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ABSTRACT

The objective of this research is to develop accurate
and efficient methods for generating equivalence theory
parameters for coarse mesh analysis of light water reactors.
Equivalence theory is an exact homogenization scheme developed
by K. Koebke and K. Smith. Methods for computing approxi-
mate equivalence parameters are reviewed and they show that
an efficient method to solve local fixed-source problems is
needed.

In order to fulfill this need response matrix methods
using conventional partial current response matrices for
solving fixed-source problems are first investigated.
Analysis of a rather idealized BWR benchmark problem shows
that because of the spatial approximation made for the in-
coming partial currents used in generating partial current
response matrices, the accuracies of the estimated equiva-
lence parameters are poor and thus the resultant power dis-
tributions are greatly in error.

Response matrix methods using net current response
matrices are then introduced. Analysis of several BWR bench-
mark problems demonstrates that use of net current response
matrices leads to homogenized power distributions with maxi-
mum errors in assembly powers of approximately 1-3%. For
practical cases, these errors are about one-third of those
obtained using more conventional methods to estimate equiva-
lence parameters.

The computational efficiency of solving reactor problems
using such global-local iteration scheme is shown to be one
to two orders of magnitude greater than that of solving the
entire reactor heterogeneously.

Thesis Supervisor: Allan F. Henry
Title: Professor of Nuclear Engineering
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CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW AND MOTIVATION FOR SPATIAL HOMOGENIZATION

The design and analysis of modern light water reactors

require an extensive knowledge of spatial power distribu-

tions, control rod worths and neutron absorption rates.

Determination of these quantities requires a knowledge of

the neutron density in phase space (position, direction,

and energy). Two of the most accurate methods used today

to determine these quantities are the Monte Carlo method

1 11,12
and the discrete ordinates method. '1' They both

have the advantage of explicitly accounting for the transport

phenomena in a reactor. Unfortunately, explicit transport

theory modeling of the heterogeneities (such as control

rods, burnable poisons, water rods, etc.) that exist in a

reactor results in a problem of such magnitude as to be

incredibly expensive for even the most advanced computers.

Therefore, in order to reduce cost, approximations to

the transport equation are used. The most commonly employed

method is to reduce the size of the problem by using the

diffusion approximation which explicitly assumes that the

angular distribution of neutrons be at most linearly

anisotropic. Although the actual angular distributions near

regions of high neutron absorption (such as control rods or

burnable poison pins) or, near highly scattering regions with
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little absorption (such as water rods or reflectors) are

not accurately represented by the diffusion theory approxi-

mation, the quantities of interest (power distributions,

control rod worths, etc.) can be predicted quite accurately

by the diffusion theory model provided "equivalent" homogen-

ized cross sections and diffusion constants can be determined.

The determination of these equivalent diffusion theory

parameters for each localized heterogeneous region (fuel

pins, control rods, etc.) constitute the first distinct level

of homogenization. With this stage of homogenization carried

out, solving the resulting diffusion theory equations may

remain costly simply because there exists a very large number

(several hundred thousand) of spatial regions in a reactor

core. Moreover, the design and analysis of a reactor re-

quires many core calculations (e.g. the power distribution

at the beginning of each depletion time step and during

thermal-hydraulic feedback analysis, transient analysis, etc.)

Thus there is strong economic incentive to use a large "node"

(an assembly or a cluster of assemblies) as the homogenized

region. If equivalent homogenized parameters for such large

nodes (usually spatially constant within each node) can be

determined, the core calculation can be reduced to a problem

involving only several hundred homogeneous regions in each

axial plane of the reactor core. Once this second stage of

homogenization has been reached, the resulting equations can

be solved by nodal or finite element methods.2 '1 4 r1 5 11 6
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These methods are computationally very efficient because

large mesh spacings can be employed.

Techniques by which the equivalent homogenized param-

eters need for this second stage of homogenization can be

obtained efficiently are the subject of this thesis.

1.2 HOMOGENIZED PARAMETERS BASED ON DIFFUSION THEORY

1.2.1 THE NONEXISTENCE OF EXACT HOMOGENIZED PARAMETERS FOR
DIFFUSION THEORY

In order to solve reactor problems with homogenization,

-certain information which is available if the reactor is

analyzed without homogenization must be sacrificed. However,

certain quantities which are the characteristics of the

reactor need to be preserved. These quantities are the

reactor eigenvalue, the nodal reaction rates in each energy

group, the nodal power densities, and the group currents on

all the surfaces of each node.

In order to demonstrate the difficulties associated with

homogenization based on diffusion theory, the exact values

(as functions of space, direction, and energy) of all reactor

quantities will be assumed known. Accordingly the following

quantities are also known:

-2 -1
$ (r) scalar neutron flux in group g (cm sec

U

Ju r) net neutron current in direction u (u=x,y,z)
g

-2 -land group g (cm sec )

macroscopic total cross section for group g

-(
(cm)
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(r) 2macroscopic transfer cross section from group

g' to group g (cm )

Xg(r) fission neutron spectrum contribution to

group g

VEtg(r) 2 macroscopic fission cross section for group g

times the mean number of neutron emitted per

-lfission (cm

X 2reactor eigenvalue (keff)

If the corresponding quantities for the homogenized diffusion

theory problem are denoted by addition of a circumflex, the

homogenized parameters should be determined such that all

group reaction rates, all group surface currents, and reactor

eigenvalue are preserved, i.e. the following equalities

should hold:

f drE (r) $9(r) dr2 (r) $ (r)

v. g fvdE ag

- dS Dg(V) (r) = dS Ju(r)
fSk g9- u 9g - g -

A = ; g = 12..G

= t,f,g', etc.,

k =1,2,...,K,

u = x,y,z (1.1)
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where

G the total number of neutron energy groups,

K the number of surfaces for each homogenized region,

V. the volume of the ith homogenized region,

1
S. the kth surface of the ith homogenized region.
1

If all homogenized parameters are assumed to be spatially

constant within each node, the exact homogenized parameters

will then be defined by

Vidr Z c 9(r) $9 (r)

1) 
fg 

(.2a)

dr $(r)

dS Ju(r)

D1i) - 1(1.2b)

g ^
f ds -- $ (r)

Examination of (1.2) shows that in addition to a priori

knowledge of integrated reaction rates and net surface cur-

rents for each node information concerning the homogenized

flux distribution must also be available in order to deter-

mine the exact homogenized parameters. Since the homogenized

fluxes depend strongly on the homogenized parameters, a
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nonlinearity is introduced in the determination of the

homogenized parameters. Moreover, Equation (1.2b) in general

(ii)
defines different values of D for different surfaces of

g

node i and thus contradicts the assumption that all of the

homogenized parameters are spatially constant within each

node.

It thus seems clear that except for very special cases

it is impossible to define spatially constant exact homogen-

ized parameters for diffusion theory.

1.2.2 CONVENTIONAL HOMOGENIZED PARAMETERS

To circumvent the theoretical pitfalls mentioned in the

preceding section, homogenized parameters for diffusion

theory are conventionally defined by relaxing the conditions

imposed by (1.1). Traditionally, the homogenized diffusion

constant is approximated as

1-

-- l

T jdr D (r) $i(r)

(i i(1.3)

g
dr $(r)

The justification for this approximation is that D9 (r) is

. 1
proportional to the macroscopic transport cross section ,

and it is desired to preserve the neutron transport rate.

However, the transport cross section is a function of the

net current and thus weighting it by the flux does not pre-

serve the transport rate.
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In order to determine the numerator of (l.2a) and

(1.3), the distribution of the heterogeneous flux is needed.

Since in practice the exact solution of the heterogeneous

problem is never known, the integrated reaction rates are

approximated by those obtained from an n-J = 0 assembly

calculation for each distinct type of fuel assembly. These

assembly calculations can be performed by any method avail-

able (Monte Carlo method, integral transport method, etc.).

The assumption that the integrated reaction rates can be

obtained from such assembly calculations is usually rational-

ized by noting that most assemblies in a reactor are sur-

rounded by other assemblies of a similar composition. Also,

global flux shapes usually have only a small curvature across

each assembly and thus the surface currents are small in

magnitude.

The next approximation which is generally made, to

determine the denominators of (1.2a) and (1.3) is that the

node-integrated homogenized flux is equal to the node-

integrated heterogeneous flux obtained from the assembly

calculation, i.e.:

fdr $(r) {dr A(r)

where $ (r) is the group heterogeneous flux obtained from
th * asml aluain Ti prxiaini

the-n- J 0 assembly calculation. This approximation is
-g

never strictly valid since none of the homogeneous region
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in realistic reactors satisfies the zero net current con-

dition.

The homogenized parameters determined by making the

previous three approximations are generally referred to as

flux-weighted constants (FWC). The procedure is widely used

in modern LWR analysis although significant deficiencies

and limitations exist for this method. For example, the

solution of the global homogenized problem defined by FWC

preserves none of the quantities of (1.1). Moreover, although

the aforementioned assumptions are plausible, there exists

many assemblies in a reactor for which they are quite in-

valid, and consequently their use results in large errors in

predicted power densities. Specifically in BWR analysis, the

flux-weighted two-group constants tend to overpredict sig-

nificantly the thermal neutron currents between assemblies.3

As a result, the predicted assembly power densities may be

6in error by as much as 20% in extreme cases.

1.3 EXACT HOMOGENIZED APAMETERS

Many prescriptions for eliminating the inaccuracies

which result from the use of flux-weighted parameters have

18119120r2l1
been developed. '1 ' As with the flux-weighted con-

stants, many of these have questionable theoretical founda-

tions and consequently their adoption is justified primarily

by empirical demonstrations of their accuracy. These methods

will not be described here. There are, however, homogeniza-

tion methods which are capable of reproducing rigorously all
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of the desired quantities of (1.1),. One particularly attrac-

tive method is due to Koebke 22 and has been modified and

3
implemented by Smith. It will be called equivalence theory.

In this theory, instead of relaxing the conditions imposed

by (1.1) as in the flux-weighted constants, extra degrees

of freedom are added to the homogenized parameters by intro-

ducing new parameters which will be called the discontinuity

factors.

With the introduction of discontinuity factors, it can

be shown that exact homogenized parameters can be obtained

to match any reference solution (obtained by Monte Carlo

method, transport theory, multigroup diffusion theory, etc.).

Also it can be shown that the homogenized problem can be

solved by any approximate method with the reference solution

still preserved. This aspect of equivalence theory is unique

in that one is not attempting to find homogenized parameters

which reproduce the exact reactor solution when the homogen-

ized group-diffusion equations for the reactor are solved

exactly, but rather, one defines homogenized parameters which

reproduce the exact reactor solution even though the homogen-

ized reactor equations are solved approximately.

A detailed discussion of the equivalence theory will

be presented in Chapter 2.
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1.4 BENCHMARK PROBLEMS

In this thesis, three BWR benchmark problems are

chosen to test the accuracy and efficiency of the homogeniza-

tion methods to be developed. Because the flux distribution

is rather smooth in the axial direction, our principal con-

cern is with homogenization in the radial plane. Thus all

three benchmark problems represent two dimensional reactor

cores.

1.4.1 THE CISE BWR BENCHMARK PROBLEM

3,17The CISE BWR benchmark problem is an idealized

model of a two dimensional BWR. Its core consists of 208

fuel assemblies with widths of 15 cm surrounded radially by

a 15 cm water reflector. The fuel in each assembly is

modeled as homogeneous, but all control blades and water

gaps are explicitly modeled. The major simplifications in

this problem are that the actual fuel heterogeneities

(enrichment zones, burnable poison rods, and water rodsl are

represented homogeneously. Nevertheless, the problem serves

as a significant test of any homogenization scheme. A

detailed description of this problem is given in Appendix A.l

The reference solution for the CISE BWR benchmark

3 2problem was obtained by Smith from a nodal code QUANDRY.

A short description of that code is given in Section 2.3.

To get the reference solution, 64 mesh points per assembly

(11 in each quarter of a control rod, 25 in the fuel region,

and 28 in the gap regions) were used.
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1.4.2 THE HAFAS BWR BENCHMARK PROBLEM

The HAFAS (Heterogeneously Arranged Fuel Assembly)

BWR benchmark problem is a two dimensional BWR which is

much more complicated than the CISE BWR benchmark. Its

core consists of 308 fuel assemblies with widths of 15.31 cm,

surrounded by a 15.31 cm thick water reflector. The radial

enrichment zones in each assembly are modelled such that

the fuel enrichment is constant within four fuel pin clus-

ters, and the fuel zone is then represented by sixteen

distinct regions. The radial enrichment is modelled by fuel

pins having three different fuel enrichments. Water gaps

between fuel assemblies are modelled explicitly as "wide"

and "narrow" gaps. Moreover, the central assemblies are

modelled as partially voided (40% or 70%) . A complete

description of the problem is given in Appendix A.2.

The reference solution for this problem is a QUANDRY

solution involving 49 mesh points per assembly (16 in the

fuel region, 9 in each quarter of a control blade, and 24

in the gap regions).

1.4.3 THE LSHBWR BENCHMARK PROBLEM

6.
The LSHBWR (Loretz-Smith-Henry) benchmark problem is

a detailed, two dimensional model of a BWR core composed of

fuel assemblies characteristic of the Vermont Yankee Reactor.

The core consists of 160 fuel assemblies with width of

15.31 cm, and is surrounded by a 30.62 cm water reflector.

In each assembly, the wide and narrow gaps, water holes,

gadolinium rods, control blades, and fuel pins are explicitly
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modelled and the zones of enrichment within the fuel regions

are included. In addition, the central assemblies are

modelled as partially voided (40% or 70%). The only non-

explicit modeling is for the can material surrounding the

fuel regions. However, its presence is accounted for in

the heterogeneous diffusion theory parameters. A complete

description of this problem is given in Appendix A.3.

The reference solution for this problem is a QUANDRY

solution involving 169 mesh points in each fuel assembly.

1.5 OBJECTIVES AND SUMMARY

The objective of this thesis is to develop accurate,

efficient methods to estimate homogenized parameters for

coarse mesh analysis of boiling water reactors (BWR's).

In Chapter 2, homogenized parameters based on equivalence

3,6,22
theory and previous work will be reviewed. In

Chapter.3, several methods based on partial current response

matrix techniques are introduced. Results show that they

are not acceptable. Alternative methods, which are based

on net current response matrix techniques, are developed in

Chapter 4 and their accuracy is established by application

to all three benchmark problems. Finally, a summary of this

investigation and recommendations for future research are

given in Chapter 5.
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CHAPTER TWO

HOMOGENIZED PARAMETERS BASED ON EQUIVALENCE THEORY

2.1 INTRODUCTION

In Capter 1, it was shown that exact homogenized para-

meters in general do not exist for a diffusion theory model

because of the lack of flexibility of the equations embodying

that model. In addition, it was pointed out that conventional

flux weighted constants do not preserve any of the integral

quantities of interest (eigenvalue, nodal reaction rates,

and nodal surface currents). However, exact homogenized

parameters based on an extension of the diffusion theory

model which we shall call "equivalence theory" do exist.

In this chapter, first "equivalence theory" will be

presented. A simple method to estimate the resultant "equi-

valence theory" homogenized parameters and some possible

improvements will then be discussed.

2.1.1. NOTATION

Throughout this investigation, all problems are treated

in three-dimensional Cartesian geometry. In addition to

using x, y, and z to represent the coordinate directions,

a more general notation (u, v, w) for the coordinate direc-

tions are used as generalized coordinate subscripts. The

spatial domain of all problems are subdivided into a regular

array of right rectangular parallelopipeds (nodes) with grid

indices defined by u, vm, w where
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i =1,2,..,I+1;u, V, w=x

m, n Ef :2,., J+1; u v W=Y

k l, 2,..., K+l; u, v, w=z

As an example of future use of this generalized coordinate

notation, the net currents on the faces of node (i, , k)

as a function of the two transverse directions are expressed

as

u=x,y,z
u
S(v,w) = - D (uk,v,w); v/u
g. . g. . - gJki,j,k cU w/ufv.

This single equation actually expresses three equations:

(1) The x-directed net current on the x = x. face, as a

function of y and z (u=x, v=y, w=z)

(2) The y-directed net current on the y=y. face, as a

function of x and z (u=y, v=x, w=z)

(3) The z-directed net current on the z=Zk face, as a

function of x and y (u=z, v=x, w=y)

The node (i,j,k) is defined by

XC i i+1

y j[y yj+-

z S [zZk zk+1

The nodal widths are then defined as

h u+ 1 - u u = x, y, z

and the nodal volume is

xyzV.i. hx hYhZ3,k i j k

The nodal surfaces of node (Z,m,n) will be represented by u+
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and u- where

U+ surface (uZ+iV,W) of node (Z,m,n)

u- 2Esurface (uzv,w) of node (Z,m,n); u = xy,z.

The external boundaries of the spatial domain and its outward

normals will be denoted by F and u,' respectively.

2.2. EQUIVALENCE THEORY

By integrating the Boltzmann transport equation for a

critical reactor over all directions, t, of neutron travel

and over an energy range AE; n = 1, 2,. ..N, we obtain a set

of formally exact equations

N
V-J (r) + r)(r)r) = [2 ,(r) + - M , (r)]t (r) (2.1)-n- t -n- n nn - nn n -

where

$ (r) d A dE r,Q,E) 2 dE (r,E)
n - fd E E - - 'AEnn n

J (r)2 fdQ f\E dE QQ(r,Q,E) Qf dE J(rE)
n A E-

fAndE Et( E) $(r,E)

tn = (2.2)

$n(r)

/AEdEJAEndEI 2 0 (r,E'+-E) t(r,E')

nnn(r)s

(r)1 r)

JAEdE 'AEdE' M(r,E'+E) (r, EI)

M ,r)-
nn(-

$n, (r)
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dE dE fs (E) vSs r.,E') $(r,E')E f dAE, f
n n s

y , (r)

SnnXS s s ()
n f,

n

reactor eigenvalue.

In these definitions

Xs fEEfs (E)n AE
n

fAEdE vs Es(rE) t(rE)
AE -
n

s Srr)
f

n

n

t(r,Q,E) E directional flux density,

Z Cr,E'-+E)= I* (r,E'+E,pe)
so 1 2

fs E) E fission spectrum for isotope s,

and the cross section notation is standard.

The problem of finding E (r), Z , (r), and Mnn(r) is
n

not trivial. The usual approach is to assume that the flux

is separable in space and energy within each group and com-

position. The energy distribution of the flux is then deter-

mined either by a spectrum calculation or by an arbitrarily

chosen shape. This problem will not be discussed further,

and it is assumed that we have the required cross sections.

In order to solve (2.1) more efficiently, we will do

spatial as well as energy homogenization to reduce the number

of unknowns in the homogenized problem to be developed. In-
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tegration of (2.1) over volume Vijk and summation over n

for theA EcAE;; g = l,2,...G, gives
n 9g

h1hz (1 x

3 k g+

i+1j,k+1

G
V.

g'=1Ir3,lk gg9 k

x

gi,j ,k

jz

Eijk

+ hhz (JY
i k

,k t+,k

j V,

gil , k

Sky

gi, k

1- ijrk Sijfk

i = , .

k = 12 ..

(2.3)

dr $ (r)

L, j , k

1i,j,k

acg V.i.k dr E (r) $ (r)
n

t
~i,j ,k

Igg'i k
9 i, j,k

Si,j,k

gi,j fkv Ijlk

'yf drZEnn(r)
n c g Vijk,k

$1,(r)

(2.4)
Tg$V.i.

gdr M , (r)n Cg nt=g V . - nn - n -
3,jk

Vii I

where
ncg V
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w

dV n+
Ww

dW J (Uzvw)

h h
m n

u=x,y,z; u; wuv.

Now we define a new mathematical problem for which the

defining domain has the same geometry as the real problem

but has constant cross sections in each energy range AE
g

and volume V. . . Its governing equation is

C- r) + E $ r =
-g - g -

G

,_ -
[Z v +r-M ,;$ ,M(r)

g X gg g

g =1 2,..G

where n-J (r) is continuous across any surface perpendicular

to n. Integration over V. yields
- 1,jk

hYhZ (Jx
Sk gi+l , jrk

j k

+ h.h (J'. 1 ]k+

^x )

gi, j ,k

AZ

- J g. .
j1,j,k

+ hhz (.y
i k gi,j+l,k

y

gi j,k

+ ViikZ
g . . glj ,k

G

g =1 '~k ggi,j,k S99 i,j,k g i,j,k (2.6)

i 1,2 .I; j = ,2,...J; k 1,2

fV,k
dr ( (r)

- 9

(2.7)
V
Cifj ,k

Compariso n with (2. 3).'shows. that .. if w e defi ne. "homog enized

nug

Vm+1l

Vm
Ju

i j ,k

(2.5)

)

where

............

$ ,
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cross sections" as

t t

Z -(2.8)

and demand that

J ; u = x, y, z (2.9)

then

$ $ k(2.10)

= .(2.11)

To maintain continuity with conventional solution techniques,

it is necessary to postulate a relation (model) between homog-

enized surface-averaged currents, homogenized surface-averaged

fluxes and homogenized volume-averaged fluxes. In addition,

a relation between homogenized surface-averaged fluxes of

neighboring nodes which share a common surface is needed to

couple equation (2.6) to other nodes. Since this new homog-

enized problem is a mathematical problem, there is no reason

that homogenized surface-averaged fluxes should be continuous

across nodal surfaces. However, we know that in the original

physical problem, the one dimensional heterogeneous flux

W
f+ dV W n+l dW $' (u,v,w)

n -g VWn
u m n
4; Cu 2.2

9Z,m,n 
whV h"

m n
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is a physical quantity so that it is continuous across any

nodal surface. On boundaries it is given by

Up ur u
tg () = a (ir JgTF (1) (2.13)

where P is the reactor boundary with u as its outward

normal and a u (F) is u -direction group g albedo on If
g

we define "discontinuity factors"

U

u- - __ _ _n (U

9Zmn $^u (u
,mn

(2.14)

u (

u+ tm nf ^u
9,.m ,n ,m~u9,+ J

m, n

then we obtain

u+ ^u U- u
f $Pg (ug) =fif t (uj) (2-15)

Z-l m n 21mn 2m,n Zm n

on internal surfaces and

^U U u a ( ) u

$ (1) = a (F) J9 (F) = U (r) (2.16)
g g g Up- g 2.6

f (r)

up-
on boundaries of the defining domain. In (2.16), f (r) is

the discontinuity factor associated with the interior side

of r in the direction of u and group g. Using these relations

along with the chosen model, (2.6) can be solved and it will

reproduce any solution of (2.1) (obtained by Monte-Carlo

method, transport theory, multi-group diffusion theory, etc.)



2-9

as long as that solution has been used to generate the

homogenized cross sections r, andt ga..J gg .
ti,j,k dO ga k! ;j ,k

the discontinuity factors fu . These homogenized cross
m,n

sections and discontinuity factors will be called "equivalence

parameters". All of them are needed to define fully the new

homogenized mathematical problem. Another implication of

equivalence theory is that exact homogenized parameters can

be defined for any model. Different models will yield differ-

ent values for discontinuity factors, but the equivalence

parameters will make all quantities of interest be preserved

when the global homogenized problem is solved. An important

point to note is that it is crucial that the identical model

be used in determination of discontinuity factors and in

solving the homogenized mathematical problem.

We have pointed out that an exact homogenization over

both volume and energy can reporduce any reference solution.

In this thesis, however, only volume homogenization will be

investigated (i.e.; N=G) and two group fine mesh solutions

of the diffusion equation will be taken as references. Before

discussing how to estimate equivalence parameters under these

restrictions we shall first review the nodal model used in

the code "QUANDRY"

2.3 THE QUANDRY MODEL

QUANDRY is a coarse mesh nodal code initially developed

2to solve two group diffusion equations. KEXord Smith has
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3extended it to solve equivalence equations. In QUANDRY the

discontinuity factors f U- are determined from one-dinen-
,m,n

sional homogenized flux equations obtained by integrating

(2.5) over the transverse directions. The homogenized

surface-averaged fluxes $ (uz+l) and $ (ut) can be obtained
.9.,m,n 9 9 ,mrn

from an analytical solution of these equations. With the

definitions

J r)
g i j,k

(r)

u
(2.17)

= > -k

rS V. .; u =xy, z;g=l, 2,...G,

and

gi,j,k

ncg

-1
dr D (r) t (r)

n.

gj ,k
V..

j, ,k

where D (r) is the diffusion coefficient of the .real problem,n -

the one. dimensional homogenized flux equations become

-BD
9,m, n

G0
- z

g'=l

Au

Du
2 E,m,n

Zggm,n

(u) + Z

99+ - M , )
-. I~n

S
9Z,m,n

(u) u=xy,z; g=l,2,. .. G

where V

+ dV dW (u;v,w)
v Tw

m nu

hi h
m w

-1

(2.18)

t
-zm, n

Z . (u)

(u)

(2.19)

^u
,,.
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and the S (u) represent the leakage rates on those four
,m,n

surfaces of thickness du which are transverse to direction u.

Equation (2.19) can be solved analytically if the u-dependence

of Su (u) is known. QUANDRY expresses this dependence to
,m,n

be either a flat or a quadratic function of u. It is impor-

tant to recognize that neither expression will result in error

if the discontinuity factors are found exactly. The detailed

derivations of this model and corresponding equivalence equa-

tions are described in Reference 2 and 3. Only two equations,

U+
which are useful in determining discontinuity factors f'-

g,m,n
when a reference solution is known, are reproduced in

the following:

u (u )]=[Bu ] [A (uu)
=-L,m,Bn Z Z-,. n _m-l ,,n [- ,run1  Z-l,m,nu2

- {[C+U ]+a- + t , ]bu~ + U+, ]cU- _ a
-{[Cltm,n] (1- a+ID-1 +[,m,n D-1-,m,n u -1 -2,m,n

- [Cu+a ]u+ a --a + [Du+ ]+ + u -bu- btU+

Z-l,m,nZ-l Z-1,n -,m,n

cu+ U+ U+ u+U+ U+u
-[C]a + [D bu+ [E ] }[S

Z- ~ -1 9L-1,m,n Z-1 Z-1,m~n Z-1 .,m,n

(2.20a)

u u u[]+A
=m,n ZZ,m,n Z,m,n z,m,n Z,mnn' 1

- {[C ]a + [D ]b + [E mn]c 1 }[]
Zm~n Z k,m,n Z P, m,n Z k-l m,n

+ {[CU (1 aU- aU+ + [Du- ](-bU- - bU+
[,m,n k Z,m,n 9k,
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U- U- U+ ^U
+ EU J (-ca -cu+ S ]Z, ,m,n Z % [Sz,mnl

{u- U+ U_ U+ U- U+ :^-u
- fr[U ]aU+ Dmnb + [E ]C }1[S ] (2.20b), m n %Zm n z EE ,]c + 10 +l,m n

where

K$m, is a G-element column vector of homogenized node-

averaged group fluxes for node (Z,m,n)

[,m (uz)] is a G-element column vector of homogenized

surface-averaged fluxes for node (,m,n) at

u = UZ,

u
[J (Uz)] is a G-element column vector of homogenized

surface-averaged currents of node (Z,m,n) and

direction u at u = u

{ u ] is a G-element column vector of homogenized node-

averaged transverse leakages for node (Z,mn) and

direction u, defined by

-u u
S1-t= du S (u).

U,mzn hk U z,m,n
u u91

The GxG matrices [A u , [Bu ] , 0 f[C U,_[D ],and
Z,m,n ,rn,n Z,m,n1  [Dzimn,n

[E J ] are called coupling matrices and are defined in

Appendix 2 of Reference 2; they depend only on the homogenized

cross sections, homogenized diffusion coefficients,

u+ u+ u 'm,n
mesh spacing and A. The a -, bj-. and c Z are transverse

leakage expansion coefficients which depend only on the nodal

mesh spacing? they are defined in Appendix 1 of Reference 2

for the quadratic expansion, and they are zero for the flat

expansion.
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The accuracy of equivalence theory need not be limited

by the diffusion theory approximation, and the presence of

D in (2.19) should not imply necessarily that that ap-
g Z,m, n
proximation has been made. Instead the homogenized diffusion

constants are introduced in order to make the resultant

equivalence equations have a form nearly the same as the

equations associated with diffusion theory so that diffusion

theory codes can be easily extended to solve them. In this

connection, however, it is important to have an accurate

numerical method for solving the global equations. Exact

equivalence parameters can be obtained only if an exact solu-

tion is already known, thus estimation of them is always

necessary in practical cases. Among these parameters,

homogenized cross sections are model-independent so that there

is no way we can alter their values. On the other hand, dis--

continuity factors are model-dependent and it is expected that

a good model will make global solutions less sensitive to

their exact values so that a simple approximation can be made.

To demonstrate this situation a third model in OUANDRY which

is called coarse-mesh finite difference method (CMFD) is also

used in this thesis. In this method the fu are obtained

from the conventional mesh-centered finite difference equa-

tions given by

u (u2) = - 2 u

gk-l,m,n g-l,m,n h _ z-1,m,n gz-1,m,n
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=2 AU

( ) =-D - ( $t
9 m,n ,m,n h g gmn ~

u = x, y, z; g = 1, 2,. ...G. (2.21)

Noting that (2.21) can be recast into a form similar to the

original QUANDRY equations, Kord Smith also incorporated this

model into QUANDRY by choosing the coupling matrices [Au
Z ,n

[U [CU ,[DZm Uand [ ]Iin (2.20) in order[Bmn] [C~in m ~ z nd [E n

to match (2.21).

The resultant equivalence equations of all three models

(quadratic, flat, CI4FD) described above have the following

mathematical form:

[H] [X] [P] [X1 (2.22)

where

[H] is a (4*G*I*J*K)*(4*G*I*J*K) square matrix whose ele-

ments are linear combinations of the coupling matrices

and thus functions of X

[P] is a (4*G*I*J*K)*(4*G*I*J*K) square matrix whose ele-

ments are zero except in the first (G*I*J*K)*(G*I*J*X)

submatrix where it is equal to the fission production

matrix,

[X] is a 4*G*I*J*K-element column vector whose elements

are homogenized node-averaged fluxes and face-averaged

net leakages in each direction.

Because [H] is dependent on ,(2.22) is a nonlinear eigen-

value problem. In QUANDRY, the maximum eigenvalue is found

by fission source iteration accelerated by Wielandt's frac-



2-15

4tional iteration method. Within each outer iteration a

5
modified Gauss-Seidel method is used for the inner itera-

5tions and the cyclic Cheybyshev Semi-Iterative method is

used for the flux iterations. These strategies are fully

described in Reference 2. It is important to realize that

even without the use of discontinuity factors and the

Wielandt scheme, and in the limit as the nodal volume V

approaches zero, so that the equations for the homogenized

node-averaged fluxes $ become the linear mesh-centered

finite difference approximation to the two-group diffusion

equation, the flux iteration scheme is still not guaranteed

to converge because both groups are solved simultaneously

and thus diagonal dominance is not ensured. The Wielandt

scheme will make the lack of diagnonal dominance even more

pronounced and the effect of discontinuity factors on diagonal

dominance is problem dependent as can be seen by using the

CMFD model. Moreover, the nodal volume V. ,k is not zero

so that [H] depends on X, and the whole process becomes

nonlinear. Thus there is no guarantee that QUANDRY will

converge. Past experience, however, has shown that it does

converge if proper nodal sizes are chosen. Reasons for

raising these issues will become clearer in Chapter 4.

In the rest of this thesis, all discussions will be

based on the models used in OUANDRY.

2.4 ASSEMBLY EQUIVALENCE PAPAMETERS

Exact equivalence parameters can be obtained only if a
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reference solution is known for the heterogeneous nodes. Thus

for all practical cases, approximations must be made. Kord

3
Smith, because of his finding that discontinuity factors

are insensitive to position, suggested an approximation based

on an assembly calculation with n J = 0 on assembly bound-

aries. This is an eigenvalue calculation and is the same kind

of approximation used to determine conventional flux weighted

constants. Because n * 5 = 0 on boundaries, the homogenized
-g

fluxes for these assembly problems will be constant over the

entire assembly including the boundary surfaces. Equation

(2.10) then shows that the homogenized surface-averaged fluxes

will be equal to the heterogeneous node-averaged flux. Thence

the heterogeneous node-averaged and surface-averaged fluxes

from the assembly calculation can be used in (2.14) to estimate

the discontinuity factors. Discontinuity factors so determined

will be called assembly discontinuity factors (ADF) . It is

important to recognize that, unlike exact discontinuity fac-

tors, assembly discontinuity factors are independent of the

model used in the global calculations. Equation (2.4) , (2.8)

along with the heterogeneous fluxes obtained from the assembly

calculation provide estimations of homogenized cross sections

and M . These will be called assembly homogenizedt gg9 gg 9
g

cross sections (AHCS) . The conventional flux weighted con-

stants (FWC) consist of assembly homogenized cross sections

along with 1 for the discontinuity factors. In the rest of

this thesis, when ADF are used; AHCS are implied. ADF have
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been tested on all three benchmarks described in Chapter

3 6
One by Kord Smith and Richard Loretz. A summary of their

results is shown in Table (2.1) to (2.3) . The columns marked

ADF show that that approximation is much more accurate than

the F'C method. But if higher accuracy is desired, more

sophisticated methods for determining equivalence parameters

are required.

TABLE 2.1 SUMMARY

FWC

OF RESULTS OF THE CISE BWR BENCHMARK

Single-Assembly (1) Five-Assembly( 2 )

Flat-Currents Flat-Currents
Fixed-Source Fixed-Source

Calculations Calculations

Error in
Eigenvalue

Maximum error
in assembly
power

Average error
in assembly
power

-0.16% -0.03%

+9.86% -3.06%

4.19% 0.90%

Results of first global-local.
estimate.

(2)
Results of first global-local

initial estimate.

iteration using ADF solution as initial

iteration using reference solution as

+0.16%

-2.76%

-0.06%

+0.77%

0.97% 0.29%
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TABLE 2.2 SUMMARY

FWC

OF RESULTS OF THE [AFAS BWR BENCHMARK

ADF

(1)(2)
Single-Assembly Five-Assembly
Flat-Currents Flat-Currents
Fixed-Source Fixed-Source
Calculations Calculations

Error in
Eigenvalue

Maximum error
in assembly
power

Average error
in assembly
power

Results of
estimate.

-0.44% -0.06%

+16.95% -5. 29%

6.14% 1.33%

first global-local iteration using ADF solution as initial

(2)
Results of first global-local iteration using reference solution as
initial estimate.

TABLE 2. 3 SUMMARY OF RESULTS FOR THE LSHBWR BENCHMARK

FWC

Error in
eigenvalue

Maximum error in
assembly power

Average error in
assembly power

- 0.29%

+22.6%

5.90%

ADF

-0.08%

+9.48%

3.16%

Single Assembly
Shaped Incoming
Partial Currents

Fixed SoUrce
Calculations

0.22%

+2.78%

1.31%

The fixed source calculations were done only for those assemblies
surrounding a control rod.

+0.12%

+2.21%

-0.04%

+1.07%

0.86% 0.52%
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2.5 EVALUATION OF APPROXIMATE EQUIVALENCE PA kMETERS FROM

FIXED SOURCE CALCULATIONS

The inaccuracies of ADF arise from the fact that zero

current boundary conditions are imposed for the assembly

calculations. Because of this, many of the interassembly

effects are neglected. However, if the actual boundary con-

ditions that exist on the surfaces of an assembly as well as

the global eigenvalue were known, a local fixed-source assem-

bly calculation could be performed for every assembly to

obtain equivalence parameters. Equivalence parameters so

determined will be exact. Unfortunately, determining these

boundary conditions is just as difficult as solving the full

heterogeneous problem. Nevertheless, the observation that

such fixed-source calculations can produce the desired

equivalence parameters suggests an iterative method to im-

prove estimation on the equivalence parameters. We can first

solve the global homogenized problem using approximate homog-

enized parameters (e.g. ADF) . From this solution, we can

extract approximate boundary conditions needed for each fixed-

source calculation. By performing such fixed-source calcula-

tions, we can then obtain aoproximate equivalence parameters

which will reflect many of the interassembly effects. Then

the global homogenized problem can be solved again but this

time using the updated equivalence parameters. Presumably,

this latter homogenized solution will be more accurate than

its predecessor because the equivalence parameters used to
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generate it reflect many of the interassembly effects. This

process can be repeated if it appears that greater accuracy

will thereby be attained.

Since only average quantities are given by the global

homogenized solution, the spatial shapes on the assembly sur-

faces of any quantity (fluxes, net currents, partial currents;

etc.) which is involved in the boundary conditions of the

fixed-source calculations need to be specified. The simplest

approximation is to assume that they are flat. This will be

called "flat" approximation. A more sophisticated approxima-

tion is to assume that they have the shape of the same quan-

tity on the same surface in an eigenvalue assembly calculation.

For example, if partial currents are used, an assembly calcu-

lation with n - J = 0 on all surfaces can be performed and

it will provide the shape of partial currents on the surfaces.

This will be called an "eigenvalue" approximation. If net

currents are used, this assembly calculation (n J = 0) does

not provide any information about the shape of currents on

the surfaces of the assembly. A different assembly calcula-

tion which has albedo boundary conditions on all surfaces

could be performed and it would provide the needed informa-

tion. But there is no guarantee that these more sophisticated

approximations will give better results than the simple flat

approximation.

A more systematic way to improve the approximation on

the shapes is to include more assemblies in the fixed-source
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calculations and move the approximate surface conditions

farther away from the assembly of interest. For example,

an assembly with its four nearest neighbors (in 2-D) can be

used for the fixed-source calculation. With the approximate

boundary conditions moved to the outer boundaries of adjoin-

ing assemblies, no explicit limitations on the shapes of

the surface quantities need be made for the center assembly.

Consequently, the equivalence parameters for the center

assembly are less sensitive to the boundary conditions of

this fixed-source problem than they are for the case of a

single assembly fixed-source calculation. If more assemblies

are included in the fixed-source calculations, corresponding

equivalence parameters will be even more accurate (although

more expensive to obtain).

Because of the approximations about the spatial shapes

on the- assembly surfaces of those quantities involved in the

boundary conditions of the fixed-source problems, the above

global-local iteration process (if it converges) will not

converge exactly to the reference solution. However, if

shapes obtained from previous local fixed-source calcula-

tions were used to determine shapes on the boundaries for

the next local calculations, the global-local iteration proc-

ess could converge to the reference solution. Needless to

say, if such a strategy were used. more than one assembly

would be needed in each fixed-source problem in order to

obtain the desired information about the shapes.
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Methods using single or five assemblies (an assembly

with its four nearest neighbors) with flat currents on the

boundaries of each fixed-source problem have been applied

3to the "CISE" and "HAFAS" problems by Smith. He used the

nodal method to solve every fixed-source problem. For the

method using five assemblies in each fixed-source problem,

because of the cost, he actually used the reference solution

as the initial estimate and assumed that the iteration proc-

ess starting with ADF result would converge to that answer.

6
Loretz has applied to the "LSHBWR" problem the method

using single assembly and incoming partial currents as bound-

ary conditions in each fixed-source calculation. The shapes

of the incoming partial currents on the boundary surfaces

of the assembly were obtained from a n - J= 0 assembly

calculation. The magnitude of these incoming partial cur-

rents were obtained by a double-P0 (DP,) approximation with

net currents and fluxes on the surfaces of the assembly

given by previous global results. He used the finite dif-

ference method to solve each fixed-source problem. Also

because of the cost, he did the fixed-source calculations

to improve the equivalence parameters only for those assemblies

surrounding a control rod. Their results are shown in the

last two columns of Table (2.1) to (2.3). They do lead to

improved accuracies. However, the cost of the overall com-

7
putation is comparable to, or even greater than that incurred

by solving the entire problem without homogenization. Thus
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unless some efficient method can be developed for solving

the fixed source problems, this global-local iteration proc-

ess is of little interest.

2.6 S UMMARY

In this chapter, equivalence theory was formally pre-

sented. It shows that equivalence parameters can be defined

such that they will reproduce any reference solution. However,

that reference solution must be known in order to generate

the exact equivalence parameter. A simple method (ADF) to

estimate equivalence parameters was then introduced. Numeri-

cal tests show that, if greater accuracy is needed, more so-

phisticated methods to estimate equivalence parameters are

needed. Some more accurate methods (all of them involving

fixed-source calculations) were then discussed. However, in

terms of computational efficiency, these methods are of little

interest unless an efficient method can be developed to solve

the fixed-source problems.

The response matrix method, because it provides informa-

tion of interest directly and because it makes use of parame-

ters (response matrices) which can be precalculated and

stored as functions of state variables (exposure, void, etc.),

is believed to be most efficient in solving the fixed-source

problems. In the next chapter, a method using the conven-

tional partial current response matrices will be discussed.
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CHAPTER THREE

THE RESPONSE MATRIX METHOD USING PARTIAL

CURRENT RESPONSE MATRICES

3.1 INTRODUCTION

A global-local iteration procedure to improve estima-

tion of equivalence parameters was proposed in the last chap-

ter. Because of reactor symmetry, the global calculation may

not involve the whole core. But, in general, no two nodes in

that portion of reactor analyzed will have the same surface

quantities (net currents, partial currents, etc.) on their

surfaces even if they are geometrically and materially iden-

tical. Thus a fixed-source calculation would have to be done

for every node (or node with its nearest neighbors) to deter-

mine equivalence parameters. If the nodal method or the

finite difference method is used to solve each fixed-source

problem, the computational expense may become even greater

than that incurred by solving the entire problem without homog-

enization. Thus the use of the response matrix method is

strongly suggested because it provides information of interest

directly and because it makes use of response matrices which

can be precalculated and stored as functions of state variables.

Depending on the symmetry of the assembly and the accuracy

with which the spatial shape of surface quantities on the faces

of the assembly is to be described, the cost of generating

response matrices can be ten or so times that of performing

a single fixed-source calculation for an assembly. However,
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considering that there are only ten or so different types

of assembly in a quarter core which has more than one hun-

dred assemblies, the response matrix approach should be less

expensive even if only one iteration is performed. If the

same library of response matrices can be used for several

problems or if three-dimensional calculations are performed,

the response matrix method becomes substantially cheaper. In

this chapter, the response matrix method using conventional

partial current response matrices will be presented.

33.2 PARTIAL CURRENT RESPONSE MATRICES

3. 2. 1 DEFINITION

In the response matrix method, the reactor is divided

into a number of regions. Each region can be represented by

a response matrix which is an operator that defines fully

the output of the region by operating on the input imposed

on that region. Conventional response matrices use group

incoming partial currents on the surfaces of a region as

input. Output can be group outgoing partial currents on the

surfaces of that region as well as any other information of

interest (integrated reaction rates, fluxes at hot spots,

etc.) for that region. Conventionally, the response matrices

are defined by

out in14 ]-[R] [J ]
(3.1)

[IR] = [R'] [Jin

where

4in] is an N-element column vector whose elements are
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group incoming partial currents on the surfaces of

the region of interest,

out *
[J o is an N-element column vector whose elements are

group outgoing partial currents on the surfaces of

the region of interest,

[IRI is an M-element column vector whose elements are any

information of interest for the region of interest,

[R] is an N x N square response matrix,

[R'] is an M x N nonsquare response matrix.

The dimensions of these column vectors and response matrices

(M and N) depend on the accuracy and the amount of informa-

tion wanted. They will be defined after the next section.

3.2.2 GENERATION: ANGULAR AND SPATIAL APPROXIMATION

inFrom equation (3.1) , we can see that if [J i is set to

zero except for the i-th element where it is set to 1, the

outcorresponding [J ] and [IR] are just the i-th columns of

[RI and [R'], respectively. Thus the generation of the i-th

column of [R] and [R'] is equivalent to solving a problem

defined by putting the region of interest into a vacuum and

imposing on it a unit group incoming partial current for the

in
surface and group corresponding to the i-th element of [J

A series of such fixed source calculations are needed to gen-

erate the whole [R] and [R']. These fixed source problems

can be solved by any method available (transport theory,

out
multi-group diffusion theory, etc.) to obtain [J ] and [IRI].

However, to set up these problem it is insufficient to know
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only that the group incoming partial current is 1. We must

also know the angular distribution as well as the spatial dis-

tribution of the neutrons comprising that partial current.

Unfortunately, this information is not available unless a

multigroup transport solution for the whole reactor is known.

In order to make response matrices independent a full-core

solution and thus precalculable,assumptions about the angular

and spatial distributions of this partial current must be made.

In this chapter angular distribution (DPQ or P-l) is assumed

to be such that heterogeneous surface net currents and surface

fluxes can be expressed in terms of the partial currents on

that surface by

S] = 2 [Ji] + 2 [Jout
(3.2)

[j] = [Jout] - in

where

[$] is an N-element column vector whose elements are hetero-

geneous group fluxes on the surfaces of the region of

interest,

[J] is an N-element column vector whose elements are hetero-

geneous group net currents in the outward normal direc-

tion on the surfaces of the region of interest.

With respect to the spatial shape of this partial current,

the simplest approximation is to assume that it is uniform

over the surface where it is applied. This will be called the

"flat" approximation. Another possibility is to assume that

it is distributed over the surface where it is applied accord-
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ing to the shape of the incoming partial current given by

an eigenvalue problem performed by applying the (usually

incorrect) boundary condition n - J = 0 on all boundaries
-g

of the region of interest. This procedure will be called

the "eigenvalue" approximation. Since, for many regions

in a reactor, the net currents on their surfaces are small,

the inter-region effects are better simulated by the eigen--

value approximation. Thus that approximation should be supe-

rior to the flat approximation. However, this argument does

not apply to all subregions of a reactor. Accordingly, a

more systematic procedure is to increase the size of [J i

by dividing each surface into smaller subsurfaces and asso-

inciating each element of [J ] with one group and one subsurface.

On each subsurface, the spatial shape of the unit incoming

partial current can be approximated as flat or as that given

by the eigenvalue calculation. In this way the spatial

approximation is applied to smaller areas so that the real

spatial shape is better simulated. In the limit as the areas

of the subsurfaces approach zero, the real spatial shape

will be correctly represented. However, going toward this

limit increases the number of columns of response matrices

and thus increases the number of fixed-source calculations

needed to generate the whole response matrices.

3.2.3 DIMENSION OF RESPONSE MATRICES

In Equation (3.1) and (3.2), the dimensions N and M of

those column vectors and response matrices were not defined.
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From the discussion of the last section, "N" should be given

by

N = NS * G (3.3)

where

NS is the total number of subsurfaces on the total bound-

ary of a region,

G is the total number of energy groups.

In this thesis, because all problems considered are two groups

in two dimensional Cartesian coordinates and all boundary

lines are divided into equal numbers of segments (1 or 2),

N = NSEG * 8 where NSEG is the number of segments on each

boundary line. Because the purpose of this investigation is

to determine equivalence parameters, the information needed

consists of the heterogeneous volume-integrated reaction rates,

the heterogeneous volume-integrated fluxes, the heterogeneous

surface-averaged fluxes, and the heterogeneous surface-aver-

aged net currents. The first two are needed to determine

homogenized cross sections as can be seen from equations (2.4)

and (2.8). The last three together with the homogenized cross

sections and eigenvalue are needed to generate discontinuity

factors.as can been seen from equations (2.9), (2.10), (2.14)

and (2.20) . Because of the angular approximation, surface

values of fluxes and net currents can be obtained provided

both incoming and outgoing partial currents are knwon. Thus

[IR] need not include these surface values but merely all

volume-integrated values. In our investigation fission spectra
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are assumed to be the same for all isotopes so that M k

can be rewritten as X-VZf With this simplification

gijk

it turns out that the total number of elements M needed in

the vector [IR] equals 12.

3.2.4 TABULATION AND INTERPOLATION

Throughout our investigation, in order to be consistent

with our numerical reference cases which are generated using

diffusion theory, response matrices will always be generated

by the multi-group diffusion theory, mesh-centered, finite

9difference code "CITATION". The details of how to use this

code to solve problems with incoming partial currents as

boundary conditions are given in Appendix B.1.

With spatial and angular approximations made for a unit

incoming partial current, response matrices for a region

become independent of its outside environment and thus can

be pretabulated as parametric functions of all state variables

(exposure, temperature, void, eigenvalue, etc.) It is impor-

tant to realize that the eigenvalue must be included in the

list of state variables. The response matrices used in each

local calculation should be those associated with the global

eigenvalue which is obtained from previous global calculations

and updated as the global-local iteration proceeds.

With this table created, whenever we wish to perform a

local calculation, we can obtain the response matrices cor-

responding to the present state variables by interpolation.

This multi-dimensional interpolation is not studied in this
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thesis. However, it is by no means a trivial problem.

3.2.5 SIZE OF THE REGION USED TO DtFINE RESPONSE MATRICES

In order to make interpolation of response matrices

possible, the size of the region used to define response

matrices must be small enough so that the state variables

inside that region will be rather uniform. On the other

hand, its size should be reasonably large so that the number

of fixed source calculations can be kept within bounds. Be-

cause of these considerations the horizontal cross section

of a single BWR assembly is always chosen as the region to

define response matrices throughout our investigations.

3. 3 FIXED-SOURCE CALCULATIONS USING PARTIAL CURRENT RESPONSE

MATRICES

3.3.1 RESPONSE MATRICES FOR A NODE

With response matrices defined and generated we can now

discuss the fixed-source problems which are used to improve

the estimation of equivalence parameters. To define these

problems first the size of the node which constitutes the

area we want to homogenize must be chosen. Since response

matrices are generated for assemblies, the node can only be

a single assembly or a cluster of assemblies. The larger the

node is, fewer nodes there will be making up the reactor and

the faster the global calculation will be. However, at the

same time the local calculations will become less efficient

since the state variables of a node larger than an assembly

will not be uniform and response matrices for such nodes can
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not be precalculated. Instead they must be obtained through

a local calculation by lengthy arithmetic manipulation of

the response matrices of those assemblies comprising that

node. Moreover, the overall procedure will become less

accurate because spatial approximations for those local

problems will be applied to larger areas. In this thesis,

two kinds of size for a node will be used, namely; a single

assembly as a node and four assemblies as a node. The former

will be called "assembly homogenization" and the latter will

be called "cluster homogenization". These configurations

and some notation needed for later derivations are shown

on Figure 3.1 and 3.2. For assembly homogenization, response

matrices of a node are just those of an assembly and are

pretabulated. However, for cluster homogenization, the

response matrices of the cluster (node) are not precalculated

, j+1 i+1,j+1 ij+1 i+lj+1

7+7
i+J

[J.1i j +
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and need to be determined. Knowing the state variables

within each assembly in the node, we can obtain by inter-

polation from a table of precalculated values response matri-

ces for each assembly.

If each assembly of a 4-assembly node is represented

by the grid index at its left-bottom corner (Fig. 3.2),

equation (3.1) becomes

a+1/4

c+1/2,3+1/4]

a+1/4 ,+1/2

8t

11 12 1305114

(R 1 I [R77] [R 4Ra#

[R I [R' ] [R ] I [R" ]1
2 41 22243 44

i, i + 1/2,

+ 1/2,

1, 2,...I,

1 2,...J

+

a ,i+1/4
F+]

a/+1/4,

4+1/4,)+12

(3.4)

where

[5+1/4

Y6

NSEG

are (G*NSEG)-element column vectors whose elements

are total group partial currents of each segment

on the line connecting points (y,6) to (y,6+1/2)

if y = a, a+1/2, or (6,y) to (5+f1/2,y) if

y =, 8+1/2,

is a (G*NSEG) *(G*NSEG) square matrix whose elements

are the elements of the (y,8) submatrix of the

response matrix for assembly (c,); y,6 1,2,3,4,

is the number of segments on each boundary line
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of an assembly,

G is the total number of groups.

In this equation, the (+) and (-) are used to represent

the partial currents in the positive and negative u-direc-

tion (u = x or y), respectively. With the definition

Z,m+1/4
= ,,"M+1/21+ /](3.5)

(Jzm+3/41

manipulation of (3.4) will give

[A.INNER in
[A ] [J. . I = [B. .] [J. .11 (3.6)

[out .Cin [ INNER1 37[J. 1 = [C ] [J. I + [D. . [JI (3.7)

where

in + + -[J . =col{[. a
[J.,3+1/2 'i+1/2, i+lj+1/2 i+1/2,j+

out -I+ ][j+
J = { +i+112r i+lj+1 2 'i+1/2, j+l

INNER -
[J I=col{[J. [Jij3 i+1/2,j+1/4 i+1/2,j+3/4 i+1/4,j+1/2

[Ji+3 4,j+1/2] ' i+1/2,r j+1/4i+1/2,j+3/4'

i+1/4, j+1/2 'i+3/4 ,j+1/2
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[R 6 ] in this equation are defined in (3.4). [I1 and [0I

are (G*NSEG) by (G*NSEG) identity and null matrices, respec-

tively.

From (3.6) we get

INNER -l in
[A [B. .1 [J. . (3.8)

j, 1,3

Substituting it into (3.7) gives

out = + 'in
[u . [C.I]+[D.][A. 1 [B 11 [J . (3.9)
i, 1,3 1,3 1, ,j3 1,

Thus the response matrix [R] of the cluster (i,j) is given by

[R. [C. *1 + [D. . [A. [B. .. (3.10)
1,J 1,J 1, J 1, ,jj

The response matrix [R'H of the cluster can be obtained in

a similar way. However, we choose another way to obtain the

information needed. Knowing [J. n. from (3.8) , we can calcu-

late[JINNER] By permutingin INNERlat [J . . y prmuing[J. . ] together with [J. . ]I,
1,3 1,3e 1,3J

the incoming partial currents for each assembly can be found.

Then all the information needed can be obtained by using the

response matrix [R'I of each assembly. Since this information

consists of volume-integrated quantities, the column vector

[IR] for the entire cluster will be given by

[IR. .] = [IRe .] (3.11)

where

[IR. .I is an M-element column vector whose elements are

cluster volume-integrated values for node (i,j),

[IR2 a] is an M-element column vector whose elements are
i,
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assembly volume-integrated values of assembly a in

node (i,j) with a running through all four assemblies

in node (i,j).

[IR. .] in this equation is obtained from (3.1). Note that

since [A. .], [B. .1, [C. .1, and [D. .] depend on the

response matrices of all the assemblies comprising node (i,j),

they can not be determined until the state variables in each

assembly are known. Thus the response matrices of a cluster

cannot be precalculated.

In each local calculation, it is necessary to invert

a (8*G*NSEG) X (8*G*NSEG) matrix and do some matrix multi-

plication to obtain the response matrix [R. .]. Thus using a

cluster as a node, we have shifted the computational burden

from global problems to local problems.

In order to make the calculation of [R. .] efficient,
J-,

advantage can be taken of the sparseness of [A . .], [B. .1],
J, 1,]

[C. .1, and [D. .1. Details are described in Appendix C.
1,J31

3.3.2 SETTING UP LOCAL FIXED-SOURCE PROBLEMS

In our investigation, either a single node or five nodes

(the node to be homogenized and its nearest neighbors) will

be used as the defining domain of each fixed-source problem.

On every boundary line of an assembly (no matter whether the

node is an assembly or a cluster) we can have either 1 or 2

segments. Thus for either assembly of cluster homogenization

four kinds of local problems can be defined. They are speci-

fied in Table 3.1.
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Number of Nodes* Number of Segments
in Each Fixed- on the Boundary Line

Method Source Problem of Each Assembly

N5S2 5 2
N5S1 5 1
NlS2 1 2
N181 1 1

*Node can be either an assembly or a cluster

TABLE 3.1 METHOD DEFINITION

It is important to realize that all fixed-source problems

for a given local calculation in our investigation will be

carried out using the same method. For cluster homogeniza-

tion the number of segments on each boundary line of a

cluster is actually twice the number of segments on each

boundary line of an assembly (i.e., for 2-segment methods,

there are four segments on each boundary line of a cluster).

Because only the magnitude of the net surface currents

(obtained from (2.9)) and surface fluxes (obtained from

(2.14)) on each surface of a node can be deduced from pre-

vious global results, equation (3.2), which is consistent

with the angular approximation used in generating the response

matrices, will be needed to obtain as boundary conditions the

magnitude of the incoming partial currents on boundaries of

the domain included in each fixed-source problem. Because

this magnitude is that of the partial currents over an entire

nodal surface, spatial approximations are also needed (except

for assembly homogenization using 1-segment methods) to de-

fine fully the boundary conditions for each fixed-source
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problem. For assembly homogenization using 2-segment

methods, either the flat or the eigenvalue approximation

will be used along with total magnitudes over the whole

nodal boundary to determine the incoming partial currents

for each segment. For cluster homogenization the flat

approximation can be used directly to determine the in-

coming partial currents for each segment. However, because

cluster eigenvalue calculations cannot be carried out before-

hand (for the same reason that the response matrices of a

cluster cannot be precalculated), incoming partial current

distributions must be found from the ratios of partial

currents for the individual assemblies making up the cluster.

Accordingly, with the magnitude of the incoming partial

current for a given cluster face having four segments found

as described above, we assume that the partial current is

split equally between the lower and upper pairs of segments.

Then within each pair the ratio of partial currents can be

found from an assembly eigenvalue calculation.

3.3.3 SOLUTION TECHNIQUES

For assembly homogenization, if incoming partial currents

[J. .] of node (i,j) are known, outgoing partial currents
1, 3

[J.u ] and the information column vector [IRc. . can be
1,3 i,3

obtained directly by applying equation (3.1) to that assembly.

For cluster homogenization, if incoming partial currents

[J .] of node (i,j) are known and the response matrix [R. .]

of the node has been determined by (3.10), outgoing partial
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out
currents [J. can be obtained by applying (3.1) to that

INNER
cluster. [J ], which are partial currents on assembly

boundary lines not common to cluster boundaries, can be

determined from (3.8). Knowing [.in ]and [ JINNER ,, the

incoming partial currents for each assembly comprising the

cluster can be established and then [IR . .1 can be determined

according to (3.11).

Once [J. .,[jou], and [IR. *I are determined, pro-
i1,31,3 . i,j

cedures to calculate equivalence parameters for node (i,j)

are the same for both assembly or cluster homogenization.

By using [IR . .*1 which contains heterogeneous node volume-

integrated reaction rates and heterogeneous node volume-

integrated group fluxes, homogenized cross sections and

heterogeneous node volume-averaged group fluxes can be

obtained according to (2.4) and (2.8). Equations (3.2)

yield heterogeneous surface-averaged group fluxes and het-

erogeneous surface-averaged net currents. Since all het-

erogeneous values except heterogeneous surface-averaged

group fluxes are equal to the corresponding homogenized

values, equation (2.20) together with equation (2.14) can

be used to obtain discontinuity factors. It is important

to realize that if the quadratic transverse leakage model

is used1 the transverse leakages of neighboring nodes are

needed to determine discontinuity factors. Thus discontinuity

factors must be generated after fixed-source calculations

for all nodes have been done.
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The remaining problem is how to get incoming partial

currents in
currents [J. .] for node (i,j).

1,3

For 1-node fixed-source calculations (1 or 2 segments),

they are just the given boundary conditions because bound-

aries of the domain of the fixed-source problem coincide

with boundaries of the node to be homogenized.

For 5-node fixed-source calculations, since only in-

coming partial currents on boundaries of the domain of the

fixed-source problem are given by previous global results,

incoming partial currents on boundaries of the center node

which is the node to be homogenized need to be determined.

The configuration and some notation for 5-node fixed-source

problems are shown in Figure 3.3. Writing out equation (3.1)

for each node and regrouping gives

-[D. .] .in I-[Y.rj1,3 = (3.12)

-[R. L iout][0
- i,]r-j- i,]-j

where

[0] is an N-element column vector with elements equal

to zero,

[I] is an N*N identity matrix,

ER. 1 is the N*N response matrix for node (i,j),
1,3

[D i,] is an N*N diagnonal matrix associated with node (i,j)

and given by

[D. .1 = Diagi[R1 ',j [Ril , rIRi+lj] f[Rij+1] (3.}
i, gj 3 3 44 11l22
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(i, j+1)

(i~) (i+1, j)
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(i, j-l)
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2

ER, 1i-I

[R 1

9 ,mR

[R ]

[R12

912
,m

[R22

R32 I

[R4

13

9,m
[R 3 3

R4 3 I

,m
[R 14

(R1 Im
ER 2 4 I

[R m
R3 4

R4 4 I

surface labelling for any given node

is a P * P matrix of matrix elements connecting outgoing partial currents on

face a to incoming partial currents on face ; ct, =l,2,3,4,

= 2 * NSEG * G for cluster homogenization,

= NSEG * G for assembly homogenization

FIGURE 3.3 CONFIGURATION AND NOTATION FOR 5-NODE FIXED SOURCE

PROBLEMS USING PARTIAL CURRENT RESPONSE MATRICES.

(i-l, j)

[R k 4

P

P

LA-)

(iij)
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in out
[i, j and [J i are N-element column vectors whose

elements are group partial currents of node (i,j),

N = 4 * P P and [R1,m) with a 1,2,3,4 are de-
au

fined in Figure 3.3.

The [Y. .3 in the above equation are given by

1 2 3 4
[Y. .1 = Col{[Y. .],[Y. .],[Y. . [Y. .} (3.14)

where

11 in
[Y. [Z ][J

2 2 in[Y. .] = [Z. .NJ. . ]
3 3 fj in

[Y. .1 = [Z . [J .n I
ifj i,J i+lj

[4 1 z4 Iin i[Y. .] = [Z. .] [J .. K
, , j+l

[Z. ] {RR'l [R ][0][R }

[Z 2 = {[R i 1J [R i 1]([R ] [0]

3 i+1,j i+1,j i+lr[9 Z I = { [0 ] [R'2 [R I' ] [ R }J.J12 13 14

[Z I = {[R'j+ 1] [0] [Rij+,1 [R 1 ' ]}iri ~ 21234

10] is a P * P null matrix,

P and [Rm] with a,S = 1,2,3,4 are defined on Figure 3.3.

Equation (3.12) is solved by a block Gauss-Seidel iteration

method. Because the coefficient matrix may not be diagonally

dominant, the iteration cannot be proved by the standard

mathematical method to be convergent. However, the physics

of the situation suggests that it will in fact always converge.

Iterations can be considered as neutron generations and a

region with a fixed source in a vacuum will reach an asymptotic
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state provided that region itself in a vacuum is subcritical.

Thus this iteration method will converge as long as the

total domain of the fixed-source problem is subcritical

in a vacuum. Since this requirement is always met in prac-

tical cases, there is no problem in solving (3.12) by the

Gauss-Seidel method.

The overall procedure for local calculations are shown

on Figure 3.4. A computer code "RESPONSE" was developed

to carry out the local calculations according to that flow

chart.

3.4 NUMERICAL TESTS

3.4. 1 A PRELIMINARY TEST PROBLEM

In order to see whether the response matrices method

can provide a good estimation of equivalence parameters,

a core consisting of very heterogeneous assemblies was

analyzed as a preliminary test of the method. This test

zone is described in Appendix A.4 and Figure A.4.1 shows

the layout. The central cluster of the test zone was the

node homogenized. In each assembly fuel pins, water rods,

gadolinium rods, control blades, wide and narrow water gaps

were explicitly modeled. The test zone was assumed to be

part of a reactor with eigenvalue equal to 1. Two standard

solutions characteristic of the test zone present in dif-

ferent environments were generated by CITATION. (How to

use CITATION to obtain these standards is described at the

end of Appendix B.l.) The first environment simulated the
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RESPONSE

State Variables
Previous Global Results otall Nodes

of all Nrodes

THeterogeneous
Surface-averaged
Fluxes and Currents
of all Nodes

Spatial
Approximations

Ne )1 or 5 Node
Local Problems

No All
oesNodes

---I or 2 Segment,
Yes Nodal Size
[Jinj of
All Nodes

Boundary Conditions Response tla-
forAl FiedSoucetrices of Response

Problems all Nodes Mtie
Table

Updated [J]
for Node (i, )

-[Jout] and [IR]
for Node (i, j)

No

Homogenized cross sections All
Heterogeneous Surface- and Nds
Volume-averaged values of

Node (i, )

Yes

QUANDRY
Transverse Leakage Model Discontinuity Factors Gl'obal

(Quadratic, Flat, C.MFD) for all Nodes Calculations

FIGURE 3.4 LOCAL CALCULATION PROCEDURES
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central part of the core so that the spatial shape of

incoming partial currents was asymptotic (i.e., it approaches

the eigenvalue distribution). The second environment was

assumed to be such that the spatial shape of incoming

partial currents was flat. For both problems, discontinuity

factors were for the flat transverse leakage model.

Response matrices for this problem were generated with

either flat or eigenvalue spatial approximation. The cor-

rect eigenvalue (l) was used to generate them. To define

the local fixed-source calculation, initial estimates of

the magnitude of surface-averaged group incoming partial

currents on boundaries of the fixed-source problem were

obtained from the standard. The spatial approximation used

to determine the partial currents on those assembly boundary

lines that constitute each cluster boundary line was flat

(which is exact because of the symmetry of this problem).

The spatial approximation (if needed) used to determine

the partial currents of each segment on boundaries of the

fixed-source problem was chosen for consistency to be that

used to generate the response matrices. Discontinuity factors

were generated using the flat transverse leakage model.

All four cluster homogenization methods were tested,

and results are shown in Table 3.2. They suggest that

using the eigenvalue spatial approximation yields better

results than using the flat spatial approximation no matter

what standard is considered. Also with the eigenvalue approx-



I? 7* ) ) ) ) ) ) )

Case: II III IV V VI VII

Method: N5S2 N1S2 N5S2 NlS2 N5S1 NiSi ADF

Spatial Approximation
In Generating Response F F E E E E
Matrices (F = Flat,
E = Eigenvalue)

Spatial Approximation
in Local Fixed-Source F F E E
Calculations

VX fl -0.66 -0.58 -0.15 -0.11 -0.13 -0.12 -0.36
f2

vZ~ -0.10 -0.12 -0.26 -0.13 -0.06 -0.07 0.696

Z alz21 0.35 0.42 0.09 0.14 0.19 0.19 0.30

% Error a1.43 1.55 0.18 0.50 0.85 0.85 2.18
a2

21 0.02 -0.05 0.00 -0.05 -0.07 -0.07 -0.32

+ -3.91 -5.63 -1.23 -2.66 -3.24 -3.24 3.591

2 -4.73 -9.05 -1.53 -3.60 -4.38 -4.38 5.39

This column gives the errors for ADF.

TABLE 3.2.A RESULTS FOR THE PRELIMINARY TEST PROBLEM USING EIGENVALUE SHAPES FOR STANDARD

wO
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TABLE 3.2.B RESULTS FOR IHE PRELIMINARY TEST PROBLEM USING FIAT SHAPES FOR STANDARD

Case: II III IV V VI VII

Method: N5S2 N1S2 N5S2 NlS2 N5Sl NiS- ADF( 1 )

Spatial Approximation
In Generating Response F F E E E E
Matrices (F = Flat,
E = Eigenvalue)

Spatial Approximation
in Local Fixed-Source F F E E
Calculations

-0.63 -0.58 -0.12 -0.10 -0.09 -0.12 0.39

E f -0.29 -0.13 -0.45 -0.14 -0.25 -0.08 0.51

ER1  0.33 0.40 0.07 0.12 0.17 0.17 0.29

% Error ZR2  1.04 1.44 -0.20 0.40 0.47 0.70 1.79

21 0.02 -0.04 0.00 -0.04 -0.07 -0.06 -0.33

-3.44 -5.36 -0.76 -2.20 -2.78 -2.78 4.09
1

-4.16 -7.80 -0.95 -2.20 -3.81 -2.92 6.01

(1)This column gives the errors in ADF.

L)
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imation, errors in all equivalence parameters are smaller

than those associated with ADF.

Because the magnitudes of partial currents used to

define the fixed-source problem were obtained from the

respective standards, these results are the best the various

methods can yield.

3.4.2 CISE BENCHMARK

For the CISE benchmark, response matrices for all mul-

tiplying assemblies were generated using the eigenvalue

approximation, and response matrices for reflector were

generated with the flat approximation. Because of the cost,

they are generated with the reference eigenvalue and were

never updated during the global-local iterations. Both

assembly and cluster homogenizations were tested. For the

cluster homogenization response matrices of a vacuum assembly

are needed as can be seen from Figure A.l.2 in Appendix A.

They are given by

ER'] = null matrix

[0] [0] [1] [0]

[0] [0] [0] [I] (3.14)
ER]

[I] [0] [0 1 0]

[0] [1] [0] [0]

where [0] and [I] are (NSEG*G)*(NSEG*G) null and identity

matrices, respectively. Equation (3.14) is just the state-

ment that neutrons coming in through a face will continue

through and emerge across the opposite face.
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For cluster homogenization the spatial shape used to

determine the partial currents on those assembly boundary

lines that constitute each cluster boundary line was as-

sumed to be flat. For either assembly or cluster homogeni-

zation, if 2-segment methods were used, the spatial approx-

imation used to determine the partial currents at each

segment for an assembly was that used to generate the re-

sponse matrices of that assembly. Both the "flae' and the

"quadratic" transverse leakage model were examined with

one or the other model used consistently throughout the

global-local iterations to determine discontinuity factors

and to solve the global equations. The procedures are out-

lined in Figure 3.5. Results, shown in Table 3.3 and

Figure F.l and F.2 of Appendix F, indicate that errors are

very large.

To understand better why for this problem the

response matrix method does not work, a detailed examination

of all equivalence parameters for all nodes was made. It

showed:

1. for any local method the errors in homogenized cross

sections obtained by the response matrix method are

smaller than 0.7% everywhere in the reactor while

assembly homogenized cross sections (AHCS) have errors

around 2% and even larger than 3% in a number of nodes,

2. the errors in discontinuity factors in the central

part of the reactor are around 3% which is comparable
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INITIAL GLOBAL CALCULATIONj

(BY QUANDRY)

"Average" Values
of Surface Quantities

LOCAL CALCULATION

(BY RESPONSE)

GLOBAL CALCULATION

(BY QUANDRY)

YES

ITERATION

NO

FIGURE 3. 5 GLOBAL-LOCAL ITERATION PROCEDURES

II
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Case I I( 1 (2)
(ADFF) (ADFQ)

Model in
Global
Calculation
(F flat,

0 = quadratic)

Initial
Estimation

Nodal
Size

Method in
Iocal
Calculation

Nth
Iteration

0

UP max

av

0

III

F

ADFF

luster Cluster

0.02

-2.63

1.19

-o .05

-2.05

0.82

V

F

ADFFT

vi

F

ADFFT ADFQ

VII

0

Reference(3

cluster Cluster Cluster Cluster Assembly

1452

-1.67

47.8

15.2

N552

1

-1.23

28.1

6.39

N5S2

-1.12

9.54

3.50

N552

-1.25

29.0

6.88

N552

-1.08

24.53

8.58

ADF is the result obtained by solving the global equations with the flat
transverse leakage model using ADF.

(2) ADFQ is the result obtained by solving the global ecuations with the quadratic
transverse leakage model using ADF.

(3) Reference solution provided only the magnitude of the surface quantities.

(4) X = eigenvalue, S is the maxiumn error in nodal power, E ais the average
of volume-weighted absolute errors in nodal power. av

pesponse matrices used for the 2nd iteration are still those associated with
the reference eigenvalue.

TABLE 3.3 RESULTS FOR IHE CISE BENCHMARK USING PA'IAL CURIT REPCNSE tAT'ICES

IV
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to the errors incurred using assembly discontinuity

factors,

3. the errors in discontinuity factors on the periphery

of the core are quite large (over 30% for fuel assem-

blies and 100% for adjacent reflector nodes).

It thus appears that the error in power comes largely from

the errors in discontinuity factors of nodes near the reac-

tor boundaries. To demonstrate further this conclusion a

simple problem described in Appendix A.5 was solved. The

eigenvalue approximation which is flat was used to generate

response matrices. Results are shown in Table 3.4. Since

each node is initially homogeneous, the error in power comes

entirely from errors in the discontinuity factors.

It seems clear that the response matrix method using

partial current response matrices cannot predict accurately

discontinuity factors for nodes near reactor boundaries.

Moreover, for a large reactor the errors near the periphery

of the core will cause large errors in power. The main

reason for this shortcoming is the spatial approximation

for the incoming partial currents used to generate the re-

sponse matrices. In these fixed-source problems for gener-

ating response matrices, the resultant outgoing partial

currents will have different spatial shapes from those of

the incoming partial currents (e.g., if a flat approximation

is used for the incoming partial currents, the resultant

outgoing partial currents will not be flat). Using these



Case

Model

Initial
Estimation

Nodal Size

Method in
Local Calculation

Nth iteration

% Error max

av

DF (2)

Assembly

N5S2

1

-2.0

1. 98

1.48

38.0

For this problem using ADF will reproduce the reference
solution because it is actually a l-D problem and every
node is initially homogeneous.

(2) This is the error in the discontinuity factor for the
thermal group on the Jin = 0 face. It is also the maximum
error in the discontinuity factors.

TABLE 3.4 RESULTS OF THE HOMOGENEOUS

PROBLEM IN APPENDIX A.5.

3-33

I

Q

ADFQ
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response matrices for the local fixed-source calculations

thus implies a net current which may not be good enough for

simulating the real spatial shapes. Our, results show that

they are not adequate for nodes near the reactor boundaries.

As an example, for the problem in Appendix A.5 the fluxes

and x-direction net currents on the line LL' should be

flat in y and the v-direction net currents on the line MM'

should be zero. But the response matrix method gives non-

flat fluxes and non-flat x-direction net currents on the

line LL' and the y-direction net currents on the line MM'

are zero only in an average sense.

Because homogenized cross sections are associated with

the whole node, they are not so sensitive to an approxima-

tion applied at the surfaces of the node. Thus they can

be predicted accurately by the response matrix method with

partial current response matrices. On the other hand, dis-

continuity factors are the ratio of heterogeneous to homog-

enized surface fluxes which are surface quantities. Accord-

ingly they are very sensitive to the validity of the approx-

imation applied on the surfaces. Thus for nodes near the

periphery discontinuity factors obtained by the partial

current response matrix method will have large errors. Con-

sequently, the next global calculation will result in large

errors in power.

We have mentioned in section 2.5 that Loretz did obtain

improvements by using a fixed-source problem with partial
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currents as boundary conditions to update equivalence param-

eters. His method corresponds to our NISi method using

response matrices generated with the eigenvalue approxima-

tion. However, he did only local fixed-source calculations

for nodes surrounding a control rod. These nodes are not

in the periphery of the reactor so that the fact that he

could obtain improvements is not contradictory to our re-

sults.

Another important result obtained from this benchmark

is that assembly homogenization is much faster than cluster

homogenization. A comparison of execution time is shown in

Table 3.5. It shows that the time saved in the global cal-

culation by using a cluster as a node is far less than the

extra time needed for the local calculation using cluster

homogenization methods. The reason is that it is very time

consuming to obtain response matrices .[R] for all clusters.

(It takes over 75% of the total local calculation time.)

3.5 SUMMARY

In this chapter the definition and characteristics of

partial current response matrices were first presented.

Then we discussed various methods for solving fixed-source

problems by using tabulated partial current response matrices.

Numerical tests show that because of the validity of the

spatial approximation, discontinuity factors for peripheral

nodes will be greatly in error and this results in a large

error in power and eigenvalue in the next global calculation.
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Global or
Local
Calculation

Local

Local

Global

Global

Nodal
Size

Cluster

Assembly

Cluster

Assembly

Method in
Local
Calculation.

N5S2

N5S 2

TABLE 3. 5 EXECUTING TIME OF CLUSTER AND ASSEMBLY

HOMOGENIZATIONS FOR CISE BENCHMARK

CPU
Time
(Sec)

8.00

2.32

0.90

3.35
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Because the spatial distribution of net currents is

smoother and less sensitive to position than the spatial

distribution of partial currents is, simulating by a single

predetermined shape the spatial distribution of net currents

for one type of assembly regardless of its location in the

reactor is believed to be able to yield better results. As

mentioned in section 2.5, Kord Smith did obtain good results

by using a fixed-source calculation with flat net currents

as boundary conditions. These suggest the use of a dif-

ferent response matrix which relates surface fluxes and

nodal volume integrals to net currents. Such response

matrices will be called "net current response matrices" and

will be discussed in the next chapter.
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CHAPTER FOUR

THE RESPONSE MATRIX METHOD USING NET

CURRENT RESPONSE MATRICES

4.1 INTRODUCTION

We have pointed out in the last chapter that it is

inadequate to use the response matrix method with partial

current response matrices to evaluate discontinuity factors

because of the spatial shape of the assembly surface fluxes

and outgoing partial currents implied by the shape of an in-

coming partial current. Because the spatial distribution of

net currents is smoother, it is believed that the response

matrix method based on net current response matrices can

give better results. The test problems of Kord Smith given

in Section 2.5 strongly suggest that the net current method

will work. In this chapter, we shall discuss first net

current response matrices and then local fixed-source cal-

culations using these response matrices.

4.2 NET CURRENT RESPONSE MATRICES

4.2.1 DEFINITION

Just as with a partial current response matrix, a net

current response matrix is an operator that defines fully

the output from a region by operating on the input imposed

on that region. However instead of using group incoming

partial currents as input, group net currents on boundary

surfaces of the region are used as input. Output can be

group surface fluxes on boundaries of that region as well

as information of interest about the interior of the region.
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In mathematical form, net current response matrices are

given by

[ti =R[p[J]

[IR] = [R'][J] (4.1)

where

[$] is an N-element column vector whose elements

are heterogeneous group surface fluxes on

boundaries of the region of interest,

[J] is an N-element column vector whose elements

are heterogeneous group net currents in the

direction of the outward normal on boundaries

of the region of interest,

[IR] is an m-element column vector whose elements

are any information of interest for the region

of interest,

[R] is an N*N square response matrix,

[R'] is an M*N non-square response matrix.

M and N in this equation will be shown in the next section

to be the same as those defined in Section 3.2.3.

4.2.2 GENERATION: ANGULAR AND SPATIAL APPROXIMATION

As partial current response matrices, the i-th column

of [R] and [R'] are equal respectively to f$] and fIR]

obtained from a problem with zero [J] except for its i-th

element where it is equal to 1. Thus we also need a series
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of fixed-source problems to generate whole [R] and [RB].

However this time each fixed-source problem is equivalent

to a problem defined by the region adjacent to a perfect

reflector except for the group and surface corresponding

to i-th element of [J]. For that group and surface, the

net current is set to 1. For each fixed-source problem,

without any knowledge of the full-core solution we need

both angular and spatial approximation of the unit net

current to define fully that problem. With them, each

fixed-source problem can be solved by any method available

(transport theory, multi-group diffusion theory, etc.).

Since our references are generated with diffusion theory

code, for consistency each fixed-source problem will also

be solved under diffusion theory approximation and thus

no further angular approximation will be needed. With

respect to the spatial approximation, unless otherwise

specified we shall assume that the unit net current is

uniformly distributed over the surface through which it

is passing. This will be called the 'flat' approximation.

As with partial current response matrices, the spatial

approximation can be improved by dividing each surface of

the region into several sub-surfaces and associating each

element of J] with one group and one sub-surface. The

flat approximation is then applied on each sub-surface.

There is no reason why we cannot make use of an eigen-

value approximation as with the partial current response

matrices. However an eigenvalue calculation with n-Jg =
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on all boundaries will not be able to provide the needed

information. An eigenvalue calculation with albedo boundary

condition imposed on one segment will be needed. However

without any knowledge of the full-core solution, the correct

value of the albedo to be used is unknown so that this

approximation is less attractive. Thus only the flat approxi-

mation will be used in this chapter for the net current

response matrices.

4.2.3 DIMENSION OF THE RESPONSE MATRICES

In view of the discussions in the last section and in

Section 3.2.3, we choose the dimensions N and M of the net

current response matrices to be the same as those of the

partial current response matrices. Thus M is equal to 12

and N is given by 8*NSEG where NSEG is the number of segments

(1 or 2) on each boundary line of the region.

4.2.4 TABULATION AND INTERPOLATION

in order to be consistent with our numerical reference

cases which are generated using diffusion theory, net current

response matrices will always be generated by the diffusion

theory code CITATION. The details of using CITATION to

generate net current response matrices are described in

Appendix B.2.

With the spatial approximation and diffusion theory

approximation made for the unit net current, net current

response matrices can be precalculated and tabulated as

functions of state variables just as partial current

response matrices are. However if the region of interest,
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after being made consistent with the global eigenvalue, is

just critical in an infinite lattice composed of its own

material, net current response matrices for this state will

not exist. This situation happens whenever the estimated

global eigenvalue is exactly equal to the infinite multi-

plication factor of the region of interest. This situation

is not a practical problem since the probability that it

will arise is of measure zero. However, for states near

this singular condition, elements of net current response

matrices will approach positive or negative infinite

depending on which side (supercritical or subcritical) of

the singularity they are on. The multi-variable interpo-

lation of net current response matrices is particularly

complicated by this phenomenon. This problem is presently

being investigated by H. Khalil 10 and will not be discussed

further in the. present thesis.

4.2.5 SIZE OF THE REGION USED TO DEFINE RESPONSE MATRICES

For the same reasons as the case of partial current

response matrices (described in Section 3.2.5) BWR assemblies

are chosen as the region to be used to define net current

response matrices.

4.3 FIXED-SOURCE CALCULATION USING NET CURRENT RESPONSE
MATRICES

4.3.1 RESPONSE MATRICES FOR A NODE

In Section 3.4.2, we concluded that the time saved in a

global calculation by using a cluster as a node is far less

than the extra time needed for the local calculation with
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cluster homogenization because response matrices of a cluster

cannot be precalculated. This situation is the same for net

current response matrices. Accordingly in this chapter we

shall use only assembly homogenization. Thus response

matrices for a node are just those of an assembly and are

pretabulated.

4.3.2 SETTING UP LOCAL FIXED-SOURCE PROBLEMS

As in Section 3.3.2, either 1 node or 5 nodes (the node

to be homogenized and its four nearest neighbors) will be

used as the defining domain of each local fixed-source

problem. And on each boundary line of an assembly, we can

have either 1 or 2 segments. Combination of them yields

four methods which will be designated by the same names as

those used in Table 3.1 (except that now a node can only be

an assembly).

Unlike the situation in Section 3.3.2, defining each

local fixed-source problem does not require use of Eq (3.2)

to generate incoming partial currents. Previous global

homogenized results give heterogeneous net surface current

directly through Equation (2.9). Moreover, if 1-segment

methods are used, no spatial approximation is needed. How-

ever, if 2-segment methods are used, spatial approximation

are needed to determine the net currents for each segment on

boundaries of the defining domain of each fixed-source

problem. In order to be consistent with the spatial approxi-

mation used to generate net current response matrices, the

flat approximation will be used.
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Because a node is an assembly and consistent spatial

approximations are used to generate response matrices and

to define local fixed-source problems, Methods NlSl and

N1S2 are the same for all nodes except boundary nodes (for

which Method NlSl satisfies the boundary conditions in an

average sense while Method NlS2 satisfies them for each

individual segment). Equivalence parameters obtained from

the two methods will then not be the same for peripheral

nodes, and thus global iterations will yield different

results.

4.3.3 SOLUTION TECHNIQUES

Once heterogeneous net surface currents [J ] of the

node to be homogenized are known, heterogeneous surface

fluxes [t. .] and the information vector [IR. .], which

contains heterogeneous node volume-integrated reaction rates

and fluxes, can be obtained directly by applying Equation

(4.1) to that node. Then homogenized cross sections can be

obtained according to (2.4) and (2.8). Using the global

eigenvalue from the previous global calculation, discontinuity

factors can be obtained from (2.20).

The sole problem, then, is to determine fJ. .3for the
J-,J

node to be homogenized. For the 1-node methods (1 or 2

segments), it is obtained directly from the previous global

results. For 5-node methods, it has to be calculated from

net currents on the outermost boundaries of the adjoining

assemblies obtained from previous global results. The

configuration and some notation for 5-node fixed-source
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problems are shown in Figure 4.1. Writing out Equation (4.1)

for all nodes and regrouping yields

[I] [D. .] [$. .] [Y. .]

[I] -[R .] [J. ] [0] (4.2)

where

[t .] is an N-element column vector whose elements
,J

are heterogeneous group surface currents of

segments on the boundaries of the central

node (i,j),

[J. is an N-element column vector whose elements
L,,J

are heterogeneous group surface net currents

of a segment in the outward direction on the

boundaries of the central node (i,j),

[i ] is the N*N response matrix for node (i,j),

{Y. . ] is an N-element column vector whose elements

are the fluxes on the surfaces of node (i,j)

due to net currents across those faces of

its four neighboring nodes that are not

common to node (i,j),

[D. .* is an N*N diagonal matrix associated with the

surfaces of node (i,j) but depending on the

properties of its neighbors. It is given by

[D ] = Diag {[RI22], [R 4  ], ra ] [Rj+]iJ-J33 1 1-441



) ) ) 4 ) ) I I

SURFACE LABELLING
FOR ANY GIVEN NODE:

(i, +1)

(i-l, j) j(1, j) f(i+1, j)

(i,-')

4

1 3 [R 'm]=

[R fmiJ [R'm] [R9, m ][R ' ]11 12 13 14

[ R ' m [ R k'm] [ Rkm[R 9,1M
21 22 .23 2

[R 91IM] [R Z ] [R 9m J[R k ]

[R [ R k ]m I[R ] [ 1 P k ]

[Rtm]

where

is an (NSEG*G)*(NSEG*G)
square matrix of matrix
elements connecting fluxes
on face a to net currents
on face 0', cx,f = 1,2,3,4,

NSEG is the number of segments on
each boundary line of node

(Q,m) ,
C is the total number of groups .

FIGURE 4.1 CONFIGURATION AND NOTATION FOR 5-NODE FIXED SOURCE

PROBLEMS USING NET CURRENT RESPONSE MATRICES
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[I] is the N*N identity matrix,

[0] is an N-element column vector whose elements

are zero,

N = 4 * NSEG * C,

[F 5aM] ( = 1,2,3,4) are defined on Figure 4.1.

The surface flux source term [Y ] in this equation is

given by

[Y. 3Col{LY.],[Y 1 [Y3 [. ] } (43)
'ij(

where

[Y1 [ [Z1 .][J ]

[Y2 2=[Z2 ] (i+1

[Y .] = [Z ][J. .j

[Z. ] = [R ][R] [0] [R 'i]}[Z ]= [{{R ] R][][ 3 1 ] {32]][0] [R''

[Z 2 (rr" >1 1 [p j-1l r

[Z .] = {LL 41j+ ] 42[0 R[R j+ [0+ ]
[1z23.1IR=4 ]}

[03 is an (NSEG*G)*(NSEG*G) null matrix,

[t] (cti=1,2,3,4) are defined on Figure 4.1.
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Equation (4.2) has almost the same form as Equation (3.12).

However it cannot be solved by the Gauss-Seidel iteration

method as was done earlier because that method will not

converge for this case. In fact, we can prove (see

Appendix D) that for a one-dimensional one-group problem

the spectral radius of the Gauss-Seidel iteration matrix

will be larger than 1 except under very limited conditions.

For two-dimensional two-group problems, we can anticipate

that the possibility of convergence will become even less.

Thus in order to be able to solve all local fixed-source

problems throughout the reactor, we abandon iteration

methods and solve (4.2) directly. Substituting the second

sub-matrix equation (4.2) into the first yields

[J. *] = {[D. . + [R. ]} [Y. .] (4.4)

where [D. . + [R. .] is inverted directly.
L,J 1,J

The overall procedures for local calculations using net

current response matrices are the same as those shown in

in outFigure 3.1 except that [J. -] and [J. . are replaced by
1,-IJ

[J. .] and [i .] and the nodal size is always an assembly.
1, J ., J

A new version of RESPONSE was developed to carry out the

local calculations using net current response matrices

according to that flow chart.
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4.4 NUMERICAL TESTS

4.4.1 CISE BENCHMARK

The global-local iteration procedure was the same as

that shown in Figure 3.5. In order to reduce the cost of

global-local iterations, response matrices were generated

for the reference eigenvalue and were never updated during

the global-local iterations. All four methods (NlSl, NlS2,

N$Sl, and N5S2) for the local calculations and three models,

quadratic (Q), flat (F), and CMFD, were examined for the

global calculations. Throughout a sequence of global-

local iterations the same model was used for all global

calculations. Results are shown in Table 4.1 to 4.3 and

Figure F.3 to F.5 of Appendix F.

In Case VI of Table 4.1, we started the global-local

iteration with the results obtained by using ADF and the

quadratic model. Using the surface currents resulting

from this step we did an NlS2 local calculation to update

the equivalence parameters. Another global calculation

with these new equivalence parameters was performed followed

by an N5S2 local calculation using net currents for each

fixed-source problem resulting from this newest global

result. Finally, with the equivalence parameters predicted

by the N5S2 problem we solved the global problem again.

This procedure will be called Method A. The steps

involved are shown in Figure 4.2. The reason for examining

Method A will become clearer in the next section.
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CASE.

Model for Global
Calculation

Initial
Estimation

Method for
Local Calculation

(ADFQ) II

Q

-0.05

% Errors

(after 1st
iteration)

HCS (1)
M

max

av

3.03

3.04

0.90

No. of Iterations
to Converge

A

% Errors

(after
convergence)

HCS
m

max

av

Q

ADFQ

NlSl

0.09

0.65

2.87

0.97

4

0.10

0.68

3.05

0.95

III

Q

ADFQ

NlS2

0.09

0.65

2.93

1.00

3

0.10

0.68

3.11

0.98

IV

Q

ADFQ

N5Sl

0.10

0.85

2.88

0.92

V

Q

ADFQ

N5S2

-0.10

0.72

1.09

0.33

VI

Q

ADFQ

A (2)

-0.11

0.79

1.64

0.90

Failed to
Converge3

0.11

0.92

3.23

0.94

() is the maximumerror in
mi homogenized cross sections.

(2)Explained in the text.

TABLE 4.1 RESULTS FOR THE CISE BENCHMARK USING
NET CURRENT RESPONSE MATRICES AND THE QUADRATIC TRANSVERSE LEAKAGE MODEL

I
l %k
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CASE

Model for Global
Calculation

Initial
Estimation

Method for
Local Calculation

A

% Errors

(after lst
iteration)

HCS
m

max

av

No. of Iterations
to Converge

% Errors

(after
convergence)

(ADF F)

F

0.02

3.03

3.46

1.31

HCS

max

av

II

F

ADFF

NlSl

0.09

0.66

2.97

0.97

4

0.10

0.68

3.05

0.95

III

F

ADFF

NlS2

0.08

0.57

3.03

1.00.

4'

0.10.

0.68

3.11

0.98

IV

F

ADFF

N5Sl

0.11

1.05

2 .77

0.90

4

0.11

0.87

2.92

0.94

V

F

ADFF

N5S2

-0.12

0.81

1.48

1.55

Failed to
Converge

TABLE 4.2 RESULTS FOR THE CISE BENCHMARK USING

NET CURRENT RESPONSE MATRICES AND FLAT MODEL

I k .

T



4 I ) ) ) ) )

CASE

Model for Global
Calculation

Initial Estimation

I (ADFC)

CMFD

Method for Local
Calculation

% Errors

(after lst
iteration)

Convergency

HCS m

max

av

2.27

3.03

37.6

15.4

II

CMFD

ADFC

N5S2

0.10

3.04

8.01

2.91

Failed to
Converge

III

CMFD

REFERENCE

N5S2

-0.10

0.72

2.54

0 .55

Failed to
Converge

(l) ADFC is the result obtained by using ADF with CMFD model.

TABLE 4.3 RESULTS FOR THE CISE BENCHMARK USING

NET CURRENT RESPONSE MATRICES AND CMFD MODEL

U,



4-16

ADF RESULTS

NlS2 LOCAL CALCULATION

GLOBAL CALCULATION

N5S2 LOCAL CALCULATION

GLOBAI.,CALCULA'IION

PROCEDURES IN METHOD AFIGURE 4.2
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As is noted in the tables, several cases failed to con-

verge. This happened because of a divergence of the global

calculations performed by QUANDRY. In Section 2.3, we

discussed possible reasons why QUANDRY may diverge. For the

present problem, there are three possible sources of diver-

gence. First, the nonlinear global-local iteration pro-

cedure itself may simply be divergent. Secondly, even if

the non-linear procedure is convergent there may be a stage

during the global-local iterations at which one of the

iteration matrices in QUANDRY becomes divergent. Finally,

because the response matrices used during the global-local

iteration process are not updated in accordance with the

estimated global eigenvalue, there may result a condition

that makes QUANDRY diverge. (The local and global problems

are trying to converge to different results.) Unless the

response matrices are updated according to the global

eigenvalue obtained from the previous global calculation,

the convergent solutions shown in Table 4.1 and 4.2 are

not truly convergent in the sense that the local calculations

have converged to one result and the global ones to another.

All these points are brought out more fully by two simpler

test problems described in Appendix E.

Table 4.1 and 4.2 show that except for N5S2 none of the

methods provide much improvement over the ADF results.

Detailed examination of the results from all global-local

iterations shows that one global-local iteration for any method

yields nearly the best result that that method can give. For
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the NlS1 and N5Sl methods, the convergent solutions are the

same as the solution obtained from solving the entire

reactor according to the 1-segment net current response matrix

technique based on the flat approximation. (The reason

that the convergent solution of NlSl method is different

from that of N5SI method by a small amount is that we did

not update response matrices according to the newest estima-

tion of the global eigenvalue.) For this problem, because

the errors of ADF results are evidently the same order as

those of a response matrix solution involving flat net cur-

rents over each assembly face. Hence the results obtained

from the convergent solutions of the NlSl, N5Sl, and NlS2

methods cannot be expected to yield much improvement. On

the other hand the N5S2 method, because it not only accounts

for the effect of nearest neighbors but also relaxes the

limitation of completely flat spatial shapes on the surfaces

of each node by having 2-segments on each boundary line of

a node, is expected to yield better results.

Table 4.1 and 4.2 also show that the convergent solu-

tions (if they exist) for various methods using different

transverse leakage models are the same (as they should be).

However, the first global-local iteration results obtained

from using the quadratic transverse leakage model are better

than the results obtained from using the flat transverse

leakage model. This is because a more sophisticated model

will make the global solution less sensitive to the exact

values of discontinuity factors.
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This point is further demonstrated by the results shown

on Table 4.3. From Case III on that table, it seems that

even for such a crude model as CMFD we can obtain quite

good results provided the input currents for the local

problem are correct. However, Case I and II of that same

table show that without a very good estimate of the magnitude

of boundary conditions for each fixed-source problem the

results of the first global-local iteration still have large

errors. Moreover, the non-linear global-local iteration will

not converge so that we cannot improve results by taking

more iterations.

It seems clear that the response matrix method using

net current response matrices based on the flat approximation

works for this problem. In order to understand more why

the response matrix method using partial current response

matrices as shown in Section 3.4.2 did not yield good results

and to demonstrate the effect of generating the net current

response matrices with another spatial approximation, we

generated the net current response matrices from the partial

current response matrices according to

I R] = 2 {R] [I]}{ [RJ - fI]} (4.5)

where
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[IR] is the N*N net current response matrix for an

assembly,

[R] is the corresponding N*N partial current response

matrix which is generated using the eigenvalue

spatial approximation and the reference eigenvalue

(as described in Section 3.4.2),

[I] is an N*N identity matrix,

N = 4*NSEG*G.

This equation is obtained by using Equation (3.2) along with

the definitions of response matrices. The net current

response matrices of an assembly so determined are not the

same as those generated directly using the flat spatial

approximation because Equation (4.5) implies a different

spatial approximation for the net currents. A detailed

examination of this implied spatial distribution shows that

it has a shape that is not at all smooth.

The CISE benchmark was rerun but this time using the

response matrices (4.5) to solve each fixed-source problem.

Various local methods and global models were tried. The

poor results, shown in Table 4.4 and Figure F.6 and F.7 of

Appendix F, indicate that it is not adequate to use net

current response matrices generated with unsmooth spatial

approximation.

Because partial and net current response matrices are

just mathematical transformation of each other, the converged

solutions obtained from using the NlS1 method with net current
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CASE. II III IV

Model for Global
Calculation F

Initial
Estimation

Method for
Local Calculation

% Errors

(after lst
iteration)

No. of Iterations
to Converge

ADFF

NlSl

A -1.06

HCS 0.80
m

:a 23.1
max

E 8.60av

5

ADFQ

NlSl

-1.06

0.72

23.0

8.60

5

ADFQ

NlS2

-0.65

0.63

15.9

6.16

5

ADFF

N5Sl

-1.14

1.25

25.5

9.56

Failed to
Converge

ADFF

N5S2

-0.94

1.20

20.8

7.96

Failed to
Converge

ADFQ

N5S2

-0.99

1.27

22.3

8.73

Failed to
Converge

% Errors

(after
convergence)

A -1.22.

HCS 0.60
m

E: 19.6max
eav 7.44

m\
FJ-0.72

0.85

14.7

5.76

TABLE 4.4 RESULTS FOR THE CISE BENCHMARK USING NET CURRENT

RESPONSE MATRICES GENERATED FROM PARTIAL

CURRENT RESPONSE MATRICES

Q Q F

V

F

VI

Q

-1.23

0.60

19.

7.51

.
z )I
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response matrices should be the same as that obtained from

using the same method but with partial current response

matrices. Thus Case I and II of Table 4.4 further demon-

strate that the spatail approximation is the reason why the

response matrix method using partial current response matrices

does not work.

4. 4. 2 HAFAS BENCHMARK

Because of the finding that the quadratic transverse

leakage model yielded the best result, only this model was

used in analyzing the HAFAS benchmark. Response matrices

for this problem were generated with the flat approximation.

The global eigenvalue used to generate these response

matrices was that obtained from the ADF result which was the

best estimation of the solution available without solving

the full-core problem. All four methods (NlSl, NlS2, N5SI,

N5S2) were tried but only one global-local iteration was

performed. Results are shown in Table 4.5 and Figure F.8

of Appendix F.

Case II and III of Table (4.5) indicate that 1-node

methods improve the ADF results. However, Case IV and V

on that table indicate that, in contrast to the CISE bench-

mark, 5-node methods starting with the ADF result yield

poor results.

To try to understand these results, detailed examination

of the net currents on the boundaries of each fixed source

problem, the resultant net currents on the boundaries of the

node homogenized and the resultant equivalence parameters



Model for Global
Calculation Q

Initial
Estimation

Q Q Q Q

ADFQ ADFQ ADFQ ADFQ REFERENCE REFERENCE

Method for
Local Calculation

% Errors

(after lst
iteration)

NlSl NlS2 N5S1 N5S2

A -0.06

HCS 6.43

E 5.29max
a 1.33

0.04

0.56

2.07'

0.92

0.04

0.56

2.08

0.92

0.36

6.79

25.6

4.74

-0.08

3.52

9.67

4.84

TABLE 4.5 RESULTS FOR THE HAFAS BENCHMARK USING

NET CURRENT RESPONSE MATRICES

CASE

Q Q

N5S2

-0.09

0.60

0.96

0.24

Q

ADFQ

A

-0.15

0.92

1.30

0.40

N5S 1

-0. 05

7.48

23.31

6.15

(ADFQ) II III IV V VI VII VIII

IL
'Y
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was made. It showed that because of the complexity of this

problem, the net currents on the surfaces of each node

given by QUANDRY employing assembly discontinuity factors

had large errors. Thus the boundary conditions for each

fixed-source problem for the next local iterate also had

large errors. For 1-node methods, because the boundary

conditions for each fixed-source problem are just the net

currents on the surfaces of the node homogenized, the esti-

mated surface derivative, given by the global calculation,

for that node are preserved after the local calculation.

Because of this preservation, the global flux tilts are

predicted quite accurately. A good estimation on equivalence

parameters is then expected and thus the next global cal-

culation will yield good results. However, for 5-node

methods, because the net currents on the surfaces of the

node homogenized (central node) are determined by the local

calculation and because the limitation on the shapes of the

net currents on the boundaries of the central node imposed

by the spatial approximation in response matrices, the

surface derivatives for the central node so determined may

yield very bad prediction on the global flux tilt across

that node. Thus unless the estimation of the net currents

on the boundaries of the defining domain of a 5-node

fixed-source problem is very good, the resultant spatial

tilts in fluxes for the central node may be quite wrong and

result in large errors in equivalence parameters.



4-25

Table 4.5 shows that 5-node methods starting with ADF

results do give large errors in homogenized cross sections

so that it is not surprising that the next global calculation

yielded poor results.

The explanation of this behavior is further confirmed

by Case VI and VII of Table 4.5. In Case VII, although

reference solution was used to give the magnitude of the

net currents on the boundaries of each fixed-source problem,

the errors in equivalence parameters are still very large

because of the lack of flexibility of the shape for the net

currents on the boundaries of the central node. On the

other hand, in Case VI because there are two segments on

each boundary line of the center node, the limitation on

the shape of the net currents is relaxed. The results show

that errors in equivalence parameters are then very small,

and the next global calculation thus yielded good results.

Although these cases are of no practical interest (since

the reference solution is not known a priori) they do suggest

the use of Method A which is described on Figure 4.2 in the

last section. Because the global results obtained by using

equivalence parameters from the results of an NlS2 local

calculation (using the ADF results as an initial estimation)

yield an estimation of net currents better than that given

directly by the ADF results using them to define the N5S2

local fixed-source problems is expected to yield better

equivalence parameters and global results than those obtained

by using the ADF results directly to define the N5S2 local
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fixed-source problems. Case VIII on Table 4.5 shows that

Method A gives the best results of all the practical methods

tested. For Method A, the response matrices used in the

N5S2 local calculation should be that corresponding to the

eigenvalue given by the global calculation after the NlS2

local calculation. However, in Case VIII of Table 4.5 to

reduce the cost the response matrices used were still those

associated with the eigenvalue given by the ADF results.

Our experience has shown that because the difference between

the two eigenvalues was only 0.1% and because we were not

trying to iterate more than once, the effects due to not

updating the eigenvalue are very small.

4.4.3 LSHBWR BENCHMARK

For the same reasons as for the HAFAS problem, only the

quadratic transverse leakage model was used in this problem.

Employing the flat net current approximation, two sets of

response matrices were generated. One of them corresponded

to the eigenvalue given by the ADF results and the other

corresponded to the eigenvalue given by the global calcula-

tion after the NlS2 local calculation. All the various

methods for performing the local calculation were tried.

Results are shown in Table 4.6 and Figure F.9 in Appendix F.

As in the HAFAS problem, Methods N5S2 and N5S1 with the ADF

result as the initial estimation were not able to give a

good estimation for the spatial tilts of- fluxes for the

central node and as a consequence yield inaccurate results.

In contrast to situation for the CISE and HAFAS problems,
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CASE (ADFQ) II IIIIV V VI VII

Model for Global
Calculation Q Q Q Q Q Q Q

Initial
Estimation ADFQ ADFQ ADFQ ADFQ ADFQ ADFQ

Method for
Local Calculation NlSl N1S2 N5S1 N5S2 A NlS2

A -0.05 0.05 0.05 0.39 -0.16 0.07 0.15
% Errors

(after 1st Emax 9.61 3.42 3.42 35.8 38.8 5.42 4.09

iteration) E 3.26 1.06 1.06 7.36 12.2 1.01 1.28
av

In this column, the errors are for the convergent solution which was
obtained by using updated (in accordance with the eigenvalue given
by the previous global calculation) response matrices in the local
calculations.

TABLE 4.6 RESULTS FOR THE LSHBWR BENCHMARK USING

NET CURRENT RESPONSE MATRICES
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Method A did not give quite as good results as Methods

NlSl and NlS2. This is because in this problem, with its

unrealistic flux tilt, the shape of the net currents on the

boundary surfaces cannot be well-simulated by a flat distri-

bution. This fact is demonstrated by the error that existed

in the convergent solution for Method NlS2 (Case VII of

Table 4.6). Because that solution is very close to the

solution obtained by solving the entire problem using response

matrices based on flat net surface currents, the errors that

result imply that the real shape is quite different from flat.

Method A did, however, improve significantly results obtained

using the ADF parameters.

4.4.4 EXECUTION TIME COMPARISON

The execution times (in CPU seconds of IBM 370/168)

for the various methods applied to all three benchmarks

are given in Table 4.7. The time which might be needed.for

interpolating response matrices is not included in the execu-

tion times for the local calculations since no systematic

interpolation was carried out in this thesis. It is believed

however that for one local calculation one or two CPU

seconds will be sufficient for the interpolation.

The last column of Table 4.7 gives the execution time

needed for the first global-local iteration. For all methods

except Method A, it involves two global calculations (the

first global calculation is to yield the ADF results) and

one local calculation. For Method A, it involves three

global calculations and two local calculations. The execu-



)

)

PROBLEM

EXECUTION TIME

fFOR HETEROGENEOUS RUN)

CISE

(500)

HAFAS

(700)

LSHBWR

)

)

3.7

)

EXECUTION TIME PER

GLOBAL CALCULATION

2.4

4.4

NiSi
N 1S2
N5S1
N5S2

A

) I

EXECUTION TIME PER
LOCAL CALCULATION

0.5
1.0
0.7
2.0

0.9
1.7
1.3
2.8

0.8
1.2
1.0
2.2

)

)

METHOD FOR

LOCAL CALCULATION

NlSi
N1S2
N5S1
N5S2

A

NlSl

NlS2
N5Sl
N5S2

A

EXECUTION TIME COMPARISON

(ALL TIMES IN SECONDS)

TOTAL EXECUTION

TIME FOR THE FIRST
GLOBAL-LOCAL ITERATION

5.3
5.8
5.5
6.8

10.2

9.7
10.5
10.1
11.6
17.7

.8.2

8.6
8.4

9.6
14.5

)

tJ
'.0

TABLE 4.7
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tion times needed to obtain the full core heterogeneous

standard solutions are given in the first column. It is

clear that our methods improve significantly the computa-

tional efficiency.

4.5 SUMMARY

In this chapter, net current response matrices were

introduced, and the use of them to solve fixed source

problems was discussed. All three benchmarks were tested.

The results show that the Methods NlSl and NlS2 using flat

net current response matrices consistently reduce the maximum

power error to a level of %,3%. Whether they improve the

ADF results depends on the complexity of the problem.

Method A consistently improves the ADF results. However, for

problems involving extremely large tilts in the net currents,

it may not give quite as good results as Methods NlS2 and

NlSl. Results also show that the computational efficiency

for all three methods is very attractive. The execution

time needed is one to two orders of magnitude smaller than

that needed to solve the entire problem by a fine mesh method

that treats all heterogeneous regions explicitly.

It is clear in retrospect that the response matrix

method using flat net current response matrices works well

provided any one of the three schemes, NlSl, NlS2 or A, is

used for the local calculations. Since both the NlS2 and A

methods use 2-segment response matrices, while the NlSl

method uses 1-segment response matrices, the storage require-

ment and data management problems for the tabulation and
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interpolation of response matrices for the former methods

are considerably more severe than those for the latter method.

Thus we strongly suggest that the NlSl method be used for

all problems.
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CHAPTER FIVE

SUMMARY AND CONCLUSIONS

5.1 OVERVIEW OF THE INVESTIGATION

The objective of this research effort was to develop

accurate and efficient homogenization methods for coarse

mesh analysis of boiling water reactors.

Initially the existence of exact homogenized parameters

which will reproduce all of the integrated properties of a

known reference solution was discussed. It was shown that

because of the lack of degrees of freedom for the equations

embodying the diffusion theory model, exact, spatially flat

homogenized parameters for that model do not exist in

general. However, exact homogenized parameters based on

equivalence theory which is an extension of diffusion theory

do exist. As a consequence, equivalence theory homogenization

methods instead of conventional flux-weighting techniques

were used for cross section homogenization.

In Chapter 2, equivalence theory was formally derived.

The unique feature of this method is the introduction of two

additional degrees of freedom per direction and group to

the conventional diffusion theory equations. With them, it

is possible to define exact homogenized parameters (for any

approximate method used to solve the homogenized problem)

to match any known reference solution. However, since the

exact solution is needed to define these parameters, approxi-

mations for these exact parameters must be made in practical
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cases.

Some methods for estimating these parameters suggested

3 6
by Smith3 and Loretz were reviewed. These authors showed

that the ADF method is cheap and simple. However, if greater

accuracy is required, more sophisticated methods involving

nonlinear iterations between global homogenized reactor

calculations and local fixed-source calculations (to com-

pute the equivalence parameters) are needed. If, however,

nodal methods or finite-difference methods are used to solve

the fixed-source problems for the local calculations, the

cost is comparable to and even higher than that incurred

by solving the entire problem heterogeneously. Consequently,

a method which can solve each fixed-source problem more

efficiently is in demand.

Since the response matrix method can give information

of interest directly and since it uses parameters (response

matrices) which can be pretabulated, it is believed to be

the most efficient method for solving fixed-source problems.

In Chapter 3, the application of conventional partial

current response matrices was examined. Various methods

for defining fixed-source problems and the procedures for

solving them were discussed. However, numerical tests showed

that because of the spatial approximation imposed on the

incoming partial currents used to generate the response

matrices, predicted discontinuity factors for peripheral

nodes are greatly in error and this results in a large error
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in power and eigenvalue when the next global calculation

is performed.

In Chapter 4, a different response matrix which

directly relates information of interest and surface fluxes

to net surface currents was introduced. Various methods

for defining fixed-source problems with these net current

response matrices and solution techniques were discussed.

Numerical tests show that the 1-node methods using flat net

current response matrices consistently reduce the maximum

assembly power error to a level of 3% in one global-local

iteration. Whether they improve the ADF results depends

on the complexity of the problem. The procedure designated

as Method A consistently improves the ADF results.. How-

ever, for problems involving extremely large global flux

tilts in the net currents, it may not give quite as good

results as 1-node methods.

The results also show that the computational efficiency

for these methods is neraly two orders of magnitude greater

than that achieved by solving the entire problem without

homogenization.

Since the NlSl method uses 1-segment response matrices,

the generation, storage and interpolation of response

matrices for this method will be much easier and cheaper

than for the 2-segment methods which use 2-segment response

matrices. Thus we strongly suggest that the NlSl method be

used for all BWR analysis.
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5.2 RECOMMENDATIONS FOR FUTURE RESEARCH

5.2.1 STEADY-STATE THERMAL ANALYSIS

The problems analyzed in this thesis are actually zero-

power reactors (i.e. no thermal-hydraulic feedback is

represented). In order to analyze full-power reactors,

feedbacks must be taken into account. In principle, there

is no problem of using response matrix methods to analyze

these reactors. However with feedback the cost of the global

calculation becomes rather expensive. Thus the possibility

of starting the local calculation with a sufficiently, but

not completely converged global solution, so that the cost

can be reduced must be studied.

5.2.2 FUEL MANAGEMENT STUDIES

For fuel management studies, the history of a reactor

(exposure, control history, void history) must be taken

into account. In order to pretabulate response matrices as

functions of these variables, approximations for the spatial

distribution within an assembly must be made for these state

variables. A thorough study is needed to ensure that the

approximations used are acceptable and thus that response

matrix methods can be used for such studies.

5.2.3 TRANSIENT ANALYSIS

Basically, transient studies are similar to steady-state

thermal analyses. However, the uniform spatial distributions

of state variables (temperature, void,etc.), within an

assembly which are assumed in generating response matrices,

becomes questionable. Moreover, for large power excursions,
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because of the Doppler effect (which is instantaneous) in

the fuel within an assembly, the response matrices for the

assembly may not be stationary (i.e., the response at time

t to an input at time t may depend on what happens within

the time interval t - to). Thus the use of response matrix

methods for transient analysis needs careful study.

5.2.4 TABULATION AND INTE RPOLATION OF THE NET CURRENT
RESPONSE MATRICES

In view of the discussion in Section 4.2.4 and in the

preceding three sections, the tabulation and interpolation

of the net current response matrices are by no means trivial

problems. They involve not only multivariable (fuel tempera-

ture, void, exposure, control history, etc.) tabulations and

interpolations but are further complicated by the singular

behavior of the net current response matrices. In this

thesis no systematic methods for tabulation and interpolation

were studied. However in order to use efficiently and

accurately the response matrix method to predict the power

distribution for steady-state thermal analyses, depletion

analyses, and transient analyses, a thorough study of the

tabulation and interpolation problems must be pursued.

5.2.5 3-D EFFECTS

All of the analysis in this thesis was restricted to

two-dimensional radial planes. Although the axial flux

shape is rather smooth, exceptions such as partially inser-

ted control blades do exist. The extension of the response
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matrix method to three-dimensional problems seems rather

straightforward. However it needs to be examined.

5.2.6 ENERGY HOMOGENIZATION

As discussed in Section 2.2, it is possible to reduce

the number of energy groups without loss of accuracy provided

exact equivalence parameters are used to solve the global

homogenized problem. If good estimation of these parameters

can be made, the global homogenized problem can be further

simplified. Although such a simplification may not be

attractive for 2-group global calculation, it is attractive

in collapsing many-group calculations to fewer group calcu-

lations. This scheme has not been investigated.

5.2.7 TRANSPORT THEORY

It was shown in Section 2.2 that it is possible to de-

fine exact equivalence parameters for any reference solution.

In this thesis, however, the two-group fine-mesh diffusion

theory results were used as reference solutions. Thus the

response matrices were also generated with the diffusion

theory approximation. The effects of using transport theory

solutions as the reference solution and generating the

response matrices with transport theory needs to be investi-

gated.
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APPENDIX A

DESCRIPTION:.:OF EW? TET t.PROBLEMS

A.i THE CISE BWR BENCHMARK PROBLEM

A.2 THE HAFAS BWR BENCHMARK PROLEM

A.3 THE LSHBWR BENCHMARK PROBLEM

A.4 THE PRELIMINARY TEST PROBLEM

A.5 THE HOMOGENEOUS TEST PROBLEM



A-2

A.1 THE CISE BWR BENCHMARK PROBLEM
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FIGURE A.1.1 CORE LAYOUT OF THE CISE BENCHMARK FOR

ASSEMBLY HOMOGENIZATION
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+
1'

xS

1.0

III

>~: 'k

15.0
+

12.5

FIGURE A.1.3 ASSEMBLY DESCRIPTION AND SURFACE ORIENTA-

TION FOR THE CISE BENCHMARK

Assembly Type

Zone

II

III

A

3

2

2

A

3

1

2

B

4

2

2

B

4

1

2

w

2

2

2

V

5

5

5

TABLE A.l.1 MATERIAL POSITIONS FOR"ASSEMBLIES OF THE CISE

BENCHMARK
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13.0

t-1.0



Compos it ion

(Ontrol blade)

2

(Water)

3

(Fresh fuel)

4

(Depleted fuel)

Group , g

1

2

1

2

1

2

1

2

x =1.0

X 2 = 0.0

2.5

TABLE A.1.2 HETEROGENEOUS CROSS SECTIONS FOR TfnH CISE BENCH-

MARK

A-5

D

(cm)-

3.00

0.15

2.00

0.30

1.80

0.55

1.80

0.55

a

(cm )

0.08

1.00

0.0.

0.01

0.008

0.085

0.008

0. 085

(cm)

0.0

0 .0

0.0

0-. 0

0.006

0.110

0.005

0.100

(cm

0.0

0.04

00. 012

0.012



A-6

Assembly Type Group, g

A

(Fresh fuel)

B

(Depleted fuel)

A+

(Fresh fuel,
controlled)

B+

(Depleted fuel
controlled)

w

(Water)

1

2

1

2

1

2

1

2

1

2

D

(cm)

1.8440

0.4284

1.8440

0.4284

1.8580

0.4283

1.8580

0.4283

a
g

(cm

0.00607

0.05946

0.00608

0.05946

0.00804

0.07416

0 .00804

0.07415

2.0000 0.0

0.3000 0.01

Vf
g

a)

0.004556

0 .07254

0.003796'

0 .06595

0.004565

0. 07558

0.003804

0.06870

0.0

0.0

Xl = 1.0

X 2 = 0.0

= 2.5

TABLE A.l. 3 FLUX-WEIGHTED CONSTANTS FOR THE CISE BWR BENCHMARK

Egg

(cm

0. 01874

0.0

0.01874

0.0

0.01772

0 .0

0.01772

0.0

0.04

0.0



Assembly
Type

A

B

Group, g

1

2

2

I

2

1

2
w

TABLE A.1.4 ASSEMBLY DISCONTINUITY FACTORS FOR THE CISE

BENCHMARK

A-7

fx
g

0.9623.

1.4510

0.9625

1.4510

0.8955

0.6492

0.8949'

0.6488

1.0

1.0

x+

g

0.9623

1. 4510

0.9625

1 .4510

1.0150

1.8880

1..0160

1.8890

1.0

1.0

fy
9

0.9623

1.4510

0.9625

1.4510

0.8955

0.6492

0.8949

0.6488

1.0.

1.0

9

0.9623

1.4510

0.9625

1.4510

1.0150

1.8880

1.0160

1.8890

1.0

1.0
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A.2 THE HAFAS BWR BENCHMARK PROBLEM
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III II II . I

II I

III I I I

a

0.9 (cm)

3.26

3.26

+
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3.26

3.26
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0.40

y

FIGURE A.2.2 ASSEMBLY DESCRIPTION AND SURFACE ORIENTATION

FOR THE HAFAS BENCHMARK
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TABLE A.2.1 MATERIAL POSITIONS FOR ASSEMBLIES OF THE

HAFAS BENCHMARK
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Composition

(Fuel a, void=0%)

2

(Fuel b, void=0%)

3

(Fuel c, void=0%)

4

(Fuel d, void=0%)

(Fuel a,

6

(Fuel b,

void=4 0%)

void=40%)

7

(Fuel c, void=40%)

8

(Fuel d, void=40%)

(continued)

TABLE A.2.2 HETEROGENEOUS CROSS SECTIONS FOR THE HAFAS

BENCHMARK

A-10

Group, g

1

2

I

2

1

2

1

2

1

2

1

2

1

2

1

2

D
g

(an)

1.400

0.375

1.400

0.375

1.400

0.375

1.400

0.375

1.680

0.530

1.680

0.530

1.680

0.530

1.680

0.530

a
mg

(am )

0.009

0.080

0.009

0.070.

0.009

0.060

0.009

0.050

0.008

0.077

0.0085

0.067

0.009

0.057

0.009

0.047

f
g

(a)

0.0065

0.1220

0.0057

0.1000

0.0051

0.0800

0.0051

0.0700

0.0063

0.1180

0.0055

0.0960

0.0049

0.0780

0.0049

0.0680

21

(an)

0.016

0.017

0.018

0.018

0.010

0.0105

0.0110

0. 0110



Composition

9

(Fuel a,

10

(Fuel b,

11

(Fuel c,

12

(Fuel d,

void=70%)

void=70%)

void=70%)

void=70%)

13

(Fuel can and water)

14

(Control blade)

15

(Water)

X1= 1.0

X2= 0.0

v = 2.5

TABLE A-2.2 HETEROGENEOUS CROSS SECTIONS FOR THE HAFAS

BENCHMARK

A-li

Group, g

1

2

1

2

1

2

1

2

1

2

1

2

2

ID

(cm)
(an)

2.000

0.800

2.000

0.800

2.000

0.800

2.000

0.800

1.530

0.295

1.110

0.185

2.00

0.300

ag

(cm

0.0078

0.073

0.0082

0.0630

0.0086

0.0530

0.0086

0.043

0.0005

0.0090

0.08375

0.950

0.000

0.010

f

(an)

0.0061

0.1140

0.0053

0.0920

0.0047

0.0720

0.0047-

0. 0620

0.000

0.000

0.000

0.000

0.000

0.000

E 21

(an)l

0.0052

0.0053

0.0054

0.0054

0.031

0.00375

0.04
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Assembly type Group, g

A

(Fresh fuel, 0% void)

40
A

(Fresh fuel, 40% void)

A7 0

(Fresh fuel, 70% void)

A+

(Fresh fuel,
controlled)

B

(Depleted fuel,
0% void)

B
40

(Depleted fuel,
40% void)

B7 0

(Depleted fuel,
70% void)

1

2

1

2

1

2

1

2

I

2

1

2

2

D

(arn)

1.4320

0.3414

1.6380

0.4097

1.8500

0.4890

1.4160

0.3441

1.4320

0.3424

1.6380

0.4128

1.8500

0.4955

) O
(a)

0.00678

0.04713

0.00639

0.04486

0.00616

0.04221

0.00927

0.06099

0.00678

0.04144

0.00667

0.0392

0.00638

0.03655

f)

0.004255

0.06249

0.004099

0.05972

0.003946

0.05661

0.004304

0. 06894

0.003879

0.05255

0.003725

0.05052

0.003573

0.04677

gg3

(1m

0.02065

0.0

0.01588

0.0

0.01208

0.0

0.01974

0.0

0.02121

0.0

0.01617

0.0

0.01214

0.0

(continued)

TABLE A.2.3 FLUX-WEIGHTED CONSTANTS FOR THE HAFAS BlAM BENCH-

MARK
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Assembly Type

(Depleted fuelr
controlled)

(Water)

1

2

1

2

D
g

(cm)

1.4160

0.3451

2.0

0.3

a

(an)

0.00926

0.05405

0.0

0.01

Vf

(an)

0.003924

0.05773

0.0

0.0

gg

-1)(.23

0. 02031

0.04

0.0

X = 1.0

X2 = 0.0

v = 2.5

TABLE A.2.3 FLUX-WEIGHTED CONSTANTS FOR THE HAFAS BWR

BENCHMARK (CONTINUED)

Group, g



Assembly
Type

A

A 4 0

A7 0

B

B 40

B 70

w

Group, g

1

2

1

2

1

2

1

2

1

2

.1

2

1

2

1

2

2

TABLE A. 2. 4 ASSEMBLY DISCNTlINUITY FACIO1M FOR E HAFAS BENCHMARK
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fx

0.9311

1.4740

0.9368

1.5330

0.9406

1.5830

0.8169

0.6264

0. 9313

1.4070

0.9372

1.4610

0.9407

1.5060

0. 8151

0.5902

1.0

1.0

x+fX

0.9677

1.2470

0.9709

1.2550

0.9739

1.2560

1.0570

1.7320

0. 9694

1.2130

0.9724

1.2200

0.9750

1. 2210

1.0610

1.6830

1.0

1.0

fY

0. 9311

1 . 4740

0.9368

1.5330

0.9406

1.5830

0.8169

0.6264

0. 9313

1.4070

0.9372

1.4610

0.9407

1. 5060

0. 8151

0.5902

1.0

1.0

+

0.9677

1 .2470

0.9709

1.2550

0.9739

1.2560

1.0570

1.7320

0.9694

1.2130

0.9724

1.2200

0.9750

1.2210

1. 0610

1.6830

1.0

1.0
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A.3 THE LSHBWR BENCHMARK PROBLEM
Y (cm)

inJ in =

35 35 35 135
35 35 35

0 0 35 35 35 35

0 35 35 35 35

0 0+ 0 0 35 35 35 35

F:. 0 0 35 35 35 35 inJ n=

0

40 40 40 0 .0 0 35 35 35 35

70 70 70 40 0 0 30 30 35 35

70 70 70 40 0 0+ 0 0 35 35

70 70 70 40 0+ 0+ 0 0 35 35

15.31
Jo -l= 0 X (cm)

FIGURE A. 3.1 CORE LAYOUT FOR THE LSH1BWR BENCHMARK

35

0

Jon
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+
y

D C C A A A C D

DB B BBB3 1 C

C B G B B B Bj A

C B B B F B B A

C B B G B B 31 A

D C B B B C Bj C

D C C B B B B C

E ID D C C C ID ID

CNHD

0.90 (cm)

1.63

0.33
1.30

1.63

1.63

1.63

1.63

1.63

1.63

0.97
0.40

7~7

FIGURE A.3.2 ASSEMBLY DESCRIPTION AND SURFACE ORIENTATION

FOR THE LSHBWR BENCHMARK

s sembly
zone

A

B

C

D

E

F

G

H

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

'5

16

17

17

40

18

19

20

21

22

23

24

25

25

70

26

27

28

29

30

31

32

33

33

TABLE A. 3.1 MATERIAL POSITIONS FOR ASSEMBLIES OF THE LSHBWR

BENCHMARK

2<

2
N

0 +
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TABLE A.3.2 HETEROGENEOUS CROSS SECTIONS FOR THE LSHBWR BENCHMARK PROBLEM

COMPOSITION

1

2

3

4

5

6

7

8

9

10

GROUP

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP I
GROUP 2

GROUP 1
GROUP 2

GROUP I
GROUP 2

GROUP I
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

DIFF. CIJEFF.

0. 142700E+01
0. 369080 E+00

0. 141060E+01
0. 379930 E+00

0. 139490E+01
0. 378210E+.00

0. 137490E+01
0. 380550E+00

0. 134160 E+01
0. 391690 E +00

0. 158160E+01
0.307530 E+ 0

0. 139730E+01
0. 27 1070 E+00

0. 152290 E+01:
0. 312270E+00

0. 111330 E+Ol
0. 184010E+00

0. 141630E+01
0.368490 E+00

REMOVAL X-5

0. 262550E-01
0.7791 20E-01

0 .255200E-01
0.751790E-01

0 .257680E-01
0 .637000E-01

0. 262460E-01
0 .546390E-0 1

0.259190E-01
0.461 690E-01

0.281970E-01
0.869100E-02

0.29091 OE-01
0 .444 140E+00

0 . 268460E-01
0. 875880E-02

0 .874190E-01
0.967260E+00

0 .26371B0E-01
0 .800900E-01

OUTSCATTER X-S

0. 166990E-01
0.0

0. 162170E-01
0.0

0. 166060E-01
0.0

0. 171350E-01
0.0

0. 167510E-01
0.0

0.277330E-01
0.0

0.162010E-01
0.0

0. 262490E-01
0.0

0..375290E-02
0.0

0.167780E-01
0.0

NU-FISSION X-S

0. 665270E-02
0. 1 26440E+00

0. 651540E-02
0. 121890E+00

0. 559700E-02
0. 971490E-01

0 .491400E-02
0. 779920E-01

0.427110E-02
0.6 10660E-01

0.0
0.0

0. 589980E-02
0. 268800E-01

0.0
0.0

0.0
0.0

0.662050E-02
0. 125430E+00

)

)

)



) ) ) ) )

TABLE A.3.2
(CONT.)

COM POSIT ION

11

12

13

14

15

16

17

18

19

20

GROUP

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

DIFF. COEFF.

0. 141780 E+01
0. 376890E+00

0. 141410E-r01
0. 371370 E+00

0. 140190 E+01
0.371680 E+00

0. 139030E+01
0.371310 E+00

0. 158420E+01
0. 309230E+00

0. 140970E+01
0.267700 E+00

0. 153 100 E+01
0. 294170E+00

0 .168930E+01
0. 527170 E+00

0. 169710 E+01
0. 538430 E+00

0. 168950 E+01

REMOVAL X-S

0. 254260E-01
0. 779900E-01

0.262910E-01
0. 668700E-01'

0.271 220E-01
0. 576770E-01

0.281730E-01
0 . 504670E-01

0. 278650E-01
0.864976.E-02

0 .287200E-01
0 .449050E+00

0. 31 3090E-01
0 .916000E-02

0.1 91380E-01
0 . 760250E-01

0. 181410E-01
0. 737680E-01

0. 189620E-01.

OUTSCATTER X-S

0 .162050E-01
0.0

0.1 72090E-01
0.0

0. 181040E-01
0.0

0. 191260E-01
0.0

0.274030E-01
0.0

0. 160240E-01
0.0

0. 307390E-01
0.0

0. 999040E-02
0.0

0.955690E-02
0.0

0.103320E-01
0.531530E+03 0.634410E-01 0.0

NU-FISSION X-S

0. 651950E-02
0. 1221 1OE+00

0. 569940E-02
0. 984880E-01

0.507070E-02
0. 795880E-01

0.. 458180E-02
0. 646670E-01

0.0-
0.0.

0. 588620E-02
0. 265000E-01

0.0
0.0

0.633850 E-02
0. 121900E+00

0.621530E-02
0.1 18220E+00

0. 546480E-02
0. 961500E-01

)

)

)

.3

cH
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COMPOSITION

21

22

23

24

25

26

27

28

29

30

GROUP

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP I
GFOUP 2

GROUP 1
GROUP 2

DIFF. COEFF.

0. 167460E+01
0. 532680 E+00

0. 166130 E+01
0. 532230E+00

0. 197400E+01
0. 403610E+00

0. 169900E+01
0.360880 E+00

0. 1 60950E+01
0. 316570E+00

0. 166940E+01
0. 525170 E+00

0. 169750 E+01.
0. 536580 E+00

0. 169000 E+01
0. 529360 E+00

0. 167550E+01
0.530250E+00

0. 166280 E+01.
0. 529560 E+00

REMOVAL X-S

0. 195930E-01
0 . 546350E-01

0 .204500E-01
0.477090E-01

0. 198060E-01
0 .658170E-02

0.211310E-01
0.438710E+00

0 .282650E-01
0.854980E-02

0. 148870E-01
0. 7801 70E-01

0.1 40 690E-01
0. 756550E-0 1

0. 145590E-01
0. 654030 E-01

0. 149260E-01
0.567280E-01

0. 154660E-01
0.4993 30E-01

OUTSCATTER X-S

0. 109500E-01
0.0

0.1 16880E-01
0.0

0. 194180E-01
0.0

0.933020E-02
0.0

0. 277210E-01
0.0

0. 5710OOE-02
0. 0

0.546140E-02
0.0

0.590060E-02
0.0

0. 624900E-02
0.0

0.666170E-02:
0.0

NU-FISSION .X-S

0.485350 E-02
0. 779930E-01

0. 438500E-02
0. 636410E-01

0.0.
0.0

0. 562870E-02
0. 279270E-01

0.0
0.0

0. 630570E-02
0. 1 23400E+00

0. 619450E-02
0.119800E+00

0. 54391 OE-02
0 .980660 E-01

0. 483840E-02
0.804220E-01

0. 437940E-02
0. 665090E-0 1

) 3

TABLE A.3.2
(CONK)

) I I

H



TABLE A.3.2
(CONT.)

COMPOSITION

31

32

33

34

35

GROUP

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP I
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

DIFF. COEFF.

0. 197440E+01
0. 408850E+00

0. 170050 E+01
0. 370520 E+00

0. 160990E+01
0. 316700 E+00

0. 127370E+01
0. 956900E+00

0. 201000 E+01.
0.325900 E+00

REMOVAL X-S

0.1.14830E-01
0. 657670E-02

0. 1571 60E-01
0.4 19950E+00.

0.282560E-01
0 .85467 OE-02

0.737700E-02
0.507830E-02

0.356870E-01
0 . 996300E-02

OUTSCATTER X-5

0-110950E-01
0.0

0. 414920E-02
0.0

0.277120E-01
0.0

0. 566690E-02
0.0

0.351600E-01
0.0

NU-FISSION X-S

0.0
0.0

0. 565780E-02
0. 338370E-01

0.0
0.0

0.0
0.0

0.0
0 .0

V = 2. 5

X = 1.o

2= 0.0

Removal X-S Group 1

Removal X-S Group 2

a 21

a
2

Outscatter X-S Group 1 Z 21

I )

)

5% )

)

)

) )

NJ
0
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Zone Material

A 2.50 w/o fuel adjacent to zircaloy can

B 2.50 w/o fuel in the interior

C 1.90 W/o fuel

D 1.49 w/o fuel

E 1.18 w/o fuel - corner rod

F The water rod

G The gadolinium rods

H Channel walls and wide and narrow gaps

Control rod (if present)

TABLE A.3.3 MATERIAL DESCRIPTION FOR THE LSHBWR BENCHMARK
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Type of Assembly

Constants

ER

2

VE f

2

a 2

2

x fV
1 1

+ +

f Xfy
11

f xfy
2 2

TABLE A.3.4

0

1.423

0.02815

0. 01839

0.00444

0.3486

0.07038

0.07362

0.7979

0 .5084

1.102

1.828

0

1.447

0.02753

0.02059

0.00441

0.3361

0.05187

0.06304

0. 9233

1.580

0.9941

1.293

40

1.673

0.02133

0 .01480

0.00420

0.4192

0 .04968

0.06117

0.9380

1.615

0.9911

1.280

70

1.673

0.01810

0.01157

0.004184

0.4137

0.04834

0.05965

0 .9414

1.758

0.9879

1.338

FLUX-WEIGHTED PARAMETERS AND ASSEMBLY DISCON-

TINUITY FACTORS FOR THE LSHBWR BENCHMARK



A-23

A.4 THE PRELIMINARY TEST PROBLEM

-- i

4J 4

A A

A A

4 4

A A

A A

A A-

A A

Jin + Jin
1 2

4--
4J# 4 4I

A A

A A

r 1 7 9M - p

4f

4

4

A A

A

T44

C-
4

(--

4

A = 1
global

in
Ji

in is given
in

2

by a J -n = 0

assembly eigen-
value calcula-
tion

4

4-
4

Spatial shape of J :
g

(1) For the first standard solution, it is the distribution

obtained from a J n = 0 assembly eigenvalue calculation.

(2) For the second standard solution, it is flat.

ZONE LAYOUT OF THE PRELIMINARY TEST PROBLEM

4
Ja

FIGURE A. 4.1

I



A- 2 4

(cm)

0.903

1.627

.0.34

1.29

1.63

1.63

1.63

1.63

1.62

1.63

0.39

01. 60
0.39

4,

I

15.31

8

FIGURE A .4 .2 ASSEMBLY DE SCRIPT IONi FOR THE P RE LIMINARY

TEST PROBLEM

I

Toft-am"

3 2 2 1 1 1 2 3

3 1 1 1 1 1 1 2

2 16 1 1 1 1 1

2 1 1 1 5 1 1 1 7

2 1 1 6 1 1 1 1

3 2 1 1 1 6 1 2

3 2 2 1 1 1 1 2

4 3 3 2 2 2 33
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Zone Material

2.50 w/o fuel

2 1.90 w/o fuel

3 1.49 w/o fuel

4 1.18 w/o fuel-corner rod

5 The water rod

6 The gadolinium rods

7 Channel walls and wide and narrow gaps

8 Control rod

TABLE A.4.1 MATERIAL DESCRIPTION FOR THE PRELIMINARY

TEST PROBLEM
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TABLE A.4.2. HETEROGENEOUS CROSS SECTIONS FOR THE PRILIMINARY TEST PROBLEM

COMPOSITION

1

2

3

4

5

6

7

8

GROUP

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2

GROUP 1
GROUP 2.

GROUP 1
GROUP 2

xi

X 2

v

DIFF. COEFF.

0. 141060E+01
0.379930 E+00

0. 139490E+01
0. 3782 10 E+00

0. 137490 E+01
0. 380550 E+00

0. 134520.E+01
0.391690 E+00

0. 158160 E+01
0.307530E+00

0. 139730E+01
0. 271070E+00

0. 152290 E4-01
0. 312270 E+00

0.111330E+01
0. 184010 E+0O0

REMOVAL IX-S

0. 255200E-01
0.751790E-01

0. 257680E-0 1
0 .637000E-01

0. 262460E-01
0 .546390E-01

0.2591.90E-01
0. 461 890E-01

0.281970E-01
0.8691 OOE-02

0. 290910E-01
0. 444140E+00

0 . 2684 60E-01
S. 875880E-02

0.874190E-01
0.967260E+00

OUTSCATTER IX-S

0 .162170E-01
0.0

0. 166060E-01
0.0

0. 171350E-01
0.0

0. 167510E-01
0.0

0. 277330E-01
0.0

0. 162010E-01
0.0

0. 262490E-01
0.0

0.375290E-02
0.0

NU-FISSION X-S

0. 651540E-02
0. 121890EE+00

0. 559700 E-02
0. 971490E-01

0. 491400E-02
0. 779920E-01

0. 42711OE-02
0. 610660E-01

0.0
0.0

0.589980E-02
0. 268800E-01

0 .00
0.0

0.0
0.0

1.0

0.0

2.5

) 4 p )

N)
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A. 5 THE HOMOGENEOUS TEST PROBLEM

A,

M

15 .0O

net
J =0

g

(cm)

net=059 =

A A

A

__I

A

15.0

net=,
9

L

in
i =0
g

X (cm)

A is a homogeneous assembly.

FIGURE A.5.1 CORE LAYOUT FOR THE HOMOGENEOUS TEST PROBLEM

D1 (cm)

Z (cm 1 )
. 1

21 (cm
2 )

VE (cm 1 )

v = 2.5

S= 1.0

X2 = 0.0

1.844

0.02481

0.01874

0.004556

(cm)

(cm1 )

vf (cm 1 )
f2

TABLE A.5.1, CROSS SECTIONS FOR THE HOMOGENEOUS TEST PROBLEM

0.4284

0.05946

0.07254

L
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APPENDIX B

USING CITATION TO GENERATE RESPONSE

MATRI CES

B.1 USING CITATION TO GENERATE PARTIAL

CURRENT RESPONSE MATRICES

B.2 USING CITATION TO GENERATE NE CURRENT

RESPONSE MATRICES
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B.1 USING CITATION TO GENERATE PARTIAL CURRENT RESPONSE

MATRICES

In Chapter Three we have pointed out that the generation

of the i-th column of the response matrices [R] and [R'] for

a region is equivalent to solving a fixed-source problem de-

fined by the geometry of that region with a unit incoming

partial current for the subsurface and group associated with

in
the i-th element of [ 1 and with zero incoming partial

currents for all other groups and subsurfaces. With angular

and spatial approximation made for the unit incoming partial

current, the problem is well-defined and can be solved by

any method available. However, to be consistent with our

full core reference calculations which are generated with a

diffusion theory code, a multi-group diffusion theory finite-

difference code "CITATION" was used to solve these fixed

source problems. Unfortunately, used directly, CITATION can

only solve extrapolated and reflected boundary value problems.

Thus, a trick is needed to solve problems with unit incoming

partial currents as boundary conditions.

In CITATION a region is divided into a regular array of

small right rectangular parallelopipeds (meshes) with grid

indices defined by

i = :, 1, 2,...I; u, v, w = x

,mn 3= 0, 1, 2,...J; u, v, w = y

The neutron balance equations within each mesh is given by
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x
(Jg*g., ,k

x- J ))(y. -y. (z z
g.3. j-l k -k)-1

-crJ ) (x. -x. )Z- z )
g. )3x-1 (Zk k-1
gJ-1,k

- J )(x. -x. (y. - y.1)1.. 1-l j j-l

+ (JY

+ (j
gi,jk

GX
Xvg +9 vz V.

t g. . i, ,k , gg. .f 1,9g. . j, k
gijk'j,k g'= i,j,k A tjgiI,k'jk

= 1, 2,...J (B.l)

k = 1, 2,...K

g=l, 2,...G

is the f ace-averaged group-g net current in
m,n

direction u on the mesh face (u,,v,w);

V [vM VM , w E [Wn-l,wn

is the volume-averaged group g flux for mesh
j,k

(ijk),

is the volume-averaged group g external source for
j,k

mesh (ij,k),

= (X.- x. 1 ) (Y. - y . ) (z - z ) is the volume

of the mesh,

is the total number of groups,

is the global reactor eigenvalue which is set

arbitrarily for a fixed-source problem.

In this equation, the cross section notations are stand-

where

Ju

9 ,

gi,

S
gi

V.

1G3
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ard. The net currents for the interior faces are then ex-

pressed in terms of average fluxes by Fick's law and continuity

of fluxes across faces. On boundary faces, the net currents

are related to the average fluxes by boundary conditions.

In order to use CITATION directly, the boundary conditions

must either be net currents equal to zero or have the form

n =(B.2)
gs 1/C + A/2D s

where

J n is the face-averaged group g net current in direction
gs

n at the boundary surface,

n is the outward normal of the boundary surfaces,

A is the A^-direction mesh size of meshes neighboring

the boundary surface,

D is the group g diffusion coefficient in those meshes

neighboring the boundary surfaces,

$9s is the volume-averaged group g flux in those meshes

neighboring the boundary surface,

Cs is a constant that can be arbitrarily specified.

The fixed-source problem which we are trying to solve

has an incoming partial current equal to 1 for one group on

one subsurface and zero otherwise. To show how this condition

can be simulated we shall assume that the unit incoming partial

current is in group g on the boundary subsurface (x=x0 'y,z);

y E [y0,yp z (zO'Z ] , p < J, q < K. The group-g net
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qurrents on those mesh faces belonging to this subsurface

are given by

, 

Jin go0 j ,k

= -

1,j

out

k 9x0,j,k

$ - $s
gl , k 9 0 jk

k x -x0

2

= 1, 2,...p; k = 1, 2,...q

where

in

g0 , ,kj

outand J are the face-averaged group-g partial
g0, j,k

currents on mesh face (x0 'yz); y 6 y 1 0y.],

z F [zk-1zk]I

is the x-directional derivative of the race-
3x 0, jk

averaged group-g flux evaluated at mesh face

(x0 1yz); y [y .1 1 y, z c EZk-l'zk]

is the face-averaged group-g flux on mesh face
901 l

(x0 1y,z); y [y. 1 ,y.], z E [zklrzk].

The other-terms in this equation are the same as those de-

fined in equation (B.1) and (B.2).

The last equality in Eq. (B-3) is a finite difference

approximation, consistent with CITATION, for the derivative.

It is consistent in the sense that CITATION also uses the

same approximation to express Fick's law. Using the diffu-

Jx
g0 1j ,k

(B.3)

91,,
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sion theory approximation, we have for these mesh faces

2 1in
90,= (jk

91, j ,k

= Jin
90,j i

+ Jout )

x -x

1 0

2

out

0 j ,k

(B.)

out

g0 , j,k

(B.5)

Thus, the outgoing partial currents on these mesh faces are

given by
l~KO (B.6)

- 2D D
2 Tl,j,k 1,jkgJout = - in .+.".......

gj 1k x -x0 +2DQ90,j,k x1 -x 0  2Dl,j,k

2 j1,j,k 2 +j2k

and the total leakage from these mesh faces is given by

90,1j,k) (zk=k-1 -1)(zk-zk-1)

j,k (y -y ) (z - )

x -x0
+ 2D

10j k

D3

in

g0 j,k

(y -y. )(zk-z)k-1) (B.7)

+

xl -xO +2

2
g1 j ,k

s

Then

Jx

g0 j ,k

2 in
l, jrk 90, j,k
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Similar equations for outgoing partial currents and leakages

can be derived for the other subsurfaces and groups. Since

incoming partial currents are zero for other subsurfaces

and groups, only the term involving the average fluxes will

be left. Substituting the leakage expressions into equation

(B.1) and moving the term involving Jin to the right-
90,j,k

hand side, we see that the problem that we are trying to

solve is equivalent to a problem with distributed sources

S , where

4 Dii=O,
g , k 90,j,k j=1,2,...P,

S= x-X x -x0 k=1,2,...q,
g..1 0 2D1 0ifl + 2 D g~ =)

2 1,g g,

(B.8)
0 otherwise

-and with boundary conditions

1
n =g'=1,2,...G (B.9)
g 2 + A/2D , s

All terms in these equations are defined in equation (B.2).

The Jin in equation (B.8) is given by our spatial approx-
g0 ,j,k

imation and the normalization

q p

ji 'n (y-yj 1 ) (zk-zk-1) = 1 (B.10)

k= 1j=l 0 k

Comparison of equation (B.2) and (3.39) shows that the C

for this equivalent problem is equal to 0.5.
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For problems with a unit incoming partial current on

other subsurface or group, the same kind of equivalent

problem can be defined and thus all the fixed-source prob-

lems needed to generate response matrices [RJ and [R']

can be solved by CITATION.

Physically, every element of [R] and [R'] should be

nonnegative as long as the region being examined is, in a

vacuum, subcritical. However, because of the limitation of

diffusion theory, some outgoing partial currents obtained

using equation (B.6) may be negative, and thus some elements

of [P] may be negative.

A similar derivation can be carried out for a problem

with incoming partial currents not equal to zero for sev-

eral subsurfaces and energy groups. The result is equiva-

lent to a CITATION problem with C5 = 0.5 and distributed

sources S again defined by-equation (B.8) (except

for corner meshes where the contributions from all sides

to the source term have to be summed) . In Section 3.4.1,

we used this technique to obtain the reference results.

3.2 USING CITATION TO GENEPATE NET CURRENT RESPONSE MA-

TRICES

In Chapter Four we have pointed out that the generation

of the i-th column of the response matrices (R ] and [n'] for

a region is equivalent to solving a fixed-source problem

defined by the geometry of that region with a unit net cur-

rent (in the outward normal direction) for the subsurface
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and group associated with the i-th element of [J] and with

zero net currents for all other groups and subsurfaces.

With angular and spatial approximations made for the unit

net current, the problem is well-defined and can be solved

by any standard method available. However, for the same

reason that partial current response matrices are generated

by CITATION (i.e., because we wish to use diffusion theory

as a numerical standard), net current response matrices are

generated by the same code. As mentioned in the previous

section, CITATION can only solve extrapolated and reflected

boundary value problems. Thus a trick is needed to solve

problems with unit net currents as boundary conditions.

To show how this condition can be simulated we shall

assume that the unit net current is in group-g on the

boundary subsurface (x=x0 1'y,z) ; y s [y0 ,y'p], z [zo0 zq1'

p < J, q < K. The group-g net currents on those mesh faces

belonging to this subsurface are given by the spatial approx-

imation and the normalization

q p
) 7 (y.y. ) (zk-zk ) = -1 (B.ll)

. g . Y j y-1 )Zk- zk-l
k= j=l 0,j,k

In this equation there is a minus sign because the outward

normal direction is in the negative x-direction. On the

other subsurfaces and groups, the net currents are zero.

Substituting these values for the leakage terms into equa-

x
tion (B.1) and moving the term involving J~ to the

right hand side, we see that the problem we are trying to
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solve is equivalent to a problem with distributed sources

S where
gi3k

x

g0  ,
j = 1L, 2,...p,

Si = X - x

Girjok 1k = 1, 2,...qr

g = g, (B-12)

0 otherwise

and with zero net currents for all groups and subsurfaces

as boundary conditions.

After the mesh volume-averaged fluxes are determined,

the group-g face-averaged fluxes on the subsurfaces (x=x0 ,

y,z) can be determined by

J
s- x 1 X 0 ,ikk + t (B.13)

90,j k 2 Dg1 j, k g k

All terms in this equation are defined in the previous sec-

tion. For the face-averaged fluxes on the other subsurfaces

and groups only the term involving the average fluxes will

be left because the net currents for those subsurfaces and

groups are zero.

From equation (B.11) we can see that J is nega-
g0 ,j ,k

tive so that the equivalent problem has a negative source.

If the region has an infinite multiplication factor smaller

than 1, the total power in the region resulting from this

negative source will be negative. Since CITATION does not

allow negative total power (although negative fluxes are
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allowed), we solve this fixed-source problem by changing

the sign of the sources. After the solution is obtained,

the sign is again changed.

For problems with a unit net current on other subsur-

faces or groups, the same kind of equivalent problem can

be defined and thus all the fixed-source problems needed

to generate response matrices [R.1 and [R'] can be solved

by CITATION.

If a region has an infinite multiplication factor

smaller than 1, the region in an infinite lattice with a

positive source will have positive fluxes everywhere because

this is a problem that is physically realizable. Because

of the linearity of the neutron balance equation, the same

region in an infinite lattice with a negative source will

have everywhere negative fluxes. Thus, the elements of

the net current response matrices for such regions will all

be negative. On the other hand if a region has an infinite

multiplication larger than 1, the fluxes resulting from a

positive source in such a region in an infinite lattice

may have both signs since there is no everywhere positive

physical solution in a supercritical infinite lattice with

a positive source. Thus, the elements of the net current

response matrices for such regions may have both signs.
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APPENDIX C

AN EFFICIENT WAY TO INVERT [A. .1
iD
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To obtain the response matrix [R] for a cluster

(i,j) , a (8*G*NSEG) x (8*G*NSEG) matrix [A j defined

following equation (3.7) must be inverted. Because of

the sparseness of [A. .1, the problem can be simplified.

First [A. .] is expressed as

[A1] [A] 7
[A..

L[A 3] [A] j

where [A ] (a = 1L, 2, 3, 4) are of the same size (i.e.,

(4*G*NSEG)*(4*G*NSEG)). Then the inverse of [A. .]will

be [B] [B2

[A [ ]B

[B3 ] 
[B4 ]

where

[B4 ] = { [A4 ] + [C1 ] [A2] I

[B3 ] = [B4 ] [C1 ]

[B2] = C2 ] [B4]

[B1 ] = [A1] + [C2 ] [B3

[C-] -[A3] [A 1 ]-

[C2 ] =-[A 1 ] [A2]

Since

14
[01][1 ] [01] -[R 1

[0 ] [I] [0 ] [0]J

[A -

[0] -[R j+2] [I] [0]

[010] [0] [1]



its inverse [A1 ] will be

[A

[I]

[0].

[01

[0]

Then [C1 ] and [C21 will be

1+] [R , 2- j+ -; -

$4 01 u i + Fi+r j+ 1

[0] [3 j

[Oj i+12, j+h I

[0]

[0]

Ri4+ (R

[R 2, i ,

[ 2J+ ] i, [R};i+2]

[0] [ 4 2

[Cl i

I "

[0]

[0]

Now only [A I

[E]

[R 1 +42

[R J ]

4 33

734

[0]

44

[0]

[0]

(Rt ] i+ ]

[R 1[C [A] ned e ivered. If e dfin

S[ [ need be nerted. If we define

[E 1 [E 2
[A] + [C ]([A2

L[E3 ] [E 4 ]j

0-3

[0]

(R ;i+]

[0]

ro
[0]

[TI

[0]

14

[0]

[0]

[I]

[2 =

MONA
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then the inverse of [A 4 ] + [C1 ] [A2] will be

[El = [F] =

where
[F4 ]4

[F3 ]

[F2]

[F1 ]

[C3 ]

[C 4 ]4

Because [A4 ] +

[F3 ]

- {[E4 ] + [C 3] FE2 II

[F 4 ] [C 3 ]

[C4 ] [F4 ]

- E] -1+ [C4 ] [F3 ]

= -[E 3]IFE]

= -E1 ] Ea]

[C1 ] [A2] has a form

[Xl

[0]

[X]I

[X]

[X]

[X]

[X]

[X]

[XI

[XI

[X]

[0]

[Xl

[XI

[X]

[X]

where [0] is a null matrix and [X] represents a matrix with

nonzero elements, [E1 ] will be of a form

[X] [Xfl

[0 [X]J

[E ] [E12

[0] [E22]3

[F2]

[F j
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Then

[E1-[E 1 ] mE 2 2

[E

= [E] [E 2 2

Now the (8*G*NSEG)X(8*G*NSEG) matrix inversion becomes two

(NSEG*G) X (NSEG*G) and one (2*NSEG*G)X(2*NSEG*G) matrix in-

version and some matrix multiplication. This method is

-lused to obtain [A. I in the code "RESPONSE". In addition

the sparseness of [C1] , [C2  [A2 ] , [A4] and [E] are fully

used in the matrix addition and multiplication. Also in

that code the sparseness of [B. *1, [C. .1 and ID. .1 which
1,3 1,3 1,3

are defined following equation (3.7) are fully used to obtain

[R]
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APPENDIX D

THE NONCONVERGENCY OF GAUSS-SEIDEL ITERATION

METHOD IN SOLVING THE 5-NODE PROBLEM USING NET

CURRENT RESPONSE MATRICES
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In Chapter Three where partial current response ma-

trices were used, the Gauss-Seidel iteration method was

used to solve the 5-node local problems (Eq. (3.12)) to

determine the partial currents on the surfaces of the

central node. Although we cannot prove by standard math-

ematical methods that the iteration will converge, the

physics of the situation suggests that it will in fact

always converge. On the other hand, if net current re-

sponse matrices are used, there is no physical reason

that the same method will converge if it is used to solve

the 5-node local problems (Eq. (4.2)) to determine the

net currents on the surfaces of the central node. In order

to understand the convergency better, a one dimensional

one group local problem was analyzed.

For a slab of width L with a unit net current coming

in through the face (x = L) and zero net current on the

face (x = 0), the flux in the slab is given by

cosh Kx
x) (D.l)

DK sinh KL

where D is the diffusion coefficient of the slab,

L is the width of the slab,

O(x) is the flux at x,

-X1 -/2

D

In this equation the cross section notation is standard, and
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A is the estimated global eigenvalue. Using (D.1), the

net current response matrix [R] can be obtained and it is

-cosh KL I
[R] = (D.2)

KD sinh KL cosh KL

In this equation there is a minus sign because in the defi-

nition of net current response matrices (Eq. (4.1)), we use

the outward normal direction as the positive direction.

The Gauss-Seidel iteration matrix of equation (4.2) is

[0ru -[D]
[B1 ] =-[] ED]J(D.3)

where [B 1] is the Gauss-Seidel iteration matrix,

[D] and [R] are defined following equation (4.2).

In order to be convergent the spectral radius of this itera-

tion matrix which is determined by the spectral radius of

-11_ 1 [D]has to be smaller than 1. Before calculating

the spectral radius of -[RQJ [D], we point out that another

possible Gauss-Seidel iteration matrix, obtained by exchang-

ing the order of the submatrix equations in equation (4.2),

is given by

[B 2  -(D.4)

L 0]i -[D] [U]

The spectral radius of this iteration matrix is determined

-1by the spectral radius of -[D] [R]. It is important to

realize that although the eigenvalues of -[D] [R] and
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-l --[R] ED] are the inverse of each other (since -[D]~[Rp] is

-*1just the inverse of - [R] ED]), their spectral radii are

not the inverse of each other.

Because there is only one dimension, a local problem

will involve only three nodes. For simplicity we assumed

that all three nodes are geometrically and materially

identical. Then [D] is given by

-1cosh KL 0

[D] =(D.5)

KD sinh KL 0 cosh KL 1

Because

[D1- = -KD sinhKE sech KL se 2 (D.6)
0 sech KL

-[DJ [R] is given by
1 ~1 sech <L

-[D] [3] = -(D.7)

sech KL s

-- l

The eigenvalues of -[D] [R] are

X=1 sech KL (D.8)

-l -lBecause -[z?] [D] is the inverse of -[D] ER], its eigenvalues

are given by

(1 sech KL) (D.9)

If K is real so that 0 < sech KL < 1, the spectral radii

of both iteration matrices will be larger than 1, and thus

the use of both [B1 ] and [B I will result in divergence. If
2

K is imaginary, equations (0.8) and (0.9) become



D-5

A sec KJL (D.10)

A sec L) (D.11)

Thus, the spectral radius of -[D] [R] is always larger

than 1 and [B2 ] will always result in divergence. However,

if sec KIL is larger than 2, the spectral radius of

-l-[R] [D] will be smaller than 1 and [B1 ] will result in

convergence.

It seems clear now that even for a one-dimensional

one group problem, the Gauss-Seidel iteration method will

2not converge unless very restrictive conditions (K < 0,

sec KJiL > 2) are met. For more complicated problems such

as those two-dimensional two group problems we are concerned

with, the conditions may well be even more stringent.

2Because the value of K is modulated by the estimated

global eigenvalue, there are always some nodes in the reac-

2 2tor with positive K and other nodes with negative K.

Thus, it is clear that in order to solve all fixed problems

in a reactor by a single method, the Gauss-Seidel iteration

method must be abandoned.



E-I

APPENDIX E

THE CONVERGENCY OF THE GLOBAL-tOCAL ITERATION

PROCESS USING NET CURRENT RESPONSE MATRICES



E-2

In Section 4.4.1 we found that for some cases the

global-local iteration process converged while for others

it did not. In order to have a better understanding of

this global-local iteration process, two simpler problems

described in Figure E.1 were analyzed. All nodes of

these problems are type A assemblies of the CISE benchmark.

The values of the albedo were chosen to make the eigenvalues

of these problems to be nearly the same as the eigenvalue

of the CISE benchmark so that the response matrices cal-

culated for that benchmark could be used directly in these

problems.

Various local methods using fixed response matrices

during the global-local iteration process (as in Section

4.4.1) were analyzed. The same methods using updated

response matrices (updated in accordance with the newest

estimate of the- global eigenvalue) during the global-local

iterations were also tried. Results are shown on Table E.l

and E.2.

Case I to VII on Table E.1 indicate that fixing the

response matrices during global-local iterations may result

in nonconvergence. What happened was that the global

calculations were aborted by QUANDRY because either negative

homogenized cross sections were given by the previous local

calculation or a condition which would make one of the

iteration matrices in QUANDRY diverge resulted from the

previous local calculation.



A a=2 .0

X (cm)

TEST PROBLEM (a)

a=17.45

A A A

A A

a=2.0

(cm)

45.0

J=0

TEST PROBLEM (b)

A is the type A assembly of CISE benchmark (described

in Appendix A.1).

FIGURE E.1 CORE LAYOUT FOR PROBLEMS USED TO TEST THE

CONVERGENCE OF THE GLOBAL-LOCAL ITERATION

PROCESS.

E-3

Y (cm)

15.0

J=0

a=48.47

A A

J5.

J=O

Y (cm)

30.0

J=0
A



) )1 
) 

))

Case

IV

II

III

IV

V

VI

VII:

VIII

Problem

a

b

b

b

b

b

b

b

Response Ma-
trices used in
Local Calculation

Model for
Global
Calculation

F

F

F

F

F

F

F

CMFD

Method for
Local
Calculation

N5S2

NlSl

N5S1

N5S2

NlSl

N551

N5S2

N5S2

TABLE E.l CONVERGENCE OF THE GLOBAL-LOCAL ITERATIONS USING DIFFER-

ENT LOCAL METHODS FOR THE TEST PROBLEMS SHOWN IN FIGURE E.1

Fixed

Fixed

Fixed

Fixed

Updated

Updated

Updated

Updated

Convergency

Yes

Yes

No

No

Yes

Yes

Yes

No

tlx

I



)

Case

Model for
Global
Calculation

Initial
Estimation

Method for
Local
Calculation

% Errors
(after
first
iteration)

HCS
m

max

av

I

F

II

CMFD

0.32

2.08

0.26

0.20

3.57

2.08

4.15

1.89

No. of iterations
to converge

A

% Errors
(a fter
conver-
gence)

HCSM

Ex
max

av

I II

F

ADFF

NlSi

0.06

0.69.

0.28

4

0.07

0.52

0.46

0.20

-IV

F

ADFF

N5Sl

0.08

0.53

0.47

0.20

3

0.07

0.53

0.46

0.20

V

F

ADFF

N5S2

-0.13

0.52

0.63

0.26

) )

VI

CMFD

ADFC

N5S2

1.51

1.11

53.06

12.32

Failed to
converge

-0.12

0.51

0.17

0.09

TABLE E.2 THE ERRORS FOR PROBLEM (b) (SHOWN IN FIGURE E.1)
USING DIFFERENT LOCAL METHODS AND UPDATED RESPONSE MATRICES

trJ

(YR

)

)

.3)

)

)
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Case VIII on Table E.1 indicates that with a crude

global model the global-local iterations may not converge

even if updated response matrices are used in the local

calculations. A detailed examination of the results of

this case was made, and it showed that for such a crude

model, the oscillation of the global-local iterations

has a very large amplitude. It is not surprising that

with such an oscillation a stage at which one of the itera-

tion matrices in QUANDRY becomes divergent may be reached

during the global-local iterations.. Moreover, the global-

local iteration itself is a nonlinear process which may

not be convergent, especially with such a crude global

model.

For Methods NlSl and N5S1 both the converged global

and local solutions should be just those obtained from

solving the entire problem by the response matrix method

using 1-segment response matrices and thus should be equal

to each other. However, if during the global-local itera-

tions response matrices are not updated, the converged

global and local solutions should be different. This is

because without updating the response matrices neither the

global nor the local converged solutions (if they exist)

will be the solutions obtained from solving the entire

problem by the response matrix method.

For Method N5S2, because of the spatial approximation

used to define each fixed-source problem for the local
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calculations, the global and local calculations are solving

two different problems and each will try to converge to

its own solution. The results for Problem (b) and the

CISE benchmark were checked, and results are shown in

Table E.3 to verify these points.



Case(1

Problem

Method used
for local
calculation

Response ma-
trices used
for local
calculation

Nax %g
differences u
i -

p(u2)

No. of nodes
having dif-
ferences > 1%

) ) ) 
) 

I

IL

NlSl

Fixed

11.8

12.3

15.5

many

IS1
b

NlSl

Updated

0.16

0.15

0.21

0

III

b

N5S1

Updated-

3.27

12.6

3.70

1 (3)

IV

CISE

N5Sl

Fixed

130.

685.

142.

many

V

b

N 552

Updated

15.3

52.5

17.3

many

t~l

01

()All cases use the flat transverse leakage model and start with the ADFF re-

sults as initial estimationt

(')This is problem (b) shown in Figure E.l.
(3 )This node is the one which has two surfaces with albedo boundary surfaces.

The large errors come from round-off.

TABLE E.3 DIFFERENCES BETWEEN THE LOCAL AND GLOBAL CONVERGENT SOLUTIONS

I

nL1
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APPENDIX F

NORMALIZED POWER DENSITIES

F.i CISE BENCHMARK

F.2 CISE BENCHMARK

F.3 CISE BENCHMARK'

MODEL

F.4 CISE BENCHMARK

F.5 CISE BENCHMARK

F.6 CISE BENCHMARK

MODEL

F.7 CISE BENCHMARK

USING

USING

USING

USING

USING

USING

R, CLUSTER HOMOGENIZATION

R, ASSEMBLY HOMOGENIZATION

PLAT R QUADRATIC GLOBAL

FLAT R FLAT GLOBAL MODEL

FLAT R, CMFD GLOBAL MODEL

SHAPED R, QUADRATIC GLOBAL

USING SHAPED R, FLAT GLOBAL MODEL

F. 8 HAFAS BENCHMARK USING FLATS, QUADRATIC GLOBAL

MODEL

F. 9 LSHBWR BENCHMARK USING FLAT F, QUADRATIC GLOBAL

MODEL



FIGURE F.1 NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING

PARTIAL CURRENT RESPONSE MATRICES (CLUSTER HOMOGENIZATION)

REFERENCE --- 0.1903 Y 4

START ADFF, FLAT MODEL, N1S2, 1ST ITERATION --- -6.82 %
START ADFF, FLAT MODEL, N5S2, 1ST ITERATION -- 4.17 %
START ADFF, FLAT MODEL, N552, 2ND ITERATION --- 2.22 %
START ADFQ, QUADRATIC MODEL, N552, 1ST ITERATION --- 3.75 %

0.8877 0.9266 Y 3
2.56 % -6-34 %

-1.78 % -4.76 %
0.99 % 0.41 %
-1.69 % -5.06 %

1.0039 1.4200 1.3781 0.4767 Y 2

30.20 % 6.90 % -15.30 % -28.10 %
14.80 % -0.21 % -9.80 % 2.32 %
7.98 % 2.04 % -4.29 % -1.60 %

15.80 % 0.21 % -10.20 % 3.77 %

1.0352 1.3191 1.0974 1.5209 0.5698 Y a
47.80 % 39.90 % 8.35 % 17.80 % -30.20 %
28.10 % 19.90 % 2.42 % -11.60 % -1.59 %

9.54 % 8.33 % -0.40 % -7.82 % -6.59 %
29.00 % 20.90 V 2.61 % -12.10 % -2.33 %

1 2 3 4 5

I

'31

1
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)

FIGURE F.2 NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHVARK USING
PARTIAL CURRENT RESPONSE MATRICES (ASSEMBLY HOMOGENIZATION)

REFERENCE
START REF., QUADRATIC MODEL, N5S2, 1ST ITERATION

o - 6846
0.83 %

0.8887
20.71 7'

0.8814 1.0362
24.50 % 21.50 %

0.9108
12.80 %

0.8101
15.80 %

1 . 2094
16.70 %

0.8820
5.83 %

1 .0824
7.02 %

1.2566
8.27 %

0 .8404
10.50 %

0.7304
1.31 %

1 .2814
0.08 7'

1.2195
-0.74 %

1 .0294
0.87 %

0.6493
-3.01 %

0.7850
-1.98 %

0.8841
-4.64 %

1.1197
-5.90 %

1.4165
-7.70 %

1 .2581
-7.31 %

0.6270
0.16 %

0.8655
-6.90 %

1.0642
-8.73 %

1.1008
-11.70 %

1.3359
-12.20 7X

2 3 4 5 6 7 6

)

)

li )

y= 6

YE 5

Y= 4

Ys 3

ys 2

Ys 1

~IJ

(A
0.7515

-10.50 %

0.8753
-14.00 %

0.9722
-14.80 %

2 a



)

0.8814
-0.46 %

0.48 %
0.38 %

7) I I I I I

FIGURE F.3.I

REFERENCE
ADFQ
START ADFQ Ni5Ir
START ADFQ, NiS1,

1ST ITERATION
4TH ITERATION

0.8887
-0.84 %

0.56 %
0.52 %

1.0362
2.13 %
2.61 %
2.46 %

0.9108
-1.66 %
-0.29 %
-0.34 %

0.8101
-1 .29 %
-0.37 %
-0.36 %

1.2094
2.27 %
2.70 %
2.59 %

0 . 6820
-3.04 %
-0.15 %
-0.08 %

1.0824
1.12 %
1.39 %
1.39 %

1 .2566
1.72 %
1.68 %
1.64 %6

0.8404
-0.64 %
-0.-16 %
-0.16 %6

0.6846
-0.13 %
-1.04 -%
-0.74 %

0.7304
-2.40 %
-1 .13 %
-0.72 %

1.2814
0.99 %
0.97 %
1.02 %

1.2195
0.90 %
0.71 %
0.72 %

1 .0294
-2.19 %X
-0.80 %
-0.56 %

0.6493
-1.32 %
-2.87 %
-3.05 %

0.7850
-0.03 %
0.43 %
0.41 %

0.8841
0.12 5%

-0.17 %
-0.14 %

1.1197
-0.07 %
-1.00 %
-0.97 %

1..4165
0.04 5%

-0.63 %
-0.59 %

1.2581
0.43 %
-0.34 %
-0.28 %

0.6270
-0.60 %
-1.66 %
-1-78 %

0.8655
-0.29 %
-0-79 '%
-0.90 %

1 .0642
-0.24 %
-0.85 %
-0.85 %

1.1008
-0.28 %
-1.18 %
-1.15 %

1.3359
-0.02 %.
-0.18 %
-0.14 %

0.7515
-0.72 %
-1.68 %
-1.81 %

0.8753
-0.56 %
-0.70 %
-0.85 %

0.9722
-0.50 %
-0.48 %
-0.61 %6

2 3 4 B

NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (I)

I I

Y E 6

Ys 5

Ys= 4

Ys= 3

Y = 2

Y-= 1

6 7 a
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FIGURE F.3.II NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'QUADRATIC
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (II)

REFER ENCE -- 0.6493 Y 6
START ADFQ, N1S2, 1ST ITERATION --- -2.93 %
START ADFQ, N1S2, 3RD ITERATION --- -3.11 %
START ADFQ, N5S1, 1ST ITERATION --- -2.88 %

0.6846 0.7850 0.6270 Y 5
-1.04 % 0.41 % -1.81 %
-0.76 % 0.38 % -1.93 %
-0.47 % 0.76 % -1-56 %

0.8820 0.7304 0.8841 0.8655 Ys 4
-0.12 % -1.12 % -0.18 % -0.84 %
-0.02 % -0.71 % -0.15 % -0.96 %
0.32 % -0.26 % 0.08 % -0.69 %

0.9108 1.0824 1.2814 1.1197 1.0642 0.7515 Y *3
-0.25 % 1.42 % 0.99 % -1.00 % -0.67 % -1.75 %
-0.29 % 1.44 % 1.05 % -0.96 % -0.88 % -1.90 %

-0.41 % 1.39 % 1.06 % -0.90 % -0.73 % -1.72 %

0.8887 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753 Y 2
0.62 % -0.32 % 1.72 % 0.73 % -0.63 % -1.20 % -0.81 %
0.60 % -0.30 % 1-.69 % 0.75 % -0.58 % -1.18 % -0.98 %

-0.05 K -0.86 % 1.85 % 0.68 % -0.62 % -1.12 % -0.82 %

0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.3359 0.9722 Y * 1
0.54 % 2.67 % 2.76 % -0.11 % -0.77 % -0.33 % -0.20 % -0.58 %
0.46 % 2.54 % 2.66 % -0.10 % -0.56 % -0.28 % -0.18 % -0.74 %

-0.08 % 2.04 % 2.41 K -0.46 % -0.61 % -0.37 -0.18 % -0.62 %

a
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FIGURE F.3.IlI NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (III)

REF ERENCE
START ADFQ,
START ADFQ,
START ADFQ,

0-.8814
0.38 %9
0.47 %
1.33 %

N5S1, 3RD
N5S2, 1ST
N1S2 THEN

0.8887
0.60 %
0.65 %
1.64 %

1.0362
2.64 %

-0.09 %
0.69 %

ITERATION
ITERATION
N552

0.9108
0.12 %
0.58 %
1.22 %

0. 8101
0.12 %
0.05 %
0.98 %

1.2094
3.02 %

-0.16 %
0.45 %

0 .8820
-0..11 %
0.67 %
0.76 %

1.0824
1.63 %
0.17 %
0.32 %

1 . 2566
2.66 %'
0.06 %
0.31 7'

0.8404
0.18 %

-0.05 %
0.58 %

0.6846
-0.01 %

0.86 %
-0.10 %

0. 7304
-0.38 %

0.54 %
0.26 7'

1 .2814
0.95 %
0.35 %
0.08 %

1 .2195
0.72 %
0.12 %
0.03 %

1 .0294
-0.53 %

0.45 %
0.66 %

0.6493
-3.23 %
-1.09 %
-1.48 %

0.7850
0.29 %

-0.36 %
-1.35 %

0.8841
-0.24 %
-0.20 %
-0.75 %

1.1197
-1.19 %

0.06 %
-0.23 %

1 .4165
-0.94 %
0.30 %
0.17 7'

1.2581
-0.55 %
-0.03 %
-0.00 %

0.6270
-1.94 %
-0.81 %
-1.26 %

0.8655
-1.05 %
-0.91 %
-1.39 %

1 .0642
-1.09 %

0.12 %
-0.20 %

1 1008
-1.45 %
-0.12 %.
-0.29 %

1.3359
-0.47 %'
-0.02 %'
-0.06 %X

0.7515
-2.08 %
-0.82 %
-1.20 %

0.8753
-1.14 %
-0.31 %
-0.60 %

0.9722:
-0.91 .%
-0.38 %
-0.41 %

1 2 3 4 6 7 8

AL I

Ysa 6

YB= 5

Y 4

YE= 3
ON

V. 2

YE I

81 2 3 4 5



) 4

FIGURE F.4.1

REFERENCE
ADFF
START ADFF,
START ADFF,
START AOFF,

0.8814
-1.62 %

0.46 %
0.41 %
0.53 %

NISI,
N IS1
N IS2,

)

1ST ITERATION
4TH ITERATION
IST ITERATION

0.8887
-1.86 %

0.60 %
0.54 %
0.67 %

1 . 0362
2.34 %
2.61 %
2.48 %
2.68 %

0.9108
-2.81 %
-0.30 %
-0.32 %
-0.25 %

0.8101
-2.47 %
-0.39 %
-0.35 %
-0.33 %

1 . 2094
2.85 %
2.68 %
2.59 %
2.74 %

0 .8820
-3.46 %
-0.18 %'
-0.07 %
-0.15 %

1 .0624
1.48 %
1.43 7'
1 .40 7'
1 .47- 7

1 .2566
2.13 7'
1 .68 %
1.64 %
1.72 %

0 .8404

-1.44 7'
-0.22 7'
-0.15 %
-0.18 %

0.6846
-0.78 %
-0.99 %
-0.75 %
-0.99 %

0 .7304
-3.01 %
-1 .05 %
-0.72 %
-1.03 %

1 .2814
1.70 %
1.00 %
1.01 %
1.02 %

1.2195
1.33 %
0.72 %
0.72 %
0.75 %

1 .0294
-2.86 %
-0.73 %
-0.57 %
-0.70 %

0.6493
-2.84 %
-2.97 %
-3.05 %
-3.03 %

0. 7850
0.27 %
0.32 %
0.40 %
0.30 %

0 .8841
0.19 %

-0.20 %
-0.14 %
-0.21 %

1.1197
-0.12 %
-0.98 %
-0.97 %
-0.98 %

1.4165
0.23 %

-0.61 .%
-0.59 %
-0.60 .%

1 .2581
0.53 %.

-0.28 %
-0.29 %
-0.28 %

0.6270
-1.54 %
-1.68 %
-1.79 %
-1.83 %

0.8655
-0.28 %
-0.86 %
-0.91 %
-0.91 %

1.Q642
-0.19 %
-0.86 %
-0.85 %
-0.88 %

1 .1 008
-0.29 %
-1.16 %
-1.16 %
-1.18 %

1 .3359
0.71 %

-0.17 %
-0.16 %
-0.19 %

0.7515
-1.05 %
-1.68 %
-1.81 %
-1.76 %

0.8753.
-0.19 %
-0.75 %
-0.85 7'
-0.87 %

0.9722
0.28 %

-0.52 %
-0.62 %
-0.64 %

1 3 4 5 6 7 8

NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING iFLATe
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (I)

) S )

YV. 6

yE= 5

YE 4

yE 3

YE 2

YE I

a
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FIGURE F.4.II

RE FERENCE
START ADFF,
START ADFF,
START ADFF,
START ADFF,

0.8814
0.49 %

-0.02 %
0.25 %
0.88 %

NI S2,
N5S1,
N5S1,
N5S2,

NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'FLAT'
TR ANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (II)

4TH
1ST
4TH
1ST

0.8887
0.62 %
0.23 %
0.47 %
1.12 %

1 .0362
2.56 %
2.07 %
2.35 %
0.31 %

ITERATION
ITERATION
ITERATION
ITERATION

0.9108
-0.27 %
-0.37 %'
-0.28 %
0.99 %

0.8101
-0.29 %
-0.97 %
-0.59 %'
0.50 %'

1 2094
2.67 %
2.22 %
2.48 %
0.24 %

0.8820
-0.03 %

0.51 %
0.20 %
0.72 %

1 .0824
1 .45 %
1.44 %
1 .44 %Y
0.49 %

1 .2566
1.69 %
1.48 %'
1 .59 %
0.50 %

0.8404
-0.10 %Y
-0.64 %
-0.32 %
0.20 7.

0.6846
-0.76 %
-0.41 %
-0.45 %
0.37 %

0.7304
-0.71 %
0.11 '%

-0.26 %
0.42 %

1.2814
1.04 %
1.13 %
1.06 %
0.37 %

1 2195
0. 75 %
0.70 Yo
0.71 o
0.27 %

1.0294
-0.54 %
-0.46 %
-0.52 %
0.66 %

0.6493
-3.11 %
-2.77 %
-2.92 %
-1.48 %

0.7850
0.37 X
0 .68 %
0.53 %
-1.29 %

0.8841
-0.15 %

0.09 %
-0.04 %
-0.58 %

1.1197
-0.97 %
-0.87 %
-0.94 %
-0.08 %

1 .4165
-0.59 %
-0.57 %
-0.61 %

0.25 %

1.2581:
-0.28 %
-0.30 %
-0.32 %
-0.01 %

0.6270
-1.94 %
-1.57 %
-1.71 %
-1 .14 %

0.8655
-0.97 %
-0.76 %
-0.88 %
-1 .35 %

1.0642
-0.88 %
-0.77 %
-0.86 %
-0.29 %

1.1008
-1.19 %
-1.14 %
-1.19 %
-0.32 %

1.3359
-0.19 %
-0.16 %
-0.21 %
-0.03 %

0.7515
-1 .90 %
-1.75 %
-1.84 %
-1.06 %

0.8753.
-0.98 %
-0.83 %
-0.90 %
-0.69 %

0.9722
-0.75 %
-0.62 %
-0.68 %
-0.38 %

1 2 3 4

)

)

)

)

)

)

Y= 6

Y *

Ys 4

00

YE* 3

Y= 2

YE 1

6 7 a4 5



) 3 ) 3

FIGURE F.5 NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING
'CMFD' GLOBAL MODEL AND NET CURRENT RESPONSE MATRICES

REFERENCE
ADFC
START ADFC,
START REF.,

0.8814
-37.58 %
-3.24 %

0.79 %

N5S2, 1ST ITERATION
N5S2, IST ITERATION

0.8887
-34.28 %'

-3.91 %'
0.80 %

1.0362
-29.68 %
-2.69 %
0.18 %y

0 .9108
-24.27 %

-3.63 %
0.59 %

0.8101
-29.74 %

0.58 %-
0.77 %

1.2094
-19.11 %

3.89 %
0.47 %

1 2 3 4 6 7 8

) 3 i )

Ys 6

YE 5

YE 4

0.6493-
2.27 %
-1.74 %
-2.54 %

0.7850
15.33 %
-0.27 %
-0.89 %

0.8841
5.94 %

-3.31 %
-0.36 %

1 .1197
9.35 %

-0.01 %
0.03 %

1.4165'
14.56 %
1.77 %
0.44 %

1.2581
8.31 %
1.49 %
0.24 %

0.6846
-5.24 %
-7.15 %

0.02 %

0 . 7304
-15.03 %
-6.13 %
0.29 %

1 .2814
4.03 %

-3.33 %
-0.04 %

1 .2195
-1 .40 %
-1.15 %
-0.04 %

1 .0294
-13.22 Y
-1.35 %
0.74 %

0.8820
-19.06 %
-3.42 %

0.48 %

1 .0824
-10.12 %

-2.22 %
-0.19 %

1.2566
-7.09 %

0.42 %
0..36 %

0.8404
-25.78 %

3.20 %
0.75 %

0.6270
5.51 %
5.13 %

-2.52 %

0.8655
11.15 %

1.39 %
-1.49 %

1 .0642
23.82 %A
-0.34 .%

0.15 %

1.1008.
18.36 %
2.63 7'
0.10 %'

1.3359
24.97 7'

3.30 7'
0.21 %

0.7515
8.60 %

-7.94 %
-1.04 %

0.8753
18.05 %
3.57 %

-0.21 %

0.9722
20.20 %

8.01 %
-0.31 %

~0

YE 3

YE 2

YE: 1

a1 2 3 4 5
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FIGURE F.6.I NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING QUADRATIC
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES GENERATED FROM
PARTIAL CURRENT RESPONSE MATRICES (I)

REFERENCE --- 0.6493 Y 6
START ADFQ, NISI, 1ST ITERATION --- -2.47 %
START ADFQ, NiSi, 5TH ITERATION --- -2.57 %

0.6846 0.7850 0.6270 Y 5
1.68 % -1.11 % -2.68 %
0.23 % -1.07 % -2.54 %

0.8820 0.7304 0.8841 0.8655 Y 4
5.47 % 1.50 % -3.10 % -6.57 %
5.49 % 1.39 % -2-94 % -6.43 %

0.9108 1.0824 1.2814 1.1197 1.0642 0.7515 Y 3 0
11.75 % 7.45 % 0.51 % -6.40 % -9.55 % -11.33 %
9.74 % 6.30 % 0.37 % -5.76 % -8.69 % -9.12 %

0.8887 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753 Y 2
19.50 % 14.62 % 8.83 % 0.20 % -7.49 % -11.83 % -13.86 %
17.47 % 12.77 % 8.03 % 0.02 % -6.56 % -10.53 % -11.35 %

0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.3359 0.9722 Y 1
23.03 % 21.43 % 17.18 % 10.36 % 1.27 % -6.73 % -12.47 % -15.23 %
19.68 % 18.59 % 15.15 % 9.60 % 1.01 % -6.06 % -11.01 % -12.30 %

a
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FIGURE F.6.II NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES GENERATED FROM
PARTIAL CURRENT RESPONSE MATRICES (II)

REFERENCE
START ADFQ, N1S2.
START ADFQ, NIS2,
START ADFQ, N5S2,

0.8814
15.68 %
14.52 %
22.32 %

1ST ITERATION
5TH ITERATION
1ST ITERATION

0 . 8887
13.27 %
12.63 %
18.93 %

1.0362
15.86 %
14.74 %
19.60 %

0.9108
7.80 %'
6.92 %

11.93 %

0.8101
9.62 %
8.86 7'

14.16 %

1.2094
12.86 %
12.17 %
15.26 7'

1 2 3.4 6 7 8

)

)

YE 6

YEa 5

YE 4

0.6493
-3.85 %
-4.13 %
-7.30 %

0.7850
-0.69 %
-0.76 %
-9.35 %

0.8841
-2.79 %
-2.92 %
-6.57 %

1.1197
-4.32 %
-4.16 7'
-4.36 %

1 -4165
-5.43 %
-5.18 %V
-4.30 7'

1.2581.
-4.70 %
-4.58 %
-3.79 7'

0.6846
0.75 %

-0.04 %
-5.00 %

0.7304
0.26 %
0.33 %
-1.07 %

1 .2814
1.14 %'
1.22 7'
1.85 7'

1 .2195
0.43 %
0.40 %
1.82 %

1 .0294
0.14 %
0.06 %
2.82 %

0.8820
3.38 %
3.62 %
4.27 %

1 .0824
6 .15 %
5.62 %
7.44 %

1 . 2566
6.99 %
6.56 %
8.61 7'

0.8404
6.84 %
6.61 %Y
10.30 %

0.6270
-0.92 %
-0.31 %
-5.28 %

0.8655
-4.89 %
-4.72 %
-9.04 %

1.0642
-5.99 %
-5.46 %
-9.51 %

1 .1008
-8.37 7'
-7.77 7'
-9.61 %

1.3359
-8.46 %
-7.74 %
-8.80 %

YE= 3

F-J

H-
0.7515

-8.80 7
-8.06 %

-11.37 %

0.8753
-10.87 %
-10.16 %
-14.73 %

0.9722
-11.36 %
-10.44 %
-12.56 %

Yu 2

YE= 1

1 2 3 -.4 5 a



FIGURE F.7 NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'FLAT'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES GENERATED
FROM PARTIAL CURRENT RESPONSE MATRICES

REFERENCE 0.6493 Y 6
START ADFF, NiSi, 1ST ITERATION --- -2.59 %
START ADFF, NISI, 5TH ITERATION --- -2.55 %
START ADFF, NS, 1ST ITERATION --- 6.38 %
START ADFF, N5S2, 1ST ITERATION -6.39 %

0.6646 0.7850 0.6270 Y :.5
1.69 % -1.22 % -2.71 %
0.36 % -0.92 % -2.43 %
-57 % -4.09 % -6.46 %
-406 % -7.15 % -4.23 %

0.8820 0.7304 0.8841 0.8655 Y 4
5-36 A% 1.51 % -3.14 % -6.60 %
5.30 % 1.44 -2.88 % -6.32 %
4.36 % -1.11 % -4.41 % -8.12 A
3.91 % 1.11 % -5.81 % -7.55 %

0.9108 1.0824 1.2814 1.1197 1.0642 0.7515 Y 3
11.70 % 7.49 % 0.53 % -6.39 % -9.51 % -11.24 %
9.51 % 6.18 % 0.47 % -5.73 % -8.66 % -9.07 %
13.22 % 8.46 X 1.13 % -6.38 % -9.97 % -12.80 %
11.27 % 6.98 % 1.45 % -4.30 % -8.46 % -10.30 %

0.8887 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753 Y 2
19.53 % 14.53 % 8.83 % 0.24 % -7.48 % -11.81 % 13.91 %
17.27 % 12.63 % 7.98 % 0.06 % -6.51 % -10.49 % -11.30 %
21.57 % 15.99 % 9.71 % 1.16 % -6.84 % -11.94 % -15.33 %
17.76 % 13.22 % 7.97 % 1.29 % -4.60 % -9.18 % -13.27 %

0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.3359 0.9722 Y I
23.05 % 21.43 % 17.13 % 10.22 % 1.32 % -6.65 % -12.42 % -15.21 %
19.55 % 18.38 % 15.08 % 9.51 % 0.94 % -6.05 % -10.88 % -12.18 %
25.52 % 23.29 % 16.12 % 10.81 % 2.36 % -6.00 % -12.01 % -14.31 %
20.81 % 18.20 % 14.07 % 9.30 % 2.24 % -4.14 % -8.60 % -11.42 %

1 3 4 5 6 7

-

1 2 7 a
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FIGURE F.B. I NORMALIZED POWER DENSITIES AND ERRORS FOR THE HAFAS BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (I)

REFERENCE
ADFQ
START ADFQ, NISJ, 1ST ITERATION
START ADFQ, N1S2, 1ST ITERATION

1 .7191
-0.29 %
-1.63 %
-1.61 %

1 .2997
0.00 %

-1.35 %
-1.34 %

1 .6583
-0 .79 '
-1 .23 %
-1 .22 %

1 .5115
-0.10 %
-1 .37 %
-1 .35 %

1 .3517
-1 .35 %
-1 .45 %
-1 .43 %

1.11174
-5.29 %
-1.97 %
-1.96 %

1 . 5325
0.48 %
0.71 %
0.73 %

1. 7175
0.08 %
0.37 .%
0.39 %

1 .0752
-4.44 %
-1.78 %
-1 .77 %

1.0885
1.31 %
0.15 %
0.13 %

it

0 . 96 42
-2.52 %
-1 .12 %
-1.1 2 %

0.8669.
-2.1 3 %
-0.44 7'
-0.43 7'

1 .3736
0.64 %X
1.13 %'
1. 14 %

1.2374
1.47 %
1.22 %
1.24 %

0. 9239
-0.89 %'
-0.95 %'
-0.94 7'

1.4634
0.55 %
0.17 %
0.16 %

1 .2596
1.38 %
1.31 %
1.31 %

1.2401
0.75 %
1.22 %
1.21 %

0. 7878
-4.65 %
-1.08 %
-1.08 %

0.8282.
-4.17 %
-1.29 %
-1.28 %

0.9993
1.18 %
2.07 .%
2.08 %

1 .1996
1.38 %
0.59 %
0.58 %

1 .3550
0.97 %
1 .27 %
1.26 %

1.0813
1.60 %
1 27 %
1.26 %

0.7339
-1.93 %'
-1.19 7'
-1.19 %'

0.6215
-0.51 7'
-0.66 %'
-0.66 7'

1 .0152
1.10 %'
1.66 7'
1.67 %

0.6886
1.54 %

-0.59 %
-0.61 %

0.9887
0.62 %
0.61 %
0.59 %

0.9697
0.93 %
0.75 %
0.73 %

0.9988
0.14 %
0.04 %
0.02 %

0.7761
0.75 %
0.78 7X
0.77 %

0.8096
0.54 %
0.46 %
0.46 '

0.7833,
0.49 %
-0.46 %X
-0.46 %

0. 3936:
1.86 %

-1.24 %
-1.29 %

0 . 5091.
1.43 %

-0.00 %
-0.10 %

0 . 6332
1 .14 %

-0.12 -%
-0.21 %

0.5632
1.49 %
0.10 %
0.05 %

0.5737
1 .03 %
0.70 %
0.69 %

0.4973
1 .55 %
0.49 %
0.50 7

0 .5503.

0.92 7%
-0.96 %
-0.95 7

YE 7

Y. 6

YE 5

YE 4I In

c-i

YE 3

Ym= 2

Y.= 1

Xz 2 34 5 6 7 8 9

I )

1 .4962
-0.41 %
-1.28 %
-1.26 %

X = 123 9
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FIGURE F.8. II NORMALIZED POWER DENSITIES AND ERRORS FOR THE HAFAS BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (II)

REFERENCE
START ADFQ, N5S1, 1ST ITERATION
START ADFQ, NSS2, 1ST ITERATION

1 .7191
-5.60 %
-4.37 %

1 .2997
-5.67 %
-4.26 %

1 .6583
-3.21 %
-4.67 %

1 .5115
-4.65 %
-4.26 %

1 .3517
-5.07 %
-4.58 %

1. 1174
10.75 %
-4.43 %

1 . 5325
0.82 %

-4. 58 %

1.7175
-1.99 %
-4.78 %

1 . 0752
-3.99 %
-4.29 %

0.9642
13.16 %
2.24 %

0.8669
25.59 %
-5.81 %

1 .3736
8.39 %

-6.48 %

1.2374
1.49 %

-4.45 %

0.9239
-2.30 7
-4.09 '

1.4634
-1.68 %

7.06 %

1.2596
1.35 %
7.54 %'

1.2401
9.32 %

-5.00 %

0.7878
20.84 %
-6.48 %

0.8282
4.55 %

-3.71 %

0.9993
-0.26 %
-3.46 %

1.0885
-4.00 %
7.38 %

1.1996
-2.84 %

7.40 %

1 . 3550
-1.47 %
8.12 %

1.0813
1.02 ,%
9.67 7'

0. 7339:
5.07 7'
2.02 %'

0.6215
0.12 %

-3.13 %'

1.0152.
-0.61 %X
-1.93 %

0.6886
-5.31 %

7.10 %

0.9887
-3.73 %
6.84 %

0.9697
-2.69 %

7.02 %

0 9988
-2.73 %

5.89 %

0.7761
-2.26 %

3.57 %

0.8096
-2.00 %

1.01 %

0.7833
-3 .59 %
-0.07 %

0.3936
-6.32 %

7.17 %

0.5091
-4.83 %

7.12 %

0.6332
-4.52 %
6.51 %

0.5632
-3.89 %

5.69 7

0 . 5737:
-2.78

3.40 %

0.4973
-2. 82 %

1.56 %

0.5503
-5.64 %
0.06 %

Ys= 7

Y a 6

Ye= 5

ye= 4

Ye= 3

y . 2

Ys I

Xc 2 34 5 6 7 8 9

3 p

1.4962
-5.68 %
-4.28 %

k-I

9
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FIGURE F.8.IIl NORMALIZED POWER DENSITIES AND ERRORS FOR THE HAFAS BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (III)

REFERENCE
START REF.,
START REF.,
START ADFQ,

1 .7191
0.14 %

-9.17 %
0.70 7'

1.2997
0.27 %

-9.32 %
0.89 %

N5S2, 1ST
N5S1, IST
N152 THEN

1 .6583
-0.18 %
-6.37 %
-0.03 %

1 .5115
0 .27 %

-7.95 %
0 .68 %

1 .3517
-0.06 %
-8.46 %
0.48 %

ITERATION
ITERATION
N552

1 . 1174
-0.06 %
7.59 %
0.03 %

1 .5325
-0.11 %
-1.96 %
-0.15 %

1.7175
-0.37 %
-4.74 %
-0.19 %

1 .0752
0.13 %
-6.75 %
0.42 %

1.0885
0.24 %

-5.41 %
-0.15 %

0.9642
0.37 %'

11 .22 %
-0. 19 %

0. 8669
-0.45 %
23.31 %

1.30 %

1.3736
-0.96 %
6.36 %
0.78 %

1.2374
-0.26 %
-0.03 %
-0.41 %

0.9239
-0.18 %
-2.82 %
-0.43 %

1.4634
0.17 %
-2.92 %
-0.76 %

1 .2596
0.46 %
0.43 %
-0.65 %

1.2401
-0.54 %
8.20 %
0.76 7'

0.7878
-0.40 %
21.74 %
0.59 %

0.8282
0.05 %
9.34 %

-0.61 %'

0. 9993
-0.24 %
3.23 %

-0.63 %

1.1996
0.27 %

-4.05 %
-0.33 %

1.3550
0.06 %
-2.16 %
-0.79 %

1.0813
0.49 %
1.14 %

-0.60 %

0.7339
0.52 %

11.71 %
-0.61 7'

0.6215.
0.47 7'

20.96 7'
-0.67 %

1.0152,
-0.22 7'

5.95 7'
-0.63 7'

0.6886
-0.03 %
-6.66 %
-0.25 %

0.9887
-0.04%
-4.86 %
-0.32 %

0.09697,
0.24 %

-3.43 %
-0.00 7'

0.9988
0.12 %

-1.89 %
-0.30 %

0. 7761,
0.23 %
2.00 %X
0.23 %

0.8096.
-0.04 %'

4.87 %
0.05 %

0.7833
0.27 .%
3.27 7'
0.10 7%

0.3936,
0.03 %

-7.66 %
0.01 %

0.5091
0.10 %

-5.84 %
-0.01 %

0 . 6332
-0.06 %
-4.89 %
-0.17 %

0. 5632
0.11 %'

-2.93 %
-0.02 %

0 .5737
-0. 28 %
-0.34 7
-0.36 %

0.4973
-0.09 7'
0.80 %
-0.15 %

0..5503:
0.09 %'
0. 74 %
0.39 %

YE 7

y. 6

YE-

YE= 4

Xc 2 34 5 6 7 8 9

)

1.4962
0.22 %'

-9.64 %'
0.94 %

I-i

Hn

Y E 3

YE= 2

YE= 1

I

9
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FIGURE F.9.I NORMALIZED POWER DENSITIES AND ERRORS FOR THE LSHBWR BENCHMARK USING t QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (1)

REFERENCE
ADFQ
START ADFQ, NiSi, 1ST ITERATION ---
START ADFQ, N1S2. 1ST ITERATION

1 .4255
-0.83 %
-0.46 %
-0.46 %

1 . 8779
0.47 %
0.04 %
0.04 %

1.6944
0.27 %

-0.10 %
-0.10 %

1.7798
0.38 %

-0.02 %
-0.02 %

1 .5376
-0.23 %
-0.12 %
-0-12 %

1.5992
-0.13 %
-0.08 %
-0.08 %

1.4395
1.92 %
1.17 %
1.17 %

1.4424
-0.57 %
-0.17 %
-0.17 %

1 .4774
0.18 %

-0.09 %
-0.09 %

1.5012
0.17 %

-0.49 %
-0.49 %

1 .0378

-0.64 %
0.76 %
0.75 %

1.2212
-0.66 %

1 .82 %
1.82 %

0.9563
-8.85 %
-1.51 %
-1.51 %

0.9178.
-9.07 %
-2.70 %
-2.70 %

0.5283
2.03 %
0.06 %
0.06 %

0.6741
2.86 %
0.65 %
0.65 %

0 . 4499
8.05 %

-0.67 %
-0.67 %

0 . 4275
9.61 %

-2.85 %
-2.85 %

0. 3884
3.09 %
1.60 %
1.60 %

0.4123
4.83 %
2.16 %
2.16 %

0. 1 945
5.81 %
1.13 %
1.13 %

0. 2399
6.34 %
3.42 %
3.42 %

Ka 2 34 5 6 7 B

p)) p I

Ys= 4

y = 3

Yz= 2 H
a'

Ys I

a'



FIGURE F.9.11 NORMALIZED POWER DENSITIES AND ERRORS FOR THE LSHBWR BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE~MODEL AND NET CURRENT RESPONSE MATRICES (II)

REFERENCE 1.4395 1.0378 0.5283 Y- 4
START ADFQ, N5S1, 1ST ITERATION --- -1.29 % -1.01 % 0.70 %
START ADFQ, N5S2. 1ST ITERATION --- 4.49 % 2.90 % 1.97 %
START ADFQ, NIS2 THEN N5S2 -- -0.15 % -1.34 % -1.17 %
START ADFQ, N1S2, 6TH ITERATION --- 0.50 % -0.03 % -0.19 %

1.4255 1.4424 1.2212 0.6741 Y 3
-3.93 % -2.56 % 2.30 % 6.96 %

5.10 % 3.76 % 2.13 % 3.23 %
-0.08 % -0.39 % -0.74 % 0.42 %
-1.05 % -0.62 % 1.83 % 1.22 %

1.6944 1.5376 1.4774 0.95G3 0.4499 0.3884 0.1945 Y = 2
-5.24 % -422B % -2.46 % 4.82 % 35.83 % 12.62 % 11.62 %
5.74 % 5.29 % 3.53 % -1.79 % -32.81 % -38.75 % -31.88 %

-0.25 % -0.15 % -0.13 % 0.7s % 5.42 % -0.67 % -1.23 %
-1.08 % -0.85 % -0.37 % 0.75 % 2.49 % 2.16 % 1.65 %

1.8779 1.7798 1.5992 1.5012 0.9178 0.4275 0.4123 0.2399 Y
-5.89 -5.54 % -4.61 % -3.26 % 0.4 % 10.18 7 15.30 % 14.55 %
6.23 7 5.94 % 5.31 % 3.51 % -1.63 % -20.00 % -33.20 % -35.31 %

-0.31 -0.30 % -0.19 % 0.01 % 1.17 % 3.56 % -0.34 % -1.75 %
-1.16 % -1.09 % --0.86 % -0.71 % 0.32 6 1.33 % 3.25 % 4.09 %

X= 2 34 5 6 7 8a


