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ABSTRACT

. The objective of this research is to develop accurate
and efficient methods for generating equivalence theory
parameters for coarse mesh analysis of light water reactors.
Eguivalence theory is an exact homogenization scheme developed
by K. Roebke and K. Smith. Methods for computing approxi-
mate equivalence parameters are reviewed and they show that
an efficient method to solve local fixed-source problems is
needed.

In order to fulfill this need response matrix methods
using conventional partial current response matrices for
solving fixed-source problems are first investigated.
Analysis of a rather idealized BWR benchmark problem shows
that because of the spatial approximation made for the in-
coming partial currents used in generating partial current
response matrices, the accuracies of the estimated equiva-
lence parameters are poor and thus the resultant power dis-
tributions are greatly in error.

Response matrix methods using net current response
matrices are then introduced. Analysis of several BWR bench-
mark problems demonstrates that use of net current response
matrices leads to homogenized power distributions with maxi-
mum errors in assembly powers of approximately 1-3%. For
practical cases, these errors are about one-third of those
obtained using more conventional methods to estimate equiva-
lence parameters.

The computational efficiency of solving reactor problems
using such global-local iteration scheme is shown to be one
to two orders of magnitude greater than that of solving the
entire reactor heterocgenecusly.

Thesis Supervisor: Allan F. Henry
Title: Professor of Nuclear Engineering
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CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW AND MOTIVATION FOR SPATIAL HOMOGENIZATION

The design and analysis of modern light water reactors
require an extensive kngwledge of spatial power distribu-
tions, control rbd worths and neutron absorption rates.
Determination of these guantities requires a knowledge of
the neutron density in phase space (position, direction,
and energy). Two of the most accurate methods used today
to determine these quantities are the Monte Carlo method

and the discrete ordinates method. 1,11,12

They both
have the advantage of explicitly accounting for the transport
phenomena in a reactor. Unfortunately, explicit transport
theory modeling of the heterogeﬁeities {such as control
rods, burnable poisons, water rods, etc.) that exist in a
reactor results in a problem of such magnitude as to be
incredibly expensive for even the most advanced computers.
Therefore, in order to reduce cost, approximations to
the transport equation are used. The most commonly employed
method is to reduce the size of the problem by using the
diffusion approximation which explicitly assumes that the
angular distribution of neutrons be at most linearly
anisotropic.l Although the actual angular distributions near
. regions of high neutron absorption (such as control rods or

burnable poison pins) or near highly scattering regions with



little absorption (such as water rods or reflecto;s) are
not accurately represented by the diffusion theory approxi-
mation, the guantities of interest (power distributions,
control rod worths, etc.) can be predicted quite accurately
by the diffusion theory model provided "equivalent" homogen-
ized cross sections and diffusion constants can be determined.
.The determination of these equivalent diffusion theory
- parameters for each localized heterogeneous region (fuel
pins, control rods, etc.) constitute the first distinct level
of homogenization. With this stage of homogenization carried
out, solving the resulting diffusion theory equations may
remain costly simply because there exists a very large number
 (several hundred thousand) of spatial regions in a reactor
core. Moreover, the design and analysis of a reactor re-
guires many core calculations (e.g. the power distribution
at the beginping of each depletion time step and during
thermal-hydraulic feedback analysis, transient analysis, etc.)
Thus there is strong economic incentive to use a large "node"
(an assembly or a cluster of assemblies) as the homogenized
region. If equivalent homogenized parameters for such large
nodes {(usually spatially constant within each node) can be
determined, the core calculation can be reduced to a problem
involving only several hundred homogeneous regions in each
axial plane of the reactor core. Once this second stage of
homogenization has been reached, the resulting equations can

be solved by nodal or finite element methods, 2/ 14,1316



These methods are computationally very efficient because
large mesh spacings can be employed.

Techniques by which the equivalent homogenized paraﬁ—
eters need for this second stage of homogenization can be
obtained efficiently are the subject of £his thesis.

1.2 HOMOGENIZED PARAMETERS BASED ON DIFFUSION THEORY

1.2.1 THE NONEXISTENCE OF EXACT HOMOGENIZED PARAMETERS FOR
DIFFUSION THEORY

In order to solve reactor problems with homogenization,
‘certain information which is available if the reactor is
analyzed without homogenization must be sacrificed. However,
certain quantities which are the characteristics of the
reactor need to be preserved. These quantities are the
- reactor eigenvalue, the nodal reaction rates in each energy
group, the nodal power densities, and the group currents on
all the surfaces of each node.

In order to demonstrate the difficulties associated with
homogenization based on diffusion theory, the exact values
(as functions of space, direction, and enerqgy} of all reactor
guantities will be assumed known. Accordingly the following

guantities are also known:

¢g(£) = scalar neutron flux in group g (em™2 sec™ 1)

J;(E) = net neutron current in direction u (u=x,y,z)
and group g (cm™? sec™ 1)

Ztg(E) = macroscopic total cross section for group g

_l)

{cm



A

1y

1

macroscopic transfer cross section from group

1

g' to group g (cm )

fission neutron spectrum contribution to

group g

macroscopic fission cross section for group g

times the mean number of neutron emitted per
. . -1

fission {cm )

reactor eigenvalue (keff)

If the corresponding quantities for the homogenized diffusion

theory problem are dencted by additicon of a circumflex, the

homogenized parameters should be determined such that all

group reaction rates, all group surface currents, and reactor

eigenvalue are preserved, i.e. the following egqualities

should hold:

- fslt‘ ds Bg(y_) = $g(£) = Js].‘ as J3(m
i i
= A g=1,2,...,G,
@ =¢t,£f,g', etc.,
k=1,2,...,K,
u = x,v,2z (1.1)



where
G = the total number of neutron energy groups,
K = the number of surfaces for each homogenized region,
Vi = the volume of the ith homogenized region,
SE = the kth surface of the ith homogenized region.

If all homogenized parameters are assumed to be spatially
constant within each node, the exact homogenized parameters

will then be defined by

j dr & (r}¢_(r)
s L2V g — 3 , (1.2a)
[ ~
g JV'dE by (1)
1
J . ds J;({.‘_)
A~ S
Dél) = 2 . (1.2b)
-
1

Examination of (l1.2) shows that in addition to a priori
_knowledge of integrated reaction rates and net surface cur-
rents for each node information concerning the homogenized
flux distribution: must also be available in order to deter-
mine the exact homogenized parameters. Since the homogenized

fluxes depend strongly on the homogenized parameters, a



nonlinearity islintroduced in the determination of the
homogeniéed parameters. Moreover, Equation (1.2b) in general
defines different values of Béi) for different surfaces of
node i and thus contradicts the assumption that all of the
homogenized parameters are spatially constant within each
node.

It thus seems clear that except for very special cases
it is impossible to define spatially constant exact homogen-

ized parameters for diffusion theory.

1.2.2 CONVENTIONAL HOMOGENIZED PARAMETERS

To circumvent the theoretical pitfalls mentioned in the
preceding section, homogenized parameters for diffusion
theory are conventionally defined by relaxing the conditions
imposed by (1.1). Traditiocnally, the homogenized diffusion

constant is approximated as

pli) = 1 . (1.3)

g ol
I dr ¢_(r}
v

The justification for this approximation is that D;%E) is
proportional to the macroscopic transport cross sectionl,
and it is desired to preserve the neutron transport rate.
However, the transport cross section is a function of the
net current and thus weighting it by the flux does not pre-

serve the transport rate.



In order to determine the numerator of (l.2a) and
{1.3), the distribution of the heterogeneous flux is needed.
Since in practice the exact solution of the hetercgeneous
problem is never known, the integrated reaction rates-are
approximated by those obtained from an E'Eg = 0 assembly
calculation for each distinct type of fuel assembly. These
assembly calculations can be performed by any method aﬁail—
able (Monte Carlo method, integral transport method, etc.).
The assumption that the integrated reaction rates can be
obtained from such assembly calculations 1s usually rational-
ized by noting that most assemblies in a reactor are sur-
rounded by other assemblies of a similar composition. Also,
global flux shapes usually have only a small curvature across
each assembly and thus the surface currents are small in
magnitude.

The next approximation which is generally made, to
determine the denominators of (l.2a) and (1.3) is that the
node-integrated homogenized flux is equal to the node-
integrated heterogeneous flux cbtained from the assembly

calculation, i.e.:

where ¢2(£) is the group heterogeneous flux obtained from
_thé E'Qg =0 aséembly calculation. This approximation is

never strictly valid since none of the homogeneous regions



in realistic reactors satisfies the zero net current con-
dition. |

The homogenized parameters determined by making the
previous three approximations are generally referred to as
flux-weighted constants (FWC). The procedure is widely used
in modern LWR analysis although significant deficiencies
and limitations exist for this method. For example, the
solution of the global homogenized problem defined by FWC
preserves none of the quantities of (l1.1). Moreover, although
the aforementioned assumptions are plausible, there exists
many assemblies in a reactor for which they are quite in-
valid, and consequently their use results in large errors in
predicted power densities. Specifically in BWR analysis, the
flux-weighted two-group constants tend to overpredict sig-
nificantly the thermal neutron currents between assemblies.
As a result, the predicted assembly power densitlies may be
in error by as much as 20% 6 in extreme cases.

1.3 EXACT HOMOGENIZED PARAMETERS

Many prescriptions for eliminating the inaccuracies
which result from the use of flux-weighted parameters have

been developed. 18,19,20,21

As with the flux-weighted con-
stants, many of these have gquestionable theoretical founda-
tions and consequently their adoption is justified primarily
by empifical demonstrations of their accuracy. These methods

will not be described here. There are, however, homogeniza-

tion methods which are capable of reproducing rigorously'all



of the desired gquantities of (1.1). One particularly attrac-

tive methed is due to Koebke 22

3

and has been modified and
implemented by Smith. It will be called equivalence theory.
In this_theory, instead of relaxing the conditions imposed
by (1.1) as in the flux-weighted constants, extra degrees
of freedom are added to the homogenized parameters by intro-
ducing new parameters which will be called the discontinuity
factors.

With the introduction of discontinuity factors, it can
be shown that exact homogenized parameters can be obtained
to match any reference solution (obtained by Monte Carlo
method, transport theory, multigroup diffusion theory, etc.).
Also it can be shown that the homogenized problem can be
solved by any approximate method with the reference solutiocn
still preserved. This aspect of equivalence theory is unigque
in that one is not attempting to find homogenized parameters
which reproduce the exact reactor solution when the homogen-
ized group-diffusion equations for the reactor are solved
exactly, but rather, one defines homogenized parameters which
reproduce the exact reactor solution even though the homogen-—

ized reactor equations are solved approximately.

A detailed discussion of the equivalence theory will

be presented in Chapter 2.



l.4 BENCHMARK PROBLEMS

In this thesis, three BWR benchmark problems are
chosen to test the accuracy and efficiency of the homogeniza-
tion.methods to be developed. Because the flux distribution
is rather smooth in the axial directioh, our principal con-
cern is with homogenization in the radial plane. Thus all
three benchmark problems represent two dimensional reactor
cores.

1.4.1 THE CISE BWR BENCHMARK PROBLEM
3,17

The CISE BWR benchmark problem is an idealized

model of a two dimensional BWR. Its core consists of 208

fuel assemblies with widths of 15 cm surrounded radially by

a 15 cm water reflector. The fuel in each assembly is

modeled as homogeneous, but all control blades and water

gaps are explicitly modeled. The major simplifications in

this problem are that the actual fuel heterogeneities

(enrichment zones, burnable poison rods,.and water rods)} are

represented.homogeneously. Nevertheless, the problem serves

as a significant test of any homogenization scheme. A

detailed description of this problem is given in Appendix A.1l.
The referenée sblution for the CISE BWR benchmark

problem was obtained by Smith 3 from a nodal code QUANDRY. 2

A short description of that code is given in Section 2.3.

To get the reference solution, 64 mesh points per assembly

(11 in each quarter of a control rod, 25 in the fuel region,

and 28 in the gap regions) were used.



l.4.2 THE HAFAS BWR BENCHMARK PROBLEM

The HAFAS (Heterogeneously grranged.guel é&semblfj
BWR benchmark problem3 is a two dimensional BWR which is
much more complicated than the CISE BWR benchmark. Its
core consists of 308 fuel assemblies with widths of 15.31 cm,
surrounded by a 15.31 cm thick water reflector. The radial
enrichment zones in each assembly are modelled such that
the fuel enrichment is constant within four fuel pin clus-
ters, and the fuel zone is then represented by sixteen
distinct regions. The radial enrichment is modelled by fuel
pins having three different fuel enrichments. Water gdps
between fuel assemblies are modelled explicitly as "wide"
and "narrow" gaps. Moreover, the central assemblies are
modelled as partially voided (40% or 70%). A complete
description of the problem is given in Appendix A.2.

The reference solution fcr this problem is a QUANDRY
solution involving 49 meéh points per assemblyALIG in the
fuel region, 9 in each quarter of a control blade, and 24
in the gap regions).

~1.4.3 THE LSHBWR BENCHMARK PROBLEM

The LSHEWR (Loretz-Smith-Henry) benchmark problem6 is
a detailed, two dimensicnal model of a BWR core composed of
fuel assemblies characteristic of the Vermont Yankee Reactor.
The core consists of 160 fuel assemblies with width of
15.31 cm, and is surrounded by a 30.62 cm water reflector.
In each assembly, the wide and narrow gaps, water holes,

gadeclinium rods, control blades, and fuel pins are explicitly



~modelled and the zones of enrichment within the fuel regions
are included. 1In addition, the central assemblies are
. modelled as partially voided (40% or 70%). The only'non-
explicit modeling is for the can material surrounding the
fuel regiqns. However, its presence is accounted for in
the heterogeneous diffusion theory parameters. A complete
~description of this problem is given in Appendix A.3.

The reference solution for this problem is a QUANDRY
solution involving 169 mesh points in each fuel assembly.

1.5 OBJECTIVES AND SUMMARY

The objective of this thesis is to develop accurate,
efficient methods to estimate homogenized parameters for
coarse mesh analysis of boiling water reactors (BWR's).
In Chapter 2, homogenized parameters based on equivalence

3:6:22 4311 be reviewed. In

theory and previous work
Chapter 3, several methods based on partial current response
matrix techniques are introduced. Results show that they
are not acceptable. Alternative methods, which are based

on net current response matrix techniques, are developed in
Chapter 4 and their accuracy is established by application
to all three benchmark problems. Finally, a summary of this

investigation and recommendations for future research are

given in Chapter 5.



CHAPTER TWO
HOMOGENIZED PARAMETERS BASED ON EQUIVALENCE THEORY

2.1 INTRODUCTION

In Capter 1, it was shown that exact homogenized para-
meters in general do not exist for a diffusion theory model
‘because of the lack of flexibility of the equations embodying
that model. In addition, it was pointed out that conventional
flux weighted constants do not preserve any of the integral
guantities of interest (eigenvalue, nodal reaction rates,
and nodal surface curients). However, exact homogenized
ﬁarameters_based on an extension c¢f the diffusion theory
model which we shall call "egquivalence theory” do exist.

In this chapter, first "equivalence theory" will be
presented. A simple method to estimate the resultant "equi~
valence theory" homogenized parameters and some possible
"~ improvements will then be discussed.-

2.1.1. NOTATION

Throughout this investigation, all problems are treated
in three-dimensional Cartesian geometry. In addition to
using x, y, and z to represent the coordinate directions,

a more general notation (u, v, w) for the coordinate direc-
tions are used as generalized coordinate subscripts. The
spatial domdin of all problems are subdivided into a regular
array of right rectangular parallelopipeds (nodes) with grid

indices defined by ugy, v_, w_ where
m’ n



-
]

l, 2,..., I+1; u, v, w=x

I

2, m, n = 3 1, 2,..., J+1; u, v, w=y
k=1, 2,..., K+1l; u, v, w=z.
As an example of future use of this generalized coordinate

notation, the net currents on the faces of node (i, j, k)

as a function of the two transverse directions are expressed

as
u=x,y,z
3; (v,w) = = D 3 6 _(ug,v,w); v#u
i,3.k 9i,3,k Tu 9 kg

This single equation actually expresses three'equations:
(1) The x-directed net current on the x = X5 face, as a
function of v and z (u=x, v=y, w=2z)
(2) The y-directed net current on the y=yj face, as a
function of x and z (u=y, v=x, w=z)
{3) The z-directed net current on the z=zk face, as a
function of x'and y {u=z, v=X, w=Y)
The node (i,3,k) is defined by

X € [Xi' xi+l]

y e lyyr vy
Z £ [zk, zk+l]'

The nodal widths are then defined as
hR’Eu -ug; ua = X, Y,Z
and the nodal volume is

= h.

v Z
i, i,k 1 J k*

The nodal surfaces of node (2,m,n) will be represented by u+



and u- where

u+ surface (u£+l,v,w) of ncde (L,m,n),

u- sur face (ug,v,w) of node (&4,m,n); u = X,¥Y,/Z.
The external boundaries of the spatial domain and its outward
normals will be denoted by T and u-., respectively.

2.2. EQUIVALENCE THEORY

By integrating the Boltzmann transport equation for a
critical reactor over all directions, {3, of neutron travel
and over an energy range AEn: n=1, 2,...N, we obtain a set

of formally exact equationsl

N
VeI E) + I (©é (x) =T [ ,(x) + % M
nl

- - tn =1 nn nn n
where
9, (x)= [fda [, dE ¥(r,2,E) = [, dE ¢(r,B) ,
n n
J.(x)= [da [, 4B @ v(r,Q,E) = [pg dE J(r,E) ,
n .
fAEndE L. (x,E) ¢(r,E)
2g () = (2.2)
; ¢, ()
fAEndEfaEn,dE' Loo(E/E'~E) ¢(r,E")
Lant () =
¢ (x)
[pg @B [,g GE' M(Z,E'-E) ¢(r,E')
n n
M__,(r) =
nn° —

$0 ()



. s S-S
[og @B [pg GB' JE(E)VTIL(r,E') ¢(r,E')
n s
¢ . (£}
— S .S .S
= Z,{n \Y Ef |(£) r
S n
A £ reactor eigenvalue,.
In these definitions
5 - s
Xo = Jap G £(B)
n
5 S
fAEndE v® I3(r,E) ¢(r,E)
= s _ r
Ay} an(E) =
¢, (X
v(r,2,E) = directional flux density,

1 du
. I__(r,E'-E) [ =E°o £ (r,E'-E,u,) .
sSQ — -1 2 s —

S

£7(E) = fission gpectrum for isotope s,

and the cross section notation is standard.

The problem of finding Z_ (r), Z 0 () is
n

not trivial. The usual approach is to assume that the flux

nn,(E), and Mn
is separable in space and energy within each group and com-
position. The‘energy distribution of the flux is then deter-
mined either by a spectrum calculation or by an arbitrarily
chosen shape.l This problem will not be discussed further,
and it is assumed that we have the required cross sections.
In order to solve (2.1) more efficiently, we will do
spatial as well as energy hqmogenization to reduce the number

of unknowns in the homogenized problem to he developed. In-



tegration of (2.1} over volume Vi 3,k

1,2,...G, gives

o A . =
for the & E,. Eg’ g

hYh? (3%
Ik 94,5,
+ nfn¥ (3%
19,5,k
G —
=’z v

X, Z
) + nih;
bV sk B
. ®
ivi.k 91
1;2; 'IJ
1,2,...J,
1,2,...K

and summation over n

where Y oS
_ neg V,
¢ =
91,9,k o
f
neg Vi
Zt =
91,3,k
5-‘ 1
T, =
g9 i, i,k
y
gg'i,j,k

(2.3)

(2.4)



W
y fvm+l f n+1
- W
neg Vm dv Wn d Jn(UQI,V,W)
u
Jd = ;
9i,3.k 0V
’ m n

u=x,v,z; vFU: wAuFv.
Now we define a new mathematical problem for which the
defining domain has the same geometry as the real problem
but has constant cross sections in each energy range AE

and volume Vi i,k Its governing eguation is
! ’
G

~ ~ ~ l ~ .
(r) + 2. ¢ (x) = § [(Z_,+=M_,1¢_,(x) (2.5)
- tg - g'=l 39 A :

where g-gg(E) is continuous across any surface perpendicular

to n. Integration over V, . yields
- 1,J:k

A

. (37 - Y )

hYh? (3% - 3% ) + h¥n
J 1 L gi,j+l;k glrjrk

)+ V T 3

i,j,k "t

T
91,9,k (2.6)

where fv‘ dr ¢ _(r)

>
ti

(2.7)

Comparison with (2.3) shows that if we define "homogenized



cross sections" as

Et = Zt
91,3,k Ji,3.k
L =I__, (2.8)
99 5,5,x 995,59,k
F{ gl = Ficvc:'
99 l-],k -7 —ljfk
and demand that
3u = Ju ;o ou =X, ¥, 2 (2.9)
gl,],k gi,j k
then N _
o = ¢ (2.10)

i3,k 91,9,k ,

A= a. (2.11)
To maintain continuity with conventional sclution techniques,
it 1s necessary to postulate a relation (model}) between homog-
enized surface-averaged currents, homogenized surface-averaged
fluxes and homogenized volume-averaged fluxes. In addition,
a.relation between homogenizeé surface-averaged flukes of
neighboring nodes which share a common surface is needed to
couple egquation (2.6) to other nodes. Since this new homog-
enized problem is a mathematical problem, there is no reason
that homogenized surface-averaged fluxes should be continuous
across nodal surfaces. However, we know that in the original
physical problem; the one dimensional heterogenecus flux

) [Vm+l av fwn+l aw ¢ (u,v,w)

neg Vv W
u m n (2.12)

gR,m,n

-
.
ol
~——
"

hV hw
m n



is a physical cquantity so that it is continuous across any

nodal surface. On boundaries it is given by

u u u
r r r
Iy = ry J r .
¢g (T) g (T g (r) (2.13)
where I' is the reactor boundary with u, as its outward
u
normal and agF(F) is ur—direction group g albedo on ', If

we define "discontinuity factors”

¢u
£ 97 = 9% ,m,n %
glfmrn (’Bu (ua,)
gQ,m,n z
(2.14)
e (u )
g at _ 92 ,m,n L+l
(o4 1
*L,m,n )] {(u )
qgl n 2+1
then we cobtain
u+ ~u u-  ~u ,
£ 0 (ug) = £ ¢ (ui) (2.15)
ggl_l]mfn gl"l;m,n gﬂ‘:mpn gg’ ;m.n
on internal surfaces and
u ur
u A4 a “(T)y u
~ T r ~ T g 2T
™)y =« rn J_(ry = ——- 71 r 2.16
¢g () g (T} g am g (r) ( )
£ (T
g
Un_
on boundaries of the defining domain. In (2.16), fd (T) 1is

the discontinuity factor associated with the interior side

of T in the direction of u and group g. Using these relations
along with the chosen model, (2.6) can be solved and it will
reproduce any solution of (2.1} (obtained by Monte-Carlo

method, transport theory, multi-group diffusion theory, etc.)



as long as that solution has been used tc generate the

homogenized cross sections Zt , Egg! s Mgg? -+ and
gi,j,k i;3,k 1:3:k
. . s .
the discontinuity factors £ . These homogenized cross
L,m,n

sections and discontinuity factors will be called "equivalence
parameters®”. All of them are needed to define fully the new
homogenized mathematical problem. Another implication of
equivalence theory is that exact homogenized parameters can

be defined for any model. Different models will yield differ-
ent values for discontinuity factors, but the eguivalence |
parameters will make all guantities of interest be preserved
when the global homogenized problem is solved. An important
point to note ig that it is crucial that the identical model
be used in determination of discontinuity factors and in
solving the homogenized mathematical problem;

We have pointed out that an exact homogenization over
hoth volume and enefgy can repdrduée any feference solution.
In this thesis, however, only volume homogenization will be
investigated (i.e.; N=G) and two group fine mesh soluticns
of the diffusion ecuation will be taken as referenées. Before
discussing how to estimate equivalence parameters under these
restrictions we shall first review the nodal model used in
the code "QUANDRY".

2.3 THE QUANDRY MODEL

QUANDRY is a coarse mesh nodal code initially developed

to solve two group diffusion equations.2 Kord Smith has



extended it to solve equivalence equations.3 In QUANDRY the
+

discontinuity factors £9° are determined from one-dimen-
L,m,n

sional homogenized flux equations obtained by integrating

(2.53) over the transverse directions. The homogenized

sﬁrfacevaveraged fluxes @; (ug4+1) and ¢ (ug) can be obtained

2,m,n £,m,n
from an analytical solution of these eguations. #With the
definitions R
3 _(x)
- ) €i79.k
J_(r) = - 0D ; (2.17)
9375,k 93,3,k du
£ . = = ¢
r Vl,j,k' u=x,Y, 2; g 1, 2, ’
st _l -
and Yo dr p "(x) ¢ (¥) -1
) | neg Vl,j,k
Dg = (2.18)
irjrk ¢) v' v
Si,9,x 1e3eK
Sty -

where Dn(EJ is the diffusion coefficient of the real problem,

the one dimensional homogenized flux eguations become

32 - .
- Dc - ¢; (u) + Zt ¢; (u)
“L,m,n au R,m,n gz,m,n ¢.m,n
G ~ 1 . ~u
= z (Z ' - 1 ' ) (;5 ' (u)
gl'=l gg'q'fm!n /\ ggﬁ«,m;n qﬂ:fm:n
= -~ §" (u) ; u=x,v,2; g=1,2....C (2.19)
gQ,m,n i
where
v W .
f m+l sy f n+l gy b _{(u,v,w)
Y W q
~u m n
¢g {u) =
Jl,m,n hV hn

m W



"and the SY  (u) represent the leakage rates on those Ffour
surfaces oéfﬁﬁgckness du which are transverse to direction u.
Zquation (2.19) can be solved analytically if the u-dependence
of Sgi (u) is known. QUANDRY expresses this dependence to
be eitﬁgéna flat or a guadratic function of u. It is impor-
tant to recognize that neither expression will result in error
if the discontinuity factors are found exactly. The detailed
derivations of this model and correspconding eguivalence egua-

tions are described in Reference 2 and 3. Only two equations,

. +
which are useful in determining discontinuity factors £9=

2.,m,n
when a reference solution is known, are reprcduced in
the following:
N _ u . - u ~U
[¢Q—l,m,n(u2)] - [Bl—l,m n’[¢2—l,m,n] [AR l,m,n][JQ-l,m,n“1ﬁ]
Cout u= u+ u- AUt u- =
{[Cﬂ-l,m,n]aﬁ—l + [Di—l,m,n]anl * [“Q—I,m,n]cl—l} [SQ—Z,m,n]
: u+ L u- u+ BN u- u+
= Gyl (F w2y — 3 ) D ol By = By )
u+ u- u+ u
By, m,nd (%o T Seop) b ISglq ;0!
u+ u+ u+ u+ 2+ u+ !
HC g mnl®e-1 Y Poi,m,nlPo1 * Eyli,mn!%-17 52,m,n!
(2.20a)
~1 _ u = u 2
[¢£,m,n( R)] - [Bﬂ,m,n][¢2,m,n] * [Al,m,n][Ji,m,n(u%)]
u- u- u- u- u- u- =3h
- {[Cz,m,n]az + [Dl,m,n] £ [Eﬁ,m,n]cﬁ } [Sl-l,m,n]
Laus u- u+ u u- u+
+ {[cﬂ,m;n](l a al )+ {Dl,m,n}( bl bﬁ )



* [Egjm,n](_ci—_cz+) [gz,m,n]
- {[ngm,n]a;+ * [Dzjm,n]bz+ [Ez:m,nlcﬁ+} [§E+l,m,n] (2.20b)
where

[él,m,n] is a G-element column vector of homogenized node-

averaged group fluxes for node (Ll,m,n).,

[$E' ' (ug)] is a G-element column vector of homocgenized
surface-averaged fluxes for nbde (2,m,n) at
u = up,

[3E’m'n(u2)] is a G-element column vector of homcgenized
surface-averaged currents of node (£,m,n) and
direction u at u = ﬁg,

[ég,m,n] 13 a G~element column vector of homogenized node-

averaged transverse leakages for node (2,m,n) and

direction u, defined hy

s == du s (u) .
gﬂ.,m,n h& uﬁ, qirmxn
. u u u* ut
a ! 0
The GXG matrices [Al,m,n]’ [BQ,m,n]’ [Cl,m,n}‘ ‘Dl,m,n}’ and
1+
[E;’_n n] are called coupling matrices and are defined in
e illy

Appendix 2 of rReference 2; they depend only on the homocenized

~

cross sections, homogenized diffusion coefficients, DCT ‘
~ -'Ql,vm;n
. ut u+ ut
mesh spacing and 2. The ag s b% » and c,~ are transverse
leakage expansion coefficients which depend only on the nodal
mesh spacing: they are defined in Appendix 1 of Reference 2

for the guadratic expansion, and they are zero for the flat

expansion.



The accuracy of equivalence theory need not be limited
by the diffusion theory approximatiocn, and the presence of
D in (2.19) should nct imply necessarily that that ap-

9 .
,Mm,n
proximation has been made. Instead the homogenized diffusion

constants are introduced in order to make the resultant
egquivalence equations have a form nearly the same as the
equations associated with diffusion theory so that diffusion
theory codes can be easily extended to solve them. In this
connection, however, it is important to have an accurate
numerical methoed for solving the global equations. Exact
equivalence parameters can be obtained cnly if an exact solu-
tion is already known, thus estimation of them is always
necessary in practical cases. Among these parameters,
homogenized cross sections are model-independent so that there
is no way we can alter théir values. ©On the other hand, dis-
continuity factors are model-dependent and it is expected that
a good model will make global solutions less sensitive to
their exact values so that a simple approximation can be made.
To demonstrate this situation a third model in QUANDRY which
is called coarse-mesh finite difference method {CMFD) 1is also
used in this thesis. 1In this method the fui are obtained
from the conventional mesh-centered finite di?%grence equa-
tions given by

Ju X 2 u Y
J (u ) = ~-D _— {(D (ui) - d) )r
' gR-l,m,n x gR—I,m,n hQ 1 gR—I,m,n gR—l,m,n



~ 2 ~ -
u u
J {u,) = -D -— (¥ - ¢ (up))
gR,m,n 2 gQ,m,n gﬂ,m,n 2

u

[
o
=
N
Q
h
—
N

.G. (2.21)

Hoting that (2.21) can be recast into a form similar to the
original QUANDRY egquations, Kord Smith alsc incorporated this

model into QUANDRY by choosing the coupling matrices [AE m n]’
I r

ut
£,m,n

u

ut
%,m,n 1 and [E

,M, 0 ¢,m,n) in (2.20) in order

(B 1, Ic 1, (g
tc match (2.21).

The resultant equivalence equations of all three models
(quadratic, flat, CMFD) described above have the following
mathematical form:

(H] [(X] = —i— [Pl [¥] (2.22)
A
where

[H] is a (4*G*I*J*K) * (4*G*I+*J*K) square matrix whose ele-
ments are linear combinations cof the coupling matrices
and thus functions of X,

[P] is a (4*G*xI*xJ*x¥)* (4*xGxI+*J*¥X) scuare matrix whose sle-
ments are zeroc except in the first (GxI*J=xX)* (GxI*JT*xXK)
submatrix where it is equal to the fission production
matrix,

[X] 1s a 4*G*I*J*K-element column vector whose elements
are homogenized node-averaged fluxes and face-averaged
net leakages in each direction.

Because ([H] is dependent cn X, {2.22) is a nonlinear eigen-

value problem. In QUANDRY, the maximum eigenvalue is found

by fission scurce iteration accelerated by Wielandt's frac-



ticnal itefation method.% Within each outer iteration a
modified Gauss-Seidel method5 is used for the inner itera-~
tions and the cyclic Cheybyshev Semi-Iterative method5 is
used for the flux iterations. These strategies are fully
described in Reference 2. It is important to realize that
even without the use of discontinuity factors and the
Wielandt scheme, and in the limit as the nodal volume V,

i,3.k
approaches zero, so that the equations for the homogenized

~

node-averaged fluxes ¢ o become the linear mesh-centered
finite difference approii%étion to the two~group diffusion
egquation, the flux iteration scheme is still not guaranteed
to converge because both groups are solved simultaneously
and thus diagonal dominance is not ensured. The Wielandt
scheme will make the lack of diagnonal dominance even more
pronounced and the effect of discontinuity factors on diagonal
dominance is problem dependent as can be seen by using the
CMFD model. Mcoreover, the nodal volume Vi,j,k is not zero
so that [H] depends on i, and the whole process becomes
nonlinear. Thus there is no guarantee that QUANDRY will
converge. Past experience, however, has shown that it does
converge i1f proper nodal sizes are chosen. Reasons for
raising these issues will become clearer in Chapter 4.

In the rest of this thesis, all discussions will be

hased on the models used in QUANDRY.

2.4 ASSEMBLY EQUIVALENCE PARAMETERS

Exact equivalence parameters can be obtained only if a
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feference solution is known for the heterogeneous nodes. Thus
for all practical cases, approximations must be made. Kord
Smith,3 because of his finding that discontinuity factors

are insensitive to position, suggested an approximation based
on an assembly calculation with n- ig = 0 on assembly bound-
aries. This is an eigenvalue calculation and is the same kind
of approximation used to determine conventional flux weighted
constants. Because n * ig = 0 on boundaries, the homogenized
fluxes for these assembly problems will be constant over the
entire assembly including the boundary surfaces. Eguation
(2.10) then shows that the homogenized surface-averaged fluxes
will be equal to the heterogeneous node-averaged flux. Tiaence
the heterogeneous node-averaged anc surface-averaged fluxes
from the assembly calculation can be used in (2.14) to estimate
the discontinuity factors. Discontinuity factors so determined
will be called assembly discontinuity factors (ADF). It is
important to recognize that, unlike exact discontinuity fac-
tors, assembly discontinuity factors are independent of the
model used in the global calculations. Eguation (2.4}, (2.8)
along with the heterogeneous fluxes obtained from the assembly
calculation provide estimations of homogenized cross sections

~

, %__,, and M .- These will be called assembly homogenized
tg g8 g9

cross sections (AHCS). The conventional flux weighted con-

£

stants (FWC) consist of assembly homogenized cross sections
along with 1 for the discontinuity factors. 1In the rest of

this thesis, when ADF are used. AHCS are implied. ADF have



been tested on all three benchmarks described in Chapter

One by Kord smith> and Richard Loretz.® a summary of their
results is shown in Table (2.1) to (2.3). The columns marked
ADF show that that approximation is much more accurate than
the FWC method. But if higher accuracy is desired, more

sophisticated methods for determining eguivalence parameters

are required.

TABLE 2.1 SUMMARY QOF RESULTS OF THE CISE BWR BENCHMARK
(1) (2)

Single-Assembly Five-Assembly
FHC ADF F}at—Currents F}at-Currents
Fixed-Source Fixed-Source
Calculations Calculations
Error in -0.16%  -0.03% +0.16% -0.06%
Eigenvalue
Maximum error
in assembly +9.86% -3.06% -2.76% +0.77%
power '
Average error
in assembly 4.19% 0.90% 0.97% 0.29%

power

)Results of first global-local iteration using ADF sclution as initial
estimate.

(2)Results of first global-local iteration using reference solution as
initial estimate.
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TABLE 2.2 SUMMARY OF RESULTS OF THE HAFAS BWR BENCHMARK
Single—Assembly(l) FivenAssembly(z}
. Flat-Currents Flat-Currents
FWC ADF Fixed-Source Fixed-Source

Calculations Calculations

Error in

Eigenvalue ~(.44% -0.06% +0.12% -0.04%

Maximum exror

in assembly +16.95% -5.29% +2.21% +1.07%

power '

Average error

in assembly 6.14% 1.33% 0.86% 0.52%

power

(l)Results of first global-local

estimate.

{2)

iteration using

ADF solution as initial

Results of first global-local iteration using reference solution as

initial estimate.

TABLE 2.3 SUMMARY QF RESULTS FOR THE LSHBWR BENCHMARK

FWC .
£ .
?ror n - 0.29%
eigenvalue
Maximum error in +22.6%
assembly power
Average error in 5.30%

assembly power

(1)

ADF

~0.08%

+9.48%

3.16%

Single Assembly(l)

Shaped Incoming
Partial Currents
Fixed Source
Calculations

0.22%

+2.78%

1.31s

The fixed source calculations were done only for those assemblies

surrounding a control rod.



2.5 EVALUATION OF APPROXIMATE EQUIVALENCE PARAMETERS FROM

FIXED SOURCE CALCULATIONS

The inaccuracies of ADF arise from the fact that zero
current boundary conditions are imposed for the assembly
calculations. Because of this, many of the interassembly
effects are neglected. However, if the actual boundary con-
ditions that exist on the surfaces of an assembly as well as
the global eigenvalue were known, a local fixed—source assem-
bly calculation c¢could be performed for every assembly to
obtain equivalence parameters. Eguivalence parameters so
determined will be exact. Unfortunately, determining these
boundary conditions is just as difficult as solving the full
heterogeneous problem. Nevertheless, the observation that
such fixed-source calculations can produce the desired
equivalence parameters suggests an iterative method to im-
prove estimation on the equivalence parameters. 'le can first
solve the global homogenized proklem using approximate homog-
enized parameters (e.g. ADF). From this solution, we can
extract approximate boundary conditions neefed for each fixed-
source calculation. By performing such fixed-source calcula-
tions, we can then obtain approximate eqguivalence parameters
which will reflect many of the interassembly effects. Then
the global homogenized problem can be solved again but this
time using the updated equivalence parameters. Presumably,
this latter homogenized solution will ke more accurate than

its predecessor because the equivalence parameters used to



‘generate it reflect many of the interassembly effects. This
process can be repeated if it appears that greater accurécy
will.thereby be attained.

Since only average quantities are given by the global
homogenized solution, the spatial shapes on the assembly sur-
faces of any quantity (fluxes, net currents, partial currents;
etc.) which is involved in the boundary conditions of the
fixed-source calculations need to be specified. The simplest
approximation is to assume that they are flat. This will be
called "flat" approximation. A more sophisticated approxima-
tion is to assume that they have the shape of the same guan-
tity on the same surface in an eigenvalus assembly calculation.
For éxample, if partial currents are used, an assembly calcu-
lation with n - gg = 0 on all surfaces can be performed and
it will provide the shape of partial currents on the surfaces.
This will be called an "eigenvalue” agpproximation. If net
currents are used, this assembly calculation (n- Eg = 0) does
not provide any information about the shape of currents on
the surfaces of the assembly. A different assembly calcula-
tion which has albedo boundary conditions on all surfaces
could be performed and it would provide the needed informa-
tion. But there is no guarantee that these more sophisticated
approximations will give better results than the simple flat
approximation.

A more systematic way to improve the approximation on

the shapes is to include more assemblies in the fixed-source



calculations and move the approximate surface conditions
farther away from the assembly of interest. For example,

an assembly with its four nearest neighbors (in 2-D) can be
used for the fixed-source calculation. With the approximate
boundary conditions moved to the outer boundaries of adjoin-
ing assemblies, no explicit limitations on the shapes of

the surface guantities need be made for the center assembly.
Consequently, the eguivalence parameters for the center
assembly are less sensitive to the boundary conditions of
this fixed-source problem than they are for the case of a
single assembly fixed-source calculation. If more assemblies
are included in the fixed-source calculations, corresponding
eguivalence parameters will ke even more accurate (although
more expensive to obtain).

Because of the approximations about the spatial shapes
on the assembly surfaces of those quantities involved in the
boundary conditions of the fixed-source problems. the above
global-local iteration process (if it converges) will not
converge exactly to the reference solution. However, if
shapes obtained from previous local fixed-source calcula-
tions were used to determine shapes on the boundaries for
- the next local calculations, the global-leocal iteration proc-
ess could converge to the reference solution. Needless to
say, 1f such a strategy were used. more than one assembly
would be needed in each fixed-source problem in order to

obtain the desired information about the shapes.



Methods using single or five assemblies (an assembly
with its four nearest neighbors) with flat currents on the
boundaries of each fixed-source problem have been applied
to the “CISE“ and "HAFAS" problems by Smith.3 He used the
ncdal method to sclve every fixed-source problem. For the
method using five assemblies in each fixed-source problem,
because of the cost, he actually used the'reference solution
as the initial estimate and assumed that the iteration proc-
ess starting with ADF result would cenverge to that answer.
Loretz6 has applied to the "LSHBWR" problem the method
using single assembly and incoming partial currents as bound-
ary conditions in each fixed-source calculation. The shapes
of the incoming partial currents on the boundary surfaces
of the assembly were obtained from a n - gg = 0 assembly
calculation. The magnitude of these incoming partial cur-
rents were obtained by a double-P,(DP,) approximation with
net currents and fluxes on the surfaces of the assembly
given by previous global results. He used the finite dif-
ference method to solve each fixed-source problem. AaAlso
because of the cost. he did the fixed-source calculations
to improve the equivalence parameters only for those assemblies
surrounding a control rod. Their results are shown in the
last two columns of Table (2.1) to (2.3). They do lead to
improved accuracies. However, the cost of the overall com-
putation7 is comparable to, or even greater than that incurred

bv solving the entire problem without homogenization. Thus



unless some efficient method can be developed for solving
the fixed source problems, this global-local iteration proc-
gss is of little interest.

2.6 SUMMARY

In this chapter, equivalence theory was formally pre-
sented. It shows that equivalence parameters can be defined
such that they will reproduce any reference solution. However,
that reference solution must be known in order to generate
the exact equivalence parameter. A simple method (ADF) to
estimate equivalence parameters was then introduced. Numeri-
cal tests show that, if greater accuracy is needed, more so-
phisticated methods to estimate equivalence parameters are
needed. Some more accurate methods (all of them involving
fixed-source calculations) were then discussed. However, in
terms of computational efficiency, these methods are of little
interest unless an.gfficient method can bg develpped to solve
the fixed-source problems.

The response matrix method, because it provides informa-
tion of interest directly and because it makes use of parame-
ters {resrponse matrices) which can be precalculated and
stored as functions of state variables (exposure, void, etc.),
is believed to be most efficient in solving the fixed-source
problems. In the next chapter, a method using the conven-

tional partial current response matrices will be discussed.



CHAPTER THREE
' THE RESPONSE MATRIX METHOD USING PARTIAL
CURRENT RESPONSE MATRICES

3.1 INTRODUCTION

A global-local iteration procedure to improve estima-
tion of equivalence parameters was proposed in the last chap-
ter. Because of reactor symmetry, the globél calculation may
not involve the whole core. But, in general, no two nodes in
that portion of reactor analyzed will have the same surface
quantities (net currents, partial currents, etc.) on their
surfaces even if they are geometrically and materially iden-
tical. Thus a fixed-source calculation would have to be done
for every node (or node with its nearest neighbors) to deter-
mine equivalence parameters. If the nodal method‘or the
finite difference method is used to solve each fixed-source

problem, the computational expense may become even greater

than that incurred by solving the entire problem without homog-

enization. Thus the use of the response matrix method is
- strongly suggested because it provides information of interest

directly and because it makes use of response matrices which

can be precalculated and stored as functions of state variables.

Depending on the symmetry of the assembly and the accuracy

with which the spatial shape of surface quantities on the faces

of the assembly is to be described, the cost of generating
response matrices can be ten or so times that of performing

a single fixed-socurce calculation for an assembly. However,



considering that there are only ten or so different types

' of assembly in a guarter core which has more than one hun-
.dred assemblies, the response matrix approach should be less
expensive even if only one iteration is performed. 1If the
same library of response matrices can be used for several
problems or if three-dimensional calculations are performed,
the response matrix method becomes substantially cheaper. In
this chapter, the response matrix method using conventional
partial current response matrices will be presented.

3.2 PARTIAL CURRENT RESPQONSE MATRICES8

3.2.1 PDEFINITION

In the response matrix method, the reactor is divided
into a number of regions. £ach region can be represented by
a response matrix which 1s an operator that defines fully
the output of the region by operating on the input imposed
on that region. Conventional response matrices use group
incoming partial currents on the surfaces of a region as
input. Output can be group outgoing partial currents on the
.surfaces of that region as well as any other information of
interest (integrated reaction rates, fluxes at hot spots,
etc.) for that region., Conventionally, the response matrices
are defined by

out [R] [Jin

G
[

I

in] (3.1)

H
o
It

[(R'] [J
where

{Jln} is an N-element column vector whose elements are



group incoming partial currents on the surfaces of

the region of interest,

[Jout] is an N-element column vector whose elements are
group outgoing partial currents on the surfaces of
the region of interest,

[IR] is an M-element column vector whose élements are any
information of inﬁerest for the region of interest,

[R] is an ¥ x N sguare response matrix,

[R'] is an M ¥ N nonsguare response matrix.

The dimensions of these column vectors and response matrices
(M and N) deprend on the accuracy and the amount of informa-
tion wanted. They will be defined after the next section.

3.2.2 GENERATION: ANGULAR AND SPATIAL APPROXIMATION

From equation (3.1), we can see that 1if [Jln] is set to
zerc except for the i-th element where it is set to 1, the

corresponding [JOut

] and [IR] are just the i-th columns of -
[R] and [R'], resvectively. Thus the generation of the i-th
column of [R] and [R'] is eguivalent to solving a problem
defined by putting the region of interest into a vacuum and
imposing on it a unit group incoming partial current for the

surface and group corresponding to the i-th element of [Jln].

A series of such fixed source calculations are needed to gen-

erate the whole [R] and [R']. These fixed source problems
can be solved by any method available (transport theory,
multi-group diffusion theory, etc.) to obtain [Jéut] and {IR].

However, to set up these problem it is insufficient to know



only that the group incoming partial current is 1. We mﬁst
also know the angular distribution as well as the spatial dis-
" tribution of the neuvtrons comprising that partial current.
Unfortunately, this information is not available unless a
multigroup transvort solution for the whole reactor is known.
In order to make response matrices independent a full-core
selution and thus precalculable, assumptions about the angular
and spatial distributicns of this partial current must be made.
In this chapter angular distribution (PP, or P-1) is assumed
to be such that heterogeneous surface net currents and surface
fluxes can be expressed in terms of the partial currents on
that surface by

2 (it 4+ 2 [g°UY

out

[¢]

]

in (3.2)

]

[(J1 [J ] - 13
where

[¢] is an N-element column vector whose elements are hetero-
geneous group fluxes on the surfaces of the region of
interest,

[J] is an N-element column vector whose elements are hetero-
geneous group net currents in the outward normal direc-
tion on the surfaces of the region of interest.

With respect to the spatial shape of this partial current,
the simplest approximation is to assume that it is uniform
over the surface where it is applied. This will be called the

"flat" approximation. Another possibility is to assume that

it is distributed over the surface where it is applied accord-



ing to the shape of the incoming partial current given by

aﬁ eigenvalue problem performed by applying the (usually
incorrect) boundary condition n -gg = 0 on all boundaries

of the region of interest. This procedure will be called
the "eigenvalue” approximation. Since, for many regions

in a reactor, the net currents on their surfaces are small,
the inter-region effects are better simulated by the eigen-
value approximation. Thus that approximation should be supe-
rior to the flat approximation. However, this argument does
not apply to all subregions of a reactor. Accordingly, a
more systematic procedure is to increase the size of [Jin]

by dividing each surface into smaller subsurfaces and asso-
ciating each element of [Jin] with one group and one subsurface._
On each subsurface, the spatial shape of the unit incoming
partial current can be approximated as flat or as that given
by the eigenvalue calculation. In this way the spatial
approximation is applied to smaller areas so that the real
spatial shape is better simulated. 1In the limit as the areas
of the subsurfaces approach zero, the real spatial shape

will be correctly represented. However, going toward this
limit increases the number of columns of response matrices
‘and thus increases the number of fixed-source calculations
needed to generate the whole response matrices.

3.2.3 DIMENSION OF RESPONSE MATRICES

In Equation (3.1} and (3.2), the dimensions N and M of

those column vectors and response matrices were not defined. .



From the discussion of the last sectiocn, "N" should be given
by
N =NS = G (3.3)

. where

NS is the total number of subsurfaces on the total bound-

ary of a region,

G 1is the total number of energy groups.
In this thesis, because all problems considered are two groups
in two dimensional Cartesian coordinates and all boundary
lines are divided into equal numbers of segments (1 or 2),
N = NSEG * 8 where NSEG is the number of segments on each
boundary line. Because the purpose of this investigation is
to determine equivalence parameters, the infeormation needed
consists of the heterogeneous volume-integrated reaction rates,
the heterogeneous volume-integrated fluxes, the heterogeneous
surface-averaged fluxes, and the heterogenecus surface-aver-
aged net currents. The first two are needed to determine
homogenized cross sections as can be seen from equaticons (2.4)
and (2.8). The last three together with the homogenized cross
sections and eigenvalue are needed to generate discontinuity
factors as can heen seen from equations (2.9), (2.10), (2.14)
and {(2.20). Because of the angular approximation, surface
values of fluxes and net currents can be obktained provided
both incoming and outgoing partial currents are knwon. Thus
[TR] need not include these surface values but merely all

volume-~integrated values. In our investigation fission spectra



are assumed to be the same for all isotopes so that ﬁgg'
~ ~ = i;j'k
can be rewritten as xngf . With this simplification
! .
91,59,k
it turns out that the total number of elements M needed in
the Vector [IR] equals 12.

3.2.4 TABULATION AND INTERPOLATION

Throughout our investigation, in order to be consistent
with our numerical reference cases which are generated using
diffusion thecry, response matrices will always be generated
by the multi-group diffusion theory, mesh-centered, finite
difference code "CITATION".9 The details of how to use this
code to solve problems with incoming partial currents as
boundary conditions are given in Appendix B.1l.

With spatial and angulaf approximations made for a unit
incoming partial current, response matrices for a region
become independent of its outside environment and thus can
be pretabulated as parametric functions of all state variables
(exposure, temperature, void, eigenvalue, etc.) It is impor-
tant to realize that the eigenvalue must be included in the
list.of staﬁe variables. The response matrices used in each
local calculation should be those associated with the global
eigenvalue which is obtained from previous global calculations
.and updated as the global-local iteration proceeds.

With this table created, whenever we wish to perform a
local calculation, we can obtain the response matrices cor-
responding to the present state variables by interpolation.

This multi-dimensional interpolation is not studied in this



thesis. However, it is by no means a trivial problem.

3.2.5 SIZE OF THE REGION USED TO DEFINE RESPONSE MATRICES

In order to make interpolation of response matrices
possible, the size of the region used to define response
matrices must be small enough so that the state variables
inside that region will be rather uniform. On the other
hand, its size should be reasonably large so that the number
of fixed source calculations can be kept within bounds. Be-
cause Of these considerations the horizontal cross section
of a single BWR assembly is always chosen as the region to
define response matrices throughout cur investigations.

3.3 FIXED-SOURCE CALCULATIONS USING PARTIAL CURRENT RESPONSE

MATRICES

3.3.1 RESPONSE MATRICES FOR A NODE

With response matrices defined and generated we can now
discuss the fixed-source problems which are used to improve
the estimation of eguivalence parameters. To define these
problems first the size of the node which constitutes the
area we want to homogenize must be chosen. Since response
matrices are generated for assemblies, the node can only be
a single assembly or a cluster of assemblies. The larger the
node is, fewer nodes there will be making up the reactor and
the faster the global calculation will be. However, at the
same time the local calculations will become less efficient
since the state variables of a node larger than an assembly

will not be uniform and response matrices for such nodes can



not be precalculated. Instead they must be obtaine& through
a local calculation by lengthy arithmetic manipulation of

the response matrices of those assemblies comprising that
node. Moreover, the overall procedure will become less
accurate because spatial approximations for those local
'problems will be applied to larger areas. In this thesis,
two kinds of size for a node will be used, namely; a siane
assembly as a node and four assemblies as a node. The former
will be called "assembly homogenization" and the latter will
be called "cluster homogenization". These configurations

and some notation needed for later derivations are shown

on Figure 3.1 and 3.2. For assembly homogenization, response
matrices of a node are just those of an assembly and are
pretabulated. However, for cluster homogenization, the

response matrices of the cluster (node) are not precalculated
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and need to be determined. ZXKnowing the state variables
within each assembly in the node, we can obtain by inter-
polation from a table of precalculated values response matri-
ces for each assembly.

If each assembly of a 4-assembly node is represented
by the grid index at its left-bottom corner (Fig. 3.2),

equation (3.1l) becomes

p— — r"

[J;,B+l/4] [Riisl {Riés] [Riég] [Rgégf- I-E-J;,E»H./éll N
[Tg+1/4,6] RTINS I A I A N R IE PP
(97 41/2,541/4] A A I A R A os1/2,8+1/4)
_fJ;+1/4,s+1/2¥J IS N A I LA [Py
a=1i, 1 + 1/2,
B =3, 3+ 1/2,
(3.4)
i=1, 2,...1,
i =1, 2,...7
where |
[J$,6+l/4] are (G*NSEG)-element column vectors whose elements
are total group partial currents of each segment
on the line connectiﬁg peints {(v,8) to (vy,8+1/2)
if v = a, a+l/2, or {(§,y) to (§+1/2,v) if
Y = B8, B+1/2,
[Riégl is a (G*NSEG) * (G+#NSEG) sguare matrix whose elements

are the elements of the (y,d) submatrix of the
response matrix for assembly (a,B); v.,5 = 1,2,3,4,

NSEG is the number of segments on each boundary line



of an assembly,
G is the total number of groups.
In this equation, the (+) and (-) are used to represent
the partial currents in the ?ositive and negative u-direc-

tion (u = x or y), respectively. With the definition

*

(J ] '
+ _ 2, m+1/4
SIS VLI : (3.5)
2, m+3/4
manipulation of (3.4) will give
INNER, _ in
out, _ in INNER,
where
(33,51 = 0103y 541,20 Uis1/0,3 r Wing, ge1/23 Va2, 34010
out. _ : - - + +
INNER -

(357571 = o34y s 54140  Tik12, 54374 a4, 541720

- + +
(950374, 541/28 Fia1/2, 341741 WTis1 /2, 543740

+ +
(35014, 541720 Wsa3/a, 5417210
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[RiéB] in this equation are defined in (3.4). [I] and [0]
are (G*NSEG) by (G*NSEG) identity and null matrices, respec-
tively.

From (3.6) we get

INNER, _ -1 in
[Ji,j ]l = [Ai,j] [Bi,j] [Ji,j] (3.8)
Substituting it into (3.7) giveé
out., _ - -1 in
[Ji,j] = {[Ci,j] + [Di,j][Ai,j] [Bi,j]} [Ji,j]' (3.9)

Thus the response matrix [R] of the cluster (i,j) is given by

(A, .17t (3. .]. (3.10)

(R, .] = [C. j] + [Di,j] i3 i,9

1i,] 1,

The response matrix {[{R'] of the cluster can be obtained in

a similar way. However, we choose another way to obtain the

information needed. Xnowing {Jinjl from {(3.8), we can calcu-
I

INNER INNER

late [J7 - 1. By permuting {J;nj] together with [Ji 5 1,

i,]
the incoming partial currents for each assembly can be found.
Then all the information needed can be obtained by using the
response matrix [R'] ¢f each assembly. Since this information

consists of volume-integrated quantities, the column vector

[IR] for the entire cluster will be given by

_ o
[IRi’j] =7 [IRi’j] (3.11)
o
where
[IRi'-] is an M-element column vector whose elements are

cluster velume-integrated values for node (i, 3},

[IRq .] 1s an M-element column vector whose elements are
1.7
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assembly volume-integrated values of'assembly o 1in
node (i,J) with o running through all four assemblies

in node (i,3j).

[IR? j] in this equation is obtained from (3.1). WNote that
r
since [Ai,j]’ [Bi,j]’ [Ci’j], and [Di,j] depend on the

response matrices of all the assemblies comprising node (i,3j).
they can not be determined until the state variables in each
assembly are known. Thus the response matrices of a cluster
cannot be precalculated.

In each local calculation, it is necessary to invert
a (8xG*NSEG) X (8*G*NSEG) matrix and do some matrix multi-
plication to obtain the response matrix [Ri,j]' Thus using a
¢luster as a node, we have shifted the computaticonal burden
from glohbal problems to local problems.

In order to make the calculation of [Ri j] efficient,

!

advantage can be taken of the sparseness of [Ai j],-'[Bi j]’

i j], and [Di j]. Details are described in Appendix C.
3.3.2 SETTING UP LOCAL FIXED-SQURCE PROBLEMS

(C

In our investigation, either a single node or five nodes
(the node to be homogenized and its nearest neighbors) will
be used as the defining domain of each fixed-source problem.
On every boundary line of an assembly (no matter whether the
nocde 1is an assembly or a cluster) we can have either 1 or 2
segments. Thus for either assembly of cluster homogenization
four kinds of local problems can be defined. They are speci-

fied in Table 3.1.



Number of Nodes* Number of Segments
in Each Fixed- on the Boundary Line
Method Source Problem of Each Assembly
N5S82 5 2
N551 ) 1
N1s2 1 2
N1isl 1 1

*Node can be either an assembly or a cluster

TABLE 3.1 METHOD DEFINITION

It is important to realize that all fixed-source problems
for a given local calculation in our investigation will be
carried out using_the same method. For cluster homogeniza--
tion the number of segments on each boundary line of a
cluster is actually twice the number of segments on each
boundary line of an assembly (i.e., for 2-segment methods,
there are four segments on each boundary line of a cluster).
Because only the magnitude of the net surface currents
(obtained from (2.9)) and surface fluxes (obtained from
(2.14)).on each surface of a node can be deduced from pre-
vious global results, equation (3.2), which is consistent
with the angular approximation used in generating the response
matrices, will be needed to obtain as boundary conditions the
magnitude of the incoming partial currents on boundaries of
the domain included in each fixed-source problem. Because
this magnitude is that of the partial currents over an entire
nodal surface, spatial approximations are also needed (except
for assembly homogenization using l-segment methods) to de-

fine fully the boundary conditions for each fixed-source



problem. For assembly homogenization using 2-segment
methods, either the flat or the eigenvalue approximation
will be used along with total magnitudes over.the whole
nodal boundary to determine the incoming partial currents

for each segment. For.cluster homogenization the flat
approximation can be used directly to determine the in-
coming partial currents for each segment. However, because
cluster elgenvalue calculations cannot be carried out before-
hand (for the same reason that the response matrices of a
cluster cannot be precalculated), incoming partial current
distributions must be found from the ratios of partial
currents for the individual assemblies making up the cluster.
Accordingly, with the magnitude of the incoming partial
current for a given cluster face having four segments found
as described above, we assume that the partial current is
split equally between the lower and upper pairs of segments.
Then within each pair the ratio of partial currents can be
found from an assembly eigenvalue calculation.

3.3.3 SOLUTION TECHNIQUES

For assembly homogenization, if incoming partial currents

[Jinj] of neode (i,)) are known, outgoing partial currents
r
[Jiugl and the information cclumn vector [IRi j] can be

obtained directly by applying eguation (3.1) to that assembly.
For cluster homogenization, if incoming partial currents

[Ji?j] of node (i,j) are known and the response matrix [Ri,j]

of the node has been determined by (3.10), ocutgoing partial



currents [Ji??] can be obtained by applfing (3.1) to that
cluster. [Ji??ER], which are partial currents on assémbly
boundary lines not common to cluster boundaries, can be
determined from (3.8). Xnowing IJi?jl and [Ji??ER]’ the

incoming partial currents for each assembly comprising the
cluster can be established and then [IRi j] can be determined
f

according to (3.11).

Oonce [J%n.], [Jout

. and [IR. .] are determined ro-
i, i3 [ 1,3] r P

cedures to calculate equivalence parameters for node (i,3)
are the same for both assembly or cluster homogenization.
By using [IRi,j] which contains heterogeneous node volume-
integrated reaction rates and heterogeneous node volume-
integrated group fluxes, homogenized cross sections and
heterogeneous node volume-averaged group fluxes can be
obtained according to (2.4) and (2.8). Eqguations (3.2)
yield heterogeneous sdrface-averaged group fluxes and het-
erogeneous surface-averaged net currents. Since all het-
erogeneous values except heterogeneous surface-averaged
group fluxes are equal to the correspending homogenized
values, equation (2.20) tcgether with equation (2.14) can
be used to obtain discontinuity factors. It is important
to realize that 1f the quadratic transverse leakage model
is used. the transverse leakages of neighboring nodes are
needed to determine discontinuity factors. Thus discontinuity
factors must be generated after fixed-source calculations

for all nodes have been done.



The remaining problem is how to get incoming partial
currents [Ji?j] for node (i,3).

For l-node fixed-source calculations (1 or 2 segments),
they are just the given boundary conditions because bound-
aries of the domain of the fixed-source problem coincide
with boundaries of the node to be homogenized.

For 5-node fixed-source calculations, since only in-
coming partial currents on boundaries of the domain of the
fixed-source problem are given by previous global results,
incoming partial currents on boundaries of the center node
which is the node to be homogenized need to be determined.
The configuration and scme notation for 5-node fixed-source
problems are shown in Figure 3.3. Writing out equation (3.1)

for each node and regrouping gives

n

[;1 -[p; ) Sy ) vy 511 512
- (R ] [1] [370%] (0]
where
(0] is an N-element column vector with elements equal
to zero,
(I] is an N*N identity matrix,
[Ri,j] is the N*N response matrix for node (i,]),
[Di,j] is an Nx*N diagnonal matrix associated with nede (i,3])
and given by
Dy 41 = piag {IRy3 71, R ?Th, R(TTOIY, RGTR .13



2 ,m £ ,m 2 ,m 2, m
IRy} ! [R12 ] [R13 i [Rl4 1
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—— -
(i,3-1) !
1 3 surface labelling for any given node
2
E .
(R '™ is a P # P matrix of matrix elements connecting outgoing partial currents on
aB .
face a to incoming partial currents on face $; «,8=1,2,3.,4,
P = 2 * NSEG * G for cluster homogenization,
p = NSEG * G for assembly homogenization

FIGURE 3.3 CONFIGURATION AND NOTATION FOR 5-NODE FIXED SOURCE

PROBLEMS USING PARTIAL CURRENT RESPONSE MATRICES.
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out

in
1 ] and [Jl .] are N-~element column vectors whose

(35", 5
elements are group partial currents of node (i,J),
N=4*Pp, Pand [R'™ with o = 1,2,3,4 are de-
fined in Figure 3.3.

The[Yi j] in the above equation are given by

v, 41 = Col{[Yi’j],[Yirj],[Yi’j],[Yirj]} (3.14)

where

vy, 51 = (2} 410930 )

vs 51 = 2] 109t 0,

[Yi’j] = [zi’jl[Jifl,j}

vg g1 = fzg 1190

23,51 = GryT TRt T on i A0,

(22 ;1 =" (Rgy” 1][Rl I 1RE T 11[01},

23,51 = tron iRy st Iyt myyt I,

(25 41 = (3INyor iRy It Ry,

{O0] is a P * P null matrix,

P and [Riém] with «,8 = 1,2,3,4 are defined on Figure 3.3.
Equation (3.12) is solved by a block Gauss-Seidel iteration
method. Because the ccefficient matrix may not be diagonally
dominant, the iteration cannot be proved by the standard
mathematical method to be convergent. However, the physics
of the situation suggests that it will in fact always converge.
Iterations can be considered as neutron generations and a

region with a fixed source in a wvacuum will reach an asymptotic



'state.provided that region itself in a vacuum is subcritical.
Thus this iteration method will converge as long as the
total domain of the fixed-source problem is subcritical
in a vacuum. Since this requirement is alwavs met in prac-
tical cases, there is no problem in solving (3.12) by the
Gauss-Seidel method.

The overall procedure for local calculations are shown
on Figure 3.4. A computer code "RESPONSE" was develaoped
to carry out the local calculations according to that flow

chart.

3.4 NUMERICAL TESTS

3.4.1 A PRELIMINARY TEST PROBLEM

In order to see whether the response matrices method
can provide a good estimation of equivalence parameters,
a core consisting of very heterogeneous assemblies was
analyzed as a preliminary test of the method. This test
zone is described in Appendix A.4 and Figure A.4.1 shows
the layout. The central cluster of the test zone was the
node homogenized. In each assembly fuel pins, water rods,
gadolinium rods, contrecl blades, wide and narrow water gaps
were explicitly modeled. The test zone was assumed to be
part of a reactor with eigenvalue equal to 1. Two standard
solutions characteristic of the test zone present in dif-
ferent environments were generated by CITATION. (How to
use CITATION to obtain these standards is described at the

end of Appendix B.l.} The first environment simulated the
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central part of the core so that the spatial shape of
incoming partial currents was asymptotic (i.e., it approaches
the eigenvalue distribution). The second environment was
assumed to be such that the spatial shape of incoming

partial currents was flat. For both problems, discontinuity
factors were for the flat transverse leakage model.

Response matrices for this problem were generated with
either flat or eigenvalue spatial approximation. The cor-
rect eigenvalue (1) was used to generate them. To define
the local fixed-source calculation, initial estimates of
the magnitude of surface-averaged group incoming partial
currents on boundaries ©f the fixed-source problem were
obtained from the standard. The spatial approximation used
to determine the partial currents on those assembly boundary
lines that constitute each cluster boundary line was flat
(which is exact because of the symmetry of this problem).
The spatial approximation (if needed) used to determine
the partial currents of each segment on boundaries of the
fixed-source prohlem was chosen for consistency to be that
used to generate the response matrices. Discontinuity factors
were generated using the flat transverse leakage model.

All four cluster homogenization methods were tested,
and results are sheown in Table 3.2. They suggest that
using the eigenvalue spatial approximaticon yields better
results than using the flat spatial approximation no matter

what standard is considered. Also with the eigenvalue approx-



Case: I 1I

Method : N5S2 N1S2

Spatial Approximation
In Generating Response

Matrices (F = Flat, F F
E = Eigenvalue)
Spatial Approximation
in Local Fixed-Source F F
Calculations
vZf ~0.66 ~0.58
1
vZf -0.10 -0.12
2
ER1=Zal+221 0.35 0.42
$ Error o 1.43 1.55
az
+
fl -3.91 —5.63
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(1}

TABLE 3.2.A RESULTS FOR THE PRELIMINARY TEST PROBLEM USING EIGENVALUE SHAPES FOR STANDARD
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Case: . ' I

Method: N552

Spatial Approximation
In Generating Response

Matrices (F = Flat, F
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Calculations
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TABLE 3.2.B RESULTS FOR THE PRELIMINARY TEST PROBLEM USING FLAT SHAPES FOR STANDARD
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imation, errors in all egquivalence parameters are smallef
than those associated with ADF.

Because the magnitudes of partial currents used to
define the fixed-source problem were obtained from the
respective standards, these results are the best the various
methods can yield.

3.4.2 CISE BENCHMARK

For the CISE benchmark, response matrices for all mul-
tiplying assemblies were generated using the eigenvalue
approximation, and response matrices for reflector were
generated with the flat approximation. Because of the cost,
they are generated with the reference eigenvalue and were
never updated during the global-local iterations. Both
assembly and cluster homogenizations were tested. For the
cluster homogenization response matrices of a vacuum assembly
are needed as can be seen from Figure A.l1.2 in Appendix A.

They are given by

[R'] = null matrix

(107 101 [I] [O]

(01 [0l [0] (1] (3.14)
(R] =

{r] (o] [ol] [ol
(01 [I] [0] [oO]

o

where ([0] and [I] are (NSEG*G) * (NSEG*G) null and identity
matrices, respectively. Equation (3.14) is just the state-
ment that neutrons coming in through a face will continue

through and emerge across the opposite face.



For cluster homogenization the spatial shape used to
determine the partial currents on those assembly boundary
lines that constitute each cluster boundary line was as-
sumed to be flat. For either assembly or cluster homogeni-
zation, if 2-segment methods were used, the spatial approx-
imation used to determine the partial currents at each
segment for an assembly was that'used to generate the re-
sponse matrices of that assembly. Both the "flat' and the
"quadratic" transverse leakage model were-examined with
one or the other model used consistently throughout the
global-local iterations to determine discontinuity factors
and to solve the global equations. The procedures are out-
lined in Figure 3.5. Results, shown in Table 3.3 and
Figure F.l and F.2 of Appendix F, indicate that errors are
very large.

To understand better why for this problem the
response matrix method does not work, a detailed examination
of all egquivalence parameters for all nodes was made. It
showed:

1. for any local method the errors in homogenized cross

sections obtained by the response matrix method are

smaller than 0.7% everywhere in the reactor while
assembly homogenized cross sections (AHCS) have errors
around 2% and even larger than 3% in a number of nodes,

2. the errors in discontinuity factors in the central

part of the reactor are around 3% which is comparable
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Case I 11 ITI
1
aoer)™  (apr)?

Model in
Global F Q F
Calculation
(F= flat,
Q= quad.ratic)
Initial
Estimation :
Nodal
Size Cluster Cluster
Method in
Iocal N1s52
_Chlculation
Nth 1
Iteration
= A 0.02 -0.05 -1.67

bd

g e -2.63 -2.05 47.8

| max

@ g 1.19 0.82 15.2

av

(1)

transverse leakage model using ADF.
(2)
transverse leakage model using ADF.
(3} |

(4)A = gigenvalue, €
of volume-weighted

(5)
the reference eigenvalue.

v

ALFF

Clugster Cluster

N3S2

-1.23

28.1

6.39

is the maximum error in nedal power, €
absolute errors in nodal power. a

v VL VII
F Q Q

. )
ADFF aADFQ Reference
Qluster Cluster Assembly
NSS2 N5S2 N5S2
2(3) 1 1
1,12 ~1.23 -1.08
9.54 29.0 24.53
3.50 6.88 8.58

ADFF is the result obtained by solving the global equations with the flat
ADFQ is the result obtained by solving the global equations with the quadratic

Reference solution provided only the magnitude of the surface quantities,

v is the average

Response matrices used for the 2nd iteration are still those associated with

TABLE 3.3 RESULTS FOR THE CISE BENCHMARK USING PARTIAL CURRENT RESPCNSE MATRICES



to the errors incurred using assembly discontinuity

factors,

3. the errors in discontinuity factors on the periphery

of the core are quite large (over 30% for fuel assem-

blies and 100% for adjacent reflector nodes).
It thus appears that the error in power comes largely from
the errors in discontinuity factors of nodes near the reac-
tor boundaries. To demonstrate further this conclusion a
simple problem described in Appendix A.5 was solved. The
eigenvalue approximation which is flat was used to generate
response matrices. Results are shown in Table 3.4. Since
each node is initially homogenecus, the error in power comes
entirely from errors in the discontinuity factors.

It seems clear that the response matrix method using
partial current response matrices cannot predict accurately
discontinuity factors for nodes near reactor boundaries.
Moreover, for a large reactor the errors near the periphery
of the core will cause large errors in power. The main
reason for this shortcoming is the spatial approximation
for the incoming partial currents used to generate the re-
sponse matrices. In these fixed-source problems for gener-
ating response matrices, the resultant outgoing partial
currents will have different spatial shapes from those of
the incoming partial currents (e.g., if a flat approximation’
is used for the incoming partial currents, the resultant

outgoing partial currents will not be flat). Using these
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solution because it is actually a 1-D problem and every
node is initially homogeneous.

(2)

This is the error in the discontinuity factor for the

thermal group on the Jin = 0 face. It is also the maximum
error in the discontinuity factors.

TABLE 3.4
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response matrices for the local fixed-source calcﬁlatioﬁs
thﬁs implies a net current which ﬁay not be goed enocugh for
simulating the real spatial shapes. OQur, results show that
they are not adequate for nodes near the reactor boundaries.
As an example, for the problem in Appendix A.5 the fluxes
and x-direction net currents on the line LL' should be

flat in y and the y-direction net currents on the line MM'
should be zero. But the response matrix method gives non-
flat fluxes and non-flat x-direction net currents on the
line LL' and the y-direction net currents on the line MM'
are zero only in an average sense.

Because homogenized cross sections are associated with
the whole node, they are not so sensitive to an approxima-
tion applied at the surfaces of the node. Thus they can
be predicted accurately by the response matrix method with
partial current response matrices. On the other hand, dis-
continuity factors are the ratio of heterogeneous to homog-
enized surface fluxes which are surface quantities. Accord-
ingly they are very sensitive to the validity of the approx-
imation applied on the surfaces. Thus for nodes near the
periphery discontinuity factors cobtained by the partial
current response matrix method will have large errors. Con-
sequently, the next global calculation will result in large
errors in power.

‘'We have mentioned in section 2.5 that Loretz did obtain

improvements by using a fixed-source problem with partial



- currents as boundary conditions to update equivalence param-
eters. His method corresponds to our.NlSl method using
response matrices generated with the eigenvélue'approxima-
tion. However, he did only local fixed-source calculétions
for nodes surrounding a control rod. These nodes are not

in the periphery Qf the reactoer so that the fact that he
could obtain improvements is not contradictory to our re-
sults.

Another important result obtained from this benchmark
is that assembly homogenization is much faster than cluster
homogenization. A comparison of execution time is shown in
Table 3.5. It shows that the time saved in the global cal-
culation by using a cluster as a node is far less than the
extra time needed for the local calculaticn using cluster
homogenization methods. The reason is that it is very time
consuming to obtain response matrices .[R] for all clusters. .
(It takes over 75% of the total local calculation time.)

3.5 SUMMARY

In this chapter the definition and characteristics of
partial current response matrices were first presented.
Then we discussed various methods for solving fixed—source
problems by using tabulated partial current response matrices.
Numerical tests show that because of the validity of the
spatial approximation, discontinuity factors for peripheral
nodes will be greatly in error and this results in a large

error in power and eigenvalue in the next global calculation.
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Because the.spatial-distribution of net currents is
smoother and less sensitive to position than the spatial
distribution of partial currents is, simulating by a single
predetermined shape the spatial distribution of net currents
for one type of assembly regardless of its location in the
reactor is believed to be able to yield better results. As
mentioned in section 2.5, Kord Smith did obtain good results
by using a fixed-source calculation with flat net currents
as boundary conditions. These suggest the use of a dif-
ferent response matrix which relates surface fluxes and
nodal volume integrals to net currents. Such response
matrices will be called '"net current response matrices" and

will be discussed in the next chapter.



CHAPTER FOUR
THE RESPONSE MATRIX METHOD USING NET
CURRENT RESPONSE MATRICES

4.1 INTRODUCTION

We have pointed out in the last chaptér that it is
inadequate to use the response matrix method with partial
current response matrices to evaluate discontinuity factors
because of the spatial shape of the assembly surface fluxes
and outgoing partial currents implied by the shave of an in-
coming partial current. Because the spatial distribution of
net currents is smoother, it is believed that the response
matrix method based on net current response matfices can
give better results. The test problems of XKord Smith given
in Section 2.5 strongly suggest that the net current method
will work. In this chapter, we shall discuss first net
current response matrices and then local fixed-source cal-
culations using these response matrices.

4.2 NET CURRENT RESPONSE MATRICES

4.2.1 DEFINITION

Just as with a partial current response matrix, a net
current response matrix is an operator that defines fully
the output from a region by operating on the input imposed
on that region. However instead of using group incoming
partial currents as input, group net currents on boundary
surfaces of the region are used as input. Output can be
grbup surface fluxes on boundaries of that region as well

as information of interest about the interior of the region.



In mathematical form, net current response matrices are

given by

[IR]

I
£l
(3

(4.1)

where

[#] is an N-element column vector whose elements
are heterogeneous group surface fluxes on
boundaries of the region of interest,

[J] 1is an N-element column vector whose elements
are heterogeneous group net currents in the
direction of the outward normal on boundaries
of the region of interest,

[IR] is an M-element column vector whose elements
are any information of interest for the region
of interest,

[R] 1is an N*N square response maﬁrix,

[R'] 1is an M*N non-square response matrix.

M and N in this equation will be shown in the next section
to be the same as those defined in Section 3.2.3.

4.2.2 GENERATION: ANGULAR AND SPATIAL APPROXIMATION

As partial current response matrices, the i-th column
of [ A and [R'] are equal respectively to [¢] and [IR]
obtained from a problem with zero [J] except for its i-th

element where it is equal to 1. Thus we also need a series



of fixed-source problems to generate whole [F] and [R'].
However this time each fixed-source problem is equivalent
to a problem defined by the region adjacent to a perfect
reflector except for the group and surface corresponding
to i-th element of [J]. For that éroup.and surface, the
net current is set to 1. For each fixed-source problem,
without any knowledge of the full-core solution we need
both angular and spatial approximation'of the unit net
current to define fully that problem. With them, each
fixed-source problem can be solved by any method available
(transport theory, multi-group diffusion theory, etc.}).
Since our references are generated with diffusion theory
code, for consistency each fixed-source problem will also
be solved under diffusion theofy approximation and thus
no further angular approximation will be needed. With
respect to the spatial approximation, unless otherwise
specified we shall assume that the unit net current is
uniformly distributed over the surface through which it
is passing. This will be called the 'flat' approximation.
As with partial current response matrices, the spatial
approximation can be improved by dividing each surface of
the region into several sub-surfaces and associating each
element of [J] with one group and one sub-surface. The
flat approximation is then applied on each sub-surface.
There is no reason why we cannot make use of an eigen-
value approximation as with the partial current response

matrices. However an eigenvalue calculation with n-J, = 0



on all boundaries will not be able to provide the needed
informaticon. An eigenvalue calculation with albedc boundary
condition imposed on one segment will be needed. However
without any knowledge of the full-core solution, the correct
value of the albedo to be used is unknown so that this
approximation is less attractive. Thus only the flat approxi-
mation will be used in this chapter for the net current
response matrices.

4.2.3 DIMENSION OF THE RESPONSE MATRICES

In view of the discussions in the last section and in
Section.3.2.3, we chéose the dimensions N and M of the net
current response matrices to be the same as those of the
partial current response matrices. Thus M is equal to 12
and N is given by 8*NSEG where NSEG is the number of segments

(1L or 2) on each boundary line of the region.

4.2.4 TABULATION AND INTERPCLATION

In order to be consistent Qith our numerical reference
cases which are generated using diffusion theory, net current
response matrices will always be generated by the diffusion
theory code CITATION. The details of using CITATION to
generate ret current response matrices are described in
Appendix B.2.

With the spatial approximation and diffusion theory
approximation made for the unit net current, net current
response matrices can be precalculated and tabulated as
functions of state variables just as partial current

response matrices are. However if the region of interest,



after being made consistent with the global eigenvalue, is
just critical in an infinite lattice composed of its own
material, net current response matrices for this state will
not exist. This situation happens whenever the estimated
global eigenvalue is exactly equal to the infinite multi-
plication factor of the region of interest. This situation
is not a practical problem since the probability that it
will arise is of measure zero. However, for states near
this singular condition, elements of net current response
matrices will approach positive or negative infinite
depending on which side (supercritical or subcritical} of
the singularity they are on. The multi-variable interpo-
lation of net current response matrices is particularly
complicated by this phenomenon. This problem is presently

10 and will not be discussed

being investigated by H. Khalil
further in the present thesis.

4.2.5 SIZE OF THE REGION USED TO DEFINE RESPONSE MATRICES

For the same reasons as the case of partial current
response matrices (described in Section 3.2.5) BWR assemblies
are cheosen as the region to be used to define net current
response matrices.

4.3 FIXED-SOURCE CALCULATION USING NET CURRENT RESPONSE
MATRICES

4.3.1 RESPONSE MATRICES FOR A NODE

In Section 3.4.2, we concluded that the time saved in a
global calculation by using a cluster as a node 1s far less

than the extra time needed for the local calculation with



cluster homogenization because response matrices_of.a_cluster
cannot be preﬁalculated. This situation is the same for net
current response matrices. Accordingly in this chapter we
shall use only assembly homogenization. Thus response
matrices for a node are just those of an assembly and are
pretabulated.

4.3.2 SETTING UP LOCAL FIXED~-SOURCE PROBLEMS

As in Section 3.3.2, either 1 node or 5 nodes (the node
o be homogenized and its four nearest neighbors) will be
used as the defining domain of each local fixed-source
problem. And on each boundary line of an assembly, we can
have either 1 or 2 segments. Combination of them yields
four methods which will be designated by the same names as
those used in Table 3.1 (except that now a node can only be
an assembly).

Unlike the situaﬁion in Section 3.3.2, defining each
local fixed-source problem does not require use of Eg (3.2)
t0 generate incoming partial currents. Previous global
homogenized results give heterogeneocus net surface current
directly through Egquation {(2.9). Moreover, if l-segment
methods are used, no spatial approximation is needed. How-
ever, if 2-segment methods are used, spatial approximation
are needed to determine the net currents for each segment on
boundaries of the defining domain of each fixed-source
preblem. In order to be consistent with the spatial approxi-
mation used to generate net current response matrices, the

flat approximation will be used.



Because a node is an assembly and consistent spatial
approximations are used to generate response matrices and
to define local fixed-source problems, Methods N1S1 and
N1S2 are the same for all nodes except boundary nodes (for
which Method N1S1 satisfies the boundary conditions in an
average sense while Method N1l52 satisfies them for each
individual segment) . Equivalence parameters obtained from
the two methods will then ncet be the same for peripheral
nodes, and thus glchal iterations will vield different
results.

4.3.3 SOLUTION TECHNIQUES

Once heterogeneous net surface currents {Jij] of the
node to be homogenized are known, heterogeneous surface
fluxes [¢i,j] and the informatiocn vector [IRi,j]’ which
contains heterogeneous node volume-integrated reaction rates
and fluxes, can be obtained directly by applying Equation
(4.1} to that node. Then homogenized cross sections can be
obtained accerding to (2.4) and (2.8). Using the global
eigenvalue from the previous global calculation, discontinuity
factors can be obtained from (2.20).

The sole problem, then, is to determine [Ji,j] for the
node to be homogenized. For the l-node methods (1 or 2
segments), it is obtained directly from the previous global
results. For 5-node methods, it has to be calculated from
net currents on the outermest boundaries of the adjoining

assemblies obtained from previous global results. The

configuration and some notation for 5-ncde fixed-source



problems are shown in Figure 4.1. Writing out Equation (4.1)

for all nodes and regrouping yields

r — p— b — —
[I}] [Di,j] [¢l,]] [Yi,j]
[I] -[Rl,j] [Ji,jl [0] (4.2)
- — L - . -
where
[¢i j] is an lN-element column vector whose elements

are heterogeneous group surface currents of
segments on the boundaries of the central
node (i,3).,

. ] is an N-element column vector whose elements
are heterogeneocus group surface net currents
of a segment in the outward direction on the
boundaries of the central node (i,3).,

[#

i j] is the N*N response matrix for node (i,7),

[Y ] is an N-element column vector whose elements

i,3
are the fluxes on the surfaces of node (i,j)
due to net currents across those faces of
its four neighboring nodes that are not
common to node (i,J),

[D ] is an N*N diagonal matrix associated with the

i,j
surfaces of node (i,Jj) but depending on the

properties of its neighbors. It is given by

. .-'ll' ‘rl_l -+lr- ."+1
l,:]] = Diag {[333-3 J], [324] ]: [Ril j]’ [332-2] ]}
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is the N*N identity matrix,

is an N-element column vector whose elements

are zero,

N =4 * NSEG * G,

R

The surface

given by

)
[
|

where

= Col{[Yi’j], [v2

(@ =1,2,3,4) are defined on Figure 4.1.

flux source term [Yi j] in this equation is
’
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3

is an (NSEG*G) *(NSEG*G) null matrix,

(2,6=1,2,3,4) are defined on Figure 4.1.

(4.3)



Equation (4.2) has almost the same form as Equation (3.12).
However it cannct be Solved by the Gauss-Seidel iteration
method as was done earlier because that method will nct
converge for this case. 1In fact, we can prove (see
Appendik D} that for a one-dimensional one-group problem
the spectral radius of the Gauss-Seidel iteration matrix
will be larger than 1 except under very limited conditions.
For two-dimensional two-group problems, we can anticipate
that the possibility of convergence will become even less.
Thus in order to be able to solve all local fixed-source
problems throughout the reactor, we abandecn iteration
methods and solve (4.2) directly. Substituting the second
sub-matrix equation (4.2) into the first yields

-1

[Ji,j] = {[Dl,]] + [Rl;j]} [Yl,j] F4'4)

where [D, ] is inverted directly.

i3] * IR

The overall procedures for local calculations using net

i,]

current response matrices are the same as those shown in

out

i,3

[Ji j] and [¢i j] and the nodal size is always an assembly.
r r

Figure 3.1 except that [Jinj] and [J ] are replaced by
A new version of RESPONSE was developed to carry out the
local calculations using net current response matrices

according to that flow chart.



4.4 NUMERICAL TESTS

4.4.1 CISE BENCHMARK

The global-local iteration procedure was the same as
that shown in Figure 3,5. In order to reduce the cost of
global-local iterations, response matrices were generated
for the reference eigenvalue and were never updated during
the global-local iterations. All four metheds (N1S1, N1S2,
N581, and N552) for the local calculations and three models,
quadratic (Q), flat (F), and CMFD, were examined for the
giobal calculations. Throughout a sequence of global-
local iterations the same model was used for all global
calculations. Results are shown in Table 4.1 to 4.3 and
Figure F.3 to F.5 of Appendix F.

In Case VI of Table 4.1, we started the global-local
iteration with the results obtained by ﬁSing ADF and the
guadratic model. Using the surface currents resulting
from this step we did an N1S2 local calculation to update
the equivalence parameters. Another global calculation
with these new equivalence parameters was performed followed
by an N582 local calculation using net currents for each
fixed-source problem resulting from this newest global
result. Finally, with the equivalence parameters predicted
by the N552 problem we solved the global problem again.

This procedure will be called Method A. The steps
involved are shown in Figure 4.2. The reason for examining

Method A will become clearer in the next section.



I

CASE (ADFQ) It III IV

Model for Global
Calculation 0 Q 0 Q
Initial
Estimation ADFQ ADFQ ADFQ
Method for
Local Calculation N1l51 N152 N5S1
' A -0.05 0.09 0.09 0.10
s Brrors Hcsél) 3.03 0.65 0.65 0.85
{after 1lst Emax 3.04 2.87 2.93 2.88
iteration)

Eav 0.90 0.97 1.00 0.92
No. of Iterations
to Converge 4 3 3

X 0.10 0.10 0.11

& Brrors HCS 0.68 0.68 0.92
(after Emax 3.05 3.11 3.23
convergence) :

€av 0.95 0.98 0.94
(1)

m

(2)Explained in the text.

ADFQ
N552
-0.10
0.72
1.09
0.33

Failed to
Converge

HCS is the maximum error in homogenized cross sections.

TABLE 4.1 RESULTS FOR THE CISE BENCHMARK USING
NET CURRENT RESPONSE MATRICES AND THE QUADRATIC TRANSVERSE LEAKAGE MODEL

VI

0

ADFQ
(2)

-0.11

1.64

£1-¥



I

CASE (ADFF')

Model for Global

Calculation r
Tnitial

Estimation

Method for
Local Calculation

A 0.02
% Errors HCSm 3.03
(gfter }st emax 3.46
iteration)
£ 1.31
av
No. of Iterations
to Converge
by
% Errors HCSm
(after £
max
convergence)
Eav

TABLE 4.2 RESULTS FOR THE CISE BENCHMARK USING

1T

ADFF

N1S1
g.09
0.66

II1

ADFF

N1S2
0.08
0.57

1.00

Iv

ADFF

N5S51
0.11
1.05

NET CURRENT RESPONSE MATRICES AND FLAT MODEL

ADFF

N552
-0.12
0.81

1.48
1.55

Failed to
Converge

P1-¥



(1}

CASE I (ADFC) IT I1I
Model for Glcbal
Calculation CMFD CMFD CMFD
Initial Estimation ADFC REFERENCE
Method for Local :
Calculation N552 N552
A 2.27 0.10 -0.10
4 Errors HCSm 3.03 3.04 0.72
(after lst Emax 37.6 8.01 2.54
iteration} € 4y 15.4 2.91 0.55
Failed to Failed to
Convergency Converge Converdge

(1) ADFC is the result obtained by using ADF with CMFD model.

TABLE 4.3 RESULTS FOR THE CISE BENCHMARK USING
NET CURRENT RESPONSE MATRICES AND CMFD MODEL

ST-¥



ADF RESULTS

N1S2 LOCAL CALCULATION

GLOBAL CALCULATION

e
N5S2 LOCAL CALCULATION

.
GLOBAI CALCULATION

!

FIGURE 4.2 PROCEDURES IN METHOD A



As is noted in the tables, several cases failed to con-
verge. This happened because of a divergence of the global
calculations performed by QUANDRY. 1In Section 2.3, we
discussed possible reasons why QUANDRY may diverge. For the
present problem, there are three possible sources of diver-
gence. First, the nonlinear global-local iteration pro-
cedure itself may simply be divergent. Secondly, even if
the nen-linear procedure is convergent there may be a stage
during the global-local iterations at which one of the
iteration matrices in QUANDRY becomes divergent. Finally,
because the response matrices used during the global-local
iteration process are not updated in accordance with the
estimated global eigenvalue, there may result a condition
that makes QUANDRY diverge. (The local and global problems
are trying to converge to different results.) Unless the
response ma#rices are updated according to the global
eigenvalue obtained from the previous global calculation,
the convergent solutions shown in Table 4.1 and 4.2 are
not truly convergent in the sense that the loecal calculations
have converged to one result and the global ones to another.
All these points are brought out more fully by two simpler
test problems described in Appendix E.

Table 4.]1 and 4.2 show that except for N5S52 none of the
methods provide much improvement over the ADF results.
Detailed examination of the results from all global-local
iterations shows that one global-local iteration for any method

yields nearly the best result that that method can give. For



the N1S1 and N5S1 methods, the convergent solutions are the
same as the solution obtained from solving the entire
reactor according to the l-segment net current response matrix
technique based on the flat approximation. (The reason

that the convergent solution of N1S1 method is different
from that of N5S1 method by a small amount is that we did
not update response matrices according to the newest estima-
tion of the global eigenvalue.) For this problem, because
the errors of ADF results are evidently the same order as
those of a response matrix solution involving flat net cur-
rents over each assembly face. Hence the results okbtained
from the convergent solutions of the N1S1, N551, and N1S2
methods cannot be expected to yield much improvement. On
the other hand the NS5S2 method, because it not only accounts
for the effect of nearest neighbors but also relaxes the
limitation of completely flat spatial shapes on the surfaces_
of each node by ﬁaving 2-segments on each boundary line of

a node, is expected to yield better results.

Table 4.1 and 4.2 also show that the convergent solu-
tions (if they exist) for various methods using different
transverse leakage models are the same (as they should be).
However, the first global-lcocal iteration results obtained
from using the guadratic transverse leakage model are better
than the results obtained from using the flat transverse
leakage model. This is because a more scophisticated model
will make the global solution less sensitive to the exact

values of discontinuity factors.



This point is further demonstrated by the results shown
on Table 4.3. From Case III on that table, it seems that
even for such a crude model as CMFD we can obtain quite
good results provided the input currents for the local
problem are correct. However, Case I and II of that same
table show that without a very good estimate of the magnitude
of boundary conditions for each fixed-scurce problem the
results of the first global-local iteration still have large
errors. Moreover, the non-linear global-local iteration will
not converge so that we cannot improve results by taking
more iterations.

It seems c¢lear that the response matrix method using
net current response matrices based on the flat approximation
works for this problem. In order to understand more why
the response matrix method using partial current response
matrices as shown in Section 3.4.2 did not yield good results
and to demonstrate the effect of generating the net current
response matrices with another spatial approximation, we
generated the net current reéponse matrices from the partial

current response matrices according to
[R] = 2 {R] + [T} [R) - [1]}7¢ (4.5)

where



[R] 1is the N*N net currént response matrix for an
assembly,

[R] 1is the corresponding N*N partial current response
matrix whiéh is generated using the eigenvalue
spatial apprbximation and the reference eigenvalue
fas described in Section 3.4.2),

[T] 4is an N*N identity matrix,

N = 4*NSEG*G.

This equation is obtained by using Equation (3.2) along with
the definitions of response matrices. The net current
response matrices of an assembly so determined are not the
same as those generated directly using the flat spatial
approximation because Egquation (4.5) implies a different
spatial approximation for the net currents. A detailed
examination of this implied spatial distribution shows that
it has a shape that is not at all smooth.

‘The CISE benchmark was rerun but this time using the
response matrices (4.5) to solve each fixed-source problem.
Various local methods and global models were tried. The
poor results, shown in Table 4.4 and Fiqure F.6 and F.7 of
Appendix F, indicate that it is not adequate to use net
current response matrices generated with unsmooth spatial
approximation.

Because partial and net current response matrices are
just mathematical transformation of each other, the converged

solutions obtained from using the N1S1 method with net current



CASE I IT III IV A" VI
Model for Global
Calculation F Q 0 F F 0
Initial
Estimation ADFF ADFQ ADF(} ADFF ADFEFF ADFQ
Method for
Local Calculation N1S1 N1s1 N1§2 N551 N5S52 N5S2
A -1.06 -1.06 -0.65 -1.14 ~0.94 -0.99
o HCS 0.80 0.72 0.63 1.25 1.20 1.27
¢ Errors m
(after 1st € nax 23.1 23.0 15.9 25.5 20.8 22.3
iteration) Eav 8.60 8.60 6.16 9.56 7.96 8.73
No. of Iterations Failed to Failed to Failed to
to Converge 5 5 5 Converge Converge Converge
A -1.22 -1.23 -0.72
& Errors HCSm 0.60 0.60 0.85
(after € nax 19.6 19.9 14.7
convergence) £ av 7.44 7.51 5.76

TABLE 4.4 RESULTS FOR THE CISE BENCHMARK USING NET CURRENT
RESPONSE MATRICES GENERATED FROM PARTIAL

CURRENT RESPONSE MATRICES

Tz~b



response matrices should be the same as that obtained from
using the same method but with partial current response
matrices. Thus Case I and II of Table 4.4 further demon-
strate that the spatail approximation is the reason why the
response matrix method using partial current response matrices
does not work.

4.4.2 HAFAS BENCHMARK

Because of the finding that the qguadratic transverse
leakage model yielded the best result, only this model was
used in analyZzing the HAFAS benchmark. Response matrices
for this problem were generated with the flat approximation.
The global eigenvalue used to generate these response
matrices was that obtained from the ADF result which was the
best estimation of the solution available without solving
the full-core problem. All four methods (N1S1, N152, N5S1i,
N552) were tried but only one global-local iteration was
performed. Results are shown in Table 4.5 and Figure F.8
of Appendix F.

Case II and III of Table (4.5) indicate that l-node
methods improve the ADF results. However, Case IV and V
on that table indicate that, in contrast to the CISE bench-
mark, 5-node methods starting with the ADF result yield
poor results.

To try to¢o understand these results, detalled examination
of the net currents on the boundaries of each fixed source
problem, the resultant net currents on the boundaries of the

node homogenized and the resultant equivalence parameters



CASE (ADFQ) IT ITT iv v VI VII VIITI
Model for Global
Calculation Q 0] 0 Q Q 0 0 Q
Initial
Estimation ADFQ ADFQ ADFQ ADFQ REFERENCE REFERENCE ADFQ
Method for
Local Calculation N1S1 N1S2 N5S1 N5§2 N5S2 N551 A
A -0.06 0.04 0.04 0.36 -0.08 -0.09 -0.05 ~-0.15
HCS 6.43 0.56 0.56 6.79 3.52 0.60 7.48 0.92
$ Errors m
€ 5.29 2,07 2.08 25.6 9.67 0.96 23.31 1.30
(after lst max :
iteration) € 0y 1.33 0.92 0.92 4.74 4.84 0.24 6.15 0.40
TABLE 4.5 RESULTS FOR THE HAFAS BENCHMARK USING

NET CURRENT RESPONSE MATRICES

gEC-v



was made. It showed that because of the complexity of this
problem, the net currents on the surfaces of each node
given by QUANDRY employing assembly discontinuity factors
had large errors. Thus the boundary conditions for each
fixed-source problem for the next local iterate alsoc had
large errors. For l-node methods, because the boundary
conditions for each fixed-source problem are just the net
currents on the suffaces of the node homogenized, the esti-
mated surface derivative,given by the global calculation,
for that node are preserved after the local calculation.
Because of this preservation, the global flux tilts are
predicted guite accurately. A good estimation on eguivalence
parameters is then expected and thus the next global cal-
culation will yield good results. However, for 5-node
methods, hecause the net currents on the surfaces of the
node homogenized (central node) are determined by the local
calculation and because the iimitation on the shapes of the
net currents on the boundaries of the central node imposed
by the spatial approximation in response matrices, the
surface derivatives for the central node so determined may
yield very bad prediction on the global flux tilt across
that node. Thus unless the estimation of the net currents
on the boundaries of the defining domain ¢f a S-node
fixed-source problem is very good, the resultant spatial
tilts in fluxes for the central node may be guite wrong and

result in large errors in equivalence parameters.



Table 4.5 shows that 5-node methods starting with ADF
results do give large errors in homogenized cross sections
so that it is not surprising that the next global calculation
yielded poor results.

The explanation of this behavior is further confirmed
by Case VI and VII of Table 4.5. 1In Case VII, although
reference solution was used to give the magnitude of the
net currents on the boundaries of sach fixed-source problem,
the errors in equivalence parameters are still very large
because of the lack of flexibility of the shape for the net
currents on the boundaries of the central node. ©On the
other hand, in Case VI because there are two segments on
each boundary line of the center node, the limitation on
the shape of the net currents is relaxed. The results show
that errors in equivalence parameters are then very small,
and the next global calculation thus yielded good results.

Although these cases are of no practical interest (since
the reference solution is not known a priori) they do suggest
the use of Method A which is described on Figure 4.2 in the
last section. Because the glecbal results obtained by using
equivalence parameters from the results of an N152 leccal
calculation {(using the ADF results as an initial estimation)
yield an estimation of net currents better than that given
directly by the ADF results, using them to define the N5582
local fixed-source problems is expected to yield better
equivalence parameters and global results than those obtained

by using the ADF results directly to define the NS5S52 local



fixed-source problems. Case VIII on Table 4.5 shows that .
Method A gives the best results of all the practical methods
tested. For Method A, the response matrices used in the
N582.local calculation should be that corresponding to the
eigenvalue given by the global calculation after the N1S2
local calculation. However, 1n Case VIII of Table 4.5 to
reduce the cost the response matrices used were still those
associated with the eigenvalue given by the ADF results.

Qur experience has shown that because the difference between
the two eigenvalues was only 0.1% and because we were not
trying to iterate more than conce, the effects due to not
updating the eigenvalue are very small.

4.4.3 LSHBWR BENCHMARK

For the same reasons as for the HAFAS problém, only the
quadratic transverse leakage model was used in this problem.
Employing the flat net current approximation, two sets of
response matrices were generated. One of them corresponded
to the eigenvalue given by the ADF results and the other
corresponded to the eigenvalue given by the global calcula-
tion after the N1S2 local calculation. All the various
methods for performing the local calculation were tried.
Results are shown in Table 4.6.and Figure F.89 in Appendix F.
As in the HAFAS problem, Methods N582 and N551 with the ADF
result as the initial estimation were not able to give a
good estimation for the spatial tilts of fluxes for the
central node and as a consequence yield inaccurate results.

In contrast to situation for the CISE and HAFAS problems,



I

(1)

CASE (ADFQ) IT ITX
Model for Global
Calculation Q Q Q
Initial
Estimation ADFQ ADFQ
Method for
Local Calculation N1S1 N1S2

A ~0.05 0.05 0.05
% Errors
(after lst € nax 9.61 3.42 3.42
lteration) e 3.26 1.06 1.06
av

IV

ADFQ

N5S1

35.8

Vv VI

Q Q
ADFQ ADFQ
N5S52 A
-0.16 0.07
38.8 5.42
12.2 1.01

1)

VII(

ADFQ

N1S2

4.09

In this column, the errors are for the convergent solution which was
obtained by using updated (in accordance with the eigenvalue given
by the previous global calculation)

calculations.

TABLE 4.6 RESULTS FOR THE LSHBWR BENCHMARK USING
NET CURRENT RESPONSE MATRICES

response matrices in the local

L~y



Method A& did not give quite as good results as Methods

N151 and N1S2. This is because in this problem, with its
unrealistic flux tilt, the shape of the net currents on the
boundary surfaces cannot be well-simulated by a flat distri-.
bution. This fact is demonstrated by the error that existed
in the convergent solution for Method N1S2 (Case VII of

Table 4.6). Because that solution 1is very clcese to the
solution obtained by solving the entire problem using response
matrices based on flat net surface currents, the errors that
result imply that the real shape is quite different from flat.
Method A did, however, improve significantly results cbtained
using the ADF parameters.

4.4.4 EXECUTION TIME COMPARISON

The execution times (in CPU seconds of IBM 370/168)
for the various methods applied to all three benchmarks
are given in Table 4.7. The time which might be needed for
interpolating response matrices is ﬁot included in the execu-
tion times for the local calculations since no systematic
interpolation was carried out in this thesis. It is believed
however that for one local calculation cne or two CPU
seconds will be sufficient for the interpolation.

The last column of Table 4.7 gives the execution time
needed for the first global-local iteration. For all methods
except Method A, it involves two global calculations (the
first global calculation is to yield the ADF results) and
one local calculation. For Method A, it involves three

global calculations and two local calculations. The execu-



PROBLEM TOTAL EXECUTION
" EXECUTION TIME EXECUTION TIME PER METHOD FOR EXECUTION TIME PER TIME FOR THE FIRST
FOR HETEROGENEOUS RUN GLOBAL CALCULATION LOCAL CALCULATION LOCAL CALCULATION GLOBAL-LOCAL ITERATION

N1S1 0.5 5.3
N1s2 1.0 5.8
SIS 2.4 wss1 0.7 5.5
N5S2 2.0 6.8
A 10.2
. N1S51 0.9 9.7
HAFAS 4.4 : N1s2 1.7 10.5
{700) ) N551 1.3 10.1
N5S2 2.8 11.6
A 17.7
N1s1 0.8 8.2
N1S2 1.2 B.6

LSHBWR .
SHBW 3.7 N5S1 1.0 8.4
N552 2.2 9.6
A 14.5

TABLE 4.7 EXECUTION TIME COMPARISON
(ALL TIMES IN SECONDS)

6c—¥



tion times needed to obtain the full core heterogeneous
standard solutions are given in the first.column. It is
clear that our methods improve significantly the computa-
tional efficiency.

4.5 SUMMARY

In this chapter, net current response matrices were
introduced, and the use of them to solve fixed source
problems was discussed. All three beﬁchmarks were tested.
The results show that the Methods N1S1 and N1S2 using flat
net current response matrices consistently reduce the maximum
power error to a level of ~3%. Whether they improve the
ADF results depends on the complexity of the problem.

Method A consistently improves the ADF results. However, for
problems involving extremely large tilts in the net currents,
it may not give guite as good results as Methods N1S2 and
N1Sl. Results also show that the computational efficiency
for.all three methods is &ery attractive. The execution

time needed is one to two orders of magnitude smaller than
that needed to solve the entire problem by a fine mesh method
that treats all heterogeneous regions explicitly.

It is clear in retrospect that the response matrix
method using flat net current response matrices works well
provided any one of the three schemes, N1S1l, N1S2 or A, is
used for the local calculations. Since both the N1S2 and A
methods use 2-segment response matrices, while the N1S1
method uses l-segment response matrices, the storage require-

ment and data management problems for the tabulation and



interpolation of response matrices for the former methods
are considerably more severe than those for the latter method.
Thus we strongly suggest that the N1S1 method be used for

all problems.



CHAPTER FIVE

SUMMARY AND CONCLUSIONS

5.1 OVERVIEW OF THE INVESTIGATION

The objective of this research effort was to devéloP
accurate and efficient homogenization methods for coarse
mesh analysis of beiling water reactors.

Initially the existence of exact homogenized parameters
which will reproduce all of the integrated properties of a
known reference solution was discussed. It was shown that
because of the lack of degrees of freedom for the equations
embodying the diffusion theory mcdel, exact, spatially flat
homogenized parameters fof that model do not exist in
general. However, exact homogenized parameters based on
equivalence theory which is an extension of diffusion theory
do exist. As a consequence, equilvalence theory homogenization
methods instead of conventional flux;weighting techniques
were used for cross section homogenization.

In Chapter 2, equivalence theory was formally derived.
The unigue feature of this ﬁethod 15 the introduction of two
additional degrees of freedom per direction and group to
the conventional diffusion theory eqguations. With them,_it
is‘possible to define exact hcmogenized parameters {(for any
approximate method used to solve the homogenized problem)
to match any known reference solution. However, since the
exact solution is ﬁeeded to define these parameters, approxi-

mations for these exact parameters must be made in practical



cases.

Some methods for estimating these parameters suggested
by Smith3.and Loret26 were reviewed. These authors showed
that the ADF method is cheap and simple. However, 1f greater
accuracy 1is required, more sophisticated methods involving
nonlinear iterations between glcbal homogenized reactor
calculations and local fixed-source calculations (to com—
pute the equivalence parameters) are needed. If, however,
nodal methods or finite-difference methods are used to solve
the fixed-source problems for the local calculations, the
cost is comparable to and even higher than that incurred
by solving the entire problem heterogenecusly. Consequently,
a method which can solve each fixed-source problem more
efficiently is in demand.

Since the response matrix method can give information
. 0f interest directly and since it uses parameters (response
matrices) which can be pretabulated, it is believed tc be
the most efficient method for solving fixed-source prcblems.

In Chapter 3, the application of conventional partial
current response matrices was examined. Various methods
for defining fixed-source problems and the procedures for
solving them were discussed. However, numerical tests showed
that because of the spatial approximation imposed on the
incoming partial currents used to generate the response
matrices, predicted discontinuity factors for peripheral

nodes are greatly in error and this results in a large error



in power and éigenvalue when the next global calculatiocn
is performed.

In Chapter 4, a different response matrix which
directly relates information of interest and surface fluxes
to net surface currents was introduced. Various methods
for defining fixed-source problems with these net current
response matrices and solution technigues were discussed.
Numerical tests show that the l-node methods using flat net
current response matrices consistently reduce the maximum
assembly power error to a level of 3% in one global-local
iteration. Whether they improve the ADF results depends
on the complexity of the problem. The procedure designated
as Method A consistently improves the ADF results. How-
ever, for problems involving extremely large global flux
tilts in the net currents, it may not give quite as good
results as l-node methods. .

The results also show tﬁat the computational efficiency
for.these methods is neraly two orders of magnitude greater
than that achieved by solving the entire problem without
homogenization.

Since the N1S1 method uses l-segment response matrices,
the generation, storage and interpolation of response
matrices for this method will be much easier and cheaper
than for the 2-segment methods which use 2-segment response
- matrices. Thus we strongly suggest that the N1S1 method be

used for all BWR analeis.



5.2 RECOMMENDATIONS FOR FUTURE RESEARCH

5.2.1 STEADY-STATE THERMAL ANALYSIS

The problems analyzed in this thesis are actually zero-
power reactors (i.e. no thermal-hydraulic feedback is
represented). In order to analyze full-power reactors,
feedbacks must be taken into account. 1In principle, there
-1is no problem of using response matrix methods to analyze
these reactors. However with feedback the cost of the global
calculation becomes rather expensive. Thus the possibility
of starting the local calculation with a sufficiently, but
not completely converged global solution, so that the cost
can be reduced must be studied.

5.2.2 FUEL MANAGEMENT STUDIES

For fuel management studies, the history of a reactor
(exposure, contreol history, void history) must be taken
into account. In order to pretabulate respcnse matrices as
functions of these variables, approximations for the spatial
distribution within an assembly must be made for these state
variables. A thorough study is needed to ensure that the
approximations used are acceptable and thus that response
matrix methods can be used for such studies.

5.2.3 TRANSIENT ANALYSIS

Basically; transient studies are similar to steady-state
thermal analyses. However, the uniform spatial distributions
of state variables (temperature, void, etc.), within an
assembly which are assumed in generating response matrices,

becomes questicnable. Moreover, for large power excursions,



because of the Doppler effect (which is instantaneous) in
the fuel within an assembly, the response matrices for the
assembly may not be stationary (i.e., the response at time
t to an input at time t, may depend on what happens within
the time interval t - to). Thus the use of response matrix
methods for transient analysis needs careful study.

5.2.4 TABULATION AND INTERPOLATION OF THE NET CURRENT
RESPONSE MATRICES

In view of the discussion in Section 4.2.4 and in the
preceding three sections, the tabulation and interpolation
of the net current fesponse matrices are by no means trivial
problems. They involve not only multivariable (fuel tempera-
ture, void, exposure, control history, etc.} tabulations and
interpolations but are further complicated by the singular
behavior of the net current response matrices. In this
thesis no systematic methods for tabulation and interpoclation
were studied. Hoﬁéver in order to use efficiently and
accurately the response matrix method to predict the power
distribution for steady-state thermal analyses, depletion
analyses, and transient analyses, a thorough study of the
tabulation and interpolation problems must be pursued.

5.2.5 3-D EFFECTS

311 of the analysis in this thesis was restricted to
two-dimensional radial planes. Although the axial flux
shape is rather smooth, exceptions such as partially inser-

ted control blades do exist. The extension of the response



matrix method to three-dimensional problems seems rather

straightforward. However it needs to be examined.

5.2.6 ENERGY HOMOGENIZATION

| As discussed in Section 2.2, it is possible to reduce
the number of energy groups without loss of accuracy provided
exact equivalence parameters are used to solve the global
homogenized problem. If good estimation of these parameters
can be made, the global homogenized problem can be further
simplified. Although such a simplification may not be
attractive for 2-group global calculation, it is attractive
in collapsing many-group calculations to fewer group calcu-
lations. This scheme has not been investigated.

5.2.7 TRANSPORT THEORY

It was shown in Section 2.2 that it is possible teo de-~
fine exact equivalence parameters for any reference solutien.
In this thesis, however, the two-group fine-mesh diffusion
theory results were used as reference solutions. Thus the
response matrices were also generated with the diffusion
theory approximation. The effects of using transport theory
solutions as the reference solution and generating the
response matrices with transport theory needs to be investi-

gated.
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APPENDIX A

DESCRIPTION OF BWR TEST PROBLEMS

THE

THE

THE

THE

THE

CISE BWR BENCHMARK PROBLEM
HAFAS BWR BENCHMARK PROBLEM
LSHBWR BENCHMARK PROBLEM
PRELIMINARY TEST PROBLEM

HOMOGENEQUS TEST PROBLEM



A.1 THE CISE BWR BENCHMARK PROBLEM

A
Y (cm)
135.0 '— [
- W W W ! W W
Jln =0
g
A A A W W W W
A B A a A W W W
B A B B A A W W
net
- =0
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A B A A A W W
+
B A B B A W W
+
A 3 at | s A B A A W
B a"Q BT | a B A 3 A W
+ + +
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0.0 :
0.0 | Jr;et -0 135.0

FIGURE A.l.l1 CORE LAYOUT OF THE CISE BENCHMARK FOR

ASSEMBLY HOMOGENIZATION

? X (cm)



A Y (cm)

135.0

V: Vacuum assembly

FIGURE A.l.2 CORE LAYOUT OF THE CISE BENCHMARK FOR

CLUSTER HOMOGENIZATION
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FIGURE A.l.3 ASSEMBLY DESCRIPTION AND SURFACE ORIENTA-

TICN FOR THE CISE BENCHMARK

Assembly Type

zone a A" B B W v
I 3 3 4 4 2 5
II ' 2 1 2 1 2 5
III 2 2 2 2 2 5

TABLE A.l.1 MATERIAL POSITIONS FOR ASSEMBLIES OF THE CISE

BENCHMARK



D ) VI
g a £ '
g g 99
Composition Group, g (cm) (em™ ) (em™1) (em™ 1)
1 1 3.00 0.08 0.0 0.0
- (Control blade) 2 0.15 1.00 0.0
2 1 2.00 0.0 0.0 0.04
(Water) 2 0.30 0.01 0.0
3 1 1.80 0.008 0.006 0.012
{Fresh fuel) 2 0.55 0.085 0.110
4 1 1.80 0.008 ¢.005 0.012
{(Depleted fuel) 2 0.55 0.085 0.100

Xy = 1.0
Xy = 0.0
v = 2.5

TABLE A.l.2 HETEROGENEOUS CROSS SECTIONS FOR THE CISE BENCH-

MARK



D ) \)g E
a £ !
| J g g 99
Assembly Type Group, ¢ (cm) (cm-l) (cm-'l) (cm*l)
A 1.8440 0.00607 0.004556 0.01874
(Fresh fuel) 0.4284 0.05946 0.07254 0.0
B 1.8440 0.00608 0.003796 0.01874
{Depleted fuel) 0.4284 0.05%4¢6 0.06595 0.0
at 1.8580 0.00804 0.004565 0.01772
{Fresh fuel, 0.4283 N.07416 0.07558 0.0
controlled)
B* 1.8580 0.00804 0.003804 0.01772
(Depleted fuel 0.4283 0.07415 0.06870 0.0
controlled) _
W 2.0000 0.0 0.0 0.04
(Water) 0.3000 0.01 0.0 0.0
X =
X2 =

TABLE A.l1.3 FLUX-WEIGHTED CONSTANTS FOR THE CISE BWR BENCHMARK



Assembly £X
Type Group, g g
A 1 0.9623
2 1.4510
B 1 0.9625
2 1.4510
at 1 0.8955
2 0.6492
Bt 1 0.8949
2 0.6488
W 1 1.0
2 1.0

0.9623

1.4510

0.9625

1.4510

1.0150

1.8880

1.0160

1.8890

.9623
.4510

.9625

.4510

.8955

.6492

.8949
.6488

0.9623

1.4510

0.9625

1.4510

1.0150

1.8880

1.0160

1.889¢0

TABLE A.l1.4 ASSEMBLY DISCONTINUITY FACTORS FOR THE CISE

BENCHMARK



A.2 THE HAFAS BWR BENCHMARK PROBLEM

Y (cm}
T in
J = 0
g

153.1 :

W W W W W W W W W W

A B A B A B A W W W

B A B A B A B W W W

A B A B a B A W

Jln = 0

B A B A B A B W El
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g +
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st | a B A B W

A70| 40| 40 B A w

570| a40| 4o A 5 .
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0.0 . 3 X {(cm)

0.0 net 153.1

FIGURE A.2.1 CORE LAYOUT OF THE HAFAS BENCHMARK



y
0.9 (cm)
IIT | II II ! III 3.26
N IT I I
' 3.26
- NN
X +
| i X
N II I I I
3.26
N — | %
111 II II 111
N 3.26
o 0.97
NNTIVN N N 0.40
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FIGURE A.2.2 ASSEMBLY DESCRIPTION AND SURFACFE ORIENTATICN

FOR THE HAFAS BENCHMARK

Assembly Type _
40 70 + 40 70 +

Zone A A A A B B B_ | B W
I 1 5 9 1 2 6 10 2 15
11 2 6 10 2 3 7 1l 3 15
ITI 3 7 11 3 4 8 12 4 15
IV 13 13 13 14 13 13 13 14 15
v 13 13 13 13 13 13 13 13 15

TABLE A.2.1 MATERIAL POSITIONS FOR ASSEMBLIES OF THE

HAFAS BENCHMARK



Composition

(Fuel a, woid=0%)

(Fuel b, void=0%)

(Fuel ¢, void=0%)

{Fuel d, void=0%)

(Fuel a, void=40%)

(Fuel b, void=403)

(Fuel ¢, wid=40%)

(Fuel d, void=40%)

A-10

D I
. . g g
Growp, g (am) (en 1)
1 1.400 0.009
2 0.375  0.080
1 1.400  0.009
2 0.375  0.070
1 1.400  0.009
2 0.375  0.060
1 1.400  0.009
2 0.375  0.050
1 1.680  0.008
2 0.530  0.077
1 1.680  0.0085
2 0.530  0.067
1 1.680  0.009
2 0.530  0.057
1 1.680  0.009
2 0.530  0.047

vZf 221
g
-1 -
{am ™) (cm l)
0.0065 0.016
0.1220
0.0057 0.017
0.1000
0.0051 0.018
0.0800
0.0051 0.018
0.0700
0.0063 0.010
0.1180
0.0055 0.0105
0.0960
0.0049 0.0110
0.0780
0.0049  0.0110
0.0680
{continued)

TABLE A.2.2 HETEROGENEOUS CROSS SECTIONS FOR THE HAFAS

BENCHMARK



Composition

{(Fuel a, void=70%)

10

(Fuel b, void=70%)

11

{Fuel c, void=70%)

12

(Fuel d, void=70%)

13

(Fuel can and water)

14

(Control blade)

15

{(Water)

A-11

D, o vzfg T,y

Group, g (cm) @l @y (@

1 2.000 0.0078 0.0061 0.0052

2 0.800 0.073 0.1140

1 2.000 0.0082 0.0053 0.0053

2 0.800 0.0630 0.0920

1 2.000 0.008¢6 0.0047 0.0054

2 0.800 0.0530 0.0720

1 2.000 0.0086 0.0047 0.0054

2 0.800 0.043 0.0620

1 1.530 0.0005 0.000 0.031

2 0.295 0.0090 0.000

1 1.110 0.08375 0.000 0.00375

2 0.185 0.950 0.000

1 2.00 0.000 0.000 0.04

2 0.300 0.010 0.000

xl==l.0
Xy = 0.0
v o= 2.5

BENCHMARK

- TABLE A.2.2 HETEROGENEOUS CROSS SECTIONS FOR THE HAFAS



D T 7 ?
g ag VI fg Zgg,
Assembly type Group, g (cm) (am 1) (cm—l) (cm—]_')
A 1 1.4320  0.00678  0.004255 0.02065
(Fresh fuel, 0% void) 2 0.3414  0.04713 0.06249 0.0
a0 1 1.6380 0.00639 0.004099 0.01588
(Fresh fuel, 40% void) 2 0.4097 0.04486 0.05972 0.0
a0 1 1.8500 0.00616 0.003946 0.01208
(Fresh fuel, 70% void) 2 0.4890 0.04221 0.05661 0.0
A+ 1 1.4160 0.00927 0.004304 0.01974
(Fresh fuel, 2 0.3441 0.06099 0.06894 0.0
controlled)
B 1 1.4320 0.00678 0.003879  0.02121
(Depleted fuel, 2 0.3424 0.04144 0.05255 0.0
0% void)
5?0 1 1.6380  0.00667 0.003725 0.01617
(Depleted fuel, 2 0.4128  0.0392  0.05052 0.0
40% void)
5’0 1 1.8500 0.00638 0.003573 0.01214
(Depleted fuel, 2 0.4955 0.03655 0.04677 0.0
70% woid)
(continued)

TABLE A.2.3 FLUX-WEIGHTED CONSTANTS FOR THE HAFAS BWR BENCH-

MARK



A-13

D : VI £
g 2y £y 99’
Assembly Type Growp, g _(cm) (@l (@ (e )
Bt 1 1.4160 0.00926 0.003924  0.02031
(Depleted fuel, 2 0.3451  0.05405 0.05773
controlled)
W 1 2.0 0.0 0.0 0.04
(Water) 2 0.3 0.01 0.0 0.0
Xy = 1.0
x2=(LD
v o= 2,5

TABLE A.2.3 FLUX~WEIGHTED CONSTANTS FOR THE HAFAS BWR

BENCHMARK (CONTINUED)



A-14

Assembly X
- Type Group, g g
A 1 0.9311
2 1.4740
a4l 1 0.9368
2 1.5330
2’0 1 0.9406
2 1.5830
at 1 0.8169
2 0.6264
B 1 0.9313
2 1.4070
pd0 1 0.9372
2 1.4610
g0 1 0.9407
2 1.5060
Bt 1 0.8151
2 0.5902
W 1 1.0
2 1.0
TARIE A.Z2.4

0.5%677

1.2470

0.9709
1.2550

0.9739

1.2560

1.0570
1.7320

0.9694

1.2130

0.9724

1.2200

0.9750

1.2210

1.0610

1.6830

0.9311

1.4740

0.9368

1.5330

0.9406

1.5830

0.8169

0.6264

0.9313

1.4070

0.9372

1.4610

0.9407

1.5060

0.8151

0.5902

0.9677

1.2470

0.9709

1.2550

0.9739

1.2560

1.0570

1.7320

0.9694

1.2130

0.9724

1.2200

0.9750

1.2210

1.0610

1.6830

ASSEMBLY DISCONTINUITY FACTORS FOR THE HAFAS BENCHMARK



A.3 THE LSHBWR BENCHMARK PROBLEM

Y (cm)

g .n =0
35 | 35 | 35 | 35
35 | 35 | 35 | 3
0 o | 35 | 35 | 35 | 35
0 o | 35 | 35 | 35 | 35
0 o | 35.] 35 | 35 | 35
0 o | 35 | 35 | 35 | 35 J.on =0
40 0 0 o | 35 | 35 | 35| 35
70 {70 | 70 | 40 0 0 | 35 | 35 | 35 | 35
70 | 70 | 70 | 40 0 o | 35 | 35
70 | 70 | 70 | 40 0 o | 35 | 35
15.31 J - n=20 X (cm)
FIGURE A.3.1 CORE LAYQUT FOR THE LSHEWR BENCHMARK



v
0.90 (cm)
plcictalala cj D 1.63
- J- I T =—C= 0.33
N D | B |B B | B | B B{ C 1.0
I
N c|Blc|BiB|B |B(|lA 1.63
| clBlB|B|F|B B: A 1.63
- +
X X
N c{B|B|c{BIiB{|BI|A 1.63
|
. plc{Bs|B{B|G|B||cC 1.63
[
N plciciByB|B|B{c 1.63
N gEido{pf{ctcliclollo 1.63
1
H 0.97
N N S N N N N .40

FIGURE A.3.2 ASSEMBLY DESCRIPTION AND SURFACE QRIENTATION

FOR THE LSHBWR BENCHMARK

‘hzggﬁéifffff; ot o 40 70
A 1 10 18 26
B 2 11 19 27
c 3 12 20 28
D 4 13 21 29
£ 5 14 22 30
F 6 15 23 31
G 7 16 24 32
H 8 17 25 33
T 9 17 25 33

TABLE A.3.1 MATERIAL POSITIONS FOR ASSEMBLIES OF THE LSHBWR
BENCHMARK



COMPOSITION

10

TABLE A.3.2 HETEROGENEOUS CROSS SECTIONS FOR THE LSHBWR BENCHMARK PROBLEM

py

-y

DIFF. COEFF.

0.142700E+01
0.308C8GE+00

0.141060E+01
0.379930€E+00

0.139490E+01
0.378210E+00

0.137490E+01
0.3B0550E+00

0.134160E+04
0.391690E+00

0. 1531GCE+0OT
0.307530E+00

Q. 13973CE~0O1
Q.271070E+00

0.159229CE+01
0.312270E+0Q0

0.111330E~+01
0.184010€E+09

0. 141630E+01
0.368490E+00

REMOVAL X-5

0.262550E-01
0.779120E-01

0.255200E-01
0.751790E-01

0.257680E-01
0.637000E-01

0.262460E-01
0.546390E-01

0.259190E-01
0.461890E-01

0.281970E-01
0.869100E-02

0.290910E-01
0.444140E+00

0.268460E-01
0.875880E-02

0.874190E-01
0.967260E+00

0.263780E-01
0.800900E-01

OUTSCATTER X-5

0.166990E-01
0.0

0.162170E-01
0.0

0.166060E-01
0.0

0.171350E-01
0.0

0.167510E-01
0.0

0.277330E-01
0.0

0.162010E-01
0.0

0.262490E-01
0.0

0.375290E-02
0.0

0.16778B0E-01
0.0

NU-FISSION X-S

0.665270E-02
0.126440£+4+00

0.651540E~02
0.121890E+00

0.5597Q00E-02
0.97149%E-01

0.491400E-02
0.779920E-01

0.427110E-02
0.610660E-01

0.0
0.0

0.589980E-02
0.268800E-01

oQ
(=R =}

0.662050E-02
0.125430E+00

LT-Y



12

13

14

t5

18

19

20

TABLE A.3.2
(CONT.)

DIFF. COEFF.

0.131780E+01
0.376490GE400

0.141810E+01
0.371370€+00

0.140190E+01
Q0.3716B0E+00

0. 139030E+01
0.371310E+00

0.158420E+01
0.309230E€+00

0.14057QE+01
Q.267700E+00

0.153100E+01¢
0.294170E+00

0.188930E+01
0.527170E+00

0.169710E+01
0.538430E+00

0. 169950E+G1
0.531530E+00

REMOVAL X-%

0.254260E-01
Q.779500E-01

0.262910E-01
0.668700E-01

0.271220E-01
0.576770E-01

0.281730E-01
0.504670E-01

0.278650E-01
0.864870E-02

Q.287200E-01
0.445050E+00

0_.313090E-01
0.9160Q00E-02

0.191380E-01
0.760250E-M1

0.181410E-01
0.737680E-01

0.189620E-01
0.634410E-01

OUTSCATTER X-S§

0.162050E-01
0.0

0.172090E-01
0.0

0.181040€E~01
0.0

0.191260E-01
0.0

0.274030E-01
0.0

0.160240E-01
0.0

0.307390E~-01
0.0

0.995040€E-02
0.0

0.955690E-02
0.0

0.103320E-01
0.0

0.651950E-02
0.122110E+00

0.569940£-02
0.984880E-01

0.507070E-02
0.795880E-01

0.456180E-~02
0.646670E-01

oo

0.588620E~02
0,.265000E-01

oo
(==

0.633850E-02
0.121900E+00

0.621530E-02
0.118220E+00

0.546480E~02
0.961500E-01

81-Y



22

23

24

25

26

27

28

29

30

TABLE A.3.2
(CONT.)

DIFF. COEFF.

0.167460€+01
0.532680E+00

0.166130E+014
0.532230E+00

0.1974C0E+01
0.403510E+00

0.1569900E+01
0.360EB0E+00

0.160950E+01
0.316570E+00Q

0.168940E+01
0.525170E+00

0.169750E+01
0.536580E+00

0.1690C0E+01
0.529362E+00

0.167550E+01
0.530250E+00

0.1B6528BCE+01
0.529560E+00

REMOVAL - X-5

0.195330E-01
0.546350E-01

0.204500€E-01
0.477090E-01

0.198060E-01
0.658170E-02

Q.211310E-01
0.438710E+00

0.282650E-01
0.854980E-02

0.148870CE~-01
0.780170E-01

0.140690E-01
0.756550E~-01

0.145590E-01
0.654030E-01

0.149260E-01
0.567280E-01

0.154660E-01
0.499330E-01

QUTSCATTER X-S

0.109500E-01
g.0

0.116880E-01
0.0

0.194180E-01
0.0

0.933020E-02
0.0

¢.277210E-01
0.0

0.571000E-02
0.0

.546140E-02
.0

(=0 =]

.590060E~-02
.Q

(=N =]

.624900E-02
-0

[~ -}

0.666170E-02
0.0

NU-FISSION X-5

0.485350E-02
0.779930E-01

0.438500E-02
0.636410E-01

0.0
0.0

0.562870E-02
0.279270E-01

oo

0.630570E-02
0.123400E+00

0.619450€E-02
0.112800E+00

0.5439192E-02
0,.9B0660E-01

0.483B40E-02
0.804220£-01

0.437940E-02
0.665090E-01%

61-Y



COMPOSITION

31

32

33

34

35

GROUP

GROQUP
GROUP

GROUP
GROULP

GROUR
GROUP

GROUP
GROUP

GROUP
GROUP

1
2

TABLE A.3.2
{CONT. )

DIFF. COEFF.

0.197440E+01
0.408850E+00

.170050E+01
.370520E+00

(==}

0.160930E+01
0.316700E+00

0.127370E+01
0.956900E+00

0.201000E+01
0.325900E+00

Removal X-S5 Group 1
Removal X-S5 Group 2

Outscatter X-S Group 1

REMOVAL X-S

0.114830E-01
0.657670E-02

0.157160E-01
0.419950E+00

0.282560€E-01
0.854670E~-02

0.737700E-02
0.507830E-02

0.356870E-01
0.996300E-02

1t

OUTSCATTER X-S

0.414920E-02
0.0

0.277120E-01
0.0

0.566690E-02
0.0

0.351600€-01
0.0

NU-FISSION X-S§

0.565780E-02
0.3383T70E-01

[~ ~]
L= I ]

[~ -]
[~

(=2~
oo

0¢c-¥



Zone Material

A 2.50 w/o fuel adjacent to zircaloy can
B 2.50 w/o fuel in the interior

c 1.90 w/o fuel

D 1.49 w/c fuel

E 1.18 w/o fuel - corner rod

F The water rod

G The gadolinium rods

H Channel walls and wide and narrow gaps
I Control rod (if present)

TABLE A.3.3 MATERIAL DESCRIPTION FOR THE LSHBWR BENCHMARK



Constants

Dy

TABLE A.3.4

TINUITY FACTORS FOR THE LSHBWR BENCHMARK

A-22

Type of Assembly

0 0 40 70
1.423 1.447 1.673 1.673
0.02815 0.02753 0.02133 0.01810
0.01839  0.02059  0.01480  0.01157
0.00444 0.00441 0.00420 0.004184
0.3486 0.33¢1 0.4192 0.4137
0.07038 0.05187 0.04968  0.04834
0.07362 0.06304 0.06117 0.05955
0.7979 0.9233 0.9380 0.9414
0.5084 1.580 1.615 1.758
1.102 0.9941 0.9911 0.9879
1.828 1.293 1.280 1.338

FLUX-WEIGHTED PARAMETERS AND ASSEMBLY DISCON-



A.4 THE PRELIMINARY TEST PROBLEM

by =
global
in

ii— is give
in El n

I

by a3 ‘n=20
Y SIS

assembly eigen-
value calcula-
tion

in
g
(1) For the first standard solution, it is the distribution

Spatial shape of J

obtained from a Eg - n =0 assembly eigenvalue calculation.

(2) For the second standard solution, it is flat.

FIGURE A.4.1 ZONE LAYOUT OF THE PRELIMINARY TEST PROBLEM
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FIGURE A.4.2 ASSEMBLY DESCRIPTION FOR THE PRELIMINARY

TEST PROBLEM
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Zone Material
1 2.50 w/o fuel
2 1.90 w/o fuel
-3 1.49 w/0 fuel
4 1.18 w/o fuel-corner rod
5 The water rod
6 The gadolinium rods
7 Channel walls and wide and narrow gaps

8 Contrecl rod

TABLE A.4.1 MATERIAL DESCRIPTION FOR THE PRELIMINARY

TEST PROBLEM



COMPOSITION

TABLE A.4.2. HETEROGENEOUS CROSS SECTIONS FOR THE PRILIMINARY TEST PROBLEM

GROU

GROUP
GROUP

GROuUP
GROUP

GROUP
GROUP

GROUP
GROUPR

GROUP
GROUP

GROUP
GROUP

GROUP
GROUP

GROUP
GROUP

<
I

p

—_

DIFF. COELFF.

0.141060E+01
0.379930E+00

0.139490€E+01
0.378210E+00

0.137490E+01
0. 380550E+Q0

0.134520€+01
0.391693E+00

0.158160€+01
0.307530E+00

Q0.138730E+01
0.271070E+00

0.152230E+01
0.31227CE+0D

0.171330E+01
0.184010£+00

REMOVAL X-%

0.255200E-01
0.751730E-01

0.257680E-01Y
0.637000E-01

0.262460E-01
0.546390E-01

Q0.259190E-01
0.461890E£-01

0.281970E-01
C.869100E~-02

0.290910E-01
0.44941480E+00

0.2G3460E-01
0.875880E-02

0.874190E-01
0.967260E+00

OUTSCATTER X-5

0.162170E~-01
0.0

0.166060E-01
0.9

0.171350E-01
0.0

0.167510E-01
0.0

0.277330E-01
6.0

0.162010E-01
0.0

0.262490E-01
0.0

0.375290E-02
0.0

NU-FISSION x-5

0.651540E-02
0.121B90E+00

0.559700€-02
0.971490E-01

0.491400E-02
0.779920E-01

0.427110E-02
0.610660E-01
0.0
0.0

0.589880E-02
0.268600E-01

[= -]
(=N~}

o0
[ = =]

9¢-¥



A.5 THE HOMOGENEOUS TEST PROBLEM

% {cm) L
t |
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A is a homogeneous assembly.

FIGURE A.5.1 CORE LAYOUT FOR THE HOMOGENEOQUS TEST PROBLEM

Dl(cm) 1.844 Dz(cm) 0.4284
T (em™%)y  o0.02481 I (em ) 0.05946
R
1 2
T_ (cm™Y)  0.01874 VI, (em™Y) 0.07254
21 £,
VE (em™ %)  0.004556
1
vy = 2.5
Xl = 1.0
X2 = 0.0

TARLE A.5.1 CROSS SECTIONS FOR THE HOMOGENEOQOUS TEST PROBLEM



APPENDIX B

USING CITATION TG GENERATE RESPONSE

MATRICES

USING CITATION TO GENERATE PARTIAL
CURRENT RESPONSE MATRICES
UGSING CITATION TO GENERATE NET CURRENT

RESPONSE MATRICES



B.l USING CITATION TO GENERATE PARTIAL CURRENT RESPONSE
MATRICES

In Cpapter Three we have pointed out that the generation
_of the i—th column of the response matrices [R] and [R'] for
a region is equivalent to solving a fixed-source problem de-
fined by the geometry of that region with a unit incoming
partial current for the subsurface and group associated with
the i-th element of [Jin] and with zero incoming partial
currents for all other groups and subsurfaces. With angular
and spatial approximation made for the unit incoming partial
current, the problem is well-defined and can be solved by
any method available. However, to be consistent with our
full core reference calculations which are generated with a
diffusion theory code, a multi-group diffusion theory finite-
difference code "CITATION" was used to solve these fixed
source problems. Unfortunately, used directly, CITATION can
only solve extrapolated and reflected boundary value problems.
Thus, a trick is needed teo sclve problems with unit incoming
partial currents as boundary conditions.

In CITATION a region is divided into a regular array of
emall right rectangular parallelopipeds (meshes) with grid

indices defined by

It
(o]
-
-]
-
o
~
H

I

i u, v, w X

g, m, n j=0,1, 2,...3; u, v, w Yy
k=20,1, 2,...X; u, v, w = 2z,

The neutron balance equations within each mesh is given by



X X
(J - dJd Yy, = v._)(z, - z )
glr]rk gi_l’j'k ] J 1 k k-1
+ (3 -5y Y(x, - x. (2, =~ 2z, )
i,k gi,j-l,k i 1i-1 k k-1
+ (J - J ) (2, = X, _)(ys =~ v._q)
G X
g
+ I ¢ =7 (z +_ 2 VI ) & o
t 1, r K T ! f ' ! r ,k
95,5,k 1eduk T3 gt=1 Fi 5k 9i,5,% tedek TI
+ S Vv, = 7+ 1 =1, 2,...1
93,9,k LIk
i=1, 2,...37 (B.1)
k=1, 2,...K
g=1, 2,...G
where
J; is the face-averaged group-g net current in
2,m,n
direction u on the mesh face (uﬂ,v,w);
v £ [vm_l,vm], W € [Wn_l.wn]f
¢g is the volume=-averaged group g flux for mesh
i'j,k
(1,3,k),
Sg is the volume-averaged group g external source for
i’j’k
mesh (i,3j,k},
Vi,j,k = (x; - xi_l)(yj - yj_l)(zk = z,_7) is the volume
of the mesh,
G is the total number of groups,
A is the global reactor eigenvalue which is set

arbitrarily for a fixed-source problem.

In this equation, the cross section notations are stand-



ard. The net currents for the interior faces are then ex-
pressed in terms of average fluxes by Fick's law and continuity
of fluxes across faces. On boundary faces, the net currents
are related to the average fluxes by boundary conditions.

In order to use CITATION directly, the boundary conditions

must either be net currents equal to zero or have the form

A 1
J = ) (B.2)
Is 1/C_ + A/2D Is
S g
s
where
Jg is the face-averaged group g net current in direction
s
A at the boundary surface,
fi is the outward normal of the boundary surfaces,
A is the n-direction mesh size of meshes neighboring
the boundary surface,
Dg is the group g diffusion coefficient in those meshes
S _ 4
neighboring the boundary surfaces,
¢g is the volume-averaged group g flux in those meshes
s
neighboring the boundary surface,
Cq is a constant that can be arbitrarily specified.

The fixed-source problem which we are trying to solve
has an incoming partial current egual to 1 for one group on
one subsurface and zero otherwise. To show how this condition
can be simulated we shall assume that the unit incoming partial
current is in group g on the boundary subsurface (x=x0,y,z);

vy € [yo,yp], Z E [zo,zq], p < J, g < K. The group-g net



currents on those mesh faces belonging to this subsurface

are given by

Jx - Jln - Jout
90,5,k 90,3,k 90,3,k
8¢g

; {B.3)

where
gin and JOUt are the face-averaged group-g partial
90,5,k 90,5,k
currents on mesh face (X4,¥:2); v € [Yj-l'yj]’
z € [zk—l'zk]’
ad
"is the x-directional derivative of the Face-.
X 0.3,k .
averaged group-g flux evaluated at mesh face
(xpryr2)i v € [yj_lfyj], z e (2, _r2 1,
¢; is the face-averaged group-g flux on mesh face
0,3,k

(xo,y,z); y € [yj_l,yj], zZ € [zk_l,zk].
The other terms in this equation are the same as those de-
fined in equation (B.1l) and (B.2).
The last equality in Eq. (B-3) is a finite diffefence
approximation, consistent with CITATION, for the derivative.
It is consistent in the sense that CITATION also uses the

same approximation to express Fick's law. Using the diffu-



sion theory approximation, we have for these mesh faces

s in out

o = 2(J + J ) (B.4)
90,5,k 90,5,k 90,3,%
Then
¢g - 2(JJ.n + Jout )
« 1,3,k 90,5,k 90,5,k
J = -0D
90,5,k 91,5,k x| = X,
2
- Jln - JOLJ.t (B.5)

J0,9,k 90,9,k

Thus, the outgoing partial currents on these mesh faces are

given by (B.6)
X]17XQ
- 2D D
2 9,5,k . 91,5,k
gout = Jgtn + ¢
90,5,k x,-x 90,5,k x.-x 91,3,k
17 %0 17%0
+ 2D + 2Dy
2 91,3.x 2 1,3,k

" and the total leakage from these mesh faces is given by

X in out
-J (yi-vs_ ) (2, =2 ) = =(yi-y:_;) (g, =2, _,) (7 -J )
90,9,k 3 “3-17 Tk k-1 J 73-1" "7k Tk-1 90,5,k 90,5,k
<4p (Y.~Y: ) (zp =2, )
gl,j,k j 43-1 k k-1 o
= Jg
xl-xo ijrk
+ 2D
2 91,5,k
D (yi-y._q) (2, -2 ) (B.7)
gl,j,k J *3-1 k k-1
+ ¢g
Xl-XO l'j'k

—_— 4+ 2D
2 91,5,k



Similar eguations for outgoihg partial currents and leakages
can be derived for the other subsurfaces and groups. Since
incoming partial currents are zero for other subsurfaces
and groups, only the term involving the average fluxes will
be left. Substituting the leakage expressions into equation
(B.1) and moving the term involving Jéz - to the right-
hand side, we see that the problem that’%é are trying to

solve is eguivalent to a problem with distributed sources

s _, where
9i,3.x _
[/ 4 D Jgin i=0,
glfj!k gofj'k j=l,2,...p,
S = X=X X, = X ' k=1,2,...q,
9i,9,x < 170,420 L ° i,
2 91,59,k
, (B.8)
\ 0 otherwise
~~and with boundary conditions
~ 1
Jt, = ¢, : g'=1,2,...6G (B.9)
EE 2 + A/2D, Is
Is
All terms in these equations are defined in eguaticn (B.2).
The J;n in equation (B.8) is given by our spatial approx-
0,3,k
imation and the normalization
3 B in
Yy J (y.—yj_l) (zk-zk_l) =1 (B.10)

k=1 j=1 90,3,k
Ccmparison of egquation (B.2) and (B.2) shows that the Cq

for this equivalent problem is equal to 0.5.



For problems with a unit incoming partial current on
other subsurface or group, the same kind of equivalent
problem can be defined and thus all the fixed-source prob-
lems needed to generate response matrices [R] and [R'l
can be solved by CITATION.

Physically, every element of [R] and [R'] should be

nonnegative as long as the region being examined is. in a

vacuum, subcritical. However, because of the limitation of
diffusion theory, some ocutgoing partial currents obtained
using equation (B.6) may be negative, and thus some elements

of [R] may be negative.

A similar derivation can be carried out for a problem
with incoming partial currents not equal to zero for sev-
eral subsurfaces and energy groups. The result is equiva-
lent to a CITATION prcoblem with Cs = 0.5 and distributed
sources Sgi,j,k again defined by equation (B.8) (except
for corner meshes where the contributions from all sides
to the source term have to be summed). In Section 3.4.1,

we used this technique to obtain the reference results.

B.2 USING CITATION TQO GENERATE NET CURRENT RESPONSE MA-

TRICES

In Chapter Four we have pointed out that the generation
of the i-th column of the response matrices [g] and [p'] for
a region is equivalent to solving a fixed-source prcblem
defined by the geometry of that region with a unit net cur-

rent (in the outward normal direction) for the subsurface



and group associated with the i-th element of {J] and with
zero net currents for all éther groups and subsurfaces. |
With angular and spatial approximations made for the unit
net current, the problem is well-defined and can be solved
by any standard method available. However, for the same
reason that partial current response matrices are generated
by CITATION (i.e., because we wish to use diffusion theory
as a numerical standard), net current response matrices are
generated by the same code. As mentioned in the previous
section, CITATION can only solve extrapolated and reflected
boundary value problems. Thus a trick is needed to solve
problems with unit net currents as boundary conditions.

To show how this condition can be simulated we shall
assume that the unit net current is in group-g on the
boundary subsurface (x=xo,y,z); y € [yoryp], A [zo,zq],

p < J, g < K. The group-g net currents on those mesh faces
belonging to this subsurface are given by the spatial approx-
imation and the normalization |

g P
X
3 (yi-y. )z -2z ) = =1 (B.11)
kzl jzl 90,5,k 3 3L UK k-l

In this equation there is a minus sign because the outward
normal direction is in the negative x-direction. On the
other subsurfaces and groups, the net currents are zero.
Substituting these values for the leakage terms into equa-
tion {B.l) and moving the term involving = to the

90,5,k
r]r
right hand side, we see that the problem we are trying to



solve is equivalent to a problem with distributed sources

s , where
9i,9.k
[ a% i=0,
90,3,k
H 3 = ll 2! <Py
s ., = X, - X
9i, 5.k ¢ 0 k=1, 2,..-q,
g'= g, (B.12)

\ 0 otherwise

and with zero net currents for all groups and subsurfaces
as boundary conditions.

After the mesh volume-averaged fluxes are determihed,
the group-g face-averaged fluxes on the subsurfaces (x=x0,

y,2) can be determined by

J
. =X g .
¢S = 1 0 = Oljrk + ¢ (B.l3)

9q 5 g, =
0,3k 2 gl,j,k 1,3,k

All terms in this equation are defined in the_previous sec-
tion. For the face-averaged fluxes on the other subsurfaces
and groups only the term involving the average fluxes will
be left because the net currents for those subsurfaces and
groups are zero.

From eguation (B.ll) we can see that J; _ 1s nega-
tive so that the equivalent problem has a negéiite source.
If the region has an infinite multiplication factor smaller
than 1, the total power in the region resulting from this

negative source will be negative. Since CITATION does not

allow negative total power {although negative fluxes are



allowed), we solve this fixed-socurce problem by changing
the sign of the sources. After the solution is obtained,
the sign is again changed.

For problems with a unit net current on other subsur-
faces or groups, the same kind of equivalent problem can
be defined and thus all the fixed-source problems needed
to generate response matrices [#] and [r'] can be solved
by CITATION.

If a region has an infinite multiplication factor
smaller than 1, the region in an infinite lattice with a
positive source will have positive fluxes everywhere because
this is a problem that is physically realizable. Because
of the linearity of the neutron balance equation, the same
region in an infinite lattice with a negative source will
have everywhere negative fluxes. Thus, the elements of
the net current response matrices for such regions will all
be negative. ©On the other hand if a region has an infinite
multiplication larger than 1, the fluxes resulting from a
positive source in such a region in an infinite lattice
may have both signs since there is no everywhere positive
physical solution in a supercritical infinite lattice with
a positive source. Thus, the elements of the net current

response matrices for such regions may have both signs.



APPENDIX C

AN EFFICIENT WAY TO INVERT [Ai j]



To obtain the response matrix [R] for a cluster
(1,3), a (B*GxNSEG) X (8*G#xNSEG) matrix [Ai j] defined
following equation (3.7) must be inverted. Because of

the sparseness of [Ai j]' the problem can be simplified.

r

First, [Ai j] is expressed as

>
I

where [Aal (o = 1, 2, 3, 4) are of the same size (i.e.,

(4*G«xNSEG) * (4+*G*NSEG) ). Then the inverse of [Ai j] will

be
. [Bl] (B,]
(B, (B,]
where : -1
[(B,1 = {[a,] + [C 17,1}
[(B;] = [B,1I(C,]
(B,1 = [C,]1(B,]
_ -1
L -1
(c;1 = (A5]1 (A1
-1
[C,] = -[a;] "[A,]
Since . . —
l+;§r]
[ 1) (0] o] -Ri5?)
(0] [I] [0] [0]
(3,1 =

(0] - 1Ry57 77 [1] (0]

[0] (0] (0] [T]



its inverse [Al]-

[1]

{0]

(el

[0]

will he

[0]

(1 -

i,j+%

(R33777)

{0]

Then [Cl] and {CZ] will be

(R1+% 3
[0

[C,]
(0]

[0]
(cy]

L (01

Now

i+, 3

[Ry 4

ll
[R23

i+, j+2

IRy

i+, 4+ )

R11

i+,

TR}y

i+, j+ﬁ

[R5y

I+

v ]+2
[R34 I [st

(RE3) (854

[Rl j+%

J+5s

(0]

[0]
[0}

i,5+%

(0]

i,3
(R337]

(0]

i,5
(Rys?]

(0]

(o]

[o]

Py

(ol

only [A4] + [Cl][Az] need be inverted.

1+1 J
Ry, 7]

[0]

[0}

(1] _J

i+s,3
(R4

503
[Rlz

[R23j+ 2] [Rl+ 2r]+!ﬁ
it

(R,

i+, 4+ ‘\

e

1

IJ+2

~

rw3331[ rRip# I )
(0]

ri131 RI*9)

3,
(REE7T)

-

If we define

(a4 + [C;10a,1,



then the inverse of (2,1 + [C](a,] will be

. [F;] [F,]
[E] = [F] =
(F] [F,]
where ‘ -1
[F,] = {[E4] + [C3]([E,]}
[Fy] = [F,11C,]
(£,1 = (8,170 + [c,]IF,)
_ -1
(c,] = -1 1m.]
4 1° 2

Because [A4] + [Cl][Az] has a form

Tl X (%]
01 [x1 [x1 -(x]
x]  {x] [x] [X]

X1 o) [x]

where (0] is a null matrix and [X] represents a matrix with

nonzerc elements, [El] will be of a form

x1 ol [E) 0 (Ey]
(0] [X] (01 IE,,]



Then
]-l ]-l ]-l

(E [E12][E22

11 -lEy,

-1
(0] [E,,]

Now the (8+*G*NSEG)X(8*GxNSEG) matrix inversion becomes two
{(NSEG#G)} X(NSEG*G) and one (2*NSEG*G)X{2*NSEG+G) matrix in-

version and some matrix multiplication. This method is

used to obtain [Ai j]—l in the code "RESPONSE". In addition

’

the sparseness of [Cl}, [C2]. [A2], [A,] and [E,] are fully
used in the matrix addition and multiplication. Also in

that code the sparseness of [B 1, [C. .] and [Di j] which

i,3 i,
are defined following egquation (3.7) are fully used to obtain

[R].



APPENDIX D

THE NONCONVERGENCY OF GAUSS-SEIDEL ITERATION
METHOD IN SOLVING THE 5-NODE PROBLEM USING NET

CURRENT RESPONSE MATRICES



In Chapter Three where partial current response ma-
trices were used, the Gauss~Seidel iteration method was
used to solve the 5-node local problems (Eg. (3.12)) to
determine the partial currents on the surfaces of the
central node. Although we cannot prove by standard math-
ematical methods that the iteration will converge, the
physics of the situation suggests that it will in fact
always converge. On the other hand, if net current re-
sponse matrices are used, there is no physical reason
that the same method will converge if it is used to solve
the 5-node local problems (Eg. (4.2)) to determine the
net currents on the surfaces of the central node. In order
to understand the convergency better, a one dimensional
one group local problem was analyzed.

For a slab of width L with a unit net current coming
in thrbugh the face (x ;IJ) and zero net current on the
face (x =0), the flux in the slab is given by

cosh «kx

o {x) = (D.1)
Dk sinh kL

where D is the diffusion coefficient of the slab,
L is the width of the slab,

d({x) 1is the flux at x,

-1 _ 1/2
kg vEf Za

D

In this egquation the cross section notation is standard, and



Ag is the estimated global eigenvalue. Using (D.1l), the

net current response matrix [R] can be obtained and it is

-1 cosh kL 1
(7]

it

(D.2)
¥D sinh kL 1 cosh kL
In this equation there is a minus sign because in the defi-
nition of net current response matrices (Eg. (4.1))}, we use
the outward normal direction as the positive direction.
The Gauss-Seidel iteration matrix of equation (4.2) is
(0] - [D]

] = (D.3)

[B _
(0] -tz1 Y ;

1
where [Bl] is the Gauss-Seidel iteration matrix,

[D] and [R] are defined following equation (4.2).
In order to be convergent the spectral radius of this itera-
tion matrix which is determined by the spectral radius of

-1zt

[D] has to be smaller than 1. Before calculating

the spectral radius of -[R] Y[D], we point out that another

possible Gauss-Seidel iteration matrix, obtained by exchang-
ing the order of the submatrix equations in equation (4.2),

is given by

[0] (R]

1 = (D.4)

(B _
(0] -(p] YAl

2
The spectral radius of this iteration matrix is determined
by the spectral radius of —[D]-l[R]. It is important to

realize that although the eigenvalues of -[D]-l[R] and



~(e17L

(D] are the inverse of each other (since -[D]-l[ﬂ] is
just the inverse of —[R}_l[D]), their spectral radii ére
‘'not the inverse of each other.

Because there is only one dimension, a local problem
will involve only three nodes. For simplicity we assumed

that all three nodes are geometrically and materially

identical. Then [D] is given by

-1 cosh x1 0
[D] = (D.5)
kD sinh kL 0 cosh kL
Because
-1 sech kL 0
[D] = -kD sinh L {D.6)
' 0 sech kL

- [D] [R] is given by
1 sech kL

- [D] (8] = = (D.7)
sech kL 1
The eigenvalues of —[D]-l[R] are
A = 1 * sech kL {D.8)
Because —[R]-l[D] is the inverse of -[D]-l[R], its eigenvalues
are given by
A' = (1 * sech «1) "% (D.9)

If k is real so that 0 < sech kL < 1, the spectral radii
of both iteration matrices will be larger than 1, and thus
the use of both [Bl] and [B2] will result in divergence. If

< is imaginary, equations (D.8) and (D.9) become



A

It
[
+

t sec |«|L (D.10)

At = (1 sec jk|)h (D.11)

Thus, the spectral radius of -[D]-'l

(k] 1s always larger
than 1 and [B2] will always result in divergence. However,
if sec [k|L is larger than 2, the spectral radius of
*[R]—l[D] will be smaller than 1 and [Bl] will result in
convefgence.
It seems clear now that even for a one-dimensional
one group problem, the Gauss-Seidel iteration method will
not converge unless very restrictive conditions (Kz < 0,
sec |<|L > 2) are met. For more complicated problems such
as those two-dimensional two group problems we are concerned
with, the conditions may well be even more stringent.
Because the value of Kz is modulated by the estimated
global eigenvalue, there are always some nodes in the reac-
tor‘with positive K2 and other nodes with negaﬁiVe K2
Thus, it is clear that in order to solve all fixed problems

in a reactor by a single method, the Gauss-Seidel iteration

method must be abandoned.



APPENDIX E

THE CONVERGENCY OF THE GLOBAL-LOCAL ITERATION

PROCESS USING NET CURRENT RESPONSE MATRICES



In Section 4.4.1 we found that for some cases the
global-local iteration process converged while for others
it did not. 1In order to have a better understanding of
this global-local iteration process, two simpler problems
described in Figure E.l1 were analyzed. All nodes of
these problems are type A assemblies of the CISE benchmark.
The values of the albedo were chosen to make the eigenvalues
of these problems to be nearly the same as the eigenvalue
of the CISE benchmark s¢ that the response matrices cal-
culated for that benchmark could be used directly in these
problens. |

Various local mefhods using fixed response matrices
during the global-local iteration process (as in Section
4.4.1) were analyzed. The same methods using updated
response matrices (updated in acceordance with the newest
estimate of the global eigenvalue} during the global-local
iteraticns were also tried. Results are shown on Table E.1
and E.Z2.

Case I to VII on Table E.l1 indicate that fixing the
response matrices during global-local iterations may result
in nonconvergence. What happened was that the global
calculations were aborted by QUANDRY because either negative
homogenized cross sections were given by the previous local
calculation or a condition which would make one of the
iteration matrices in QUANDRY diverge resulted from the

previous local calculation.



p=0J
Y (cm) f 0=48.47
15.0
J=0 A A A a=2.0
| R X {(cm)
45.0°
J=0
TEST PROBLEM (a)
A a=17.45
Y (cm)
30.0 A A A
a=2.0
J=0
A A A
X (cm)
1507
J=0

TEST PROBLEM (b)

‘A is the type A assembly of CISE benchmark (described

in Appendix A.1l).

FIGURE E.1 CORE LAYOUT FOR PROBLEMS USED TO TEST THE
CONVERGENCE OF THE GLOBAL-LOCAL ITERATION

PROCESS.



Model for Method for Response Ma-

Global Local - trices used in

Case Problem Calculation Calculation Local Calculation convergency
I a F N552 Fixed Yes

I1 b F N151 Fixed Yes

III b F N5S1 Fixed : No

Iy b F N552 Fixed No

Y b F Nisl Updated Yes

VI b F - N581 Updated Yes

VIT b ‘ F Nb52 Updated Yes

VIII b CMFD N5S2 Updated _ No

TABLE E.1 CONVERGENCE OF THE GLOBAL-LOCAL ITERATIONS USING DIFFER-

ENT LOCAL METHODS FOR THE TEST PROBLEMS SHOWN IN FIGURE E.1



Case

Model‘for
Global
Calculation

Initial
Estimation

Method for
Local
Calculation

A

% Errors HCSm
(afterx
first £

: . max
iteration)

€
av

No. of iterations
to converge

‘ A
% Errors
(after HCSm
conver- s
gence) _ max
' £
av

TABLE E.2 THE ERRORS FOR PROBLEM {b)
USING DIFFERENT LOCAL METHODS AND UPDATED RESPGNSE MATRICES

IT

CMFD

III

ADFF

N151

IV

ADFF

N551

{SHOWN IN FIGURE E.1l)

ADFF

N552

0.26

VI

CMFD

ADFC

N582

1.51
1.11
53.06
12.32

Failed to
converge



Case VIII on Table E.l indicates that with a crude
global model the global-local iterations may not converge
even 1f updated response matrices are used in the local
calculations. A detailed examination of the results of
this case was made, and it showed that for such a crude
model, the oscillation of the global-local iterations
has a very large amplitude. It is not surprising that
with such an oscillation a stage at which one of the itera-
tion matrices in QUANDRY becomes divergent may be reached
during the global-local iterations. Moreover, the global-
local iteration itself is a nonlinear process which may
not be convergent, especially with such a crude global
model.

For Methods N1S1 and N551 both the converged global
and local solutions should be just those obtained from
solving the entire problem by the response matrix method
using l-segment response matrices and thus should be equal
to each other. However, if during the global-local itera-
tions response matrices are not updated, the converged
global and local solutions sheould be different. This is
because without updating the response matrices neither the
global nor the local converged solutions (if they exist)
will be the scolutions obtained from solving the entire
problem by the response matrix method.

For Method N5S52, because of the spatial approximation

used to define each fixed-source problem for the local



calculations, the global and local calculations are solving
two different problems and each will try to converge to

its own solution. The results for Problem (b} and the

CISE benchmark were checked, and results are shown in

Table E.3 to verify these points.



Case(l) I II ITI Iv v

(2)

Problem _ b b b CISE b
Method used ‘ '
for local N1s1 "N1s1 N5S1 N551 N5S2
calculation
Response ma-
trices used Fixed Updated Updated Fixed Updated
for local
calculation
¢ 11.8 0.16 3.27 130. 15.3
Max % g
differences J 12.3 0.15 12.6 685. 52.5
in g : _
¢g(u£) 15.5 0.21 3.70 142, 17.3

No. of nodes
having dif- many 0
ferences > 1%

many many

(l)All cases use the flat transverse leakage model and start with the ADFF re-

(2)sults as initial estimations
(3)This is problem (b) shown in Figure E.l.
This node is the one which has two surfaces with albedo boundary surfaces.

The large errors come from round-off.

TABLE E.3 DIFFERENCES BETWEEN THE LOCAL AND GLOBAIL CONVERGENT SOLUTIONS



APPENDIX F

NORMALIZED POWER DENSITIES

CISE BENCHMARK
CISE BENCHMARK
CISE BENCHMARK
MODEL

CISE BENCHMARK
CISE BENCHMARK
CISE BENCHMARX

MODEL

CISE BENCHMARK

USING

USING

USING

USING

USING

USING

USING

R, CLUSTER HOMOGENIZATION
R, ASSEMBLY HOMOGENIZATION

FLAT R, QUADRATIC GLOBAL
FLAT R, FLAT GLOBAI MODEL
FLAT R, CMFD GLOBAL MODEL

SHAPED R, QUADRATIC GLOBAL

SHAPED ¥, FLAT GLOBAL MODEL

HAFAS BENCHMARK USING FLAT &, QUADRATIC GLOBAL

MODEL

LSHBWR BENCHMARK USING FLAT ?, QUADRATIC GLOBAL

MODEL



FIGURE F.1 NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING
PARTI AL CURRENT RESPONSE MATRICES (CLUSTER HOMOGENIZATION)

REFERENCE -— 0.19Q2
START ADFF, FLAT MDDEL, N152, 15T 1TERATION ——— -6.82 %
START ADFF, FLAT MODEL, N5S52, 1ST ITERATION — 4.17 %
START ADFF, FLAT MODEL, N5S2, 2ND ITERATION -— 2.22 %
START ADFQ, QUADRATIC MODEL, N5S52, ST ITERATION ---— 3.75 %
0.8877 0.9266
2.56 % -6.34 %
-1.78 % -4.76 %
0.99 % 0.41 %
-1.69 % -5.06 %

1.0039 1.4200 1.3781 0.4767

30.20 % 6.90 % -15.30 % -28.10 %

14.80 % -0.21 % -9.80 % 2.32 %

7.99 % 2.0 % -4.29 % -1.60 %

15.80 % c.21 % -10.20 % .77 %

1.0352 1,319% 1.0974 1.5209 0.5698

47.80 % 39.90 % 8.35 % 17.80 % -30.20 %

28.10 % 19.90 % 2.42 % ~11.60 % -1.59 %

9.54 % 8.33 % -0.40 % -7.82 % ~-6.59 %

29.00 % 20.90 % 2.61 % -12.10 % -2.33 %



FIGURE F.2 NORMALIZEO POWER DENSITIES AMD ERRURS FOR THE CISE BENCHMARK USING
PARTI AL CURRENT RESPONSE NMATRICES {(ASSEMBLY HOMDGENIZATION)

REF ERENCE taind 0.6493
START REF., QUADRATIC MODEL, N&52, 15T ITERATION -—- -3.01 %
©.6846 0.7850 0.6270
0.83 % -1.98 ¥ 0.16 %
0.86820 0.7304 0.8841 0.8655
5.83 % 1.31 % ~4.64 % ~6.90 %
0.9108 1.0824 1.2814 t.1197 1.0642 0.7519
12.680 % 7.02 % 0.08 % -5.90 % -8.73 % ~-10.50 %
0.8887 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753
20.710 % 15.80 % 8.27 % -0.74 % =7.70 ¥ -11.70 % -14.00 %
0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.5359 0.9722
24.50 % 21.50 % 16.70 % 10.50 % 0.87 % -7.31 % -12.20 X -14.80 %



FIGURE F.3.1 NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING ‘QUADRATIC'
TRANSVERSE LEAKAGE MOGEL AND NET CURRENT RESPONSE MATRICES (I)

REFERENCE - 0.6493

AGFQ -— -1.32 %
START ADFQ@, N1531, 1ST ITERATION -— -2.87 %
START ADFQ, N151, 4TH ITERATION , -—- ~3.05 %
0.6846 0.7850 0.6270
-0.13 % -0.03 % -0.60 %
-1.04 % 0.43 % -1.66 %
-0.74 % 0.41 % ~1.78 %
0.68820 0.7304 0.8841 0.8655
~-3.04 % -2.40 % 0.12 % -0.29 %
-0.15 % ~1.13 % -0.17 % -0.79 %
-0.08 % -0.72 % ~0.14 % -0.90 %
0.9108 1.0824 1.2814 1.1197 1.0642 0.7515
-1.66 % 1.12 % 0.99 % -0.07 % -0.24 % -0.72 %
-0.29 % 1.39 % 0.97 % -1.00 % -0.85 % -1.68 %
~0.34 % 1.39 % 1.02 % -0.97 % -0.85 % -1.81 %
0.B8BAT 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753
-0.84 % -1.29 % 1.72 4 0.90 % 0.04 % -0.28 % -0.56 %
0.56 % ~0.37 % 1.68 % 0.7 % -0.83 % -1.18 % -0.70 ¥
0.52 % -0.36 % 1.64 % 0.72 % -0.59 % -1.15 % -0.85 %
0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.3359 0.9722
-0.46 % 2.13 % 2.27 % ~0.64 % -2.19 % 0.43 % -0.02 % -0.50 %
0.48 % 2.61 % 2.70 % -0.16 % -0.80 % ~0.34 % -0.18 % -0.48 %
0.38 % 2.46 % 2.59 % -0.16 % -0.58 % -0.28 % -0.14 % -0.61 %



FIGURE F.3.TI NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'QUADRATIC®
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (II)

REFERENCE -— 0.6493
START ADFQ, N1S2, 1ST ITERATION -— -2.93 %
START ADFQ, NW152, 3RD ITERATION - -3.11 %
START ADFQ, N5S1, 1ST ITERATION —-— -2.88 %
0.6846 0.7850 0.6270
-1.04 % 0.41 % -1.81 %
-0.76 % 0.38 % -1.93 %
-0.47 % 0.76 % -1.56 %
0.8520 0.7304 0.8841 0.8855
-0.12 % -1.12 % -0.18 % -0.84 %
-0.02 % -0.71 % -0.15 % -0.96 %
0.32 % -0.26 % 0.0B % -0.69 %
0.9108 1.0824 1.2814 1.1197 1.0642 0.7515
-0.25 % 1.42 % 0.99 % -1.00 % -0.67 % -1.79% %
-0.29 % 1.44 % 1.05 % ~0.96 % -0.88 % -1.90 %
-0.41 % 1.39 % 1.06 % -0.90 % -0.73 % -1.72 %
0.8887 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753
0.62 % ~0.32 % 1.72 % 0.73 % -0.63 % -1.20 % -0.81 %
0.60 % ~-0.30 % 1.69 % 0.75 % -0.58 % -1.18 % -0.98 %
~0.05 % -0.86 % 1.85 % 0.68 % -0.62 % -1.12 % -0.82 %
0.8814 1.0362 1.2094 G.8404 1.0294 1.2581 1.3359 0.9722
0.54 % 2.67 4% 2.76 % -0.11 % -0.77 % -0.33 % -0.20 % -0.58 %
0.46 % 2.54 4% 2.66 % -0.10 % -0.56 % -0.28 % -0.18 % ~0.74 ¥
-0.08 % 2.04 % 2.41 % -0.46 % ~-0.61 % -0.37 % -0.18 % -0.62 %



FIGURE F.3.I111 NORMALTIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (I11)

REF ERENCE -——= 0.6493
START ADFQ, N551, 3RD ITERATION - -3.23 %
START ADFQ, NSS2, 1ST ITERATION - -1.09 ¥
START ADFQ, N1S2 THEN N552 - -1.48 %
0.G846 0.7850 0.6270
-0.0V % 0.29 % -1.94 %
0.86 % -0.36 ¥ -0.81 %
-0.10 % -1.35 % -1.26 %
0.8820 0.7304 0.8841 0.8655
-0.11 % ~0.38 % -0.24 % -1.05 %
0.67 % 0.54 % -0.20 % -0.91 %
0.75 % 0.26 % -0.75 % -1.39 %
0.9108 1.0824 1.2814 1.1197 1.0642 0.7515
0.12 % 1.63 % 0.95 % -1.19 % -1.09 % -2.08 %
0.58 % 0.17 % 0.35 % 0.06 % 0.12 % ~-0.82 %
1.22 % 0.32 % 0.08 % ~0.23 % -0.20 % -1.20 %
0.8887 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753
0.60 % 0.12 % 2.66 % 0.72 % ~0.94 % -1.45 % -1.14 %
0.65 % 0.05 % 0.06 % 0.12 % 0.30 % -0.12 % -0.31 %
1.64 % 0.98 % 0.31 % 0.03 % 0.17 ¥ ~0.29 % -0.60 %
0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.3359 0.9722
0.38 % 2.64 % 3.02 % 0.18 % ~0.33 % -0.55 % ~-0.47 % -0.91 %
0.47 % -0.09 % -0.16 % -0.05 % 0.45 % -0.03 % -0.02 % -0.38 %
1.33 % 0.69 % 0.45 % 0.58 % 0.66 % -0.00 % ~0.06 % -0.41 %X



FIGURE F.4.1 NORMALIZED POWER DENSITIES AND ERRURS FOR THE CISE BENCHMARK USING ‘FLAT®
TRANSVERSE LEAKAGE MODEL AMD NET CURRENT RESPONSE MATRICES (!)

REF ERENCE

ADF F

START ADFF, NtS1, 15T ITERATION
START ADFF, N1S1, 4TH ITERATION
START ADFF, N152, 1ST ITERATION

0.9108

~2.8% %

-0.30 %

-0.32 %

-0.25 %

0.8887 0.8101

-1.86 % -2.47 %

0.60 % -0.39 %

0.54 % -0.35 %

0.67 % -0.33 %

0.8814 1.0362 1.2094

-1.62 % 2.34 % 2.85 %

.46 % 2.61 % 2.68 %

0.41 % 2.48 % 2.59 %

0.53 % 2.68 % 2.74 %
1 2 3

-3.46 %
~0.18 %
-0.07 %
-0.15 %

[
=
w
e

- AY =
2]
@
kS

0.8404
-1.44 %
-0.22 %
-0.15% %
-0.18 %

— aa ko

QOO = —

.6846
.78 %
.99 %
75 %
.99 %

.7304
01 %
.05 %
12 %
.03 %

.2814
.70 %
.00 %
01 %
.02 %

.2195
.33 %
.72 %
72 %
.75 %

.0294
.86 %
-0.
-0.
-0.

73 %
57 %
70 %

0.6493
-2.84 %
-2.97 %
-3.05 %
-3.03 %

0.7850
0.27 %
0.32 %
0.40 %
0.30 %

0.8841
0.19 %

-0.20 ¥

-0.14 %
-0.21 ¥

1.1197
-0.12 %
-0.98 %
-0.97 %
-0.98 %

1,416%

0.23 %
-0.61 %
-0.59 %
-0.60 %

1.2581
0.53 %
-0.28 %
-0.29 %
-0.28 %

0.6270
-1.54 %
-1.68 %
-1.79 %
-1.83 %

0.8655
-0.28 %
-0.86 %
-0.91 %
~0.91 %

1.0642
-0.19 %
-0.86 %
-0.85 %
-0.88 %

1.1008
-0.29 ¥
-1.16 %
-1.16 %
-1.18 %

1.3359
0.71 %
-0.17 %
-0.16 %
-0.19 %

0.7515
-1.05 %
-1.68 %
-1.81 %
-1.76 %

0.8753
-0.19 %
-0.75 %
~0.85 %
-0.87 %

0.9722
0.28 %
-0.52 %
-0.62 %
-0.64 %



FIGURE F.4.11

RE FERENCE

START ADFF,
START ADFF,
START ADFF,
START ADFF,

.B8814
.49 %
02 %
.25 %
.88 %

N152, 4TH
N55%, 187
NS551, 4TH
N552, 157

=N v =l =]

.35
.31

ON DN =

.8887
.62 %
.23 %
.47 %
.12 %

. 0262
.56 %

¥Rt

ITERATION
ITERATION
ITERATION
ITERATION

0.9108
-0.27 %
-0.37 %
-0.28 %

0.99 %

0.8101
-0.29 &
-0.97 %
~-0.59 %

0.50 %

1.2094
2.67 %
2.22 %
2.48 %
0.24 %

(=R R [sa =Rl

O = -

-0.
-0.

o

.08235
.45 %
.44 %
.44 %
.49 %

L2566
.69 %
.48 %
.59 %

.8404

10 %
64 %

.32 %
.20 %

[ S

OO QO -

-0
=0
-0

.6846
.76 %
a1 %
.45 %
37T %

.7304
LT %
1%
.26 %
.42 %

.2814
.04 %
.13 %
.06 %
AT %

.2195
.75 %
.70 %
T %
.27 %

.0294
.54 %
.46 %
.52 %
0.

66 %

0.6493
-3.11 %
-2.77 %
-2.92 %
-1.48 %

0.7850
0.37 %
0.63 %
0.53 %
-1.29 %

0.8841
~0.15 %
0.09 %
-0.04 %
-0.58 %

1.1197
-0.97 %
-0.87 %
-0.94 %
-0.08 %

1.4165
-0.59 %
-0.57 %
-0.61 %

0.25 %

1.2581
-0.28 %
-0.30 %
-0.32 %
-0.01 %

0.6270
-1.94 %
-1.57 %
-1.71 %
-1.14 %

0.8655
-0.97 %
~0.76 %
-0.688 %
-1.35 %

1.0642
-0.88 %
-0.77 %
-0.86 %
-0.29 %

1.1008
-1.19 %
-1.14 %
-1.19 %
-0.32 %

1.3359
-0.19 %
-0.16 %
-0.21 %
-0.03 %

NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'FLAT'
TRANSYERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (I1)

0.7515
-1.90 %
-1.75 %
~-1.84 %
~1.06 %

0.8753
-0.98 %
-0.83 %
-0.90 %
~0.69 %

0.9722
-0.75 %
-0.62 %
-0.68 %
-0.38 X



FIGURE F.5 NORMALIZED POWER DENSITIES AHD ERRQRS FOR THE CISE BENCHMARK USING
‘CMFD ' GLOBAL MODEL AND NET CURRENT RESPONSE MATRICES

REFERENCE ' --- 0.6493
ADFC - 2.27 %
START ADFC, N552, 157 ITERATION -—- -1.74 %
START REF., N552, 15T ITERATION -— -2.54 %
0.68485 0.7850 0.6270
-5.23 % 15.33 % 5.51 %
-7.15 % -0.27 % 5.13 %
0.02 % -0.89 % -2.52 %
0.8820 0.7304 0.8841 0.8655
-19.0G6 % -15.03 % 5.94 % 11.1% %
-3.42 % -5.13 % -3.31 % 1.39 %
0.48 % 6.29 % -0.36 % -1.49 %
0.9108 1.0824 1.2814 1.1197 1.0642 0.7515
-24.27 % -10.12 % 4,03 % 9.35 % 23.82 % B.60 %
-3.63 % -2.22 % ~3.33 % -0.01 % -0.34 % -7.94 %
0.59 % -0.19 9% -0.04 % 0.03 % 0.15 % -1.04 %
0.8887 0.8101 1.2566 t.2195 1.4165 1.1008 0.8753
-34.28 % -29.74 % -7.09 % -1.40 % 14.56 % 18.36 % 18.05 %
-3.91 % 0.58 % 0.42 % -1.15 % 1.77 % 2.63 % 3.57 %
0.80 % 0.77 % 0.36 % -0.04 % 0.44 % 0.10 % -0.21 %
0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.3359 0.9722
-37.58 % -29.68 % -19.11 % -25.78 % -13.22 % 8.31 % 24.97 % 20.20 %
-3.24 % -2.69 % 3.89 % 3.20 % -1.35 % 1.49 % 3.30 % 8.01 %
0.79 % 0.18 % 0.47 % 0.75 % 0.74 % 0.24 % .21 % -0.31 %



F[GURE F.6.1 NORMALIZED POWER DOENSITIES AND ERRQRS FOR THE CISE BENCHMARK USING 'QUADRATIC':
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES GENERATED FROM
PARTIAL CURRENT RESPONSE MATRICES (I}

REF ERENCE ' - 0.6493
START ADFQ, N1S1, 157 ITERATION -—= -2.47 %
START ADFQ, N151, STH ITERATION -— -2.57 %
0.6846 0.7850 0.6270
1.68 % -1.11 % -2.68 %
0.23 % -1.07 % -2.54 %
0.8820 G.7304 0.8841 0.B8655
5.47 % 1.50 % -3.10 % -6.57 %
5.49 % 1.39 % -2.94 % -6.43 %
0.9108 1.0824 1.2814 1.1197 1.0642 0.7515
11.79 % 7.45 % 0.51 % -6.40 % -9.55 % -11.33 %
9.74 % 6.30 % 0.37 % -5.76 % -8.69 % -9.12 %
0.8887 0.8101 1.2566 1.2195 1.4165 1.1008 0.8753
19.50 % 14.62 % 8.83 % 0.20 % -7.49 % -11.83 % -13.86 %
17.47 % 12.77 % 8.03 % 0.02 % -6.56 % -10.53 % -11.35 %
0.8814 1.0362 1.2094 0.8404 1.0294 1.2581 1.3359 0.9722
23.03 % 21.43 % 17.18 % 10.36 % .27 % -6.73 % -12.47 % -15.23 %
19.88 % 18.59 % 15.15 % 9.60 % 1.0 % -6.06 % -11.01 % -12.30 %

0T-4



FIGURE F.6.I1 NORMALIZED POWER DENSITIES AND ERRORS FOR THE CISE BENCHMARK USING 'QUADRATIC'

REF ERENCE

START ADFQ, N152,
START ADFQ, N152,
START ADFQ, NS5S2,

0

13.

t2

18.

0.8814 1
15.68 % 15.
14.52 % 14.
22.32 % 19.

TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES GENERATED FROM

PARTIAL CURRENT RESPONSE MATRICES (11}

1ST ITERATION -—
S5TH ITERATION : -
15T ITERATION : —-—

0.6846

0.75 %

-0.04 %

-5.00 %

0.8820 0.7304

3.30 % 0.26 %

3.62 % 0.33 ¥

4.27 % -1.07 %

0.9108 1.0824 1.2814

7.80 % 6.15 % 1.14 %

6.92 % 5.62 % 1.22 %

11.93 % 7.44 % 1.85 %

.8887 0.8101 1.2566 1.2195
27 % 9.62 % 6.99 % 0.43 %
.63 % 8.88 % 6.56 % 0.40 %
93 % 14.16 % 8.61 % 1.82 %
.0362 1.2094 0.8404 1.0294
86 % 12.86 % 6.84 % 0.14 %
74 % 1217 % 6.61 % 0.06 %
60 % 15.26 % 10.30 % 2.82 %

0.6493
-3.85 %
-4.13 %
-7.30 %

0.7850
-0.69 %
-0.76 %
-9.35 %

0.8841
-2.79 %
-2.92 %
-6.57 %

1.1197
-4.32 %
-4.16 %
-4.36 %

1.4165
-5.43 %
-5.18 %
~4.30 %

1.2581
-4.70 %
-4.58 %
-3.79 %

0.6270
-0.92 X
-0.31 %
-5.28 %

0.8655
-4.89 %
-4.72 %
-9.04 %

1.0642
-5.99 %
-5.46 %
-9.51 %

1.1008
-8.37 %
-7.77 %
-9.61 %

1.3359
-8.46 %
-7.74 %
-8.80 X

0.7515
-8.80 %
-8.06 %

~11.37 %

0.8753
-10.87 %
-10.16 %
-14.73 %

0.9722
-11.36 %
-10.44 %
-12.56 %
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FIGURE F.7 NORMALIZED POWER DENSITIES AND ERRQORS FOR THE CISE BENCHMARK USING

REFERENCE

START ADFF,
START ADFF,
START ADFF,
START AOFF,

19

.8814
23.
.55 %
25.
20.

05 %

52 %
81 %

'FLAT!®

TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES GENERATED
FROM PARTIAL CURRENT RESPUNSE MATRICES

N1S1, 1ST
N151, 5TH
N§51, 1ST
N552, 157

0.8887
19.53
17.27
21.57
17.76

2R 52 ¥R X

1.0362
21.43 %
18.38 %
23.29 %
1B.20 %

ITERATION
ITERATION
ITERATION
ITERATION

0.9108
11.70 %
9.51 %
13.22 %
11.27 %

0.8101
14.53 %
12.63 %
15.99 %
13.22 %

1.2094
17.13 %
15.08 %
1B.12 %
14.07 %

OO~ - whho
- L
@O (=}

~ 0= -
o
5]

©.8404

10.22
9.51
10.81
9.30

%
%

%

- —_O0 0 - - 00 -

NNO - =

.66846
.69 %
.36 %
.57 %
.06 %

.T7304
51 %
a4 %
AT %
A%

.26814
.53 %
A7 %
.13 %
.45 %

L2195
.24 %
.06 %
.46 %
.29 %

-0294
.32 %
.94 %
.36 %
.24 %

0.6493
-2.59 %
-2.55 %
-6.38 %
-6.39 %

0.7850
-1.22 %
-0.92 %
-4.09 %
-7.15 %

0.8841
-3.14 %
-2.88 %
-4.41 %
-5.81 %

1.1197
-6.39 %
-5.73 %
-6.38 %
-4.30 %

1.4165
-7.48 %
-6.51 %
-6.84 %
-4.60 %

1.2581
-6.65 %
-6.05 %
-6.00 %
-4.14 %

0.6270
-2.711 %
-2.43 %
-6.46 %
-4.23 %

0.B8655
~-6.60 %
-6.32 %
-8.12 %
-7.55 %

1.0642
-9.51 %
-8.66 %
~9.97 %
-8.46 %

1.1008
11.81 %
10.49 %
11.94 %
-9.18 %

1.3359
12.42 %
10.88 %
12.01 %
-8.60 X

0.7515
-11.24 %
-9.07 %
-12.80 %
-10.30 %

0.8753
13.91 %
~11.30 %
-15.33 %
-13.27 %

0.9722
-15.21 &
-12.18 %
-14.31 %
-11.42 %
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1.4962
-0.41 %
~1.28 %
-1.26 %

FIGURE F.B,I NORMALIZED POWER DENSITIES AND ERRORS FOR THE HAFAS BENCHMARK USING 'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (I)

REFERENCE -— 1.0885 0.6886 0.3936 Y

ADFQ -— 1.31 % 1.54 % 1.86 %
START ADFQ, N1S1, 1ST ITERATION -= 0.15 % -0.59 % -1.24 %
START ADFQ, N1S2, 1ST ITERATION - 0.13 % -0.61 % -1.29 %
1.4634 1.1996 0.9887 0.5091 ¥
0.55 % 1.38 % 0.62 % 1.43 %
0.17 % 0.59 % 0.61 % -0.00 %
0.16 % ¢.58 % 0.59 % -0.10 %
0.9642 1.2596 1.3550 0.9697 0.6332 Y
-2.52 % 1.38 % 0.97 % 0.93 % 1.14 %
-1.12 % 1.31 % 1.27 % 0.75 % -0.12 %
-1.12 % 1.31 % 1.26 % 0.73 % ~0.21 %
1.1174 0.8669 1.2401 1.0813 0.9988 0.5632 Y
-5.29 % -2.13 % 0.75 % 1.60 % 0.14 % 1.49 %
-1.97 % -0.49 % 1.22 % 1.27 % 0.04 % 0.10 %
-1.96 % -0.43 % 1.21 % 1.26 % . 0.02 % 0,05 %
1.6583 1.5325 1.3736 0.7878 0.7339 0.7761 0.5737 Y
-0.79 % 0.48 % 0.6a % -4.65 % -1.93 % 0.75 % 1.03 %
-1.23 % 0.71 % 1.13 % -1.08 % -1.19 % 0.78 % 0.70 %
-1.22 % 0.73 % 1.14 % -1.08 % -1.19 % 0.77 % 0.69 %
1.7191 1.5115 1.7175 1.2374 0.8282 0.6215 0.8096 0.4973 Y
-0.29 % -0.10 % 0.08 % 1.47 % -4.17 % -0.51 % 0.54 % 1.55 %
-1.63 % -1.37 % 0.37 % 1.22 % -1.29 % -0.66 % 0.46 % 0.49 %
-1.61 % -1.35 % 0.39 % 1.24 % -1.28 % -0.66 % 0.46 ¥ 0.50 %
1.2997 1.3517 1.0752 0.9239 0.9993 1.0152 0.7833 0.5503 Y
0.00 % ~1.35 % -4.44 % -0.89 % 1.18 % 1.10 % 0.49 % 0.92 %
-1.35 % ~1.45 % -1.78 % -0.55 % 2.07 % 1.66 % ~0.46 % -0.96 %
-1.34 % -1.43 % -1.77 % -0.93 % 2.08 % 1.67 % -0.46 % -0.95 %
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FIGURE F.8.I[ NORMALIZED POWER DENSITIES AND ERRDRS FOR THE HAFAS BENCHMARK USING 'QUADRATIC!
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (II)

REFERENCE -— 1.0885 0.6886 0.3936 Y
START ADFQ, N5S1, 1ST ITERATION - -4.00 % -5.31 % -6.32 %
START ADFQ, N5S2, 15T ITERATION -— 7.38 % 7.10 % 7.17 %
1.4634 1.1996 0.9887 0.5091 Y
-1.68 % -2.84 % -3.73 % -4.83 %
7.06 % 7.40 % 6.84 % 7.12 %
0.9642 1.2596 1.3550 0.9697 0.6332 Y
13.1G6 % 1.356 % -1.47 % -2.89 % -4.52 %
2.23 % 7.54 % 8.12 % 7.02 % 6.51 %
1.1174 0.2669 1.2401 1.0813 0.9988 0.5632 Y
10.75 % 25.59 % 9,32 % 1.02 % -2.73 % -3.89 %
-4.43 % ~5.81 % -5.00 % 9.67 % 5.89 % 5.69 %
1.6583 1.5325 1.3736 c.7878 0.7339 0.7761 0.5737 Y
-3.21 % 0.B2 % 8.39 % 20.84 % 5.07 % -2.26 % -2.78 %
-4 .67 % -4.58 % -5.48 % ~6.48 % 2.02 % 3.57 % 3.40 %
1.7191 1.5115 1.7175 1.2374 0.8282 0.6215 0.8096 0.4973 Y
-5.60 % ~4 .65 % -1.99 % 1.49 % 4.55 % 0.12 % -2.00 % -2.82 %
-4.37 % -4 .26 % -4.78 % -4,45 % -3.71 % -3.13 % 1.0V % 1.56 %
1.4962 1.2997 1.3517 1.0752 0.9239 0.9993 1.0152 0.7833 0.5503 Y
-5.B8 % -5.867 % -5.07 % -3.99 % -2.30 % -0.26 % -0.61 % -3.59 % ~5.64 %
~-4.28 % -4.26 % -4.58 % -4.29 % -4,.09 % -3.46 % -1.93 % -0.07 % 0.06 %
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FIGURE F.8.TII NORMALIZED POWER DENSITIES AND ERRORS FOR THE HAFAS BENCHMARK USING ‘'QUADRATIC'
TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (III)

REFERENCE _ -—- 1.0885 0.6886 0.3936 Y =
START REF., N552, 1ST ITERATION - 0.24 % -0.03 % 0.03 %
START REF., N551, 15T ITERATION --- -5.41 % -6.66 % ~-7.66 %
START ADFQ, N1S2 THEN NBS2 -— -0.15 % -0.25 % 0.01 %
1.4634 1.1996 0.9887 0.5091 Y =
0.17 % 0.27 % -0.04 % 0.10 %
~-2.92 % -4.05 % -4.86 % -5.84 %
-0.76 % -0.33 % -0.32 % -0.01 %
0.9642 1.2596 1.3550 0.9697 0.6332 Y =
0.37 % 0.46 % 0.06 % 0.24 % -0.06 %
11.22 % 0.43 % -2.16 % -3.43 % -4.89 %
~0.19 % -0.65 % -0.79 % -0.00 % -0.17 %
1.1174 0.8G69 1.2401 1.0813 0.9988 0.5632 Y =
-0.06 % -0.45 % -0.54 % 0.49 % 0.12 % 0.11 %
7.59 % 23.31 % B.20 % 1.14 % -1.89 % -2.93 %
0.03 % 1.30 % 0.76 % -0.60 % -0.30 % -0.02 %
1.6583 1.5325 1.37386 0.7878 0.7339 0.7781 0.5737 Y =
-0.18 % 011 % -0.96 % -0.40 % 0.52 % 0.23 % ~0.28 %
-6.37 % -1.96 % - 6.36 % 21.74 % 11.71 % 2.00 % -0.34 %
-0.03 % -0.15 % 0.78 % 0.59 % -0.61 % 0.23 % -0.36 %
1.7191% 1.5115 1,7175 1.2374 0.8282 0.6215 0.8096 0.4973 Y.
0.14 % 0.27 % -0.37 % -0.26 % 0.05 % 0.47 % -0.04 % -0.09 X
-9.17 % ~-7.95 % -4.74 % -2.03 % 9.34 % 20.96 % 4.87 4% 0.80 %
0.70 % 0.68 % -0.19 % -0.41 % -0.61 % -0.67 % 0.05 % -0.15 %
1.4962 1.2997 1.3517 1.0752 0.9239 0.9993 1.0152 0.7833 0.5503 Y =
0.22 % 0.27 % - -0.06 % 0.13 % -0.18 % -0.24 % -0.22 % 0.27 % 0.09 X
-9.64 % -9.,32 % -8.46 % -6.7% % -2.82 % 3.23 % 5.95 % 3.27 % Q.74 %
0.94 % 0.89 % 0.43 % 0.42 % -0.43 % -0.63 % -0.63 % 0.10 % 0.39 X
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FIG

REFERENCE
ADFQ

START ADFQ,
START ADFQ,

1.8779
0.47 %
0.0a %
0.04 %

URE F.9.I

N1S1, 157
N152, 15T

1.6944

-0.10 %
-0.10 %

1.7798

-0.02 %
-0.02 %

NORMALIZED POWER DENSITIES AND ERRORS FOR THE LSHBWR BENCHMARK USING 'QUADRATIC'

TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (I)

ITERATION -
ITERATION -

1
-0
-0
-0

t

1

-0

.4255
.83 %
.46 %
.46 %

.5376
-0.
-=0.
-0.

23 %
12 %
12 %

.5392
-0.
=-0.

13 %
08 %

.08 %

1.4395
1.92 %
1.17 %
1.17 %

1.4424
-0.57 %
-0.17 %
~0.17 %

1.4774
o.18 %
-0.09 %
=0.09 %

1.5012
0.17 %
-0.49 %
=0.49 %

1.2212
-0.66 %
1.82 %
1.82 %

0.9563
-g8.85 %
-1.51 %
-1.51 %

0.9178
-9.07 %
—2.70 %
-2.70 %

0.5283
2.03 %
0.06 %
0.08 %

Q.6741
2.86 %
0.65 %
0.65 %

0.4499
B8.05 %
-0.67 %
-0.67 %

0.4275
9.61 %
-2.85 %
-2.85 %

0.3884
3.09 %
1.60 %
1.60 %

0.4123
4.83 %
2.16 %
2.16 ¥

. 1945
.B1 %
A3 %
.13 %

.2399
.34 %
.42 %
-42 %

9T7-d



FIGURE F.8.11

REFERENCE
START AOF
START AQF
START ADF
START ADF

-5

=-0.
-1

NORMALLIZED POWER DENS1TIES AND ERRORS FOUR THE LSHBWR BENCHMARK USING 'QUADRATIC'

TRANSVERSE LEAKAGE MODEL AND NET CURRENT RESPONSE MATRICES (Il)

Q. N551, 15T ITERATION
Q. N552, i5T ITERATION
Q. Ni152 THEN NS5S2

Q. NiS2, 6TH ITERATION

1
-5,

5
~-0.

-1

.B779 ]
.83 % -5.
.23 % 5.
31 % -0.

168 % ~1

1

1.
-3
5.
-0.
-1
.6944 1
24 % -4,
.74 % 5.
25 % -0.
.08 % -0.
.7798 1
54 % -q,
94a % 5.
30 % -Q.
.09 % -0.
2

4265

.93 %

10 %
08 %

.05'%

.5376

28 %
29 %
15 %
B85S %

-5992

61 %
31 %
19 %
B6 %

. 4395

.50 %

0.5283
6.70 %
1.97 %
-1.17 %
-0.19 %

0.6747

6.96 %
3.23 %
0.42 %

1.22 ¥

0.4499
35.83 %
-32.81 %
5.42 %
2.49 %

G.4275
10.18 %
-20.00 %
3.56 %
1.33 %

0.3884
12.62 %
-38.75 %
-0.67 %
2.16 %

0.4123
15.30 %
~33.20 %
-0.34 %
3.25 ¥

0.1945
11.62 %
~31.88 %
-1.23 %
1.65 %

0.2399
14.55 %
-35.31 %
~1.75 ¥
4.09 ¥
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