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ABSTRACT

A method of obtaining approximate one-group equivalent diffusion
theory parameters and discontinuity factors for use in the nodal code
QUANDRY was developed. These approximate one-group quantities
were determined from the two-group reference cross sections by
performing assembly calculations with albedo boundary conditions.

An approximate one-group solution was obtained with this method
for two different reactors: EPRI-9, which models a simplified PWR
core, and CISE, which models a simplified BWR core. The accuracy of
these approximate solutions was excellent. For EPRI-9, the reactor
eigenvalue was predicted to within 0.03% and the maximum error in node
averaged reaction rates was 0.99%. For CISE, the reactor eigenvalue
was predicted to within 0.02% and the maximum error in node averaged
reaction rates was 2, 8%.

When compared to the two-group solutions obtained using the
identical approximations, the one-group solution was found to be more
accurate. The superior performance in one-group was attribuated to the
fact that, near the reflector, QUANDRY approximated the transverse
leakage shape more accurately in one group than in two groups.

Thesis Supervisor: Allan F, Henry

Title: Professor of Nuclear Engineering
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CHAPTER 1
INTRODUCTION

1.1 Introduction

Finite difference methods have been the workhorse of the nuclear
industry for the past two decades. Such methods provide detailed
multi-dimensional power distributions at an affordable cost when com-
pared to other methods such as continuous energy Monte Carlo or
multigroup discrete ordinates. That is not .fo say, however, that finite
difference methods are cheap. To analyze a typical PWR in three
dimensions having milAlions of mesh points requires hours of CPU time
on the largest of digital computers. 1 |

For many phases of reactor design and development, the detailed
multi-dimensional power distribution obtained with finite difference
methods is not needed. For example, many thermal hydraulic analyses,
transient safety analyses and reload analyses often require only assembly
averaged powers and the reactor eigenvalue. Clearly, it is a waste of
time and effort to determine the detailed multi-dimensicnal pbwer distri-
bution only to integrate out the average quantities of interest.

In an attempt to eliminate this waste, the past few years have
seen the development of various nodal methods. The great advantage
with nodal methods is the relatively small number of unknowns resulting
from the use of large, assembly-sized mesh intervals. Assuming the
nodal equations are not too complex, the reduction in the number of
unknowns translates directly into a reduction in computational effort.

The nodal code currently in use at MIT is QUANDRY, !+ 2
Depending upon the size of the problem being analyzed, QUANDRY is

from 10 to 1000 time33 more computationally efficient than finite
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difference codes. In addition, the accuracy of QUANDRY is at least as
good as with finite difference codes. However, QUANDRY also has
some drawbacks. QUANDRY cannot be readily extended beyond two
energy groups and requires a great deal of computer memory capacity,
For large two and three dimensional problems, the required computer
memory capacity is exceésive. Both these drawbacks could be miti-
gated if a suitable group collapsing procedure were found.

The goal of this thesis is to develop a suitable group collapsing
procedure for use with the nodal code QUANDRY. Such a procedu;e
would permit a three or four group problem to be collapsed to two
groups, thereby allowing the problem to be analyzed with QUANDRY.,
Such a procedure would also permit a two-group problem to be
collapsed to one-group, thereby cutting the required computer memory

capacity in half,

1.2 The QUANDRY Equations_

To derive the QUANDRY equations, one may begin with the
Boltzmann transport equation. Integrating over all directions 2 and an

energy range AEg reduces the transport equation to

2
v- ig(g) + Etg(_r_') (pg(g) = gz';=1 [zgg' (r)
(1-1)
1 =
+ Xxgvzfg']wg, (r); g=1, 2
wherle
o = Cae { 48 v a, ®

g

I,@= Va0 { amaee o m
g aE, T T T
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SdQS dE £ (r,E)} (z, Q, E)
| AE o«

Z  (r)

a —

= 2 s O = t:f
g 0g'Z)
SdQS dE S dE' T (r, E'+E)¥(z, Q, E1)
AE AE So ™ -

T (r) g g

gg''= o0 _,(r)

g
X = dE f(E)
g SAE

Note that the presence of more than one fissionable isotope has been
suppressed.

Next, Equation (1-1) is integrated over the volume of an arbitrary
node (i, j, k), yielding

ik (70,3, % =, 7,k ik (i, ], K)
hy b, (jgx (4p) ~ g ("1)) * h b, (T(g" 544
7l i,k

i (L3R PR AY
By ) + bynd (TR 730G )

z

X'y z "t

2 .
- & plpdpk
g g gl =1 X Yy z

w=(i, j, k) 1 =i, i, kYN =@, i,k
(Egg' Y Xg vzfg' ) O gt (1-2)
where
é(l,l,k) = 1 - g‘ dx § dy g dz o (x,y,z)

g O < k

X 'y oz hx hy hz
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(£, m, n) - 1 &‘ S
Jgu (uz) = ), dv 3y dw Jg(uz,v,w)
v w m n
S dxg dyg dz T (x,y,2) ¢_(x,v,z)
R nl WK e ¢
(i, j, k) X v z -
z T3 k=00 pa=tig
a h. h) h<p il
Xy z°g

In the above definitions, a generalized notation has been introduced:

u = X,y 0rz

v = Xx,y, oraz: u v

w = x,y, orz u#v#Ew
£ = i, j, or k

m = i, j, or k; 4 # m

n = i, j ork; L #m # n

k)

Thus, j(gl’J' (u) actually defines the surface averaged net current in the

X, y and ; directions.

There is no theoretical reason why the QUANDRY equations
cannot be derived using a non-Cartesian coordinate system. However,
since most reactors lend themselves to analysis with rectangular or
cubical nodes, QUANDRY was limited to Cartesian geometry.

Equation (1-2) is a formally exact neutron balance for node
{i, j, k). But before this equation can be solved, additional relationships
must be found between the node averaged flux and surface averaged net
currents. Specifically, six coupling equations are required for three

dimensions.

Many different schemes have been examined for determining
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coupling equations. In earlier schemes, crude approximations limited
the accuracy of nodal methods. More recently, coupling equations have
been determined using relatively mild approximations. Conéequently,
the accuracy of nodal methods has improved dramatically. As always,
though, nothing is free; the coupling equations used in QUANDRY are
extremely complex algebrajcally. While these coupling equations are
not explicitly derived in this thesis, a sketch of their derivation is
presented below. An explicit derivation is given in Reference 4.

The QUANDRY coupling equations may be determined beginning
with Equation (1-1). To determine the coupling equations in the u
direction, we assume that the net current in the u direction can be

represented by Fick's law

4,3,k 1 (i,i, k) d
Tgu (u) = T S mdv S ndW ﬁg 53 cpg (u, v, w)
v W hV hW

(1-3)

The definition of the homogenized group-g diffusion coefficient will be
discussed later. Now, integrating Equation (1-1) over the two directions
transverse to the u direction and substituting for Fick's law yields

2

_ h‘t;n h:, 54, m,n) (E(E,m, Ny + gt L m, ),y
u du® By woEy

m . (4, m, n) m,n =(£,m,n) -(£, m,n)
+ 1’1V Lg (uw) + hv hw Zt D g (u)
' g u
2
- T m,n A4, m,n) w2, m, )\ =(4, m, n) _
gh=1 V hw ( gg' + Xgu fg' )‘Pg|u (u) (1-4)

where



-16-

v w
m+1 n+1
(5;'(’" m, rl)(u) = ml - (\? dv S dw cpg(u,v, w)
u hV hW Vm Wn
(£, m, n) _ {4, m,n) 3-(1, m, n)
L = T Ny, v ) - ’ (u,v_)
g, (u) g, m+1 g, Vi

If we introduce a transverse leakage term

(4, m,n), _ _L (¢,m,n 1, (&,mn 1-5)
Sg, W = o L) oL Y (
v w

and divide through by hi,“ h‘?v, Equation (1-4) becomes

2 2
_15{4, m,n) 8 (4, m,n) 2(2. m,n) ~(4, m,n), \ _ (2, m, n)
g, bu2 qDgu (w) + tg (pg {a) gnz=1 - gg’
(4, m, n)\ -(4, m, n) (2, m, n)
» Hls » St = =3 () (1-6)
gvzfg' )qog, (u) g, u

If the transverse leakage term S(g’z’ s rl)(u) were known, integra-
tion of Equation (1-6) would yield direct’iy the first two coupling equations.
Similar equations for the v and w directions would yield the other four
coupling equations. Together with Equations (1-2) and the appropriate
set of boundary conditions, these six coupling equations would form a
well-posed problem which could be solved numerically. Unfortunately,
the transverse leakages are not known, necessitating the first and only
approximation in QUANDRY whereby S(gz’ M, n)(u) is fit to a quadratic
function of u over nodes (4-1, m, n), (2, 1?1, n) and (4+1, m,n). The
coefficients of the quadratic function are determined by requiring that

the correct surface averaged transverse leakages be preserved for each

of the three adjacent nodes,
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With Sg"m’ 1’l)(u) approximated by a quadratic, Equation (1-6)
u
can be solved for c;:v('e s n)(u) within node (£, m, n) using J(g , M, n)( )
u u

54, m, n)(u ) as boundary conditions. Integration of the solution

gu
‘(z, m, n)(
wgu
surface averaged flux ¢

and @

u) over h'z then yields a complex algebrajc function relating the
(.6 m, n)(
8y

'I(gz’ m, n) (uz) and the three surface averaged transverse leakages:
u

) to the surface averaged net current

'(fa, m, I’.I}(u

(2) (2, m,n) (ﬂmn) (£-1, m, n)
@ ) o= T ), 0 3 ,
gu £ ( u g Bu
Sé.ﬂ,m, n)’ S—(.¢+1,m, n)> (1-7)
u u
Here,
h{‘:’l
s‘;‘, m, ﬂ) = _]’.E SI S(gz’ m, n) ( )
u hL1 hi u

Equation (1-7) couples the surface averaged net current to the node
averaged flux. However, the direct use of Equation (1-7) as a coupling

equation is precluded by the presence of a new unknown: </3(gl’3’ 1()(uﬂl), the

u
surface averaged flux. To eliminate this unknown, Equation (1-6) is

solved within the adjacent node (£-1, m, n) using cpg L, m, n)( y) and
u

-
71, m, rl)(u ) as boundary conditions. Integrating the solution

Ey

(,Bg_l’ M, rl)(u) over hﬁ_l then yields an equation whose form is identical
u

to that of Equation (1-7):
(- Z 4- = -
(p(gz l,m,n)(u‘z) _ g( ) (T.I'( 1,m, n)(uz)’ @g’m'n)’ s(z 2, m,n)

»

u gu u

S(E-l, m, n)‘ Sr(l, m, n) )

o (1-8)

u ng
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Equations (1-7) and (1-8) may now be combined to eliminate (,Bg"m’ n)(uA,J)
u

546-1, m, n)(uz) by assuming, for the moment, that the surface

and ¢
Su

averaged flux and net current are continuous across nodal boundaries

(£-1,m,n) (£, m, n)

qogu (uz) = wgu (uz) (1-9)
—(Z-l,m, l’l) — -'(L; m, n) -
Jgu (uz) Jgu (uz) (1-10)

Thus, the desired coupling equation has the form

X"
u gll gll u

»

(£, m, n) - (2) (z(4-1,m,n) =(¢, m,n) «(£-2,m,n)
T ) = o (3 . 5,

(£-1,m,n) =2, m,n) =(£+1,m,n)
'S ’ » S’ ’ ’ S‘ » ’ -
g LSSy ) (11

Eciuation (1-11) is an involved algebraic function relating the
surface averaged net current to two adjacent node averaged fluxes and
four adjacent surface averaged transverse leakages. By following an
identical procedure for nodes (Z, m, n) and {4+1, m, n), a similar coupling

)

equation can be obtained for 3-(1, . n)(u'c
u

+1

(£, m, n) (4+1) (=(¢, m,n) =(4+1,m,n) =(f-1,m, n)
Jgu (uz+1) = h (qo s @ ’gg

»

u

S-(.E, m, n) -S—(E+1, m, n)’ S-(JZ,+2, m, n))_

gu , gll gl.l

(1-12)

Equations (1-2), (1-11) and (1-12) constitute the QUANDRY

equations. The actual strategy whereby these equations are solved on a
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digital computer will not be discussed in this thesis. A detailed
account of the numerical techniques used to solve these equations is

given in Reference 4.

1.3 Discontinuity Factors

| Aciually, the assumption of Equation (1-9) that the surface aver-
aged flux is continuous across nodal boundaries leads to error. 2 To
illustrate this, consider a heterogeneous one-dimensional node and the
identical node after homogenization. To further simplify matters,
suppose the neutron flux within each of these nodes can be adequately

described with one-group diffusion theory. For the heterogeneous node

d

- 35 D = o) + B e = FuIw e , (1-13)

while for the homogenized node

2

-0 2r o+ T 6w = LvTew (1-14)
ou
where
S du T (u) olu)
h (04
Tz = L -~ =a, f
o \ du ¢ (u)
“h
u

For the moment the homogenized diffusion coefficient will be defined only
as some position in(.iependent number,

We wish the solution of the homogenized problem to preserve the
heterogeneous eigenvalue. In addition, the one=-group homogeniéed ,
cross sections have been defined such that the node averaged reaction
rates are preserved. Now, if we integrate Equations (1-13) and (1-14)

over hu and rearrange, we obtain:
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{[pwgew] - D@L ow] }
U1 )
- {[p& w(u)]uﬁ1 - bR (u)]%} (1-15)

In other words, preserving the reactor eigenvalue and node averaged

reaction rates implies that the net nodal leakage rate is also preserved.

The individual surface currents are measurable quantities and
should be preserved on physical grounds. However, if these net
surface currents are taken as boundary conditions and used to solve
Equations (1-13) and (1-14), one finds that the homogeneous surface
flux does not, in general, equal the heterogeneous surface flux.

While this fact may seem strange at first, it makes perfect sense.
The homogenized problem is an artificial mathematical problem,
constructed so that certain node averaged quantities are preserved.

The homogenized problem does not preserve the heterogeneous flux
profile. Thus, while the heterogeneous flux is a physical quantity which
is continuous across nodal boundaries, there is no reason why the
homogeneous flux must also be continuous across nodal boundaries, In
general, the homogeneous flux will be discontinuous across nodal bound-
aries.

At this point, the homogenized diffusion coefficient remains fo be
determined. 1In fact, the preservation of the node averaged reaction
rates, surface averaged net currents and reactor eigenvalue will not
depend on the means by which the diffusion coefficient is homogenized.

Changing the value of D only affects the magnitude of the difference
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between the heterogeneous surface flux and the homogeneous surface
flux. Thus, the diffusion coefficient can be homogenized in the most

straightforward manner, usually by simply flux weighting D(u):

S du D(u) o(u)
h

= - (1-16)
S du o(u)
h

u

To relate the homogeneous surface flux across nodal boundaries,

Kord Smith, modifying the work of Koebke, introduced "discontinuity

factors"z’ 4

(p()l, m, n) (u )

(£, m, n) _ _fu il
fg (uz+1) = -(Z, m, n) ( ) (1-17)
u Pg Ho+1
u
(péﬂ, m, n) (uz)
{4, m, n)(uz) - _(lz — (1-18)
g, gogu’ ’ (uz)

Here, discontinuity factors are defined as the ratio of the surface
averaged heterogeneous flux to the surface averaged homogeneous flux.
From these definitions the relationship between the surface averaged

homogeneous flux for adjacent nodes is

(£-1, m, n)
g

f(z—l, m, t'l)
ng

f(ﬁ, m, ﬂ)(uL) qa(gﬂ, m, ﬂ)(u‘z) (UL) ©

(uz)
gu

u

(1-19)

When used to relate the surface averaged flux of adjacent nodes, Eq.

(1-19) allows the QUANDRY equations the necessary degrees of freedom
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required to reproduce the exact reactor eigenvalue, the exact node
averaged reaction rates, and the exact surface averaged net currents.

Discontinuity factors may also be introduced to reproduce the exact
solution when energy groups are collapsed. To illustrate this fact,
consider a cne-dimensional homogeneous node. If we assume that the
flux profile may be adequately described by the continuous energy

diffusion equation

-4

a
5 DE L oW B) + LE) ey, B)

- S dE' [E_(E'+E) + Li(EWS.(E)] o(u, E) (1-20)
0 s A T

collapsing to one group yields

2 A
L Bwden + Gw - dw - Lkwbw -2
du
where ©
) SOdE £, (E) o(u, E)
Ea(u) = — i o = s, ¢t f
{ dE o(u, B)
=0
q'J\(u) = S dE ¢(u, E)
0
S dE D(E) o(u, E)
A 0
D(u) =

S:dE olu, E)

Notice that the one-group diffusion theory parameters are position depend-

ent, though the node is homogeneous. This will be the case so long as
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the neutron spectrum in the node, whose shape is given by ¢ (u, E), is
not asymptotic,

The QUANDRY equations may only be applied to homogeneous
nodes. Therefore, the collapsed one-group diffusion parameters must
be homogenized, The corresponding one-group diffusion equation for

this homogenized node is

= 2 Y x x
-D # Ew + @,-298w = Lifw (1-22)

where
A
Sh da Z_ () B
— ¥}

= ; a = 5, t, f
o Q duzor(u)
“h

u

091

A A
S du D(w) S(w)
hl.l

O>
|

g du & (u)
“h
u

Now, Equations (1-21) and (1-22) may be compared using the earlier
analysis of heterogeneous nodes. The same conclusion will be reached;
that is, discontinuity factors are required to introduce sufficient degrees
of freedom such that the reactor eigenvalue, node averaged reaction
rates and surface averaged net currents can be preserved.

In these simple one-dimensional illustrations, the necessity of
discontinuity factors is apparent. Now, the question arises as to
whether or not the exact solution can still be reproduced in two dimen-
sions when the transverse leakage term is approximated by a quadratic.
Intuitively, one might feel that by approximating the transverse leakage

term in the QUANDRY equations, some error must be introduced into
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the final solution, However, this is not the case! One of the subtler
implications of the use of discontinuity factors is that they allow an
exact solution of the global problem to be obtained even though the
QUANDRY equations are solved in an approximate manner. The only
requirement is that the approximation used to obtain discontinuity
factors also be used when solving the QUANDRY equations for the global

problem.

1.4 QUANDRY Boundary Conditions

QUANDRY allows three boundary conditions: zero flux, zero
current, and albedos. To skefch how QUANDRY incorporates these
boundary conditions into its nodal equations, consider Node {2, m) on the

reactor periphery as shown in Fig, 1-1. The coupling equation for the

“4+1 face of Node (£, m) is given by Equation (1-8):

-(L, m)(u

) ) = g(z) (T(ﬂl,m)(u ). é(ﬂ, m)' S‘(-c"]_,m)

g 1+1 gu 4+1 g gUl ’

S‘(z, m)’ g(ﬂ“"l, m))

g g (1-8)

u u

(2, m)

T he surface flux ng is eliminated from this equation with either the

zero flux or albedo boundary conditions. In either case, the resulting

coupling equation assumes the form

=(2, m)
Jgu (u“l)

i(z) (5(gz,m)‘ Sg&—l,m) S(E,m)’ S-(.2.+1,m))

» Oy (1-23)

u ng

With the zero current boundary condition, Equation (1-23) simply

reduces to the identity
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Fig. 1-1 Vacuum Node on Reactor Periphery.
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J(lr,m)(

g, u)“_l) = 0

Due to the extensive spatial coupling in the QUANDRY equations,
some of the transverse leakage terms are not defined for nodes near the

reactor periphery. For example, in Equation (1-23), the term

S‘(i’ﬁ‘l, m)
gy

imaginary vacuum nodes whose dimensions are identical to those of the

is not defined. To define these terms, QUANDRY introduces

adjacent nodes on the reactor periphery, Such a vacuum node is
depicted in Fig. 1-1. Since the only function of the average transverse

leakage in the vacuum node 3;z+1’ m) is to determine the shape of the
transverse leakage in the adjagent hode, -S—(gl.,m)(u)’ QUANDRY assumes
the average transverse leakage in the vacuulin node equals either zero
or -Su" m)' These assumptions are adequate for reactors with water
reﬂect%rs where the transverse leakage term decreases as one moves

outward from reflector to vacuum node.
The actual transverse leakage assumption used in QUANDRY is the
programmer's choice. While either assumption results in a shape which

tends toward zero as u - u£+l, the assumption that Su‘+l’ m) = —S'(‘z' m)

u gll

(£, m)(qu) closer to zero. In reality, for reactors with water

forces S
g
reflectors, the QUANDRY solution is essentially independent of the
assumption used for the transverse leakage term in the vacuum node.
This is because the transverse leakage term in the reflector is usually

relatively small.

1.5 Objectives and Summary

The primary objective of this thesis is to develop an accurate

group collapsing procedure for use with the nodal code QUANDRY, Such
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a procedure would reduce the required computer memory capacity by a
factor of two. Such a procedure would also permit a three or four
group problem to be analyzed using a two-group QUANDRY calculation.
In _Chapter 2, various collapsing procedures will be investigated for
one-dimensional reactors. In Chapter 3, collapsing procedures which
give promising results in one dimension will be applied in two dimen-
sions. Finally, in Chapter 4, a summary of the results of this thesis

will be presented.
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CHAPTER 2
GROUP COLLAPSING IN ONE DIMENSION

2.1 Introduction

In Chapter 1, the analytic nodal method QUANDRY was presented.
The great advantage of QUANDRY was seen‘to bé that it offered compar-
able accuracy to finite difference methods while being much more com-
putationally efficient. However, QUANDRY also has some drawbacks.
QUANDRY cannot be readily extended beyond two energy groups.
Moreover, QUANDRY requires a great deal of computer memory
capacity. For large three-dimensional problems, the required memory
capacity is excessive. Both these drawbacks could be eliminated by a
viable group collapsing procedure,

Chai)ter 1 also discussed the theoretical basis of the QUANDRY
equations. These equations were shown to be formally exact except for
the relatively mild approximation that the transverse leakage term in
the coupling equations be represented by a quadratic, With the introduc-
tion of discontinuity factors, the QUANDRY equations were also shown
to be capable of reproducing the exact reactor eigenvalue, node averaged
reaction rates and net leakage rates. One of the subtler implications
- of discontinuity factors is the fact that they allow the exact solution to be
reproduced even though tﬁe QUANDRY equations are solved in an
approximate manner.

In this chapter, various group collapsing procedures are investi-
gated for one-dimensional reactors with both homogeneous and hetero-
geneous assemblies. All the reactors to be analyzed have water

reflectors and two fuel enrichments. Later, a baffle will be introduced. ,

In the analyses of these reactors, both assembly nodes and color set
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nodes will be used.

While it is true that one-dimensional reactors are not realistic,
analyzing such simple problems often affords valuable insight which
would be lost with more complex problems, One-dimensional problems
also have the advantage of being relatively inexpensive to run, making it
practical to investigate a large number of alternate procedures. Those
procedures successfully applied in one dimension can then be tested in
two dimensions. Any procedure which is not successful in one dimen-

sion is not likely to be successful in two or three dimensions.

2.2 Analysis of a Slab Reactor with Assembly Nodes

Figure 2-1 illustrates a simple one-dimensional reactor with three
homogeneous regions. The first and second regions represent
homogenized fuel-water mixtures of differing enrichments. The third
region is a water reflector., The two-group reference cross sections
for each of these regions are listed in Appendix A,

To test the accuracy of various group collapsing procedures, the
necessary reference QUANDRY quantities must be determined for com-
parison purposes. The reference QUANDRY solution was obtained from
a two-group QUANDRY calculation, partitioning the reactor so that each
node was homogeneous. With the reference two-group solution deter-
mined, exact one-group equivalent diffusion theory parameters were

obtained by flux weighting:

2)

5 (2) E(ﬁ) (B(L)

3 AN

A o 1 o 2

Efxm = — ; o = £ a (2-1)
TR )
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xy DY 59 4 pl 5
D = 1 2 (2-2)
={£) + =(L)
?y ©q

Here

(;:Ju') = node averaged, group g flux for node %,

Exact one-group discontinuity factors were obtained by solving the one-
group diffusion equation given by Equation (1-14) with the exact one-
group equivalent diffusion theory parameters, the exact eigenvalue and
the exact net surface currents imposed as boundary conditions. With
the resulting homogeneous flux profile, discontinuity factors were

calculated from their definitions

—{£) —(2)
) Op  Wgpy) T 0y (ugyy)
£, (uz+1) = 2 ‘(-l’:.‘) S (2-3)
éu (u.¢+1)
au')(u) + au)(u)
(4) 1 2 2 y/
£ ) = = L (2-4)
: (a(.e.) (u,)
u 2
where
(3(;) (u,) = exact group g surface flux on u, face of Node 4.
u
@(g'e') (uz) = homogeneous group g surface flux on u, face
u

of Node £,

The exact one-group equivalent diffusion theory parameters and

discontinuity factors are listed in Table 2-1. In particular, the small

(£)

value of f
u

(u‘Hl) for Node 3 should be noted. Since a zero flux
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Table 2-1

Exact One-Group Equivalent Diffusion Theory Parameters

and Discontinuity Factors for Assembly Nodes.

Node L =1 £ =2 £ =3
% (em™h 0.02981 0.02685 0.01920
A -1
2 {cm 7) 0.03001 0.02606 0.0
7
D (cm) 1. 389 1,368 1,198
(£)
fo (uz) 0. 9980 0.9779 0.8953
(£) -6
fu (qu) 1.007 1.145 3,473x10
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boundary condition was used for this problem, fg')(uﬁl) should be zero for
Node 3. It was not zero because of machine roundoff error. In any
case, the value of fl(lz) (um_l) for Node 3 is inconsequential; there is no
node adjacent to the reflector which requires coupling.

2.2.1 Assembly Calculations

To determine exact one-group equivalent diffusion theory

- parameters and discontinuity factors, the exact two-group solution had
to be known. Of course, if the exact two-group solution is known, there
is no point in collapsing and solving the one-group problem. In this
section, we hope to obtain accurate one-group quantities by performing
a number of "local" assembly calculatjons.

To isolate these local assembly calculations from the global
problem, zero current boundary conditions are imposed on each
assembly node. An eigenvalue problem is then solved for each assembly
node to obtain the detailed two-group flux distribution and determine
approximate one-group equivalent diffusion theory parameters.
Discontinuity factors are simply taken to be unity since the assembly
nodes for this problem are homogeneous.

While zero current assembly calculations can be applied to nodes
with fissionable material present, they cannot be applied to the reflector
node. In the reflector, such an approximation would only vield the
trivial solution. One way to treat the reflector is to assume that the
thermal current is zero on the boundaries of the reflector while the fast
current has some nonzero value. The two-group diffusion equations

then yield the node averaged fast to slow flux ratio:

= z
=_1 N (2-5)
902 Z;21
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which, when used in Equations (2-1) and (2-2), determines the one-group
equivalent diffusion theory parameters for the reflector., Discontinuity
factors for the reflector are unity.

Table 2-2 lists the approximate one-group equivalent diffusion
theory parameters and discontinuity factors. The accuracy of the zero
current assembly calculations used to determine these quantities was
assessed by comparing the quantities in Table 2-1 with those in Table

2-2, To facilitate comparisons, an error parameter was defined as

8T = (ipprzc;x " Zexact ) (2-6)
exact

The errors in these approximate one-group quantities are listed in Table

2-3.

Examining Table 2-3 shows that the errors in the equivalent
diffusion theory parameters and discontinuity factors increase as one
moves away from the reactor center. This trend can be explained by
examining the exact net current distribution in the reactor depicted in
Fig. 2-2. From this figure, it is clear that the zero current approxi-
mation used to collapse the equivalent diffusion theory parameters and
determine discontinuity factoré is less and less accurate as one moves
away from the reactor center. The zero current approximation is
especially bad at the fuel-reflector interface.

To determine the actual impact of error in the zero current
assembly calculations, the global problem was solved using the approxi-
mate one-group equivalent diffusion theory parameters and discontinuity
factors to obtain the approximate reactor eigenvalue, node averaged

reaction rates and net leakage rates. The errors in these approximate
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Table 2-2

Approximate One-Group Equivalent Diffusion Theory

Parameters and Discontinuity Factors for Assembly

Nodes.

Node =1 =2 2=3
a -1
Ea(cm ) 0.02970 0, 02647 0.02118
§f (em™1) 0.02985 0.02559 0.0
~
D (cm) 1.390 1.371 1.144
£2) 1.000 1.000 1.000
ua 2
(L
£ (uy, ) 1.000 1.000 1. 000
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Table 2-3

Errors in One-Group Equivalent Diffusion Theory

Parameters and Di_scontinuity Factors for Assembly
Nodes.

Node £=1 £=2 £=23
x

8%, (%) -0.37 -1.4 + 10

58, () -0.53 -1.8 -
ry

8§D (%) +0.07 +0.19 - 4,5

5: P ) @ | +0.20 +2.3 ¥ 12
(£)

€3fu (uz+l)(%) -0.69 - 13 -




J(u) x 10_9 (n/cmz-sec)
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Fig. 2.2 Exact Net Current Distribution.
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quantities are listed in Table 2-4.

Examining Table 2-4, we find the reaction rates in Nodes 1 and 2
to be predicted very accurately while the reaction rate in the reflector
is poorly predicted. However, knowledge of the reaction rate in the
reflector is not crucial.

In contrast to the accurate predictions of nodal reaction rates,
errors in the net leakage rates are unacceptably large in all three nodes
and especially large for Node 2, These large errors are expected since
net leakage rates are sensitive to errors in the discontinuity factors.—
Finally, reflecting the accuracy of our solution as a whole, the error in
the reactor eigenvalue is 0. 42%, unacceptably large for such a simple

reactor.

2.3 Analysis of a Slab Reactor with Color Set Nodes

The error in one-group equivalent diffusion theory parameters and
discontinuity factors obtained from assembly calculations will depend
upon the accuracy of the zero current approximation. When adjacent
assemblies have similar neutronic characteristics, the zero current
approximation will generally yield satisfactory results. However, when
adjacent assemblies have drastically different enrichments or when an
assembly is adjacent to the reflector, the zero current approximation
cannot be expected to yield satisfactory results., In these cases, color
set nodes offer a promising alternative to assembly nodes.

The idea behind color sets is to move nodal boundaries to the
centers of assemblies where the zero current approximation should be
more accurate. The simple three region one-dimensional reactor
shown in Fig. 2-1 is depicted in Fig. 2-3 partitioned into color set nodes.

One drawback to the use of color sets is that spatial homogenization is
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now required for our simple three region reactor. Hopefully, the added
error introduced by spatial homogeniz-ation will be offset by an improve-
ment in the zero current boundary conditions.

As with assembly nodes, exact one-group equivalent diffusion
theory parameters were determined for color set nodes from a two-
group fine mesh QUANDRY calculation, The "fineness" of the mesh was
such that two-group node averaged fluxes were obtained for each
homogeneous region making up the color sets. Since each of the color

sets is partitioned into homogeneous regions of equal width:

2(1) (1) E (1) + E(i+1)$(i+1) + Z(i+1)q=3(i+1)

2 = - — -1 3 - (2_7)
(pgl) + m(l) + qDTI_H) + QD;H-U

_ (i) =(1) (i) =(i) (i+1) =(i+1) (i+1) =(i+1)

6(!’) _ Dl ?4 + D2 ®q + D cpl + D2 ©q (3-8

- —(11) 4 ‘Pgﬂ + (’B(llﬂ) 4 é£i+1)
Here, the superscript i denotes the particular homogeneous region.
Exact one-group discontinuity factors were determined by solving the
one-group neutron diffusion equation for each node using the exact one-
group equivalent diffusion theory parameters and the exact net surface
currents as boundafy conditions. Both the exact one-group equivalent
diffusion theory parameters and discontinuity factors are listed in
Appendix A,

2.3.1 Color Set Calculations

If we perform zero current color set calculations with QUANDRY,

=(i)

approximate qog are obtained which, when substituted into Equations

(2-7) and (2-8), determine approximate one-group equivalent diffusion
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theory parameters. When used with the zero current boundary
conditions and the one-group neutron diffusion equation, these parameters
determine approximate one-group discontinuity factors. Approximate
one-group equivalent diffusion theory parameters and discontinuity
factors are listed in Appendix A,

With color sets, the reflector node was treated differently than
- with assembly nodes. This was the case because Node 3 is adjacent to
a water reflector of substantial width, Thus, the neutron spatial distri-
bution must be very nearly asymptotic and the node averaged fast to slow
flux ratio can be obtained by solving the two-group neutron diffusion

equations subject to the boundary conditions

A ) = oy - o (2-9)
<p§3) (ug) = (2-10)
57— - R -10
g023 (u3)

where R is the approximate node averaged fast to slow flux ratio for the
adjacent color set node. This approximation turned out to be extremely
accurate, predicting the node averaged fast to slow flux ratio for the
reflector to within 0.08%. This approximation is not accurate for the
assembly node reflector because of the large thermal neutron hump.

The errors in determining the one-group equivalent diffusion theory
parameters and discontinuity factors with color set calculations are
listed in Table 2-5, Comparing Tables 2-5 and 2-3 makes it apparent
that color set calculations are much more accurate for Node 3, less
accurate for Node 2 and equally accurate for Node 1. For Node 3, the

superiority of the color set approach is expected, given the asymptotic



-43-

Table 2-5

Errors in One-Group Equivalent Diffusion Theory Parameters

and Discontinuity Factors for Color Set Nodes.

Node L =1 L =2 L =3
A
8T (o) -0. 36 -1,5 -0, 05
6uﬁf (%) -0. 47 -11 -
ry
6D (%) -0.11 -1.5 -0.09
(2)
6§87 (u,) (%) -0.29 +27 +85
u £
(2)
§f 7 (ay ) (%) +0.19 +0. 08 -
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neutron distribution. Fo# Node 3, the presence of two drastically
different materials greatly increased the sensitivity of the homogeniza-
tion procedure to errors in the zero current assumption. This increased
sensitivity to the "degree of heterogeneity' is starkly exhibited by the
11% error in the fission cross section of Node 2. Finally, equal
accuracy is obtained for Node 1 in spite of the fact that Fig, 2-2 shows
color sets to have moved the nodal boundary to a location where the zero
current approximation is less accurate. Apparently, a fortuitous
cancellation of error favored the color set node over the assembly node.
Table 2-6 lists the errors in the reactor eigenvalue, node averaged
reaction rates and net leakage rates which result from the use of color
set calculations. Comparing the errors here to the errors listed in
Table 2-4 for assembly nodes shows that color sets give inferior results
for all three nodes. Only the reactor eigenvalue is predicted with egual
accuracy. No doubt, the primary reason color sets perform so poorly

is the large errors in the one-~group quantities of color set Node 2.

2.4 An Iterative Approach

With both assembly nodes and color set nodes, zero current
boundary conditions were assumed in order to calculate approximate one-
group equivalent diffusion theory parameters and discontinuity factors.
While this assumption seemed satisfactory in the reactor interior, it was
not satisfactory near the reflector. In this section, we shall attempt to
account for the neutron currents near the reflector with an iterative
approach,

The idea behind this approach is simple. Namely, the reactor is
partitioned into either assembly nodes or color set nodes, Using the

zero current approximation to calculate one-group equivalent diffusion
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theory parameters and discontinuity factors, the global reactor problem
is solved. From this global solution, net surface currents and surface
fluxes are used to perform improved assembly calculations or color set
calculations. The resulting equivalent diffusion theory parameters and
discontinuity factors are used, in turn, to obtain an improved one-group
solution, This global-local iteration cycle is then repeated until a
satisfactory solution is obtained.

To proceed, consider the two-group diffusion equations for an

arbitrary homogeneous node:

2
d 1 1 _
“DIT(}OI(U) + (ZR -xvzf)wl(u) - XVEI‘ f,Dz(L‘l) = 0
du 1 L 2
(2-11)
d2
du 2
These two equations have the general solutions9
_ 5 | .
o,(w) = C, 4 sinpu + Cg scospu + Cgtsinhyu
+ C,tcoshwu (2-13)
Pqlu) = Clﬁ sinpu + C, cos pu + Cy sinh vu
+ C, t cosh pu (2-14)
where _1
9 ) Za2 z:Rl Ivzfl
ko= -3 ( D, " D, )
z

a
* [(ZDZ‘ - 12D1 l) * 1D ] (2-15)
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1
a z:R _iuzf Ea Z;R ‘Xsz 2
Y 1) 4 [ (g2 - )
v o = 3 D, D / 121_'72 ‘Tﬁ‘_—l
1
I”Efz %1 4
+ —-m__l - _J ,(2-16)
2
D poo+ b
2
s = "2 (2-17)
o1
-D2V2 + Z
t = ag (2-18)
2

21

If the four constants Cl.’ Cz, C3 and C4 could be determined from the
approximate one-group global solution, improved one-group equivalent
diffusion theory parameters and discontinuity factors could be readily
calculated.

In fact, the constants Cl’ CZ’ C3 and C4 can be determined given
the net surface currents and surface fluxes from the one-group global
solution. If we add Equations (2-13) and (2-14), an analytic expression

for the one-group flux is obtained:
ol = <p1(u) + qoz(u) (2-19)
Similarly, an analytic expression for the one-group net current is

J() = Jl(u) + Jz(u) (2-20)

where

J () = -Dla-daqol(u) (2-21)
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d
Jz(u} = - D2 o (p2(u) | (2-22)

Now, Equations (2-19) and (2-20) must equal the net surface currents
and surface fluxes obtained from the one-group global solutions. Thus,
a set of four equations and four unknowns results which allows the
constants Cl’ CZ' C3 and C4 to be determined. In matrix form, these
equations are

(p(uz) 0 1+s

ola, ) (ts) gin (pug, ) (1+s) cos (pu,,,)

J(uz) ) Dls + D2 0

Jluy, ) ~(sD,+D,) cos (pu, ) p@D,s+Dy) sinlpu, )

0 1+t Cl

(1+t) sinh (vu, ) (1+t) cosh (u,, ) C,

-U(D1t+D2) 0 CS

-v(D t+Dy) cosh) (vu,, ) v(Dt+Dy) sinh(vuy, ,) Cy

(2-23)

{e} = [A1{C} (2-24)
(cr = a1’ {o} (2-25)

The above approach can also be extended to heterogeneous nodes.

For color set nodes constructed with only two homogeneous regions, an
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analytic approach remains practical. However, since four new
constants are added with each additional homogeneous region introduced
into the color set, the size of the matrices quickly gets out of hand.
For example, a one-dimensional PWR assembly has upwards of seven-
teen homogeneous regions, requiring the inversion of a 68 x 68 matrix
with no simple structure. Clearly, an iterative approach involving such
a difficult calculation will not be practical. To handle color sets with
- many homogeneous regions, numerical techniques are much more
fractable. Regardless of the degree of heterogeneity present, there is
no reason why this approach should not converge to the exact solution.
Unfortunately, this iterative approach is not practical in two
dimensions, the main reason being that two-dimensional problems must
be solved numerically and, for a 17 x 17 node, the problem is just too
big. A secondary drawback is that the one-group global solution only
yields surface averaged net currents and surface averaged fluxes, No
information is given concerning the shape of the fluxes and net currents
on nedal surfaces. Such information would be necessary for convergence
to the exact solution. While ways exist to approximate the shapes of the
net surface currents and surface fluxes, this particular iterative
approach was not investigated further.5
| An alternate approach which should be practical in two dimensions,
though the shapes of the net surface currents and the surface fluxes must
still be approximated, uses the surface averaged fast to slow flux ratios
from adjacent assemblies or color sets to "split" the one-group surface
fluxes from the global solution. These surface averaged fast to slow
flux ratios are obtained from assembly calculations or color set calcu-

lations. The split two-group surface fluxes then serve as boundary
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conditions to calculate improved one-group equivalent diffusion theory
parameters and discontinuity factors. Presumably, repeating this
cycle will result in a still more accurate solution. However, unlike the
previous iterative approach, this approach will not converge to the exact
solution since there is no way to update the surface averaged fast to
slow flux ratios.

2.4.1 Updated Assembly Calculations

To perform updated assembly calculations with fluxes imposed as
boundary conditions, the mesh centered finite difference code
CITATION was used. 6 The details of CITATION will not be discussed
in this thesis. QUANDRY was not used to perform updated assembly
calculations because, at the time of this investigation, it was not
capable of solving fixed source problems.

Table 2-7 lists the errors in the updated one-group equivalent
diffusion theory parameters and discontinuity factors for assembly
nodes. The actual values for these updated quantities are listed in
Appendix B. Comparing these errors to the errors in Table 2-3 makes

| it apparent that our iterative approach markedly improves these one-
group quantities for all three nodes.

Table 2-8 compares the reactor eigenvalue, node averaged
reaction rates and net leakage rates of the exact one-group solution with
the approximate one-group solution obtained using both updated
equivalent diffusion theory parameters and updated discontinuity factors.
Comparing Tables 2-4 and 2-8 makes it apparent that updating these
one-group quantities results in a much more satisfactory solution,
particularly when the reactor eigenvalue and nodal leakage rates are of

concern,
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Table 2-7

Errors in One-Group Equivalent Diffusion Theory

Parameters and Discontinuity Factors for

Assembly Nodes After One Iteration

Node L=1 4=2 2 =3
N
8%, (%) -0.03 -0, 93 -2.1
6u§f (%) -0,03 -1.0 -
x
8D (%) -0.07 -0.15 -1.1
559 (0 ) @) -0.20 -0, 34 2.8
u 2
(£)
6f,  (uy, ) (%) +0. 20 +6.3 -
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Finally, we found that failing to update both equivalent diffusion
theory parameters and discontinuity factors together can actually result
in a solution which is less accurate than a solution obtained using zero
current assembly calculations. This fact implies that it is better to
use relatively inaccurate discontinuity factors which reflect errors in
the one-group equivalent diffusion theory parameters rather than use
relatively accurate discontinuity factors which do not reflect errors in
the one-group equivalent diffusion theory parameters.

2.4.2 Updated Color Set Calculations

Table 2-9 lists the errors in the updated equivalent diffusion
theory parameters and discontinuity factors for color set nodes. The
actual values for these updated quantities are listed in Appendix B.
Comparing Tables 2-5 and 2-9 shows that the updated one-group
equivalent diffusion theory parameters were markedly improved for all
three nodes. Improvement was especially dramatic for Node 2.
However, when the updated discontinuity factors are compared to their
zero current counterparts, no improvement is apparent,

Table 2-10 compares the reactor eigenvalue, node averaged
reaction rates and net leakage rates of the exact one-group solution with
the approximate one-group solution obtained using both updated equivalent
diffusion theory parameters and updated discontinuity factors. Compar-
ing Tables 2-8 and 2-10 shows that the iterative approach is less
accurate than the solution obtained with zero current color set calcula-
tions.

Why is the iterative approach less successful with color set nodes
than with assembly nodes? The underlying reason is that with color

sets an additional error is introduced through the spatial homogenization
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Table 2-9

Errors in One-Group Equivalent Diffusion Theory

Parameters and Discontinuity Factors for Color
Set Nodes After One Iteration

Node £ =1 L =2 L =3

N

8T, (%) -0.35 +0. 18 -0.04
-R N N

Sz, (%) -0.29 +0.83 -

55 (%) -0, 14 +0, 21 +0,03
(1)

5E] (uz) (%) -0.69 +25 +81
()

afu (“Jz+1) (%) +2.7 +27 -
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procedure., Also, for this particular reactor, color sets move the
nodal boundaries to locations where the zero current approximation is
somewhat less accurate than with assembly nodes. The poor values
obtained for the one-group equivalent diffusion theory parameters lead,
in turn, to a poor solution to the global problem. Thus, when the one-
group surface fluxes were split, new color set calculations were
performed with poor boundary conditions.

In Tables 2-11 through 2-14, errors in determining the surface
averaged fast to slow flux ratios and the one-group surface fluxes are
listed for both assembly nodes and color set nodes. These tables show
that color sets approximate the surface averaged fast to slow flux ratios
much more accurately than do assembly nodes, while assembly nodes
approximate the one-group surface fluxes much more accurately than do
color set nodes. After one iteration, the overall error in splitting the
one-group surface fluxes is given in Tables 2-15 and 2-18.

We conclude that our iterative approach appears to be capable of
providing accurate results. Unfortunately, the amount of work required
to obtain an adequate solution to realistic problems seems to be
prohibitive. For a one-dimensional reaction with heterogeneous nodes,
the results_ of our updated color set calculations indicate that at least
two iterations will be required. For two-dimensional heterogeneous
nodes, an even greater number of iterations may be necessary. Thus,

the iterative approach was abandoned.

2.5 Albedo Boundary Conditions

The stumbling block for each of the previous collapsing methods
has been their inability to determine accurate one-group equivalent

diffusion theory parameters and discontinuity factors for nodes adjacent
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Table 2-11

Error in Approximating Surface Averaged Fast to Slow Flux

Ratios for Assembly Nodes

Surface uy U PES Uy
((pll(PZ)Exact 9.037 8.274 3.522 1.250
((pl/(,oz)Approx 9. 000 8.250 4,464 1.429
a(cﬁlléz) (%) -0.41 -0.29 +27 +14

Error in Approximating Surface Averaged Fast to Slow Flux

Ratios for Color Set Nodes

Surface u, Uy Ug ty
(@lléz)Exact 9,037 7.519 1.305 1.250
(@1/¢2>Approx 9.009 7.560 1.304 1.267
5(:51/625 (%) -0.31 +0.54 -0.08 +1.4
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Table 2-13

Error in One-Group Surface Fluxes Obtained from Approxi-

mate One-Group Solution with Assembly Nodes

Surface u1 u, ug Uy
P gact 1.273 x 10t [1.140 x 1011 |3. 958 x 1017 0.00
b Approx 1.284 x 1011 [ 1.148 x 1011 |3.954 x 101° 0.00
50 (%) +0.86 +0. 70 -0.10 -

Table 2-14

Error in One-Group Surface Fluxes Obtained from Approxi-

mate One-Group Solution with Color Set Nodes

Surface

ul U.Z u3 U.4
P act 1.269 x 101 |8.033 x 1012 |1.203 x 101° 0. 00
@A pprox 1.338 x 1011 [ 8. 941 x 1019 {1,173 x 1019 0.00
8o (%) +5. 4 +11 -2.5 -
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Table 2-15

Error in Splitting Surface Flux

for Assembly Nodes

Surface

1 Uy 3 4

&, 1.145 x 1011 1,017 x 10*! |3.087 x 10%° 0. 00
Exact

5y 1.267 x 1010 | 1.228 x 101° | 8.766 x 10° 0. 00
Exact

3, 1.156 x 1011 | 1.024 x 10!? |3.230 % 1010 0. 00
Approx

5y 1.284 x 1019 | 1.241 x 10*? | 7.236 x 10° 0. 00
Approx

5«51 (%) +0.96 +0. 69 +4.6 -

6(52 (%) -1.3 +1.1 -17 -

Table 2-16
Error in Splitting Surface Flux for Color Set Nodes

Surface g g ug Uy

3, 1.145 = 1011 | 7.108 x 1019 | 6.831 x 10° 0.00
Exact

2, 1.267 x 1019 | 9. 454 x 101? {5.235 x 10° 0.00
Exact

3, 1.204 x 1011 | 7,896 x 101° |6.639 x 10° 0. 00
Approx

50 1.337 x 1019 | 1.045 x 101° |5.091 x 10° 0. 00
Approx

5(51 {%0) +5.2 +11 -2.8 -

6(;32 (%) +5.5 +10 -2.8 -
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to the reflector. This stumbling block should be removed if the exact
albedo boundary conditions are used for collapsing calculations on the
reactor periphery. Of course, exact albedo boundary conditions can
only be determined from the exact solution. Thus, the practical
application of such a collapsing procedure will ultimately depend upon
the ability to approximate accurate albedos with local calculations.
Currently, researchers at MIT are investigating methods which will
approximate albedo boundary conditions.” This thesis will proceed on
the assumption that these investigations will be successful.

2.5.1 Assembly Nodes with Albedo Boundary Conditions

Consider the reactor depicted in Fig. 2-1. An assembly calcula-
tion was performed for Node 2 using exact two-group albedos for the
right hand boundary conditions and the zero current assumption for the
left hand boundary conditions. Table 2-17 lists the errors in the one-
group equivalent diffusion theory parameters and discontinuity factors
for both Nodes 1 and 2. Here, Node 1 was collapsed with the usual zero
current assembly calculation, Comparing Tables 2-3 and 2-17 makes it
appafent that the albedo assembly calculation is much more accurate
than the zero current assembly calculation.

Solving the one-group problem using the approximate equivalent
diffusion theory parameters and discontinuity factors gives excellent
results as shown by Table 2-18, |

2.5.2 Color Set Nodes with Albedo Boundary Conditions

Consider the reactor depicted in Fig, 2-3. A color set calculation
was performed for Node 2 using the exact two-group albedos for the right
hand boundary conditions and the zero current assumption for the left

hand boundary conditions. Table 2-19 lists the errors in the one-group
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Table 2-17

Errors in One-Group Equivalent Diffusion Theory Param-

eters and Discontinuity Factors for Assembly Nodes with

Albedo Boundary Conditions

Node 4=1 £ =2
F.Y

52a (%) -0. 37 +0. 48
~

6VL, (%) -0,53 +0, 61

§D (%) +0. 07 -0, 07

fol")(uz) (%) +0, 20 +1.0
(2)

8f (uzﬂ) (%) -0.69 -0.04
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Table 2-18

Errors in One-Group Reactor Ei_genvalue. Node Averaged Reaction

Rates and Net L.eakage Rates for Assembly Nodes with Albedo

Boundary Conditions

dkeff = -0,02%
Node £=1 L =2
X x 3 9 9
L, PEyact {n/cm" -sec) 3.658 x 10 2.124 x 10
A& 3 9 9
VZORyact (n/em® -sec) 3.682 x 10 2.061 x 10
2 9 9

ji (n/em®-sec) 3.924 x 10 2.867 x 10

uExact
53 (n/cm®-sec) 3,650 x 10° 2.127 x 10°

a(p Approx n S . X :
) (n/cm®-sec) 3.668 x 107 2.068 x 10°

f ™ Approx : :
— 2 9 9
T (nfcm® -sec) 3.858 x 10 2.943 x 10

uApp]:-ox

L x
8%, & (%) -0.22 +0,14
SUZ, & (%) -0.38 +0. 34
afu (%) -1.7 +2,86
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Table 2-19

Errors in One-Group Equivalent Diffusion Theory Param-

eters and Discontinuity Factors for Color Set Nodes with

Albedo Boundary Conditions

Node 4 =1 L =2
EY
GZa (%) -0. 36 -0.52
™
6v2f (%) -0. 47 -4.6
A
8D (%) -0.11 -0,172
(2)
8f ) (uz) (%) -0.29 -19
88w, ) W) +0.19 +22
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equivalent diffusion theory parameters and discontinuity factors for
Nodes 1 and 2. Here, Node 1 was collapsed with the usual zero current
color set calculation. The actual values of the approximate one-group
quantities for Node 2 are listed in Appendix C. Comparing Tables 2-5
and 2-19 shows that albedo boundary conditions improve the equivalent
diffusion theory parameters by a factor of two. However, discontinuity
factors are not improved at all.

Table 2-20 lists the errors in reactor eigenvalue, node averaged
reaction rates and net leakage rates for the one-group solution obtained
using the approximate equivalent diffusion theory parameters and discon-
tinuity factors. Comparing Tables 2-18 and 2-20 shows that albedo
boundary conditions give much less accurate results with color set nodes
than with assembly nodes. As before, the culprit is Node 2, where the
presence of two materials having drastically different neutronic
characteristics makes the spatial homogenization process very sensitive

to any errors in the boundary conditions.

2.6 Analysis of a One-Dimensional Reactor

with Heterogeneous Assemblies

In the previous section, we found that the use of albedo boundary
conditions gave excellent results with assembly nodes and relatively poor
results with color set nodes. Therefore, color set nodes will be
abandoned at this point in favor of assembly nodes, The use of albedo

boundary conditions will be investigated further with heterogeneous

assemblies.
A one-dimensional reactor with heterogeneous assemblies, a baffle,

reflector and two fuel enrichments is depicted in Fig. 2-4. Exact one-

group equivalent diffusion theory parameters and discontinﬁity factors



Table 2-20

Errors in One-Group Reactor Eigenvalue, Node Averaged

Reaction Rates and Net Leakage Rates for Color Set Nodes

with Albedo Boundary Conditions

6k = -0,59%
e
Node L=1 =2
.3 3 9 9
2 PExact {(n/em”-sec) 3.119 x 10 1.065 x 10
9 8
fcﬁE (n/cm -sec) 3.084 x 10 8.189 x 10
2 g 9
T (n/em™ -sec) 5,442 x 10 -3.295 x 10
YFxact
® 3 9 3
T, qu'p‘pI‘OX {(n/em®-sec) 3.268 x 10 9.294 x 10
_%- (n/cm3—sec) 3.231 x 109 6.851 x 108
Approx : '
— 2 9 9
L. (n/em” -sec) 5.194 x 10 -3.607 x 10
uApprox
x =
5T, & (%) +4.8 -13
A %
SV & (%) +4. 8 -16
8L (%) -4.6 +9.5
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were determined for this reactor from a fine mesh QUANDRY calculation.
These exact quantities are listed in Appendix C.

Approximate one-group equivalent diffusion theory parameters and
discontinuity factors were obtained in the usual manner, In the reactor
interior, a zero current assembly calculation was performed. Adjacent
to the baffle, the exact two-group albedo boundary conditions were
imposed on the right side of the assembly and zero current boundary
conditions were imposed on the left side of the assembly. Table 2-21
lists the errors in these approximate quantities, Asg expected, agree-
ment with the exact quantities is excellent. 1In part, this excellent
agreement is due to the symmetric natyre of the heterogeneous assem-
blies and the fact that the nodal boundary is located at the center of a
homogeneous region where the zero current approximation should he
relatively accurate.

In Table 2-22, the approximate reactor eigenvalue, node ;averaged
reaction rates and net leakage rates are compared with the exact values.
Agreement is excellent, though not qu1te S0 good as when homogeneous
assembly nodes were analyzed with albedo boundary conditions. Of
course, the solution with homogeneous assemblies should be better than
with heterogeneous assemblies since there is additional error introduced
.by spatial homogenization. It should be noted that the size of the error
in the net leakage rate for Node 2 ig deceptively large; the errors in the

individual net surface currents are

()

5Ju (u2) = =0,39%
(2) _
GJu (LIB) = -1,8%
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Table 2-21

Errors in One-Group Equivalent Diffusion Theory Param-

eters and Discontinuity Factors for Heterogeneous

Assembly Nodes with Albedo Boundary Conditions

_ Nodes 4=1 L =2
x
5L, (%) +0.07 -0.28
x
ﬁvzf %) +0.02 -0.30
x
6D (%) +0.03 +0. 04
589 (w) @ -0.13 0. 87
u £ ) '
sf ) (W ) @ 11.2 1.8
u L+1 ‘ *




[

Table 2-22

Errors in One-Group Reactor Eigenvalue, Node Averaged

Reaction Rates and Net Leakage Rates for Heterogeneous

Assembly Nodes with Albedo Boundary Conditions

dk = 0, 13070
ef
Node L =1 L =2
§ 5 (n/ 3 _sec) 4.407 x 10° 2,474 x 10°

a Exact ‘! cm * *

v:g} ?5 (n/cmg—sec) 3,893 x 107 1. 955 x 109
¥ Exact : -

— 2 ] 8

L {(n/em” -sec) 6.169x 10 9,899 x 10

YExact
L) (n/em®-sec) 4.457 x 10° 2,44 8 x 10°

a '~ Approx : -

& A 3 9 9
vl @ Approx (n/cm”™ -sec) 3.935 x 10 1.934 x 10
_— 2 9 3
L (n/cm”™ -sec) 6.145 2 10 8.899 x 10

llApprc:'x

Iy
5235 (%) +1.1 -1.0

A
5vzf5 (%) +1.1 -1.1
atu (%) -0. 39 -10
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2,7 Summarx

In this chapter, various methods were investigated whereby a
problem which would nominally be solved using two groups was solved
using one group. In the interest of minimizing computational cost and
gaining physical insight, simple one-dimensional reactors were
analyzed using both assembly nodes and color set nodes. At first, the
investigation was limited to a reactor with homogeneous assemblies.
Later, heterogeneous assemblies were introduced.

' The first method investigated dete;mined one-group equivalent
diffusion theory parameters and discontinuity factors from assembly
calculations using the zero current approximation, While this method
approximated the node averaged reaction rates to within 1% in the two
fuel regions, the net leakage rates and the reactor eigenvalue were not
determined with satisfactory accuracy,

In an attempt to mitigate the effect of the reflector on the adjacent
node, color sets were introduced, Unfortunately, color sets gave less
satisfactory results than assembly nodes. There were two reasons for
the poor performance of color sets. First, one of the color set nodes
was composed of two materials with drastically different neutronic
characteristics, thereby increasing the sensitivity of the spatial homog-
enization procedure to errors in the zero current approximation.
Second, for this particular reactor, color sets ;actually moved the nodal
boundaries to locations where the zero current approximation was less
accurate,

Another method investigated in this chapter involved iterating
between assembly calculations and the one-group global solution.

Specifically, approximate one-group equivalent diffusion theory
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parameters and discontinuity factors were obtained from zero current
assembly calculations. Solving the one-group problem with these
approximate quantities yielded approximate one-group het surface
currents and surface fluxes for each node. The one-group surface
fluxes were then split into two groups using an approximate fast to slow
flux ratio. The approximate fast to slow flux ratios were obtained by
taking the average of the fast to slow flux ratios on adjacent nodal
surfaces. These surface fast to slow flux ratios were obtained from the
zero current assembly calculations. Finally, with two-group surface
fluxes known for each node, improved assembly calculations were
performed.

This iterative approach was applied to color set nodes as well as
assembly nodes. For assembly nodes, only one iteration was required
to reduce the error in net leakage rates for the fuel nodes to less than
3% and the error in the reactor eigenvalue to less than 0.1%. The
errors in the node averaged reaction rates for the fuel regions were less
than 1%. For color set nodes, one iteration was not sufficient. The
poor performance with color sets was due to the inaccuracy of the zero
current color set calculations. While a second iteration would probably
yield satisfactory results, this fact was not confirmed; we felt that an
approach which required more than one iteration would be prohibitively
cumbersome.

The last method investigated in this chapter attempted to circum-
vent the problems inherent with the reflector by replacing the reflector
with albedo boundary conditions. Albedo boundary conditions were used
with both assembly nodes and color set ﬁodes. For assembly nodes,

results were excellent. Node averaged reaction rates had errors less
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than 1%, while net leakage rates had errors less than 3%. The reactor
eigenvalue had an error of less than 0.02%. For color sets, results
were poor. The poor performance of color sets was due to the
inaccuracy of the zero current approximation for the nodal boundary

in the reactor interior.

Of all the methods investigated in this chapter, the use of albedo
boundary conditions with assembly nodes was the most promising.
Extending this method to a one-dimensional reactor with heterogeneous
assemblies and a baffle gave excellent results. Node averaged reaction
rates had errors less than 1%, while net surface currents had errors

less than 2%. The reactor eigenvalue had an error less than 0. 1%,
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CHAPTER 3
GROUP COLLAPSING IN TWO DIMENSIONS

3.1 Introduction

in Chapter 2, various group collapsing procedures wererinvesti-
gatéd. The zero current approximation was found to be satisfactory in
j:he reactor interior, but it was inadequate near the reflector. In an
attempt to account for the neutron currents near the reflector, an
iterative approéch was developed. While this approach gave accurate
results, it was abandoned as computationally inefficient. Finally, we
found that the effect of the reflector could be satisfactorily accounted for
by collapsing assembly nodes adjacent to the reflector with the proper
albedo boundary conditions. Of course, the usefulness of such a
procedure will ultimately depend upon the ability to determine accurate
albedo boundary conditions without solving the global problem.

In this chapter, the use of assembly calculations with albedo
boundary conditions is extended to two dimensions. Two reactors will
be analyzed, EPRI—.Q and CISE, each representing a different reactor
type. EPRI-9 models a simplified PWR core. CISE models a

simplified BWR core.

3.2 Analysis of EPRI-Q

Figure 3-1 illustrates the EPRI-9 reactor core. EPRI-9 includes
a baffle, reflector and two fuel enrichments. The two-group reference
cross sections for these materials are listed in Appendix D. The
heterogeneous nature of EPRI-9 is shown by the assembly in Fig. 3-2,
All assemblies in EPRI-9 have identical geometries, differing only in

fuel enrichment. Each assembly has seventeen water holes placed
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symmetrically about a 15x15 mesh. Each mesh represents a
homogenized fuel cell.

To obtain the exact two-group solution to EPRI-9, a fine mesh
QUANDRY calculation was performed. Exact one-group equivalent
diffusion theory parameters and discontinuity factors were then deter-
mined using the exact heterogeneous flux distribution and the exact net
surface currents. Exact albedo boundary conditions were determined
from their definitions:

Vrn+1
g 90(1’ m)(u

oy g
m
m+1

S, J(g‘e’m)(uz,v) dv

z,v) dv
&;""m’(uz)

v

where Node (£, m) is a large, assembly-sized node. These exact
quantities are all listed in Appendix D.

To determine approximate equivalent diffusion theory parameters
and discontinuity factors, the usual zero current assembly calculations
were performed in the reactor interior. For assemblies adjacent to the
baffle, in contrast to our experience with one-dimensional problems, it
was necessary to assume a shape for the albedos before assembly calcu-
lations could be performed. For CISE, as well as EPRI-9, the shape

was assumed to bhe flat.

Altogether, four assembly calculations were required. These



-T76=-

assemblies are identified in Fig, 3-1 as Nades {1,2), (1,3), (2,3) and
(2,2). Table 3-1 lists the errors in the approximate one-group
equivalent diffusion theory parameters and discontinuity factors for each
of the above assemblies. The actual values of these approximate
quantities are given in Appendix D.

When we examine Table 3-1, it is apparent that the errors in
Node (2, 3) are relatively large when compared to the errors in the other
nodes, though the magnitudes of these errors are still quite acceptable
on an absolute scale. The relatively large errors in Node (2, 3) can be
attributed to the fact that the albedo shape is not at all flat for nodes
situated at the corner of the reactor. Figures 3-3 and 3-4 illustrate the
actual albedo shapes determined from the fine mesh QUANDRY calcula-
tion. 7 While these figures show the assumption of a flat albedo to be a
poor approximation for Node (2, 3), they show this to be an excellent
assumption for Node (1, 3).

Table 3-2 lists the errors in the reactor eigenvalue, node averaged
reaction rates and net leakage rates of the approximate one-group
solution determined using exact albedo boundary conditions. Agreement
with the exact solution is excellent; the reactor eigenvalue is predicted
to within 0, 03%, the maximum error in node averaged reaction rates is
0.99%, and the maximum error in net leakage rates is 5. 8%,

To gauge the amount of error introduced via the collapsing process
versus error introduced through the spatial homogenization process,
EPRI-9 was also analyzed with two groups, making the same approxima-
tions as in the one-group case. Namely, for assemblies in the reactor
interior, two-group equivalent diffusion theory parameters and discon-

tinuity factors were determined from zero current assembly calculations.
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Table 3-1

Errors in One-Group Equivalent Diffusion Theory Parameters

and Discontinuity Factors for EPRI-9 Assembly Nodes

Node (i, j) (1,2) (1, 3) (2, 3) (2, 2)
x
5T (%) 0.73 -0. 64 -0. 38 -0, 49
x
5V L (%) 0. 95 -0. 91 -0. 48 -0. 71
x
§D (%) ~0,17 +0., 07 +0, 07 +0.03
6f(i’j)( ) (%) 0.24 0.18 +2.8 0. 93
% X.l 0 -U. -U. . -u,
st Dy (@) 0. 95 +0.23 5.3 0. 32
< i+ . . . ]
5f(i’j)( ) (%) Q. 40 0.79 +1.9 0. 93
v yj 0 =u. -u. . .
6f(i’j)( ) (%) 1.2 +0. 04 -5.5 0. 32
y yj+1 . . . .
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Table 3-2

Frrors in One-Group Reactor Eigenvalue, Node

Averaged Reaction Rates and Net Leakage Rates

for EPRI-2
5keff = 0,03%

(1, 3) (2,3
+0.59 +0. 45
+0. 32 : +0. 35

-3.2 -1.6
(1,2) (2,2)
-0.10 -0.22
+0.12 +0,01
+5,8 -2.7

(1, 1) Node (i, j)

7 L

-0. 95 623@ (%)
_ x

0.99 55,5 @
-1.0 o

5(LX+Ly) (%)
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Adjacent to the baffle,the appropriate two-group albedo boundary
conditions were used for assembly calculations. Table 3-3 lists the
errors in the reactor eigenvalue, node averaged reaction rates and net
leakage rates for this approximate two~-group solution.

Comparing Tables 3-2 and 3-3 makes it apparent that one-group
gives better estimates of the reactor eigenvalue and node averaged
reaction rates, while two-groups gives better estimates of net leakage
rates. Thus, the collapsing process actually seems to compensate for
some of the errors introduced by spatial homogenization. Why is this
the case? Because of the relatively small differences between the one-
and two-group solutions for EPRI-9, this question will not be addressed
here, but will instead be addressed in some detail after we have presented
results for the CLSE case. |

3.2.1 Approximate Albedo Boundary Conditions

Of course, the accuracy of a procedure which collapses two-groups
to one-group using approximate albedo boundary conditions will depend,
to a large degree, on the accuracy with which approximate albedo
boundary conditions can be determined. While this thesis will not
discuss the accuracies inherent in the various schemes used to obtain
approximate albedo boundary conditions, an attempt will be made to

"sensitivity'' of the one-group solution to errors in

determine the
approximate albedo boundary conditions. Clearly, a one-group solution
which is extremely sensitive to such errors must be looked upon with
suspicion.

To test the sensitivity of the EPRI-9 problem, a one-group solution

was obtained using approximate albedo boundary conditions determined

by solving the two-group problem with quarter assembly nodes. 8 Zero
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Table 3-3

Errors in Two-Group Reactor Eigenvalue, Node

Averaged Reaction Rates and Net Leakage Rates
for EPRI-O

5keff = 0.12%

(1, 3) (2,3)

+1.15 +0. 82

+1.18 +0.91

+0,01 +0.28

(1,2) (2,2)

-0.65 +0.11

-0.63 +0. 09

-3.6 -1.4

(1,1 Node (i, j)
E -

-1.14 5Eac,3 (%)
ry

-1.20 00T, 8 (%)

-4.3
5(Ex+ry) (%)




_83_

current color set calculations were used to determine the two-group
equivalent diffusion theory parameters and discontinuity factors for
these quarter assembly nodes. The errors in the reactor eigenvalue,
node averaged reaction rates and net leakage rates for this approximate
one-group solution are listed in Table 3-4, Tables 3-5 and 3-6 list the
errors in the approximate albedo boundary conditions. The magnitude
of error in these approximate albedo boundary conditions is not at all
insignificant.

A comparison of Tables 3-2 and 3-6 shows that the use of approxi-
mate albedo boundary conditions has a minimal effect on the one-group
EPRI-9 solution. Thus, it seems safe to conclude that for this type of
reactor, the one-group solution is relatively insensitive to errors in
approximate albedo boundary conditions, While it may be that reactors
containing control rods or burnable poison rods will be more sensitive to
errors in approximate albedo boundary conditions, this thesis will not

pursue the matter further.

3.3 Analysis of CISE

The CISE reactor is illustrated in Fig. 3-5. CISE includes a
reflector, but no baffle, cruciform control rods and two fuel enrichments.
The two-group reference cross sections for these materials are listed in
Appendix E. The heterogeneous nature of CISE is shown by the assembly
in Fig. 3-6. Region I represents a homogenized fuel-water mixture.

For those assemblies with control rods, Region II represents control rod
material and Region [Il represents water. For those assemblies without
control rods, both Regions II and III represent water. All the assem-

blies in CISE have identical geometries.
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Table 3-4

Errors in One-Group Reactor Eigenvalue, Node

Averaged Reaction Rates and Net Leakage Rates
for EPRI-9 with Approximate Albedos

6kef = -0,04%

.=

(1,3) (2, 3)

-0.08 -0. 96

-0.35 -1.15

-3.0 -3.2

(1,2) (2,2}

+0. 49 +0, 32

+0,72 +0.11

+9,0 -1,6

(1,1) Node (i, j)
A T

+0.10 5Za(p (%)

+ s

0.10 GVng (%)

+2.4 B
5(tx+ Ly) (%)
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Ly(cr.n)
A\ W W w A\
(1,9 1(2,9) [(3,9) |(4,9) | (5, 9)
Al a A w | w| w| W
(1,8)[(2,8) |(3,8) |(4,8) [(5,8) | (6,8)] (7, 8)
A B A A A w W w
(1,72, (3,7 |4, |B,D] 6, DIT,](8,T7) Jin 0
B A B B A A W W g
(4,6) [(5,6) | (6,6)| (7,6)](8,6)
B g AT| A | a w| w
(4,5) §(5,5) | (6,5} (7,5)](8,5) | (9,5)
A B B A W W
(4,4)7(5,4) | (6,4)| (7,4)|(8,4) ] (9, 4)
B A B A A W
(4,3)1(5,3) {(6,3) | (7,3)[(8,3) | (9, 3)
A B A B A w
(4,2)1(5,2) {(6,2) | (7,2)|(8,2)] (9,2)
B*'yg AT| B | A A W
(ji,_l)l(S,l) (6,1) | (7,1)](8,1)| (9,1) x(cm)
g - o 135
- ig :
W = water
A = high enrichment
At = high enrichment with control rod
B = low enrichment
BT = low enrichment with control rod

F1g. 3-5 CISE Reactor (Heterogeneous Nature of Nodes
Not Shown Here).
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To obtain the exact two-group solution to CISE, a fine mesh
QUANDRY calculation was performed. Exact albedo boundary
conditions were obtained from this solution and are listed in Appendix E,
Exact one-group equivalent diffusion theory parameters and discontinuity
factors were not calculated for CISE; the fine mesh QUANDRY calcula-
tion was run a number of years ago and the necessary information was
not available, ‘

In the interior of CISE, approximate équivalent diffusion theory
parameters and discontinuity factors were determined from the usual
zero current assembly calculations, A total of four zero current
assembly calculations were performed, one for each unique assembly
type. These four assembly types are identified in Fig. 3-5 as Nodes
(1,5), (2,5), (1,4) and (2,4). For assemblies adjacent to the reflector,
assembly calculations were performed with the appropriate albedo
boundary conditions. Altogether, five of these assembly calculations
were required, The assemblies used for these calculations are identi-
fied in Fig, 3-5 as Nodes (1, 8), (3,8), (4,7), (5,7) and {6,6). An
assembly calculation was not performed for Node (2, 8) since the albedo
boundary conditions for this node were nearly identical to those for Node
(1,8).

Table 3-7 lists the errors in the reactor eigenvalue, relative nodal
power fractions and net leakage rates of the approximate one-group
solution determined using exact albedo boundary conditions. Agreement
with the exact solution is excellent; the reactor eigenvalue is predicted
to within 0. 02%, the maximum error in the relative nodal power fraction
is 2, 8%, and the maximum error in net leakage rate is 18.11%. Both

the exact one-group solution and the approximate one-group solution are
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Table 3-7

Errors in One-Group Reactor Eigenvalue, Relative Nodal

Power Fractions and Net Leakage Rates for CISE

5ke£f= -0.02%
+0.15 +0. 03 +0.59
-0. 34 -0, 46 +0. 34
+0.75 +0. 36 +0. 66 -0.69 -0.53
+1.6 1.7 +1.2 =0, 92 -0. 80
+0.56 | +0,78 +0.45 | +0.41 +0. 38 -0, 82
+2.86 +1.6 +1.8 +2.2 +0. 97 -0.70
-2.8 +0. 82 +1.4 -3.0 +0, 25
+14, +2,1 +2.3 +4.2 -12,
-1.9 +1.8 +0.83 -3.7
-0, 27 +2.8 +3.5 +18.
+1.9 -2,8 -2.8
+3.0 +1.9 +7.0
+0, 96 -2.4
+3.6 +4.3
-2.3
+3.9

6P (%)

5T, +T )
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given in Appendix E,

Relative nodal power fractions are listed in Table 3-7 in place of
nodal reaction rates in order to keep the number of quantities being
compared down to a manageable number. The relative nodal power

fraction for Node (i, j) is defined as

pli,i) _  Power Density in Node (i, j) (3-2)
f ~  Mean Power Density in Reactor

An error in the relative nodal power fraction is equivalent to an error in
the node averaged rate at which neutrons are produced 5(5 V-gf).

As with EPRI-9, the approximate one-group solution is compared
to the approximate two-group solution obtained using exact albedo
boundary conditions. Where the two-group EPRI-9 solution is nearly
as good as the one-group solution, the two-group CISE solution is much
worse than the one-group solution. For the two-group CISE solution
with exact albedo boundary conditions, the reactor eigenvalue is
predicted to within 0.08%, the maximum error in nodal power fraction is
11%, and the maximum error in net leakage rate is 131%. The culprit
behind such a poor two-group solution is the fact that CISE does not have
a core baffle. Without a baffle, the two-group transverse leakage in
the reflector will be relatively large and, since we are using albedo

boundary conditions which replace the reflector with vacuum nodes, the

transverse leakage in these vacuum nodes becomes important. 1 For

two-groups, the usual assumptions that the average transverse leakage
in vacuum nodes equals zero or equals the negative of the average trans-
verse leakage for adjacent fuel nodes will no longer be adequate.

Fortunately, in one-group, these assumptions for the average
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transverse leakage in vacuum nodes remain satisfactory. Why is this
assumption satisfactory in one-group when it fails in two-groups? The
main reason is that the one-group transverse leakage tends to decrease
smoothly in magnitude as one moves outward from fuel to reflector.
Thus, while the one-group transverse leakage in the reflector is still
relatively large, the assumption of, say, zero average transverse
leakage in vacuum nodes is sufficient to insure that the transverse leakage
in adjacent fuel nodes will have the proper shape when represented by a
quadratic fit to the average transverse leakages of a vacuum node and its
two adjacent fuel nodes. With two-groups, on the other hand, the fast
and thermal transverse leakages do not smoothly decrease in magnitude
as one moves outward from fuel to reflector. The thermal transverse
leakage abruptly increases in the reflector while the fast transverse
leakage abruptly decreases in the reflector. Although the transverse
leakage assumptions for vacuum nodes should be capable of reproducing
the proper fast transverse leakage shapes, these assumptions will not be
capable of reproducing the proper thermal transverse leakage shapes.

In Tables 3-8 through 3-15, approximate two-group average trans-
verse leakages and approximate one-group average transverse leakages
are compared with exact averagé transverse leakages for each unique set
of three nodes composed of a vacuum node and two adjacent fuel nodes. |
As expected, two-groups do not accurately reproduce average transverse
leakages, With one-group, average transverse leakages are reproduced
for all but two sets of three adjacent nodes: Set {(2,9), (2,8), (2,7)} and
set {(4,8), (4,7), (4,6)}. For these two sets, the one-group transverse
leakages cannot be accurately reproduced since the actual one-group

transverse leakages increase as one moves ocutward from fuel to
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reflector. From Fig. 3-5, it is apparent that this behavior is due to
CISE's geometry and fuel loading pattern.

An accurate two-group solution to CISE can be obtained by
replacing the albedo boundary conditions along the fuel-reflector inter-
face with the actual'physical reflector and the appropriate albedo
boundary conditions for the outer face of the reflector. Since vacuum
nodes are now adjacent to water, the magnitude of the transverse
leakage in these vacuum nodes will be relatively small. Hence, either
assumption for the average transverse leakage in vacuum nodes will
yield satisfactory results. While the increased size of the two-group
problem is inconsequential in two dimensions, it will be an important
consideration in three dimensions, giving the one-group approach an
additional advantage over the two-group approach in terms of computer
running times and required memory capacity. Table 3-16 lists the
errors in the reactor eigenvalue, relative nodal power fractions and net
leakage rates for the approximate two-group solution obtained with the
reflector explicitly represented.

C.omparing Tables 3-7 and 3-16 shows that the one-group solution
gives a better estimate of the reactor eigenvalue while the two-group
solution gives slightly better estimates of relative nodal power densities
in the reactor interior. For both the one-group solution and the two-
group solution, net leakages are not predicted with much accuracy;
maximum errors are in the neighborhood of 18%. Evidently, the
presence of control rods renders the zero current assumption used for
assembly calculations inaccurate, regardless of whether one or two
groups is involved. A better estimate of net leakages could be obtained

if color sets or extended assembly calculations were used to treat
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Table 3-16

Power Fractions and Net Leakage Rates for CISE (Solutions

Obtained With Reflector Explicitly Represented)

6P

+0.60 +0.78 -0.33

-2.5 -2.4 -4.86

+0., 97 +0, 64 +0.19 +0.08 -0.69

-1.7 -1.8 -2.3 -3.3 -4,8

+0,72 +0. 35 +0. 27 +0.71 +0,19 -1.8
-1.6 -2.3 -2.2 -1.5 -2.5 +6.6
-2.4 +0. 74 +0, 86 -2.4 +0.12

+7.8 -1,7 -1.7 +0,06 -17

-1.3 +1.2 +0. 65 -3.3

-4.1 -1.5 -1.6 +12

+1.2 -2.2 -2.4

-1.4 -1.8 +1.2

+1.1 '1.9 erff =
-1.4 -1.3

-1.7

-1.3

-0.05%

(%)

5 (fx + TJy) (%)
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rodded assemblies. However, since the objective of this thesis is to
develop a procedure that yields one-group results comparable to two-
group results, and since we have successfully realized this objective,
neither color sets nor extended assembly calculations were applied to

CISE.

3.4 Summarx

In this chapter, two-dimensional reactors which would normally
be analyzed with two-groups were analyzed using only one-group. To
determine one-group equivalent diffusion theory parameters and discon-
tinuity factors in the reactor interiors, zero current assembly calcula-
tions were performed. For fuel assemblies on the reactor periphery,
exact albedo boundary conditions were used.

Two different reactors were analyzed in this chapter: EPRI-9,
which models a simplified PWR core, and CISE, which models a
simplified BWR core. Bbth of these reactor types were successfully
analyzed using only one-group. For EPRI-9, the reactor eigenvalue
was predicted to within 0, 03%, the maximum error in node averaged
reaction rates was 0. 99% and the maximum error in net leakage rates
was 5.8%. For CISE, the reactor eigenvalue was predicted to within
0.02%, the maximum error in relative nodal power fractions was 2. 8%,
and the maximum error in net leakage rates was 18%.

Surprisingly, one-group solutions for both EPRI-9 and CISE were
found to be more accurate than two-group solutions obtained using the
identical approximations. For EPRI-9, the difference between the one-
group solution and the two-group solution was slight. But for CISE,
the one-group solution was much more accurate than the two-group

solution, This dramatic difference between the one and two group
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solutions was attributed to the fact that CISE does not have a core baffle.
Without a core baffle, the two-group transverse leakages in the
reflector cannot be adequately represented by the vacuum node trans-
verse leakage approximations used in QUANDRY., The vacuum node
transverse leakage approximations are still adequate in one-group due
to the smooth decrease of the one~group transverse leakage as one
moves outward from fuel to water.

An adequate two-group solution to CISE was obtained by explicitly
representing the reflector. Even so, the one-group solution was still
somewhat more accurate. While the increased size oflthe two-group
problem is inconsequential in two dimensions, it may be an important
considera’cibn in three dimensions, giving the one-group approach an
additional advantage over the two-group approach.

Finally, we found that both one-group solutions and two;group
solutions did not accurately estimate net 1eakag‘e rates, particularly in
the case of CISE. This failure can be attributed to the inability of the
zero current approximation to determine accurate equivalent diffusion
’theory parameters and discontinuity factors in the vicinity of control

rods or near a reactor corner.
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CHAPTER 4

SUMMARY AND CONCLUSION

4.1 Overview of the Investijation

The objective of this thesis was to develop a viable group collaps-
ing procedure for use with the analytic nodal code QUANDRY. We were
motivated to develop such a procedure for two reasons. First, the
computer memory capacity required by QUANDRY to analyze large three-
dimensional problems with two energy groups is excessive. Collapsing
to one group would cut the required memory capacity in half. Second,
QUANDRY cannot be readily extended beyond two groups. Thus, a
viable group collapsing procedure would allow three or four group
problems to be collapsed to two groups and analyzed with QUANDRY.

In Chapter 2, various collapsing procedures were investigated for
one-dimensional reactors. While it is true that one-dimensional
reactors are not realistic, analyzing such simple reactors gave us the
freedom to investigate a large number of alternate collapsing procedures.
The most promising procedure in one dimension was later tested in two
dimensions. We felt that those procedures which did not give satisfactory
results in one dimension were not likely to give satisfactory results in two
dimensions.

The first collapsing procedure investigated made use of zero current
assembly calculations. We found this method to be adequate in the
reactor interior, but inadequate near the reflector where the neutron
currents are large. The zero current approximation was particularly
bad at the fuel-reflector interface.

| Another collapsing procedure investigated attempted to circumvent

the large neutron currents at the fuel-reflector interface by introducing
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color sets. The hope with color sets was that nodal boundaries would
be moved to locations where the zero current approximation would be
more accurate. However, offsetting this potential advantage was the
fact that color sets introduced an additional error through spatial
homogenization. This error was particularly large for the color set
node composed of half reflector and half fuel. Here, the presence of
two materials with such drastically different neutronic characteristics
made thé spatial homogenization procedure extremely sensitive to
errors in the zero current appro:écimﬁtion.

The next procedure tried involved iterating between assembly
calculations and the one-group global solution. Specifically, approxi-
mate one-group equivalent diffusion theory parameters and discontinuity
factors were obtained from zero current assembly calculations. The
one-group global problem was then solved with these approximate
quantities to determine approximate one-group net surface currents and
surface fluxes for each node. Next, the one-group net surface fluxes
were "'split' into two groups using an approximate fast to slow flux ratio.
The approximate fast to slow flux ratios were obtained by taking the
average of the fast to slow flux ratios on adjacent nodal surfaces. These
surface fast to slow flux ratios were obtained from the zero current
assembly calculations. Finally, with two-group surface fluxes known
for each node, improved assembly calculations were performed.

This iterative approach was applied to color set nodes as well as
assembly nodes. For assembly nodes, we obtained a satisfactory
solution after only one iteration. However, for color set nodes, one
iteration was not sufficient. The culprit behind the poor performance

of color sets was the inaccuracy of the zero current color set calculation
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for the node containing half reflector and half fuel., While a second
iteration would probably yield satisfactory results with color sets, this
fact was not confirmed; we felt that an approach which required more
than one iteration would be prohibitively cumbersome. The iterative

~ approach was abandoned because the poor performance with color sets
was indicative of the performance to be expected with two-dimensional
heterogeneous nodes.

In the final method investigated, an attempt was made to account
for the large neutron currents hear the reflector by replacing the i
reflector with albedo boundary conditions. These albedo boundary
conditions were used to calculate one-group equivalent diffusion theory
parameters and discontinuity factors for the node adjacent to the
reflector. For assembly nodes, results were excellent. For color set
nodes, results were poor. Again, the culprit behind the poor perform-
ance of color sets was the sensitivity of the node with half reflector and
half fuel to errors in the zero current boundary conditions.

Of all the methods investigated, we found the use of albedo
boundary conditions with assembly nodes to be the most promising.
Hence, albedo boundary conditions were used to analyze two-dimensional
reactors with heterogeneous assemblies.

In Chapter 3, albedo boundary conditions were used to analyze two
different reactors: EPRI-9, which models a simplified PWR core, and
CISE, which models a simplified BWR core. Both of these reactors
were analyzed successfully using only one group. For EPRI-9, the
reactor eigenvalue was predicted to within 0.03%, the maximum error in
node averaged reaction rates was 0.99%, and the maximum error in net

leakage rates was 5.8%. For CISE, the reactor eigenvalue was
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predicted to within 0. 02%, the maximum error in relative nodel power
fractions was 2. 8%, and the maximum error in net leakage rates was

18%.

4.2 Recommendations for Future Research

One of the motivating factors for this thesis was the premise that
a viable collapsing procedure would allow a three or four group problem
to be analyzed using two groups. However, in this thesis we have only
investigated the accuracy of collapsing a two-group problem to one
group. While collapsing the fast and thermal groups is probably a much
more severe test than collapsing, say, a fast and epithermal group, the
magnitude of error associated with collapsing three or four groups
should nevertheless be determined.

Further investigation is 3156 required to determine the sensitivity
of the albedo collapsing procedure to errors in the albedo boundary
conditions, In this thesis, the impact of using approximate albedo
boundary conditions was assessed only for the EPRI-9 problem. While
the EPRI-9 problem was found to be relatively insensitive, this may not
be the case with reactors of a more heterogeneous nature, Moreover,
the magnitude of error in the approximate albedo boundary conditions
might be much greater for reactors with a high degree of heterogeneity.
For example, errors may be very large for BWR-type fuel assemblies
with water channels about their periphery.

Another area needing additional investigation involves the average
transverse leakage assumption for vacuum nodes. We found that for
problems having significant transverse leakage near the reactor periphery,
the one-group solution has a definite advantage over the two-group

solution when albedo boundary conditions are used to replace the reactor
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reflector. In part, this advantage is due to the relatively smooth
nature of the one-group transvérse leakage. However, this advantage
is also due to a poor assumption for the two-group transverse leakage.
To make a fair comparison, some effort should be spent to improve the
transverse leakage approximation in two‘ groups. Specifically,
separate assumptions should be made for the fast and thermal transverse
leakage to allow for the fact that the thermal transverse leakage is
usually increasing in the reflector and the fast transverse leakage is
usually decreasing in the reflector as one moves outward from fuel to
reflector.

Finally, the use of albedo boundary conditions should be applied to
a three-dimensional problem. A comparison of the accuracy and
computational efficiency of a one-group solution with a two-group
solution would be most interesting. From the evidence of this thesis,

we expect the one-group solution would compare quite favorably.
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APPENDIX A

ONE-DIMENSIONAL REACTOR WITH ZERO

CURRENT ASSUMPTIONS

A.1 Assembly Nodes

A.2 Color Set Nodes
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Assembly Nodes

Two-Group Reference Cross Sections:

D z VI, z
Composition Group, g g ag g8
(cm) (em™D) [{em™D) | (cm~D)
Fuell 1 1.5 0.013 0,00865 0,02
2 0. 4 0.18 0.24 0.0
Fuel 2 1 1.5 0.01 0.005 0.02
2 0.4 0,15 0.18 0.0
Reflector 1 1.7 0.001 g.0 0. 035
2 0. 35 0.05 0.0 0.0
Xl = 1.0
X9 = 0.0
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Exact One-Group QUANDRY ConstantS:

Node £ =1 2=2 L =3
X -1
Z:a (cm ) 0.02981 0.02685 0.01920
[ -1
vZJf (cm 7) 0.03001 0. 02606 0.0
x
D (ecm) 1. 389 1. 368 1.198
f&z)(uz) 0. 9980 0.9779 0.8953
(£} -6
fu { z+1) 1.007 1.145 3.473 x 10

“Note: Refer to Fig., 2-1,
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Approximate One-Group QUANDRY Constants:

Node £-=1 2=2 2=3
x N
Z (em™h 0.02970 0.02647 0.02118
X -1
vE, (em™h) 0.02985 0.02559 0.0
D (ecm) 1.390 1.371 1.144
£ (4 1.000 1.000 1,000
u £
£y 1.000 1.000 1.000
u 2+1 ) ) -

“Note: Refer to Fig, 2-1.
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A,2 Color Set Nodes

Two-Group Reference Cross Sections:

The two-group reference quantities are unchanged

from the values listed in Section A. 1.
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Exact One-Group QUANDRY Constants:

*

Node L=1 L =2 £ =3
3 -1
Za {ecm™ ™) 0.02820 0.02516 0.02281
X -1
yzf (em 7) 0.02788 0.01934 0.0
r.y
D (cm) 1.382 1.317 1.105
(2) ,‘
fu (uz) 1.016 1.105 0.9923
(2) ' -4
fu (uz+1) 0. 9681 0.5967 1.053 x 10

“Note: Refer to Fig. 2-3.
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Approximate One-Group QUANDRY Constants:

Node =1 L=2 2=3
E -1
T (em™h | 0.02810 0. 02479 0. 02260
A -1
vZ, (em™h) 0.02775 0.01727 0.0
x
D (cm) 1.380 1.297 1.104
£ () 1.013 1. 405 1.833
u L
£ () 0. 9868 0.5972 1.000
u | 4+1 ' * ’

*Note: Refer to Fig., 2-3.
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APPENDIX B

ONE -DIMENSIONAIL, REACTOR WITH

ITERATIVE APPROACH

B.1 Updated Assembly Nodes

B.2 TUpdated Color Set Nodes
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B.1 Updated Assembly Nodes

Updated One-Group QUANDRY Constants:

Node 4 =1 £ =2 4 =3
Ly -1
Ea (em 7) 0.02980 0.02660 0.01880
£ -1
vZ (em™ ") 0, 03000 0.02580 0.0
X
D {cm) 1.390 1.371 1.211
(2)
fLl (uz) 1.000 0.9812 0.8702
£ ) 1.005 1.073 1.000
. 11 . . .

“Note: Refer to Fig. 2-1.
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B.2 Updated Color Set Nodes

Updated One-Group QUANDRY Constants:

Node L= 1 4 =2 £=3
T (em 1) 0.02810 0.02520 0.02260
X -1
vZ, (em™h) 0. 02780 0.01950 0.0
X
D (cm) 1.380 1.320 1.105
f9 1. 009 1.401 1.797
u L L] . [
£ (w1 0. 9941 0.7468 1.000
u L4+1 * ‘ -

"Note: Refer to Fig. 2-3.
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APPENDIX C

ONE -DIMENSIONAL REACTOR WITH ALBEDO

BOUNDARY CONDITIONS

C.1 Assembly Nodes, Homogeneous Assemblies
C.2 Color Set Nodes, Homogeneous Assemblies

C.3 Assembly Nodes, Heterogeneous Assemblies
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C.1 Assembly Nodes, Homogeneous Assemblies

Approximate One-Group QUANDRY Constants:

Node 4=1 4 =2 Z=3
5 -1
Ea (cm ) 0, 02970 0.02698 -
L) -1
vZ)f (em 7) 0.02985 0.02622 -
D (cm) 1.390 1.367 -
fu') (u,) 1' 000 0.,9775 -
u 2 * ’
(2)
fu (qu) 1.000 1.157

“Note: Refer to Fig, 2-1.
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C.2 Color Set Nodes, Homogeneous Assemblies

Approximate One-Group QUANDRY Constants:

Node =1 L=2
ga(cnl-H 0.02810 0.02503
Ly -1
vZe (em™h) 0.02775 0.01845
x
D (cm) 1.380 1.308

1.013 1.359

0.9868 0.4838

“Note: Refer to Fig. 2-3.
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C.3 Assembly Nodes, Heterogeneous Assemblies

Two-Group Reference Cross Sections

D Z, vEf .
Composition Group, g g _ g g 88

(cm) |(cm™) fem™) |{em™1)

Fuel 1 1 1.5 0.013 0.0065; 0.02
2 0.4 0.18 0.24 0.0

Fuel 2 1 1.5 0.01 0.005 0.02
2 0.4 0,15 0.18 0,0

Water 1 1.7 0.001 0.0 0.035
2 0.35 0.05 0.0 0.0
Baffle 1 1.02 0.00322( 0.0 0.0
2 0. 335 0,146 0.0 0.0

v = 2.5
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Exact One-Group QUANDRY Constants:

S ' .

Node L =1 1 =2
f:a (em™ 1) 0.02748 0. 02519
LY -1
vZ, (em™) 0.02427 0.01990
x
D (cm) 1. 345 1.327
(2)
fu (uz) 1.019 1.004
(L)
fo (u,) 1,030 0.9428

“Note: Refer to Fig, 2-4.
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Node L =1 L =2
X -1
Ea (cm ™) 0.02750 0.02512
A -1
uz:f (em ) 0.02428 0.01984
x
D (em) 1. 345 1.328
(2) '
fLl (uz) 1.020 1.018
(2)
£ (uz.,_l) 1.019 0. 9408

“Note: Refer to Fig. 2;4.
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APPENDIX D

EPRI-9 BENCHMARK PROBLEM




-128-

¢'g = A
00 = 8X
o' = X
0°0 0°0 09%1°0 GEE "0 4
0°0 0°0}0g2c00°0 g0t 1 9l1ed
0°0 0°0| 000S0°0 00GE ‘0 (4
00S€0°0 0°0]000T00°0 00L"T 1 JI218 M\
0°0 00870 00ST "0 000% °0 4
000%0°0 000G00°0)] 000T0°0 00c 1 1 d ey
0°0 oo¥2g "o 0087170 000% "0 4
00020 ‘0 006900 °0] 00£T107°0 0051 T v 1eh g
({_W9) (7-wo) (1-wd) (w9)
a5 g 5 3 ‘dnoan uonisoduwion
B
ISUOI}D8G SSO0I[) 2OUIJIAJY dNOAN-0M J,
€ € £ ¢ € (




*g-¢ pue T-g 'S814 O} 4959y 90N

-129-

0566 0 G166 0 98860 . 0996 °0 L2860 2:& A.?mm
0666 ‘0 700 °1 1¥66 0 L00 "1 1866 "0 A_”b A.T%
1666 "0 G166 "0 L8L6°0 GZ66 "0 £G86 "0 (i AT%
0566 0 ¥00°T 8%¥66 "0 | 9966 0 1466 °0 (‘x) :w.mw
89¢°1 88¢e°1 I6€ "1 68€°T 0LE "1 (wo) m
LESZ0 "0 £6620°0 82620 "0 L9620 "0 916200 (;-549) .M:
mgmo.o L9620°0 12620 "0 6¥630°0 62920 "0 (;.19) mm
(r°n (2°2) (€2) (e°1) (2°1) LD °poN

(SJUBISUOY AMANVN® dnoan-suQ 10exy




-,

-130-

Exact One-Group QUANDRY Solution:

k - 0. 9275
effExact
5.907 x 10°° 4.259 x 10°°
5.943 x 1010 4.269 x 1010
1.051 x 104! 7.232 x 1019
8.907 x 10%° 8.373 x 1010
8.524 x 1010 8. 446 x 1010
5,946 x 1010 1.537 x 1011
11 A 3
1.054 x 10 Ea (pExact(n/cm -sec)
11
1.011 x 10 A 3
L vEfquxact (n/fcm”-sec)
7.457 x 10

(T +T)

x y Exact (n/cmz-

sec)
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Approximate One-Group QUANDRY Solution:

- - 0, 9278
approx
5.942 x 1010 4.278 x 1010
5.962 x 1010 4,284 x 1010
1,017 x 1011 7.120 x 1010
8.898 x 1010 8.391 x 1010
8.534 x 1010 8,446 x 101°
6.290 x 1010 1.495 x 1011
11 N 3
1.044 x 10 Z}acpApprox(n/cm -sec)
11
1.001 x 10 A 3
L0 i vZ}fcpA_pprox(n/cm -sec)
7.382 x 10 ,
(tx+ty)Approx (n/ et
-sec)
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Approximate Two-Group QUANDRY Solution:

ke - 0.9286
approx
5.975 x 101" 4.294 x 1019
6.013 x 101° 4.308 x 1019
1.051 x 1011 7.252 x 1010
8.849 x 1010 8.382 x 1010
8.470 x 1010 8. 454 x 1010
5.729 x 101° 1.516 x 101!
L 042 % 1oLl T, 6 +% 52)(n/cm3-
: X 1 b B9 - sec)
10 = -
9. 989 x 10 (VEf (pl_l_vz:f @2) "
10 o 2
7.139 x 10
(T +T +L +T )
2y %9 Yy Y9
(n/cmz—sec)
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APPENDIX E

CISE BENCHMARK PROBLEM
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Fuel Assembly Description by Zone:

Composition to Zone Assignments by Assembly Type:

Assembly Type

“one A" B B"
I 3 4 4
i 1 2 1
11 2 2 2
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Exact Two-Group QUANDRY Solution:

(k_ o0

eff

exact

= 0.9525

P = Mean Power Density

2,165E8 [1.948E8 | 1.511E8
7.870E7 [6.907E7 | 6.118E7
0.9715 |0.8747 |o0.7510
3.287E8 {3.001E8 [2.592E8{1.913E8 |1.256E38
1.016E8 9. 381E7 | 8.132E7(6.838E7 5. 111E7
1.335 © [1.100 1.064 |0.8649 |o0.6285
3.441E8 |3, 484E8 | 3.052E8 2. 416E8 | 1. 920E8 | 1. 310E8
1.071E8 |1.078E8 {9.545E7 | 7.528E7 | 5. 984E7 | 5. 275E 7
1.258  |1.416 1.119 |0.8837 [0.7845 |0.6488
2. 964E8 [3.3388E8( 3. 162E8 | 2. 339E8 | 2. 010E8
7.260E7 |1.038E8 |1.741E8|5.863E7 |4, 844E7
1.030 |1.220 1.282  |0.7302 |o0.6843
2.714E8 [3. 114E8 |2, 984E8 |2, 532E8
6.727E7 |9. 539E7 |9.204E7 |6. 317E7
0.8408 |1.257 1,083 |o0.8822
3.000E8 R.606E8 |2.633E8
9, 182E7 |6. 498E7 |6.505E7
1.211  [0.8108 l0.9114
2. 849E8 P.575E8
8.818E7 [6. 344E7
1.037 0. 8898
2

2.556E8 {o,) {n/cm” -sec)
6.288E7 1"Exact

©.) (n/crm -sec)
0. 8820 P9’ Exact ‘M Cm -sec

(P)Exact
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Errors in Approximate One-Group Solution:

(k.0 = 0,9523
eff approx
erff = -0,02%

0.9715 0.8747 0.7510

0.9730 0. 8750 0.7554

+0. 15 0.03 0.59

1.335 1.100 1.064 0.8649( 0.6265

1.345 1.104 1.071 0.8589| 0,6232

0.75 0.36 0.68 -0. 69 -0.53

1.258 1.416 1.119 0.8837 0,7845 0.6488
1.265 1.427 1.124 0.8873] 0.7875| 0.6435
0.56 0.78 0. 45 0.41 0.38 -0,82
1.030 1.220 1.282 0.7302| 0.6843

1.001 1.230 1.300 0.7084 0.6860

-2.8 0.82 1.4 -3.0 0.25

0.8408 1,257 1,083 0.8822

0.8248 1.280 1.092 0. 8496

-1.9 1.8 0.83 -3.7

1.211 0.8108 0.9114

1.234 0.7878 0.8861

1.9 -2.8 -2.8

1.037 0.8896

1.047 0. 8685

0.96 -2.4

0.8820

0.8619 exact
9. 13 approx

5P (%)




-141-

Errors in Approximate One-Group Solution:

T %
+y)°7

1.454+7 | 1.309+7]1.165+7
1.449+7 | 1.303+7]1.169+7
-0, 34 -0. 46 +0, 34
1.921+7 | 4,388+6[1.536+7 | 1.300+7 (9, 736+6
1.951+7 4,461+61}1.554+7 1.288+71]9.658+6
+1.6 +1.7 +1.2 -0, 92 -0, 80
4, 387+6 2.038+714. 465+8 3.509+6(1.131+7 1.007+7
5.114+8 | 2. 070+7 (|4, 543+86 3.585+6|1.142+7 1.000+7
+2.6 +1.86 +1.8 +2.,2 +0, 97 -0,70
-7.874+6{ 4.833+6}1.842+7 |-1,528+7(-7. 026+6
-8.977+6] 4.972+6]1.885+7 1-1.582+7]-6. 154+6
+14 +2.9 +2.3 +4,2 -12
-1.858+7] 1.805+71{4.,263+6 |-6,455+6
~1.853+7| 1.856+7|4.414+6 |-7.624+6
-0.27 +2.8 +3.56 +18
1.737+7 [-1.736+7]|-7.428+8
1.796+7 |-1.7689+7]|-7.950+86
+3.0 +1.9 +7.0
4,085+6 |-7.468+86
4,232+6 |-7.792+8
+3.6 +4,3
' (]':x + T )E (n/cmz-sec)
-7.442+6 ’Ey 5
-7.734+6 ('L"X + y)A (n/cm®-sec)
+3.9 5(Ex
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Errors in Approximate Two-Group Solution:

8P (%)

(keﬂgapprox 0., 95204
Skyee = -0.05 To-

0, 9715 0.8747] 0.7510

0.9773 0.8815] 0.7485

0.60 0,78 -0. 33

1.335 1.100 1,064 00,8649 0. 6265
1.348 1.107 1. 0686 0.8656 0.6222

0.97 0,64 0.19 0,08 -0.69

1,258 1,416 1,119 0.8837 0, 7845{ 0,6488
1.2867 1.421 1,122 0. 8900 0.7860] 0.6369
0.72 0. 35 0.27 0.71 0.19 -1.8
1.030 1.220 1.282 0.7302 0,6843
1.005 1.229 1.293 0.7128 0.6851
-2.4 0.74 0. 86 -2.4 0.12

0.8408 1.257 1.083 0.8822

0. 8299 1.272 1,090 0.8827
-1.3 1.2 0. 65 -3.3

1.211 0.8108 1 0.9114

1.226 0.7933 10,8898

1.2 -2.2 -2, 4

1.037 0.8896

1,048 0, 8726

1.1 -1.9

0.8820 exact

0.8671

approx
-1.7
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Errors in Approximate Two-Group Solution (continued):

1.309+7

1.165+7

1, 454+7
1.417+7[1.277+7 {1.111+7
-2.5 -2.4 -4,8
1.921+7[4,388+6 [1.536+7 |1.300+7 |9.736+§
1.888+7]4.311+6 |1.501+7 [1.257+7 |9.266+8
-1.7 -1.8 -2.3 -3.3 -4, 8
4.987+612.038+7 [4.465+6 [3.509+6 [1.131+7 | 1. 007+7
4.908+6|1.991+7 |4,368+6 |3.456+6 |1.103+7 | 9. 450+8
-1.6 -2.3 -2.2 -1.5 -2.5 +6.6
-7.874+6 14, 833+6 |1.842+7 [-1.528+7(-7. 026+85
-8.491+6 |4, 752+6 |1.811+7 [-1.529+7 k5. g24+6
+7.8 -1.7 -1.7 +0. 086 -17.
-1.858+7 [+1. 805+7|4.263+6 |-6. 453+6
-1.782+7 1.778+7(4.194+6 |-7.208+8
-4.1 -1.5 -1.6 +12
1.737+7|-1.736+7]-7. 428+8§
1.713+7|-1.704+7|-7.518+6
-1.4 -1.8 +1,2
4,085+6 |-7. 468+6
4,030+6 |-7. 374+6
-1.4 -1.3
-7.442+6 (T_Tx +_L_x +T, +T )E (n/cmz—-sec)
L7, 343+8 1 2 Y1 Y

T

+T +T
(TJX Lx L + ¥

2
), (n/em®-sec)
1 2 V1 A
§@C_+T +T. +T )
i S I £ T %



