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ABSTRACT

Grating structures are currently used in surface-acoustic-
wave (SAW) devices to perform a variety of signal processing
functions. With the development of single-mode optical trans-
mission systems, it is also likely that they will find increasing
application in integrated optics for performing similar functions.
We demonstrate here the power and simplicity of coupling-of-modes
theory in analyzing the behavior of such gratings. The major
part of this thesis is concerned specifically with the analysis
of SAW gratings. However, most of the theoretical methods de-
veloped, and the general solutions obtained for several complex
grating problems, are equally valid for integrated optics, holo-
graphic or other grating structures.

The first step in the analysis is the derivation of a
variational principle for SAW's. From this the coupled-wave
equations, to first order in the grating perturbation, are de-
rived for a grating resonator. The coefficients of these equa-
tions are evaluated to obtain in a relatively simple manner, the
reflection coefficient of a normal-incidence groove, to first
order in the groove depth. A second method for obtaining the
reflection coefficient by matching boundary conditions, and
interpreting the results via coupling-of-modes theory is also
presented. The results of both analyses are in agreement with
existing theory. The analysis of a normal-incidence grooved
grating is then extended to second order.in the groove depth.
Theoretical closed-form expressions are obtained for both the
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reflection coefficient and the center of the stop-band at all
the grating harmonics. A detailed analysis of these second-
order effects is presented at Bragg and the second-harmonic
frequency of the grating. The strong influence of the groove
profile in determining these effects is investigated. Oblique-
incidence gratings are also analyzed.

In the second half of the thesis, coupled-wave theory is
used to obtain, in exact closed form, the responses of both
normal- and oblique-incidence (450) gratings with a linear
spatial chirp. Using these solutions the filter characteristics
of constant-period oblique-incidence gratings are studied. In
addition the exact response of a reflective-array-compressor
(RAC) is determined. The exact solutions for the RAC are then
approximated to a form much simpler to evaluate, yet more accur-
ate than those currently used in RAC analysis. These approximate
solutions are applied to a detailed analysis of a low-loss RAC.

Thesis Supervisor: Hermann A. Haus

Title: Elihu Thomson Professor of
Electrical Engineering
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CHAPTER 1

INTRODUCTION

1.1. Motivation for Grating Study

Grating structures are capable of performing many com-

plex signal processing functions, and are currently employed

extensively in surface-acoustic-wave (SAW) technology. [l,2]

Such SAW grating devices usually operate in the VHF-UHF range

(typically below 1 GHz). Important applications are in os-

cillators, filters, pulse compression, and chirp Fourier

transform systems. [1-1 3 1 In general, such devices offer

considerable advantages in terms of size, power requirements,

and speed over alternative digital processing systems, if they

are even available. SAW grating devices operate in real time

and over very large bandwidths. Pulse compression devices

have been fabricated to date with time bandwidth products as

high as 16,200.i4]

Analogue signal processing with gratings, however, is

not restricted to acoustics. The current development of

magneto-static wave devices shows promise for extending the

SAW grating technology well into the microwave regime (up to

10 GHz) [15,16] In addition, grating structures are also im-

portant in optics. 1 7-2 4 ]Holograms have been used for some



14

time for recording information and the shaping of optical beams.

Furthermore, as grating technology is advanced it is expected

that most current SAW grating functions will also become fea-

sible for the processing of optical guided waves. In this

respect, the development of single-mode optical transmission

systems can be expected to stimulate the development of such

integrated-optics devices.

The growing importance of grating devices for signal pro-

cessing has created a new need for a deeper understanding of

the behavior of such structures. The exacting responses re-

quired of modern acoustic and optical signal processing devices

demand the inclusion of previously ignored effects into grating

design and analysis. Of particular importance among the latter

are the effects of stored energy and multiple reflections,

within a grating, on the device performance.

Stored-energy effects are associated with the generation

of local evanescent bulk waves within a grating. These cause

a small additional phase shift at each reflecting discontinuity.

The most important consequence is a reduction of the surface-

wave velocity in the grating, compared with that on the free

[3,5,251
surface. ' The latter results in a lowering of the

Bragg frequency, i.e. the frequency of maximum grating reflec-

tion. This effect is particularly important in filter design

[25]as it often necessitate-s empirical adjustments in design.
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The reduction of the grating surface-wave velocity has also

been observed in the grating transmission phase response. [26]

In addition, stored-energy effects within a grating have been

shown to cause strong spurious harmonic responses of the

grating. [27-29] No theoretical method of analyzing these

effects in closed-form currently exists. Moreover, the depen-

dence on the various grating parameters is not well understood.

Modern grating devices frequently employ complex grating

structures, with spatial chirps and/or operation of oblique

incidence. Most current analyses of snch structures neglect

the effects of depletion and multiple reflections within the

grating. However, these effects may have important consequences

for the device response. An important case of interest is the

reflective array compressor (RAC). This oblique-incidence

structure uses spatially-chirped gratings to achieve pulse

compression. It finds widespread application in modern sophi-

sticated radar and signal processing devices. A disadvantage

of current designs, however, is that they suffer from high

insertion loss. To achieve lower-loss performance the gratings

must be designed for stronger reflection and the effects of

multiple reflections and depletion included in the analysis.

The areas mentioned above are the principal areas where

it is desired to develop an improved theoretical understanding

of grating behavior, for applications in modern SAW, and optical,

signal processing devices.
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1.2. Existing Theory

Early analyses of grating devices neglected the effects

of energy storage within the grating on device performance.

Since these effects are "second order", i.e. vary quadratically

with the grating perturbation, they were assumed to be too

small to have a significant effect on the grating response.

More recently, however, many papers have stressed the importance

of including second-order effects in SAW grating design.

In modern high-Q grating designs the second-order reduction

in the Bragg frequency is particulary important. Despite the

latter, very few theoretical analyses of second-order effects

have been attempted. To date, second-order effects have been

accounted for in grating designs largely on an empirical basis.

An equivalent transmission-line model was proposed by Li

et al. for including second-order effects in the analysis of

SAW gratings. [26,27] In this model, the energy storage is ac-

counted for by a periodic loading of equal shunt susceptances

across a transmission line [Fig. 1.2.1]. However, they proposed

that the appropriate shunt susceptance value be determined ex-

perimentally. This approach, while quantitatively predicting

the grating behavior, fails to relate the effects of energy

storage to the relevant grating parameters. In a later paper,

an attempt was made by Shimizu et al. to derive the susceptance
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elements of Li entirely theoretically. [30] However, because

of a perturbation technique employed in their solution, the

results are in error for steep-sided grooves.

In two recent papers, by Wright et al., a new method for

analyzing second-order effects in closed form was described.[31,32]

That analysis will be given in detail in this thesis. The re-

sults are in good agreement with experimental data and reveal

the critical importance of groove profile in determining second-

order effects.

The analysis of second-order effects, and the other grating

analyses considered in this thesis, are based on coupled-wave

theory. Coupled-wave theory was first introduced into grating

analysis by Kogelnik, for the analysis of thick hologram gra-

[33]tings. Later Kogelnik and Shank successfully applied it

to the analysis of distributed-feedback lasers. [341 They

demonstrated that such an approach could greatly simplify the

analysis of grating structures. Subsequently, coupled-wave

theory was successfully applied by several authors to the

analysis of SAW transducers and gratings.
1[ 3 5-3 7 1

Modern SAW grating devices such as the RAC, rely on ob-

lique-incidence grating structures for their operation. How-

ever, the coupled-wave theory developed by Kogelnik applied

only to one-dimensional structures. Thus only gratings at
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normal incidence could be analyzed. Coupled-wave theory was

extended to two dimensions by L. Solymar et al., for the

[38]analysis of large-volume holograms. Solymar et al. solved

the problem of uniform illumination of a large-volume hologram

at Bragg incidence. They showed that the output waveforms

from a holographic grating could be expressed in terms of

Bessel functions. Bloch et al., by analogy, applied these

solutions to the analysis of oblique-incidence SAW gratings.[391

Since the solutions were only valid at Bragg, however, they

were not able to predict the frequency behavior of the gratings.

In addition they could not analyze the transmission through a

"U" or "Z" -path unchirped grating structure [Fig. 1.2.2].

In the latter structures the illumination of the second grating

is non-uniform, thus the solutions of Solymar did not apply.

In a recent paper, Russell and Solymar extended the anal-

ysis of large-volume overlap-holograms to the case of non-uniform

illumination and non-Bragg incidence. However, these solu-

tions have not yet been applied to the analysis of SAW grating

structures. In addition, the solutions are valid only for

gratings with a constant spatial-period. They thus cannot be

applied to the RAC, which is a chirped grating structure.

Gerard et al. performed an analysis of the RAC in the

limit of small coupling between the incident and reflected

grating waves. [41] This analysis is currently used to design
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RAC devices. However, under the small coupling assumption the

effects of energy depletion and multiple reflections within

the gratings are completely neglected. This analysis is there-

fore unsuitable for the design of low-loss RAC devices, where

the coupling in the gratings must be strong.

In a separate paper, Otto attempted to examine the effects

of multiple reflections on grating performance and also to es-

[42]timate when they become important. He chose to analyze an

unchirped U-path grating by dividing both gratings into small

unit-cells, each with identical scattering parameters [Fig.

1.2.3]. By employing a computer to multiply together each of

the individual scattering matrices, he was then able to invest-

igate the role of multiple reflections on the performance of

the device. The analysis, however, was only performed for

unchirped gratings. Moreover, closed-form solutions were not

obtained and the complexities of the numerical analysis failed

to make clear the role of the design parameters in determining

these effects.

In a recent paper, Bloch et al. suggested an extension of

the unit-cell scattering approach of Otto to the analysis of

a RAC (i.e. to include a chirped grating). [3 9 1  The method,

however, is not as well suited to this structure. In addition,

the complex numerical analysis required, again obscures a clear

understanding of how these effects might be included for improved
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RAC design.

More recently, a closed-form analysis of reflective-array

gratings was reported by Wright et al. That analysis will

be described in detail in this thesis. The new analysis, for

the first time, permits closed-form solutions to be obtained

for the RAC. The solutions incorporate all orders of multiple

reflections and wave depletion within the gratings. They have

important application to the design of low-loss RAC's.
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1.3. Objectives

A main objective of this thesis will be to demonstrate

that, in many cases, coupled-wave theory provides the most

convenient approach to the solution of complex grating problems.

In particular, we shall show that a coupled-wave analysis fre-

quently permits solutions to be obtained in closed form. Al-

ternate methods, by contrast, are invariably more complicated,

frequently involve infinite matrices, and rarely permit closed-

form solutions to be obtained. Furthermore, grating analyses

of general validity can be performed, using coupling-of-modes

theory, without regard to the specific nature of the waves,

i.e. acoustic, optical, etc. We shall show that a coupled-wave

analysis is valid for most grating structures of practical im-

portance.

A new, relatively straightforward method for obtaining

second-order effects in grooved gratings will be presented.

The analysis will be performed assuming propagation in an

isotropic material. However, by invoking an equivalent

Poisson ratio, the results of the analysis will be extended

to include typical anisotropic materials, such as Quartz and

LiNbO3 The solutions will be obtained in closed form. Ana-

lyses that involve numerical integration, and/or truncation
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of infinite matrices, are particularly to be avoided as they

may lead to incorrect results as will be shown.

All the stop-bands of a grating will be determined correct

to second order in the groove depth. From this analysis the

response of a grating at Bragg and the second harmonic will

be examined in detail. Both normal- and oblique-incidence

gratings will be considered. The second-order reduction in

the free-surface wave velocity within a grating, usually at-

tributed to so-called stored-energy effects, will be determined

theoretically and in closed form. The sensitivity of the re-

sulting downward shift in the frequency of maximum reflection

of the grating (i.e. Bragg) to the groove profile will be in-

vestigated. It has been reported in the literature that this

frequency shift is not a simple quadratic function of groove

depth, as might be expected. [25] We shall show that the new

theory explains this behavior. We shall also determine the

transmission phase response of a grating, using the corrected

wave velocity as determined by the analysis. Whenever possible,

all theoretical analyses will be compared with existing experi-

mental data.

From the second-order analysis,the reflection coefficient

of a grating will also be determined to second order (in groove

depth). Stored-energy effects have been shown to cause a strong

grating reflection near the second-harmonic frequency, where
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to first order none would be expected. This reflection, and

the associated bulk radiation within the grating, will be

determined theoretically by the new analysis. The sensitivity

of the reflection coefficient to the groove/strip ratio of the

grating will be examined. We shall show that a second-order

analysis reveals that a groove/strip ratio of 1:1 may not

always be the ideal choice.

As a further example of the usefulness of coupling-of-modes

theory in grating analysis, we shall derive exact, closed-form

solutions for gratings with a linear spatial chirp. Both

normal- and oblique-incidence (450) gratings will be considered.

All the grating waves will be obtained in closed form, and the

response at arbitrary detuning, to an arbitrary input profile,

will be determined. Constant-period, or unchirped gratings,

will be considered as limiting cases. The design of constant-

period oblique-incidence gratings as bandpass and bandstop

filters will be described.

U-path grating devices will also be studied. In particular,

a detailed analysis of the RAC will be performed. The emphasis

will be directed towards understanding the effects of multiple

reflections, within each grating, on the overall amplitude and

phase response of the device. The implications of the new

analysis for low-loss RAC design will be examined in detail,

and distortions of the device response, caused by the previously

ignored effects, will be elucidated.
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PART I

Analysis of Constant-Period SAW Grooved Gratings to First and

Second-Order
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I (a): Normal Incidence
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CHAPTER 2

FIRST-ORDER REFLECTION COEFFICIENT FROM A

VARIATIONAL PRINCIPLE

2.1. Variational Principle for SAW's

Variational principles are extremely useful in that they

yield the values of parameters to an accuracy greater than that

of the solutions used in deriving them. If a system undergoes

a small perturbation, such principles permit the new perturbed

solutions of the system to be determined from the unperturbed

solutions. They are thus frequently used in resonator problems

to determine the change in resonant frequency of the system,

resulting from a small perturbing influence.

In this section a variational principle for SAW's is

developed. The analysis ignores the effects of piezo-electri-

city and assumes propagation in an isotropic material. In the

following sections, the variational principle is used to derive

the coupled-wave equations for a normal-incidence grooved gra-

ting. From these equations the reflection coefficient of a

single groove is determined, in a simple manner, from the

free-surface wave solutions.

Consider a SAW of angular frequency o, propagating on

an isotropic acoustic material of mass density p. From New-

ton's second law, the equation of motion is
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V -* = p u= - pw2 u;t2

which in Einstein summation notation becomes

a.. = - P2(2.1.1)
3x.'

Multiplying by u,* gives
I

3
-pW2 u.j2 = U.* 3 a.. (2.1.2)

Here a is the associated stress tensor of the wave and u

is the displacement tensor. We now integrate (2.1.2) over the

volume of one cell of the structure. The latter extends from

the surface to z = +m (z into the bulk) and if the surface

is periodic occupies one full period of the structure. We ob-

tain

pw2 f dvju.j 2 =f ds.u.*c.1. - fdv [ u.* a..

- dv u.*] a..
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since the integration is over one full period and the surface

is stress free (i.e. has no normal stress). Thus

fdv [2u*1 aj

,f fdvu.I 2

or, introducing the stiffness tensor c

dv 9X .* c.. uk

-2 .3xk
dc(2.1.3)

p dvju i
2

This is the desired variational principle for SAW's. In

this form, the value determined for W2 is stationary, when

the correct solutions for the resonator are used to evaluate

the expression. Any error in a trial function used to evaluate

(2.1.3), thus introduces only a second-order error in o. The

variational nature of (2.1.3) is easily established.

Let LU be the exact resonant frequency of a SAW grating

resonator. Let the stress and displacement of the exact solu-

tions in the resonator bea0 . and u . respectively. Then

o 33-

a0 9 0u(2.1.4)
ijkzax 

k
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from (2.1.1)

0.= p2 . (2.1.5)
Dx. C

and, from (2.1.3)

C) 
0

2- f d v - -- u c . 9 L X k u 9

o2 ~ kv~Lu]Cjz1' (2.1.6)

p 4dviu.i2

Assume a trial solution for the resonator in the form u. =

u.0 + 6 u.. The trial solution does not satisfy the stress-
1 1

free boundary condition on the surface of the resonator, i.e.,

C. - z' = 0, where z' is the surface-normal unit-vector.

Using the trial solution to evaluate w2  from (2.1.3), we

shall ignore all terms of second, or higher, order in the error

term 6u.. Thus

dv (u7* + u. *)C. (u0 + Suz)

2 -- k

p dv(u.r + 6u.)(u?* + 6u.*)
1 1 1 1

= dv --- u.c.D. u 7+ (6u.*) c. .uLx 1i k 9x i ijkZ 9X k
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+ u(u ) Vp {6dv[ ju. 2 + u 6u.*
Ux ijkz 9 Xi i

0*
+ u. 3u. .

i

In any medium, cijk =C ..kji* [44] Hence, using the binomial

theorem, and relations (2.1.4) and (2.1.6)

W2 = 02

r~V9 0 *7 P 2 ro0*
ci.. (3 -+-(6u.) - pW fdv[u.6u + u.6u]

p v io 12 i i

fdv u* CT . . + Su. Cy.+ p02dv[u. 6u.+ u. 6u.JI 1013 9 12i i

- 2.. - 3 --

00
p jdv ui 2

since the stress ci., of the exact solution in the grating,
ij-

satisfies the stress-free boundary condition on the surface of

the grating. Introducing (2.1.5) we obtain

H ,2 
sin2

0

Hence, (2.1.3) is a variational formula. The error in w
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is of a higher order than that of the trial solution used to

evaluate it.
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2.2. Derivation of Coupled-Wave Equations

The coupling-of-modes formalism provides an elegant

mathematical approach for determining the behavior of two

coupled waves. For such a description to apply the local

coupling (either in time or in space),, between the two waves,

must be everywhere very weak. However, the resulting inter-

action between the two waves may be very strong, and in fact

complete power transfer may occur. We shall be concerned here

with coupling-of-modes in space.

The advantage of a coupling-of-modes description lies in

its generality. The form of the equations is unaffected by

the nature of the waves. It does not matter whether the two

interacting waves are both electromagnetic, acoustic, or a

combination of the two. In addition, the details of the

structure and the coupling mechanism are avoided. The struc-

ture is simply described by a coupling coefficient K between

the two waves. The details of a particular structure, the

type of waves involved, and the manner in which they interact,

need only be considered when determining K. It is thus advan-

tageous, where possible, in a system containing two weakly

coupled waves to cast the governing equations in the form of

coupling-of-modes. Once this has been done, much can be im-

mediately ascertained about the behavior of the structure
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by drawing on the large body of existing knowledge of coupled-

wave equations.

We begin by presenting the coupled-wave equations of a

distributed-feedback structure. We then show that the varia-

tional principle (2.1.3) leads directly to this formalism for

the wave amplitudes in a SAW grooved grating. The variational

principle also determines the coupling coefficient K in terms

of the physical parameters of the grating.

In a distributed-feedback structure (Fig. 2.2.1), the

forward wave R(x) is coupled to a backward wave S(x) via

a small periodic perturbation of the medium, along the propaga-

tion direction x. In the absence of coupling the waves have

dependence

R(x)nu e (wtkX)

S(x) ej (Wk+kx)

where k = w/v is the propagation constant. The waves are

strongly coupled when the period of the perturbation A = X/2,

where X = 27/k is the wavelength of the propagating waves.

The wave scattered from R(x), by the k-vector of the pertur-

bation k = -(2/A)x = -2kx, then has the propagation constant
p

(k + k ) = -k and is thus synchronous with S (x). The frequency

at which this synchronous scattering occurs, and the coupling
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between the two counter-propagating is a maximum, is referred

to as Bragg.

Before writing the coupled-wave equations, we introduce

the slowly varying wave amplitudes M(x) and S5(x), where

(wt-kx)R(x) = R(x) e

S(x) = (x) e(t+kx)

The coupled-wave equations for the Bragg condition, are then 14 5 1

d (x) = K 3(x)

dx

(2.2.1)

d S(x) = K* R(x).

dx

We now use the variational formula (2.1.3) to determine

the governing equations for the waves in a SAW grooved grating.

We shall show that these equations can be cast in the same

form as (2.2.1) and identify the coupling coefficient K.

For an acoustic substrate, extending from z = 0 to

z = +co, the solutions for guided waves propagating along the

surface in the x - y plane are well known Rayleigh waves.

We assign them a propagation constant kr = 2m/X r, where Ar
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is the Rayleigh wavelength. These waves no longer satisfy the

stress-free boundary conditions if the surface is perturbed by

a grating. However, the Rayleigh wave solutions will be used

as zeroth-order trial solutions in the variational principle

(2.1.3).

Consider an acoustic substrate with a surface grating of

infinite extent in the x direction, and of period A (Fig.

2.2.2). The perturbed boundary is at z = A f(x), wherer

E(= h/X '<1, and the normalized surface perturbation f(x)r

has a peak amplitude of unity. We seek to determine the per-

turbed wave solutions for forward and reverse guided SAW's

along the x direction, and the degree of coupling introduced

between them by the grating. Ignoring diffraction, no depen-

dence on y will be assumed. If the grating were not present

(i.e. c = 0) the forward and reverse wave solutions would

both be Rayleigh waves. Thus,we take as a trial solution for

the variational principle (2.1.3)

u. Ru. + +Su. (2.2.2)

where u. are the displacements of the (zeroth order) Rayleigh

wave solutions. The wave amplitudes R and S are assumed to

be slowly varying functions of x, such that
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A(dR/dx) << 1 and A(dS/dx)< 1.

R S

Introducing the trial solution (2.2.2), into the variational

principle (2.1.3), thus gives

dvfR* u2 + S* u. C.. R u + S U
f3x 13x 3k xk3xk

+* -* + -
P dv(R*ut S*u. )(Ru. + Su.)

2-1 1

(2.2.3)

where the integration in x is taken over one full period A.

We now determine the relationships between R and S,

necessary for w to be a minimum. Since the trial solution

is correct to zeroth order, the variational principle will yield

relationships that are correct to first order (in c). In the

analysis all terms of the order E2 (O(E2)) and above will thus

be neglected. To derive the requirements for w2  to be sta-

tionary we differentiate (2.2.3) with respect to the wave am-

plitudes R and S. This may be shown to be equivalent to

differentiating with respect to R* and S*. The results are

W2 P vRu+12 +S+* - v R+ * C. +{p f 1 R1Ij+*
W J UR u K+ Su ui ]}=TdvLR Lut ijk -u

-'
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s U. c..u
Uk' U+S 3u Xk -

w2{pfdv[Si+u>2 ++Ru -u} dv s u -c ku
+ JLVl~ i ijkz

+ R-u. c.. u.
9x. ' cijk2. 9xk

Defining

+ * -
dv u. u.

1

H += f +v * 9dv u. c.i, uzU. aC.9X 1 ikz z
] Sk

the equations become

w2 K R + W 2 K+-S = H+R + H+ S

wO2 K S + w 2 K R = H S + H R.

(2.2.4)

Evaluating H++, we have

9 +* + F+* +
= dv u- u. c -. u =fds. u. ci . - u

1 ijZ x Z =1x9x k k
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dvc..-I--u+1 =- dv u* *..
i 9x 13k2, x z 9 3 13

9x Xk Sx

where the surface integral vanishes because the integration is

over one full period of the grating. Denoting the angular fre-

quency of the unperturbed Rayleigh waves by w0 , and introducing

(2.1.1), we obtain

H+ = pw 2 jdv ut ui = w02 K .++ o1"Jo ++

Similarly,

H 2 K
- 0 --

Evaluating H+- we have

;+* jk -H = dv u. c.. ku9
+- 3 DXk k

= ds. u. c..u3 ijk 3 U9z
9xk

-Jdvu.- c. u
3 k k kDx Dk x k

= { ds. u. T .. - {dv u7 c..
13x.

3

Defining
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0 +*-
C.= dS.u. U..

and again introducing (2.1.1), we obtain

H +*HW =0 p dv u. u. =C + 2

Similarly,

H C + W 2K
-+ -+ 0 -+

Substituting in (2.2.4) the relations between R and S be-

come

(W2 - Wo2 )KHR + (2 - W02)K S = C S
0(+. +- +

(2.2.5)

(W 2 -W 2 )K S + (2 - W2)K R= C R.
-0- -+ -+

The waves within the grating have propagation constants

of kr but are of frequency w. The presence of the grating.r

thus perturbs the frequency of the waves from the free surface

Rayleigh wave frequency w0 . We may Taylor expand w in terms

of the perturbation parameter e
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WU = W 0 + WE +

Introducing this expansion into (2.2.5), to O(E), we obtain

2Eww K S = CR
2 E W0 -- S - +R

or

cw 1 R = S

12 0K++I

(2.2.6)

Eol = [R.
2w K

The second terms on the LHS of (2.2.5) do not contribute to

these equations, since K+- and K-+ are themselves of O(e).

The grating waves have time dependence eJot. For the

slowly varying wave amplitudes R and S we therefore identify

the time derivative, 9/9t = jew. Thus equations (2.2.6) take

the form

R = j +-
9t 2K
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S = j.R.
at 2woK

By reciprocity Ju. I=Iu,+I, and C_=+C* Defining

Kt = j (2.2.7)
2w K+1

we have

-L = Kt S

at
(2.2.8)

S = -K*R
t t

which are of the general form of coupling-of-modes in time.

These equations describe the time evolution of the wave ampli-

tudes in the grating. However, we are interested in the spatial

evolution of the waves. The corresponding coupling-of-modes

equations in space are easily obtained.

A plane wave, of unspecified nature, propagating in the

j (wt-kx)
+x direction has the general dependence e . The pro-

pagation constant k is given by k = o/v, where v is the

velocity of the wave. Thus
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9t

= -jk = -jw/v.
Dx

Hence, for a wave propagating in the +x direction

9 193

9x v 9t

Similarly, for a wave propagating in the -x direction

9 _19

9x v Dt

From (2.2.8) the coupling-of-modes equations in space are

therefore,

R = KS
ax

(2.2.9)

S = K*R
9x

where from (2.2.7), the spatial coupling coefficient is given

by



K = -K I = -J

In (2.2.10) vr

waves.

+ I2
ds. u, c..

2v ru)o p dv l u + 2

is the velocity of the zeroth-order Rayleigh

The homogeneous equations (2.2.9), obtained for R and

S using the variational principle, are thus identical in form

to the resonant coupling-of-modes equations (2.2.1) for a dis-

tributed-feedback structure. The specific form of the coupling

coefficient K, for a surface-wave grating, has been determined,

by the variational analysis, in (2.2.10).

47

(2.2.10)
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2.3. First-Order Reflection Coefficient

We now evalute the coupling coefficient K, determined

in Section 2.2, in terms of the grating parameters and the

Rayleigh wave constants. From this evaluation the first-order

reflection coefficient of a Rayleigh wave from a single normal-

incidence groove is obtained.

The coupling coefficient K, between the forward and

reverse waves in a SAW grating, is given by (2.2.10). We con-

sider a grating of period A, where the grating boundary is

defined by z = EX f (x) [Fig. 2.2.2]. The surface perturba-
r

tion f (x) has a peak amplitude of unity. In Appendix A the

stress on the surface of a grating a5 , due to an acoustic

wave, is determined. For a Rayleigh wave,from (A.5), we have

to O(E)

- r =Xar' -ar + ACr
a = Exr[f(x) (0) - f'(x) a (0)]x + E f(x) (0)z
s r xz xx r zz

where

ar (0) = a..
1J IJz=0

and

ri r
a'?. (0) = a.

9z z=0



49

Hence, to O(sE)

+* _A r*-r' -r
ds . u.I . . = [Ardx {u (0)[f(x) a (0) - f'(x) r (0)]

3 Jr x xz xx

+ U f (x) (0)1 (2.3.1)z zz

where the superscript (-r) denotes a backward Rayleigh wave

(propagating in the direction -x), and

ur r0) = ur
x x

In Appendix B the displacements, stress components, and

the dispersion relation for Rayleigh waves are derived. Again,

let the amplitude of the forward wave be denoted by R, and

that of the backward wave by S. Evaluating (2 .3.1), using the

displacements and stress components given in (B.20), and using

the Rayleigh wave dispersion relation (B.18) gives

ds. . .. = 2 ps\ R*S k.2(r q q odx f(x) e2 Jkrxds i rij r 2 r r) r

(2.3.2)

Since f(x) is a periodic function, only the component of f(x)
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-2jk x
with dependence e r contributes to the integration. The

latter result was made use of in obtaining (2.3.2), by identi-

fying f'(x) = -2jkrf(x).

Considering the denominator of (2.2.10), we have

2vrw p {dvjuj 2 = 2vroPA dzIuiI2. (2.3.3)

However, the time average power (per unit width) of a forward

propagating Rayleigh wave is

P = v W
r r

where W is the time average energy of the wave per unit sur-

face area of the solid. Thus,

W p 2 {f dz utrI2.
2 0

Hence,

vrr2 dz IuirK2. (2.3.4)

But from (C.3)

r = 2rpk 2 o;I (2.3.5)
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where Y is a dimensionless quantity, analogous to a charac-
0

teristic admittance for the solid. From (C.5)

=k (kr2 r - kr 2 %+2q 2 r) (2.3
Y 0= k r 3r r r(2.3.6)
o 2 32k 3q 3r

r r r

A plot of Y0 , as a function of the isotropic Poisson ratio

v = X/2(X + j), is given in Fig. 2.3.1. Substituting in

(2.3.3) from (2.3.4) and (2.3.5), we obtain

2 vr Jo dvjui+2 = 8pk2
2 RA YJJ. (2.3.7)

The magnitude of the coupling coefficient K, in a SAW

grating, is now readily determined. By reciprocity RI = IS.

Introducing (2.3.2) and (2.3.7) into (2.2.10), and noting that

for an isotropic material

k2 > k

and thus

r r >q r

we determine



52
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(rr - qr )q r A 2jk rx
K = (r r r 1Adx f(x) e r .r

4AY-0

If the normalized surface perturbation f(x)

into a Fourier series

is decomposed

0o

f(x) = A cos(n k x)
n=l g

then at Bragg

k = 2k
g r

and, at p x Bragg,

k = 2k /p.
g r

Hence,

AA,

2jk x 2
dx f(x) e t

A ,
2AP

at Bragg

at p-th harmonic.

From (2.3.8) the magnitude of the first-order coupling coeffi-

cient in a normal-incidence SAW grating is thus, at Bragg

53

(2.3.8)

A

0
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(r - q )g
Kj=EA r r rA

8Y
0

and in general, at the p-th harmonic

(rr - q r rKI= EA rrA .
r Byp

(2.3.9)

(2.3.10)

Finally, we determine the first-order Rayleigh wave re-

flection coefficient of a single normal-incidence (two-sided)

groove. To be consistent with previous work we define the re-

flection coefficient to be 2r. 4 6 Since 2r = KIKA, we have

S (A r/2 ),
2r={

r(A/2)p,

at Bragg

at p-th harmonic

Thus from (2.3.9)-(2.3.11), and replacing A = (2Tr/k ), at
r r

Bragg

2r-E Tr2(rr - r

4k 2y
r o

(2.3.12)

and in general, at the p-th harmonic

CIr 2 (r. qg
2r- = rpA -

4k 2y P
r o

(2.3.13)

(2.3.11)
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For the special case of an "idealized" grating, with a

square-wave profile, A = 2/n7 for n odd, A = 0 for nn n

even. Thus, at Bragg and the odd harmonics,

cr(r - q )q
2r= r r r 2.3.14)

square 2kr Y
wave 0

and, at the even harmonics,

2r =0
square
wave

to O(s). The reflection coefficient of an idealized grating

at the odd harmonics (2.3.14) is plotted in Fig. 2.3.2, as a

function of the isotropic Poisson ratio V. Throughout this

thesis to apply the results of the analyses to typical aniso-

tropic substrate materials, we shall use the concept of an

[47]"equivalent isotropic Poisson ratio". In particular, we

shall use the theoretically derived values of v = .335 for

Y - Z LiNbO3 , and v = .41 for ST Quartz.[ 3 0 1 Thus, from Fig.

332.3.2 we find that for Y - Z LiNbO3 2ru0z.69E5, and for

ST Quartz 2r ~ 0.53E.
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CHAPTER 3

FIRST-ORDER REFLECTION COEFFICIENT

FROM BOUNDARY CONDITIONS

3.1. Coupling-of-Modes Approach

In Chapter 2 the first-order reflection coefficient of

a normal-incidence groove was obtained from a variational

principle. An alternative approach is now presented.

The method to be described is based on determining the

width of the grating stop-band, by considering the boundary

conditions on the surface of the grating. By means of coupling-

of-modes theory the reflection coefficient of a single groove

of the grating is then determined. The approach is "quasi-

variational", in that the reflection coefficient, and the width

of the stop-band, are obtained to one higher order (in c)

than the stresses used in the analysis.

The coupled-wave equations for a normal-incidence grating

are

9-2jx
R(x) = K ejxS(x)

9x

(3.1.1)
_ 2j
S(x) = K* ej R(x)

9x

where R(x) and S(x) are again the slowly varying amplitudes
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of the two counter-propagating waves, i.e.

j(wt-k rx)
R (x) = j(wt-kx)

j(Wt+krx)
s (X) =s(X) e

(3 .1. 2)

The parameter A is the amount by which the waves are "detuned"

from the synchronous frequency of the grating to.

A- 0 (3.1.3)

r

where (o0/vr)A = prr (p = 1 at Bragg). The dispersion rela-

tion for the forward wave R(x), is easily obtained. From

(3.1.1)-

R(x) + 2jA -- R(x) - K12 R(x) = 0.
9x2 g

Assuming a solution of the form eJQX gives

a2 - 2ac + K1 2 = 0

a = A 2
- 23..4 (3.1.4)
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If the propagation constant of R(x) is denoted by s, then

from (3.1.2)-(3.1.4)

= k + a = (w /v ) A 2 - K1 2 . (3.1.5)r a r

This dispersion relation is shown schematically in Fig. 3.1.1.

We observe that within the grating stop-band the propagation

constant 1 is complex. The stop-band is symmetric aboutw0

and is of width

(W+ - W-)
= 2 K!. (3.1.6)

v
r

At the upper and lower stop-band frequencies, w+ and w_

respectively, the propagation constant is equal to that of a

free-surface Rayleigh wave of frequency Wo, i.e.

() = kr =w0/r = p7/A. (3.1.7)

In the above analysis 1 was determined for a given o.

However, we may instead choose to define 1 and determine the

resulting w. This will be the approach used in determining

the grating reflection coefficient from boundary conditions.
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Interchanging the dependent and independent variables 3 and

W in Fig. 3.1.1, the dispersion diagram is redrawn in Fig.

3.1.2. The procedure to be followed for determining the re-

flection coefficient will now be described.

The method is based on determining the upper and lower

frequencies of the stop-band, w+ and w_ respectively. At

these frequencies the fundamental waves, propagating in the
Tk x

grating, have dependence e r , with kr given by (3.1.7).

From (3.1.7)

2kr, at Bragg
k = 27w/fA = (3.1.8)

2kr/p, at p x Bragg

Assuming propagating wave solutions in the grating, with de-
~jk x

pendence e r , the frequency of the waves is determined

from the grating boundary conditions. Requiring the surface

of the grating to be stress free leads to two determinantal

equations that determine w+ and _ . The coupling coefficient

of the grating is then obtained from (3.1.6) and the reflection

coefficient of a single groove computed from (2.3.11).

A significant advantage of this method is that in deter-

mining the perturbed frequencies (W+ and w_) to O(E),

ojk x
only the fundamental wave components with dependence er
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need be considered. Though components with other spatial

dependencies are of finite amplitude to O(E), in the grating,

they are not required in the analysis. The method is thus

computationally very efficient with similar advantages to the

variational principle of Chapter 2.
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3.2. Determinantal Equations from Boundary Conditions

In this section the first-order determinantal equations

are derived, from which the upper and lower stop-band frequen-

ciesw+ and o respectively (Fig. 3.1.2), are to be de-

termined.

At w+, o the fundamental waves in the grating have
wjk x

dependence e , with k given by (3.1.7). To satisfyr

the boundary conditions on the surface of the grating to O(E),

we shall assume these waves to comprise a compressional wave

and a vertical shear wave propagating in the direction +x;

also a compressional wave and a vertical shear wave propagating

in the direction -x. The amplitudes of these waves are zeroth

order (and above) in 6, the depth of the grating perturbation,

since these solutions continue to exist for E = 0. In the

limit C = 0, each pair of co-propagating waves combines to

form a Rayleigh wave. However, for E A 0 the ratio of the

shear/compressional wave amplitudes of each pair is different

from that of a Rayleigh wave, by O(s). In addition,the waves

no longer satisfy the Rayleigh wave dispersion relation (B.18).

To satisfy the boundary conditions on the surface of the

grating completely, to O(E), additional wave components with

other spatial dependencies are required. These waves, however,

exist only in the presence of the grating (E A 0) and are thus
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of O(E) (or above). As discussed in Section 3.1, the ampli-

tudes of these waves are not required to determine the deter-

minantal equations for the upper and lower stop-band frequencies

to O(E). (We shall see later in this thesis that these waves

are responsible for the stored-energy effects in the grating.)

From (A.4) the stress on the surface of the grating is,

to O(C)

a = {a (0) + s [ xf(x)za' (0) - f'(x) a (0)]} xs xz r xz xx

+ {a (0) + EXr [f(x) 'z(0) - f'(x) a (0)]} z (3.2.1)

where

a. (0) = a.
1J i z=0

and

a! . (0) =

ii z 3 z=0

As in section 2.3 we represent the normalized surface pertur-

bation f (x) by a Fourier series

CO

f(x) = IAn cos(nk x) (3.2.2)
n=1 g
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thus

CO

f'(x) = - nk A sin(nk x). (3.2.3)
n=l g n g

Since the surface of the grating is a free boundary, it must

be stress free i.e. a = 0. This condition, from (3.2.1)-

(3.2.3), requires

J (0) + Ex A cos(nkgx) a' (0) + I1 nkgA sin(nkgx)
xz r Ln= 1 n g9 x n=1

a (0) }=0 (3.2.4)

* (0) + EAr An cos(nkgx) a' (0) + nk A sin(nkgx)]
z Z r _n= ngn= g ng

aYxz (0) = 0. (3.2.5)

The only waves in the grating with a finite zeroth-order ampli-
wjk x

tude (in E) are the propagating waves with dependence e

Thus, to O(C) only the stress components of these waves are

required in the terms CAr{ } of (3.2.4) and (3.2.5). The

latter terms thus comprise, in general, an infinite set of



67

;jk x Wi)nk x
components with the dependence e r e 9. From (3.2.4)

and (3.2.5) the same wave components are required for ax (0)0,

a z(0). Thus, an infinite set of waves with spatial dependence

jk x (T-)jnk x..e rX eg is required to satisfy the boundary conditions

on the surface of the grating to O(E). The wave components

with n ; 0 are referred to as Brillouin components and are

of O(s) (or above).

Equations (3.2.4) and (3.2.5) must be satisfied separately

for each of the spatial dependencies of the waves. The deter-

minantal equations, for the upper and lower stop-band frequen-

cies, are obtained by considering only those terms with the

spatial dependence of the fundamental waves, e jkrX.

To simplify the analysis the following notation is intro-

duced. The amplitude of the acoustic waves with spatial depen-

dence e+JkrX is denoted by Si, where

for compressional wave

2, for shear wave.

Also the x-independent stress components of these waves a'+

are defined by

_ wjk x+ + -r

ije t c r g n o s n d

To zeroth order, the co-propagating compressional and
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shear waves in each direction are Rayleigh waves (with amplitude

S 1-). In (3.2.4) and (3.2.5) it can be seen that the propa-
1 Tjk x

gating waves with dependence e r are coupled together

only via the Fourier component of the grating An, with nk
n -g

- 2k . At the p-th harmonic from (3.1.8) k = 2k /p. Thus,
r g r

for the stop-band at the p-th harmonic, the propagating waves

are coupled together only via the Fourier component A of
p

the grating. Hence, from (3.2.4) we obtain, to O(c)

-jk xr
cf. e dep.

S+ +'i (0 A[A- --r' - -r
S. +a+ (0) + Ex[(A/2) Sl a- (0) + jk A S U (0)]=0
i ixz r p 11rp xx

+jk x
cf. e r dep.

+ r' + r
S. a'x (0) + EA [(A /2) S U(0) - jk A S U (0)] = 0
1 1xz r p 1 xz r pl xx

where a repeated subscript again implies summation. From

(3.2.5) we obtain, to O(E)

-jk x
cf. e dep

+ _+ (A-r
Si CFizz (0) + X r(A /2) S1 U (0) = 0

izz r pzz
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+jk x
cf. e dep.

Si a (0) + X (A /2) S + r'0)=0
2 izz r p 1 zz

rr r* - +*since a = 0. By reciprocity j = a.. and a.. =a.,
xz 13wts l m t t s

with this replacement the equations are

+ ~+ -71 r*7r
s. i .x (0) + EXr ApS - xz (0) r+jk xx(0) 0
Si &ixz ()+~r pS 1 Li x r*+ j xx~r

S. U. (0) + EX A S +r(S ) - jk ax(0)7 =1 xz r 2x rx

+. . (0) + eX (A /2) S1 & ()=0
1 z r U 1 zz(0 =0

S. - . (0) + EX (A /2)S + (0) = 0.1 izz r p 1 zz

(i)

(ii)

(iii)

(iv)

(3.2.6)

The form of (3.2.6) now suggests a transformation of variables

to reduce the four inter-dependent equations, to two independent

pairs of equations. Defining

T + -*5. = S. +5S.
1 1 1
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D + -*
S S =. -S. (3.2.7)

from (3.2.6) (i)+(ii)*, and (iii)+(iv)* respectively,

T ~+ T* 1 r* r*S. a. (0) + EX A 1  r S (0) + jk r (0) = 0

T ~+ T* r*S + (0) + EA (A /2)S r (0) = 0 (3.2.8)
1 zpr 2p l ~zz

and from (3.2.6) (i)-(ii)*, and (iii)-(iv)* respectively,

D + )SD* 1 r*' r*
xzr p 1 2xz (0) kr xx(j 0

D + SD*r*S . (0) - EX (A D*/2) r (0) = 0. (3.2.9)
Szzr p 1L~ zz

Equations (3.2.8) and (3.2.9) are independent pairs of equations

for the amplitudes S , S2 and Sl S2D respectively. For

E A 0 the determinantal equations for (3.2.8) and (3.2.9) will

be different. Since both cannot be satisfied simultaneously,

then either

D + -*
S. =0 S. =S.1 1 1
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or

T + -S. = 0 + .= ,S1 01 1

to 0(s).

Case 1: S. +=S

D TIn this case SD = 0 and Si is finite. Thus this

solution satisfies the determinantal equation of (3.2.8).

Introducing the bulk and Rayleigh wave stress components from

(B.8), (B.14) and (B.20) into (3.2.8), and defining S1+ to

be real, gives

[2pjk r - EX pjk A (r - q )(2q + r )JS +r r r p r r r r 1 -(k 2 + q2)3 =r 2

y(k r 2 + q2) -x r(A p /2) (rr qr ) (k r2+qr 2) IS1+ + 2yjkrqS 2 +=0

(3.2.10)

To 0(.) , the determinantal equation is

(k 2 + q% 2 
- 4k 2qr = - sA A (r - q )[2k 2 q (2q + rr r r p r r r r r r
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- (k 2 + q 2) 2]
2 r r

which simplifies, using the Rayleigh wave determinantal equa-

tion (B.18), to

(k 2 +2)2 - 4k 2 qr = - EA 4k 2q 2 (r - q )A (3.2.11)r r r r r r r p

Case 2: S. =-S.

T DIn this case S. = 0 and S. is finite. This solution

therefore satisfies the determinantal equation of (3.2.9). The

determinantal equation of (3.2.9) will be identical with that

of (3.2.8), except for the replacement E + -c. Thus, in this

case, the determinantal equation is

(k 2 + q2
)
2 - 4k 2qr = + EA 4k 2q 2 (r - q )A . (3.2.12)r r r r r r r p

Equations (3.2.11) and (3.2.12) are the required deter-

minantal equations for determination of the upper and lower

stop-band frequencies, w + and o respectively.
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3.3. Determination of Stop-Band and First-Order Reflection

Coefficient

At the edges of the stop-band w+, w [Fig. 3.1.2] the

surface waves in the grating have propagation constant kr'

rr
where k r is the propagation constant of a Rayleigh wave at

frequency w0  (3.1.7). Corresponding to these two frequencies,

it was determined in the previous section that,from boundary

considerations, the two solutions with propagation constant

kr in the grating, satisfy the alternate determinantal equa-

tions (3.2.11) and (3.2.12). Thus at w+' W

(k 2 + q2 2 - 4k 2qr = eX 4k r2 2 (r - q )A (3.3.1)
r r r r r r r p

where r and q are the decay constants of the compressional

wave and the shear wave respectively. A is the Fourier
p

coefficient of the grating, and p is the harmonic of the

stop-band.

From (3.3.1) we now determine the width of the stop-band.

Defining the perturbed frequencies at the edges of the stop-

band by

w
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then from (D.6) the modified dispersion relation for the waves

is, to O(AO)

4k 2
(k 2+q 2)2-. 4k 2 qr= r (r -q )(k 2r - k 2 q +2q 2r)

rr q r r r r r r r r r
r r

(Aw/w ) . (3.3.2)

Hence, from (3.3.1) and (3.3.2) we determine

3
Awqr r

= E A . (3.3.3)
iwi "r (k 2r - k 2q + 2q 2r )'0' r r r r r r

The width of the stop-band is 21AwI and,as expected from the

coupling-of-modes analysis of Section 3.1, the stop-band is

symmetric about w0 .

The reflection coefficient of a normal-incidence groove

2r, is easily obtained from (3.3.3). We first determine the

magnitude of the coupling coefficient K in the grating.

From (3.1.6)

K r = k
Vr r i

Thus from (3.3.3)
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kq 3r
K= 2Er2r r A.

r (k r - k 2q +2g 2r) )
r r r r r r

Introducing the characteristic admittance Y0 , using (C.5),

and using the Rayleigh wave dispersion relation (B.18), we

obtain

(r r q. )q
K=EX r r rA .(3.3.4)

r 8Y P
0

This is in exact agreement with the first-order coupling coef-

ficient obtained using the variational principle (2.3.10).

Using (2.3.11) the reflection coefficient of a normal incidence

groove is thus again found to be as given by (2.3.13), i.e.

Tr2(r - q )q
r r pA

2r = _____A___

4k 2yPr 0

at the p-th harmonic.



76

CHAPTER 4

SECOND-ORDER STOP-BAND AND FREQUENCY SHIFT

4.1 Introduction

In the majority of applications, SAW gratings are used

as reflective arrays and thus required to operate close to the

frequency of maximum reflection. If the surface-wave velocity,

within a grating, is assumed to be unchanged from the velocity

on the free surface vr, maximum reflection is to be expected

at Bragg. At the Bragg frequency w /v = /A, thus
0 r

A = X /2 (4.1.1)
r

where A is the period of the grating. For an "idealized"

grating, with a square wave profile, the reflections from the

front and back faces of each groove then add exactly in phase

and the grating has maximum reflection.

In Chapter 3 we found that to first order (in c) the

stop-band of a grating is symmetric about the synchronous fre-

quency of the grating w 0 . This is as expected from first-order

coupling-of-modes theory. A grating designed for maximum re-

flection at Bragg (w), according to (4.1.1), will thus have

maximum reflection at the expected design frequency and a sym-
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metric stop-band response, to O(c). The surface-wave velocity

within a grating may therefore be assumed to be unchanged to

O(z), from that on the free surface, when designing a grating

reflector.

In narrow-band, high Q SAW gratings second-order effects

(in c) can become important for grating design. In particular

several authors have reported that the frequency of maximum

grating reflection is found experimentally to be lower, by

0(c2 ), than that predicted by (4.1.1). [3,525] For design

purposes therefore, the effective surface-wave velocity within

a grating must be taken to be less than that on the free sur-

face, by 0(c2 ).

Strong second-order effects have also been observed near

the second-harmonic frequency (i.e. 2 x Bragg) of a grating. [26-29]

The first-order analysis, given in the preceding chapters, pre-

dicts no reflection from an idealized grating, with a square-

wave profile, at the second-harmonic, since A2 = 0. However,

a reflection comparable with that at Bragg has been reported

for such a grating. [281 In addition, another important second-

order effect that has been observed near the second-harmonic

is the coupling of surface energy into bulk modes. [2 6 1

In this chapter, the analysis of Chapter 3 is extended

to obtain the grating stop-bands to O(E 2). Both the center
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frequency and width of the stop-band are determined at each

harmonic of the grating. The second-order reduction in the

frequency of maximum grating reflection, at the specified har-

monic, is determined from the center frequency of the stop-band.

In addition, a change in the width of the stop-band can be in-

terpreted as a change in the grating coupling coefficient K.

The latter implying a second-order change in the reflection

coefficient/groove. Furthermore, at the second and higher

harmonics, the analysis also predicts bulk radiation loss.

In the following chapter the second-order effects, pre-

dicted by the theory, are examined in detail around Bragg and

the second-harmonic frequency of the grating. The effect of

the grating profile on second-order effects is studied. When-

ever possible the theory is compared with available experimental

second-order data such as that referred to above.
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4.2 First-Order Wave Amplitudes

Following the approach of Chapter 3, we now seek to de-

termine the upper and lower frequencies of the stop-band, w+

and w_ respectively, to 0(6 2 ). To do so we will require

the amplitudes of all the stress components in the grating, at

W+ and w_, to 0(s). The amplitudes of the fundamental

waves, with dependence e jkrx can be determined immediately.

+ -
Case 1. S. = S.

1 1

This case corresponds to w . From (3.2.10), to O(s)

s 2jkrr (r - qr)(2q + r )
2 _r -EXrjk A r r r r

- k k2 + q2) r r p ( ) + q2)

r r r
r - el j A r r r r

2kq r4k qr r r

(4.2.1)

where p is the harmonic of the stop-band (p = 1 at Bragg).

Case 2. S. = -S.
1 1

This case corresponds to W . The relations for the pro-

pagating waves are identical with those for Case 1, except for
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the replacement E + -E. Thus, to O(c)

S 2 jkr (r - qr)(2q + r )
2 _ r +Exrjk A r r r r

S (kr 2 + q2 ) r r p (k 2 + q 2
1r r r

(k 2+cj 2 ) (r - q ) (k 2 q2

.(r2+EXjA r r r2 r2(4.2.2)

2k q r p 4kq
rr r

In the limit = 0, both (4.2.1) and (4.2.2) are in

agreement with the ratio of the shear/compressional wave ampli-

tudes determined for a Rayleigh wave (B.19).

The boundary conditions on the surface of the grating

cannot be satisfied, to O(E), with only the fundamental wave

components considered above. It was shown in Section 3.2 that

additional "Brillouin" components are required, with the general

spatial dependence e+JkrX e(+)jnkgx. The amplitudes of these

waves, which are of O(e) or above, can be determined from

the boundary conditions. From (3.2.4) and (3.2.5), for the

surface of the grating to be stress free (c~ = 0) to O(s),
5

we require

a (0) + C A cos(nkgx)] c'(0)
xz r _il n g xz



81

+ fnkg A sin(nkgx)jaxx(0)=0 (4.2.3)

a (0) + L {[ A cos (nkgx) a' (0)zz r n1n g zz

+ nkgAnsin(nk x) a (0)= 0. (4.2.4)n=flkg n g) ~ xz()}0

Only the fundamental waves, with spatial dependence eTjkrX

have finite zeroth-order amplitude (in E) in the grating.

Thus, as discussed in Section 3.2, to O(s) only the stress

components of these waves need be included in the terms

sXr{ } in (4.2.3) and (4.2.4).r

At the edges of the stop-band, for the p-th harmonic

of the grating, from (3.1.8) k = 2k /p. Referring to Fig.
g r

4.2.1, the Brillouin components therefore have the general

spatial dependence

Tj(k + nk )x
e n

and
+j(k - nk )x

e r g

where
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FIG, 4.2.1 SPATIAL FREQUENCIES OF GRATING WAVES AT

SYNCHRONISM.
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[ p/2 for p even
p = (4.2.5)

(p - 1)/2, for p odd

We denote the amplitudes of the waves with dependence

(k + nk )x +ne r g by S (f) These waves all decay away fromi

the surface and thus radiate no energy into the bulk. The

amplitudes of the Brillouin components with dependence

e Tj(kr - fkg)x are denoted by S 1 (.n) Compressional waves

with the latter dependence propagate into the bulk for (k r
nk ) < k ; shear waves for (kr - nk ) < k2 All the compres-

sional waves, of these Brillouin components, are therefore

radiative for p < 2/(l - k1 /kr); and the shear waves for

p < 2/(l - k2 /kr). For an isotropic solid % .87 < k2 /kr <

m .95. [48] All the latter shear waves therefore radiate energy

away from the surface, in any isotropic material, for p < 15.

This condition will be the case in almost all problems of prac-

tical importance. For p = 2,3 the single compressional wave

component of these Brillouin waves will radiate for 0 < v <

.42, where v is the Poisson ratio of the solid.

In Appendix E the amplitudes of all the Brillouin compo-

nents, at the edges of the stop-band, are determined to O(e).

The amplitudes are determined by considering only terms with

the corresponding spatial dependence in (4.2.3) and (4.2.4).
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4.3 Determinantal Equations to Second Order

The determinantal equations at the upper and lower fre-

quencies of the stop-bands, w+ and w_ respectively, can be

derived to Q(c2), using only the first-order wave amplitudes

in the grating. The analysis is an extension, to second order,

of the approach presented, in Section 3.2. It is based on con-

sidering the boundary conditions on the surface of the grating

to 0(s2 ). From (A.3), the stress on the surface of the grating,

for waves with no y-dependence, is to O(62)

{a(0) + EX [f(x) a'(0) - f' (x) a (0)]

(r ) [ ) f ( ) Gxx 2+ (f (x 2 xz(0

- (f (x))2Cy" (0)] X

2= 
XX

- (EX) +f(x) f'(x) a' (0) +- (f'(x)) 2 a(0)r Xz 2 z

-- (fr(X)())2
+ ( x

z (0)]},

2

- (f a~x)))]a" (4.3.1)
2
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where

a. . (0) = a.

1] IJz=0

!. (0) = 9 Va..
9z z=0

at'. (0) = @ a.
9Z2 z=0

Again, we represent the normalized surface perturbation f(x)

by the Fourier series (3.2.2). The derivative f' (x) is given

by (3.2.3).

The surface of the grating is a free boundary. Thus, it

is required to be stress free, i.e. ~= 0. To satisfy the

boundary conditions, in general, both fundamental (e+jkrX dep.)

and Brillouin wave (e+ jkrx e(T) jnkgx dep.) components are

required in the grating. These waves consist of both compres-

sional and shear wave components. The fundamental components

are the only waves with finite zeroth-order amplitude. All

the Brillouin components are of O(E) or above. Furthermore,

the fundamental wave components, to zeroth order, are counter-

propagating Rayleigh waves. Therefore, to O(E2), only the

stress components associated with the latter need be included
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in the terms (s r )2 [ in (4.3.1). Hence, to satisfy the

boundary conditions to O(E2 ), from (4.3.1), (3.2.2) and

(3.2.3), we require

a (0) + EX {LI An cos(nkgx)] a' (0)
n=xz

+ nkgAnsin(nkx) a x(0)
n=1 g x

+ (EA )2 XAmA nk cos (mk x) sin(nkgx) a' (0)
r =1n=4 Amn g g inkgx xx

+ X I AA cos (mk x) cos (nkgx)falc"(0) = 0
2 m=l n=l m n g g xz f

(4.3.2)

(0) + XrL I An cos(nkx)] a' (0) (4.3.3)
zz r n=l 9n g zz

+ I nkgAnsin(nkgx) axz (0)
n=1 g x

+ (x )2 IAm Annk cos(mk x) sin(nk9X) a' (0)
r {Lm=l n=1 Amn g g g xz

+ 1 ) A A cos(mkgx) cos(nkgx) " z(0) = 0
2 m=l n=l m n g g zz f
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since a (0) = (0) = 0.xz zz

The determinantal equations, at the edges of the stop-

bands, are obtained by considering only the grating surface

stresses in (4.3.2) and (4.3.3) with the spatial dependence

e- jkrx. In these equations, to 0(62), the only unknown wave

amplitudes are those of the forward propagating compressional

and shear wave components with dependence e- jkrX. The other

wave components, in the grating, generate surface stress com-

jkrXponents with dependence e jkrx, only via their interaction

with the spatial components of the surface. Since the surface

perturbation is of O(E), an error of 0(52), in these wave

components, introduces an error of only O(E3) into the equa-

tions. Hence, to satisfy the boundary conditions on the sur-

face of the grating, for stress components with dependence

e krx, to Q(e2), with the exception of the forward propa-

gating fundamental wave components, we only require the ampli-

tudes of the grating waves to O(E). All the wave amplitudes

were previously determined, to O(E), in Section 4.2 and Ap-

pendix E.

By considering the surface stress components with depen-

dence eJkrX, as described above at w+ and w , a pair of

simultaneous equations for the wave amplitudes S1+ and S2 '

to 0(62), is obtained. For non-trivial solutions, at each

frequency, the determinants of the equations must be zero. In
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this manner the determinantal equations, at the edges of the

stop-bands, are derived. The details of the analysis are given

in Appendix E. At the lower edge of the stop-band w, the

waves in the grating satisfy the determinantal equation (E.30),

to 0(s 2 ). At the upper edge w+ the waves satisfy the de-

terminantal equation (E.34), to O(E2)

In the determinantal equations (E.30) and (E.34), the

compressional and shear wave decay constants, r and q re-

spectively, are as yet undetermined. This is the case because

although the grating waves have propagation constant kr, the

frequency of the waves is perturbed by the grating, from w

[Fig. 3.1.2], and has yet to be determined to O(c2). In the

following section, by Taylor expanding the decay constants in

terms of the frequency perturbation at the gap, as in Appendix

D, the frequencies of the edges of the stop-bands, W+ and

, are determined to 0(E 2 ) from the determinantal equations.
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4.4 Second-Order Stop-Band and Frequency Shif t

At the p-th harmonic (i.e. p x Bragg) the propagation

and decay constants of the fundamental waves in the grating

satisfy the determinantal equation (E.30), at the lower edge

of the stop-band, w ; and the determinantal equation (E.34),

at the upper edge of the stop-band, w+. In this section, we

derive, from these equations, the second-order shift of the

center of the stop-band and also the width of the stop-band

to 0(62).

We begin by determining w+ and o to O(82).

(1) o_:

At the lower edge of the stop-band we write

to =to 0 + AwCO(4.4.1)

where o is the unperturbed frequency of a Rayleigh wave

with propagation constant kr (3.1.7). The frequency pertur-

bation Aw_ may be expanded to 0(62) as

iot_ = A 1
+ .Mr ) 2 W2
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The first-order frequency perturbation Aw1 is already known

from the first-order analysis. Replacing Aw1  from (3.3.3),

we have

Aw . A q 3r 'rA p rr

o r(k2r r - k r2 + 2q 2r)-o-r r r -r r r

+ ( )2 2 . (4.4.2)
wo

The modified dispersion relation, for waves in the grating, is

given in terms of the frequency perturbation of the waves Aw,

by (D.6). Introducing (4.4.2) into (D.6), we have for waves,

at frequency w_, to 0(c 2)

(k 2 + q 2 )2 - 4k 2qr = - c 4k 2q 2 (r - q ) Ar r r r r r r p

+ (EAr)2
2k 2q 3 (r - q )A 2

r r r r p 2

r (kr 2r - k 2q + 2q 2r )2rrr r r r r

[k 4 (r - q )(r + q )2r r r r r

+ k 2q 2r 2 (r - q ) + 10q rr 3]r r r r r r r

Cr - q)
+ (EX )2 4k 2 r r (k 2r - k 2 q + 2q 2r ) 2

r r r r r r r r Wq r

(4.4.3)
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Equating (4.4.3) with the determinantal equation (E.30), and

expanding the decay constants q and r, using (D.3)-(D.5)

and (4.4.2), we determine

2 - rr(3k 
2 q+ k 2 r

4(kr 2 r - k 2q + 2q 2 r r

+ q 2 r - q 3 )A 2 - (k 2 + q2) (rr + q )qr r qr P r r (r r qr AnA n+pn=1

p-i
+ AA[p-nqr (rr +q r(n/p)(k2rr + k r

n=rrp-nqrr r r r r r r

q r 4 Ap 2 [kr 4 (rr qr)( 5 rr 2 +q r 2 )+qr 2rr 2 (3k 2rr +kr 2 -2q 2rr)]

2(k 2r - k 2q + 2q 2r )3r r r r r r

qrrr [2jkrcr T + (kr2 + qr 2T
(4.4.4)

4k 2 (r - q )(k 2r - k 2q + 2q 2 r )r r r r r r r r r

where T and T2 are given in (E.28).



92

(2) w +

At the upper edge of the stop-band w+, we write

W+ = w + AW+. (4.4.5)

Again AK+ the frequency perturbation, may be expanded to

a(s2 ), as

Aw + = X Aw 1+ + (sXr)2w2+

With the value of AO, determined from the first-order

analysis (3.3.3), we have

Awo A q 3r
+ _1 pqr r

wo r(kr2r -kr 2q + 2q 2 r )Wa r r r r r r
( )2{ .(4.4.6)

r w

Introducing (4.4.6) into (D.6) yields the modified dispersion

relation, for waves in the grating, at frequency w+. Equating

this with the determinantal equation (E.34), and expanding the

decay constants q and r, using (D.3)-(D.5) and (4.4.6), we

determine

q rk
{(3k2 q + k 2r

4(k 2r - kr 2 q + 2 2r) r r r r

2 _2_+

[ 1=o-
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CO

+ q 2r - q )AP2 + (kr2 + q 2) (r + qr) AA
r r r pr r r rn=1nnp

p-i
- AA p-n rrr (rr + qr) - (n/p) (k 2 r + k r

n=l

nq lr p-n 3qr r r qr rr3

+ 2qr2+ 3qr2 rr + gr3}

q 4 A 2 [k 4 (r - q )(5r 2 + q) + q2 r 2 (3k2r + k2 q - 2q2r
r p r r r r r r r r r r r rr

2(kr 2 rr - k rq + 2qr 2rr3

qrrr [2jk r T3 + (kr 2 + qr 4
(4.4.7)

4kr 2 (rr - qr)(kr 2rr - k r2q + 2qr 2rr

where T3 and T4  are given in (E.33)

The edges of the stop-band, w+ and w, are thus com-

pletely determined to second order (in c). If we define the

center of the stop-band to be w', from (4.4.1) and (4.4.5)

22(W++w) (Aw2+ + Aw )

2 0 .2

Hence, from (4.4.2) and (4.4.6)
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(Aw+ + Aw
(W' - W0) = A = (EXr )2 2 2 (4.4.8)

0 r 2

where AQ is the shift in the center frequency of the stop-

band. From (4.4.8), as already determined by the first-order

analysis, we observe that AQ is of second order (in E). The

width of the stop-band is given, to O(E2) by (o + -).

At Bragg, Aw2 are both real. Thus, the stop-band center

frequency w' is pure real. However, at the second and higher

0 
+harmonics (p > 2) Aw2 are both complex due to the contribu-

tions from the radiating components T + T4  in (4.4.4) and

(4.4.7). The center frequency w' is therefore also complex.

The amount of radiation into the bulk may be determined from

the imaginary part of o'.
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CHAPTER 5

SECOND-ORDER EFFECTS IN NORMAL-INCIDENCE GRATINGS

5.1 Introduction

In Chapter 4, the stop-band of a grating, at an arbitrary

harmonic p (i.e. p x Bragg), was determined in general form

to second order (in c). In this chapter, we apply the results

of that analysis to examine, in detail, second-order effects

in normal-incidence gratings near Bragg and the second-harmonic

(i.e. p = 1, 2). These effects are frequently termed "stored-

energy" effects. Of particular importance are:

(1) Resonator frequency shift

(2) Transmission phase shift

(3). Strong second-harmonic reflection.

The new theory is used to predict these effects in practical

gratings, and the results compared with experimental data. Pre-

vious empirical models, for including second-order effects in

grating analysis, failed to consider the possible importance of

the grating profile. The new theory, by contrast, reveals the

critical importance of the latter in these higher-order effects.

Previously anomalous second-order behavior can be explained by
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by this sensitivity to groove profile.

The second-order analysis, in Chapter 4, was performed

only at the grating stop-band. In the following section the

variational principle, developed in Section 2.1, is used to

determine the broadband grating response outside the stop-band,

to 0 (E 2 )
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5.2 Variational Principle Outside Stop-Band

Using the variational principle (2.1.3), the dispersion

relation for a grating may be obtained to one higher order of

accuracy (in E), than that to which the wave components have

been determined. At Bragg, at the edges of the stop-band, in

order to satisfy boundary conditions to O(E), both a forward

and a backward zeroth-order wave are required with dependence

eTikrx. In addition, first-order Brillouin components are also

required, with the dependence eT krX e()inkgx. The frequency

perturbation of the waves in the grating (w - w ), is of first

order (in s). Away from the stop-band, however, the boundary

conditions can be satisfied to O(s), with only one zeroth-

order wave and its corresponding Brillouin components. If the

forward wave, with dependence e is of zeroth-order, the

backward wave with dependence e+jkx is required only to be

of first order. In addition, the frequency perturbation of the

waves (W - Ws) is of second order, where ws would be the

frequency of the waves in the absence of the grating (w = kvr).

The variational principle may be used to determine this second-

order frequency correction to the dispersion diagram, away from

the stop-band, from the set of first-order wave solutions.

(1) (1)Let a.. and u. be the resultant stress and displace-

ment components for one set of first-order wave solutions in the
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grating. In general, the latter will comprise an infinite set

of spatial components, with dependence e+jkx e gjnkgx where

only the component with dependence e-,jkx or the component

with dependence e ,+jkx is of zeroth order. The remaining

components will be of first order, or above. Introducing these

first-order solutions into the variational principle (2.1.3),

we have

fdvF2 (1) * ) f (1) *a(1) (1dv )* (1)
d -- u. 1 . . ds . u. i. . - v u. -- ..
9x. 1 j f J3 J 1 J f1 9x.i

p dvu 1' 2 p dvlu.r)12

(5.2.1)

But, from (2.1.2), we have

2 (1 ) 12 = (1)* (1)
- pw u. 12 - c. .(5.2.2)

s - a x. i

since to O(E), away from the stop-band, the frequency of the

waves in the grating is unperturbed from that on the free sur-

face s(= kv). Thus from (5.2.1) and (5.2.2)

d .u(1)* r(1)Jds. u. l)*
2 -W 2 = (5.2.3)

p dvluI 2
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The surface integral in (5.2.3) is of second order, since

a..) satisfies the stress-free boundary requirement, on the
JJ

surface of the grating, to O(c). Therefore, if we define

W = Ws + Aw, from (5.2.3), to 0(c2 ):

l1) * (1)
ds. u. a..

= 2P f23 d i(5.2.4)

wsd 2 P (L 2 f dv IUi 2

where u. is the displacement of the single zeroth-order wave

component, and the volume integral is taken over the unperturbed

volume (i.e. z = 0 + -co). Equation (5.2.4) gives the second-

order correction to the dispersion diagram, away from the stop-

band, from the first-order wave components.

The variational analysis, described above, is valid away

from the stop-band. Unfortunately, close to the grating stop-

band the variational frequency perturbation (5.2.4) is no longer

valid for determining the grating dispersion relation to 0(6 2).

We assumed, in deriving (5.2.4), that we were far enough away

from the stop-band for the frequency perturbation Aw to be

of 0(c 2 ). However, from the first-order analysis, earlier in

the thesis, we know that in general, at the stop-band, the

frequency perturbation Aw is of O(c). At the stop-band

the trial solution used to derive (5.2.4) is no longer correct
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to O(E). Only a single fundamental wave was assumed to be of

zeroth order in the grating. However, at the edges of the stop-

band both the forward and reverse fundamental wave components,

with dependence e jkrx, are required to be of zeroth order.

Thus, the fundamental wave component which was assumed to be of

first order in the trial solution, becomes an eigen solution

at the edges of the stop-band. Consequently, the frequency

perturbation Aw predicted by (5.2.4) "blows up" close to the

stop-band. The variational analysis cannot therefore be used

to directly verify the second-order stop-band analysis of Chap-

ter 4. To smoothly extend the grating dispersion diagram away

from the edges of the stop-band, and to check agreement of the

second-order analysis with the variational principle, we develop

a modified form of coupling-of-modes.
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5.3 Modified Coupling-of-Modes Equations

The standard coupling-of-modes equations for a grating,

as in Section 3.1, predict a stop-band that is symmetric about

the unperturbed frequency o0 (= k v ), and is of width (w+

- _)/V / 21KI. We have determined, however, that, to O(62),

the center of the stop-band is shifted from o0 + o'. Thus

(w'/w ) =h1 - I / ) (5.3.1)0 2 r

where the coefficient K2 , of the quadratic shift in the gra-

ting center frequency, is determined from (4.4.8). In order

for the coupled-wave equations to be consistent with this shift

in the center frequency, we assume that in the grating the

surface wave velocity is perturbed from vr + v', where

(v'/v) = 1 - K2 (h/X)
2 . (5.3.2)

The coupling coefficient K, is interpreted as

Kj(W Wek-to) k(+ ~N r +-
K = 3= 3 --.

2v 2 L wJ or- -

Thus, from (4.4.2) and (4.4.6)
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A k q 3rr
K = j lp r r r

r (k 2 r - k 2 q + 2q 2 r
r r r -r r r

_ --

0 -J

The slowly varying

propagating waves

k {Aw +,
+ (&W 2 r~~ J2r 2 2

-W 0

(5.3.3)

wave amplitudes K and S, of the counter-

R and S respectively, are defined by

~ j (wt - kx)

j j(wt + kx)S= e

where (o/k) = v'.

wave equations may

By symmetry considerations, the coupled-

then be written in the form

d -~ -2jAx-~
R= K e s

dx

(5.3.4)

d ~ e2jAx Rd = - K eJ R
dx

where A = ( - w)/v'.
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At Bragg, the coupling coefficient K determined from

(5.3.3) is pure imaginary. The modified coupled-wave equations

thus obey power conservation. However, at the higher harmonics

the second-order frequency perturbations Aw 2 -are, in general,

complex due to the radiating Brillouin components in the grating.

The coupling coefficient K is therefore also complex and the

coupled-wave equations (5.3.4) do not obey power conservation.

This is consistent, however, with the power radiated from the

surface waves into the bulk at these higher harmonics.

In the following section, we use the modified coupled-wave

equations (5.3.4) to extend the grating dispersion relation away

from the stop-band. The validity of this approach is checked

against the variational analysis of Section 5.2.
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5.4 Dispersion Diagram to Second-Order

To first order the stop-band of a grating is symmetric

about the unperturbed frequency w0  [Fig. 3.1.2]. There is

thus no change, to O(E), in the frequency of maximum grating

reflection, i.e. Bragg, from that predicted by a zeroth-order

analysis (4.1.1). In addition, at Bragg the width of the

stop-band, and hence also the reflection coefficient of the

grating, is, to O(s), only a function of the lowest Fourier

coefficient of the grating A1  ((2.3.9), (3.1.6)). To first

order, the response of the grating is therefore very insensi-

tive to the grating profile.

From (4.4.4) and (4.4.7) it can be seen that, to second

order, the upper and lower frequencies of the stop-band, w+

and o respectively, are functions of all the grating Fourier

coefficients. The second-order corrections to these frequencies

i Wo 2  contain contributions from all the Brillouin components

in the grating, via the terms T+ T ((E.28), (E.33)). It

is therefore to be expected that the second-order effects, in

a grating, will be much more sensitive to the grating profile

than first order effects. Furthermore, since in general

IAo 2 I 1 lAw2 |, both the center and width of the stop-band

are changed to second-order.

The profile of a typical SAW grating is shown in Fig. 5.4.1.
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FIG. 5,4.1 TYPICAL SAW GRATING PROFILE
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It is important to note that we have not assumed the groove

walls to be vertical. Instead we have assigned to the edges

of the grooves, a finite width E, and a slope 6 (8 < 900).

The theoretical dispersion diagram for such a grating is pre-

sented in Fig. 5.4.2, corrected to 0(62). The edges of the

stop-band were determined using (4.4.4) and (4.4.7) and then

the modified coupled-wave equations (5.3.4) were used to pre-

dict the form of the dispersion relation outside the stop-band.

Outside the stop-band the dispersion relation was also deter-

mined from the variational solution (5.2.4), as a check on the

coupled-wave analysis. The agreement between the two is seen

to be good. A major advantage of the coupled-wave analysis,

over the variational solution, is that it is considerably simpler

to evaluate.

A downward shift in the grating stop-band is clearly pre-

dicted by the second-order theory in Fig. 5.4.2. The frequency

of maximum reflection from the grating is reduced fromw0

to w'. The width of the stop-band, however, is not changed,

to 0(6 2 ), for this grating with a groove/strip ratio of 1:1.

Figure 5.4.2 was determined for an isotropic solid with a

Poisson ratio v = .335. In comparing the theory with experi-

mental data we shall use v = .335 as the equivalent Poisson

ratio for Y - Z LiNbO Similarly, we shall use v = .41 as
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the equivalent Poisson for ST Quartz. These values were de-

termined from theoretical considerations by Shimuzu et al. [30]
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5.5 Second-Order Frequency Shift

It is important, for grating design, to understand how

the various parameters of the grating affect the second-order

reduction AQ in the synchronous response near Bragg. As in

(5.3.1), we define the coefficient K2, of the quadratic shift

in the grating center frequency, by

(w'/w)= 1 - K2(h/A)r

In Fig. 5.5.1, K2 is plotted as a function of the Poisson

ratio v, for a Bragg grating of height (h/X ) = .01, and
r

for various groove slopes 6. As expected, K2 is seen to be

a strong function of the groove profile. It is greatest for

steep-sided grooves. In fact, for grooves with vertical edges

(6 = 900), K has a logarithmic singularity. The reason for2

this behavior is that, to 0(6 2 ), in a grating with vertical

side-walls the stresses in the region of the corners become

infinite. If such corners could be made in practice, of course,

the material would flow plastically in the region of the sharp

corner to remove the singularity.

The logarithmic singularity of K2 for a grating with

vertical side-walls is very weak, in that it is difficult to

detect by direct numerical analysis. The closed-form solutions
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in Chapter 4, however, clearly reveal this singularity. In

such a grating the contributions of the higher-order Brillouin

components, to the frequency shift, are found to decrease in-

versely with the mode order. To correctly identify this sin-

gularity, from numerical analysis, would require summing over

a near infinite number of ever decreasing terms. It is there-

fore important, in a theoretical analysis of second-order ef-

fects, to avoid using perturbation techniques, truncation, or

numerical integration. Such an attempt by Shimizu et al. failed

to identify the singularity of K 2' for a grating with a ver-

tical groove profile.[30]

Figure 5.5.2 shows experimental measurements of K2 , for

gratings at Bragg, on ST Quartz, made by Tanski. [25] Also shown

are theoretical plots of K2 (assuming an equivalent v = .41)

for various groove slopes. From the experimental data, Tanski

inferred an average value for K of approximately 10.3.

However, he noted that he found it "very disturbing indeed"

that for small groove depths K2 appeared to increase signifi-

cantly. The theoretical analysis predicts that such an effect

is likely to occur, due to two causes.

(1) For small groove depths, the groove edges are usually

steeper because of the fabrication processes involved.
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(2) Even for grooves with a constant edge slope 6,

shallower grooves have a narrower edge width, E.

It is the ratio (E/A) that determines the Fourier

coefficients of the grating, not the groove slope.

As E decreases the second-order effects increase,

and as E-0, K2

For these reasons second-order effects are also expected to be

more significant in gratings designed for high-frequency opera-

tion. The ratio (h/Xr) does not vary greatly between gratings,
r

thus h ~ c (1/f).

In Fig. 5.5.3 experimental data is presented, due to Wil-

liamson et al., of the resonator frequency shift at Bragg, of

gratings on Y - Z LiNbO3 [3,26] The theoretical behavior pre-

dicted (for v = .355), for various groove slopes is plotted.

For comparison, the frequency shift of a sinusoidal grating,

having the same first-order reflection coefficient as a square-

wave grating, is also shown. The second-order resonant fre-

quency shift of the sinusoidal grating, is much lower than that

of the other grating profiles. It is important to note that

the theoretical curves are not exactly parabolic, due to the

dependence of K2 on (h/Xr ) discussed above. However, the

departure from quadratic behavior is very small. The theoretical
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curves are well within the experimental uncertainty of the

measurements. Finally, observe from Fig. 5.5.3 that although

the second-order theory predicts K2 + as (h/Nr) + 0, the

frequency shift K (h/Nr)2 0, as expected, as (h/Nr) + 0,2 r r

since the logarithmic blow-up of K2is so weak.

22
Figure 5.5.4 shows the theoretical dependence of K 2 on

the groove to strip ratio (G/S), for a grating on Y - Z LiNbO 3

(6 = 450). For G/S > '% 0.5 K is not a strong function of
2

this ratio.
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5.6 Second-Order Reflection Coefficient

In general, the second-order theory predicts that both

the center frequency, and the width of the stop-band will be

different to 0(s2 ), than to O(E). The second-order change

in the width of the stop-band changes the grating coupling

coefficient K, to 0(s2 ) . This results in second-order

contributions to the reflection coefficient/groove 2r, which

can result in important effects at both Bragg and the second

harmonic.

Figure 5.6.1 shows the first and second-order contributions

to the reflection coefficient 2r, as a function of the groove

to strip ratio. The curves are plotted for a grating at Bragg

with (h/Xr) = 0.01, and for various groove slopes. The

second-order reflection coefficient is strongly dependent on

the groove to strip ratio.

In Fig. 5.6.2 the magnitude of the reflection coefficient

r is plotted, to O(s2), as a function of the groove to strip

ratio, for a grating with 200 grooves (e = 45*). Note that

the reflection coefficient of the grating is skewed about

G/S = 1, by the second-order contributions. To first-order

we would expect P to be a maximum for G/S = 1. However, as

G/S is reduced (< 1) the increase in the second-order grating

reflection coefficient, at first, more than compensates for the
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decrease in the first-order coefficient. For G/S > 1 the

first and second-order reflection coefficients partially cancel,

and thus r decreases more rapidly than expected. To minimize

the sensitivity of F to fabrication tolerances, Fig. 5.6.2

suggests that a groove to strip < 1 may be desirable.

First-order theory (2.3.13) predicts no reflection from

a grating, with G/S = 1, in the neighborhood of the second-

harmonic frequency (i.e. 2 x Bragg). However, in practical

SAW gratings a strong reflection is often observed. Figure

5.6.3 shows experimental measurements of the maximum grating

reflection coefficient near second harmonic, taken for gratings

on Y - Z LiNbO3 by Li et al. [283 The grating reflection

coefficient determined from the second-order theory is also

shown for various groove slopes, as a function of (h/Xr). The

theory correctly predicts a strong second-harmonic grating re-

sponse of the form observed. In addition, the theory also de-

termines the bulk radiation, in the grating, at the second-

harmonic frequency.

Figure 5.6.3 shows, for comparison, the theoretical re-

flection coefficient, near the second harmonic, from a sinu-

soidal grating having the same first-order reflection coeffi-

cient as a square wave grating. The reflection from the sinu-

soidal grating is much lower than that of any of the trapezoidal
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gratings. In general, second-order effects in a grating can

be considerably reduced by avoiding groove profiles with sharp

corners and vertical side-walls. The latter reduces the ampli-

tudes of the Brillouin components, in the grating, that contri-

bute to these effects. A sinusoidal grating, ideally, has the

lowest second-order effects.

Finally, in Fig. 5.6.4, experimental measurements by Li

et al. are shown of the maximum reflection coefficient near

second harmonic, for gratings on Y - Z LiNbO with a groove to
3

strip ratio of 1.33. The corresponding theoretical curves,

for various groove slopes, are also shown. Note that in this

case, since G/S A 1, the grating reflection coefficient has

both first and second-order contributions.
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5.7 Transmission Phase Response

The second-order reduction in the Bragg frequency of a

grating is also manifested in the grating transmission phase

response. The reduction of the surface-wave velocity (5.3.2),

in the grating, results in an additional phase delay through

the grating compared to that on the free surface. In addition,

in the neighborhood of Bragg the grating has a strong first-

order phase response.

Figure 5.7.1 shows the additional phase delay through a

graing near Bragg, on Y - Z LiNbO 3 , as measured by J. Melngailis

(Lincoln Lab., unpublished). Also shown is the theoretical phase

response, determined from the second-order theory and the modi-

fied coupled-wave equations (5.3.4). The agreement with exper-

iment is very good; the theory even succeeds in closely predic-

ting the structure of the observed ripples in the response.
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I Cb): Oblique Incidence
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CHAPTER 6

REFLECTION COEFFICIENT AT OBLIQUE INCIDENCE

6. 1 Introduction

SAW devices often employ gratings operating at oblique

incidence. It is the purpose of this chapter to demonstrate

that all the methods, presented in the previous chapters, for

analyzing normal-incidence gratings, may also be used for

analyzing oblique-incidence gratings. Following the approach

of Chapter 3, the coupling coefficient of an oblique-incidence

grating, and the single-groove reflection coefficient at oblique

incidence, are determined to first order (in E). The results

are obtained in a relatively simple manner and are in agreement

with existing alternate analyses. However, the analysis de-

scribed here has the advantage that, as in Chapter 4, it may

be easily extended to second order. The second-order frequency

shift, and the second-order contributions to the reflection

coefficient, may thereby be determined.
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6.2 Determinantal Equations

As in Chapter 3 the determinantal equations, at the edges

of each stop-band, may be determined by considering the boundary

conditions on the surface of grating. Again the analysis is

quasi-variational, in that only the zeroth-order amplitudes of

the stresses in the grating are required to obtain the deter-

minantal equations to 0(c). At oblique incidence, in order

to satisfy the boundary conditions completely, for each spatial

dependency of the waves, three acoustic components are required.

In addition to the longitudinal compressional-wave and the

vertically-polarized shear-wave components, encountered in the

normal-incidence analysis, a third, horizontally-polarized

shear-wave component is excited at oblique incidence. The

latter arises from the three-dimensional nature of the stresses

in a grating at oblique incidence. For this case, there are

finite stress components in the x, y and z directions.

This contrasts with the case of normal incidence, already con-

sidered, in which there were no stress components in the y

direction (i.e. parallel to the gratitig). To satisfy the

stress-free boundary conditions on the surface of the grating,

for the oblique-incidence analysis, all three directions must

be considered.

Figure 6.2.1 shows a section of a grating, of infinite

two-dimensional extent, in which the fundamental (i.e. zeroth
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order) surface waves are propagating at oblique incidence to

the grating. At the edges of the stop band, for the p-th
;jk x cos a -jk y sin ar r

harmonic, these waves have dependence e e

where kr is the propagation constant of a free surface Rayleigh

wave of frequency LO

kr =w0/vr = p r/(A cos a). (6.2.1)

From coupling-of-modes theory, by a corresponding analysis to

that for normal incidence in Section 3.1, we expect w0  to be

the center frequency of the stop band to O(s) [Fig. 3.1.2].

The frequency of the lowest harmonic response of the grating,

with p = 1, is again referred to as Bragg.

From (A.4) the stress on the surface of the grating is, to

0(s)

a = {a (0) + Er [f(x) a' (0) - f'(x) a (0)3} x
s xz r xz xx

+ {a (0) + EX [f(x) a' (0) - f'(x) a (0)]} Y
yz r yz xy

+ {a (0) + sEX [f(x) a' (0) - f'(x) a (0)1 z (6.2.2)
zz r zz xz

where
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a. . (0) = a..
:IJ 13 z=0

and

a! . (0) = a..
13 3z z=0

As in the normal-incidence analysis, let the normalized surface

perturbation f(x) be represented by the Fourier series (3.2.2).

The derivative f'(x) is then given by (3.2.3). For the case

of oblique incidence we have, from (6.2.1)

2k cos a
k = 27/A = r

(2/p)k cos a

at Bragg

at p x Bragg

As discussed above, at oblique incidence, for any specified

propagation constant in the grating there are, in general,

three acoustic components. We define the amplitudes of the
;jk x cos a -jk y sin a

acoustic waves with dependence e e by

Si- respectively, where

1,

-2,

3,

for a compressional wave.

for a vertically-polarized (i.e. i surface) shear
wave.

for a horizontally-polarized (i.e. surface)
shear wave.

(6.2.3)

i1=
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To simplify the analysis the x and y-independent stress

components of these waves, 5. . respectively, are defined by

Tjkr x cos a -jkry sin a
.. =a..,e e

ij IJ

The surface of the grating is a free boundary and thus

required to be stress free, i.e. a5 = 0. The only waves in

the grating with finite zeroth-order amplitude are the compres-

sional and vertically-polarized shear wave components S6j

(i = 1, 2). To zeroth order these wave constitute two uncoupled

Rayleigh waves (with amplitudes S 1 ). However, to first order

it can be seen from (6.2.2) that as a consequence of the stress-

free boundary requirement, these waves are coupled together by

the Fourier component of the grating A where nk = 2k
n 9 r

cos a . For the stop-band at the p-th harmonic, from (6.2.3),

k = (2/p)kr cos a. Therefore, at the p-th harmonic, these

waves are coupled together by the Fourier component A of
p

the grating. The amplitudes of the horizontally-polarized

shear wave components S3 -, in the grating, are of first

order (in s).

To satisfy the boundary conditions on the surface of the

grating to O(E), as in the case of normal incidence, in gen-

eral, an infinite set of waves is required. These waves, or
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Brillouin components, are all of first order and are generated

by the interaction of the waves considered above with each

spatial harmonic of the grating. However, as in the normal-

incidence analysis, these wave amplitudes are not required to

obtain the determinantal equations to 0(s).

From (6.2.2), the stress-free boundary requirement a * x

= 0 gives, to O(E)

-jk x cos ae -jk y sin a
cf. e re r dep.

+ +
S. ci. (0)

1 1xz

+jk x cos a
cf. e r

+ rX A pS -- ' (0) + jk cos a a J(0) = 0

-jk y sin a
e

S. a. (0)
:i ixz

+ rX A S14-1 r (0) - jk cos at & X(0) =0
r 2 xz r x I

(ii)

the requirement as y = 0 gives, to 0(s)

-jk x cos a -jk y sin a
r rcdep.cf. e e dp

(i)

dep.
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+ + - 1 - '-
S. r. (0) + E A - 5 r(0) + jk cos a &r(od = 0i yz r p 12 yz r xy

(iii)

+jk x cos a -jk y sin a
cf. e e r dep.

S. j (0) + Xr A S (0) - jk cos a dr(0)J = 0
iiyz r p 1 2 yz

and the requirement as - z = 0 gives, to C(6)

-jk x cos a -jk v sin a
a e r e dep.

+ a. (0) + sX (Ap/ 2 ) S &r( 0 ) = 0
i izz r pzz

+jkrx cos a -jkry sin a
cf. e re r

(v)

dep.

S. a 1  (0) + EA (A /2) S r'(0)=0
1 z p 1 zz =

(vi)

(6.2.4)

+rsince a~- 0 =0xz
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The stress components of the acoustic waves are derived

in Appendix F. They are stated in terms of 0, the angle be-

tween the propagation vector of the wave and the positive x

axis. From Fig. 6.2.1, for the waves Si ,0 = ct, and for the

waves .S., 8 = (180 - a). Equations (6.2.4), for the six un-

determined wave amplitudes S. (i = 1 + 3), may be split

into two uncoupled sets of equations, each in only three vari-

ables, by a transformation of variables. We define

T fS. ++ S.ifor i = 1, 2

S. -S. , for i = 3

(6.2.5)

=D S -, for i = 1, 2

S1++ Si for i = 3.

Referring to the stress components given in (F.5), (F.10),

(F.14) and (F.16), we then obtain from (6.2.4)(i)-(ii), (iii)+

(iv), and (v)+(vi) respectively,

T + ST 1 r(_ r
S. ax. (0) - EA A = (0) -jkrcos aa (0) =0

1 XZ r p xzrx
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T +T 1S. a. (0) + EX A S -a (0)-jkrcos aa (0) = 0
1 1yZr p 2yzrx

T. S T r'Si izz r p /2) 1(0zz) 0 (6.2.6)

and from (6.2.4) (i)+(ii),, (iii)-(iv), and (v)-(vi) respectively

D ~+ D 1 _r' rS. at (0) + EAr Ap SiDL- dx (0) - jk cos a x(0) = 0

S. D (0) - eLX A S D r ) - COS r0) = 0lyz r p 1 2ay - rcXY

S1 D + (0) - eX (A p /2) 1 D r' )= (6.2.7)

Equations (6.2.6) and (6.2.7) are independent sets of equations

in the variables S. (i = 1 + 3), and S. D i = 1 -+ 3) re-

spectively. In general, for c A 0 the determinantal equations

of each are different. Since both cannot then be satisfied

simultaneously, either

S. = 0i 1+3

or

S. = 0=1 +3
1
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to 0(6).

D
Case 1. S. =0

For this case, we have from (6.2.5), to O(s)

S. =-S. ,
1 1

for i = 1, 2

for i = 3.

This solution satisfies the determinantal eouation of (6.2.6).

Evaluating the stress components, in (6.2.6), from (F.5), (F.10),

(F.14) and (F.16), we have, to O(s)

pjk cos a {2r + eX A [k 2 sin2z - r 2 - q r
r r p r r r r

+ qr 2 (1 + cos2c2} Si+ - v k + q2 ) cos a S2

r 2rr+.(i

+ pgr(kr r2 ) sincatS+ = 0()

pjk sin a {2r + sX A [k 2cos2ct - r 2 + q r

r r p r r r r

- gr2cos 2a.]} sj + - y(kr2 + q2) sin a.5j2
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- pqr (k 2-qr 2) cosa 3+ =0 (ii)

y (k r+ q2 ) - A (Ap/2) (r - q) (kr2 +

+2pjkrq s2 = 0. (iii)

(6.2.8)

The first-order wave amplitude S3+ is easily eliminated. From

(6.2.8) (i) cos a + (ii) sin a we obtain

jk [2r + eX A (2k 2sin 2 a cos 2a - r 2 - q r cos 2ar r p r r r r

+ 2qr 2cos' )] S - (kr2 q 2

Equations (6.2.8) (iii) and (6.2.9) are now a pair of simul-

taneous equations for the wave amplitudes S + and S2+. For

non-trivial solutions the determinant of these equations must

be zero. From this requirement we obtain the determinantal

equation, for this case, to O(s)

(k 2 + q 2 ) 2  
- 4k 2qr = -sA 4k 2q cos 2 a[q (r - qr r r r r r r r

(6.2.9)



- ( -r
2 ) sin 2 a]A

Case 2. S. T 0

For this case, we have from (6.2.5) to O(E)

S. = -S.,

S. =5. ,

for i = 1, 2

for i = 3.

This solution satisfies the determinantal equation of (6.2.7).

However, equations (6.2.7) are identical in form to those in

(6.2.6), except for the replacement 6 + -E. Thus, in this

case, the determinantal equation is

(k 2 -2)2  4k 2 qr cX 4k 2q cos2 a[q (r - qr r r r r r r r

- (kr 2r2 qr2) sin 2 ajA - (6.2.11)

139

(6.2.10)
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6.3 First-Order Coupling and Reflection Coefficients

The determinantal equations at the edges of the stop-band,

for the p-th harmonic, were determined from boundary conditions,

to O(E), in Section 6.2. At w+, W [Fig. 3.1.2], from

(6.2.10) and (6.2.11)

(k 2 + q2 ) 2 - 4k 2qr = Er 4k 2q cos2K[q (r - q)r r r r r r r r

- ( 2 - q r2) sinca]A. (6.3.1)

However, from (D.6) the modified dispersion relation for waves

at the edges of the stop-band is, to O(Aw)

4k 2
(k 2 + q 2)2-4kr 2qr- r (r -qr)(kr 2 r -kr 2 q + 2qr 2 r )
r r r r r r r r r r r

rr

(Aw/w 0 ) (6.3.2)

where Aw = w - w. Hence, from (6.3.1) and (6.3.2), for the

stop-band of a grating at oblique incidence
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q 2r cos2caqrr(rr - qr - (k 2 - q 2) sin2]
r rqr r r rr r

Cr - q ) (k 2r - k 2q + 2q 2r)r r r r r r r r

A .

(6.3.3)

The stop-band is thus symmetric about the unperturbed center

frequency w0 , in agreement with first-order coupling-of-modes

theory, and of width 21Aw1.

The coupling coefficient K, in an oblique-incidence

grating, may now be deduced from the width of the stop-band,

by coupling-of-modes theory as in Section 3.1. Corresponding

to (3.1.6), at oblique incidence

2(KW= + W-
21K1I _ _ _

v cos a
r

hence

k
K = r _Aw

cos a o

Thus from (6.3.3)

IKI = cAr
k q 2 rcos a.[q. (rr - r - (kr2 - q 2 sin 2 a]j

(rr - q )(k 2r - k 2q + 2q 2r)r r r r r r r r

{oj

A



or, in terms of the characteristic admittance Y
0

K = EX Cos a
[qr r- r) - k222sin2C]

8Y
0

For the case a = 0, this expression is consistent

coupling coefficient derived for a normal-incidence

((2.3.10) and (3.3.4)).

The single-groove reflection coefficient 2r,

with the

grating

is given by

2r = K!A.

Thus, at the p-th harmonic

2r = K
k cos ar

From

that

(6.3.4), replacing X = 2r/k , we therefore determiner r

for a single oblique-incidence groove

2r E7 [qr rqr) r - k2
2sin2a]j

4k 2y
r o

pA

at the p-th harmonic (i.e. p x Bragg). This solution is in

agreement with that derived by Otto et al., using a completely

142

(C.5)

A . (6.3.4)
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different method of analysis.i1 4 '4 9

In the case of an "idealized" grating with a square-wave

profile, An = 2/n7 for n odd, and An = 0 for n even.

Thus, at Bragg and the odd harmonics

[qr(rr r) - k22 sin2 t]
2r = rr (6.3.5)

square 2k 2Y
wave r o

and at the even harmonics,

2r =0
square
wave

to 0(E).

The single groove reflection coefficient (6.3.5), normal-

ized to (1/cos a) (w groove width), is plotted in Fig. 6.3.1

as a function of the angle of incidence a, for v = .335,

and v = .41. It is interesting to note that for a 27*

there is no reflection of the incident wave off the groove. In

Fig . 6.3.2 the angle of incidence, for which there is no reflec-

ted wave, is plotted as a function of the Poisson ratio v. It

is not a strong function of the latter and is somewhat analogous

to the Brewster angle, encountered in the oblique reflection of

an electromagnetic wave from a dielectric boundary.
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FIG. 6.3.1 NORMALIZED FIRST-ORDER GROOVE REFLECTION

COEFFICIENT AT OBLIQUE INCIDENCE AS A

FUNCTION OF THE ANGLE OF INCIDENCE.
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PART II

Closed-Form Analysis of Chirped

Grating Structures
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PART II

CLOSED-FORM ANALYSIS OF CHIRPED GRATING STRUCTURES

Preface

In part I the coupling coefficient K, of a SAW grating,

was derived for both normal and oblique incidence, to second

order (in s). From a knowledge of K, the complete response

of a constant-period normal-incidence grating may be easily

determined. The solutions of the coupled-wave equations (3.1.1)

are simple exponentials.[ 3 4 ,4 5 ] However, the analysis of con-

stant-period gratings at oblique incidence is more complex. In

addition, many SAW and optical devices employ gratings with

chirped-spatial periods, both at normal and oblique incidence.

The response of such structures, prior to this work, has never

been analyzed in closed-form.

In part II we present closed-form analyses of gratings

with a linear spatial chirp, at both normal and oblique inci-

dence. The oblique-incidence solutions are particularly rele-

vant to the analysis of the reflective-array-compressor (RAC).

The latter is an important SAW device used for pulse compres-

sion. The exact solutions, derived here, permit a more detailed
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analysis of the RAC than was previously possible, even using

complex numerical computer analyses. Higher-order distortion

effects in practical RAC devices are examined in detail using

the new solutions. The coupling-of-modes solutions, being of

a general nature, are also equally applicable to optical grating

devices, such as bulk holograms.
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CHAPTER 7

NORMAL-INCIDENCE CHIRPED GRATINGS

7.1 Introduction

Figure 7.1.1 shows a normal-incidence chirped grating.

We shall consider only linear chirps, where the spatial period

of the grating is a linear function of x, the penetration

into the grating.

Kogelnik, in an expansion of his analysis of normal-inci-

dence gratings, did consider gratings with a non-uniform, or

chirped, period. [501 He also considered, simultaneously,

gratings with a taper of the coupling strength. However, his

analysis was based on a numerical approach. He transformed

the governing coupled-wave equations for the grating into a

non-linear first-order differential equation, or Ricatti equa-

tion, and then solved the latter numerically. No attempt was

made to derive closed-form solutions for any of the gratings.

In this chapter we derive the exact closed-form solutions

for the case of a normal-incidence grating with a linear spatial

chirp. The solutions are mathematically complex, and, perhaps

surprisingly, are more difficult to evaluate than the solutions
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determined for oblique-incidence gratings, in the following

chapters. However, they may be of use in studying the depen-

dence on the various grating parameters, or in determining the

limiting behavior of such a grating.
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7.2 Exact Solutions

For the normal-incidence chirped grating structure shown

in Fig. 7.1.1, which may be SAW, optical, or otherwise in nature,

we define

k (x) = (2/p)(k - 6x)

where k (x) = 2r/A(x), and A(x) is the local period of the
g

grating. The chirp rate is specified by 6, and k0 is the

local synchronous propagation constant at x = 0, for a wave

at the p-th harmonic, i.e. k0= w (0)/v = pTr/A(0). The

initial detuning from synchronism we denote by A, where

(W (0) - w)
A=k - k 0

0
V

and hence, the general detuning in the grating from the local

synchronous frequency w (x), is given by

(W 0(X) -Wt)

= 6 x. (7q2 .1)
v

Defining the wave amplitudes as
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R(x) = R(x) ej(Wt - kx)

= j(wt + kx)S(x) =S(x) e .

The coupled-wave equations are

d ~ -2jAx + j6x2

R(x)= K e S(x)
dx

(7.2.2)

d~2jAx - j6x2

d S(x) = K* e R(x)
dx

where K is the coupling coefficient/unit length. Observe,

from the form of these equations, that the interaction between

the two waves will be strongest at the point where the phase

of K is stationary. This occurs at x = A/6, which from

(7.2.1) is, as expected, the local synchronous point in the

grating.

From (7.2.2)', we derive the second-order differential

equation for S(x)

- 2j(A - 5x) -IK12 S(x) = 0. (7.2.3)
dx2 dx

This equation can be solved, in closed-form, in terms of (a)
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parabolic cylinder functions, or (b) confluent hypergeometric

functions.

(a) Parabolic cylinder functions.

Equation (7.2.3) can be transformed, by a suitable change

of variables, into the standard form of the parabolic cylinder

equation. [511 First, we introduce a new dependent variable

3(x), where

jAx - j x2

S (x) = S(x) e

In terms of the new variable S (x),

(7.2.3) becomes

(7.2.4)

the differential equation

{2+ [ 2 (x -
2 - (IK1 2 + j)] S(x) = 0. (7.2.5)

Defining a new independent variable

Z = F2T (x - A/6) (7.2.6)

then transforms (7.2.5) into the standard form of the parabolic

cylinder equation
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d A2 2 F 112 f
S4(+) - -- + - + -Lj S(E) = 0.

d(2 4 22j6
(7.2.7)

This equation has two linearly-independent solutions D ( jF),

where

V = -j
26

(7.2.8)

Hence, the general solution for S(x), from (7.2.6) and (7.2.7)

is

S(x) = A D (j/2jS (x - A/6)) + B D (-j/27 (x - A/6)) (7.2.9)

with v given by (7.2.8). The constants A and B are de-

termined from the boundary conditions

R(O) = 1

S(L) = 0.

Using these boundary conditions, and recursion and derivative

relations for the parabolic cylinder functions, [51] we determine

A = j D_ Fl(-jA/2i/6) +
D (jVTJT (L - /)

D (-j/7j (L - A/6))DVj r'j6L
D ___ _ ( 2v-
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____D (-j/WTl (L - A/6))
B = -j DJL ___(j__/2j/___)__+_

LDv (j/T~T (L - A/6) )

-l

D C-iA/2fl)]v-l

(7.2.10)

Thus, from (7.2.4), (7.2.9) and (7.2.10) one form, of the exact

solution, for the reflection coefficient from a normal-incidence

chirped grating is

= S(0) ={[D (-jAv/WJ6) D (-j/2 C7D L -
R(O) K VV

- D (jAVY2J6) D (j/J2~T (L - A/6))]/[D (-jA/2j/6

D (-j/~IT (L - A/6)) + D (jA/2j76) D (j/J~T (L - A/6

(7.2.11)

where ' is given by (7.2.8).

(b) Confluent hypergeometric functions.

Equation (7.2.3) can also be transformed, by a change of

variables, into the confluent hypergeometric differential

equation (also known as Kummer's equation). [52] This requires
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only a change in the independent variable. We define

= -j6(x - A/6) 2 .

The differential equation (7.2.3) then becomes

d[2 ~L d ~ 4j S)

S ) + - -S ( ) - I)
dE 2 2 dE 46

(7.2.12)

(7.2.13)

which is the standard form of the confluent hypergeometric

differential equation. The solutions are confluent hypergeo-

metric functions. A general solution to (7.2.13) can be taken

in the form

S(E) =A F 'jK 21; + B'l/2 F 1 + jjK 3 E
S )) i46 21 2 + 46 2

Hence, from (7.2.12), the general solution for S(x) is

S(x) =A F tL 1 j6(x - A/)a]
46 2

+ B (x -A/6) F+ K -j6 (x - A/6) 2 . (7.2.14)
2 46 2 20
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The constants A and B are again determined from the boundary

conditions

R(O) = 1

S(L) = 0.

For these boundary conditions, using recursion and derivative

[521
relations for the confluent hypergeometric functions, [we

determine

A = K F 1 + K2 3 2

46 2

r. 9 -l

K F lK+[k;L-F + jLKI 2
+ 46 2 6 2 46 2

K*(L - t F41+ K ; L-

12 46 2 6

B - F +
K* 2 46 2 6

KAL F1+ K2; ;-j6 L - 2 Fl +K232

+ 6 6) 2 46 26 46 26

1 46j2K;-j6I L - 6

(7.2.15)
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Thus, from (7.2.14) and (7.2.15) an alternative, exact form,

for the reflection coefficient from a normal-incidence chirped

grating is

-S(O) 1rfIfL ; ;-Jil [!_ 1 1___
F S 0) - K* i L -F K3 2 F dF+j| |
R(O) 46 2 J 2 46

-i6(L - 4]+ tFK ; -lj6L -
246 2 6 4462

1F + K 2 3 2 K 2 A L A

2 46 2 6 6.

j I KLj -j 2L1 1F[4-2+ ir A.22F1F l+; - F - + jK 2 ; -j6 L -
46 2 6 2 46 2

K _1A1 1 j
+ F4KILL; ; -j6(L - ]F 1 + LLK ,

46 2 2 46 2 6

(7.2.16)

Forms (7.2.11) and (7.2.16), for the reflection coeffi-
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cient, are mathematically equivalent. In any application,

whichever is the more convenient form may be used.
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CHAPTER 8

OBLIQUE-INCIDENCE CHIRPED GRATINGS

8.1 Introduction

Oblique-incidence gratings are used extensively in SAW

and optical signal processing devices. In many of these ap-

plications the period of the gratings is also spatially chirped.

However, previous to this work, no exact analysis of an oblique-

incidence chirped grating has been performed.

Current analyses of oblique-incidence chirped grating

structures usually assume that the reflection/groove, and the

total reflection from the grating, are both very small. Two

important effects in the grating are then ignored.

(i) Depletion of the transmitted wave through the
grating.

(ii) Multiple-reflection effects within the grating.

These effects are illustrated in Fig. 8.1.1, for the case of,

900 reflection. At each discontinuity in the grating (i.e.

an up-step or a down-step in a grooved grating) a very small

amount of the forward wave R is scattered into the secondary

wave S. The power scattered into S results in a depletion

of the forward wave R. This depletion is ignored in the low-

reflection model, which thus does not satisfy power conservation.
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Referring to Fig. 8.1.1, it is also apparent that, in general,

R and S can interchange power many times across the width

of the grating by a process of multiple reflection. These

multiple reflections are also totally ignored in current low-

reflection analyses. Modern signal processing devices fre-

quently require strong grating reflection to achieve low in-

sertion loss. The low-reflection model then becomes increa-

singly inaccurate for predicting the phase and amplitude

response of the device.

An approach was suggested by Otto et al. for including

depletion and multiple-reflection effects in the analysis of

a constant-period oblique-incidence grating. [42] The technique

consists of dividing the grating up into a large number of small

unit cells, each containing one reflector [Fig. 1.2.3]. How-

ever, this approach is numerically intensive, gives little

physical insight, and is unsuitable for chirped gratings.

In this chapter exact closed-form solutions are derived

for an oblique-incidence grating with a linear spatial chirp.

The solutions are particularly simple for the limiting case of

a constant-period grating. Filter applications of oblique-

incidence constant-period gratings are considered, and the

reflective-array-compressor (RAC) is analyzed in greater detail

than was possible with previous analyses.
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8.2 Exact Solutions

For simplicity we will consider oblique reflection through

90*, for a grating with a linear chirp, in an isotropic medium

[Fig. 8.2.1]. In this case, the grating reflectors are at 450

to the incident beam. For 900 reflection in practical ani-

sotropic materials, the analysis remains valid with a simple

[41]scale change of one of the axes. The grating structure

may be SAW, optical, or otherwise in nature.

We define the grating period by

-lk (x, y) = p [k - 6(x - y)]
g

where k (x, y) = 2Tr/A(x, y), and A(x, y) is the local period
g

of the grating measured along x or y [Fig. 8.2.1]. The

chirp rate is specified by 6, and k0 is the local synchro-

nous propagation constant along (x - y) = 0, for a wave at

the p-th harmonic, i.e. k = w (0, 0)/v = 2pr/A (0, 0). At

the origin (0, 0), the detuning from synchronism is denoted

by A, where

(w (0, 0) - W)
A =k -k =

0

and k is the propagation constant of the wave. The detuning,
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at a general point in the grating, from the local synchronous

frequency w (x, y), is given by
.0

(w (x, y) - w)
A - 6(x - y). (8.2.1)

The slowly-varying wave amplitudes R(x, y) and S(x, y) are

defined by

j(wtyxkx)R(x, y)= R(x, y) e

(8.2.2)

S y =) (t - ky)~,Y)= S (X, Y) e

In terms of these amplitudes, the coupled-wave equations for

the oblique-incidence chirped grating are

-jA(x-y) + (x-y)
R(x, y) = - K e

Dx
S(x, y)

(8.2.3)

j(x-y) - S
S(x, y) = K* e

Dy
R (x, y)

where K is the coupling coefficient/unit length. As a con-

firmation of the veracity of these equations, observe that they
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predict the strongest wave interaction, in the grating, will

occur where the phase of K is stationary with respect to x

and y. This is determined to be the contour (x - y) = A/6.

As expected, we see from (8.2.1) that this is also the contour

along which the grating is synchronous.

The coupled-wave equations (8.2.3) can be simplified by

the change of variables

jAy + j y2
R(x, y) = R(x, y) e

(8.2.4)

jAx j x2

S(x, y) = S(x, y) e

In terms of the new variables R(x, y) and S(x, y) the

equations become

R(x, y) = -K e S (x, y)

3x

S(x, y)= K* e R(x, y).

From these equations we derive the second-order partial dif-

ferential equation for R(x, y)
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+ j6x + IK1 2  R(x, y) =0. (8.2.5)
Lxay ax

This equation is linear and of the hyperbolic type. [5 31

A functionally-invariant solution may be determined for

(8.2.5) using Riemann's method. [5 4 ,5 5 1  We assume a solution

of the form

y
R(x, y) = ds i(x) W(x(y - s)) + A W(xy) (8.2.6)

where ip(s) is an arbitrary function. Such a solution is

found to exist for a function W(c) satisfying the ordinary

differential equation

d + (1 + j6c) d + IK12 W(c) = 0. (8.2.7)
dc2 dC

A substitution

-j6c (8.2.8)

transforms this equation into

- W(f) + (1 - ) - W() = 0 (8.2.9)
dE2 d j6
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which can be identified as a confluent hypergeometric differ-

ential equation. [52]

A confluent hypergeometric equation was also encountered

in the analysis of a normal-incidence chirped grating (7.2.13).

In that case there were two acceptable solutions. The general

solution was thus a linear combination of the two (7.2.14).

However, in this case, there exists only one acceptable solution

to the differential equation (8.2.9). The second solution ex-

hibits a logorithmic singularity at the origin (E = 0) and

therefore must be rejected. The general solution is thus

W() = lF1  L; 1 ; (8.2.10)

where 1 F1 (a; b; z) is again the confluent hypergeometric

function (also called a Kummer function, or a degenerate hyper-

geometric function).

There is an essential difference between the normal and

oblique-incidence cases. At normal incidence the coupled waves

are collinear, and thus specifying only one boundary condition

is insufficient to define the problem. Both waves exist at the

input and output boundaries of the grating. Two boundary condi-

tions are therefore required to determine their relative ampli-

tude. However, in the oblique case, the boundary condition at
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the input to the grating is entirely independent of the scat-

tered wave S [Fig. 8.1.1]. The latter cannot couple, or

scatter back to the input. Thus, we need only specify one

boundary condition, in the oblique case, to define the problem.

If we insist on specifying two arbitrary boundary conditions

then sources are required in the grating. The singular solu-

tion, in the oblique case, represents these internal sources.

From (8.2.8) and (8.2.10) the function W(C), which

satisfies the ordinary differential equation (8.2.7) is thus

W(;) = 1 F1  1; -j6 2  
. (8.2.11)

j6

Hence, from (8.2.6) and (8.2.11), a general solution of the

partial differential equation (8.2.5) is

yK2
R(x, y) = ds $(s) Fl-I- ; 1 ; -j6x(y - s)

+ A F[1K-j6xy (8.2.12)
j6

The exact solutions for the grating waves, R(x, y) and

S(x, y), are obtained from (8.2.2)-(8.2.4) and (8.2.12). In
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(8.2.12) , the arbitrary function $ (s) is chosen to satisfy

the boundary condition along x = 0, while the constant A

is determined from the boundary condition S(x, 0) = 0. Using

recursion relations for the confluent hypergeometric func-

tions, [52] we finally determine the exact solutions for the

grating to be

R(x, y) = e (t-kx)R(o, y) - 1K1 2 x { ds
0

-j[A(s - y) + (S2 _ y 2)]

e

R(0, s) F[l + -;2 ; -j6x(y - s)

and

S (x, y) = K* eJ(Wt-ky){ds e

6
-j [A(s - x) + (s - x) 2]

R(O, s) Fj- ; 1 ; j6x(y -

L ..j6
(8.2.13)

These solutions for an oblique-incidence chirped grating

are exact, in that they incorporate all orders of multiple
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reflections and wave depletion within the grating. They are

also valid for an arbitrary input wave profile, and for an

arbitrary detuning between the input wave and the grating.

We shall now examine the implications of these solutions.

We begin by considering gratings with a constant spatial period.



173

8.3 Constant-Period Gratings

For constant-period gratings the chirp parameter 6 = 0.

From the series expansions of confluent hypergeometric func-

tions, we find

KJ2(21KJV)

1Fl+ j; 2 ; -ji6% =
6+*0 6 K

and

fFj... j Ju; j0 = J0(2IK I' )

where J (W) and J1 () are the zeroth-order and first-order01

Bessel functions respectively. From (8.2.13), the exact solu-

tions for a constant-period oblique-incidence grating are thus

R(x, y) = e3(wt - kx)R(o, y) - e jAy KI ds e-jAs

J 2 K jxy-s
R(0, s) J2Kxy-5

and

S(x, y) = K* e j(Wt - ky) e AxYds eAs
R/0

- -- R (0, s) Jo[2jK l /x(y - s) .( .3 1
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These exact solutions, for an arbitrary input profile and

arbitrary detuning A, clearly show the dependence of the

grating response on the various grating parameters. In addition,

they can be evaluated with much less computation than is required

for the alternative unit-cell approach. Figure 8.3.1 shows the

profile of the output wave, after transmission through an

oblique-incidence grating at Bragg, and for small detuning

from Bragg. Note the depletion and considerable distortions

of the wave introduced by the grating.

For the case of Bragg excitation (i.e. A = 0) and a

uniform input wave profile R(0, y) = 1, the exact solutions

are particularly simple. Under these conditions, the solutions

(8.3.1) reduce to

R(x, y) = e(wtJkx) J0 (2IKI/xy)

and

S(x, y) = e (wtJ ky) Kvxy J(2 K viy) .(8.3.2)
K!

These solutions were also deduced by Bloch et al. by analogy

with solutions obtained in holography. [39] They clearly illus-

trate the manner in which the transmitted wave, through the

grating, will become distorted if the coupling coefficient K



175

AMPLITUDE

1.00.3

0, -17

0.8 -

0.6 -- LR(-, y)
L

0.4
y

0,2 0

20 40 60 80 100
(Y/X )

FIG. 8.3.1 AMPLITUDE PROFILE OF UNIFORM INCIDENT WAVE
AFTER TRANSMISSION THROUGH A 45* CONSTANT-

PERIOD OBLIQUE-INCIDENCE GRATING (w/x)r
100,.(/X =400),



176

and the grating dimensions are large enough.

As a possible application of this exact analysis we briefly

consider the use of constant-period oblique-incidence gratings

as filters. Either a bandstop or bandpass response may be

realized. Figure 8.3.2 shows the configuration of such a SAW

filter. For a bandstop response the output is taken from

transducer 2, while for a bandpass response the output is taken

from transducer 3. The filter bandwidth is reduced, for a

given insertion loss, by increasing either the number of grooves

or the width of the grating. This is illustrated in Fig. 8.3.3

which shows the theoretical bandstop characteristics of three

practical gratings. Note that the bandwidth, of the response,

appears to be much more sensitive to the width of the grating

than to the number of grooves. This is partly due to multiple-

reflection effects, which become more significant as the width

of the grating is increased.

For the same grating considered in Fig. 8.3.3 (b) we show

the corresponding bandpass response from transducer 3 in Fig.

8.3.4(a). It is interesting to note that because of consider-

able phase distortion, across the wave front, much of the power

scattered by the grating is not intercepted by the transducer.

In Fig. 8.3.4(b) we show the true acoustic power scattered by

the grating. The latter is seen to be much larger in amplitude,
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and also to have a much wider bandwidth, than the electrical

power from the transducer.

Before proceeding to consider the RAC we shall first di-

gress to develop approximations to the exact chirped grating

solutions given in (8.2.13).
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8.4 Approximate Chirped Grating Solutions

In many cases the full exact solutions (8.2.13) may not

be required for the analysis of practical gratings. If the

coupling in the grating is small only the lowest-order terms

in K need be considered. As a lowest-order approximation we

obtain, to order K (i.e. O(K))

R(x, y) = e (wt-kx) R(O, y)

and

j(wt - ky) y e-[A(s - x) + (s - x) 21

S(x, y) = K* e ds e0

R(O, s). (8.4.1)

These are the familiar solutions currently used extensively

in PC deign.[41]
in RAC design. [41 The forward wave in the grating R(x, y)

is assumed to propagate through the grating unperturbed, and

with no power loss. The scattered wave S(x, y) is seen to

be attributed to only one-order of reflection of R(x, y), as

all contributions of the order K2 and above are ignored. For

low-loss devices where the coupling may be somewhat tighter,

these solutions may not be accurate enough. As we shall see,
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much additional insight and accuracy in the design may be ob-

tained by going to one higher-degree of approximation.

To include the contributions from the lowest-order of

multiple reflections (O(K2 )), within the grating, it is

necessary to expand the solutions (8.2.13) correct to O(K 3 )

It can be shown that

F 1+ ;2 ; -idz] = e-2 z sin z + 0(K2 )
z

1 F- jK ; 1 ; z = 1 - 12  (6/2) z

JS 6 0
d sin + 0(K'4

where the last terms signify the order of the terms neglected.

We thus obtain, to O(K 3 ):

R(x, y) = ej(Wt - kx) R(O y) - il L { ds
6 JO

6j~y s) a - (x - y - s)]
e R(O, s)

ssin[(6/2) x(y s)]7

(y - S)

and



and

j (wt - k)y
S(x, y) = K* e ky) ds e

21K2 (6/2) x(y-s)

_6 - 0

-j [A(s - x) + (s-x)2

dE e jEsin> (8.4.2)

These solutions are more accurate for low-loss RAC design

than the solutions (8.4.1) which are currently used. In many

cases they are sufficiently accurate for the design of practical

devices and are much simpler to evaluate than the exact solutions

(8.2.13).

183

R (Q, s)
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8.5 RAC Solutions

We have so far considered the response of only a single

oblique-incidence chirped grating. In this section we apply

the solutions obtained for such a grating to an analysis of

the RAC. The RAC is a SAW dispersive filter which is used

widely for pulse compression. In its simplest embodiment it

consists of two 450 oblique-incidence chirped gratings through

which the acoustic signal undergoes two 90* reflections [Fig.

8.5.1].

We begin by determining the exact response of a RAC, for

a uniform input wave, using the exact oblique-incidence grating

solutions (8.2.13). This solution is, however, difficult to

evaluate, and of greater complexity than is required for the

analysis of most practical devices. We therefore develop an

approximate solution for the RAC response using the simpler,

though approximate, grating solutions (8.4.2). In the following

section the behavior of a practical RAC design is analyzed, in

some detail, using these approximate solutions.

To obtain the response of a RAC [Fig. 8.5.1] we must con-

sider reflection through two oblique-incidence gratings. It

is convenient for the analysis to define the coordinate system,

in each grating, with its origin at the center of the grating

[Fig. 8.5.2]. Each grating is taken to be of width W and
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length L. From (8.2.1) the synchronous detuning at the center

of each grating A', is given by

A' =A-- (8.5.1)

The output of the RAC, from a transducer at x' = -L/2

in grating (2), is given by

W/ 2

-w/2
dy" S'(-L/2, y")

where S'(x', y") is the wave in grating (2).

For the case of a uniform input wave to grating (1)

(R(-L/2, y') = 1), ignoring frequency independent phase terms,

we obtain using (8.2.13)

= L2  dx W/2
-J-L/2 -W/2

d e[A' (Y - x) + (y - x) 2

dy e2

F - K; 1 ; j6(x + L/2) (W/2 - y)} (8.5.2)

where A' is defined in (8.5.1). This is the response of a

RAC for a uniform input. It includes all depletion and multiple
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reflection effects in both gratings.

As discussed above, the exact solution (8.5.2) is usually

not required for the analysis of most practical RAC designs.

If the coupling is not too strong we may use the approximate

grating solutions (8.4.2) to evaluate the output from the RAC.

In this case we obtain the approximate solution

L/2 {W/2 -j[A'(y - x) + (y - x) 21
S = K 2 dx dy e 2

Ll2(6/2) (x + L/2) (W/2 y) e i ? j} 2

6 0

(8.5.3)

This solution includes the effects of the lowest-order multiple

reflections in each grating and is thus accurate to O(Ks). It

is much simpler to evaluate than the exact solution (8.5.2), and

is accurate enough for the analysis of most practical devices.
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8.6 Analysis of a Practical RAC

We will now consider the performance of a practical RAC

design in the light of the new, more accurate, theoretical so-

lutions presented in the previous sections. By way of illus-

tration we shall consider a RAC with a linear FM downchirp,

center frequency of 400 MHz, bandwidth 180 MHz, and 90 ps

dispersive delay. A RAC with these specifications was considered

by Otto et al., using the lowest-order approximate grating solu-

tions (8.4.1), in a previous paper.[ 1 4 ]

For the analysis we shall use the approximate chirped

grating and RAC solutions, (8.4.2) and (8.5.3) respectively,

to evaluate the response of the device. These solutions include

only the first order of multiple reflections in each grating.

However, we shall show that these solutions provide important

corrections to the response predicted a lowest-order analysis.

The grating coupling coefficient K will be assumed independent

of position (i.e. frequency). In practical devices this is

usually achieved by depth weighting of the grooves.

In Fig. 8.6.1 we show a typical amplitude profile of the

R-wave across the grating, for a wave in grating (1) at the

center of its synchronous regime. The wave amplitude in the

upper part of the grating has been partially depleted since it

has passed through more grooves, close to synchronism, than
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the lower half. In addition,some additional energy has been

"piled-up" in the lower half of the grating due to multiples.

Beyond the synchronous region the amplitude profile of the R-

wave again flattens out and merely shows a fairly uniform de-

pletion caused by the coupling out of the S-wave. This be-

havior for the R-wave is physically more satisfying than the

assumption of the lowest-order analysis, that the R-wave

remains totally unperturbed.

A major advantage of the new analysis lies in predicting

the phase response of the device. At any frequency the ampli-

tude profile of the R-wave, across the center of its synchro-

nous region, is almost identical with that shown in Fig. 8.6.1.

However, the corresponding phase fronts of R depend strongly

upon frequency.

In Fig. 8.6.2, we show the phase fronts of the R-wave

for three frequencies, again each across the center of its

synchronous region. As the wave travels under the grating

its phase front becomes progressively distorted and delayed

by multiple-reflection effects. Thus, frequencies that are

synchronous far into the grating will suffer from increasing

phase-distortions due to multiples. The tilting and distortion

of the phase front of the R-wave results in a slight skewing,

or tilt, in the amplitude and phase fronts of the S-wave
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between the gratings [Fig. 8.6.3]. However, this effect is

only very small and has no significant effect on the overall

RAC response. Of much greater importance is the progressive

phase delay in the R-wave. In a downchirp device the latter

results in an additional, increasing phase delay for decreasing

frequency. The resultant additional phase delay in the RAC

output, at any given frequency, is approximately twice the

effective delay of the R-wave in the first grating. This is

because a similar delay is suffered again by the wave in the

second grating. Mathematically this is confirmed by (8.5.2),

where we observe that the inner integral is squared.

Figure 8.6.4 shows the additional overall phase delay in

the RAC response, due to multiples, determined from (8.5.3).

As expected, the multiple reflections cause increasing addi-

tional phase delays for decreasing frequency. This phase

delay is in addition to the quadratic behavior predicted by

the lowest-order analysis. The effect of this distortion is

two-fold, (1) it causes a change in the chirp-slope from the

design expectation, and (2) it causes a phase-deviation from

pure quadratic behavior. From (8.5.3) this additional phase

delay can be seen to be approximately (1/6). Phase errors

are typically observed in practical devices and usually neces-

sitate a correcting phase-overlay film to be laid down between

the two gratings. [56]
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Figure 8.6.5 shows the amplitude response of the RAC, with

and without, the correction for multiple reflections. The mul-

tiple reflections decrease the coupling through the RAC, espec-

ially at the high frequencies. This is because the grating is

of constant width. At higher frequencies the grating is wider,

in terms of wavelengths, and multiple reflections thus have

more chance to introduce amplitude and phase distortions.

It has been reported, in the literature, that in practical

down-chirp RAC devices there is frequently an unexplained ampli-

tude rolloff at the lower frequencies. [141 From the analysis

above it can be seen that for a constant K grating, even

including multiples, such a rolloff in the coupling loss of

the RAC is not predicted. However, there are several possible

causes of such behavior.

(1) In practical devices K is not a constant. To

compensate for propagation, diffraction and transducer losses

the coupling constant is generally increased with distance into

gratng. 14]the grating. For a downchirp device this means that the

coupling is generally much stronger at the lower frequencies

that at the higher frequencies. This tapering of K may con-

tribute to the amplitude rolloff observed.

To illustrate this phenomenon, consider a "U"-path grating

which consists of two constant-period (i.e. 5 = 0) oblique-

incidence gratings. For the response at Bragg, we obtain from
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the exact solution (8.5.2)

L/2

I 12 -L/2

W/2 2

dx dy J 021KIV(x + L/2) (W/2 -y)
-W/2I.j

= WL - j 02(2KlOWL) - J 2(2KIV~W)f

The coupling loss through the structure is therefore

20 log10jl -j 0
2 (2K I VWL) - J1 2 (2IK V WL)]. (8.6.1)

This is the exact solution for the coupling loss through a

"U"-path grating at Bragg. From a lowest-order analysis the

expected coupling loss would be

20 log1 0 [jK1
2 WL]. (8.6.2)

Expanding (8.6.1), we have

20 log1 0 [ Kj 2WL - - (1K1 2 WL) 2 + ... .
2

(8.6.3)
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We observe, by comparing (8.6.2) and (8.6.3), that for a

constant-period "U"-path grating, the lowest-order analysis

under predicts the actual coupling loss of the structure. This

error increases for tighter coupling values. In Fig. 8.6.6

the coupling loss predicted by (8.6.1) is plotted against that

predicted by the lowest-order analysis (8.6.2). This curve

was also obtained from many numerical computer runs using the

unit-cell approach. [41] If this saturation effect, for in-

creased coupling, is not taken into account in RAC design, the

coupling at the lower frequencies (i.e. larger K) will be

less than expected.

(2) Stored-energy effects have not been included in this

analysis. In Part I we showed that in normal-incidence gratings

these effects can cause the reflection/groove to become a strong

function of the groove/strip ratio (Section 5.5). This is also

expected to be the case for oblique-incidence gratings. Prac-

tical RAC Devices, using grooved reflectors, are generally

fabricated with a fixed groove width. A change in the period

is achieved by varying the spacing of the grooves. In actual

RAC devices, therefore, the groove/strip ratio is not a constant.

For high frequencies this ratio is generally > 1 and at low

frequencies it is < 1. This effect may also cause an addi-

tional skewing of the amplitude response of the device. (It

should be noted that the inclusion of stored-energy in the
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analysis will also affect the phase response of the RAC.) [57]

(3) In long devices diffraction must also be correctly

taken into account. Again, it will be responsible in a down-

chirp device for additional loss at low frequencies.
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APPENDIX A

STRESS COMPONENTS ON PERTURBED SURFACE

The stress on the perturbed surface of the grating is

given by

~x = a -* '
5

(A.1)

where a is the stress tensor of the acoustic wave on the

surface, and z' is a unit vector normal to the surface (Fig.

A.1). The surface is defined by z = sX f(x). Thus we write
r

s = z - exrf(x)

and hence

V = z - x eX f'(x).
s r

Since V

z' =

is normal to the surface, it follows that

z - x er f'(x)
r

J + (sX '())
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- -h=cXr

FIG. A.1 PERTURBED GRATING BOUNDARY
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From (A.l) the stress on the surface of the grating is there-

fore

Yxy

a

Cyz

xz r

yz
rr 1  (r + (CA f'(x))2

a~ -

To O(Ec2 , we have

a5 = EAr f'(x)

+ H Ar f'(x)

EHCr V (x)

S + 1
xx

xy

xz

-1-

2

-I-

2

-1-

2

(E I (X) )2 X
r xz

(CAr fI (X))2 2 (A.2)
(EXr fxyz))].

EX f'(x))2 Y Z, .
r0 1z

The stress tensor components a on the surface of the

grating, may be expanded in terms of the stress components

a (0) on the unperturbed surface at z = 0. We write the

expansion as

a.. = a. .(0) + EA f(x) C'(0) + - (E f(x)) 2 a'.(0) +Jr 2 r 1]

where

T xx

s Gxy

-Lxzr



205

a! .(0) - a.
Sz 1 z=0

and

.(0) -- a.
9z 1 Jz=

etc.

Introducing these expansions into (A.2) we obtain, to

as x{z(0) + EXr x[f(x)a (0) - f'(x) a (0)]
s X zX

- (Exr') x a' (0) + (f'(x)) 2  x (xx 2

- (f(x)) 2 a" (0)]} x
2 x

+ {a (0) + Ar [ yz x

- (er )[f(X)yf(X)a'(0) + - (f'(x)) 2 a (0)
r (" 2 yz

- .(f (X)l2 Ca" (0)]}
2y

+ {az(0) + ErX [f a' () f xzz r zz xz

- (sr (x)f'(0) + (f'(x)) 2 a (0)
rz 2 zz

0(6 2 )
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I (f (X)) 2 a" C0)]}
2 zz

and, to C(6)

S = {a (0) + EA [f(x) C' (0) - f'(x) a (0)]} x
s xz r xz xx

+ {a (0) + sX [f(x) a' (0) - f'(x) a (0)]} y
yz r yz xy

+ {a (0) + E x[f (x) ' (0) - f'(x) a (0)]} z.
z z r z z x z

(A.3)

(A.4)

A Rayleigh wave satisfies the stree free boundary condi-

tions on the surface z = 0. Thus, for a Rayleigh wave

r r r
ar (0) = Cr (0) = ar (0) = 0.
xz yz zz

For a Rayleigh wave, with no y dependence, the stress on

the perturbed surface of the grating is thus, to O(s)

a rf (x) a (0) f'(x) a (0)] X + EX f(x) a (0) Z.
Srxz xx r zz

(A.5)



207

APPENDIX B

ACOUSTIC WAVE COMPONENTS FOR NORMAL-INCIDENCE ANALYSIS

Rayleigh waves are the acoustic surface wave solutions

for a half-space (or infinite substrate) with a free boundary

surface. The wave energy is confined closely to the surface

of the substrate, with the wave amplitude decaying exponentially

into the bulk. Rayleigh waves are hybrid waves. They are a

combination of a compressional (or longitudinal) wave with a

vertically polarized shear (or transverse) wave. Together the

two waves satisfy the stress-free boundary conditions (i.e.

a z' = 0) on the free surace of the solid.

We develop here the stress tensor components and displace-

ments of (a) a compressional wave, (b) a shear wave, and (c)

a Rayleigh wave, propagating on the free surface boundary of

an isotropic, perfectly elastic solid. The solid is taken to

occupy the half-space region z > 0, with mass density p and

elastic Lame constants X and -p. The direction of wave pro-

pagation is taken to be along x, at an angular frequency w.

The compressional wave number ki, and shear wave number k2

of the solid are given by [58]

1/2
k = w (B.l)

1 K + 21i
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= (/)1/2 (B.2)

Ca) Compressional Wave

The compressional wave is a longitudinal wave. Its dis-

placement u is thus derivable from a scalar potential

u = v$q (B.3)

where the scalar potential $, obeys the wave equation

(v2 + k1 2)cp = 0. (B.4)

For a plane wave, with no dependence on the coordinate y,

stress components are given in terms of the scalar potential

,by [59

cr = + + 2y
xx = X 2  z 2 Jx 2

2  2  
2  -2

CT = z + L + 2
zz 32 z22 z2

the

(B.5)

xz 9xDz
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We are interested in identifying plane wave solutions,

propagating in the +x direction, and decaying in the +z

direction. We therefore assume a scalar potential of the form

-jkx -rz$ = s e e (B.6)

jwt
where a time dependence of e is understood. For this

potential function to be a solution of the wave equation (B.4)

we require

2k 2 = k2 - rI (B.7)

For propagating bulk waves the decay constant r must be pure

imaginary. This condition requires Ik!< k.

The displacements and stress components of the compres-

sional wave are easily obtained by introducing solution (B.6)

into (B.3) and (B.5). We find

U= - jkS e-jkx -rz

u = r e -jkx -rz

and
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cx =- p(k2 + 2r 2 )S e-kx e-rz (B.8)

k(2k2 -k 2 )S1  e i-kx -rz

axz = 2pjkrS1e-jkx -rz

(b) Shear Wave

The shear wave is a transverse wave. We therefore require

a vector potential to describe its displacement. We define

u = V x $ (B.9)

where the potential i, satisfies the wave equation

(V2 + k2
2 )4 = 0.

For a plane wave, with no

no displacement along the

the vector potential $ ,
y

are given in terms of this

y-dependence, i.e. 3/3y = 0, and

y axis, only the y-component of

is non-zero. The stress components

potential by[59

or =- 2 -p y
xxxz

(B.10)
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a = 2y y(B.11)

r -P y y

xz 9x2 9 z2

We again seek plane wave solutions propagating in the +x

direction, and decaying in the +z direction. We thus assume

a solution for $ of the form

y

- jkx - qz
{ = S  ek e . (B.12)

This solution is seen to satisfy the wave equation (B.10)

( = z 0), with the decay constant q determined by

k 2 = k2 _ q 2 . (B.13)

Again q will be pure imaginary for propagating bulk waves.

This requires 1k! < k2

The displacements and stress components of the shear wave

are obtained by introducing solution (B.12) into (B.9) and

(B.11). We find

Ux= qS2  -jkx e-qz

u = - jkS iekXe Iz
z 2
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and

a = - 2ejkqS2 e Xe (B.14)

.2-jkxq-q

azz = 2 jkqS 2 eJkX e-qz

Y = - p(k2 + q2 )S 2 e-jkx -qz

(c) Rayleigh Wave

The Rayleigh wave is a combination of a compressional

wave with a vertically polarized shear wave. The particular

ratio of the shear/compressional wave amplitudes, and the

Rayleigh wave dispersion relation, are obtained by requiring

the free boundary at z = 0 to be stress free. Using the

results of the previous two sections, the displacements and

the stress tensor components may then be determined.

The stress free conditions on the boundary, for a Ray-

leigh wave with no dependence on the y coordinate, require

r r
a =zz xz = 0 (B.15).

at z = 0.

The compressional wave amplitude is Si. and the shear
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wave amplitude is S2. We denote the decay constant of the

compressional wave by rr, and the decay constant of the shear

wave by cr. From (B.7) and (B.13)

rr = kr - k 2 (B.16)

qr2 = kr -k 2
2  (B.17)

where kr = 2rr/Xr is the propagation constant of the Rayleigh

wave. Introducing the stress components of the compressional

and shear waves, from (B.8) and (B.14), into (B.15) gives

(k 2 + qr2)S +2jkrqrS = 0r r 1 rr 2

2jk r S - (k 2 + q 2 )S = 0.r rl r r 2

From these equations we obtain the determinantal equation

(k 2 + q 2)2 - 4k 2q r = 0 (B.18)
r r r rr

and the ratio of the wave amplitudes to be

S (k 2 +q 2) 2jkr
2= _ r r _rr (B.19)

2kq (k 2 +q 2 )
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The displacements and stress components of the Rayleigh

wave are now obtained from (B.8), (B.14) and (B.19). The re-

sults are

ux r =-jS kr r

-r z

uzr = - S rr r

k 2 + q 2 -qrZ)-jkrx
r r r er

2k
r

k. 2 + q 2 q z -jk x
r r r r

2qr
(B.20)

r 2 +-r z -g z -jk x
S =-PS [(k 2 _q 2 + 2r 2e r - (k 2 + q 2 )e ]e rxx Pjr r r r r

r ~r z
z =- pS1 (k

2 + gr2) (e
-qz -jkrx

e r r

Tr = 2jijS k r (e r_ r r
xz 1 r r

and
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APPENDIX C

RAYLEIGH WAVE POWER FLOW

The complex Poynting vector of an acoustic wave pa' is

given by[60]

p= - - a-.J * -U.a @t

Thus, the time average power flow of a Rayleigh wave, per unit

width, is given by

Pr = - 2 dz Re fcr a 
_ r* ] 2 - 0 9t

=-Mr
dz Re [jw(ar ur*

xx x
r ur*)].xu uxz z

The displacement and stress components for a forward propaga-

ting Rayleigh wave are given in (B.20). Substituting in (C.1)

we have

-r z
dz [(k 2 - q 2 + 2rr) r

(C.l)

-+00
P = - is 2



- (k r2 q qe r]{ k er
r r r

k 2 + 2 -rz

r2k r
2k
r

-r z
+ 2k r (e rr r

-qzr' r z
r r)r e rrz

k 2 + q2 -g z'
r r

2k Ir J

Evaluating the integral, and making judicious use of the dis-

persion relation (B.18), we obtain

P ]AIs 2(k 
2 -q 2) 3 (k 6 + 5k 2q 4 + 2qr 6)

2 (k 2 + qr 2) 2  8k 3 q 3

r r r r

If we define the Rayleigh wave power flow to b 6

Pr= 2 wp k2 o 1
2

(C.2)

(C.3)

where Y is a dimensionless quantity and plays the role of a

characteristic admittance, then from (C.2)

kr 2 _.q 2q r 2 (k 6 + 5kr 2 q 4 + 2qr 6 )

q 
2  + qr2j32k r3 3

Sr r r r
(C.4)

Using the dispersion relation (B.18) we may also derive the

alternate form

216



(kc. 2 r - kc. 2 q + 2q 2 r)
r r r r r r

32kr3 r

217

=k 4
(C.5)
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APPENDIX D

PERTURBED SURFACE-WAVE DISPERSION RELATION

On the free boundary of an infinite isotropic solid the

surface-wave solutions are Rayleigh waves. Rayleigh waves

are dispersionless with a propagation constant k = w/v
r r

where O is the angular frequency of the wave and v r is

the Rayleigh wave velocity. As shown in Appendix B, the pro-

pagation constant k satisfies the determinantal equation
r

(B.18)

(k. 2 + q 2)2 - 4k 2q r = 0 (D.1)
rr r r r

where rr and q are the decay constants of the compressional

wave and the shear wave respectively.

By contrast, in a grating, coupling between counter-

propagating surface-waves causes dispersion as shown in Fig.

3.1.1. The surface-wave solutions in a grating are no longer

Rayleigh waves and do not satisfy the free-surface dispersion

relation (D.1). A surface wave of a given frequency experiences

a perturbation of its propagation constant within the grating

(Fig. 3.1.1). Conversely, a surface wave with a given propa-

gation constant is perturbed in frequency within the grating
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(Fig. 3.1.2).

Consider a surface wave propagating in a grating with a

propagation constant kri and with an angular frequency w.

The frequency differs from that of a Rayleigh wave w 0, having

the same propagation constant, by an amount Aw, where

= W 0 + Aw (D.2)

and Aw is of O(c) (or above). Let the decay constants of

the compressional and the shear wave components be r and q

respectively. Because the frequency of the wave differs from

that of a Rayleigh wave r / rr' q r.4 However, the decay

constants r and q may be Taylor expanded in terms of the

frequency perturbation Aw. The expansions take the form

dr (___) 2 ___r = rr +Ato - + (+... 2 d2r
dci= 2 dW2

= + Acidq + (A w.) 2 d 2cS1+
dw 2 dc2

=W0 Wi=Wo0

Using such expansions and the determinantal equation (D.1)

the modified dispersion relation for waves in the grating may
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be obtained in the form

(kr2 + q 2)2 - 4kr 2 qr = a1w + a2 (Aw)2 +

We now proceed to determine the exact form of this dispersion

relation.

From (B.2) and (B.13)

k2r = (k rq2 =12 1/2

thus, from (D.2)

k2= (kr2 q2)1/ 2 
-1/2 + Aw) = k2r (1 +W/W 0

Hence,

q = (k 2r
k 2 2 (k 2 g 2 ) (Aw/w ) (2 + Aw/w 02rr r 0

(D.3)

and, to O((ALw) 2 )

(k 2 _ 2 - k 2 1 I
q r r + r

(r
2

g O 1Fi2+LFrAwO-
(0.4)



221

Similarly, to O((Aw) 2 )

(k 2 - r 2)-k
r=rr r rr Aw[ + .kr AW (D.5)

r r W0

From (D.1) and (D.3)-(D.5), the dispersion relation for per-

turbed surface waves in the grating is determined to be, to

O ( (Aw) 2

4k 2
(k 2 +q2)2-4k 2 qr r (r - q )(k 2r -k 2q + 2q 2r)r r r r r r r r r r

r r

2k 2

(AWo/c) + r (r - q )[k 4 (r - a )(q + r ) 2

0 q 3 r 3 r r r r &r r r
r r

+ k 2g 2r 2 (r - q ) + 10q r 3 12(Ac/w . (D.6)r r r r r r r a (D.6)
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APPENDIX E

FIRST-ORDER BRILLOUIN COMPONENTS AND SECOND-ORDER

DETERMINANTAL EQUATIONS IN NORMAL-INCIDENCE GRATING

(a) Brillouin Wave Amplitudes

The amplitudes of the Brillouin components are obtained,

to O(E), by considering only those terms with the correspon-

ding spatial dependence in (4.2.3) and (4.2.4). As in Section

(n)3.2 the x-independent stress components of each wave J.n

(.-n are defined by
1]

(ni . (n) wik r+ nk 9)x

_ wji(k - nk )x

(-n) (-n) r g
a.. =c.. eJ 1i

(n = 1 +> cc)

(n = 1 +~ p).

We consider the two sets of Brillouin components, S (n) and

S (-n), separately.
i-

(a.l) Brillouin components S. with jkj > k.
r

These components are all non-radiating. From (4.2.3) , to
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0(s):

-j(k +nk )x
cf. e r 9 dep.

+(n) +(n) + r + r' - -r'2. a 0 [A 1 J (O) + A S B (0)]CY ixz () 2 [An 1 xz ()+An+p s1 xz

k
+ cX j r [nA S +r(0) + (n + p)A S (r n xx n+p a xx

=-o (1)

+j(k + nk )x
cf. e r g dep.

(n) -(n E r- I+ r'I
S cy"(0) + r [An S (0) + A S + (0)]ixz 2 n 1 XZ fl+p 1

k
-r [nA S1&;(0) + (n + p)A s +ar 0)]

r n 1 xn+p 1 x

=0 (ii)

and from (4.2.4), to 0(s)
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-j(k + nk )x
cf. e r g dep.

+(n) +(n) rX + r'-
J. z. 20 fA I & (O) + A S & (0)] = oSi a izz(0+ 2 nS 1 zz(0 A n+p S1 - zz0

+j(k + nk )x
at. e r g dep.

-( ) ~ ( )r- -r+ r'
S. cii"(0) + { A S a (0) + A S U (0)] = 01 izz 2 An 1 zz n+p 1 zz

(iv)

(E.1)

since a- (0) = 0.
xz

-r =r* -(n) _+(n)*By reciprocity a.. = . and a. .( = a. . for all3J Jii ij

the compressional and shear wave Brillouin components. Before

solving (E.1), for the wave amplitudes, it is expedient to

introduce a transformation of variables, of corresponding form

to that used for the propagating waves in Section 3.2. In

addition to (3.2.7), for the Brillouin components we define,

T= +(n)
(n) = +
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S.n)
1 i 1

(E.2)

Then, from (E.l) (i)+(ii)*, and (iii)+(iv)* respectively,

Tn) +()X T r' T* r*E
S n) +t(n) (0) + r [An S r(0) + A S x (0)]

1 XX Z 2 n1 XZ np 1 XZ

+ ki r T r + T* .r* =+xj [nA S ar (0) + (n + p)A ST* d (0)] =0
r [n xx n+p xx

p

S. T+(n) (0) +F [A S T (0) + A S r*' (0)] = 0
(izz 2 n Z S z n+p 1  zz

(E.3)

and from (E.1)

S.(n)D +n (0)
1 ixz

(i)-(ii)*, and (iii)-(iv)* respectively,

EX r D r' D* r*I
+ r [A S 1 r' (0) - A SD r*' (0)]

2 n 1 XZ n+p 1 xz

k r D r D* r* ()
+ eX j [nA S 6 r (0) - (n + p)A SD r(0)] = 0r n 1 xx n+p 1 xx

p

(nc +n X D -r' D* r*l
,n) CT n)(0) + r [A S 6 (0) - A SD* 6 ' (0)] = 0.
1 1ZZ 2 n 1 ZZ n+p 1 zz

(E.4)
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Equations (E.3) and (E.4) are two independent pairs of equations
T T ID ID

for the amplitudes S(n) S'(n) and S(n) n) , respec-
1 ' 2 1 ' 2

tively.

Case 1: S.+ S.

For this case from (3.2.7), S D= 0. Thus, from equations

(E.4)

(n = 1 com)

to O(E). Substituting in (E.3), and evaluating the stress

components from (B.8) , (B.14) , and (B. 20) gives (for S1+ real)

s +(n 2jk r -S+ (n) (k 2+ q 2)
1 n n 2 n n

SEXr j(rr - q )[k (rr + q )(An + An+p) - krq (An -A S

+(n)k 2 + q 2) + +(n) 2jk q = (r - q )(k 2 + q 2)
S n +n 2 n n 2(r r r r

/a -A rt- m NEr-4
(A n A )b 1

( )D

(E.5)
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Here k is the propagation constant of the Brillouin waves

k = k + nk = k (1 + 2n/p)
n r g r (E.6)

and rn and qn are the decay constants of the corresponding

compressional and shear wave components. From (B.7) and (B.13)

rn = (kn2 - k12)1/2

(E.7)

(kn2 - k22)1/2

The determinant of equations (E. 5) is

D(k ) = (k 2 + q 2)2 - 4k 2q r .on n n n n n (E.8)

Since kr satisfies the Rayleigh wave determinantal equation

(B.18), D(kn) 740 for n 0. Defining

A = A + A
n n n+p

(E.9)

A =A - An n n+p

from (E.5) the amplitudes of the Brillouin components for this
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case are, to 0(c):

S+(n) (sgj)(r - q {[k2nir

+ Er D(kn)r 2kn2q (rr + qr
S 1Dkn ) -.

- (k 2 + q 2(k 2 + q 2)A +
2 n n r r n - 2k q k q An n r rJ

___(rr - qr {k) k
S2  r k [(k 2 + q 2) (r + q)

r D(kn)

- r (kr2 + q 2 )]A +r r n k 2 q )kq An.n

Case 2: S. -S.
1 1

For this case from (3.2.7) S1 T = 0. Thus, from equations

(E.3)

T +(n) -()5(=n)+ S - S

to O(E). The wave amplitudes may now be obtained from (E.4).

Comparing (E.4) with (E.3) we observe that the equations are

of identical form, except for the replacement A -" An+pn'

(E.10)

(n = 1 +cc)
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Thus, by analogy with (E.10), in this case the amplitudes of

the Brillouin components are, to O(E):

S_ (r - q )1 + - A r r 2k 2 q (r + q)
S + r D(k) L n nr

(k 2+ g 2) (k 2 + q r2) A -2knq k qrAn{2 n n r r nnnrrn

2 2

S ()(rr r

= - EXJ Dk) {kn[(k2 + q 2) (r + q )
S r D(kn r r

- rn (kr2 + q 2)]A -- (kn2 + q 2)k An + (E.11)

(a.2) Brillouin components S -n), with k <k.

This set of Brillouin waves, in general, is comprised of

both non-radiating and radiating components. From (4.2.3), to

0(c):

-j(k - nk )x
cf. e r 9 dep.

+(-n) +(-n)r + ~r'O) A-S +()r ]
i ixz( 2 An axzp-n 1 xz
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k
- SXrJ- [nA S (0) (p - n)A- S 5 (0)] = 0n 1i xx p-n xx

+j(k - nk )x
cf. e r g dep.

- (-n) --n r - -r'I + r'I
x. ) (0) + 2 ([A S a (0) + A + r'(0)i Jixz 2 n zp-ri i xz

+ Er - [nA S . a(0) - (p - n)A S r(0)] = 0r n xx p-n 1 xx

(ii)

and from (4.2.4), to 0(c)

-j(k - nk )x
cf. e r g dep.

+(-n) ~+(-n) 6r +-r-r'(0) + - [A AcZ Z 2 nA C (O) + A a (0)] = 0i iz 2 n 1zzp-n I zz

(iii)

+j(kr - nk )x
of. e r g dep.
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-- ) ~ (-n) r - ~-r' + r'Sn a (0) + - [A S r'(0 ) + A S =1 izz 2 n zz p-n I z )

(iv)

(E.12)

since a r0) = 0.
xz

As in the previous analysis, by reciprocity, a- = r*
J= ij

However, the radiative components now also propagate in the

direction +z (into the bulk), as well as along x. There-

fore, for this set of Brillouin waves, a ) = a+(-n)*only
1J ij

for the non-radiating components. In general, for the radiative

components acy-n) (0) = ++ (-n) * (0), and a-(-n)' ( =
ij - ij iJ-

a (n (0), where the correct choice of sign for each component

can be determined by reference to Appendix B. These waves,

therefore, cannot be separated into two sets of solutions, with

+(-n) - (-n)* +(-n) - (-n)*S = and(S)+ = - 1 ,in the same manner

as the other grating waves already considered.

We define the propagation constant of the Brillouin waves

in the x direction to be k, thus

k =-n kr - nk = kr (1 - 2n/p). (E.13)

As discussed in Section 4.2 all the shear wave components will
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be radiative, in any isotropic solid, for p < 15. The z-

dependence of the shear waves is therefore taken to be e -nz

where from (B.13)

-n=(k 2
2 - k ()/2.(E.14)

The compressional waves will, in general, comprise both radia-

ting and non-radiating components, depending on the harmonic

p, and the material Poisson ratio v. In most isotropic solids,

however, the single compressional Brillouin component for p =

2, 3 is radiative. We therefore choose to take the z-depen-

dence of the compressional waves to be eJr-nz, where from

(B.7)

r-n = (k 2 -V n/2 (E.15)

For non-radiating compressional waves r will be pure ima-
-n

ginary. To simplify the form of the solutions, corresponding

to (E.9), we define

A+ =A + A
-n n p-n

(E.16)

A = A -A-n n p-n
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Case 1: S.+ S
1 1

Evaluating the stress components in (E.12), from (B.8),

(B.14) and (B.20), we have, for this case, from (i) and (iii)

respectively

S+(-n)2k r + Sf+(-n) (k2  21 -n -n 2 -n -n

=-sX j(r -q)k (r +q)A+ -kg A ]S +r r r -n r r -n r r -n 1

S+(-n)(k 2  
- q2 ) S+(- 2k q1 -n -n 2 -n -n

2r (r -g) Ckr2 + qr2)A S2 r r qr H r r -n) 1 (E.17)

and, from (ii) and (iv) respectively

5 -2k - r -n - C-n) (k2
1n -nn 2 -n - 2 )=

-cEAj~r - q )k Cr +gq)A+ -kg A ]S+r r r -n r r -n rr -n
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-2(() f(-) _ rsn (k2 - q n) + S2 2k_ q -r -r1m= n -n 2 n 2

(k 2  qj2)A s+.r -n 1 (E.18)

The determinant of both pairs of equations is

D(k ) = (k2 n q2 ) 2 + 4k 2 nq-r.-n -n n -n nP (E.19)

Again, since kr satisfies the Rayleigh wave determinantal

equation (B.18), D(kn) 740 for n $ 0. From (E.17), the

amplitudes of the forward propagating (+x) Brillouin waves

are, to O(s)

S+(- r - q
1 + :r r r -2k2i q-(rr + gr
S D (k ))

+ (k 2 _ q 2  )(k 2 +A+
2 -n -n r

+2k j q krqrA--n -nr r-n}

(r q
_+ -n ( r - r )q2

= r (k) {k-n[(kn - n r "r

- (k - q2 kr Al.n q-n ) qrA-nj-r 2 (E20)
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From (E.18), we find that for the reverse propagating (-x)

Brillouin waves

S-(-n) -S+(-n)
l1 1

(E.21)

-(-n) -+(-n)

2 2

(Relations (E.21) hold for both radiating and non-radiating

components.)

Case 2. S.+ = -S.
1 1

For this case, reference to equations (E.12) shows that

the amplitudes of the forward propagating Brillouin waves will

be identical to those for Case 1, except for the replacement

A --+-A . Thus, to 0(e):

p-n p-n

+ (-n)S (r - q )
1 _ r ( {2k2j n(rr + c + 1(k2 _ 2n
S + r D(k )-n -n r -r 2 -n -n

(kr2 + q 2) A + 2knjqn k q Atn
r r -n -n -n r r -n r

S+(-n) (r q )2_ r r k (2 _ 2 )(

S +EXr3 D(k ) -n[( -n q-n )rr +qr

1 - n
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- jr (kr2 + q 2rAn - (k2 - g2 )k A+ (E.22)
-n r r -n -n -n r r -n

Also, by analogy with (E.21), in this case, for the reverse

propagating Brillouin waves

(-n) +(-n)

(E.23)

-(-n) - +(-n)
2 2

(Again, relations (E.23) hold for both radiating and non-

radiating components.)

This concludes the determination of the amplitudes of all

the Brillouin components, in the grating, to O(s).

(b) Determinantal Equations

The determinantal equations, at the edges of the stop-

bands, are obtained by considering the terms in (4.3.2) and

(4.3.3) with the spatial dependence eJkrX. We use the nota-

tion defined in Sections 3.2 and 4.2. For the stop-band at

the p-th harmonic (i.e. p x Bragg) we obtain from (3.1.8)

and (4.3.2), to O(s2):
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-jk x
cf. e rxdep.

S. + (0) + sX A pS1 2 (0) + jk r . (0)S xzr p 2 ixz r ixx

00

+ &X n
n=1

+ (n) ~+(n)'.n ~+ (n)
(n ('2 ixz r ixx_2 p

(n) .~-(n) ' .( + k) ((n)
+A iS. - ak (0) + k (0)

n+p I 2 ixz r ixx

+ (+n) ( at-n) ( n ~+(-n)
r vAn LS Vixz + kr aixx (0)

n=1 2 p

(-n) 1 ~ (-n) '. (p -n)(n - p/ 2 )Ap s.7  -() + p k
p-n) 2 ixzr r

(-n) (0) + r A 2 S + r"(0)
ixx 2 2 n=l n xz

nAnApn
p n= 1

+ p nA A
n n-p

P-1n
r (0) + A A

1 xx 14n= n p-n

+ A AA j O-r"(0)
n n n+p xzn=1 I

n=p+1

- nAA A4
n n+pn=l

A A
n n- p

=
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and from (4.3.3), to O(EZ)

-jk x
cf. e r dep.

+ - -
S. a (0) + eX A S. -a (0) + jk &. (0)

1 izz r p 1 2 izz r ixz

+((n) 1 +(n)' n+(n)
+ ~ z xA . -a. (0) - - k ix (0)

r n i izz r ixz
n=1 _2 p

+ [(n) 1 -(n) (0) + (n+ p)k (n)0)
EAn+p s 2VLt1izz (0) ' +kr Ktixz ( ()

+ (-n) +(-n)'.n~+ (-n)
+ Ex -p/2A S.([k&- j)(0) + -kra (0)

n= p 2 p

-( (-n) -n '.(p -n)
+ 6 (n - p/2) Ap-n si1 ~ Gizz (0 ) + k r

2 CO

-(-n) (0) + r(8AX92( + r"0)

+ xz2 2 n= ZZ

k np-iC7
+ S nAnA + nAnA - nA A
p n=l n=p+1 n=1

p-1 C
S U (0) + AnA + AnA
1 XZ 4n= - n=p+1 -



00

+ A A Sp % r(O)} = 0
ene p n+ped izzn(2),an=l

where p is defined in (4.2.5) , and

0,
(n -P/2) =

for n = p/2

otherwise.

-r ~ * ~ (n) ~+ (n)*By reciprocity, as before, a.F = r. and a.m. = a.

since these stress components in the grating are all non-radia-

ting. We now derive the determinantal equations at the upper

and lower edges of the stop-band, w+ and o respectively,

from (E.24), to O(c2).

Case 1. o

At .w, from the first-order analysis in Sections 3.2

and 4.2, we have

+= -*
S. =5S.

1

and

+(n)
S.=1S (n = 1 + c)

to 0(e). Substituting in equations (E,24), we have, for this
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(E.24)

(E.25)
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case, to O(E2):

S. a. (0) + EAr A S. - Y. ( + jk & (0)I xz r p 2 ixz r lxx

Ex A +(n) +(n 0) - jn- k (0)

r n= n 2 ixz r ixx

+ ()V(n)* n* (n + p) ()+ A S. . (0) + j +oF]}n+p I 2 ixz r ixx
p

+ eX {AS F1+(-n)' k (+ j k()
rS n i Lixz r ixx (0

V-n) (p-n)
+ 6(n - p/2)A -- 1- -n)' (0) + j - k

p

-(-n)a. (0)ixx ~j

(sA )2
+ r

2

co
2 + r"Z A 2S~ ax (0)n=xz2n=l

P-1 00 7
+ kr K (n/p)AnA + n1 AA + r*'(0)

1 P-1
+ " AA +2 A AA] s+ r" (0 = 0

n=n= n n+pxz

+ a+ *+ ~+A +*a. (0) (0) + jk a. (0izz r p i zz r ixz
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I + (n) i . (n) (' j n +(n) I+ EA IA Si iz (0) - - k i&+((0)
r n=1 n 1 2 izz r ixz

+ A S n(n)' (n+ +n) 0
+An+p Si 2CYizz ()+P--kr Cixz(0

_2p

+ FA + (-n) 1+ (-n) '(0) + kj +(-n)()
- A S aizza( 0

r n=1 nn)'izz) r ixz

+S6(n - P/ 2 )Ap S-(-n) H -&-& ') + -0 n) kr

n)(Ex 2 0

- -)(0)7 + A 2  + r'' (0)
xz 2 2 n=1

P-100+_*
+ kr(n/p)A A 1A S + r*' (0)

jk n= np- n n A r

nP-1 0(1
+ I AnA + 2 AA S + r*" 0) = 0 (E.26)

4 n=l pn n=1 lp 1 z

where the amplitudes of the reverse propagating Brillouin

components, with kJ < kr, are related to the forward propa-

gating components by (E.21)

In SectLon 4.2, the amplitudes of all the forward propaga-

ting waves were determined in terms of the forward compressional

wave amplitude S+, to O(c) . Equations (E.26) may therefore
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be written, to O(e2), as a pair of simultaneous equations

for the wave amplitudes S1 + and Sj. Using (4.2.1),, and

evaluating the stress components of the zeroth-order waves

from (B.8), (B.14) and (B.20), we obtain

(Ex ) 2
2Jk r - EXrPjk A (r - q) (2q + r) + r ipjk (r - q )rr r p 2 r r -r

Vrr(r + qr){ A 2 p- AA] - (k 2 - q rr r r n=l 2 n=l -

00

- q 2)A 2 + (kc 2 + q 2 + r 2 + q r ) A Ar p r q r r qrr n=l nAn+p

p-1
+ (k 2 + q 2 + 2r 2 + 2q r ) X (n/p)A Ar r r r r n=l np-]

+ (eXrT) 2w pT S+ - (kr2 + q2)s2+ = 0

(EX ) 2
{i(k r2 + q2 ) -X rj(A /2) (r - q) (k 2 + q2 ) + r)2p(r - q)r r p r rr

Vkr + qg 2 )(Cr + qr){ A 2+k p A Ap]r r r r n=1 n 2 n=l -

+ (7k 2q + 4k 2r - q 3)A 2
r r r r r p



- (3k 2 r - k 2cr - q 2 r
r r r r r r

p-1
-4k 2r I

r r n=

q 3)AnAqr n nAAn=l

(n/p) A nA + (sX) 2 p T2 s1+

+2pjkrqs2 =0

where

00 fr-1
S( ) - j - k (0)

T, n= n i _2 ixz kTr lxxn=l1 L2 p

++ (n)* -+(n)*' . (n + p)+ S.( -)*. (t + JAn+p si yixz ()
2 p

n=1

~+(n)*
a. *7r lxx

-n) +(-n) 0) + j k t(-n) 0)
n 2 ixz r ixx

+ 5(n /2 )A --n)[ n)'(o) +(n p2)Ap-n si Tixz (0
2

B(-n)()
ixx(0

co

=
2n=1

j(p - n)k
r

p

S(n) +( (0) - j k (0)n 1 L2 izzk r ixz
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(E.27)
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-+(n)*[l +(n)* (n + p) ~+(n)*+ A -7 ) i (0)+ k rixz (0)

(-n) +(-n)' n +(-n)
+ A S (0) + j -k (0)

nl n1 2 izzp r ixz

+ 6(n - p/2)A -(-n) o.-( 0) + + wP kr
P-n 1 2 1ZZ r

(Tn) (0) (E.28)+xz()

and the normalized amplitudes of the Brillouin waves St(,
1

S (-n)are defined by
1

s+(n) EX -l+ +(n)
1r

(E.29)

-(-n) +A *(-
1 r 1 i '

+(n) +().
The Brillouin wave amplitudes S. , S( are given, for

i i

this case, by (E.10) and (E.20), (E.21) respectively.

For non-trivial solutions, for S + and S2+, the de-

terminant of equations (E.27) must be zero. This requirement

gives, to O(E2):
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(k 2 + q 2 ) 2 - 4k 2qr=- EA 4k 2q 2 (r - q)Ar r r r p

- (rX )2kr2(r - q ) (3kr 2 q + k 2r + q 2r q 3)A 2
(r )r (r r+rr rr r r r p

00 p-1

- (kr 2 q+ r 2)(rr +qr) A A + A A
n=l n n=l n -

q r (r + q ) - '(n/p)(kr2r + k 2q + 2q r 2
qrr~ + n/p, r r r r r

+ 3qr 2rr + qr3J}- X(r) 2 [2jkr Tr1 + (k r2 + qr 2

(E.30)

where the first-order determinantal equation (3.2.11) has been

utilized to simplify the relation. This is the required de-

terminantal equation, to 0(c 2 ), at the lower edge of the

stop-band w

Case 2. w+

At w , from the first-order analysis, we have

S.+ -S.
1 1
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and

+ (n) (n)*S. =--S.
1

(n = 1 + o

to O(e). Substituting in equations (E.24),, we have, for this

case, to O(E2):

++ +* 1 ~*'+*
S. a. (0) - EX A Sf. (0) + jk .(0)I lxz r p i ixz r ixx

+ X IA +(n) +(n)') - j k +(n)
+ r A n 1 ixz (0) -p r &ixx (0f

+ (n)* &t(n)*'

n+p i 2ixz

+ eX l
rn=1

.In + kp) ~+ (n)*
(0) + j r kr (0)r -xx

p

+(-n) .~+(-n)' . k n+(-n)
A S. -C. () + 3 -k a 0n 2ixz ( r ixx

+ 6(n - p/2)A S-(-n)FI -(-n)'(() + p- n) kp-n2i L ixzr

-(-n) r K + r"
rixx+2 n 1 A SAnx(z

I 12 2 n=l

k r P- n
- jI nA nA p +

_pn p-n1
nA A

n n-p - nAnAf
n=l n n1 p
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+ r*' 1FP-i 03
S* a> (0) - -. j A A + A A1xx 4In=1n p-n n A+1n An-p4 Ln=l +

+ r*+ A AA s &r(0)} 0
n=1 =0

S. a. (0) - cX A S. +
izz r p 2 izz

00

+ cA Z (+))(
rA=1 n izz

jk a. (0)
r jixz

n k 2+(n) 7
r ixz

pI

- A (n)*J (n + P)k +(n)n+p ( Vizz* +r ixz

+ + A +(-n)(-n)zz j nk +(-n)
n=F' izz r ixz

+ 6(n - p/2)A si(fl)[ ut(n)'(0) + j (p - kr

2 p

- (-n) r K + r"S (0 fl + {- A 2  u (0)rixz IAn S zz(0
2 2 n=l

k LP-1
- jI nA A +

P n=l n p-n
n=p+1

nA A
n n-p

00

- ) nAA9
n=1 ni

1r*100
1 % (0) - - L A A + A Alxz 4n= n p-n np+ n n-p

030 ~
+ A A

n=1 n n+p
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+ ~r
L azz (0)} = 0 (E.31)

where the amplitudes of the reverse propagating Brillouin com-

ponents, with IkI < kr' are related to the forward propagating

components by (E.23).

As in the previous case, equations (E.31) may be written,

to 0(6 2 ) , as a pair of simultaneous equations for the wave

amplitudes S + and S2 Using (4.2.2), and evaluating the

stress components of the zeroth-order waves from (B.8) , - (B.14)

and (B.20), we obtain

-2pjk r + EX pjk A (r - q) (2q + r)r r r p

(e\ )2
+ r 1 jkr(r - q)

2 r r r

00 P-1
(r + Hr A2 1 -

r r r Ln=l n 2 n= Anp-n

- (k 2 - q r - q )A 2 - (k 2 +qg 2 + r 2 + q r)r r r r p r r r r r

00

n A nAn+p
- (k 2 + q 2 + 2rr r r

p-l
2+ 2q r )

r r n=l
(n/p)A A

np-n7

+} - ir2 + q2)s2+ = 0+ (er T3 Sl+
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EX ) 2{ (kr + qr) + Ar(Ap/ 2 ) (r - q) (kr+g + v(rr -r

4

r r r r n 2 =1 n p-n

+ (7k 2 q + 4k 2 r - q 3 )A 2r r r r r p

+ (3k 2r - k 2q - q 2r -r r r r r r

p-1

r rn=

co

q r) A A
n=i

(n/p)A+ (s) 2 p T s+n p-nr 4

+2pjkrqs2 =+ 0r 2

00

= A 5ixz (0) - j - k 5.+(n 0)
r lxx

+ (n)* &t(n)*'+(0)+P) k (n)
r+p 1 ixz r ixx_2 p

npi{An +(-(nn)rlx
+ A5 (0) + j t k 6 (-)(0)7n = n ixz r ixx )

where

(E.32)
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+ 6 (n - p/2)A 5 [S & ''i (0)

+j(p - n) k (-n)
r ixx

p

T = Z A s( z (0) - j n- k +(n)(0)
4 n=l 2 pz rix

+(n)* 1 ~+(n)*' . (n + P) +(n)

S+ (-n) 1 +(-n)?' n +-n)

+ 6(n- /2 A 5-(-n) l -(n) '(+ 5(n P/2)A p-n 2 tt2izz '(0)

&:)n) ~(-n)
+ j kr ixz (0) (E.33)

p-j

The normalized Brillouin wave amplitudes S. , ST are
1 1

defined, as before, by (E.29). For this case, the Brillouin

+(n) +(-n)wave amplitudes Si , ST are given by (E.11) and (E.22),

(E.23) respectively.

For non-trivial solutions, for S+ and S2+ we require

the determinant of equations (E.32) to be zero. This gives to
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O(c2)

2 (2 22

(k 2 + q2)2 - 4k 2qr = EX 4k 2q2 (r - q)Ar r r r p

(Er)2 k 2 (r r)(3k r + kr 2rr + q r2r-r q 3)A 2

CO

+ (k 2 + q 2) (r +q) AAr r r r n=1 n n+p

p-1
- I AyA [qr (r +q) - (n/p)(k 2r +k 2 q

n=1 p-n rr r r r r r r

+2qrrr 2 + 3qrr rjrr2 [2kr T3

+ (kr2 + qr 2 )T4 (E.34)

where we have made use of the first-order determinantial equa-

tion (3.2.12). This is the determinantal equation, to 0(62)

at the upper edge of the stop-band w+*
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APPENDIX F

ACOUSTIC-WAVE COMPONENTS FOR OBLIQUE-INCIDENCE ANALYSIS

In this Appendix, the propagation of acoustic plane-waves

on the free-surface boundary of an isotropic solid is considered,

when the direction of propagation is not along one of the co-

ordinate axes. The solid is taken to occupy the infinite half

space z > 0 and to have mass density p and Lame constants

X and V. The surface coordinates are thus x and y. We

assume that the direction of propagation of the waves makes an

angle 0 with the +x axis [Fig. F.l].

Four types of acoustic waves are considered. They are

(a) a compressional wave, (b) a vertically-polarized shear

wave, (c) a horizontally-polarized shear wave, and (d) a

Rayleigh wave. The compressional wave and the shear waves are

all bulk wave components, which alone do not satisfy the stress-

free boundary conditions. The Rayleigh wave is a hybrid wave

which satisfies the boundary conditions on the free surface.

It is a combination of a compressional wave with a vertically-

polarized shear wave. In general, in an oblique-incidence

grating, there are propagating waves of all four types con-

sidered above. The stress tensor components and displacements

of each type of wave are determined in the following sections.
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(a) Compressional Wave.

As in Appendix B, the displacement u may be determined

from a scalar potential ( [(B.3) and (B.4)]. In terms of

the scalar potential, the stress components are given by

a + + 9ZJ
xx x2 Dy 2 z2

yy 2y 2  z21

z + y z+zz = x 9y 2 21

+ 2p 2
3x 2

+ 2p LI
+ y 2

z22

a2
yz = y z

xz = x3z

a x=2p y
3xDy

(F.l)

We seek plane wave solutions, propagating in the direction

+v [Fig. F.l], and decaying in z. The scalar potential is
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therefore taken as

-jE -*f -rz$ 1 e e (F.2)

(ignoring the time dependence e j). For (F.2) to satisfy

the wave equation (B.4) we require

k 2 = k2 - r2  (F.3)

where k is the compressional wave number (B.l). Transfor-

ming (F.2) into x - y coordinates gives

Se-jk(x cos S + y sin 5) -rz (F.4)

This is the appropriate scalar potential for a compressional

wave, propagating at an angle 8 with the +x axis.

The displacements and stress components of a compressional

wave are determined from (B.3) and (F.1) respectively, using

the scalar potential (F.4). They are

U= - jk cos e S 1 e-jk(x cos S + y sin 8) e-rz

u = - jk sin e S e-jk(x cos 6 + y sin 5) e-rz
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u= - rS1 e-jk (x cos 6 + y sin 6) erz

and

= - (k2 + 2r 2 - 2k 2sin 2 6)S ejk(x cos 6 + y sin 6) erz

G = ~- (k2
2 + 2r 2 - 2k2 cos 2 6)S e-jk(x cos 6 + y sin 6) e-rz

yy 2

z i= yi(2k 2 - k22s e-jk(x cos 6 + y sin 6) e-rz

ay = 2pjkr sin 6 S e-jk (x cos 6 + y sin 6) e-rz

a = 2jkr cos 6 S ejk(x cos 6 + sin 6) -rz
xz

a =- yk2 sin 26 S e-jk(x cos 6 +ysin6) -rz

where k2 is the shear wave number (B.2).

(F .5)
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(b) Vertically-Polarized Shear Wave (i.e. Polarized JSurface)

The displacement of a shear wave may be determined from

a vector potential $ [(B.9) and (B.10)]. For a vertically-

polarized plane wave, propagating in the direction +v [Fig.

F.l], there is no wave displacement along the normal direction

w, and no dependence the coordinate w. Thus, only the com-

ponent w / 0, and (3/9w)lp = 0. Assuming decay in z, the

appropriate vector potential is thus of the form

-jk-v -qzW S2e e . (F.6)

For (F.6) to be a solution of the wave equation (B.10) we

require

k22 = k q2. (F.7)

Transforming (F.6) to x - y coordinates gives

= (-x sin 6+ y cos ) 2-jk(x cos S + y sin 6) -qz

(F.8)

which is thus the vector potential of a vertically-polarized



258

shear wave, propagating at an angle 6 with the +x axis.

In terms of the vector potential, the stress components

[62]are

32
- 2p

2 x

ayaz

a = 2--

tj 2  2 92

9zzz2 -p

x2z 32$ 32

a =y -+ j
yz z 2 3y 2 9x~y

2 2  
xay

x 3 y
Crxy '-(F.9)XY x~z 9y9z)

Introducing the vector potential (F.8) into (B.9) and

(F.9), the displacements and stress components are determined

to be
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u= q cose8 S2 e-jk(x cos 0 + y sin 6) qz

u=q sin e s 2 e-jk(x cos 6 + y sin 6) -qz

U= - jk S e-jk (x cos 6 + y sin 6) -qz
z2

and

T x= - 2pjkq cos2 6 S2 jjk(x cos 6 + y sin 6)-qz

a y= - 2pjkq sin2 e S2 e-jk(x cos 6 + y sin 6)e-qz

a zz = 2-Pjkq S e-jk(x cos 0 + y sin 6)e-qz
zz 2

aYz = - w(k 2 + q2 ) sin a S2 -ijk(x cosO8 + y sin 9) -qz

Sxz = - P(k 2 + q 2 ) cos e S ejk(x cos 6 + y sin 6) e-cqz

-= - pjkq sin 26 2 e-jk(x cos 6 + Y sin 6) eqz

(F.10)
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(c) Horizontally-Polarized Shear Wave (i.e. Polarized Surface)

Again, this shear wave is derivable from a vector potential

$ [(B.9) and (B.10)]. A plane wave, propagating in the direc-

tion +v [Fig. F.l], has no displacement in the z direction

and no dependence on the coordinate w (normal to the propaga-

tion direction). For this type of shear wave thus w = 0 and

V' z are both finite. For waves decaying in z, the appro-

priate divergence-free vector potential is thus

^jk - v-qz
' = (q v - jk z) S3 e e (F.ll)

where the decay constant q again satisfies (F.7). In x - y

coordinates the vector potential (F.11) is

- ^^ ^. -k(x cos e + y sin 0) -qz' = q cos 0 + y q sin 0 - z jk) e e

(F.12)

which is thus the vector potential of a horizontally-polarized

shear wave, propagating at an angle 6 to the x axis.

The stress components, of these waves, are related to the

[62c
components of the vector potential by
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a = 2 p z-xx
X~y Dx~z)

D 

= 2x -
ax3z 9yz

32
a = y-
yz 2

a =z

a = y- 3y2 z

+
9y2

a2 

Dz 
+

92 .a 2 -p

2 y _ 2 z

D zt2 _ x

y3z 9xDy

xy

ax3z y~zj

Using the vector potential (F.12), the displacements and

stress components are determined from (B.9) and (F.13) to be

U= - - 2 ) sin e S -jk(x cos e + y sin e) -qz
x (k2 - q2 ) siS 3 e(+

U = (k 2 _q2) cos S 3 e-jk (x cos + y sin )e-qz

u = 0Z

(F.13)
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and

a x= ijk(k 2 - q2 ) sin 26 S3 ejk(x cos 6 + y sin 6) qz

a = - pjk(k 2 
- q2 ) sin 26 S e-jk(x cos 6 + y sin 0) -qz

yy 3

a = 0
zz

y = - pq(k2 _q 2 ) cos 6 S3 jjk(x cos 6 + y sin 6) -qz

a = gpq(k2 _ 2 ) sin 6 S3 e-jk(x COS 6 + y sin )-qz
xz3

a = -jk(k 2  cr 2 ) cos 26 S3 ek(x cos 6 + y sin 6) eqz
xy( 4

(F,1L4)

(d) Rayleigh Wave

A Rayleigh wave is a combination of a compressional wave

and a vertically-polarized shear wave. Together these waves

satisfy the stress free boundary conditions
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r r r
xz yz zz (F.15)

at z = 0.

From (F.5), (F.10) and (F.15) the ratio of the wave ampli-

tudes is again given by (B.19). In addition the decay constants

of the waves [(B.16) and (B.17)] must satisfy the determinantal

equation (B.18).

The displacements and stress components of a Rayleigh wave,

at oblique incidence, may be determined from (F.5), (F.10) and

(B.19). We find

r .
U = i s kr

~r
e

k 2 + qr 2  -qrz
- cos e

2k
r

-jkCr (x cos + y sin 6)
e

yr = - s k
-r z
er

k +qq 2 -qz
_ r r r sin 6

2k

-jkr (x cos 6 + y sin 0)

zr rz
u z " 1r re

k r +q 2 z -jkr (x cos 6 + y sin 6)
re e

2qr
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and

ar =-S [(k 2cos 2 - q 2 + 2r 2)e r
xx 1 r r r

- (k 2 q 2)
r r

qrz -jkr (x cos 0 + y sin 0)
Cos e er

-r z
a r = -ySi[(-kr 2 cos 20 - q 2 + 2 rr2)er
yy 1 rrr

- (k 2 + q 2)
r r

sin 2 qr z -k (x cos 0 + y sin )

r -r z
r =S (k 2 + q 2 )r(e
zz 1 r r

-r z
ar =2pj S k r sin 6(e r
yz 1 r r

-r z
r = 2pj S1 kr cos (e rxz 1 r r

-qrz -jk (x cos 0 + y sin 0)
e )e r

-qr z -jkr (x cos + y sin 8)
) e r

-qe z -jkr (x cos 0 + y sin 0)
e e

-rrZ k 2 +q 2 -z
7 =- yS sin 20{k2 e - r r-e r
xy r 2

-jk (x cos 0 + y sin 0)
e (F.16)
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