However , this aspect of the ESR process is yet to be
modelled.

In the next few figures, calculated results on
the flow and turbulent mixing in the slag are discussed.
Fig. 5.17 shows the calculated stream lines in the slag
for ingot 15. Computed velocity vectors in the slag are
presented in Fig. 5.18. It follows from the discussions
given in Chapter III that there are two principal forces
that drive fluid motion in the slag -- the electromagnetic
force field which in the present case would tend to generate
an anti-clockwise circulation pattern and the buoyancy
force field, which would tend to generate a clockwise
circulation pattern in the bulk of the slag. It is seen

in Figs. 5.17 and 5.18 that for the case considered,

buoyancy forces tend to dominate in the bulk of the slag,
producing a clockwise circulation pattern. The anti-
clockwise circulation pattern in the annular space between
the electrode and the mold results from the combined
effects of buoyancy and electromagnetic forces (if buoyancy
forces alone acted in the region one would obtain two
circulating loops, as caused by a hotter fluid being loca-

ted between the two cold surfaces, viz the electrode and
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the mold wall). The absolute magnitude of the velocities
calculated for the system, viz 0 - 5 cm/s are comparable
to computed values reported in earlier papers describing
fluid flow in ESR process l3~15.

The circulation is an important characteristic
of ESR systems and it would be desirable to define the
conditions under which either the electromagnetic or the
buoyancy forces dominate the flow field. By dimensional
arguments it may be shown that the following group may
be used to define the nature of the circulation:

u0f02(1 - %ﬁ

o = (5.3)

41TAeLpBgAT

where Ae and Am are the cross sectional areas of the
electrode and the mold respectively, L is the depth of
the slag below the electrode, and TO is the rms value
of the total current.

The higher the value of ¢ the stronger is the
domination of the electromagnetic forces. Thus the
relative importance of electromagnetic stirring is
increased by increasing the current, decreasing the fill
ratio and decreasing the slag depth below the electrode.

These findings seem reasonable on physical grounds,
because a diverging current field will produce a stronger

J x B force. Extreme examples of this have been found in

electroslag welding, using wire electrodes.
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Figure 5.19 shows the velocity field computed
for an identical current to Fig. 5.18 but for a greatly
reduced fill ratio (0.09 as opposed to 0.32 in the pre-
vious case). It is clearly seen that under these conditions
the flow is now dominated by electromagnetic forces.
Also as expected from discussions given in connection with
Fig. 5.8, the magnitude of the velocity increases when

the fill ratio is decreased.

Fig. 5.20 shows the radial distribution of the
ratio of buoyancy/electromagnetic contributions to vor-
ticity, some 0.02 m below the electrode, computed for

the cases that have been given in Figs. 5,18 and 5.19.

It is seen that buoyancy forces dominate in the
vicinity of the walls because of the very steep radial
temperature gradients. However, the curve drawn with the
broken line, depicting the behavior of the system shown
in Fig. 5.19 clearly indicates that the electromagnetic

forces dominate in the central core for that case.

Fig. 5.21 shows the computed values for the
turbulence kinetic energy in the slag for ingot 15. The
maximum value for this parameter occurs in the annular

space between the electrode and the mold and this value
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5.19 Computed velocity vectors in slag for operation with

1.7 kA and for a fill ratio of 0.09.
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is about 25% of the maximum kinetic energy of the mean

motion.

Fig. 5.22 shows a plot of the ratio: effective
thermal conductivity/atomic thermal conductivity in the
slag for ingot 15. It is seen that the strong convective
field does indeed produce turbulent conditions, corres-
ponding to an appreciable enhancement of the effective
thermal conductivity. As in the case of Fig. 5.21, the
regions of the maximum effective conductivity correspond
to the zones where the circulation has its maximum inten-
sity -- a behavior that is consistent with physical

reasoning.

The role of the current in determining the shape
and the depth of the metal pool is examined in Figs. 5.23
and 5.24. Fig. 5.23 shows computed pool profiles for
different current levels. The curves, drawn with the
solid line, show that the higher the current, the deeper
the pool profile. This finding has been established
experimentally a long time ago; however, this is the
first time that these experimental findings have been
predicated from first principles. The curve drawn with

the broken line (2A) depicts the computed pool profile
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23 Computed metal pool depths for different currents.
1. 1.55 kA, 2. 1.7 kA, 3. 2.0 ka, 4. 2.5 kA

In all these cases amount of slag = 1.5 kg.
2A. Same power as 2 (73 kW), amount of slag =

178.
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for identical conditions of power to that given by (2)
but for a greater amount of slag present (1.9 kg for the
case 2A vs. 1.5 for the case 2). Heat loss from the
slag to the mold wall for the case 2A was 30% higher
than that for the case 2. This resulted in a smaller
pool depth. Fig. 5.24 shows a plot of the computed
maximum pool depth against the current used. Over the
range examined the relationship is found to be linear.
Fig. 5.25 shows a comparison between the theoretically
predicted casting rates, as a function of power and the
values reported experimentally by Mellberg 57. It is
seen that the agreement is not unreasonable. The pre-
dicted relationship between the casting rate and the
power is linear. This again is consistent with opera-
ting experience 62
Values for the parameters associated with a
metal droplet are shown in Table 5.5. The superheat
given this table is for operation with 1.7 kA (i.e.
ingot 15). As seen here, the residence time of the
droplet in the slag is very small. The average velo-
city of a droplet (0.28 m/s) is substantially larger
than the velocity of slag and therefore the assumption

of a guiescent slag made in calculating droplet para-
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Table 5.5 Values for Droplet Parameters

Parameter Values
diameter, dd 1.3 cm
residence time, T 0.18 s
average velocity, Uav 28 cm/s
superheat, (T, - T ) 72 °C

182.
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meters (Section 3.5.4B) is reasonable.

This concludes the discussions of the computed
results. The results presented in this chapter were
selected to illustrate the predictive capability of
the model developed in this work, and to investigate
the interdependence of key process parameters. Con-

cluding remarks are made in the next chapter.
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CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this chapter concluding remarks are made and
some suggestions are made for further work in mathematical

modelling of ESR process.

6.1 Conclusions

In the work reported in this thesis a mathematical
model has been developed to describe electromagnetic field,
fluid flow, heat transfer and solidification phenomena in
ESR systems. The model involved the simultaneous statement
of Maxwell's equations, equations for turbulent flow and
the differential thermal energy balance equations. These
equations were first written in vectorial forms so that
some general conclusions could be drawn regarding the
behavior of ESR systems. Then the equations were presented
in the cylindrical coordinate system with axial symmetry.
The limitations of the model are inherent in the assumptions
made in developing the model. While these assumptions are
detailed in Section 3.3, some of the principal shortcomings
of the model in its present form are as follows:

(1) Fluid flow equations are solved in the slag
only. Motion in the metal pool is accounted for by using
an effective thermal conductivity. However, as discussed
in section 5.2, an attempt is made to deduce this parameter

in the model itself.



i

185.

(2) The model assumes a predetermined shape (flat)
for the melting tip of the electrode and a known electrode
penetration depth in the slag. Ideally these parameters
should be calculated using the mathematical model. However,
this refinement can be made only if a more realistic under-
standing is developed of the melting process.

(3) A constant value is used for the electrical
conductivity of the slag. In some of the calculations
presented in Chapter 5, an approximate allowance has been
made for the temperature dependence of this parameter.

(4) Effects associated with chemical and electro-
chemical reactions are not considered.

On the positive side, the model accomplishes
the following:

(1) It allows for turbulent flow in slag as
caused by both electromagnetic and natural convection forces.

(2) It accounts for the spatial distribution of
heat generation rate, the transport of heat by the metal
droplets falling through the slag and for the movements
of the ingot and the electrode.

(3) By integrating transport processes taking
place in different portions of an ESR system, the model
allows predictive relationships to be developed among key
process parameters.

The governing differential equations developed in

Chapter III were solved using a numerical
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technique outlined in Chapter IV to provide current distri-
bution, velocity and temperature profiles for a laboratory
scale system used by Mellberg57. In general the theoreti-
cal predictions for the temperature profiles and for the
pool profiles were found to be in reasonable agreement with
the experimental measurements, thereby indicating experimen-
tal support for the model.

The predictive capacity which is inherent in this
model enables one to develop theoretical relationships
predicting the interdependence of the key process parameters.
For example, it has been possible to relate the heat gener-
ation pattern, the temperature and the velocity fields, the
melting rate and the pool profiles to the operating power
and current and to the geometry of the system.

The principal findings may be summarized as
follows:

(1) The temperature at the slag-metal interface
was found to be strongly spatially dependent. As seen
from the work reported by Kreyenberg and Schwerdtfeger 16,
the computed temperature and velocity distributions in
the slag are strongly affected by the assumed temperature
distribution at this interface and therefore it should be
computed by the model rather than being specified arbitrarily.

(2) It was found that for a fixed geometry, the

higher the current, the deeper was the pool profile; this
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mode of operation also resulted in a faster casting rate.
Over the range of parameters used in the computation, the
relationship between maximum pool depth and the current
and the relationship between casting rate and power were
found to be linear.

(3) A deeper slag bath results in a larger heat
loss through the mold wall. Thus for the same input
power, a larger amount of slag gives rise to a lower
pool depth.

(4) The depth of penetration of the electrode was
found to have some effect on the slag temperature; more
specifically the lower the penetration, the lower the slag
temperature in the bulk and hence the lower the casting
rate. However as mentioned before, in practice the
electrode penetration is a factor that is determined by
the process itself and this aspect of the problem is
vet to be modelled.

(5) The model enables us to distinguish between
the role buoyancy forces and electromagnetic forces play
in driving the flow in the slag phase. It was found that
the higher the current and the smaller the fill ratio,
the more important was the role of electromagnetic
forces. It has to be stressed, however, that in general,
both these forces could play an important role in deter-

mining the flow field.
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(6) The temperature distribution in the slag was
found to be quite uniform with strong gradients in the
vicinity of solid walls.

(7) The use of a temperature dependent electrical
conductivity for slag gave a reduced maximum temperature
in the slag and a somewhat more uniform temperature dis-
tribution. This resulted in a lower amount of heat being
transported to the electrode and thus in a reduced casting
rate.

(8) The ratio of effective/atomic thermal conduc-
tivity in the metal pool, computed according to suggestion
outlined in section 5.2 was found to lie in the range of
1.7 to 4.5. This is consistent with values deduced from
experimental works 6.

In closing, it is worthwhile to comment briefly
on the principal differences and similarities between
the present work and the earlier work reported by Dilawari
and Szekely 13—15. As mentioned in Chapter II, in the
earlier work, the electromagnetic field, the fluid flow
field and the temperature field were represented for an
ESR system for a predetermined and idealized pool shape
and size. Heat transfer phenomena in the mushy zone and
in the ingot were ignored. While many of the transport
equations and the boundary conditions used in the present
work are identical to those used in the earlier work, the

advances made in the present work are as follows:
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(1) The shape and the size of the molten metal
pool is no longer specified but calculated by solving heat
transfer equations in the mushy zone and in the ingot.

The present work allows for the incorporation of solidifi-
cation models to represent the release of latent heat in
the mushy zone.

(2) The model allows for the first time for a
comparison to be made between the measured and the predicted
pool profiles and temperature fields in the ingot.

(3) A more up-to-date model is used to represent
the turbulent viscosity and the turbulent thermal conduc-
tivity in the slag. The model allows for special treat-

ment of flow and heat transfer phenomena in the near wall

regions.

6.2 Suggestions for Further Work

From the point of view of mathematical modelling,
ESR process represents a fascinating, if complex, group
of problems. The model described in this work was an
attempt at grouping together the salient features of
current distribution, fluid flow and heat transfer phenom-
ena so that the model could be used to investigate the
interdependence of key process parameters. A few sugges-
tions are given here for some further work in the area
of modelling of ESR process. The suggestions given here

are limited to mathematical modelling but it should be
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recognized that physical modelling is a vast and extremely
important area and that there is a need for a strong

interaction between the two.

6.2.1 Suggestions for short term plans

These include the following:

(1) In the work reported in this thesis, limited
measurements on a laboratory scale system were used. It
would be desirable to have some measurements, specially
on temperature distribution in the slag, available for
a large scale system so as to be able to test the pre-
dictions of the model for this system.

(2) The model, in its present form, uses an
effective thermal conductivity to account for convective
heat transfer in the metal pool. The model can be extended
to calculate flow in the metal pool. To achieve this it
will be advantageous to employ a numerical scheme
of the type used by Elliott and Maulvault 11 below the
slag-metal interface.

(3) An attempt can be made to use the information
on velocity and temperature distribution generated by the

model in developing a kinetic model.

6.2.2 Suggestions for long term plans
These include the following:
(1) There is a strong need for both experimental

and analytical work in order to develop a realistic under-
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standing of melting phenomena at the slag-electrode
interface.

(2) The model developed in this work can be
extended to calculate fluid flow in the mushy zone so

that it can be used to calculate macrosegregation in

the ingot.

(3) Some preliminary calculations can be made
for multiple electrode configurations. The modelling of
multiple electrode system represents a major additional
difficulty, because under these conditions axial symmetry
is no longer observed.

(4) An approach similar to the one described

in this thesis can be used to model the electroslag

casting process.
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APPENDIX A

A BRIEF NOTE ON PHASOR NOTATION

In dealing with sinusoidally time-varying quantities
it is convenient to use phasor approach. A phasor is a
complex number which can be represneted graphically as shown
in Fig. A 1. The length of the line is equal to the magni-
tude of the complex number and the angle that the line makes
with the positive real axis is the angle of the complex
number. For example when the functional form is cosinusoid-
al, i.e. A cos (wt + ¢), the magnitude of the phasor is
equal to the magnitude A of the cosinusoidal function and
the angle of the phasor is equal to the phase angle ¢ of
the function for t = 0. The real part of the phasor
is A cos¢ which is the value of the function at t = 0.
As seen from Fig. A.l, if the phasor is rotated about the
origin in the counter-clockwise direction at the rate of
w rad/s, the time variation of its projection on the real
axis describes the time variation of the cosinusoidal
function. Using the terminology adopted in Chapters III
and IV, a cosinusoidal function £ can be represented, in

phasor notation, as

£ = Re [A el¥% (A.1)
where A = |A| ed? (A.2)
|A| = magnitude of the phasor at t = 0.
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Similar considerations hold when dealing with sinusoidally
time-varying vectors.

To illustrate the application of phasor concept,
let us derive the expression for time average electro-
magnetic body force component FZ [i.e. Eq. (3.15b)1].

From Eq. (3.10), the instantaneous value of this quantity

can be written, in phasor notation, as

z " uo Re(He ejwt) X Re(Jr ejwt) (A.3)

= Hg l%el cos(wt + ¢l) P IJr] cos (wt + ¢2)

= U, lHeHJrI [cos(wt + ¢;) coswt + ¢,)]

I
+ cos (¢l =95 (A.4)
II

The time-average value can be found as follows:

= 1 '
F_ = Tin dt (A.5)

where T 1is the period.

The time-average value of the first term in Egqg.

(A.4) is equal to zero, thus
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_ l A A _
F, = 7 Ho [Hgl 3] cos(e) - ¢,)
1 o z jlo, = ¢,)
= S u, Rel |Hg| [ ] 771~ "27]
_ 1 3N 2T,
F, = 5 4y Rel 1He| e . IJri e )
= Ly Re(n ) (3.15b)
20 6 r .
where Jr is the complex conjugate of Jr’

Following a similar approach, expressions can be

derived for other time-averaged parameters such as

Fr [Eg. (3.15a)], Qj [Eq. (3:1l6)], etc.
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APPENDIX B

BOUNDARY CONDITIONS ON VORTICITY

In this appendix, expressions will be derived for

vorticity at the axis of symmetry and at the walls.

B.1 Vorticity at the Axis of Symmetry 39

Form Eg. (3.23b) in the text,

It follows that in order for Vz to be finite at r = 0,
%% must tend to zero at the same rate as r near the axis.
It follows that in the immediate vicinity of the axis,
the ¢y ~ r distribution is parabolic. Furthermore,

because of symmetry the second term in the ¢ ~ r expansion

should be the fourth power one; thus:

Vv - wo = ar2 + br4 (B.1)

where Vo is the stream function at the axis and a and b
are constants for a fixed z.

Using the definition of vorticity [Eg. (3.22)1],
the symmetry condition Vr = 0 at the r =0 and Eq.

(B.1l) we can write

= - 8br
g 5 (B.2)
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E=0 at r =0, -f— on the other hand is finite.
and 2 denote the nodes which are once and twice removed

the node 0 on the symmetry axis, we can evaluate b

b~y = ar 2 4 bt (B.3a,b)

I (3.89b)

Vorticity at a Wall >3

Let us illustrate the calculation of wall vorticity

w*r*t slag-electrode interface. As seen in Fig. B.l, 0 is

a node on the wall and 1 is the adjacent node in the z-

direction. Using Taylor series expansion, the value of

stream function at node 1, Y, can be expressed as

2 2 3
- d 13 1 ! 3 4
R T S RS T
17 %0t 52, 2 .52k 6 o3k
(B.4)
where A =z, - z (B.5)
From Eg. (3.23a)
V| o _ayrT =
3zl T TPEV =0 (B.6)

(no slip condition)
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and 2—%[ = =-por ——E} (B.7)
5z° 0 2z °
From Eq. (3.22)
. 0
v v
£ | = ?___r_( - ° Z(
0 3z ] a/r [
2
= - L2y (B.8)
or 3z°°
Thus from Egq. (B.8) we can write
a2
.__g)_zi = -pr gt (Bog)
az Q 0
3
and Q—QI = ~pr §§4 (B.10)
3230 az'y

Using Egs. (B.6), (B.9) and (B.10) in Eg. (B.4) gives

(’Ul = WO - pr [% F,O + = ""‘] AT A (B.11)

If as shown in Fig. B.l, & 1is taken as varying linearly
with z in the vicinity of the wall,

98 = -

PN (5] = &¢) (B.12)

Solving for go from Eq. (B.ll) then gives,

30py = ¥y)

Oy
i
i
N
e

(3.91c)
2 2
0 or (zl —zo) 1
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Following an identical approach, expression for
vorticity at the slag-metal interface can be derived.
For the vertical surfaces, (i.e. r = Re' Zlmi z < 22

and r = R/ Zl <z < Z3), a similar approach is used
but instead of assuming a linearly varying vorticity, the
vorticity transport equation is used to give an expression

for the normal gradient of vorticity at the wall.
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APPENDIX C

CALCULATION OF RADIATION VIEW FACTORS

In this appendix, radiation view factors appearing
in Egs. (3.97) and (3.99) are calculated using the compil-
ation made by Leunberger and Person >4 for finite coaxial
cylinders. Fig. C.l shows a schematic representation of
the system for calculating view factors. Symbols s, e, m
and t represent free surface of the slag, outer surface
of the electrode, inner surface of the mold and top (copen)
surface respectively.

View factors are calculated with the aid of "view
factor algebra" which relies on the reciprocity rule and

on the fact that radiation is conserved. According to

Leunberg and Person

A A
. L 172 x 3
Fes(z) = 5= [ cos % R { > —
/A3 - 4R _°R
e 'm
A_ R R
cos™t -2 & _ 057t &) (C.1)
A, R R
1™ m m
where
A = x2 + R 2 - R 2
1 m e
A = x2 - R 2 + R 2
2 m e
_ 2 2 2
A3 = X + Rm + Re

X = L - z (C.2,3,4,5)
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c.1 Schematic representation of the system for calculating

view factors.
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The view factor Fet(z) can be evaluated by using Eq.

(C.1) with x = z. Then Fem(z) can be calculated using,

Fem(z) = 1 - Fes(z) - Fet(z) (C.6)

Let us now consider the evaluation of F'sm and F‘se'

First we note that,

! + B! + P! + F! = 1 (C.7)
ms mm mt me

where ' indicates that the view factors are wer-t-the

entire surface.

1 = 1
3 ms F mt (C.8)
1
' = = - ! - 1
Thus, F s 5 (1 F . F me) (C.9)

Again, from reference 54,

R A 1l R A
F! = £ {1 - L cos 15 .- [ A cos]'—g )
me R T A A 7 R_A
m 4 6 m 4
+ A_ sin’?t Eg -2 a1}
5 R 2 4 (C.10)
m
where
A4 = L2 + R 2 - R 2
m e
_ .2 2 2
AS = L Rm + Re
AG = 2RmRe (C.11,12,13, 19
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and
R R
_ _ e 1 e -1 _ _L . =1
F'om = 1 — + ﬂ{ 2 tan All — [ A8 sin A9
R R 2R
m m m
-~ sinla T a -1} (C.15)
10 2 8 -
where
2 /R % - R ?
A = m e
11
L
/4R2 + L2
A =
8
L
2
N A1 * By
s 2z -
Re 2
A10 = 1 - 2 (=) (c. 16,17,18,
Rm 19)

Thus after calculating F' from Eg. (C.10)and F' from
me mm
Eq. (C.1l5), we can calculate F'ms from Eg. (C.9).

Then, from reciprocity rule,

2RmL
jall = — e ! (C.ZO)
sm R 2 - R 2 ms
m e
. . 54
similarly noting that
P = 1 - L [ R - R (F'__ + 2F'__ = 1)]
st R 2 _ R 2 e m~ mm me
m e

(C.21)
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and that P + F! + P! = 1
se sm st

we can calculate

1 - - ' - 1
F se 1 F sm F st (C.22)
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APPENDIX D
USE OF TEMPERATURE DEPENDENT ELECTRICAL CONDUCTIVITY IN

THE SLAG

The magnetohydrodynamic form of Maxwell's equation

(for low magnetic Reynolds no.) can be written as:

9H _ | [vx(lﬁ)] (D.1)
ot g

In cylindrical coordinate and for axial symmetry (Hr = Hz =

gL = 0), Eg.(Dl) can be written as follows:
BHG d 1 3He 3 11 29
Mo T = — [— —] + —[- - ——(rHe)] (D.2)
ot 3z G 3z dr 0 r dr

Expanding the terms in Eq.D.2) gives:
2

BHe 3 He 3 1 9
OHy — = | 5 + — (= —(rHg))] -
ot 9z ar r or
BHe adno 1 3 adnc
[— + - ——(rHe) ] (D.3)
3z 92 r dr or

For the calculations reported in the text, the
second term on the rh.s.of Eg. (D.3) has been neglected.
However, in some of the calculations the temperature depen-
dence of ¢ , appearing on the 2+:h-s of Eg.(D.3) has been
accounted for. The basic approach in these latter calcu-

lations involved:
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(1) Solution of field equations for a specified
temperature distribution in slag

(2) Values for electromagnetic force and Joule
heat rate generated in step 1 was then used to solve flow
and temperature equations.

(3) Temperature field generated in step 2 was

used to calculate the new distribution of ¢ in slag.

Steps 1 to 3 were repeated until the temperature
fields in slag calculated in two consecutive iterations
agreed within a specified limit. It is to be noted that
each of steps 1 and 2 is iterative in addition to the
overall process being iterative.

The temperature dependence of electrical conductiv-
ity was deduced from data published by Mitchell and Cameron

on 70% CaF 308 Al.,0, slags. Their data in the range

27 273
1500 °C - 1700 °C, can be represented by the following

equation:

-9888
T

+ 10.467

where ¢ is in c>hm-lm-l and T is in °K.

60
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APPENDIX E

THE COMPUTER PROGRAM

The computer program used for the solution of the
governing differential equations is presented in this
Appendix. A brief introduction to the program and the
functions of various subroutines have already been given
in Chapter IV. The computer program given here incorpor-
ates wall function approach for turbulence quantities and
for temperature. However, the computed results reported

in the thesis did not utilize this feature.

E.1 List of Fortran Symbols

Symbol Meaning
A(I,J,K) The dependent variables for

flow and temperature equations

and Vz, Vr[ Ut, Ueffl KI pI

Cp.

B(I,J,K) Variables for electromagnetic
field.

AE, AW’ AN, AS Aj' Of Eq- (4-8)

ANAME (6, 12) An alphameric array containing

the names of variables for

flow and temperature equations.



ASYMBL

AKEFF

APP

BNAME (6, 10)

BE(I), BW(I), BN(J), BS(J)

BPP

BBE, BBW, BBN, BBS

BETA

ci, Cc2, C3, CD

cC,CP

CU
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An alphameric array containing
the names of residuals as defined

by Eg. (4.40).

Effective thermal conductivity

in metal pool.

aq),p of Eq (4.11 a,b,c,d)

An alphameric array containing
the names of variables for elec-

tromagnetic field.

B:' of Eq. (4.8)

]
f Eq. .
b¢,p o q. (4.8)
Th £t c, (b, . +
e group O erms ¢’J( 5,3
B.' in Eq. . .
b¢,p) 3 in Eg. (4.8)

Coefficient of volume expansion

(B).

Constants in the turbulence

model.

The convergence criteria.for flow

and temperature equations, magnetic

field eguations.

Total current (maximum value), kA
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CAPPA Von Karman's constant (x)

D S in Eg. (3.75)

pl, b2, DN, DS Parameters in Egs. (4.15) and
(4.16).

E The wall roughness factor, E

in Egq. (4.30)

ES, EE, EM Emissivities of slag surface

(es) of electrode (se) and of

mold (em)
FES, FEM, FSM, FSE Radiation view factors Fes’
F , F'_ , F'
em sm se
FR Geometric factors to account

for the fact that control volumes
for integration in near wall
regions are different from those

in the interior of the domain.

GAMA Interfacial tension between

molten metal and slag (y).

HC Heat transfer coefficient between

electrode and gas

HW Overall heat transfer coefficients

at interfaces defined by Eg. (3.104).



211.

HCD ﬂReZVmepeCP,d in Eg. (3.76)

HL Heat of fusion

I Index for constant - z grid
lines

IE The number of differential

equations (for flow and heat

transfer) to be solved.

I1, I2, 13, I4, 15, IA, Indices defined in Fig. 5.2
J1
IN The total number of constant

z grid lines

IP The number of successive
iterations for which print-out

is to be produced

Iv The number of variables whose

values are to be printed out.

J Index for constant-r lines.

JN The total number of constant-r
lines.

X The index which denotes the

dependent variable in gquestion.
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MIT The maximum number of iterations

for magnetic field equations

MPRINT The number of iterations between
print-out cycles for magnetic

field variables.

NEP-\ Dissipation rate of turbulence
energy

NF Stream function

NK Turbulence energy

NMT Turbulent viscosity

NMU Effective viscosity
Indices for flow

NRO \and heat tr. Density
variables

NSP Specific heat

NT Temperature

NTC Thermal conductivity

NVI Velocity in z=-direction

NV2 Velocity in r-direction

NW J Vorticity (&/r)
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NHR ~\ Real part of magnetic field
intensity
NHI Imaginary part of magnetic

field intensity

NH Magnetic field intensity

NJRR Real part of current density
in r-direction

Indices for

NJRI electromagnetic Imaginary part of current den-

field variables
sity in r-direction

NJR Current density in r-direction

NJZR Real part of current density

in z-direction

NJZI Imaginary part of current density

in z-direction

NJZ Current density in z-direction
NJJ-J Joule heat (kCal/m3s)
NMAX The maximum number of iterations

for flow and heat transfer

equations.



NPRINT

PR(K)

QS

R(J)

ROREF (5)

RP (K)

RS

RSDU(K)

SB

214.

The number of iterations
between print out cycles for

flow and heat tr. variables

Magnetic permeability, Hge

The Prandtl or Schmidt numbers.

QS of Eq (3.76)

Radius of electrode (Re), radius

of mold (Rm)

The maximum residual (1 -
N N-1 .
¢p /¢p )max for all of the

¢ equations.

Reference densities for various

media.

Relaxation parameters for flow

and temperature equations.
The residual at a particular node.

The maximum value of RS for each

¢ equation.

1012 X Stefan-Boltzmann constant

(kCal/mst4)



S(4)

SN1, SN2, SN3, SN4

SOURCE
SPREF (5)
TLM,

TsM, TLS, TA, TM, TW

TF, TB
TCREF (5)
TAUW4

TAUWl, TAUWZ2, TAUW3,

TAU

UuP

VOLT

VE

vC
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Electrical conductivities of

electrode, slag, molten metal,

ingot.

Local heat transfer coefficients
in regions

defined in Fig. 4.6.

S of Eg. (4.8).

¢,p

Reference specific heats

T 14 T T ’ T ’ T

s,m’ TZ,S' a m W
(3.74).

2 ,m

T T. in Eq.

£’ °B

Reference thermal conductivities.

Shear stress values in regions

defined in Fig. 4.6.
Residence time of a droplet.
Velocity parallel to a wall.
Voltage.

Melting rate of electrode.

Casting rate.

Relaxation parameters for

magnetic field equations.
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X(7) Defined in Fig. 5.2.

X1(I) z-coordinate of the grid nodes.
X2 (J) r-coordinate of the grid nodes.
YL (J) Position of liquidus isotherm.
YS (J) Position of solidus isotherm.

ZMUREF Reference value for viscosity.
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E.2 Program Listing
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