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ABSTRACT

Grating structures are currently used in surface-acoustic-
wave (SAW) devices to perform a variety of signal processing
functions. With the development of single-mode optical trans-
mission systems, it is also likely that they will find increasing
application in integrated optics for performing similar functions.
We demonstrate here the power and simplicity of coupling-of-modes
theory in analyzing the behavior of such gratings. The major
part of this thesis is concerned specifically with the analysis
of SAW gratings. However, most of the theoretical methods de-
veloped, and the general solutions obtained for several complex
grating problems, are equally valid for integrated optics, holo-
graphic or other grating structures.

The first step in the analysis is the derivation of a
variational principle for SAW's. From this the coupled-wave
equations, to first order in the grating perturbation, are de-
rived for a grating resonator. The coefficients of these equa-
tions are evaluated to obtain in a relatively simple manner, the
reflection coefficient of a normal-incidence groove, to first
order in the groove depth. A second method for obtaining the
reflection coefficient by matching boundary conditions, and
interpreting the results via coupling-of-modes theory is also
presented. The results of both analyses are in agreement with
existing theory. The analysis of a normal-incidence grooved
grating is then extended to second order in the groove depth.
Theoretical closed-form expressions are cobtained for both the



reflection coefficient and the center of the stop-band at all
the grating harmonics. A detailed analysis of these second-
order effects is presented at Bragg and the second-harmonic
frequency of the grating. The strong influence of the groove
profile in determining these effects is investigated. Oblique-
incidence gratings are also analyzed.

In the second half of the thesis, coupled-wave theory is
used to obtain, in exact closed form, the responses of both
normal- and oblique-incidence (45°) gratings with a linear
spatial chirp. Using these solutions the filter characteristics
of constant-period oblique-incidence gratings are studied. 1In
addition the exact response of a reflective-array-compressor
(RAC) is determined. The exact solutions for the RAC are then
approximated to a form much simpler to evaluate, yet more accur-
ate than those currently used in RAC analysis. These approximate
solutions are applied to a detailed analysis of a low-loss RAC.

Thesis Supervisor: Hermann A. Haus

Title: Elihu Thomson Professor of
Electrical Engineering
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CHAPTER 1

INTRODUCTION

1.1. Motivation for Grating Study

Grating structures are capable of performing many com-
plex signal processing functions, and are currently employed
extensively in surface-acoustic-wave (SAW) technology.[l'z]
Such SAW grating devices usually operate in the VHF-UHF range
(typically below 1 GHz). Important applications are in os-
cillators, filters, pulse compression, and chirp Fourier

transform systems.[l-l3]

In general, such devices offer
considerable advantages in terms of size, power requirements,
and speed over alternative digital processing systems, if they
are even available. SAW grating devices operate in real time
and over very large bandwidths. Pulse compression devices
have been fabricated to date with time bandwidth products as
high as 16,200. 14

Analogue signal processing with gratings, however, is
not restricted to acoustics. The current development of
magneto-static wave devices shows promise for extending the
SAW grating technoclogy well into the microwave regime {up to
10 GHz)[lS’l6]. In addition, grating structures are also im-

[17-24]

portant in optics. Holcgrams have been used for some
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time for recording information and the shaping of optical beams.
Furthermore, as grating technology is advanced it is expected
that most current SAW grating functions will also become fea-
sible for the processing of optical guided waves. In this
respect, the development of single-mode optical transmission
systems can be expected to stimulate the development of such
integrated-optics devices.

The growing importance of grating devices for signal pro-
cessing has created a new need for a deeper understanding of
the behavior of such structures. The exacting responses re-
quired of modern acoustic and optical signal processing devices
demand the inclusion of previously ignored effects into grating
design and analysis. Of particular importance among the latter
are the effects of stored energy and multiple reflections,
within a grating, on the device performance.

Stored-energy effects are associated with the generation
of local evanescent bulk waves within a grating. These cause
a small additional phase shift at each reflecting discontinuity.
The most important consequence is a reduction of the surface-
wave velocity in the grating, compared with that on the free

[3,5,25]

surface. The latter results in a lowering of the

Bragg frequency, i.e. the frequency of maximum grating reflec-
tion. This effect is particularly important in filter design

as it often necessitates empirical adjustments in design.[25]
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The reduction of the grating surface-wave velocity has also
been observed in the grating transmissiQn phase response.[26]
In addition, stored-energy effects within a grating have been
shown to cause strong spurious harmonic responses of the

grating.[27_29]

No theoretical method of analyzing these
effects in closed-form currently exists. Moreover, the depen-
dence on the various grating parameters is not well understood.
Modern grating devices frequently employ complex grating
structures, with spatial chirps and/or operation of obligue
incidence. Most current analyses of such structures neglect
the effects of depletion and multiple reflections within the
grating. However, these effects may have important consegquences
for the device response. An important case of interest is the
reflective array compressor (RAC). This obligque-incidence
structure uses spatially-chirped gratings to achieve pulse
compression. It finds widespread application in modern sophi-
sticated radar and signal processing devices. A disadvantage
of current designs, however, is that they suffer from high
insertion loss. To achieve lower-loss performance the gratings
must be designed for stronger reflection and the effects of
multiple reflections and depletion included in the analysis.
The areas mentioned above are the principal areas where
it is desired to develop an improved theoretical understanding
0of grating behavior, for applications in modern SAW, and optical,

signal processing devices.
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1.2. Existing Theory

Early analyses of grating devices neglected the effects
of energy storage within the grating on device performance.
Since these effects are "second order", i.e. vary quadratically
with the grating perturbation, they were assumed fo be too
small to have a significant effect on the grating response.
More recently, however, many papers have stressed the importance
of including second-order effects in SAW grating design.[B’S]
In modern high-Q grating designs the second-order reduction
in the Bragg frequency is particulary important. Despite the
latter, very few theoretical analyses of second-order effects
have been attempted. To date, second-order effects have been
accounted for in grating designs largely on an empirical basis.
An equivalent transmission-line model was proposed by Li
et al. for including second-order effects in the analysis of

SAW gratings.[26’27]

In this model, the energy storage is ac-
counted for by a periodic loading of egqual shunt susceptances
across a transmission line [Fig. 1.2.1}. However, they proposed
that the appropriate shunt susceptance value be determined ex-
perimentally. This approach, while quantitatively predicting
the grating behavior, fails to relate the effects of energy

storage to the relevant grating parameters. In a later paper,

an attempt was made by Shimizu et al. to derive the susceptance
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elements of Li entirely theoretically.[3O] However, because

of a perturbation technigque employed in their solution, the
results are in error for steep-sided grooves.

In two recent papers, by Wright et al., a new method for
analyzing second-~order effects in closed form was described.[31’32]
That analysis will be given in detail in this thesis. The re-
sults are in good agreement with experimental data and reveal
the critical importance of groove profile in determining second-
order effects.

The analysis of second-order effects, and the other grating
énalyses considered in this thesis, are based on coupled-wave
theory. Coupled~wave theory was first introduced into grating
analysis by Kogelnik, for the analysis of thick hologram gra-

[33]

tings. Later Kogelnik and Shank successfully applied it

to the analysis of distributed-feedback lasers.[34]

They
demonstrated that such an approach could greatly simplify the
analysis of grating structures. Subsequently, coupled-wave
theory was successfully applied by several authors to the
analysis of SAW transducers and gratings.[35_37]
Modern SAW grating devices such as the RAc; rely on ob-
lique-incidence grating structures for their operation. How-

ever, the coupled-wave theory developed by Kogelnik applied

only to one-dimensional structures. Thus only gratings at
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normal incidence could be analyzed. Coupled-wave theory was
extended to two dimensions by L. Solymar et al., for the

[38]

analysis of large-volume holograms. Solymar et al., solved
the problem of uniform illumination of a large-volume hologram
at Bragg incidence. They showed that the output waveforms
from a holographic grating could be expressed in terms of
Bessel functions. Bloch et al., by analogy, applied these
solutions to the analysis of obligque-incidence SAW gratings.[39]
Since the solutions were only valid at Bragg, however, they
were not able to predict the frequency behavior of the gratings.
In addition they could not analyze the transmission through a
"U" or "Z2" -path unchirped grating structure tFig. 1.2.2}.
In the latter structures the illumination of the second grating
is non-uniform, thus the soluticns of Solymar did not apply.

In a recent paper, Russell and Solymar extended the anal-
yvsis of large-volume overlap-holograms to the case of non-uniform

illumination and non-Bragg incidence.[40]

However, these solu-
tions have not yet been applied to the analysis of SAW grating
structures. In addition, the soclutions are wvalid only for
gratings with a constant spatial-period. They thus cannct be
applied to the RAC, which is a chirped grating structure.
Gerard et al. performed an analysis of the RAC in the
limit of small coupling between the incident and reflected

[41]

grating waves. This analysis is currently used to design
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RAC devices. However, under the small coupling assumption the
effects of energy depletion and multiple reflections within
the gratings are completely neglected. This analysis is there-
fore unsuitable for the design of low-loss RAC devices, where
the coupling in the gratings must be strong.

In a separate paper, Otto attempted to examine the effects
of multiple reflections on grating performance and also to es-

timate when they become important.[42]

He chose to analyze an
unchirped U-path grating by dividing both gratings into small
unit-cells, each with identical scattering parameters [Fig.
1.2.3]. By employing a computer to multiply together each of
the individual scattering matrices, he was then able to invest-
igate the role of multiple reflections on the performance of
the device. The analysis, however, was only performed for
unchirped gratings. Moreover, closed-form sclutions were not
obtained and the complexities of the numerical analysis failed
to make clear the role of the design parameters in determining
these effects.

In a recent paper, Bloch et al. suggested an extension of
the unit-cell scattering approach of Otto to the analysis of

a RAC (i.e. to include a chirped grating).[39]

The method,
however, is not as well suited to this structure. In addition,
the complex numerical analysis reguired, agaln obscures a clear

understanding of how these effects might be included for improved
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RAC design.
More recently, a closed-form analysis of reflective-array

gratings was reported by Wright et al.[43]

That analysis will
be described in detail in this thesis. The new analysis, for
the first time, permits closed—-form solutions to be obtained

for the RAC. The solutions incorporate all orders of multiple

reflections and wave depletion within the gratings. They have

important application to the design of low-loss RAC's.
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1.3. Objectives

A main objective of this thesis will be to demonstrate
that, in many cases, coupled-wave theory provides the most
convenient approach to the solution of complex grating problems.
In particular, we shall show that a coupled-wave analysis fre-
quently permits solutions to be obtained in closed form. Al-
ternate methods, by contrast, are invariably more complicated,
frequently involve infinite matrices, and rarely permit closed-
form solutions to be obtained. Furthermore, grating analyses
of general validity can be performed, using coupling-of-modes
theory, without regard to the specific nature of the waves,
i.e. acoustic, optical, etc., We shall show that a coupled-wave
analysis is valid for most grating structures of practical im-
portance.

A new, relatively straightforward method for obtaining
second-order effects in grooved gratings will be presented.

The analysis will be performed assuming propagation in an
isotropic material. However, by invoking an eguivalent
Poisson ratio, the results of the analysis will be extended
to include typical anisctropic materials, such as Quartz and
LiNbO,. The solutions will be obtained in closed form. Ana-

3

lyses that involve numerical integration, and/or truncation
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of infinite matrices, are particularly to be avoided as they
may lead to incorrect results as will be shown.

All the stop-bands of a grating will be determined correct
to second order in the groove depth. From this analysis the
response of a grating at Bragg and the second harmonic will
be examined in detail. Both normal- and obligue-incidence
gratings will be considered. The second-order reduction in
the free-surface wave velocity within a grating, usually at-
tributed to so=-called stored—enérgy effects, will be determined
theoretically and in closed form. The sensitivity of the re-
sulting downward shift in the frequency of maximum reflection
of the grating (i.e. Bragg) to the groove profile will be in-
vestigated. It has been reported in the literature that this
frequency shift is not a simple guadratic function of groove

[25] We shall show that the new

depth, as might be expected.
theory explains this behavior. We shall also determine the
transmission phase response of a grating, using the corrected
wave velocity as determined by the analysis. Whenever possible,
all theoretical analyses will be compared with existing experi-
mental data.

From the second-order analysis, the reflection coefficient
of a grating will also be determined to second order (in groove

depth). Stored-energy effects have been shown to cause a strong

grating reflecticn near the second-harmonic frequency, where
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to first order none would be expected. This reflection, and
the associated bulk radiation within the grating, will be
determined theoretically by the new analysis. The sensitivity
of the reflection coefficient to the groove/strip ratio of the
grating will be examined. We shall show that a second-order
analysis reveals that a groove/strip ratio of 1:1 may not
always be the ideal choice.

As a further example of the usefulness of coupling-~of-modes
theory in grating analysis, we shall derive exact, closed-form
solutions for gratings with a linear spatial chirp. Both
normal- and obligque-incidence (45°) gratings will be considered.
All the grating waves will be obtained in clocsed form, and the
response at arbitrary detuning, to an arbitrary input profile,
will be determined. Constant-period, or unchirped gratings,
will be considered as limiting cases. The design of constant-
period oblique-incidence gratings as bandpass and bandstop
filters will be described.

U-path grating devices will also be studied. In particular,
a detailed analysis of the RAC will be performed. The emphasis
will be directed towards understanding the effects of multiple
reflections, within each grating, on the overall amplitude and
phase response of‘the device. The implications of the new
analysis for low-loss RAC design will be examined in detail,
and distortions of the device response, caused by the previously

ignored effects, will be elucidated.
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PART T

Analysis of Constant-Period SAW Grooved Gratings to First and
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CHAPTER 2

FIRST-ORDER REFLECTICON COEFFICIENT FROM A

VARIATIONAL PRINCIPLE

2.1. Variational Principle for SAW's

Variational principles are extremely useful in that they
yield the values of parameters to an accuracy greater than that
of the solutions used in deriving them. If a system undergoes
a small perturbation, such principles permit the new perturbed
solutions of the system to be determined from the unperturbed
solutions. They are thus frequently used in resonator problems
to determine the change in resonant frequency of the system,
resulting from a small perturbing influence.

In this section a variational principle for SAW's is
developed. The analysis ignores the effects of piezo-electri-
city and assumes propagation in an isotropic material. In the
following sections, the variational principle is used to derive
the coupled-wave eguations for a normal-incidence grocoved gra-
ting. From these equations the reflection coefficient of a
single groove is determined, in a simple manner, from the
free-surface wave solutions.

Consider a SaW of angular freguency w®, propagating on
an isotropic acoustic material of mass density p. From New-

ton's second law, the equation of motion is
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— g,. = - pw?u,. (2.1.1)

Multiplying by ui* gives

- pw2|ui[2 = o SR (2.1.2)

Here o 1is the associated stress tensor of the wave and u

is the displacement tensor. We now integrate (2.1.2) over the
volume of one cell of the structure. The latter extends from
the surface to z = 4+~ (z into the bulk) and if the surface

is periodic occupies one full period of the structure. We ob-

tain
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since the integration is over one full period and the surface

is stress free (i.e. has no normal stress). Thus

f dv _i_ u.* og..
. 5%, T 1]
2 J

2
p [ av|u, |

or, introducing the stiffness tensor cijkg
[ dv = u.*{ c.. 2 u
i ijka 2
X . Bxk
w? = ] : (2.1.3)
2
p J dvlui]

This is the desired wvariational principle for SAW's. In
this form, the value determined for w? 1is stationary, when
the correct solutions for the resonator are used to evaluate
the expression. 2Any error in a trial function used to evaluate
(2.1.3), thus introduces only a second-order error in 2. The
variational nature of (2.1.3) is easily established.

Let Wg be the exact resonant frequency of a SAW grating
resonator. Let the stress and displacement of the exact solu-
ticons 1in the resonator be o?. and uiO respectively. Then
°, = I (2.1.4)

L. = CL I
1] ijke 3, L

g
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9 o4 = - pwoz uiO (2.1.5)
90X . ]
and, from (2.1.3)
J av 3 uo* o] 9 u ©
Ix . i ijka axk 2
w ¢ o= b . (2.1.6)

Assume a trial solution for the resonator in the form u, =

uiO + Gui. The trial sclution does not satisfy the stress-

free boundary condition on the surface of the resonator, i.e.,

el ~

« z' =0, where 2z' 1is the surface-normal unit-vector.

Using the trial solution to evaluate w? from (2.1.3), we

shall ignore all terms of second, or higher, order in the error

term 5ui. Thus

9 O * ] o)
J dv |— (ui* + 6ui ) cijk% —_ (uR + Gug)
X . . Bxk .

w? = J
o) 0, *
P f dv(ui + Sui)(ui + ﬁui )
- d Oy 3 O 3 * ]
= J dv [é—— ui cijkz _ ug + — (5ui ) ciij —_—
X. X X . ox
k j k

2
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In any medium, ¢ = [44] Hence, using the binomial

ijke - Spkiic
theorem, and relations (2.1.4) and (2.1.6)

P 3% 1 ]

9 o ) o* - 2 o] * o*
Jdv[—(éu;) gij+—-—-—(6u.) Gi} pw, J(:‘lv[ul._(51.1i+ui dui]
4 3

J
G2
o] J’ dvlui l

_ I R . oF
Jdeﬁui Uij + Sui —_— Oij
. j " |

0 J dv[uiO{2

2 8] * o*
+ pu, Jdv[uiéui4-ui su; ]

since the stress Gij’ of the exact solution in the grating,
satisfies the stress-free boundary condition on the surface of

the grating. Introducing (2.1.5) we obtain

Hence, (2.1.3) is a variational formula. The error in w



34

is of a higher order than that of the trial solution used to

evaluate it.
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2.2. Derivation of Coupled-Wave Equations

The coupling-of-modes formalism provides an elegant
mathematical approach for determining the behavior of two
coupled waves. For such a description to apply the local
coupling (either in time or in space), between the two waves,
must be everywhere very weak. However, the resulting inter-
action between the two waves may be very strong, and in fact
complete power transfer may occur. We shall be concerned here
with coupling-of-modes in space.

The advantage of a coupling-of-modes description lies in
its generality. The form of the equations i1s unaffected by
the nature of the waves. It does not matter whether the two
interacting waves are both electromagnetic, acoustic, or a
combination of the two. In addition, the details of the
structure and the coupling mechanism are avoided. The struc-
ture is simply described by a coupling coefficient K between
the two waves. The details of a particular structure, the
type of waves involved, and the manner in which they interact,
need only be considered when determining K. It is thus advan-
tageous, where possible, in a system containing two weakly
coupled waves to cast the governing equations in the form of
coupling-of-modes. Once this has been done, much can be im-

mediately ascertained about the behavior of the structure
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by drawing on the large body of existing knowledge of coupled-
wave eguations.

We begin by presenting the coupled-wave equations of a
distributed-feedback structure. We then show that the wvaria-
tional principle (2.1.3) leads directly to this formalism for
the wave amplitudes in a SAW grooved grating. The variational
principle also determines the coupling coefficient X in terms
of the physical parameters of the grating.

In a distributed-feedback structure {(Fig. 2.2.1), the
forward wave R(x) 1is coupled to a backward wave §5(x) _via
a small periodic perturbation of the medium, along the propaga-

tion direction x. In the absence of coupling the waves have

dependence
R(x) ~ ej(wt-kx)
S(x) ~ ej(wk+kx)

where %k = w/v 1is the propagation constant. The waves are
strongly coupled when the period of the perturbation A = A/2,
where A = 2n/k 1is the wavelength of the propagating waves.

The wave scattered from R(x), by the k-vector of the pertur-
bation k = -(ZF/A); = —2k;, then has the propagation constant
(k + kp) = -k and is thus synchronous with S(x). The freguency

at which this synchronous scattering occurs, and the coupling
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between the two counter-propagating is a maximum, is referred

to as Bragg.

Before writing the coupled-wave equations, we introduce

~

the slowly varying wave amplitudes R(x) and S(x), where

oJ (wt=kx)

o] (wttkx)

wn
]

|
w02
—_
~

The coupled-wave equations for the Bragg condition, are then[45]

= B(x) = K 3(x)
ax
(2.2.1)
4 3(x) = R* R(x).
dx

We now use the variational formula (2.1.3}) to determine
the governing equations for the waves in a SAW grooved grating.
We shall show that these equations can be cast in the same
form as (2.2.1) and identify the coupling coefficient K.

For an acoustic substrate, extending from =z = 0 to
Z = +x, the solutions for guided waves propagating along the
surface in the x - y plane are well known Rayleigh waves.

We assign them a propagation constant kr = 2w/xr, where Ar
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is the Rayleigh wavelength. These waves no longer satisfy the
stress~free boundary conditions if the surface is perturbed by
a grating. However, the Rayleigh wave solutions will be used
as zeroth-order trial solutions in the wvariational principle
(2.1.3}).

Consider an acoustic substrate with a surface grating of
infinite extent in the =x direction, and of period A (Fig.
2.2.2). The perturbed boundary is at 2z = ekrf(x), where
e{= h/xr) << 1, and the normalized surface perturbation £ (x)
has a peak amplitude of unity. We seek to determine the per-
turbed wave sclutions for forward and reverse guided SAW's
along the x direction, and the degree of coupling introduced

between them by the grating. Ignoring diffraction, no depen-

dence on vy will be assumed. If the grating were not present
{(i.e. ¢ = 0) the forward and reverse wave solutions would
both be Rayleigh waves. Thus,we take as a trial solution for

the variational principle {(2.1.3)
u. = Ru, <+ 5u, {(2.2.2)
i i
where uii are the displacements of the (zeroth order) Rayleigh

wave solutions. The wave amplitudes R and S are assumed to

be slowly varying functions of x, such that
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ﬁiéﬁ[ﬂﬁl << 1 and &léﬁéﬂil << 1.
R s
Introducing the trial solution (2.2.2), into the variational
principle (2.1.3), thus gives
* - . -
dv | R* 9 uT + §* 9 . c. . R 2 u+ + S -8 1
3%, i 1% 1 1jke yx 2 % 2
w? = ] J X k
av (R*ut" + s*u77) (Ru' + sul)
o) v u, u, u. u,
(2.2.3)

where the integration in x is taken over one full period A.
We now determine the relationships between R and S,
necessary for « to be a minimum. Since the trial solution

is correct to zeroth order, the variational principle will yield

relationships that are correct to first order (in ). In the
analysis all terms of the order 2 (0(e?)) and above will thus
be neglected. To derive the requirements for w? to be sta-

tionary we differentiate (2.2.3) with respect to the wave am-
plitudes R and S. This may be shown to be eguivalent to

differentiating with respect to R* and S*. The results are

2 +92 +* - _ 9 +* 3 +
w? {p J dv[R]ui |2 + Su; u; 1 = J dv[; —— U Sy T Y
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a +* 'a -
+ S ;— ui cijkﬂ, U.J
j ]

]
Defining
* —

K._=op [ dv u; uy

8 + % a -
H = J dv — a1, c.. u

+- i ijke )
axj 3Ry

the equations become

2 2 =
w?K, R + w?K __S = H R+ H_S

{(2.2.4)
2 2 =
w?K__S + w?K__R H s + H_+R.
Evaluating H o+ we have
3 +* ] + +* 3 +
H = J dv — u C: . u = J ds C.. u
++ yx. 1 ijk& 9% 2 J i ijk2 - L
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* *
- J av ul’ 2 (¢ 2y *J = - [ dv ul 2 ot
g 1 1]
ij

where the surface integral vanishes because the integration is
over one full periocd of the grating. Denoting the angular fre-
quency of the unperturbed Rayleigh waves by W and introducing

(2.1.1), we obtain

* +
= 2 - 2
H++ pw [ dv u u, we K ,
Similarly,
H = 3 %2 K

Evaluating H _, we have

3 4+ % P -
H = J dv — u C.. —_—u
+- 1 1jke 2

axj axk
_ +* 3 - _ * 3 3 -
= J dsy Ui G445k Yy J dv u; “ijke Yy ]

Bxk X, Bxk
- * -

= J ds uT* g.. - J dv u, —3— ..

J 1 13 3% . i]

Defining
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= 2 wE = 2
H+_ C+_ + pW I dv u, us C+_ + W K+_.
Similarly,
= 2
H_+ C_+ + oW K_+.

Substituting in (2.2.4) the relations between R and S be-

come

Il
9]
wm

2 2 2 - 2
(w Wq )K++R + (w We )K+_S

(2.2.5)

il
(@]
oy

2 _ 2 + 2 - 2
(w* - w “)K__S (w w1 K_ R

The waves within the grating have propagation constants
of ikr, but are of frequency w. The presence of the grating
thus perturbs the frequency of the waves from the free surface
Rayleigh wave frequency Wy - We may Taylor expand w 1in terms

of the perturbation parameter ¢
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= + -
w W weq +
Introducing this expansion into (2.2.5), to C(e), we obtain
2ew

198 R = €y

2w wOK__S = C R

1 -+
or
C
EwlR = + J S
2w K++
(2.2.6)
C
ewyS = = R.
2wOK

The second terms on the LHS of (2.2.5) do not contribute to

these equations, since K _ and K_

+ are themselves of Ofg).

+
The grating waves have time dependence ejwt. For the
slowly varying wave amplitudes R and S we therefore identify
the time derivative, 3/3t = jgwl. Thus equations (2.2.6) take

the form
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C
_8_ S = j . R
ot 2w K
. . - + ..
By reciprocity [ui | = (ui {, and C_, = Ci{_. Defining
C
K, = 3 |—22— (2.2.7)
t 2w K
o ++

we have

(2.2.8)

3 = *
S = ~K_*R

which are of the general form of coupling-of-modes in time.
These equations describe the time evolution of the wave ampli-
tudes in the grating. However, we are interested in the spatial
evolution of the waves. The corresponding coupling-of-modes
equations in space are easily obtained.

A plane wave, of unspecified nature, propagating in the

+x direction has the general dependence ej{wt—kx)

. The pro-
pagation constant k is given by k = /v, where v 1is the

velocity of the wave. Thus
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2oy,
ot
2= -ik = -jw/v.
ox

Hence, for a wave propagating in the +x direction

Similarly, for a wave propagating in the -x direction

2
t

Lo B

From (2.2.8) the coupling-cof-modes equations in space are

therefore,
iR:KS
3
(2.2.9)
3 g = K*R
oxX

where from (2.2.7), the spatial coupling coefficient is given

by
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J +*

ds. u, ag,.

C+_ 3 1 13

K= -7 [————————J = -j . (2.2.10)
2V ruoKey 2v w P J dv[ui+|2

In (2.2.10) v, is the velocity of the zeroth-order Rayleigh
waves.

The homogeneous equations (2.2.9), obtained for R and
S wusing the variational principle, are thus identical in form
to the resonant coupling-of-modes egquations (2.2.1) for a dis-
tributed-feedback structure. The specific form of the coupling
coefficient K, for a surface-wave grating, has been determined,

by the wvariational analysis, in {2.2.10).
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2.3, First-Order Reflection Coefficient

We now evalute the coupling coefficient K, determined
in Section 2.2, in terms of the grating parameters and the
Rayleigh wave constants. From this evaluation the first-order
reflection coefficient of a Rayleigh wave from a single normal-
incidence groove is obtained.

The coupling coefficient X, between the forward and
reverse waves in a SAW grating, is given by (2.2.10). We con-
sider a grating of period A, where the grating boundary is
defined by =z = ghr f{x) [Fig. 2.2.2)]. The surface perturba-
tion f(x) has a peak amplitude of unity. In Appendix A the
stress on the surface of a grating Es’ due to an acoustic

wave, is determined. For a Rayleigh wave, from (A.5), we have

to Ofe)
-—r_- r| _ . r ~ r' ~
o = EAr[f(X) OXZ(O) £'(x) GXX(O)]X + Ekr £ (x) OZZ(O)Z
where

ot.(0) = of.

1] 1)1 z=0
and

ot (0) = 2 oy
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Hence, to O(g)

A
+* - * r* -r' _ e -r
J dsj u, Gij = €A, Jo dx {ux (0) [£(x) O (0) £' (%) oxx(O)]
r* -r' '
+uy £(x) o, (0)} : (2.3.1)

where the superscript (-r) denotes a backward Rayleigh wave

(propagating in the direction =-x), and
ul (0) = ul .
X X
z=0

In Appendix B the displacements, stress components, and
the dispersion relation for Rayleigh waves are derived. Again,
let the amplitude of the forward wave be denocted by R, and
that of the backward wave by §&. Evaluating (2.3.1L using the
displacements and stress components given in (B.20), and using

the Rayleigh wave dispersion relation (B.18) gives

A 2jer
% 2 -
ZuEAr R*S k2 (rr qr)qr Jo dx f(x) e

Em—
[oN
0
o
qa
It

(2.3.2)

Since f(x) 1is a periodic function, only the component of £ (x)
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-2k _x
with dependence e r contributes to the integration. The

latter result was made use of in obtaining (2.3.2), by identi-
fying f'(x) = —2jkr f(x).

Considering the denominator of (2.2.10), we have
2v_w p | dv|ul|? = 2v_w_ph ) dz |u? |2 (2.3.3)
ro i ro 0 it - T

However, the time average power (per unit width) of a forward

propagating Rayleigh wave is

where W 1is the time average energy of the wave per unit sur-

face area of the solid. Thus,

W= L gy J dz[uir|2.
2 0

Hence,
- 1 2 * r
P_==v_puw dz|u, " | (2.3.4)
r r i
2 0
But from (C.3)
_ 2 2
Pr = 2wuk2 YO|R| (2.3.53)
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where YO is a dimensionless quantity, analogous to a charac-

teristic admittance for the solid. From (C.5)

2 - 24 2
(kr r. kr qr+-2qr rr)

Y = kz” . (2.3.6)
© 32k _q Br
r ‘r’r
A plot of YO, as a function of the isotropic Poisson ratio
v = A/2(x + u), 1is given in Fig. 2.3.1. Substituting in

{2.3.3) from (2.3.4) and (2.3.5), we obtain
+
2erop J dv]ui |2 = 8uk22A YOIRIZ. (2.3.7)

The magnitude of the coupling coefficient K, in a SAW

grating, is now readily determined. By reciprocity |R} = |S

Introducing (2.3.2) and (2.3.7) into (2.2.10), and noting that

for an isotropic material

we determine
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dx f(x) e . (2.3.8)

JA 2jer

4 Y
o

If the normalized surface perturbation f(x) 1s decomposed

into a Fourier series
f(x) = ) A_cos(n k x)
n=1 " El

then at Bragg

and, at p x Bragg,

kg = 2kr/p.
Hence,
A a
1° at Bragg
A ijrx 2
f dx f{x) e =
0 A
= A, at p-th harmonic.
2

From (2.3.8) the magnitude of the first-order coupling coeffi-

cient in a normal-incidence SAW grating is thus, at Bragg
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(r_. ~ g.l)g
k| = ex, —F —= A, (2.3.9)
8Y_

and in general, at the p-th harmonic

|K| = e A_. | (2.3.10)

Finally, we determine the first-order Rayleigh wave re-
flection coefficient of a single normal-incidence (two-sided)

groove. To be consistent with previous work we define the re-
[46]

flection coefficient to be 2r Since 2r = |K|{A, we have
K (_Ar/2) ' at Bragg
2r = : (2.3.11)
|K{ (A _/2)p, at p-th harmonic
Thus from (2.3.9)-(2.3.11), and replacing Ar = (2ﬂ/kr), at
Bragg
enz(rr.- a.)q.
2r = Al (2.3.12)
4k_2%y .
r o

and in general, at the p-th harmonic

em?(r_ - q)q
2r = £ r T pAp. (2.3.13)
2
4kr YO
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For the special case of an "idealized" grating, with a
square-wave profile, An = 2/nt for n o©44, An =0 for n

even. Thus, at Bragg and the odd harmonics,

em(r, - g )q

2r = (2.3.14)
square ZkrzY
wave o]
and, at the even harmonics,
2r =0
square
wave
to Of(e). The reflection coefficient of an idealized grating

at the odd harmonics (2.3.14) is plotted in Fig. 2.3.2, as a
function of the isotropic Poisson ratio V. Throughout this
thesis to apply the results of the analyses to typical aniso-

tropic substrate materials, we shall use the concept of an

"equivalent isotropic Poisson ratio“.{47] In particular, we
shall use the theoretically derived wvalues of v = ,335 for
¥ - Z LiNbO3, and v = .41 for ST Quartz.[30] Thus, from Fig.

2.3.2 we find that for v - g LiNbO3 2r = 0.69€, and for

ST Quartz 2r = 0.53¢.
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CHAPTER 3

FIRST-ORDER REFLECTION COEFFICIENT

FROM BOUNDARY CONDITIONS

3.1. Coupling-of-Modes Approach

In Chapter 2 the first-order reflection coefficient of
a normal-incidence groove was obtained from a variational
principle. An alternative approach is now presented.

The method to be described is based on determining the
width of the grating stop-band, by considering the boundary
conditions on the surface of the grating. By means of coupling-
of-modes theory the reflection coefficient of a single groove
of the grating is then determined. The approach is "quasi-
variational", in that the reflection coefficient, and the width
of the stop-band, are obtained to one higher order (in «¢)
than the stresses used in the analysis.

The coupled-wave equations for a normal-incidence grating

are

< R(x) = K S (
ax
{3.1.1)
2 S(x) = k* 238% Ry
ox

~ ~

where R(x) and S(x) are again the slowly varying amplitudes
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of the two counter-propagating waves, i.e.

- j {wt-k_x)
R(x) = R(x) e r
(3.1.2)
- j (wt+k_x)
S(x) = S(x) e T

The parameter A is the amount by which the waves are "detuned"

from the synchronous frequency of the grating Wy«

A = &) (3.1.3)
v
r
where (uo/vr)A = pr {(p =1 at Bragg). The dispersion rela-

tion for the forward wave R(x), is easily obtained. From

(3.1.1)
3% % S _ 2 3 -
R(x) + 2jA — R(x) |K|? R(x) = 0.
ax? 3X
-jax

Assuming a solution of the form e ~gives

o = A+ /A7 - |K|2. (3.1.4)



59

If the propagation constant of R(x) is dencted by g, then

from (3.1.2)-(3.1.4)

B =k, +a= (u/v.) £ /A% - |K|Z%. (3.1.5)

This dispersion relation is shown schematically in Fig. 3.1.1.
We observe that within the grating stop-band the propagation
constant B 1is complex. The stop-band is symmetric about We

and 1s of width

= 2|K]. (3.1.6)

At the upper and lower stop-band frequencies, w, and _
respectively, the propagation constant is equal to that of a
free-surface Rayleigh wave of fregquency Wo i.e.

B(mi) = kr = wo/vr = pr/A. (3.1.7)
In the above analysis g was determined for a given .

However, we may instead choose to define £ and determine the

resulting w. This will be the approach used in determining

the grating reflection coefficient from boundary conditions.
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Interchanging the dependent and independent variables £ and
w in Fig. 3.1.1, the dispersion diagram is redrawn in Fig.
3.1.2. The procedure to be followed for determining the re-
flection coefficient will now be described.

The method is based on determining the upper and lower
frequencies of the stop-band, and w_ respectively. At

+

these frequencies the fundamental waves, propagating in the

73k _x
grating, have dependence e r , Wwith kr given by (3.1.7).
From (3.1.7)
2kr, at Bragg
k_ = 2n/A = (3.1.8)
g 2k /P, at p x Bragg

Assuming progagating wave solutions in the grating, with de~
pendence e;Jer, the frequency of the waves is determined

from the grating boundary conditions. Requiring the surface

of the grating to be stress free leads to two determinantal
equations that determine w, and w_. The coupling coefficient
of the grating is then obtained from (3.1.6) and the reflection
coefficient of a single groove computed from (2.3.11).

A significant advantage of this method is that in deter-

mining the perturbed frequencies (w+ and w_) to Of

H oM

) .
jer
only the fundamental wave components with dependence e
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need be considered. Though components with other spatial
dependencies are of finite amplitude to Of(e), in the grating,
they are not required in the analysis. The method is thus
computationally very efficient with similar advantages to the

variational principle of Chapter 2.
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3.2. Determinantal Equations from Boundary Conditions

In this section the first-order determinantal equations
are derived, from which the upper and lower stop-band frequen-

cies w and w_ respectively (Fig. 3.1.2), are to be de-

+
termined.
At Wyer oW the fundamental waves in the grating have
ik _x
dependence e r r Wwith kr given by (3.1.7). To satisfy

the boundary conditions on the surface of the grating to 0f(eg),
we shall assume these waves to comprise a compressional wave
and a vertical shear wave propagating in the direction +x;
alsc a compressional wave and a vertical shear wave propagating

in the direction -x. The amplitudes of these waves are zeroth

order (and above) in &, the depth of the grating perturbation,
since these solutions continue to exist for € = 0. In the
limit & = 0, each pair of co-propagating waves combines to

form a Rayleigh wave. However, for ¢ # 0 the ratio of the
shear/compressional wave amplitudes of each pair is different
from that of a Rayleigh wave, by O©O(eg). In addition, the waves
no longer satisfy the Rayleigh wave dispersion relation (B.18).
To satisfy the boundary conditions on the surface of the
grating completely, to 0O(e), additional wave components with
other spatial dependencies are required. These waves, however,

exist only in the presence of the grating (e # 0) and are thus
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of 0Ofg) (or above). As discussed in Section 3.1, the ampli-
tudes of these waves are not required to determine the deter-
minantal equations for the upper and lower stop-band frequencies
to 0f{e). (We shall see later in this thesis that these waves
are responsible for the stored-energy effects in the grating.)

From (A.4) the stress on the surface of the grating is,

to 0Of(g)
5, = Lo, (0) + ex_[£(x) ¢! (0) - £'(x) o (0)]} x
+ {0, (0) + ex_[£(x) o} (0) - £'(x) o, (0)]} 2 (3.2.1)
where
g..(0) = o.._
] 1) z=0
and
' - 3
713 (%) 3z i3 z=0

As in section 2.3 we represent the normalized surface pertur-

bation f(x) by a Fourier series

f(x) = ) A_ cos(nk_x) (3.2.2)
n=1 n g
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thus

£'(x) = - ] mk_ A sin(nk_x). (3.2.3)

Since the surface of the grating is a free boundary, it must

be stress free i.e. o = 0. This condition, from (3.2.1)-

(3.2.3), reguires

[n=1 =1

0., (0) + ex, (-Z A cos(nkgx;] Oy, (0) + {:z nkgAn sin(nkgx{]

g . (0);y =0 (3.2.4)

GZZ(O) + oed, [:Z An cos(nkgx{] céz(O) + [-
n=1 n

l~18

nk A sin(nk x)
1 g n g

o, (0)} = 0. ~ (3.2.5)

The only waves in the grating with a finite zeroth-order ampli-
ik _x

tude (in ¢) are the propagating waves with dependence e r.

Thus, to O0Of(e) only the stress components of these waves are

required in the terms gAr{ } of (3.2.4) and (3.2.5). The

latter terms thus comprise, in general, an infinite set of
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1jer {(#)jnk =
components with the dependence e e . From (3.2.4)

and (3.2.5) the same wave components are required for UXZ(O),
GZZ(O). Thus, an infinite set of waves with spatial dependence
e;jer e(;)jnkgx is required to satisfy the boundary conditions
on the surface of the grating to 0Of{(g). The wave components
with n # 0 are referred to as Brillouin components and are

of 0f(e) (or above).

Equations (3.2.4) and (3.2.5) must be satisfied separately
for each of the spatial dependencies of the waves. The deter-
minantal equations, for the upper and lower stop~band frequen-
cies, are obtained by considering only those terms with the
spatial dependence of the fundamental waves, e;jer.

To simplify the analysis the following notation is intro-

duced. The amplitude of the acoustic waves with spatial depen-

Fik.x . *
dence e+j r is denoted by Si s Where
1, ' for compressional wave
i =
2, for shear wave.

(@}
b 1+
l

Also the =x-independent stress components of these waves

 F

are defined by

To zeroth order, the co-propagating compressional and
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shear waves in each direction are Rayleigh waves (with amplitude

Sli). In (3.2.4) and (3.2.5) it can be seen that the propa-
Fik_x

gating waves with dependence e are coupled together

only via the Fourier component of the grating An’ with nkg

1

2kr. At the p-th harmonic from (3.1.8) kg = 2kr/p. Thus,
for the stop-band at the p-~th harmonic, the propagating waves
are coupled together only via the Fourier component Ap of

the grating. Hence, from (3.2.4) we obtain, to Of{eg)

-jer
cf. e dep.
+ L+ - .-r' . - .-r _
S, cixz(O) + EAr[(Ap/Z) §; G., (0) + jkrApSl UXX(O)] =0
+jer
cf. e dep.
5.7 37..(0) + ex_[(a /2y 8,7 55 (0) - kA s T &5 (011 = 0
i Cixz EAp P 1 %z ] rpl Oxx

where a repeated subscript again implies summation. From
{(3.2.5) we obtain, to 0f(eg)

-jer
cf. e dep

+ .+ - .-x' _
S; 0;,,(0) + elr(AP/Z) S1 0,4 (0) =0
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+jk_x
e o dep.
5.7 87, (0) +ex (as2) 5.t 55 (0) =0
i Yizz Ao 1 Yzz B
ince o°f = 0. By reciprocit T =6 and o7, = ot
since 0., - By P Y 933 T 945 919 T iy
with this replacement the equations are
~+ - |1 .r*! . ~I*® _ .
ixz(o) + ekrApSl ; S (0) + ]kr OXX(O;W =0 (i)
Lt+* + (1 .x! X _ .
ixz(o) + E)‘I.‘Apsl ; xz(O) - jkr OFxx(o)—] =0 (11)
57T (o) + A /2)s.” 55 0y = 0 (iii)
G;,,(0) ex( p/ )8, &, (0) = iii
57 o)+ en a8t 5 (0) = o (iv)
S edy (A 1 Ty, = 0.
(3.2.6)

The form of (3.2.6) now suggests a transformation of variables

to reduce the four inter-dependent equations, to two independent

pairs of equations. Defining
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S. " =8, - 8. (3.2.7)

from (3.2.6) (i)+(ii)*, and (iii)+(iv)* respectively,

T .+ T* |1 _r*’ . LT _
S, Uixz(O) + ekrApSl {% Gy (0) + Jk UXX(O;w =0
s.T 5T ) + ex_as2)sTF 55 (o) = 0 (3.2.8)
i izz r'p 1 zz T
and from (3.2.6) (i})-(ii)*, and (iii)-(iv)* respectively,
D .+ D* |1 _.r*!' . ~L* N
S Uixz(o) eArApsl [? Sy (0) + Jkr cxx(OlJ =0
D .+ D* _r*! _
Sl oizz(O) - ekr(Ap/Z)Sl 27 (0) = 0. (3.2.9)

Equations (3.2.8) and (3.2.9) are independent pairs of equations

for the amplitudes SlT, 52T and SlD, 82D respectively. For

e # 0 the determinantal equations for (3.2.8) and (3.2.9) will

be different. Since both cannot be satisfied simultaneously,

then either
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or
*

s;T=0 » st =-5

i i
to 0Of(eg).

-
Case 1: S.+ = 5.
e i i
. D T . .. .
In this case Si = ¢ and Si is finite, Thus this

solution satisfies the determinantal equation of (3.2.8).

Introducing the bulk and Rayleigh wave stress components from

(B.8), (B.14) and (B.20) into (3.2.8), and defining sl+ to

be real, gives

_ _ . _ +o_ 2 2 +_
[2ujkrr eArujkr Ap(rr qr)(qu + rr)]Sl u(kr + g )82 0

*t . 2pik_q S t oo

[wlk,® + @) - ea u(A/2) (r. - q ) (k * + g ?)]s 2

1

(3.2.10)

To 0Ofe), the determinantal equation is

2 2y2 _ 2 = - - 2
(_kr + g<) 4kr qr E)‘r Ap(rr qr) [2kr qr(qu + rr)
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(kr2 + qrz)zl

|
S o

which simplifies, using the Rayleigh wave determinantal equa-

tion (B.18), to

2 2yv2 _ 2 - - 2 2 -
(kr + g“) 4kr qr slr 4kr q. (rr qr)Ap (3.2.11)
-
Case 2: S.+ = - 5,
- = i i
In this case SiT = 0 and SiD is finite. This solution
therefore satisfies the determinantal equation of (3.2.9). The

determinantal equation of (3.2.9) will be identical with that
of (3.2.8), except for the replacement ¢ + -g¢. Thus, in this

case, the determinantal egquation is

2 242 _ 2 = 2 2 -
(kr + g©) 4kr qr + eAr 4kr a, (rr qr)Ap. (3.2.12)

Equations (3.2.11) and (3.2.12) are the required deter-
minantal equations for determination of the upper and lower

stop-band frequencies, w, and w_ respectively.
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3.3. Determination of Stop—-Band and First-Order Reflection

Coefficient

At the edges of the stop-band w,_,6 w_ [Fig. 3.1.2] the
surface waves in the grating have propagation constant kr'
where kr is the propagation constant of a Rayleigh wave at
frequency We (3.1.7). Corresponding to these two frequencies,
it was determined in the previous section that, from boundary
considerations, the two scolutions with propagation constant
kr in the grating, satisfy the alternate determinantal egua-

tions (3.2.11) and (3.2.12). Thus at w i

+" 7=

2 2y2 _ 2 - 2. 2 -
(kr + g) 4kr qr + ekr 4kr g_“(r q )Ap (3.3.1)

where r and g are the decay constants of the compressional
wave and the shear wave respectively. Ap is the Fourier
coefficient of the grating, and p 1is the harmonic of the
stop-band.

From (3.3.1) we now determine the width of the stop-band.
Defining the perturbed frequencies at the edges of the stop-

band by
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then from (D.6) the modified dispersion relation for the waves

is, to Of(Aw)

4k _*

2 2y 2 _ 2 = r - 2 - 2 2
(kr tan)”t 4kr qr q.r (rr qr)(kr Tr kr qr + qu rr)

r r

(Aw/wo). (3.3.2)

Hence, from (3.3.1) and (3.3.2) we determine

X q °r
[A_wJ =t e), r2 r B (3.3.3)
2 — 2
(kr r kr q. + 2qr rr)

The width of the stop-band is 2|Aw| and,as expected ffom the
coupling-of-modes analysis of Section 3.1, the stop-band is
symmetric about W,

The reflection coefficient of a normal-incidence groove
2r, 1s easily obtained from (3.3.3). We first determine the
magnitude of the coupling coefficient X in the grating.

From (3.1.6)

v : rUJ
r C

Thus from (3.3.3)
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qursrr
K| = €A A A_.

r - 2 P
(kr rr kr qr + 2qr rr)

Introducing the characteristic admittance Y_. , using (C.5),

(o]

and using the Rayleigh wave dispersion relation (B.18), we

obtain

A . (3.3.4)

This is in exact agreement with the first-order coupling coef-~
ficient obtained using the wvariational principle (2.3.10).
Using (2.3.11) the reflection coefficient of a normal incidence

groove is thus again found to be as given by (2.3.13), i.e.

2
t°{r_ - g.)g
2r = ¢ 4 r r pA
4k ZY P
r Q

at the p-th harmonic.
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CHAPTER 4

SECOND-ORDER STOP-BAND AND FREQUENCY SHIFT

4.1 Introduction

In the majority of applications, SAW gratings are used
as reflective arrays and thus required to operate clese to the
frequency of maximum reflection. TIf the surface-wave velocity,
within a grating,is assumed to be unchanged from the velccity
on the free surface Vo maximum reflection is to be expected

at Bragg. At the Bragg frequency wo/vr = w/A, thus

A= kr/2 (4.1.1)

where A 1is the period of the grating. For an "idealized"
grating, with a square wave profile, the reflections from the
front and back faces of each groove then add exactly in phase
and the grating has maximum reflection.

In Chapter 3 we found that to first order (in <€) the
stop-band of a grating is symmetric about the synchronous fre-
quency of the grating W« This is as expected from first-order
coupling-cf-modes theory. A grating designed for maximum re-
flection at Bragg (wo), according to (4.1.1), will thus have

maximum reflection at the expected design frequency and a sym-
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metric stop-band response, tc Of{g). The surface-wave velocity
within a grating may therefore be assumed to be unchanged to
O(e), from that on the free surface, when designing a grating
reflector.

In narrow—-band, high @ SAW gratings second-order effects
(in €) can become important for grating design. In particular
several authors have reported that the frequency of maximum
grating reflection is found experimentally to be lower, by

0{e?), than that predicted by (4.1.1).[3'5'25]

For design
purposes therefore, the effective surface-wave velocity within
a grating must be taken to be less than that on the free sur-
face, by O(e?).

Strong second-order effects have also been observed near
the second-harmonic frequency (i.e. 2 x Bragg) of a grating.
The first—-order analysis, given in the preceding chapters, pre-
dicts no reflection from an idealized grating, with a square-
wave profile, at the second-harmcnic, since A2 = 0. However,

a reflection comparable with that at Bragg has been reported

[28]

for such a grating. In addition, another important second-

order effect that has been observed near the second-harmonic
is the coupling of surface energy into bulk modes.[zs]

In this chapter, the analysis of Chapter 3 is extended

to obtain the grating stop-bands to 0{(c?). Both the center

[26-29]
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frequency and width of the stop-band are determined at each
harmonic of the grating. The second-order reduction in the
frequency of maximum grating reflection, at the specified har-
monic, is determined from the center frequency of the stop-band.
In addition, a change in the width of the stop-band can be in-
terpreted as a change in the grating coupling coefficient K,
The latter implying a second-order change in the reflection
coefficient/groove. Furthermocre, at the second and higher
harmonics, the analysis also predicts bulk radiation loss,

In the following chapter the second-order effects, pre-
dicted by the theory, are examined in detail around Bragg and
the second-harmonic frequency of the grating. The effect of
the grating profile on second-order effects is studied. When-
ever possible the theory is compared with available experimental

second-order data such as that referred to above.
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4.2 First-Order Wave Amplitudes

Following the approach of Chapter 3, we now seek to de-
termine the upper and lower frequencies of the stop-band, W,
and w_ respectively, to O(g?). To do so we will require

the amplitudes of all the stress components in the grating, at

w, and w_, to Ofe). The amplitudes of the fundamental
waves, with dependence eijer, can be determined immediately.
p—
Case 1. s.” = s
D i i
This case corresponds to w_. From (3.2.10), to Of(g)
s,” 29k _r (r_ - q.)(2q_ + r_)
2 ] r kA r qr qr r
+ 7 2 2y EApIfy & k 2 + 2
Sy (k.* + a?) (k.. q.%)
(k_2? + g2) (r_ - g)(k_? + gq_?%)
= § —L - ed 3 Ay L £ I r (4.2.1)
2k _g 4qur

where p 1is the harmonic of the stop-band (p =1 at Bragg).

Case 2. S, = =5,

This case corresponds to w, . The relations for the pro-

pagating waves are identical with those for Case 1, except for
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the replacement ¢ -+ -e¢. Thus, to Ofeg)

52 ~ 2]krr ' (rr - qr)(Zqr + rr)
+ 2 2 * Ekr]kr AP 2 2
8, (k ? + q ) (kr +q. )
(k_2 + g?) (r_ - g )(k_? + g_?)
= § —L + EAJ A, 3 r_r r . (4.2.2)
2k q 4k 9,

In the limit ¢ = 0, both (4.2.1) and (4.2.2) are in
agreement with the ratio of the shear/compressional wave ampli-
tudes determined for a Rayleigh wave (B.19).

The boundary conditions on the surface of the grating
cannot be satisfied, to 0O(e), with only the fundamental wave
components considered above. It was shown in Section 3.2 that
additional "Brillouin" compconents are required, with the general
spatial dependence e;jer e(?)jnkgx. The amplitudes of these
waves, which are of C{(g) or above, can be determined from
the boundary conditions. From (3.2.4) and (3.2.5), for the

surface of the grating to be stress free (Es = 0) to Ofleg),

we require

GXZ(O) + ek, [;21 A cos(nkgx;} 0%2(0)
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+ [:Z nkg An sin(nkgx{}gxx(O) =0 (4.2.3)

zZZ

An cos(nkgx{] c! _ (0)

+ [iz nkg An sin(nkgx{} cxz(O) = Q. {4.2.4)

Only the fundamental waves, with spatial dependence e Ky '
have finite zeroth-order amplitude (in ) in the grating.
Thus, as discussed in Section 3.2, to 0{e) only the stress
components of these waves need be included in the terms

sAr{ } in (4.2.3) and (4.2.4).

At the edges of the stop-band, for the p-th harmonic
of the grating, from (3.1.8) kg = 2kr/p. Referring to Figqg.
4.2.1, the Brillouin components therefore have the general
spatial dependence

e+j(kr + nkg)x 1.
and

Fj(k_ - nk_}Ix
e r g n

I
=

+

T

where
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_ p/2 for p even
b = (4.2.5)
(p - 1)/2, for p odd

We denote the amplitudes of the waves with dependence

eij(kr + nkg)x by si(n). These waves all decay away from

the surface and thus radiate no energy into the bulk. The

amplitudes of the Brillouin components with dependence

e;j(kr - nkg)x are denoted by

+(-n .
Si( ). Compressional waves

with the latter dependence propagate into the bulk for (kr -
; shear waves for (k_ - nk ) < k,. All the compres-
1 r g 2

sional waves, of these Brillouin components, are therefore

nk )} < k
g

radiative for p < 2/(1 - kl/kr); and the shear waves for
p < 2/(1 - kz/kr). For an isotropic solid ~ .87 < kz/kr <
\ .95.[48] All the latter shear waves therefore radiate energy

away from the surface, in any isotropic material, for p < 15.
This condition will be the case in almost all problems of prac-
tical importance. For p = 2,3 the single compressional wave
component of these Brillouin waves will radiate for 0 < v <
.42, where v is the Peoisson ratioc of the solid.

In Appendix E the amplitudes of all the Brillouin compo-
nents, at the edges of the stop-band, are determined to 0f(g).
The amplitudes are determined by considering only terms with

the corresponding spatial dependence in (4.2.3) and (4.2.4).
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4.3 Determinantal Equations to Second OQOrder

The determinantal equations at the upper and lower fre-
gquencies of the stop-bands, W, and w_ respectively, can be
derived to O0{e?), using only the first-order wave amplitudes
in the grating. The analysis is an extension, to second order,
of the approach presented in Section 3.2. It is based on con-
sidering the boundary conditions on the surface of the grating

to 0O(e?). From (A.3), the stress on the surface of the grating,

for waves with no y-dependence, is to 0Of{e?)

Oy = 10,,(0) + ex [£(x) o, (0) = £'(x) o  (0)]

T 1 l r
(Ehr)z[f(x) £ {x) GXX(O) + = (£'(x))? Oy (0)

2 4

A

l 11}
; (£(x))? Oay (0)1} x

+

GZZ(O) + ekr[f(x) o;Z(O) - £'(x) OXZ(O)]

(er)21£(x) £'(x) o (0) +§ (£'(x))2 o__(0)

_l 2 n
) (f(x)) UZZ(O)] z (4.3.1)
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where

L (0) = . .
olj( ) clj 0
3
ci.(0) = — qg,.
1] 92 1) | z=0
32
g".{0) = =— g..
1] pz2 tJ[z=0

Again, we represent the normalized surface perturbation f(x)
by the Fourier series (3.2.2). The derivative f£'(x) is given
by (3.2.3).

The surface of the grating is a free boundary. Thus, it

is required to be stress free, i.e. oy = 0. To satisfy the

boundary conditions, in general, both fundamental (eijer dep.)
and Brillouin wave (e;jer e(x) jnkgx dep.) components are

required in the grating. These waves consist of both compres-
sional and shear wave components. The fundamental components
are the only waves with finite zeroth-order amplitude. All

the Brillouin components are of O(eg) or above. Furthermore,
the fundamental wave components, to zeroth order, are counter-

propagating Rayleigh waves. Therefore, to 0(e?), only the

stress components associated with the latter need be included
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in the terms (E)\r)z[ I in (4.3.1). Hence, to satisfy the
boundary conditions to O0(e?), from (4.3.1), (3.2.2) and

(3.2.3), we regquire
[}
OXZ(O) +oeh |;£1 A cos(nkgx)} UXZ(O)

+ {:zl nkg An sin(nkgx;} GXX(O)

+ (e?\r)z LZ ) A A nkg cos(mkgx) sin(nkgx)A’ o' (0)

=1 n=1 XX
+ 1 UZD OIO A A cos(mk _x) cos(nk x)| " (0)} = 0
2 |m=1 p=1 © 1 g g Xz
(4.3.2)
o, 0) + ex_ Lzl A cos(nkgx)w s (0) (4.3.3)

n=1

+ {iz nkg A sin(nkgx{] cxz(O)

+ A )2 A A nk mk si k ' (D
(e r Lzl n£1 Bn 5 cos ( gx) n(n gX)—; sz( )

l o0 oo
+ = )y ] A A cos(mk x) cos(nk x)! o" (0)} = 0
2 Ln=l n=1 m n g 9 ‘] 2z
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since 0..(0) = o,2(0) = O.

The determinantal equations, at the edges of the stop-
bands, are obtained by considering only the grating surface
stresses in (4.3.2) and (4.3.3) with the spatial dependence
e_jer. In these equations, to ©O(e?), the only unknown wave
amplitudes are those of the forward propagating compressional
and shear wave components with dependence e-jer. The other
wave components, in the grating, generate surface stress com-
ponents with dependence e_jer, only via their interaction
with the spatial components of the surface. Since the surface
perturbation is of 0O(e), an error of 0(e?), 1in these wave
components, introduces an error of only 0(eg?) into the equa-
tions. Hence, to satisfy the boundary conditions on the sur-
face of the grating, for stress components with dependence

e—jer, to 0(e?), with the exception of the forward propa-

gating fundamental wave ccomponents, we only require the ampli-

tudes of the grating waves to Of(eg). All the wave amplitudes
were previously determined, to 0(g), in Section 4.2 and Ap-
pendix E.

By considering the surface stress components with depen-

dence e—jer, as described above at w, and w_, a pair of
simultaneous equations for the wave amplitudes Sl+ and Sz+,
to ©(e?), 1is obtained. For non-trivial solutions, at each

frequency, the determinants of the equations must be zero. 1In
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this manner the determinantal equations, at the edges of the
stop-bands, are derived. The details of the analysis are given
in Appendix E. At the lower edge of the stop-band w_, the
waves in the grating satisfy the determinantal equation (E.30),

to ©0(e?). At the upper edge w the waves satisfy the de-

+’
terminantal equation (E.34), to 0Of(g?).

In the determinantal eguations (E.30) and (E.34), the
compressional and shear wave decay constants, r and g re-
spectively, are as yet undetermined. This is the case because
although the grating waves have propagation cénstant kr, the
frequency of the waves is perturbed by the grating, from W
[Fig. 3.1.2], and has yet to be determined to 0(g?). In the
following section, by Taylor expanding the decay constants in
terms of the frequency perturbation at the gap, as in Appendix
D, the frequencies of the edges of the stop-bands, W, and

w_, are determined to 0(e?) from the determinantal eguations.
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4.4 Second-Order Stop-Band and Fregquency Shift

At the p-th harmonic (i.e. p x Bragg) the propagation
and decay constants of the fundamental waves in the grating
satisfy the determinantal equation (E.30)}, at the lower edge
of the stop-band, w_; and the determinantal equation (E.34),
at the upper edge of the stop-band, W, - In this section, we
derive, from these equations, the second-order shift of the
center of the stop~band and also the width of the stop-band
to 0(e?).

We begin by determining w and w_, to O(e?).

+

(1) w

At the lower edge of the stop-band w_, we write
W = w_ o+ Aw (4.4.1)

where W is the unperturbed frequency of a Rayleigh wave
with propagation constant kr (3.1.7). The frequency pertur-

bation Aw_ may be expanded to 0(eg?), as

- - 2 -
Aw_ = €A Awy + (€A )7 Aw,y .
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The first-order frequency perturbation Aw.  is already known

1
from the first-order analysis. Replacing Aml- from (3.3.3),
we have
Aw_ A g ’r Aw,
[——J = - ex_ - R zr = + (ekr)z[ 2 ] (4.4.2)
- 2
Yo (kr Ty kr 9+ qu rr) Yo

The modified dispersion relation, for waves in the grating, is
given in terms of the frequency perturbation of the waves Aw,
by (D.8). Introducing (4.4.2) into (D.6), we have for waves,

at frequency w_, to 0(eg?)

2 2y 2 - 2 = - 2 2 -
(kr + g*) 4kr qr eAr 4kr qr (rr qr) Ap
2k_%q_3*(r_ - gq_)A_?
+ (ex)? S5 P [k t(r, - @) (T, + q)?
rr(kr rr - kr qr + 2qr rr)
2 2 2 - L 3
+ kr 9, r. (rr qr) + qur r. ]
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Equating (4.4.3) with the determinantal eguation (E.30), and
expanding the decay constants g and r, using (D.3)-(D.5S)

and (4.4.2), we determine

Aw, qg.r
[ 2 ] o . (Skp*a, + k r,
2 - 2 2
Yo Al "rp =k tap + 29,71y
2 - 3 2 - 2 2
+q.’r, - q *)A (kp * + g, ®)(x  + q) nzl nPrp
p-1
- 2 2
* ne1 AnAp-n[qrrr(rr *oag! (n/p) tk *r, + ke dyp

* 2qrrr2 * quzrr * )]

N
q,"A

2 4 - 2 2 2 2 2 2 - 2
) 5 [kr (rr qr)(Srr ta, )+—qr r. (3kr rr-l-kr q, qu rr)]

2 - 2
2(k_*r k_%q

2 3
r + 2qr r_)

r r

g.r _[2ik g T, + (k.2 + gq_2)71.]
_ rr rr 1 r r 2 (4.4.4)
2 - 2 - 2 2
4kr (rr qr)(kr r. kr qg_ + qu rr)

r

where Tl and T2 are given in (E.28).
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(2) W,

At the upper edge of the stop—band Wy, we write

{4.4.5)

Again Aw+, the frequency perturbation, may be expanded to

0(c?), as

— + 2 +
Ao, = ekrAwl + (alr) sz .

With the value of Awl+, determined from the first-order

analysis {3.3.3), we have

A qrarr
E + (E)\r)2
(krzrr - krzqr * 2qr2rr)

Introducing (4.4.6) into (D.6) yields the modified dispersion
relation, for waves in the grating, at frequency W, - Equating
this with the determinantal equation (E.34), and expanding the

decay constants g and r, using (D.3)-(D.5) and (4.4.6), we

determine
+
Aw q.r
[ 2 } o - (3kr2qr + krzrr
2 - 2 2
Wy 4 (k_*r kr q,. + qu r )}
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oo

2 - 3 2 2 2
+q fr_ - g, )Ap + (k.2 + g ) (r +qr) n£l AnAn+p
p-1
- - 2 2
nil AnAp-n[qrrr(rr * qr) (n/p)(kr et kr Ay
2 2 3
+2qrrr +3qrr +qr)]
by 2 4 - 2 2 2.2 2 2 - 2
) qrAp[kr(rr qr)(5r + g<) + qrrr(Bkrr + qur 2qrrr)
2 - 2 2 3
2(kr r. k q. + 2q rr)
g r_[23k g T, + (k> + g *T,]
_ - rr r'r 23 r2 r j (4.4.7)
4kr (rr B qr)(kr Tr ~ kr 9 * 2qr rr)
where T3 and T4 are given in (E.33)
The edges of the stop-band, w, and w_, are thus com-
pletely determined to second order {(in ). If we define the

center of the stop-band to be w', from (4.4.1l) and (4.4.5)

(L, + w_) (Aw, + Aw_)

2

Hence, from (4.4.2) and (4.4.6)
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(w" - w. ) = AR = (E?\r)z (4.4.8)

where AQ 1is the shift in the center frequency of the stop-
band. From (4.4.8), as already determined by the first-order
analysis, we observe that AR 1is of second order {(in ¢g). The
width of the stop-band is given, to 0{e?) by (w, = w_).

At Bragg, Aw2t are both real. Thus, the stop-kand center
frequency w' 1is pure real. However, at the second and higher
harmonics (p > 2) szt are both complex due toc the contribu-
tions from the radiating components Ty T4 in (4.4.4) and
(4.4.7). The center frequency w' 1is therefore also complex.

The amount of radiation into the bulk may be determined from

the imaginary part of w'.
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CHAPTER 5

SECOND-ORDER EFFECTS IN NORMAL-INCIDENCE GRATINGS

5.1 Intreduction

In Chapter 4, the stop-band of a grating, at an arbitrary
harmonic p (i.e. p x Bragg), was determined in general form
to second order {in ¢). 1In this chapter, we apply the results
of that analysis to examine, in detail, second-order effects
in normal-incidence gratings near Bragg and the second-harmonic
(i.e. p =1, 2). These effects are frequently termed "stored-

energy" effects. Of particular importance are:

{1} Resonator frequency shift
(2) Transmission phase shift

(3} Strong second-harmonic reflection.

The new theory is used to predict these effects in practical
gratings, and the results compared with experimental data. Pre-
vious empirical models, for including second-order effects in
grating analysis, failed to consider the possible importance of
the grating profile. The new theory, by contrast, reveals the
critical importance of the latter in these higher-order effects.

Previously anomalous second-order behavior can be explained by
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by this sensitivity to groove profile.

The second-order analysis, in Chapter 4, was performed
only at the grating stop-band. In the following section the
variational principle, developed in Section 2.1, is used to
determine the broadband grating response outside the stop-band,

to 0(e?).
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5.2 Variational Principle Outside Stop-Band

Using the variational principle (2.1.3), the dispersion
relation for a grating may be obtained to one higher order of
accuracy {(in e), than that to which the wave components have
been determined. At Bragg, at the edges of the stop-bkand, in
order to satisfy boundary conditions tc 0O(e), both a forward
and a backward zeroth-order wave are required with dependence

exjer. In addition, first-order Brillouin components are also

required, with the dependence e;]er e(;)jnkgx. The fregquency
perturbation of the waves in the grating {(w - wo), is of first

order (in ¢). Away from the stop-band, however, the boundary

conditions can be satisfied ¢to 0(e), with only one zeroth-
order wave and its corresponding Brillouin components. If the
forward wave, with dependence e_JkX is of zeroth-order, the

backward wave with dependence e+jkx is required only to be
of first order. In addition, the frequency perturbation of the
waves {w - ms) is of second order, where We would be the
frequency of the waves in the absence of the grating (ws = kvr).
The variational-principle may be used to determine this second-
order frequency correction to the dispersion diagram, away from
the stop-band, from the set of first-order wave solutions.

oii) and uél) be the resultant stress and displace~

ment components for one set of first-order wave solutions in the

Let
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grating. In general, the latter will comprise an infinite set

eijkx e(?)jnk x'

of spatial components, with dependence g

where

only the component with dependence e—ka, or the component

with dependence e+jkx, is of zeroth order. The remaining
components will be of first order, or above. Introducing these

first-order sclutions into the variational principle (2.1.3),

we have
J av|—— o 1) J ds. u!P* 1) J av D*F 3 (L)
ax. T 13 ] 1 1] i ax. 13
w2 = ] = ]
o J dv]ujfl)|2 P j dv|u£1)|2
(5.2.1)
But, freoem (2.1.2), we have
- Ow52|u£l)|2 - uil)* 3 oé%) (5.2.2)

ij

since to 0Of{e), away from the stop-band, the frequency of the
waves in the grating is unperturbed from that on the free sur-

face W (= kvr). Thus from (5.2.1) and (5.2.2)}

J ds, uﬂl)* of%)
1 3 ij
w? - w. % = . (5.2.3)

(1)
o J dviu; ™" |?
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The surface integral in (5.2.3) is of second order, since

Giﬁ) satisfies the stress—free boundary requirement, on the
surface of the grating, to O(e). Therefore, if we define

w = w, + duw, from (5.2.3), to 0O(eg?):

{(L)* (1)
J dsj ui Uij

[A—w] = (5.2.4)
2pw? J dv[uiol2

where uio is the displacement of the single zeroth-order wave
component, and the volume integral is taken over the unperturbed
volume (i.e. 2 = 0 »+ =). Eguation (5.2.4) gives the second-
order correction to the dispersion diagram, away from the stop-
band, from the first-order wave components.

The variational analysis, described above, is valid away
from the stop-band. Unfortunately, close to the grating stop-
band the variational frequency perturbation (5.2.4) is no longer
valid for determining the grating dispersion relation to 0(e?).
We assumed, in deriving (5.2.4), that we were far enough away
from the stop-band for the frequency perturbation Aw to be
of O0(e?). However, from the first-order analysis, earlier in
the thesis, we know that 1in general, at the stop-band, the
frequency perturbation Aw 1is of O0f(g). At the stop-band

the trial solution used to derive (5.2.4) is no longer correct
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to O(e). Only a single fundamental wave was assumed to be of
zeroth order in the grating. However, at the edges of the stop-
band both the forward and reverse fundamental wave components,
with dependence e;jer, are required to be of zeroth order.
Thus, the fundamental wave component which was assumed to be of
first order in the trial solution, becomes an eigen solution
at the edges of the stop-band. Consequently, the frequency
perturbation Aw predicted by (5.2.4) "blows up" close to the
stop-band. The variational analysis cannot therefore be used
to directly verify the second-order stop-band analysis of Chap-
ter 4. To smoothly extend the grating dispersion diagram away
from the edges of the stop-band, and to check agreement of the

second-order analysis with the variational principle, we develop

a modified form of coupling-of-modes.



101

5.3 Modified Coupling-of-Modes Egquations

The standard coupling-of-modes equations for a grating,

as in Section 3.1, predict a stop-band that is symmetric about

the unperturbed frequency W (= krvr), and is of width (w+
- m_)/vr = 2|K|]. We have determined, however, that, to 0O(e?),
the center of the stop-bkand is shifted from Wy w'. Thus
' _ _ 2
(w /wo) =1 Kz(h/hr) (5.3.1)

where the coefficient K 0of the quadratic shift in the gra-

2!
ting center frequency, is determined from (4.4.8). In order
for the coupled-wave equations to be consistent with this shift

in the center frequency, we assume that in the grating the

surface wave velocity is perturbed from V.7 v', where
(v‘/vr) =1 - K2(h/A)2. (5.3.2)

The coupling coefficient K, 1is interpreted as

A
I
(o
£
+
1
g
|
o
[
| E
o+

. r
= j —
2

Thus, from (4.4.2) and (4.4.86)
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Aw
2 . (5.3.3)
LOO |

The slowly varying wave zmplitudes R and S, of the counter-

propagating waves R and S respectively, are defined by

od (wt = kx)

S oJfwt + kx)

where (w/k) = v', By symmetry considerations, the coupled-

wave egquations may then be written in the form

EL ﬁ = K e-2]Ax §
dx
(5.3.4)
£L S =-K eZJAX ﬁ
dx

where A = (w' - w)/v'.
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At Bragg, the coupling coefficient K determined from
(5.3.3) is pure imaginary. The modified coupled-wave equations
thus obey power conservation. However, at the higher harmonics

+
the second-order frequency perturbations Aw,  are, in general,

2
complex due to the radiating Brillouin components in the grating.
The coupling coefficient K 1is therefore also complex and the
coupled-wave equations (5.3.4) do not obey power conservation.
This is consistent, however, with the power radiated from the
surface waves into the bulk at these higher harmonics.

In the following section, we use the modified coupled-wave
equations (5.3.4) to extend the grating dispersion relation away

from the stop-band. The validity of this approach is checked

against the variational analysis of Section 5.2.
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5.4 Dispersion Diagram to Second-Order

To first order the stop-band of a grating is symmetric
about the unperturbed fregquency Wy [Fig. 3.1.2]. There is
thus no change, to O0O(g), 1in the freguency of maximum grating
reflection, i.e. Bragg, from that predicted by a zeroth-order
analysis (4.1.1). In addition, at Bragg the width of the
stop-band, and hence alsc the reflection coefficient of the
grating, is, to 0(eg), only a function of the lowest Fourier

coefficient of the grating A ((2.3.9), (3.1.8)). To first

1
order, the response of the grating is therefore very insensi-
tive to the grating profile.

From (4.4.4) and (4.4.7) it can be seen that, to second
crder, the upper and lower frequencies of the stop-band, W,
and w_ respectively, are functions of all the grating Fourier
coefficients. The second-order corrections to these fregquencies
Aw2i contain contributions from all the Brillouin components
in the grating, via the terms T1 - T4 ({(E.28), (E.33)). It
is therefore to bhe expected that the second-order effects, in
a grating, will be much more sensitive to the grating profile
than first order effects. Furthermore, since in general
|Aw2+] # lAm2—|, both the center and width of the stop-band

are changed to second-corder.

The profile of a typical SAW grating is shown in Fig. 5.4.1.
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It is important to note that we have not assumed the groove
walls to be vertical. 1Instead we have assigned to the edges
of the grooves, a finite width E, and a slope 8 (9 < 90°).
The theoretical dispersion diagram for such a grating is pre-
sented in Fig. 5.4.2, corrected to O(g?}. The edges of the
stop-band were determined using (4.4.4) and (4.4.7) and then
the modified coupled-wave eguations (5.3.4) were used to pre-
dict the form of the dispersion relation outside the stop-band.
Outside the stop-band the dispersion relation was also deter-
mined from the variational solution (5.2.4), as a check on the
coupled-wave analysis. The agreement between the two is seen
to be good. A major advantage of the coupled-wave analysis,
over the variational scolution, is that it is considerably simpler
to evaluate.

A downward shift in the grating stop-band is clearly pre-
dicted by the second-order theory in Fig. 5.4.2. The frequency
of maximum reflection from the grating is reduced from W,
tc w'. The width of the stop-band, however, is not changed,
to 0(e?), for this grating with a groove/strip ratio of 1l:1.

Figure 5.4.2 was determined for an isotropic solid with a

Poisson ratio v = .335. 1In comparing the theory with experi-
mental data we shall use v = .335 as the equivalent Poisson
ratio for Y - 2 LiNbO,. Similarly, we shall use v = .41 as

3



107

(w/wo)
1.016 4
FREE
SURFACE
1.008 +
VARIATIONAL
SOLUTION |}
[(}] et
1 A R 17 - bw W
lAQ
w! - —_ — _
Am_ w'
. A J X
O.ggz N .
v T~ VARIATIONAL
SOLUTION
0.984 A

. 986 984 1 1,006 1.014 (x/k))

Fic. 5.4,2 THEORETICAL SECOND-ORDER DISPERSION
DIAGRAM NEAR BRAGG FOR GRATING ON

Y-z LiNboy, (v = ,335, (n/2)) = ,016,
8 = 45°),




108

the equivalent Poisson for ST Quartz. These values were de-

termined from theoretical consideraticns by Shimuzu et al.[30]
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5.5 Second-Order Fregquency Shift

It is important, for grating design, to understand how
the various parameters of the grating affect the second-order
reduction Afl in the synchronous response near Bragg. As in

{5.3.1), we define the coefficient K of the gquadratic shift

2!
in the grating center frequency, by

1 _ 2
{w /wo) =1 - Kz(h/kr) .

In Fig. 5.5.1, K2 is plotted as a function of the Poisson
ratio v, for a Bragg grating of height (h/lr) = .01, and
for various groove slopes 6. As expected, K2 is seen to be
a strong function of the groove profile. It is greatest for
steep-sided grooves. In fact, for grodves with vertical edges
(6 = 90°), K, has a logarithmic singularity. The reason for
this behavior is that, to 0(e?), in a grating with vertical
side-walls the stresses in the region of the corners become
infinite. If such corners could be made in practice, of course,
“the material would flow plastically in the region of the sharp
corner to remove the singularity.

The logarithmic singularity of K2 for a grating with

vertical side-walls is very weak, in that it is difficult to

detect by direct numerical analysis. The closed-form solutions
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in Chapter 4, however, clearly reveal this singularity. In

such a grating the contributions of the higher-order Brillouin
components, to the frequency shift, are found to decrease in-
versely with the mode order. To correctly identify this sin-
gularity, from numerical analysis, would require summing over

a near infinite number of ever decreasing terms. It is there-
fore important, in a theoretical analysis of second-order ef-
fects, to avoid using perturbation technigques, truncation, or
numerical integration. Such an attempt by Shimizu et al. failed

to identify the singularity of K for a grating with a ver-

27
tical groove profile.[ao]

Figure 5.5.2 shows experimental measurements of K2, for
gratings at Bragg, on ST Quartz, made by Tanski.[25] Also shown
are theoretical plots of K (assuming an equivalent v = .41)

2

for various groove slopes. From the experimental data, Tanski
inferred an average value for K2 of approximately 10.3.
However, he noted that he found it "very disturbing indeed”
that for small groove depths K2 appeared to increase signifi-
cantly. The theoretical analysis predicts that such an effect

is likely to occur, due to two causes.

(1) For small groove depths, the groove edges are usually

steeper because of the fabrication processes involved.
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(2) Even for grooves with a constant edge slope 8,

shallower grooves have a narrower edge width, E,.

It is the ratio (E/A) that determines the Fourier

coefficients of the grating, not the groove slope.

As E decreases the second-crder effects increase,

and as E -» 0, K2 > o,
For these reasons second-order effects are also expected to be
more significant in gratings designed for high-frequency opera-
tion. The ratio (h/Ar) does not vary greatly between gratings,
thus h = = (1/f).

In Fig. 5.5.3 experimental data is presented, due to Wil~-
liamson et al., of the resonator frequency shift at Bragg, of
{3,26]

gratings on Y - Z LiNbOB.

dicted (for v = .355}), for various groove slopes is plotted.

The theoretical behavior pre-

For comparison, the fregquency shift of a sinusoidal grating,
having the éame first-order reflection coefficient as a square-
wave grating, is also shown. The second-corder resonant fre-
quency shift of the sinusoidal grating, is much lower than that
of the other grating profiles. It is important to note that
the theoretical curves are not exactly parabolic, due to the
dependence of K on (h/kr) discussed above. However, the

2

departure from guadratic behavior is very small. The theoretical
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curves are well within the experimental uncertainty of the
measurements. Finally, observe from Fig. 5.5.3 that although

the second-order theory predicts K2 + ® asg (h/lr) - 0, the

frequency shift Kz(h/?\r)2 - (¢, as expected, as (h/Ar) - 0,

since the logarithmic blow-up of K is so weak.

2

Figure 5.5.4 shows the theoretical dependence of K on

2
the groove to strip ratio (G/S), for a grating on Y - Z LiNbO3

(6 = 45°), For G/S > ~ 0.5 K2 is not a strong function of

this ratio.
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5.6 Second-Order Reflecticn Coefficient

In general, the second-order theory predicts that both
the center frequency, and the width of the stop-band will be
different to ©0(e?), than to O(e). The second-order change
in the width of the stop-band changes the grating coupling
coefficient K, to 0(e?). This results in second-order
contributions to the reflection coefficient/groove 2r, which
can result in important effects at both Bragg and the second
harmonic.

Figure 5.6.1 shows the first and second-order contributions
to the reflection coefficient 2r, as a function of the groove
to strip ratio. The curves are plotted for a grating at Bragg
with (h/lr) = 0.01, and for various groove slopes. The
second-order reflection cocefficient is strongly dependent on
the groove to strip ratio.

In Fig. 5.6.2 the magnitude of the reflection coefficient
I is plotted, to 0(e?), as a function of the groove to strip
ratio, for a grating with 200 grooves (8 = 45°). Note that
the reflection coefficient of the grating is skewed about
G/S =1, by the second-order contributions. To first-order
we would expect T to be a maximum for G/S = 1. However, as
G/S 1s reduced (< 1) the increase in the second-order grating

reflection coefficient, at first, more than compensates for the
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decrease in the first-~order coefficient. For G/S > 1 the
first and second-order reflection coefficients partially cancel,
and thus T decreases more rapidly than expected. To minimize
the sensitivity of I to fabrication tolerances, Fig. 5.6.2
suggests that a groove to strip < 1 may be desirable.
First-order theory (2.3.13) predicts no reflection from
a grating, with G/S = 1, in the neighborhood of the second-
harmonic frequency (i.e. 2 X Bragg). However, in practical
SAW gratings a strong reflection is often observed. Figure
5.6.3 shows experimental measurements of the maximum grating
reflection coefficient near second harmonic, taken for gratings
[28]

on Y - Z LiNbOB,by Li et al.

coefficient determined from the second-order theory is also

The grating reflection

shown for various groove slopes, as a function of (h/kr). The
theory correctly predicts a strong second-harmonic grating re-
sponse of the form observed. In addition, the theory also de-
termines the bulk radiation, in the grating, at the second-
harmonic freguency.

Figure 5.6.3 shows, for comparison, the theoretical re-
flection coefficient, near the second harmonic, from a sinu-
soidal grating having the same first-order reflection coeffi-
cient as a square wave grating. The reflection from the sinu-

soidal grating is much lower than that of any of the trapezoidal
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gratings. In general, second-order effects in a grating can
be considerably reduced by avoiding groove profiles with sharp
corners and vertical side-walls. The latter reduces the ampli-
tudes of the Brillouin components, in the grating, that contri-
bute to these effects. A sinuscidal grating, ideally, has the
lowest second-order effects.

Finally, in Fig. 5.6.4, experimental measurements by Li
et al. are shown of the maximum reflection coefficient near

second harmonic, for gratings on Y - Z LiNbO, with a groove to

3
strip ratio of 1.33. The corresponding theoretical curves,
for various groove slopes, are also shown. Note that in this

case, since G/S # 1, the grating reflection coefficient has

both first and second-order contributions.
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5.7 Transmission Phase Response

The second-order reduction in the Bragg frequency of a
grating is also manifested in the grating transmission phase
response. The reduction of the surface-wave velocity (5.3.2),
in the grating, results in an additional phase delay through
the grating compared to that on the free surface. In addition,
in the neighborhood of Bragg the grating has a strong first-
order phase response.

Figure 5.7.1 shows the additional phase delay through a
graing near Bragg, on Y - Z LiNbOB, as measured by J. Melngailis
(Lincoln Lab., unpublished). Also shown is the theoretical phase
response, determined from the second-order theory and the modi-
fied coupled-wave equations (5.3.4). The agreement with exper-
iment is very good; the theory even succeeds in closely predic-

ting the structure of the observed ripples in the response.
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I{b): Obligue Incidence
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CHAPTER &

REFLECTION COEFFICIENT AT OBLIQUE INCIDENCE

6.1 Introduction

SAW devices often employ gratings operating at obligue
incidence. Tt is the purpose of this chapter to demonstrate
that all the methods, presented in the previous chapters, for
analyzing normal-incidence gratings, may also be used for
analyzing oblique-incidence gratings. Following the approach
of Chapter 3, the coupling coefficient of an obligque-incidence
grating, and the single-groove reflection coefficient at obligue
incidence, are determined to first order {(in ¢€). The results
are obtained in a relatively simple manner and are in agreement
with existing alternate analyses. However, the analysis de-
scribed here has the advantage that, as in Chapter 4, it may
be easily extended to second order. The second-order freguency
shift, and the second-order contributions to the reflection

coefficient, may thereby be determined.
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6.2 Determinantal Eguations

As in Chapter 3 the determinantal equations, at the edges
of each'stop—band, may be determined by considering the boundary
conditions on the surface of grating. Again the analysis is
quasi-variational, in that only the zeroth-order amplitudes of
the stresses in the grating are required to obtain the deter-
minantal equations to ©Of(e). At oblique incidence, in order
to satisfy the boundary conditions completely, for each spatial
dependency of the waves, three acoustic components are reguired.
In addition to the longitudinal compressional-wave and the
vertically-polarized shear-wave components, encountered in the
normal-incidence analysis, a third, horizontally-polarized
shear-wave component is excited at oblique incidence. The
latter arises from the three-dimensional nature of the stresses
in a grating at oblique incidence. For this case, there are
finite stress components in the Xx, vy and z directicns.

This contrasts_with the case of normal incidence, already con-
sidered, in which there were no stress components in the vy
direction (i.e. parallel to the grating). To satisfy the
stress-free boundary conditions on the surface of the grating,
for the oblique-incidence analysis, all three directions must
be considered.

Figure 6.2.1 shows a section of a grating, of infinite

two~dimensional extent, in which the fundamental (i.e. zeroth
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Fic, 6.2.1 GRATING WAVES PROPAGATING AT
OBLIQUE INCIDENCE.
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order) surface waves are propagating at obligue incidence to
the grating. At the edges of the stop band, for the p-th

;jer cos o —jkry sin g
harmonic, these waves have dependence e e ,
where kr is the propagation constant of a free surface Rayleigh
wave of fregquency Wy -

k, = mo/vr = pr/ (A cos a). (6.2.1)
From coupling-of-modes theory, by a corresponding analysis to

that for normal incidence in Section 3.1, we expect W to be
the center freguency of the stop band to 0Of(g) [Fig., 3.1.2].

The frequency of the lowest harmonic response of the gratiﬁg,

with p = 1, 1is again referred to as Bragg.

From {A.4) the stress on the surface of the grating is, to

-~

5y = {0, (0) + e _[£(x) ol (0) - £'(x) o (0)]} x

H

+ {0y, (0) + er [£(x) o) (0) = £'(x) o, (0)]) y

+ {czz(O) + sAr[f(x) céz(O) - £'(x) cxz(O)]} z (6.2.2)

where
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g..(0) =
+3 tJlz=0
and
0} (0) 2 : i
J 3z Il z=0

As in the normal-incidence analysis, let the normalized surface
perturbation f(x) be represented by the Fourier series (3.2.2).
The derivative f'(x) 1is then given by (3.2.3). For the case

of obligue incidence we have, from (6.2.1)

2k_ cos a at Bragg
kK = 2a/A = £ (6.2.3)
El (2/p)kr COoSs « at p x Bragg

As discussed above, at oblique incidence, for any specified
propagation constant in the grating there are, in general,

three acoustic components. We define the amplitudes of the
;jer cos o —jkry sin a
acoustic waves with dependence e e by

+
Si' respectively, where

l, for a compressional wave.
i = 42, for a vertically-polarized (i.e. l surface) shear
wave.
3, for a horizontally-polarized (i.e. || surface)

shear wave.
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To simplify the analysis the x and y-independent stress
i

components of these waves, Gij respectively, are defined by

:jer cos o -jkry sin a
e e

The surface of the grating is a free boundary and thus

required to be stress free, i.e. o, = 0. The only waves in
the grating with finite zeroth-order amplitude are the compres-
sional and vertically-pclarized shear wave components Sii
(i =1, 2). To zeroth order these wave constitute two uncoupled
Rayléigh waves (with amplitudes Slt). However, to first order
it can be seen from (6.2.2) that as a consequence ¢f the stress-
free boundary requirement, these waves are coupled together by
the Fourier component of the grating An, where nkg = Zkr
cos o. For the stop-band at the p-th harmonic, from (6.2.3),
kg = (Z/p)kr cos o. Therefore, at the p-th harmonic, these
waves are coupled together by the Fourier component Apr of
the grating. The amplitudes of the horizontally-pclarized
shear wave components S3t, in the grating, are of first
order (in ¢€).

To satisfy the boundary conditions on the surface of the

grating to 0O(g), as in the case of normal incidence, in gen-

eral, an infinite set of waves is required. These waves, or
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Brillouin compecnents, are all of first order and are generated
by the interaction of the waves considered above with each
spatial harmonic of the grating. However, as in the normal-
incidence analysis, these wave amplitudes are not reguired to
obtain the determinantal equations to Ofs).

~

From (6.2.2), the stress-free boundary reguirement Es - X

= 0 gives, to 0f(eg)

—jer cos o -jkry sin o
cft. e e dep.
+ .+ -1 ~-r' . ~=T _
Si oixz(O) + ekr Ap S1 [é i (0) + jkr cos o OXX(O{} =
(i)
+jer cos q -jkry sin o
ct. e e dep.
- .- +|1 .r’ . 5 o _
Si cixz(O) + ed, Ap Sl [; UXZ(O) ]kr COS a UXX(O) =0
12 _
(ii)
the requirement Ss v =0 gives, to 0fg)
-jer cos o -jkry sin «

cf. e e dep.

0
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+ -+ - 1 ~—I" . ~=I _
S oiyz(O) + ehr AP Sl [é oyz (0) + jkr cOos o cxy(oi} =0

(iii)
+jer cos o _jkry sin a
cf. e e dep.
- .- +11 .r' . ~T _
S; oiYZ(O) + slr Ap 8, [é UYZ(O) - jkr COS & Oxy(oi} =0
(iv)
and the requirement ES .z =0 gives, to 0f(g)
-jk_x cos o =-jk_y sin a
r r
cf. e e dep.
+ .+ - .-r' -
8, oizz(O) + skr(Ap/2) S, 06,5 (0) =20 {v)
+jk_x cos a -Jk_y sin «
r r
cf. e e dep.
S.7 &7__(0) + ex_(A_s2) 5.7 FT () = 0 (vi)
i Yizz CArtfe 1 Yzz a v
(6.2.4)
since c+r(0) =0
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The stress components of the acoustic waves are derived
in Appendix F. They are stated in terms of 8, the angle be-

tween the propagation vector of the wave and the positive x

axis. From Fig. 6.2.1, for the waves Sit 8 = ¢, and for the
waves Sii 8 = (180 - @). Equations (6.2.4), for the six un-
determined wave amplitudes Sii {i=1-+ 3), may be split

into two uncoupled sets of equations, each in only three vari-

ables, by a transformation of variables. We define

S.+ + S._, for i =1, 2
s T i i
* S.+ - S._, for i =3
1 1
{6.2.5)
st -5.7, for i =1, 2
S.D= i i
1 s.¥ + 5.7, for i = 3.
i i

Referring to the stress components given in (F.5), (F.10)},
(F.14) and (F.1l6), we then obtain from (£.2.4) (i)-(ii), (iii)+

(iv), and (v)+(vi) respectively,

T .+ Tl .r' . X _
Si oiXZ(O) - elr Ap Sl [é UXZ(O) - jkr cos o Uxx(o;] =0
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T .+ Tl .xr' . ~ T _
Si GiYZ(O) + ekr Ap Sl [; GYZ(O) jkr cos o cxy(o;] =0
T .+ T .r' _
8 oizz(o) + slr(Ap/Z) Sl UZZ(O) =0 (6.2.6)
and from (6.2.4) (i)+(ii), (iii)-(iv), and (v)-(vi) respectively
—
D .+ Dil .r! . T _
Si oixz(O) + ekr Ap Sl ; OXZ(O) jkr cos o UXX(O{J =0
D .+ Di1 .r' : ~ T _
Sl oiYZ(O) e Ap Sl ; UYZ(O) jkr COoS o oxy(o;] =0
D .+ D .r' _
S, cizz(O) ekr(Ap/Z) S1 UZZ(O) = 0. (6.2.7)

Eguations (6.2.6) and (6.2.7) are independent sets of equations
in the variables §,7 (i =1>3), and 5° (i=1>3) re-
spectively. In general, for e # 0 the determinantal eguations

of each are different. Since both cannot then be satisfied

simultaneously, either

or
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For this case, we have from (6.2.5), to Of(g)

5. = 8. , for i =1, 2

S, = -5, , for 1 = 3.

This solution satisfies the determinantal eguation of (6.2.6).

Evaluating the stress components, in (6.2.6), from (¥.5), (F.1l0),

(F.14) and (F.l16), we have, to Of(g)

. + 2ainla - 2 _
ujkr cos a {2r e)xrAp[kr sin“a r, 9.

+ qrz(l + cos?a)]} s - u(kr2 + g?) cos o 52+

1

. + .
+ uqr(kr2 - qrz) sin a §;° =0 (i)

. . + 2 2 - 2 +
ujkr sin o {2r EArAp[kr cos‘a r. q.r,

- 2 2 + 2 2 ,
q,°cos alt Sl p(kr + g“) sin o 52
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- 2 _ 2 .
uqr(kr q, ) cos o S3 0 (ii)

ik ® + g% = e (a/2) (r, - ) (,? + q )]s, "
+

+ 2ujk, g S," = 0. (iii)

(6.2.8)

The first-order wave amplitude 8§ * is easily eliminated. From

3
{6.2.8) (i) cos o + (ii) sin o we obtain
. 2 =22 2 - 2 - V
jkr[Zr + eArAp(Zkr sin‘a cos®oy r. q,r, cos 2a
+ 2g_2cos*a)] 8.7 - (k.2 + g?) s - o (6.2.9)
r 1 r 2 ' e

Equations (6.2.8) (iii) and (6.2.9) are now a pair of simul-

. . +
taneocus equations for the wave amplitudes Sl+ and S2 . For
non-trivial solutions the determinant of these equations must

be zero. From this requirement we obtain the determinantal

equation, for this case, to 0Ofe)

2 2y2 2 - - 2 2 -
(k.= + q%) 4k_*qr eh 4k _*g_ cos alg, (r, a,.)
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_ 2 _ 2 F2
(kr q._°) sin a]AP. (6.2.10)

For this case, we have from (6.2.5) to 0f(g)

S5. = =8, , for 1 =1, 2

5. =35, , for i = 3,
This solution satisfies the determinantal equation of (6.2.7).
However, equations (6.2.7) are identical in form to those in

(6.2.6), except for the replacement € - =-£. Thus, in this

case, the determinantal equation is

2 2y2 _ 2 _ 2 2 _
(kr + g} 4kr gr ekr 4kr q, cos a[qr(rr qr)

- 2 _ 2 s A2
(kr a, ) sin a]Ap. (6.2.11)
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6.3 First-Order Coupling and Reflection Coefficients

The determinantal equations at the edges of the stop-band,
for the p-th harmonic, were determined from boundary conditions,

to 0O(g), 1in Section 6.2. At W_ [Fig. 3.1.2}, from

+f
(6.2.10) and (6.2.11)

(k * + q*)}? - 4k _*qr = e 4k _*q_ cos’alq,(r_ ~ q.)

- 2 _ 2 2
(kr d, ) sin a]Ap. (6.3.1)

However, from {(D.6) the modified dispersion relation for waves

at the edges of the stop-band is, to 0O(Aw)

4k _?
r

2 2y2 2 =
(k_* + q*)? - 4k _%qr r

- 2 - 2 2
, (rr qr)(kr rr kr g_ + qu rr)

qrr

(Am/wo) (6.3.2)

where Aw = w - Wy - Hence, from {(6.3.1) and (6.3.2), for the

stop-band of a grating at obligue incidence
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2 _ 2 : 2
9, } sin®a]

2 V -— -
[Aw} - s q.*r, cos a[qr(rr qr) (kr .

- 2 - 2 2 P
(r qr)(k r kr . + qu rr)

r r r

(6.3.3)

The stop-band is thus symmetric about the unperturbed center

frequency 0y v in agreement with first-order coupling-of-modes

theory, and of width 2[Aw

The coupling coefficient K, 1in an obligque-incidence
grating, may now be deduced from the width of the stop-band,
by coupling—of-modés theory as in Section 3.1. Corresponding

to (3.1.6), at oblique incidence

W, o~ w_)
2]k| = —=%
v_ COS o
hence
k
K| = —F— |2&] .
cos o |ug

Thus from (6.3.3)

2 - - 2 _ o 2) ein?
. r, cos allg (xr - q)) (k. q.?) sina]|

AP
)

- 2 - 2 2
(rr qr)(kr r. kr qr + qu r
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or, in terms of the characteristic admittance YO (C.5)
g (r_ - q.) - k ’sin?q] |
k| = €, cos a £ I 3 2 A . (6.3.4)
8Y P
o
For the case o = 0, this expressien is consistent with the

coupling coefficient derived for a normal-incidence grating
((2.3.10) and (3.3.4)).
The single-groove reflection coefficient 2r, is giﬁen by

2r = |K|A.

Thus, at the p-th harmonic

2r = |g| —ET — |
kr cos o
From (6.3.4), replacing Ar = ZW/kr, we therefore determine

that for a single oblique-incidence groove

|la_(r_ - a.) - k,2sin?a]]
2r = gn? r r r 2 PA
4k_2%y P
r o
at the p-th harmonic (i.e. p x Bragg). This solution is in

agreement with that derived by Otto et al., using a completely
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different method of analysis,[l4'49]

In the case of an "idealized" grating with a square-wave
profile, An = 2/nm for n odd, and An =0 for n even.

Thus, at Bragg and the odd harmonics

: llg_(r_. - g.) - k,?sin%a]|
2r = g7 r £ 2 (6.3.5)
square 2k %y
r "o
wave

and at the even harmonics,

2r = 0
square
wave

to Ofe).

The single groove reflection coefficient (6.3.5), normal-
ized to (l/cos a) (=« groove width), is plotted in Fig. 6.3.1
as a function of the angle of incidence o, for v = .335,
and v = .41. It is interesting to note that for o v 27°
there is no reflection of the incident wave off the groove. In
Fig. 6.3.2 the angle of incidence, for which there is no reflec-
ted wave, is plotted as a function of the Poisson ratico v. It
is not a strong function of the latter and is somewhat analogous
to the Brewster angle, encountered in the oblique reflection of

an electromagnetic wave from a dielectric boundary.
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PART II

Closed-Form Analysis of Chirped

Grating Structures
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PART 11

CLOSED-FORM ANALYSIS OF CHIRPED GRATING STRUCTURES

Preface

In part I the coupling coefficient K, of a SAW grating,
was derived for both normal and obligue incidence, to second
order {(in ¢). From a knowledge of K, the complete response
of a constant-period normal-incidence grating may be easily
determined. The solutions of the coupled-wave equations (3.1.1)

are simplerexponentials.[34’45]

However, the analysis of con-
stant-period gratings at oblique incidence is more complek. In
addition, many SAW and optical devices employ gratings with
chirped-spatial periods, both at normal and oblique incidence.
The response of such structures, prior to this work, has never
been analyzed in closed-form.

In part IT we present closed-form analyses of gratings
with a linear spatial chirp, at both normal and cblique inci-~
dence. The oblique-incidence solutions are particularly rele-
vant to the analysis of the reflective-array-compressor (RAC).

The latter is an important SAW device used for pulse compres-—

sion. The exact solutions, derived here, permit a more detailed
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analysis of the RAC than was previously possible, even using
complex numerical computer analyses. Higher-order distortion
effects in practical RAC devices are examined in detail using
the new solutions. The coupling-of-modes solutions, being of
a general nature, are alsc equally applicable to optical grating

devices, such as bulk holograms.
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CHAPTER 7

NORMAL-INCIDENCE CHIRPED GRATINGS

7.1 Introduction

Figure 7.1.1 shows a normal-incidence chirped grating.
We shall ceonsider only linear chirps, where the spatial period
of the grating is a linear function of x, the penetration
into the grating.

Kogelnik, in an expansion of his analysis of normal-inci-
dence gratings, did consider gratings with a non-uniform, or

[50] He also considered, simultaneously,

chifped, period.
gratings with a taper of the coupling strength. However, his
analysis was based on a numerical approach. He transformed
the governing coupled-wave eguations for the grating into a
non-linear first-order differential equation, or Ricatti equa-
tion, and then solved the latter numerically. No attempt was
made to derive closed-form solutions for any of the gratings.

In this chapter we derive the exact closed-form solutions
for the case of a normal-incidence grating with a linear spatial

chirp. The solutions are mathematically complex, and, perhaps

surprisingly, are more difficult to evaluate than the sclutions
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Fis., 7.1.1 NORMAL-INCIDENCE CHIRPED GRATING.




151

determined for oblique-incidence gratings, in the following
chapters. However, they may be of use in studying the depen-
dence on the various grating parameters, or in determining the

limiting behavior of such a grating.
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7.2 Exact Solutions

For the normal-incidence chirped grating structure shown
in Fig. 7.1.1, which may be SAW, optical, or otherwise in nature,

we define

kg(x) = (2/p)(kO - &%)

where kg(x) = 2n/A(x), and A(x) is the local pericd of the

grating. The chirp rate is specified by &, and ko is the

local synchronous propagation constant at x = 0, for a wave

at the p-th harmonic, i.e. kO = wO(O)/v = pr/A(0). The

initial detuning from synchrcnism we denote by A, where

and hence, the general detuning in the grating from the local

synchronous frequency wo(x), is given by

= A - §X%. (7.2.1)
v

Defining the wave amplitudes as
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R(x) = R(x) eJlot - kx)

1

oJ (wt + kx)

It
wnt
»

S (x)

The coupled-wave equations are

-2jAx + j8x?

— R(x) =K e S (x)
dx
(7.2.2)
d - 23Ax - j&x*?
— S5(x) = K* e R(x)
dx

where K is the coupling coefficient/unit length. Observe,
from the form of these egquations, that the interaction between
the two waves will be strongest at the point where the phase
of K 1s stationary. This occurs at x = A/8, which from
(7.2.1) is, as expected, the local synchronous point in the
grating.

From (7.2.2), we derive the second-order differential

equation for S (x)

dx? dx

[dz - 29(8 - sx) 2 - |K|;1 S(x) = 0. (7.2.3)

This equation can be solved, in closed-~-form, in terms of (a)
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parabolic cylinder functions, or (b) confluent hypergecometric

functions.

{a) Parabolic cylinder functions.

Equation (7.2.3) can be transformed, by a suitable change

of variables, into the standard form of the parabolic cylinder

[51]

equation. First, we introduce a new dependent variable

S(x}), where

2

jAx - jJ X

3(x) = S(x) e 2 (7.2.4)
In terms of the new variable S{(x), the differential equation
(7.2.3) becomes
2 ~
4y s2(x - A/8)% - (|K|% + §8)1} S(x) = 0. (7.2.5)

dx?

Defining a new independent variable

£ = ¥236 (x = 4/8) (7.2.6)

then transforms (7.2.5) into the standard form of the parabolic

cylinder eguation
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2 ~
1, lﬁl_]] S(E) = 0. (7.2.7)
J |

d2 A 2
s(g) - |[=— +
ag? 4 2 236

This equation has two linearly-independent solutions Dv(tjg),

where

2
v = -3 lﬁl_ . (7.2.8)

28
Hence, the general solution for S(x), from (7.2.6) and (7.2.7)
is
S({x) = A D\)(j/chS (x - A/8)) + B D\)(—j/2j6 (x = a/6)) (7.2.9)

with v given by (7.2.8). The constants A and B are de-

termined from the boundary conditions

R(0) = 1

S(L) = 0.

Using these boundary conditions, and recursion and derivative

[51]

relations for the parabolic cylinder functions, we determine

D, (3v238 (L - 4/6))

-1
A= 2338 {%v_l(—ja/?i75) + Dv_l(jA%§§7§;w
K

D, (=3v2I8 (L - 4/8))
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D, (-3v/2Z38 (L - A/G))k -1
B = -3 Dv_l(jA/2j76) + Dv_l(—ja/§]76)
Dv(j/iig (L - A/8))

(7.2.10)

Thus, from (7.2.4), {(7.2.9) and (7.2.10) one form, of the exact
solution, for the reflection coefficient from a normal-incidence

chirped grating is

wn

o= S0 _ 5 /236-{[Dv(-ja/§?7§) D, (=3v23¢ (L - 4/8))
(0) K

o

- D, (38Y2378) D _(3/Z3F (L - 4/8))1/(D__; (~36/2Z378)
Dv(-j/jﬁg (L = A/8)) + Dv_l(jA/Tf7§) Dv(j/fig (L - A/8))1}
(7.2.11)
where v 1is given by (7.2.8).

(b) Confluent hypergeometric functions.

Eguation (7.2.3) can also be transformed, by a change of

variables, into the confluent hypergeometric differential

[52]

equation {also known as Kummer's equation). This requires
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only a change in the independent variable. We define

£ = =j6(x = A/8)2. (7.2.12)

The differential equation (7.2.3) then becomes

o

(g) - jlxi® S(g) =0 (7.2.13)
dg? 48

which is the standard form of the confluent hypergeometric
differential equation. The solutions are confluent hypergeo-
metric functions. A general sclution to (7.2.13) can be taken

in the form

ilx[®,

43

N
-
oy
—
+
vy}
oy

Hence, from (7.2.12), the general solution for S(x) 1is

S(x) = A lF1

: 2
iz .1 ;=368 (x - A/S)Z]
2

48

: 2
+ B (x - 4/8)  F; [l s 1K, 3, ~98(x - A/S)Z]. (7.2.14)
2 46 2
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The constants A and B are again determined from the boundary

conditions
R(0) = 1
S(L) = 0.

For these boundary conditions, using recursion and derivative
relations for the confluent hypergeometric functions,[sz] we

determine

- 2 2
s T 1 2

48 8
-1
5 2 2 A 2 2
o |HELE 2, o - 4] ] lFl[;+a_L§L;;;_j a2
n 44 2 57 2 48 2 8
: 2 2
K*[L_é.] lFlL+J_I£|_,§;_j5[L_A] |
) 2 48 2 §

K* 2 4§ 2
2 2 2 2 -1
+ S 2 43 2 3§ 44
e 2, el )
171 46 5 5

(7.2.15)
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Thus, from (7.2.14) and (7.2.15) an alternative, exact form,
for the reflection coefficient from a normal-incidence chirped

grating is

2 2 2
;;_jé[L_é] +AIF1:L1£L,.L,_36[L_AJ
2 8 8 48 8
1 K[Z 3 ?
lpl__+lj_[_;_;_jé_ /IKIZ-A—[L—Q}
2 48 2 § 8
2 2 2 2
O IR N L1 L R P
468 2 § 2 48 2 §

2 43 §

J! 2 2
2
(7.2.16)

Forms (7.2.11) and (7.2.16}), for the reflection coeffi-



160

cient, are mathematically equivalent. In any applicatioen,

whichever is the more convenient form may be used.
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CHAPTER 8

OBLIQUE-INCIDENCE CHIRPED GRATINGS

8.1 Introduction

Oblique-incidence gratings are used extensively in SAW
and optical signal processing devices. In many of these ap-
plications the period of the gratings is also spatially chirped.
However, previous to this work, no exact analysis of an obligque-
incidence chirped grating has been performed.

Current analyses of oblique-incidence chirped grating
structures usually assume that the reflection/garoove, and the
total reflection from the grating, are both very small. Two
important effects in the grating are then ignored.

(i) Deplgtion of the transmitted wave through the

grating.

(ii) Multiple-reflection effects within the grating.

These effects are illustrated in Fig. 8.1.1, for the case of
90° reflection. At each discontinuity in the grating (i.e.
an up-step or a down-step in a grooved grating) a very small
amount of the forward wave R 1is scattered into the secondary
wave S. The power scattered into S results in a depletion
of the forward wave R. This depletion is ignored in the low-

reflection model, which thus does not satisf ower conservation.
Yy P
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Fic, 8.1.1 DEPLETION AND MULTIPLE REFLECTIONS IN AN
OBLIQUE-INCIDENCE GRATING.
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Referring to Fig. 8.1.1, it is also apparent that, in general,
R and S can interchange power many times across the width
of the grating by a process of multiple reflection. These
multiple reflections are also totally ignored in current low-
reflection analyses. Modern signal processing devices fre-
quently require strong grating reflection to achieve low in-
sertion loss. The low-reflection model then becomes increa-
singly inaccurate for predicting the phase and amplitude
response of the device,

An approach was suggested by Otto et al. for including
depletion and multiple-reflection effects in the analysis of

a constant-period oblique-~incidence grating.[42]

The technique
consists of dividing the grating up into a large number of small
unit cells, each containing one reflector [Fig. 1.2.3]. How-
ever, this approach is numerically intensive, gives little
physical insight, and is unsuitable for chirped gratings.

In this chapter exact closed-form sclutions are derived
for an obligue-incidence grating with a linear spatial chirp.
The solutions are particularly simple for the limiting case of
a constant-period grating. Filter applications of obligue-
incidence constant-period gratings are considered, and the

reflective-array-compressor (RAC) is analyzed in greater detail

than was possible with previous analyses.
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8.2 Exact Solutions

For simplicity we will consider oblique reflection through
90°, for a grating with a linear chirp, in an isotropic medium
[Fig. 8.2.1]. 1In this case, the grating reflectors are at 45°
tc the incident beam. For 90° reflection in practical ani-
sotropic materials, the analysis remains valid with a simple

scale change of one of the axes.[4l]

The grating structure
may be SAW, optical, or otherwise in nature.
We define the grating period by

_ -1 - _
kg(x, vy} = p [ko §(x y)]

where kg(x, yl = 2n/A(x, y), and A(x, y) 1s the local period
of the grating measured along x or vy [Fig. 8.2.1]1. The

chirp rate is specified by &, and ko is the local synchro-

nous propagaticn constant along (x - y) = 0, for a wave at
the p-th harmonic, i.e. ko = mo(o, 0)/v = 2pn/A{(0Q, 0). At

the origin (0, 0), the detuning from synchronism is denoted

by A, where

(w_(0, 0) - w)

and k 1is the propagation constant of the wave. The detuning,
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at a general point in the grating, from the local synchronous

frequency mo(x, ¥}, 1is given by

(w_{x, v) - w)

A - §(x - y). (8.2.1)
v

-~ -~

The slowly-varying wave amplitudes R(x, y) and S(x, y) are

defined by

Rix, y) = R (x, y) e.
(8.2.2)

S(x, y) = s (x, y) e (wt = ky)

In terms of these amplitudes, the coupled-wave equations for

the oblique-incidence chirped grating are

5 - -jA(x-y) + J % (x-y) 2 _
— R(x, y) = - K e S{x, y)
ax
{8.2.3)
- Ja(x-y) - 3 5 (x=y)? _
= S(x, y) = K* e R(x, y)
3y

where K 1is the coupling coefficient/unit length. As a con-

firmation of the veracity of these equations, observe that they
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predict the strongest wave interaction, in the grating, will
occur where the phase of K 1is stationary with respect to x
and y. This is determined to be the contour (x - y) = A/S.
As expected, we see from (8.2.1) that this is also the contour
along which the grating is synchronous.

The coupled-wave equations {8.2.3) can be simplified by

the change of wvariables

- ~ JAy + 3 %Yz
R(x, y) = R(x, y) e
{8.2.4)
. . jox - 3 2 x2
S(X, Y) = S(Xr Y) e

In terms of the new wvariables k(x, y}) and S(x, y) the

equations become

2 R(x, y) = -K e 18%¥ S(x, y)
IX
2 S(x, y) = K* e JOXY ﬁ(x, v).
9x

From these equations we derive the second-order partial dif-

ferential equation for R(x, y)
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2 A
9"+ j5x = + |K|2! R(x, y) = 0. (8.2.5)
3aX3y ax

This equation is linear and of the hyperbolic type.[53]

A functionally-invariant sclution may be determined for

(8.2.5) using Riemann's method.[54’55] We assume a solution
of the form
~ Y
Ri(x, y) = J ds p(x) Wix(y - s)) + A W(xy) (8.2.6)
0
where y(s) 1is an arbitrary function. Such a solution is
found to exist for a function W(z) satisfying the ordinary
differential equation
d2 . d 2 _
z + (1 + jéz) — + |K| W(z} = 0. (8.2.7)
dg? dg |
A substitution
£ = -Jéz (8.2.8)
transforms this equation into
2 2
clww + -0 Lwe - BElwe =0 (8.2.9)
dg dg jé



169

which can be identified as a confluent hypergeometric differ-
ential equation.[sz]
A confluent hypergeometric equation was also encountered

in the analysis of a normal-incidence chirped grating (7.2.13).
In that case there were two acceptable solutions. The general
solution was thus a linear combination of the two (7.2.14).
However, in this case, there exists only one acceptable solution
to the differential equation (8.2.9). The second solution ex-

hibits a logerithmic singularity at the origin (& = 0) and

therefore must be rejected. The general solution is thus

2
w({g) = ,F lEl—: 1;¢ (8.2.10)
11| .
jé
where lFl(a; b; z) 1is again the confluent hypergeometric

function (also called a Kummer function, or a degenerate hyper-
geometric function).

There is an essential difference between the normal and
oblique-incidence cases. At normal incidence the coupled waves
are collinear, and thus specifying only one boundary condition
is insufficient to define the problem. Both waves exist at the
input and output boundaries of the grating. Two boundary condi-
tions are therefore required to determine their relative ampli-~

tude. However, in the oblique case, the boundary condition at
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the input to the grating is entirelv independent of the scat-
tered wave S ([Fig. 8.1.1]. The latter cannot couple, or
scatter back to the input. Thus, we need only specify one
boundary condition, in the oblique case, to define the problem.
If we insist on specifying two arbitrary boundary conditions
then sources are required in the grating. The singular solu-
tion, in the obligue case, represents these internal sources.
From (8.2.8) and (8.2.10) the function W(z), which

satisfies the ordinary differential equation (8.2.7) is thus

2
lEl—; 1; -jGC] . (8.2.11)

Hence, from (8.2.6) and (8.2.11), a general solution of the

partial differential eguation (8.2.5) is

2
lEL—; 1;-3éx(y - s))
jé

~ y
Ri{x, y) = J ds Y (s) 1F1
0

2
lEi—; 1: —jéxy] . (8.2.12)

The exact solutions for the grating waves, Ri{x, v) and

S{x, y), are obtained from (8.2.2)-(8.2.4) and (8.2.12). 1In
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(8.2.12), the arbitrary function ¢ (s) is chosen to satisfy
the boundary condition along x = 0, while the constant 2

is determined from the boundary condition S{(x, 0) = 0. Using
recursion relations for the confluent hypergeometric func-

[52]

tions, we finally determine the exact solutions for the

grating to be

' - ¥
R(x, y) = e’ (¥F kX)[R(O, y) - |K|? x f ds
0

3¢ i

and
(t—k) Y -j[A(S_x)+%(S_x)Z]
S(x, y) = K* R Y J ds e
0
2
R(0, s) lFl - J-E-l-—: 1; jéx(y - s)] . {(8.2.13)
36

These solutions for an oblique-incidence chirped grating

are exact, in that they incorporate all orders of multiple
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reflections and wave depletion within the grating. They are
also valid for an arbitrary input wave profile, and for an
arbitrary detuning between the input wave and the grating.

We shall now examine the implications of these solutions.

We begin by considering gratings with a constant spatial period.
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8.3 Constant-Period Gratings

For constant-period gratings the chirp parameter 6 = 0.
From the series expansions of confluent hypergeometric func-

tions, we find

Jl(2|1<|/§)
IR|VE

2
Z 1F1[1+J—K—L;2;—jag

§->0 jé

and

F
L

NELSLYEY jaa] = 7_(2|x[ VD)
jé

where J_(g) and J,(z) are the zeroth-order and first-order
Bessel functions respectively. From (8.2.13}, the exact solu-

tions for a constant-period oblique-incidence grating are thus

3 - . y _a
R(x, y) = o] (0E kX)[%(o, y) - eJ0Y | K| vx J ds e 308
0

Jl[zmmy—-—sr
Yy — 8

R(0, s)

and

R(0, s) J_|2]K|vx(y - s)] . (8.3.1)
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These exact solutions, for an arbitrary input profile and
arbitrary detuning A, clearly show the dependence of the
grating response on the various grating parameters. In addition,
they can be evaluated with much less computation than is reguired
for the alternative unit-cell approach. Figure 8.3.1 shows the
profile of the output wave, after transmission through an
oblique-incidence grating at Bragg, and for small detuning
from Bragg. ©Note the depletion and considerable distortions

of the wave introduced by the grating.

" For the case of Bragg excitation (i.e. A 0) and a
uniform input wave profile R(0, y) = 1, the exact solutions
are particularly simple. Under these conditions, the solutions

(8.3.1) reduce to

R(x, y) = e) (0t = kx) J_(2|K|/xy)
and
S(x, y) = el (Wt = ky) |K—* X7Y 3, (2]K| /XD . (8.3.2)
K

These solutions were also deduced by Bloch et al. by analogy

with solutions obtained in holography.[Bg]

They clearly illus-
trate the manner in which the transmitted wave, through the

grating, will become distorted if the coupling coefficient K
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and the grating dimensions are large enocugh.

As a possible application of this exact analysis we briefly
consider the use of constant-period obligue-incidence gratings
as filters. Either a bandstop or bandpass response may be
realized. Figure 8.3.2 shows the configuration of such a SAW
filter. For a bandstop response the output is taken from
transducer 2, while for a bandpass response the ocutput is taken
from transducer 3. The filter bandwidth is reduced, for a
given insertion loss, by increasing either the number of grooves
or the width of the grating. This is illustrated in Fig. 8.3.3
which shows the theoretical bandstop characteristics of three
practical gratings. ©Note that the bandwidth, of the response,
appears to be much more sensitive to the width of the grating
than to the number of grooves. This is partly due to multiple-
reflection effects, which become more significant as the width
of the grating is increased.

For the same grating considered in Fig. 8.3.3(b) we show
the corresponding bandpass response from transducer 3 in Fig.
8.3.4(a). It is interesting to note that because of consider-
able phase distortion, across the wave front, much of the power
scattered by the grating is not intercepted by the transducer.
In Fig. 8.3.4(b) we show the true acoustic power scattered by

the grating. The latter is seen to be much larger in amplitude,
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and alsé to have a much wider bandwidth, than the electrical
power from the transducer.

Before proceeding to consider the RAC we shall first di-
gress to develop approximations to the exact chirped grating

solutions given in (8.2.13).
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8.4 Approximate Chirped Grating Solutions

In many cases the full exact solutions (8.2.13) may not
be required for the analysis of practical gratings. If the
coupling in the grating is small only the lowest-order terms
in K need be considered. As a lowest-order approximation we
obtain, to order K (i.e. O(X))

jlwt - kx)

R(x, y) = e R(O, v)

and

R(0O, s). (8.4.1)

These are the familiar scolutions currently used extensively

in RAC design. 41l

The forward wave in the grating R(x, y)

is assumed to propagate through the grating unperturbed, and
with no power loss. The scattered wave S(x, y) 1is seen to

be attributed to only one-order of reflection of R(x, y), as
all contributions of the order K? and above are ignored. For

low-loss devices where the coupling may be somewhat tighter,

these solutions may not be accurate enough. As we shall see,
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much additional insight and accuracy in the design may be ob-
tained by going to one higher-degree of approximation.

To include the contributions from the lowest-order of
multiple reflections (O(K?)}, within the grating, it is

necessary to expand the solutions (8.2.13) correct to O(K?).

It can be shown that

. 8
2 "j = 2 .

(Fplt* lEl—; 2;-joz| = e 2 BN Z 4 g(x2)

jé z

and

2 . - 2 (6/2)2 . .

Fr - B jaz} -1 - 2K J ag e?% 2L 4+ o(xY)
J8 8 0 £

where the last terms signify the order of the terms neglected.

We thus obtain, to O(K?):

§

. _ y
R(x, y) = el (@t = kx) [R(O, y) - Z—IEI—ZJ ds

iy = S)lb -3 x -y -8
e R(C, s)

sin[{8/2) x(y = s)]
(y = s)
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and

| o

. _ v -jlA(s - x) + (s - x)?2]
S(x, y) = K* ej(wt ky) J ds e R{0, s)

2 (8/2) x(y-s) . .
[ - 2]x|® J ac &3¢ i-l-“—gl (8.4.2)

3 0 g

These solutions are more accurate for low-loss RAC design
than the solutions (8.4.1) which are currently used. In many
cases they are sufficiently accurate for the design of practical

devices and are much simpler to evaluate than the exact solutions

(8.2.13).
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8.5 RAC Solutions

We have so far considered the response of only a single
oblique-incidence chirped grating. In this section we apply
the solutions obtained for such a grating to an analysis of
the RAC. The RAC is a SAW dispersive filter which is used
widely for pulse compression. In its simplest embodiment it
consists of two 45° oblique-incidence chirped gratings through
which the acoustic signal undergoes two 90° reflections [Fig.
8.5.1]7.

We begin by determining the exact response of a RAC, for
a uniform input wave, using the exact oblique-incidence grating
solutions (8.2.13). This solution is, however, difficult to
evaluate, and of greater complexity than is required for the
analysis of most practical devices. We therefore develop an
approximate solution for the RAC response using the simpler,
though approximate, grating solutions (8.4.2). In the following
section the behavior of a practical RAC design is analyzed, in
some detail, using these approximate solutions.

To obtain the response of a RAC [Fig. 8.5.1] we must con-
sider reflection through two obligue-incidence gratings. It
is convenient for the analysis to define the coordinate system,
in each grating, with its origin at the center of the grating

[Fig. 8.5.2]. Each grating is taken to be of width W and
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length L. From (8.2.1) the synchronous detuning at the center

of each grating A', 1is given by

A =A-6[£—ﬂ] : (8.5.1)
2 2
The output of the RAC, from a transducer at x' = -1/2

in grating (2), is given by

_ W/2
S = J dy" s'(-L/2, y")
-W/2
where S'(x', y") 1is the wave in grating (2).

For the case of a uniform input wave to grating (1)
(R(-L/2, y') = 1), ignoring frequency independent phase terms,

we obtain using (8.2.13)

_ L/2 W/2 =jla'(y - x) + % (y - x)?]
S = |K|? J dx J dy e
-L/2 ~W/2
) 2
Fl- B s+ w2y 2 - (8.5.2)
jé
where A' 1is defined in (8.5.1). This is the response of a

RAC for a uniform input. It includes all depletion and multiple
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reflection effects in both gratings.

As discussed above, the exact solution (8.5.2) is usually
not required for the analysis of most practical RAC designs.
If the coupling is not too strong we may use the approximate
grating solutions (8.4.2) to evaluate the output from the RAC.
In this case we cobtain the approximate solution
L/2 W2 -3A(Yy - %) + 5 (y - %7
dx J dy e
-W/2

dec el&

2
[1 _ 2]K]? J(G/Z) (x + L/2)(W/2 - vy) cin i
0 2

(8.5.3)

This solution includes the effects of the lowest-order multiple
reflections in each grating and is thus accurate to O0O(K%). It
is much simpler to evaluate than the exact solution (8.5.2), and

is accurate enough for the analysis of most practical devices.
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8.6 Analysis of a Practical RAC

We will now consider the performance of a practical RAC
design in the light of the new, more accurate, theoretical so-
lutions presented in the previous sections. By way of illus-
tration we shall consider a RAC with a linear FM downchirp,
center frequency of 400 MHz, bandwidth 180 MHz, and 90 us
dispersive delay. A RAC with these specifications was considered
by Otto et al., using the lowest-order approximate grating solu-
tions (8.4.1), in a previous paper.[l4]

For the analysis we shall use the approximate chirped
grating and RAC solutions, (8.4.2) and (8.5.3) respectively,
to evaluate the response of the device. These solutions include
only the first order of multiple reflections in each grating.
However, we shall show that these solutions provide important
corrections to the response predicted a lowest-order analysis.
The grating coupling coefficient K will be assumed independent
of position (i.e. frequency). 1In practical devices this is
usually achieved by depth weighting of the grooves.

In Fig. 8.6.1 we show a typical amplitude profile of the
R-wave across the grating, for a wave in grating (1)} at the
center of its synchronous regime. The wave amplitude in the
upper part of the grating has been partially depleted since it

has passed through more grooves, close to synchronism, than
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the lower half. 1In addition,some additional energy has been
"piled-up" in the lower half of the grating due to multiples,
Beyond the synchronous region the amplitude profile of the R-
wave again flattens out and merely shows a fairly uniform de-
pletion caused by the coupling out of the S-wave. This be-
havior for the R-wave is physically more satisfying than the
assumption of the lowest-order analysis, that the R-wave
remains totally unperturbed.

A major advantage of the new analysis lies in predicting
the phase response of the device. At any frequency the ampli-
tude profile of the R-wave, across the center of its synchro-
nous region, is almost identical with that shown in Fig. 8.6.1.
However, the corresponding phase fronts of R depend strongly
upon frequency.

In Fig. 8.6.2, we show the phase fronts of the R-wave
for three frequencies, again each across the center of its
synchronous region. As the wave travels under the grating
its phase front becomes progressively distorted and delayed
by multiple-reflection effects. Thus, fregquencies that are
synchronous far into the grating will suffer from increasing
phase-distortions due to multiples. The tilting and distortion
of the phase front of the R-wave results in a slight skewing,

or tilt, in the amplitude and phase fronts of the S-wave
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between the gratings [Fig. 8.6.3]. However, this effect is
only very small and has no significant effect on the overall
RAC response. Of much greater importance is the progressive
phase delay in the R-wave. In a downchirp device the latter
results in an additional, increasing phase delay for decreasing
frequency. The resultant additional phase delay in the RAC
output, at any given frequency, is approximately twice the
effective delay of the R-wave in the first grating. This is
because a similar delay is suffered again by the wave in the
second grating. Mathematically this is confirmed by (8.5.2),
where we observe that the inner integral is squared.

Figure 8.6.4 shows the additional overall phase delay in
the RAC response, due to multiples, determined from (8.5.3).
As expected, the multiple reflections cause increasing addi-
tional phase delays for decreasing frequency. This phase
delay is in addition to the quadratic behavior predicted by
the lowest-order analysis. The effect of this distortion is
two-fold, (1) it causes a change in the chirp-slope from the
design expectation, and (2) it causes a phase-deviation from
pure quadratic behavior. From (8.5.3) this additional phase
delay can be seen to be approximately = (1/8). Phase errors
are typically observed in practical devices and usually neces-
sitate a correcting phase-overlay film to be laid down between

the two gratings.[SG]
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Figure 8.6.5 shows the amplitude response of the RAC, with
and without, the correction for multiple reflections. The mul-
tiple reflections decrease the coupling through the RAC, espec-
ially at the high frequencies. This is because the grating is
of constant width. At higher frequencies the grating is wider,
in terms of wavelengths, and multiple reflections thus have
more chance to introduce amplitude and phase distortions.

It has been reported, in the literature, that in practical
down-chirp RAC devices there is frequently an unexplained ampli-

[14]

tude rolloff at the lower frequencies. From the analysis
above it can be seen that for a constant K grating, even
including multiples, such a rolloff in the coupling loss of
the RAC is not predicted. However, there are several possible
causes of such behavior.

(1) 1In practical devices K is not a constant. To
compensate for propagation, diffraction and transducer losses
the coupling constant is generally increased with distance into

the grating.[14]

For a downchirp device this means that the
coupling is generally much stronger at the lower frequencies
that at the higher frequencies. This tapering of K may con-
tribute to the amplitude rolloff observed.

To illustrate this phenomenon, consider a "U"-path grating

which consists of two constant-period (i.e. &§ = 0) oblique-

incidence gratings. For the response at Bragg, we obtain from
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the exact solution (8.5.2)

_ L/2 W/2 z
s = |K|? J dx J dy J [Z]Kl/(x + L/2) (W/2 - Y))
-L/2 -W/2 o

= w{} - J02(2]K|/Wf) - J12(2|K|/Wf;1 .

The coupling loss through the structure is therefore
20 log,[1 - J_2(2|K[/WD) -~ 3,7 (2{K[/WD)]. (8.6.1)

This is the exact solution for the coupling loss through a
"U"-path grating at Bragg. From a lowest-order analysis the
expected coupling loss would be

20 log,,[|K|? WL]. (8.6.2)

Expanding (8.6.1l), we have

20 log  [|K|? WL - 2 (|K]2 WL)2 + ...]. (8.6.3)
2
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We observe, by comparing (8.6.2) and (8.6.3), that for a
constant-period "U"-path grating, the lowest-order analysis
under predicts the actual coupling loss of the structure. This
error increases for tighter coupling values. In Fig, 8.6.6
the coupling loss predicted by (8.6.1) is plotted against that
predicted by the lowest-order analysis (8.6.2). This curve
was also obtained from many numerical computer runs using the

unit-cell approach.[4l]

If this saturation effect, for in-
creased coupling, is not takén into account in RAC desigp, the
coupling at the lower frequencies (i.e. larger K} will be
less than expected.

(2) Stored-energy effects have not been included in this
analysis. In Part I we showed that in normal-incidence gratings
these effects can cause the reflection/groove to become a strong
function of the groove/strip ratio (Section 5.5). This is also
expected to be the case for oblique-incidence gratings. Prac-—
tical RAC Devices, using grooved reflectors, are generally
fabricated with a fixed groove width. A change in the period
is achieved by varying the spacing of the grooves. In actual
RAC devices, therefore, the groove/strip ratio is not a constant.
For high fregquencies this ratio is generally > 1 and at low
frequencies it is <« 1., This effect mav also cause an addi-
tional skewing of the amplitude response of the device. (It

should be noted that the inclusion of stored-energy in the
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analysis will also affect the phase response of the RAC.)[57]

(3) In long devices diffraction must also be correctly
taken into account. Again, it will be responsible in a down-

chirp device for additional loss at low frequencies,
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APPENDIX A

STRESS COMPONENTS ON PERTURBED SURFACE

The stress on the perturbed surface of the grating is

given by

g_ = g+ 2z (A.1)

i

where ¢ 1is the stress tensor of the acoustic wave on the

~

surface, and z' 1is a unit vector normal to the surface (Fig.
A.l). The surface is defined by =z = eAr f(x). Thus we write
s =2z - e\, f(x)

and hence

Vs =2z - X exr £r(x).

Since VS is normal to the surface, it fcllows that

~ zZ - X £'
3 elr {x)

Jﬂ + (ed, £r(x))?
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Fic., A.1 PERTURBED GRATING ROUNDARY




From (A.1)
fore
Txx Oxy Oxz
% T %%y Yyy  Tyz
O%z 0yz Cpzl
To 0(e?), we have
o, = |~ geh E'(x)
+ |- Ekr £'{x)

The stress tensor components
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the stress on the surface of the grating is there-

(A.2)

-ekr M (x)
- 0 l
1 2
1 [ A ey )
oo+ (1 - (er. frxnz| o | %
XX 5 r XZ
-1 ' 2 1
ny + [1 (elr £1(x)) ] Tz y
o, + |1 - 1 (exr_ £'(x)1)2| o z
X2 2 r ZZ
Uij’ on the surface of the
of the stress components

grating, may be expanded in terms

oij(O)

expansion as

ij ij

where

(0) + ex, £(x) o} (0) +

N

on the unperturbed surface at

{ex

r

= 0.

f(X))z O;j(O) +

We write the



and

3
'L(0) = — g..
ij'% 3z i3 20
82
. (0) = a. . etc.
13 3z?2 3 |z=0

Introducing these expansions into (A.2) we obtain, to

g = 1

O, (0) ea [£(x) o (0) - £1(x) o, (0)]

(er,)2[£(x) £'(x) o} (0) + i (£' (x))2 o, _(0)

Lt oy (011} x

{UYZ(O) + ekr[f(x) 0%2(0) - f'{x) GXY(O)]

(eAr)zlf(X) £'(x) Géy(o) + i (f'(x))? OYZ(O)

(£0x))2 0, (011} ¥

hSERT o

(0,,(0) + er [£(x) 0}, (0) = £'(x) o, (0)]

Loerxn2 o (0)

(Elr) [£({x) £'(x) oéz(O) + 5 22
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O(g?}
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(£(x))2 " _(0)]} =z (A.3)

1
2 Z2

and, to 0Of{e)

5, = {0, (0) + eA_[£(x) ol (0) = £'(x) 0, (0)]} x

>

+ {oyz(O) + ekr[f(x) 0&2(0) - £'(x) GXY(O)]} Y

+ {UZZ(O) + ekr[f(x) oéz(o) - f'(x) o z(0)]} z. (A.4)

X

A Rayleigh wave satisfies the stree free boundary condi-

tions on the surface 2z = 0. Thus, for a Rayleigh wave

r _ r _
oxz(O) = UYZ(O) = g

r

zz(0) = 0.

For a Rayleigh wave, with no y dependence, the stress on

the perturbed surface of the grating is thus, to 0Of(e)

~

5 F = ex [£(x) oL (0) - £'(x) o

r
XX

]

(01 % + er_ £(x) o5 (0)

(A.5)
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APPENDIX B

ACQUSTIC WAVE COMPONENTS FOR NORMAL-INCIDENCE ANALYSIS

Rayleigh waves are the acoustic surface wave solutions
for a half-space (or infinite substrate) with a free boundary
surface. The wave energy is confined clesely to the surface
of the substrate, with the wave amplitude decaying exponentially
into the bulk. Rayleigh waves are hybrid waves. They are a
combination of a compressional (or longitudinal) wave with a
vertically polarized shear (or transverse) wave. Together the
two waves satisfy the stress-free boundary conditions (i.e.

g - ;' = 0) on the free surace of the solid.

We develop here the stress tensor components and displace-
ments of (a) a compressional wave, (b) a shear wave, and (c)
a Rayleigh wave, propagating on the free surface boundary of
an isotropic, perfectly elastic solid. The solid is taken to
occupy the half-space region =z > 0, with mass density p and
elastic Lame constants A and u. The direction of wave pro-

pagation is taken to be aleng x, at an angular frequency w.

and shear wave number k

The compressional wave number kl' 5

of the solid are given by[SB]

1/2
(B.1)
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k, = wip/uw /2. (B.2)

(2) Compressional Wave

The compressional wave is a longitudinal wave. Its dis-

placement u is thus derivable from a scalar potential

el
]

Ve (B.3)
where the scalar potential ¢, obeys the wave equation
(72 + k %)¢ = 0. (B.4)

For a plane wave, with no dependence on the coordinate vy, the

stress components are given in terms of the scalar potential

5, by[59]

XX 2

2 2 Com2
UZZ = X M + M + 211 _a.._(h (B.5)
ax? 322 5z 2
= o, B%9
O 2y .

axaz
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We are interested in identifying plane wave solutions,
propagating in the +x direction, and decaying in the +z
direction. We therefore assume a scalar potential of the form

o~ Jkx _-rez

$ = 8 e (B.6)

1

where a time dependence of ejwt is understood. For this

potential function to be a solution of the wave equation (B.4)

we regquire
k,? = k? - 2, (B.7)

For propagating bulk waves the decay constant r must be pure

imaginary. This condition requires |k| < Ky -

The displacements and stress components of the compres-

sional wave are easily obtained by introducing solution (B.6)

into (B.3) and (B.5). We find

-jkx _-xrz

u, = - jk8, e e

1

u = - rs., e JKX Tz

z 1

and
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S p(kz2 + 2r2)S1 T Ikx r2 (B.8)
- 2 _ 2 ~jkx ~rz

0,5 {2k k2 )S1 e e
_ . -jkx -rz

Cyo 2ujkrSl e e .

{b) Shear Wave

The shear wave is a transverse wave. We therefore require

a vector potential to describe its displacement. We define

u=7vxy (B.9)
where the potential 1§, satisfies the wave equation

(v2 + k22)$ = 0. (B.10)
For a plane wave, with no y-dependence, i.e. §/3y = 0, and

no displacement along the y axis, only the y-component of

the vector potential wy, is non-zero. The stress components

are given in terms of this potential by[Sg]

n2
1lbY

dxdz

o] = = 2u
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32y
o = 2y —L (B.11)
ZzZ
dXoZ
3¢ 5°
5 = by 9TV )
xz Ix? 3z?

We again seek plane wave solutions propagating in the +x
direction, and decaying in the +z direction. We thus assume
a solution for wy of the form

e—jkx

Yy = 8 e 9%, (B.12)

V4 2
This solution is seen to satisfy the wave ecguation (B.1l0)

(¢ = ¢_ = 0), with the decay constant g determined by
k.? = k2 - g2. (B.13)

Again g will be pure imaginary for propagating bulk waves.
This requires k| < k, -

The displacements and stress compeonents of the shear wave
are cobtained by introducing solution (B.12) into (B.9) and
{(B.11). We find
e—jkx -qz

u_ = q82 a

u_ = - ij2 e—:rkx e I7
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and

- _ . -jkx _-~gz

Gxx 2ujkq82 e e (B.14)
_ . -jkx _-Qgz

O,, = 2Ujkq52 e e
- - 2 2 -jkx _-qz

Oy = n(k + g )52 e e .

(c) Ravleigh Wave

The Rayleigh wave is a combination of a compressional
wave with a vertically polarized shear wave. The particular
ratio of the shear/compressional wave amplitudes, and the
Rayleigh wave dispersion relation, are obtained by requiring
the free boundary at z = 0 to be stress free. Using the
results of the previous two sections, the displacements and
the stress tensor components may then be determined.

The stress free conditions on the boundary, for a Ray-

leigh wave with no dependence on the y coordinate, require

o =0 =0 (B.15)

The compressional wave amplitude is S and the shear

l!’
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wave amplitude is 82. We denote the decay constant of the

compressional wave by T, and the decay constant of the shear
wave by a- From (B.7) and (B.1l3)

r 2=k ?*-k,?2 (B.16)

(B.17)

Q
~
I
~
o
|
o~
o

where kr = 2W/Ar is the propagation constant of the Rayleigh
wave. Introducing the stress components of the compressional

and shear waves, from (B.8) and (B.1l4), into (B.15) gives

I
o

2 2 .
(kr * 9y )Sl * 2jqursz
: - 2 2 =
2jkrrrsl (kr + q, )52 0.
From these equations we obtain the determinantal egquation
2 2y2 _ 2 =
(kr + q. ) 4kr 9.T, 0 (B.18)
and the ratio of the wave amplitudes to be

2 2 :
(k.2 + q.?) 23k T,

_=j

S,y
Sy

. (B.19)

2k_g

2 2
r-r (kl" +qr)
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The displacements and stress components of the Rayleigh
wave are now obtained from (B.8}, (B.l14} and (B.19). The re-

sults are

- 2 2 _ =
r _ r.z kr + 9. q_z jer
u o= - ]Sl kr e - — - e e
2k
r
-r_ z k_*+ g ?* -g.z -jk_x
ut = -5 lr e . r e e r (B.20)
z 1 r 5
Ay
and
r -r.z -g_z —jer
- - 2 _ 2 2 _ 2 2
O = uSl[(kr q ® + 2rr Je (kr + q, )e le
r ~Tr.zZ -q.z -jer
-, 2 2 -
Ty = ,Jsl(kr + 9. ) (e e ) e
-r_z -q_2z -jk_x
r _ . r- _ r r
Oz 2ujSlkrrr(e e ) e
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APPENDIX C

RAYLEIGH WAVE POWER FLOW

The complex Poynting vector of an acoustic wave Pa’ is

given by[60]

Thus, the time average power flow of a Rayleigh wave, per unit

width, is given by

+ - -
Pr =-1 J dz Re[ar R ]
2 ‘0 3t
1 te . r r* r r*
= - ; JO dz Re[jw(cxx u, ot oog, U, 1. (C.1)

The displacement and stress components for a forward propaga-
ting Rayleigh wave are given in (B.20). Substituting in (C.1l)

we have

=Y _Zz

+co
= -H 2 2 _ 2 2 r
P 5 |Sl| [0 dz [(kr q.* + 2r_ Je
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Evaluating the integral, and making judicious use of the dis-

persion relation (B.18), we obtain

2 . 2y 3 6 2 b 6
(k a7 (k.® + Sk _*q " + 2q.°)

Pr - B ISllz rz 2y 2 34 3 (c.2)
2 (kr +oa } Bkr qa,
If we define the Rayleigh wave power flow to be[GI]
= 2 2
Pr 2wy k2 Y0 |Sl] (C.3)

where YO is a dimensionless gquantity and plays the role of a

characteristic admittance, then from (C.2)

Y =

k 2 o 232 (k 6 + 5k Zq L + zq E)
[r ]_"J r r r r . (C.4)

2 2 34 3
kr + q, 32kr q,
Using the dispersion relation (B.18) we may also derive the

alternate form
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(C.5)
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APPENDIX D

PERTURBED SURFACE-WAVE DISPERSION RELATION

On the free boundary of an infinite isotropic scolid the
surface-wave sclutions are Rayleigh waves. Rayvleigh waves
are dispersionless with a propagation constant kr = w/vr,
where w is the angular frequency of the wave and V.. is
the Rayleigh wave velocity. As shown in Appendix B, the pro-
pagation constant kr satisfies the determinantal equation

(B.18)
2 2y2 2 =
(kr + d, ) 4kr q.r, 0 (D.1)

where r. and q, are the decay constants cof the compressional
wave and the shear wave respectively.

By contrast, in a grating, coupling between counter-
propagating surface-waves causes dispersion as shown in Fig.
3.1.1. The surface-wave solutions iIn a grating are no longer
Ravleigh waves and do not satisfy the free-surface dispersion
relation (D.1l). A surface wave of a given frequency experiences
a perturbation of its propagatiorn constant within the grating
(Fig. 3.1.1). Conversely, a surface wave with a given propa-

gation constant is perturbed in frequency within the grating
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(Fig. 3.1.2).

Consider a surface wave propagating in a grating with a
propagation constant kr’ and with an angular frequency .
The frequency differs from that of a Rayleigh wave

havin
o’ g

the same propagation constant, by an amount Aw, where

and Aw 1is of Of(e) (or above). Let the decay constants of
the compressional and the shear wave components be r and q
respectively. Because the frequency of the wave differs from
that of a Rayleigh wave r # r..» g # q, - However, the decay

constants r and g may be Taylor expanded in terms of the

frequency perturbation Aw. The expansions take the form

_ . )
cmrba X[ g LW,
dw =0 2 dw? =0
o o
g =q + Au dgq + (bw)y? d2g + .
- du w=w 2 dw? w=w
o o)

Using such expansions and the determinantal equation (D.1)

the modified dispersion relation for waves in the grating may
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be obtained in the form

(kr2 + g?4)? - 4kr2qr = ajfw + a,(Aw)? +

We now proceed to determine the exact form of this dispersion
relation.

From (B.2) and (B.13)

— 2 _ 2y1/2 _ 1/2
Koy = (kr 9. ) = (p/u) Wy
thus, from (D.2)
ky = (k 2 = q) 2 = (o/nt/? (w, + 8w) = ky (1 + Au/u).
Hence,
a® = (k.? - k%) =gt - (kP - g ?) (Bw/e ) (2 + Aw/w)

{D.3)

and, to O((Aw)?)

(
|Q—Il . (D.4)
(g |
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Similarly, to O((Aw)?)

A—‘”H ] (D.5)
0]
o

From (D.1l) and (D.3)-(D.5}), the dispersion relation for per-

turbed surface waves in the grating is determined to be, to

O((Aw)?)

4k 2
2 2y 2 _ 2 - r _ 2 _ 2 2
(kr + g?) 4kr gr -~ (rr qr)(kr r. kr q, + 2qr r )
‘rYr
2kr2
‘ - 4 - 2
(Aw/wo) + — (rr qr)[kr (rr qr)(q + rr)
9y Ty
2 2 2 - L 3 2
+ kr q,.°r. (rr qr) + qur r. ](Am/wo) . {(D.6)
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APPENDIX E

FIRST-ORDER BRILLOUIN COMPONENTS AND SECOND-ORDER

DETERMINANTAL EQUATIONS IN NORMAL-INCIDENCE GRATING

{a} Brillouin Wave Amplitudes

The amplitudes of the Brillouin components are obtained,

to 0(e), by considering only those terms with the correspon-
ding spatial dependence in (4.2.3) and (4.2.4). BAs in Section
3.2 the x-independent stress components of each wave Gign),
Gié—n) are defined by
Fj(k_ + nk x
+{n) _ ~*(n) I _ N
o} 3 = Gij e (n =1 » «)
(k. ~ nk )x

t(-n) Lx(-n) IR, _ -

i3 Oij e (n =1 > p).
We consider the two sets of Brillouin components, Si(n) and
S?(_n), separately.

(a.l) Brillouin components Si(n),' with |k{| > k-

These components are all non-radiating. From {(4.2.3), to



-j(kr + nk _)x
cf. e g dep.

A
+(n) ~+(n) Fhr + .r' E—
Si ixz (0) + 2 [An Sl sz(o) + An+p Sl Iz (0)]
kr + .r - =T
+ ekrj ;: [nAn Sl UXX(O) + (n + p)An+p Sl oXX(O)]
=0 (i)
+j(kr + nk _)x
cf. e g dep.
s7(m) 57 gy 4 e A_s,” 5 (0) + a 5.t 55 (0)]
i Tixz 5 n °1 %xz n+p "1 %z

k
. r - .-r
- ekr] —_ [nAn Sl Uxx(O) + (n + p)An S

+ 1 XX
D p

=0 (ii)

and from (4.2.4), to Of{e)

223
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—j(kr + nk Ix

cf. e g dep.
st(n) z+(n) 5y e a_s. ¥ 35 (0) +a 5.7 55 (0] = 0
i izz 5 n 1 zZ n+p "1 O22
(iii)
+j(k_ + nk )x
cf. e r dep.
s (™) "'(n)(0)+2£[a .7 3T (0) + a s. ¥ 55 (0] =0
i izz 5 1 %zz n+p 1 T2z
(iv})
(E.1)
. ir _
since UXZ(O) = 0.
. . -r _ r* -(n) _ +(n)*
By reciprocity Gij = Oij' and Uij = 055 for all
the compressional and shear wave Brillouin components. Before

sclving (E.1l), for the wave amplitudes, it is expedient to
introduce a transformation of variables, of corresponding form
to that used for the propagating waves in Section 3.2. In

addition to (3.2.7), for the Brillouin components we define,

smT gt -y
1 1 ha
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D
(n)~ _ o+t(n) _ ~(n)*
Si = Si Si . (E.2)

Then, from (E.1) (i)+{ii)*, and {(iii}+(iv)* respectively,

T EA
(n)~ ~+(n) r T . T* _r*!
si T3 wp (0) + —;~ [An Sl ze(O) + An+p sl G (0)]
. kr T .r 0 ST* .I*
+ er] ;: [nAn Sy oxx( ) + {n + p)An+p 1 UXX(O)] =0
T EA
(n)~ .+ (mn} r T .r' T* _r*! _
Si izz (0) + _E_ [An Sl g Z(O) + An+p Sl S (0)] =0

(E.3)

and from (E.1) {1)-{(1ii)*, and {(iii)-(iv)* respectively,

D eA
(n)~ .+ (n) r D .r' _ D* .r*!'
s/ Tigg (0) + Py (A, 817 8y, (0 - A . 87 &, (0]
. kr b .r D*¥ _r*
+ €A ] ;: [nA_ 8,7 d,.,(0) - (n + p)An+p S] Gyuy(0)1 =0
D EA
(n)~ ~+(n) r D .r' _ D* _r*! _
Si izz (o) + 5 [An Sl Gzz(O) An+p S1 92z (0)1 = 0.

{E.4)
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Equations (E.3) and (E.4) are two independent pairs of equations

mT T m®  @m?P
for the amplitudes Sl , 52 and Sl . 82 + respec-

tively.
-

Case 1: S.+ = 8,
_ = i i

For this case from (3.2.7), SlD = 0. Thus, from equations
(E.4)

(n)D +(n) -(n)*
S. =0 > S5, = g, n =1 + «)
1 1 1

to Of(g). Substituting in (E.3), and evaluating the stress

components from (B.8), (B.14}, and (B.20) gives (for Sl+ real)

+({n) . _ ot(n) 2 2
51 23k r - 85, (k 2 + q_?)
= EAr](rr N qr)[kn(r + qr)(An + An+p) - qur(An - An+p)]sl
Pt h gz v st o g = 2E b Lkt gt
1 n qn 2 ] nqn > qr r qr

n T n+p Sl . (E.5)
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Here kn is the propagation constant of the Brillouin waves
k =k + nkg = kr(l + 2n/p) (E.6)

and r, and q, are the decay constants of the corresponding

compressional and shear wave components. From (B.7) and (B.13)

1/2
- 2 - 2
Th ~ (kn kl )
(E.7)
1/2
- 2 2
9h T (kn k2 ) )
The determinant of equations (E.S5) is
= 2 2y2 _ 2
D(kn) (kn + q, ) 4kn q.r, - (E.8)

Since kr satisfies the Rayleigh wave determinantal equation

(B.18), D(kn) # 0 for n # 0. Defining
+
An = An + An+p
(E.9)
A =3 - Ao

from (E.5) the amplitudes of the Brillouin components for this
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case are, to Of(g):

v N N
Sl D(k.)
n
-1 (k2 + g 2)Y(k_* + g Z;WA o 2k_g k. g_ A _1
2 n n r r l n nnr‘r n J
+
T =~ ex ] k[(kn +qn)(rr+qr)
S (k_)
1 n
- 2 2 + 2 2 -
rn(kr + q,. )]An (kn + q. )qur An . (E.10)
-k
Case 2: S.+ = - 8,
_ i i
For this case from (3.2.7) SlT = 0. Thus, from equations
{E.3)
(m) T +(n) - (n)*
S, 0 >~ S. = . n =1+ «)
i i i
to O©Of{e). The wave amplitudes may now be obtained from (E.4).

Comparing (E.4) with (E.3) we observe that the equations are

of identical form, except for the replacement A - =N .
n+p n+p
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Thus, by analogy with (E.10), in this case the amplitudes of

the Brillouin components are, to Ofe):

+
Sl(n) (rr _ qr) 2
g + =T EA, __57;_;_— 2k raylr, + q,.)
1 n L
-l k2 gk 2+ q?)| AT - 2kgkqg AT
5 n n r n'n r-r ‘n
S;—(n) (r. - a.) , ,
= - gx_] k [(k ¢ + q??)(r_+ q_)
g * r D(k ) n ‘'n n r
1
- 2 2 - 2 2 +
rn(kr + q )]An (kn + q, )qur An (E.11)
(a.2) Brillouin components Si(_n), with |k| < L

This set of Brillouin waves, in general, is comprised of

both non-radiating and radiating components. From (4.2.3), to

O(g):
- (k. - nk_)x
cf. e t 9 dep.
gt (-n) 6+(-n)(0) + EEE a s.t 5r'(0) + A S, G—r.(O)]
i ixz n "1 XZ p-n 1 X2



k

. r + _.r -
—eAd ] ;: [nA S; 9,00 - (p - n)Ap_n 81
+j{k_ - nk )x
cf. e r dep.
A
(-n) .- (-n) €Ay -7
83 ixz (O F = 1B, S G (00 + A0S
kr - =T
+ gArj ;:—[nAn S1 XX(O) - (p _-n)Ap-n S1
and from (4.2.4), to 0Of(e)
—j(kr - nk )x
cf. e dep.
A
+(-n) .+(-n) iy + .r'
Si Oizz (o) + 2 [An Sl Gzz(o) * Ap-n Sl
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=T _
OXX(O)] =0
(1)
.r!
UxZ(O)]
e _
OXX(O)] =0
(ii)
~=r' _
-z (0)] =0
{(iii)
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A
-{-n) .-(-n) M r - .-r' + .r' _
Si Yizz (0) + 2 [An Sl 92z (0) + Ap—n Sl Uzz(o)] =0

(iv}

(E.12)

. tr _
since oxz(O) = 0.

- _ r*

As in the previous analysis, by reciprocity, Oij = Oij'

However, the radiative components now also propagate in the

direction +z (into the bulk), as well as along x. There-
- = - *
fore, for this set of Brillouin waves, gi; n) g:; n) only
for the non-radiating components. In general, for the radiative
~(-n) - +(-n)* ~(-n) "' _
components 955 (0) = ¢ Oij (0), and Gij (0) =
- 1
I; n) (0), where the correct choice of sign for each component

can be determined by reference to Appendix B. These waves,
therefore, cannot be separated into two sets of solutions, with
+(-n) -(-n)* +{-n) -(-n)*

S, = 8 and § - 5.

3 i i = i r 1n the same manner

as the other grating waves already considered.
We define the propagation constant of the Brillouin waves

in the x direction to be k_,+ thus

k = k_ - nkg = kr(l - 2n/p) . ‘ (E.13)

As discussed in Section 4.2 all the shear wave components will
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be radiative, in any isotropic solid, for p < 15, The =z~
dependence of the shear waves is therefore taken to be e -Jd-p?

r

where from (B.13)

- 2 . 2 1/2
d.n = (ky ki) (E.14)

The compressional waves will, in general, comprise both radia-
ting and non-radiating components, depending on thé harmcnic

p, and the material Poisson ratic v. In most isotropic solids,
however, the single compressional Brillouin component for p =

2, 3 1is radiative. We therefore choose to take the z-depen-
dence of the compressional waves to be e—jr_nz' where from
{(B.7)

r = (k.? - k2 )1/2, (E.15)

For non-radiating compressional waves r_, will be pure ima-

ginary. To simplify the form of the sclutions, corresponding

to (E.9), we define

(E.16)
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Case 1: &S. = 5,
—_— i i

Evaluating the stress components in (E.12), from (B.8),
(B.14) and (B.20), we have, for this case,

from (i) and (iii)
respectively

+{-n) .o _ .- +(=-n)
S1 (k-n q n) S2 2k—nq-n
gA
_ r _ 2 2 + +
= (rp - a.) (k. ? +q?)al_ s (E.17)

- - g2 -
-n -n 2 -n Ay
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2 2y a7t
(k2 + q 2)al_ s 7. (E.18)

The determinant of both pairs of equations is

= 2 - 2 2 z
D(k_,) = (kZ_ - q )° + 4kZ q_ r_ _. (E.19)

Again, since kr satisfies the Rayleigh wave determinantal
equation (B.18), D(k_n) #0 for n # 0. From (E.17), the

amplitudes of the forward propagating (+x} Brillcuin waves

are, to 0f(g)

Sl (r_ - qr) , .
o = EX, o -2k_nj q_n(rr + qr)
1 -1
‘+ L2 - q? ) (k.2 + g ) iat + 2k g k. ga”
2 -Nn -1 r r -n ~-TIl =Nl 'YX -n
S;(_n) (r. - q.) \ , ,
+ = T EAD k-n[(k-n - q—n)(rr + qr)
S D({k
1 -n
- 2 2 + 2 2 -
jr_ (k ? + g 2 Ial - (k2 - q2 )k.a. AT (E.20)
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From (E.18), we find that for the reverse propagating (-x)

Brillouin waves

-{-n) _ +(-n)
5] = s)
(E.21)
-{-n) _ _c*+(-n)
5, = =5,

{Relations (E.21) hold for both radiating and non-radiating

components. )

Case 2. Si = --Si

For this case, reference to egquations (E.12) shows that
the amplitudes of the forward propagating Brillouin waves will

be identical to those for Case 1, except for the replacement

Ap—n -+ "Ap—n' Thus, to 0fe):
+{~n) -
?.l_ = g\ .(.ri__?r_) -2k? 3q _(r_ + q.) + L (k2 - g2 )
+ r -n-"-n r “r -n -n
Sl D(k_n) 2

! 2 _ 2
k_TkZ - aZ ) +aq)
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- r_ (k. ? + q 1Al - (k2 - q? )k a al_ (E.22)

-n( n -n

Also, by analogy with (E.21), in this case, for the reverse

propagating Brillouin waves

-{-n) _ _.+(-n)
Sl = Sl
(E.23)
-(-n) _ .+(-n)
Sy =3,

{Again, relations (E.23) hold for both radiating and non-
radiating components.)
This concludes the determination of the amplitudes of all

the Brillouin components, in the grating, to 0f(e).

(b) Determinantal Equations

The determinantal equations, at the edges of the stop-
bands, are obtained by considering the terms in (4.3.2) and
(4.3.3} with the spatial dependence e-jer. We use the nota-~
tion defined in Sections 3.2 and 4.2. For the stop~-band at
the p-th harmonic (i.e. p x Bragg) we obtain from (3.1.8)

and (4.3.2), to 0{g?):



237

+ .+ -1 .= "= '
Si Uixzw) + E)‘r A Si ; C’ixz(O} * Jkr Uixx(o):l
. ) L o+ _.n 4(n) o |
+oed nél An Si 5 ixz (0) J kr Tixx (0)

o]

P _ - _
vop o s al o s 2 sl o)

[3e]

ixz

+8(n - p/2D)A___ s;('n’{% s7imM T gy 4g =)y
P 2 D

{—
1
b=
[a¥]
[47]
Q
[=

(E)\ )2 o "w
7ML 4 —= v ost
1xx 2 2 n=1
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and from (4.3.3), to O(g?):

-jer

- l N_l . o
Si oizz(o) + E'1\1' Ap Si [é Gizz(o) * jkr Uixz(o)—‘l

izz r “ixz

ven, 7 oqa st L™ gy 5Dy 5T (o)
n 2 P

+
»
!

ST(n)E 7™ gy 4 yintp) K, a;}({{;) (0)1
2 P

izz ixz

D - B -
cer 5o lastem E SN ) 45 B gt n)(ow

izz

+ §(n - p/2)A__ sf('n){% 5’('n)'(0) + 3 p - n) k_
2 P

(ex )2 o ]
.= (-n) r 1 2 + _.r
g, (0) + ———— (= ) A S §__(0)
ixz W 2 2 p=1 D0 1 zZ
T p-l o r_f
+3j— |37 nAA _+ ]} nA A___ - AL
p |[n=1 nopTn n=p+1 nTp n=1 non %_
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o - -'-r N
+ é AnAnerA} sl 5, (0) =0 (E.24)

where E is defined in {4.2.5), and

0, for n = p/2
§(n - p/2) = (E.25)
1, otherwise.
. . ' =Y _ .I* ~—(n) _ +(n)*
By reciprocity, as before, Gij Uij and Oij = Gij ’

since these stress components in the grating are all non-radia-
ting. We now derive the determinantal eguations at the upper
and lower edges of the stop-band, w,_ and 4  respectively,

from (E.24), to Of(g?).

Case 1.

At w_, from the first-order analysis in Sections 3,2

and 4.2, we have

-
s. T = s;
i i
and
- %
Sf(n) - S_(n) h =1 + =
i i

tc O(g). Substituting in equations (E,24), we have, for this
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case, to 0O(eg?):
s,V st ) +ex_a st 1 g ik 570
i ixz Ay i ; oixz(O) + jkr Oixx(o)
v +{n) [1 +(n)"* . n ~+(n)
+ el a_ s =z 0 l n
ngl n 5 GlXZ (0) J P kr Uixx (0)
+(n)*{1 _+(n)*"' . (n + p) +(n}*
+ . 4 ’ -~ n
n+p '1 {; “ixz (0) + 3 b kr Yixx (0)
p
+(-n) |1 .+{-n)" n .+ (=n)
+ ) A S = 3. 0) + 5 2 n
T n£1 n1 [; 1xz (0) b kp Oixx  (0)
+6n-p/ya__ sttML =)t o0 L L {p - n)
p-n i 5 ixz J kr
P
A )? @
~= (-n) (e r 1 + 1
5. (0) | ¢ + = 37 A 28" 5 (o)
ixx ] 5 5 p=1 D 1 Xz
+ (n/v}A A + G
J r n=1 /P n p-n n£1 n n+p S1 XX (0)
l 3
1 P- o ¥ T
+ = A_A 2 A 5= b =
4 [;él n p-n nzl nAn+;} Sl sz (0 0
+ .+ +k (] L *! : t* ]
;" 81,500 + i, A ST l:; 122 (0) + Jk_ &7 (0)
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+
m
>

i ~1 8
b

Sf(n)[% 5+(n)'(0) - 3Ry 6+(n)(0;w

n i 5 izz r “ixz

n P

3

+(n)*|1 .+(n)*! . (n + p) ~+{n)*
* An+p Si {é Oizz (0) + J —*_;-E_ kr Oixz (O;IP

J

+(-n) (1 .+(-n)’ . I ~+(-n)
+ ekr E A Si [é G:o (0) + 3 ; kr Oivy (0)

2 P
(ex_)? @
.~ (-n) r 1 2 o * ar"
CH (0;} + ——7;—— » nzl A% 8, 5, (0

where the amplitudes of the reverse propagating Brillcuin
components, with |k| < k_r are related to the forward propa-
gating components by (E.21)

In Section 4.2; the amplitudes of all the forward propaga-
ting waves were determined in terms of the forward compressional

wave amplitude Sl+, to 0Of(e). Equations (E.26) mayv therefore
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be written, to 0(e?), as a pair of simultaneous equations
. + .

for the wave amplitudes Sl and SZ+' Using (4.2.1), and

evaluating the stress components of the zeroth-order waves

from (B.8), (B.1l4) and (B.20)}, we obtain

(e )2
. . r .
21ijrr e _uik_ Ap(r q) (29 + r) + A ujkr(rr - qr)
o] P—l
rr(rr + qr) E An2 - l E AnA -1n - (krz -4 rl‘.‘
n=1 2 n=1 P

p—-1

(ex_)?

2 2y _ - 2 2 r -
U(kr + g?) Ekrp(Ap/2)(r q)(kr + g?) + p u(rr q,

2 2
[}kr +q )(rr + qr)



where
® _ E O
e I s e o
n=1 | 2
+ =+(n)*(1
n+p "1 2 ixz

ixz
2

p \
+ 7 a 51'(‘“)[35’.’(‘“)

1

_ z=—(-n) ~
+ d(n p/Z)Ap_n S, E—c

2

Tl

-3 =k

p

(0) + 3

roixx

5+(n)*'(0) + 5 {n + p) kr =

2 )

p

n

P

r

~+(n)

st n) (0)1

ixx

1XX
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(E.27)



244

() * |1 _+(n)*' . (n + p) ~+(n)*
* An+P Si {é Yizz (0) + 3 ___;_E- ke Oixz (O{]

+
Il b~

A ET‘“H)E 3P m) gy 4 3 R g 5T (0)1

n " 1i izz r “ixz
n=1 2 r

_ z={(-n){1 .-(-n)' . {p = n)
+ §(n p/Z)Ap_n Si {; P (0) + 3 S kr

a;;;“)(o;] (E.28)

and the normalized amplitudes of the Brillouin waves §f{n)'

1
gi(-n) are defined by
st oy st 5EO
(E.29)
=+ (-n) _ + =+ (~-n)
51 = €A 5y 5y

The Brillouin wave amplitudes

Sz(n) £ (-n) are given, for

' 5{
this case, by (E.10) and (E.20), (E.21) respectively.

For non-trivial solutions, for Sl+ and 82+, the de-
terminant of equations (E.27) must be zero. This regquirement

gives, to 0(e?):
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2 2y2 _ 2 = - 242 -
(kr + g°) 4kr gr - 4kr g<(r q)Ap
- 2 2 - 2 2 2 - 3 2
(skr) kr (rr q._) (3kr q. + kr r. +q’r d, )Ap
[o3) p—]_
-k ?2+qg®(r_+q) ] A A + J AA__
x r r ney n o ntp L “nip-n
- 2 2 2
[qrrr(rr +q.) (n/p) (k “r. + k “q_+ 29 T
2 3 - 2[5 2 2
39,7, v q, ;1 (er,) [2Jqur T, * (kr ATyl

(E.30)

where the first-order determinantal equation (3.2.11) has been
utilized to simplify the relation. This is the required de-

terminantal egquation, to 0{e?), at the lower edge of the

stop-band w_.

Case 2, W,
At w, . from the first-order analysis, we have
-
s.t = -s
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and

(in =1 »> =)

to O(e). Substituting in equations (E.24), we have, for this

case, to 0O(e?):

wn
Q
=)
1
m
>
=]
b
[47]

~+*' L+ E
(O) + jk cixx(o;‘

1X2Z r 1XX

Mo =1

st gy o 5y Ftin) (0)—’

ixz r “Tixx

- a sf(n)*(} gt * gy w3 In*£p) 64’(“)*(0)1
2 P

P - )
+er. ) {a_ sti-n) [l g gy 4y Rk st n’(0)]
r =1 n 1 2 1XZ p r 1XX

+ 8(n - p/2)A s(n)l -(n)'(0)+jukr

p—n 2 1XZ p



247

S
'_..l
b
5
m
P+
T
3
Iy
a1
-+
i
o]
T
2
-+
xﬂ—\
N3
»
=
L— i

ST('n)
-n 55
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S1 Crs (0); =0 (E.31)

where the amplitudes of the reverse propagating Brillouin com-

ponents, with |k| < kr, are related to the forward propagating

compeonents by (E.23).

As in the previous case, equations (E.31) may be written,
to 0(e?), as a pair of simultaneous equations for the wave

amplitudes Sl+ and SZ+' Using (4.2.2), and evaluating the

stress components of the zeroth-order waves from (B.8), (B.1l4)

and (B.20), we obtain

(ex_)?
. , r .
2ujkrr + elrujkr Ap(r q) (2g + r) + ——7;—— “Jkr(rr qr)
( ) ofAz lpElAA
r (r + g + = _
r’r r'|lp=1 0 5> p=1 D PR
- 2 — 2 2 2 2 2
(k qrrr qr YA (kr + q, + r + qrrr)

- 2 2 2 -
n£1 AnAn+p (kr t 9.t +2r 4 2q,r ) n£1 (n/p)AnAp_;]

2 + 2 2 + _
+ (Ekr) M T3 Sl u(kr + g )82 =0
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(ex_)?
2 2 _ 2 2 r -
ulk _* + gq%) + ekru(Ap/z) {r a) (k_* + q?) + p plr, q.)
oo p—]_
(k > +q ) (r_+g)| ] A2 -= A A
r r r| 2 n 5 p21 0 PR
2 2 - 3 2
+ (7kr 9, + 4kr r 9, )Ap
2 - 2 - 2 - 3
+ (3kr r kr 9y 9 Tr 9 ) z nAn+p
n=1
2 ot 2 +
+ 4k fr_ Z (n/p)AnAp-n + (eX, )% T,y S,
n=1 ]
+ 2uijk S too 0 (E.32)
wik g 8, = :
where
_ 2 <+(n) |1 ++(n) n . _+(n)
Ty = Z Ay 55 ~ Yixz (0) 1 - kr ixx (0)
n=1 _2 P
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_ = (=n) {1l .=(-n)"
* 8ln p/z)Ap-n Si [ Tixz

(0)

XS]

y 3 =1 smlen) g,

r Tixx
P

H
Ii
lo~18

izz r ixz
n 2 P

A 51“‘“’ [l gty 5y gtin) (0)‘}
1

!

n+p "1 izz r “ixz

A §+‘“’*[l T gy v 3 It Py 5”“’*(0)1
2 P

5 =+(-n) |1 _+(-n)"* . n ~+(~-n)
* L By 55 < Yizz (0) + 3 = Ky 8ixg  (0)
n=1 2 p
_ z=(-n) {1 ~-(-n})’
+ 8 (n p/2)Ap_n 5, {; . (0)
. (p = n) ~= (-n)
+ 3 kr Gixz (0) . {E.33)
p _!
The normalized Brillouin wave amplitudes §I(n)’ §i(-n) are
defined, as before, by (E.29). For this case, the Brillouin
wave amplitudes Si(n), Si(ﬂn) are given by (E.1l) and (E.22),

(E.23) respectively.

. . + + .
For non-trivial solutions, for Sl and 82 ; We require

the determinant of equations (E.32) to be zero. This gives to
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0(e?):

(krz + qZ)Z - 4kr2qr = EA]:' 4kr2q2(r - q)A

- 2y 2 - 2 2 2 - 3 2
(ekr) kr (rr qr) (3kr e kr Ty * 9 Ty 9 )Ap
2 2
+ (kr + q. )(rr + qr) E AnAn+p
n=1
p-1 )
- - 2
L AnAp_n[qrrr(rr + qr) (n/p) (k_“r_ + kr q.
2 2 3 - 2 1954
* qurr * 3qr Te ¥ 9y )] (SAr) [zjqur T3
2 2
+ (kr + d,. )T4] (E.34)

where we have made use of the first-order determinantial equa-
tion (3.2.12). This is the determinantal eguation, to 0(e?),

at the upper edge of the stop-band w, -
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APPENDIX F

ACQUSTIC-WAVE COMPONENTS FOR OBLIQUE-INCIDENCE ANALYSIS

In this Appendix, the propagation of acoustic plane-waves
on the free-surface boundary of an isotropic solid is considered,
when the direction of propagation is not along one of the co-
ordinate axes. The solid is taken to occupy the infinite half
space z > 0 and to have mass density p and Lame constants
A and u. The surface coordinates are thus x and y. We
assume that the direction of propagation of the waves makes an
angle 6 with the +x axis [Fig. F.1].

Four types of acoustic waves are considered. They are
(a) a compressional wave, (b) a vertically-polarized shear
wave, (c} a horizontally-polarized shear wave, and (d) a
Rayleigh wave. The compressional wave and the shear waves are
all bulk wave components, which alone do not satisfy the stress-
free boundary conditions. The Rayleigh wave is a hybrid wave
which satisfies the boundary conditions on the free surface.

It is a combination of a compressional wave with a vertically-
polarized shear wave. In general, in an obligue-incidence
grating, there are propagating waves of all four types con-
sidered above. The stress tensor components and displacements

of each type of wave are determined in the following sections.
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~

WAVE
VECTOR

< -

F1, F.1 COORDINATES FOR PROPAGATION AT
OBLIQUE INCIDENCE.
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(a) Compressional Wave.

As in Appendix B, the displacement u may be determined

from a scalar potential ¢ [(B.3) and (B.4)]. 1In terms of
[62]

the scalar potential, the stress components are given by

2 2 2 2
o = y|2%0 4 3% , 3% ., 3%
xx ox2 3y ? 3z2 ax?
2 2 2 2
o = 220, %%, 2% , . 3%
44 5x? oy 5z 2 ay?
~ 2 2 2 ZI
g =Ad¢+a¢+a¢+2ua
2z ax? ay? 3z?2 3z?
2
Uz=2UM
Y Yoz
2
sz-_‘zUa_
0XozZ
2
oX=2ui—¢—. (F.1)
4 axay

We seek plane wave solutions, propagating in the direction

+v [Fig. F.1], and decaying in z. The scalar potential is
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therefore taken as

-jk + v _-rz (F.2)

(ignoring the time dependence ejwt). For (F.2) to satisfy

the wave equation (B.4) we require
k,? = k% - r2 (F.3)

where kl is the compressional wave number (B.l). Transfor-

ming (F.2) into x - y coordinates gives

o = Sl e-jk(x cos 8 + y sin 8) T2 (F.4)

This is the appropriate scalar potential for a compressicnal
wave, propagating at an angle 6 with the +x axis.

The displacements and stress components of a conpressional
wave are determined from (B.3) and (F.l) respectively, using

the scalar potential (F.4). They are

4. = - jk cos 8 s o~Jk(x cos § + y sin 9) o Tz

u, = - 5k sin 6 s, o~ Jk(x cos & + y sin @) o TZ
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u = - rs. e Jk{x cos 8 +y sin §) o"TZ
2 1

and
Oy = u(kzz + 2r? - 2kzsin28)sl e-jk(x cos § + y sin @) oIz
Opy = 7 w(k,* + 2r® - 2k®cos’s)s, o~Jk(x cos & + vy sin 8) _-rz
O,p = u(2k? - k22)Sl g~Jk(x cos & + y sin §) _-rz
Cyz = 2ujkr sin 9 S, o~ Jk({x cos 6 + y sin §) o TZ
Oy = 2ujkr cos 8 Sl e-jk(X cos B + y sin 8) o"FZ
Oxy = - uk? sin 26 Sl e-jk(x cos 8 + vy sin 8) T2 (F.5)
where k is the shear wave number (B.2).

2
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(b) Vertically-Polarized Shear Wave (i.e. Polarized.L Surface)

The displacement of a shear wave may be determined from
a vector potential ¥ [(B.9) and (B.10)]. For a vertically-
polarized plane wave, propagating in the direction +v [Fig.
F.l], there is no wave displacement along the normal direction
W, and no dependence the coordinate w. Thus, only the com-
ponent ww # 0, and (3/3w)y = 0. Assuming decay in =z, the

appropriate vector potential is thus of the form
(F.6)

For (F.6) to be a solution of the wave eqguation (B.10) we

require

k.2 = k% - g2. (F.7)
Transforming (F.6) to x - vy coordinates gives

Yy = (-x sin 8 + y cos 9)s, o Jk{x cos 6 + y sin @) o~ 9z

(F.8)

which is thus the vector potential of a vertically-polarized
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shear wave, propagating at an angle 8 with the +x axis.

In terms of the vector potential, the stress components
are[62]

52y
o = -2y —%
XX
axodz
azwx
g = 2
Yy ¥ Yoz
Y, B%uy
2z = 2u -
0XJzZ ayoaz
2 2 2
5 . ¢ Vo _ 3TV, . 0 Wy
¥z 3z? 5y 2 X3y
32 82 82|
o = - vy _ oy L 2T
Xz az? 5x? dax3y
3%y 3%y
Oy = U X - bA (F.9)
Y oxoz ayoz

Introducing the vector potential (F.8) into (B.9) and
(F.9), the displacements and stress components are determined

to be
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-jk(x cos 6§ + y sin 6) o=z

u, = g cos B 52 e
w, = g sin @ s, e—jk(x cos 9 + y sin 8) e
u, = - jk s, e-jk(x cos 8§ + y sin §) o"92
and
O, = — 2ujkq cos?s s, o~ Jk{x cos & +y sin 8) _-qz
0,y = = 2uikq sin’e s, o Jk(x cos § +y sin 8) _-qz
Oy = 2uikq 52 e*jk(x cos 8 + y sin 0) o9z
0y, = = u(k® + a?) sin 5 s, o~Jk(x cos 8 + y sin 8) _-qz
Cpy = ~ u(k? + g?) cos 8 5, o~Jk(x cos & + y sin 6) o4z
Opy = ~ uika sin 26 s, g Jk(x cos & +y sin 8) _-qz

(F.10)
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(c) Horizontally-Polarized Shear Wave (i.e. Polarized || Surface)

Again, this shear wave is derivable from a vector potential
¥ [(B.9) and (B.10)]. A plane wave, propagating in the direc-
tion +v [Fig. F.l], has no displacement in the =z direction
and no dependence on the coordinate w (normal to the propaga-
tion direction). For this type of shear wave thus ¢ = 0 and

W

wv' wz are becth finite. For waves decaying in 2z, the appro-

priate divergence-free vector potential is thus

v = (@ v - ik z) S, "Ik + v -z (F.11)
where the decay constant gq again satisfies (F.7). In x - ¥y

coordinates the vector potential (F.1l1l) is

7 = (xgqcos 8 +yq sin § - z 3k) g Jk(x cos 6 + vy sin 8) -qz

(F.12)

which is thus the vector potential of a horizontally-polarized
shear wave, propagating at an angle 6 to the x axis.
The stress components, of these waves, are related to the

components of the vector potential by[62]



XX

YY

ZZ

YZ

XZ

G’XY

X972 0y oz
2 2 2 2.0
) 3%, _ 3y, N 3 wy _ 3%V,
5z? 3y? 3x3y  oxdz|
2 2 2 2 3
; ) wy ) 3 wy . 37y, _ 37U,
ax? az? dydz 3X3Y
2 2 2 2, )
) 3%y, ) CRR N 3%, _ 3 wy
dy? ax? 93z  3ydz|
Using the vector potential (F.12),

stress components are determined from (B.9)

il

3%y, 9%y, )

0xX3y X3z

3%p,  8%y,)

3yoz 0X oY |

2 2
2u[a by wx]

- (k% - g?) sin 8 s

(k? - ag?) cos 8 S

3

3 e

e-jk(x cos § + y sin §)

-jk(x cos 9 + y sin 6)
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(F.13)

the displacements and

and (F.13) to be

e_qz

e—qz
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and
o = uik(k® - g?) sin 28 5. e JK(X cOs & + y sin 8) _-qz
XX 3
o,, = = ujk(k? - g?) sin 28 S o~ Jk(x cos 8§ + y sin 9) o—q2
¥y 3
Tpz = O
o, == ugq(k? - g?) cos 6 S o~Jk{x cos 6 + y sin §) It
Yz 3
a = ug(k? - g?) sin s S e_Jk(X cos 9§ + y sin 0) o9z
X2z 3
%y =~ ujk(k? - a®) cos 28 S, e~Jk(x cos & + y sin §) s 4

(F.14)

{(d) Rayleigh Wave

A Rayleigh wave is a combination of a compressional wave
and a vertically-polarized shear wave. Together these waves

satisfy the stress free boundary conditions
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o] =0 =g =0 (F.15)

From (F.5), (F.10) and (F.l5) the ratio of the wave ampli-
tudes is again given by (B.19). In addition the decay constants
of the waves [(B.16) and (B.17)] must satisfy the determinantal
equation (B.18).

The displacements and stress components of a Rayleigh wave,
at oblique incidence, may be determined from (F.5), (F.10) and

(B.19}. We find

r TIpZ kr2 * qu ~q,Z
u, = - jSl kr e - - -——e cos 0
2k
r
-jkr(x cos g + y sin 8)
e
-rz k. ?+qg? -q.z
u b o= - jS1 kr e T - T o sin §
b4 2k
r
-jkr(x cos 8 + y sin 9)
e
r { -r_z kr2 + qr2 -g._z -jk_(x cos & + y sin 0)
u = - 5,/r_e - e e
z 1~ 2
d
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and
r 2 _rrz
- - 2 - 2 _ 2 2
Oy = uSl[(kr cos 28 q, + 2rr e (kr + q, )
~q.Z —jkr(x cos 6 + y sin 8)
cos?6 e ] e
r 2 -rrz 2
_ - - 2 - 2 - + 2
Oyy usl[( kr cos 29 q, + 2rr Je (kr q, )
-q_ 2z —jkr(x cos 8 + v sin 9)
sin%8 e ] e
r -r_z -g_z —jkr(x cos O + y sin 8)
— 2 2 -
O,y = usl(kr + q, ) (e e ) e
~-r z -g_z -jk_(x cos & + y sin @)
r _ . , r _ r r
Uyz = 217 Sl krrr sin g€ (e e Ve
-r_ 2z ~g_z -jk_(x cos B8 + y sin 9)
r _ . r- _ r r
Opg = 213 Sl krrr cos B (e e ) e
-r.z k_?*+ g ? -q.z
r _ _ : 2 r _ r r r
Oxy usl sin 20 kr e _ e

—jkr(x cos & + y sin 8)
e . (F.16)
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