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Abstract

Automation of the assembly process requires parts to be assembled in the pres-
ence of uncertainty. This uncertainty results from an imperfect knowledge of
the system being assembled as well as the performance limitations of the de-
vices performing the assembly.

This thesis develops models that describe the asscmbly of three dimensional
rectangular parts in the presence of friction and presents techniques for ana-
lyzing and evaluating these models. In particular, a rueans of determining the
constraints on the applied forces and moients that may act on an assembly dur-
ing compliant motion is presented. In addition, a means of visually representing
these constraints is provided.

A serics of reliable initial conditions are examined and a set of heuristics
developed to aid in the development and evaluation of robust assembly strate-
gies. Finally, compliant assembly strategies are developed and implemented that
succeed in inserting a rectangular peg into a rectangular hole, in both two and
three dimensions, in the presence of significant positional uncertainty.
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Chapter 1

Introduction

1.1 Problem Statement

Many of today’s industrial and consumer products consist of a large number of
separate parts that must be assembled as inexpensively as possible. Recently
the field of robotics has attracted much attention in the effort to automate the
assembly process. In order to successfully perform assembly operations, robots,
as well as other assembly machines, must be able to work in the presence of
uncertainty. This uncertainty arises from the performance limitations of the
robot, it’s sensors, the parts being assembled, the wear of jigs and fixtures, and
the mathematical models of the parts used to gencrate the assembly strategies.

Developing strategies that guarantee successful assembly in the presence of
uncertainty is an important problem in automated assembly. In order to gener-
ate these strategies it is necessary to understand and model those factors that
significantly affect parts during assembly. This thesis will develop models for
use in planning assembly and techniques to use these models to develop reliable

assembly strategies in three dimensions.
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Figure 1.1: Peg and Hole

1.2 Brief OQutline

Often robots arc called upon to perform assembly in circumstances where their
positional uncertainty is greater than the dimensional tolerances of the parts to
be assembled. This means that a robot operating under position control alone
would be unreliable. By controlling the forces applied to parts during asseinbly
and allowing their positions to be determined by the geometric constraints, it is
possible to reduce the overall positional precision required.

The basic approach of this thesis is to model the reactions between parts
in contact. By determining those reactions that will cause an assembly to pre-
maturely terminate or otherwise fail, the constraints on the applied forces and
moments that these rcactions represent may be determined. One possible as-
sembly strategy, then, would be to exert a set of forces and moments that satisfy
all of these constraints.

Figure 1.1 shows a classic example used when discussing assembly planning,
the planar peg and hole. If we apply a force and a momeut to the peg while it
is in contact with the hole theu the peg will cither stick in its initial position

or move. If the peg is stuck then the hole is exerting a force and moment on
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the peg equal and opposite to those being applied. If the peg moves, on the
other hand, the applied force and moment are exceeding the ability of the hole
to oppose them, resulting in a net force and moment acting on the peg. The
determination of what forces and moments will cause sticking or motion, and
what the resaulting motion would be, will be dealt with in the following chapters.

In order to determine the precise nature and location of the reaction forces,
geotetric models of the parts will be developed. Since actual assemblics consist
of parts that are three-dimensional, the models developed must also be three-
dimensional. Often, the geometry of actual parts can be quite complex. In
addition, the modeling and analysis of these parts in three dimensions will re-
quire a significant amount of computation. In order to make the problem more
tractable, we will limit the geometries considered to rectangular parts. We shall
see later that many geometrically complex parts may be represented as collec-
tions of simple rectangles.

From the geometric models, we shall derive equations that describe the con-
straints on the applied forces and moments. In order to visualize and better
understand these constraints, we shall represent them graphically in a space
whosc dimensions are the components of the applied force and moment. This
force-moment space will serve as a convenient domain in which to develop our
strategies.

To develop our strategies, we shall adopt a design approach to assembly plan-
ning. Namely, the models and equations used to describe the assembly process
will not in themselves be sufficient to develop a strategy. In addition, a number
of assuinptions and decisions will have to be made at various stages throughout
the development process. Often, as more information becomes available, some
of the carlier assumptions will have to be revised. In order to aid the designer in
making these decisions, the means to evaluate and compare intermediate results
will also be developed. A fnal asseinbly strategy, then, will often be the result
of a number of iterations.

Finally, the means of implementing some of the resulting strategies will be
examined., Two examples of implementation, one passive, the other using a

robot, will be presented and their performance compared.
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Figure 1.2: A Geometric Representation of Positional Uncertainty

1.3 Background

1.3.1 Uncertainty

Figure 1.2 illustrates the clfect that positional uncertainty can have on perform-
ing an asscinbly. Here a peg has been positioned over a hole which is larger thar
the peg by the clearance 2c. We will assume that the peg is perfectly vertical
and has been centered with the hole to within some uncertainty 2e. If we repre-
sent this uncertainty by increasing the size of the peg 2¢, as shown, we can see
that it will be impossible to guarantee the peg will enter the hole under position
control unless the uncertainty ¢ is less than the clearance c.

Uncertainty enters into other aspects of assembly planning as well. Aside
from the uncertainty associated with specifying the position of a part, there is
also uncertainty associated with tlie positions of other parts in the assembly.
Specifically, as parts are placed in an assembly, they become part of that as-
sembly. Other pacts, in later assembly operations, may be required to interact
with these previous parts. Since each of these parts has associated with it some

uncertainty, the overall uncertainty of the system will tend to increase with each



CUAPTER 1. INTRODUCTION 12

— — — —

| |
: f o
- /;
I a

Figure 1.3: Compounded Uncertainty

\\\\\\§

assembly operation performed. This increase in uncertainty is illustrated in Fig-
ure 1.3. Often, for functional reasons, the number of parts that may be ‘stacked’
in this way will be Jimited in the design of the assembly.!

In addition to position, other sensed values such as force are also subject to
uncertainty. However, although adding force information introduces additional
uncertainty, a strategy that uses one source of information to augment another
will in general more reliable [Simunovic 79].

Finally, the parts being assembled will themselves have some uncertainty
associated with their dimensions. While all parts have tolerances specified when
they are manufactured, occasional variations in those tolerances will affect the
reliability of the strategies used to assemble them. For example, no assembly
strategy, no matter how reliable, will succeed in assembling parts which do not
fit together because of incompatible tolerances.

Because uncertainty invariably arises in every aspect of assembly, strategies
must be developed to be as inseansitive to it as possible. This requires that

uncertainty be considercd in every phase of the assembly planning process [Erd-

{See [Brooks 82).
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mann 84]. Often the models used to develop these strategies will introduce
uncertainties arising from the assumptions and simplifications made in their
development. These model based uncertainties differ from the system based
uncertainties in that they are not inherent to the system being studied, giving
us some control over their magnitude. We may therefore reduce the elfects of
model based uncertainty by carefully choosing our models and making fewer

simplifying assumptions.

1.3.2 Modes of Failure During Assembly

To say that an assembly has been successfully completed indicates that it has
reached some desired end state within prescribed tolerances. Often, the uncer-
tainty that makes position control strategies unreliable also makes the deter-
mination of successful vs unsuccessful motion termination by means of position
sensing equally unreliable [Erdmann 84]. For a strategy to gnarantee successful
completion, then, the various conditions that would prematurely terminate the
assembly process must be identified and avoided. The task of the designer of an
assembly strategy, themn, is to model every type of failure an assembly is likely
to encounter.

One mode of failure has already been illustrated in Figure 1.2. If the bottom
of the peg contacts one of the top cdges of the hole the assembly motion will
be terminated. Similarly, if we apply a force and moment to the peg such that
the reaction forces imposed by the hole negate them, then motion will also be
terminated. This form of motion termination is known as jamming and will be
treated in detail in the next chapter [Simunovic 79, Whitney 82].

Another form of failure during assembly involves changing or damaging the
parts being assembled in such a way that they will no longer meet the functional
or cosmetic specifications set for themn. This type of failure could result from ap-
plied [orces exceeding the ability of the parts to withstand them. In addition, the
deformation of parts during assembly can lead to a cendition known as wedging
which we will also examine in the next chapter [Simunovic 79, Whitney 82].

Let us again imnagine the task of inserting a peg in a hole, this time starting
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Figure 1.4: Peg Overshoating the Hole

cut with the peg to one side of the hole as shown in Figure 1.4. If we apply a
force to the peg pointing towards the left such that the peg will not jam, the
peg will slide towards the hole (assuming no rotation). When the bottom of the
peg crosses the edge of the hole, it may be possible for the peg to continue to
slide through two point contact and out across the other side of the hole. In
this case the failure results not from the termination of motien, but rather from
the improper transition of motion from the outside of the hole to the inside.
This type of failure may also result from points of contact being broken during

assembly or forces and moments being applied that cause motion to occur in

the wrong direction.

1.3.3 Using Compliance to Aid Assembly

In Figure 1.2 we saw how uncertainty could prevent an assembly strategy using
only position control from working. The edges of the hole were taken to be
obstacles which had to be overcome for assembly to take place. By controlling
the forces and moments applicd to the peg, however, the edges of the hole become

geometric guides on which the peg may slide towards nsertion [Mason 83
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Under force control the positional uncertainty of the system, while still present,
does not prevent the peg from entering the hole. The precise location of the
surfaces In contact, then, need not be known for a force control strategy to
succeed.

Force control is one form of general motion control known as compliance.
The basic principle of compliance is to allow the position of a syste:ﬁ being
assembled to be controlled by the geometric constraints inherent in that system.
Various implementations of compliance relate the parameters determining the
state of an assembly to the applied forces and moments by means of different

control laws. In the case of force control, the control law is simply

=

F, commanded F exerted =0

—

M, commuanded ™ M, exerted =0

where force and moment sensors could be used the case of feedback force control,
or the forces could be commanded open loop by means of motor currents.
Another form of compliance implementation is known as stiffness control.

Here the governing control law takes the form of a generalized spring
F= [K] (Xcommandcd - Xactual)

where F is a vector of force and moment components, [K| is a generalized
stiffness matrix, and X are position vectors consisting of linear and rotational
components. In order to specily a set of forces and moments given the stiffness
matrix, a commanded position offset is issued. The differences between these
commanded positions and the actual positions constrained by the environment
determine the resulting force and moment. It is also possible to make the ele-
1 nts of the matrix [K] the command variables. Thus, by changing the stiffness
of the assembly system as desired, contact forces may be arbitrarily specified
[Salisbury 80].

In addition to generalized stillness, another form of compliance implementa-
tion is known as the generalized damper [Whitney 77]. Here, the commanded

state variables are velocities. The control law here is of the form

ﬁ = [B J (ﬁct17rlfnnn«ied - ‘Zu:tuul )
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where [B] is a generalized damping matrix, and V are velocity vectors consisting
of linear and rotational components. The differences between the commanded
velocities and the resulting velocities tangent to the surfaces of the parts in
contact determine the resulting force and moment.

Both generalized stiffness and generalized damping control can be further
generalized as examples of impedance control [Whitney 85|. In both cases, the
input is related to force indirectly by means of impedance terms. In some cases,
such as following an uneven surface, it may be desirable to control forces in some
dircctions while independently controlling position or velocity in others. In this
case a technique known as hybrid control may be used [Raibert and Craig 81].
For a historical background and sammary of compliance and its various forms
of implementation see [Mason 81] and {Whitney 85].

Whatever its implementation, by introducing force information into the as-
sembly process in addition to position, compliance augments the capabilities of
assembly systems in the presence of uncertainty [Simunovic 79]. This inferma-
tion need not Le incorporated solely into an active control strategy. In fact,
many of the control laws may be implemented using entirely passive devices

constructed with physical springs and dampers [Whitney 82].

1.3.4 Motion Planning

Many automatic assembly operations performed today have been carefully plan-
ned and implemented for one specific set of parts. Often, when a new set of
parts arz to be assembled, an entircly new assembly strategy must be developed
and implemented. The protess of developing these strategies often involves the
specification of tasks at a very low level, such as moving to a pallet of parts,
opening a gripper, moving down over the first part, closing a gripper, lifting the
part out of the paliet, etc.. The goal of motion planning is to provide a series
of higher level task spcci[icatiéns and have the lower level tasks be specified
automatically.

The tasks that must be specified in motic1 planning may be broken down

into two broad categories. The first, involving the specification of collision free
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motions between obstacles in a workspace is known as gross motion planning
[Lozano-Pérez 76, Donald 84]. For example, the task of moving a manipulator
from a fixture to a pallet of parts and back to the fixture while avoiding collisions
would be an example of planning gross motion trajectorieé. The sccond task
involves planning motions that are constrained by contact with the environment,
such as parts being assembled, and is known as fine motion planning [L.ozano-
Pérez, Mason, and Taylor 83|. Compliance, then, is used in developing the
assembly strategies for fine motion tasks.

It has been shown that small variations in the geometry of parts can signif-
icantly affect the strategies used to assemble them [Lozano-Péres, Mason, and
Taylor 83]. Therefore, in order to perform fine motion planning, models of the
parts to be assembled must be developed and used to represent the geometric
constraints on the task. In addition, other factors besides geometry that are
significant in the assembly process must be identified and modeled. A number
of models have been developed to describe the assembly of parts in the presence
of friction. Planar models of two-dimensional pegs and holes with chamfers,
as well as multiple pegs and multiple holes, have been developed and used to
determine the conditions under which these assemblies could fail [Simuanovic 79,
Whitney 82, Ohwovoriole, Hill, and Roth 80]. Ir addition, Ohwovoriole and
Roth [81] have developed models that describe general three-dimmensional parts
in contact. In order to make the resulting equations manageable, however, a
cylindrical peg and hole was used as the primary example, which eventunally re-
duces to a planar problem. For more complicated parts where planar solutions
are not possible, the models available at present tend to be rather unwieldy for
use in strategy analysis.

One useful technique for representing the geometric constraints imposed on
parts in contact is the configuration space [Lozano-Pérez 81]. The configuration
space of a part in contact with an assembly contains surfaces which represent
the constraints imposed on the degrees of freedom of the part by the assembly.
These surfaces represent a convenient and general way to describe the way in
which the geometry of an assembly affects the resulting motion, both in terms of

the translation and rotation, of rigid parts. In addition, the constraint surfaces
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in configuration space exhibit the same properties as the corresponding real
space surfaces. Therefore, factors such as [riction may be represented in the
configuration space domain for use in assembly planning [Erdmann 84].
Lozano-Pérez, Mason, and Taylor [83] proposed a formal approach for the
automatic synthesis of fine motion strategies from high level task specifications.
Specifically, goal states of an assembly are identified from which pre-goal re-
gions are constructed. These pre-goal regions, known as pre-images, represent
these regions from which the desired goal can be reached by a single commanded
motion in the presence of uncertainty. These pre-goal regions can then be re-
cursively backchained until the initial state is included in the set. A strategy
then results whereby a series of cor»manded motions from the initial state to
the desired goal state are made that are guaranteed to succeed in the pres-
ence of uncertainty. In his masters thesis, Erdmann [84] developed means of
explicitly constructing these pre-images (under certain assumptions) known as
backprojecting. By modeling friction in configuration space and representing the
commanded motions in terms of velocities acting under damper dynamics, he
succeeded in automatically constructing strategies that simulated the insertion

of a two dimensional chainferless peg into a hole in the presence of significant

uncertainty.

1.4 Rectangular Parts

Figure 1.5 shows a pair of relatively simple parts that arc typical of many of the
parts assembled into products today. It is not difficult to imagine that the models
necessary to completely and faithfully represent each detail of such parts could
be rather complicated. Many of these details, however, have mere to do with the
function of the parts (be it mechanical or cosmetic) rather than their assembly.
Often in assembly, we are concerned only with achieving a certain state of one
part relative to one or more other parts. This state will involve the interaction
between certain surface features of these parts. A model that describes only
these features, as well as those that interact during the assembly of the parts,

will be sufliciently complete for the purposes of planning assembly.
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F ig‘ure 1.5: A Typical Assembly

In considering only the assembly of parts when modeling them, we can con-
sider an alternative model shown in Figure 1.6. Here the edges and surfaces
that do not interact during assembly have been eliminated. Only those geo-
metric features of the parts that are likely to interact with each other (shown
as darker lines) remain. We see that for these particular parts, the interact-
ing edges and surfaces can be easily represented as rectangular solids. In fact,
many parts may be similarly modeled using collections of rectangles as well as
other simple geometric shapes. Figure 1.7 shows a collection of parts taken from
some common assemblies. It is easy to see how these parts could be represented
by combining a number of simplé geometric shapes. For this reason, we shall
be considering simple rectangular parts in this thesis when developing models
for use in assembly strategy development. Our assumption will be that a large
number of parts may be represented by these models using an approach similar
to that used for the part of Figure 1.5.2

As the standard example of a generic rectangular part, we shall model and

*We make no assumption here of how parts are to be grasped or fixtured. The only features
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Figure 1.6: A Model for Use in Assembly Planning

20
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Figure 1.7: Some Common Parts

develop compliant assembly strategies to insert a rectangular peg into a rect-
angular hole. Since our aim will be to develop reliable strategies that do not
require physical modifications of the parts to be assembled, we shall plan the

insertion without the aid of chamfers.

1.5 Qutline of The Thesis

In Chapter 2 we examine the planar insertion of a chamferless peg into a cham-
ferless hole. We begin the process of modeling assembly in the simplificd planar
domain and develop techniques to represeat constraints on the applied forces
and moments that govern the assembly. In particular, the values gf these forces
and moments that will cause jamming and breaking of contact are determined,

and the effects that varying parameters have on the resulting assembly strategies

is examined.

concerning us are those that affect the interaction of parts in contact.
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Chapter 3 extends the modeling of assembly into three dimensions. Heuris-
tics are developed which help plan assembly strategies by identifying useful
properties of the assemblies. Techniques are developed to deal with the added
complexity of three-dimensional models and the specification of the added pa-
rameters necessary. The means to represent the constraints on the applied forces
and moments that will guarantee the assembly to succeed are also developed as
are the means to visualize these constraints. These models and development
techniques are then used to develop compliant strategies for inserting a rectan-
gular peg into a rectangular hole in the presence of significant uncertainty and
tight part tolerances, Methods of evaluating the resulting strategies are pre-
sented that allow areas of possible improvement to be identified and examined.

Chapter 4 }l)resénts the imuplementation of the assembly strategies developed
in Chapters 2 and 3. Specifically, a passive device is presented which performs
tight tolerance chamferless insertion in two dimensions with a high degree of
reliability. For the three dimensional rectangular peg and hole, the implemention
of the insertion strategy by means of a robot operating under force control is
presented.

Finally, in Chapter 5, the modcling and strategy development techniques
outlined in this thesis are reviewed and their gencrality compared to more formal

approaches towards assembly planning.



Chapter 2
A Planar Example

In order to determine the nature of the analyses necessary for planning assembly
strategies in three dimensions, we will first examine a simpler subset of the
general problem, namely, assembly in two dimensions, Our goal here will be to
develop modeling and analysis techniques within this simplified domain that can
later be extended into three dimensions. We shall identify a number of factors
that affect the success of an assembly and develop ways to incorporate these
factors into our models. In addition, we shall begin to examine some of the
assumptions that will be necessary to make such problems more tractable, and
the effects that these assumptions will have on our resulting conclusions.

We shall use as our primary example the two dimensional chamferiess peg
and hole, also known as the tab and s]ot.' This example is a direct subclass of the
three dimensional rectangular parts described in the last chapter. With it we
shail perform the necessary mathematical analyses and plan assembly strategies
that will succeed in inserting the peg into the hole in the presence of significant

positional uncertainty and tight part tolerances.

2.1 Brief Overview

As we mentioned in the first chapter, one of the most significant challenges facing
designers of assembly systems is the development of devices and strategies that

can perform assembly reliably in the presence of uncertainty. To meet these

23
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challenges it will be necessary to gain a better understanding of the behavior of
parts as they are being assembled and the factors that affect that behavior. We
will begin by identifying and modeling within the two dimensional domain some
of these factors that we consider to be most important in terms of guarantecing
successful assembly.

We shall review the modes of failure mentioned in the first chapter in terms
of jamming and wedging in the presence of Coulomb friction using the concept
of the friction cone [Simunovic 79]. As our control variables we shall assume a
generalized applied force and moment applied to the peg. Using the Coulomb
friction model of jamming we shall represent the modes of failure of the assembly
in terms of limits on the applied forces and moments. We shall thereby be able
to identify those forces and moments that will guarantee a successful assembly.
In addition we shall identify initial conditions that are robust and easy to obtain
given a significant amount of positioning uncertainty in our system.

The constraints on the applied forces and moments will be represented graph-
ically in a force-moment solution space. Regions in the solution space bounded
by these constraint curves will represent those forces and moments that will
not jam or otherwise terminate the assembly process. This solution space will
serve as a valuable tool with which to visualize the effects of various factors on
the assembly in terms of their elfects on these solution regions. By intersecting
solution regions within the force-moment space that represent different config-
urations of the peg and hole system, values of the applied forces and moments
that can reliably slide during transitions between thesc configurations will be
identified.

Finally, the sensitivity of the strategies developed from the force-moment

solution space will be examined in terms of variations in tue parameters of the

parts being assembled.

2.2 Some Definitions

To begin our analysis of two dimensional assembly we shall introduce a few

useful conecepts. Many of the definitions mentioned here arve the result of earlier
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Figiue 2.1: Single Point Contact Between Two Objects

work done in the modeling of assembly processes.'

2.2.1 The Friction Cone

Consider an object in single point contact with a surface as shown in Figure 2.1.
The surface .exerts a reaction force on the object which can be broken into
components that are normal and tangent to the surface, labeled f, and f; ve-
spectively. If we assume that the contact with the surface is governed by dry
Coulomb friction and has a static coefficient of friction g, then the maximum

tangential component of thie reaction force that can be exerted is given by

ftma:n'mum = l’l'fﬂ (2‘ 1)

This maximum value of the tangential component of the reaction force can also
De represented graphically as shown in Figure 2.2. This graphical representation

of frictional reaction forces is known as the friction cone, where the half-angle

tSee [Simunovie 79}, (Whitney 82|, and [Ohwovoriole, HHill and Roth 80].
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Figure 2.2: The Two Dimensional Friction Cone

7

¢ of the cone is given by the relation
¢ = arctan{u) (2.2)

and the perpendicular bisector of the cone is perpendicular to the surface in
contact. Another way to interpret the friction cone is to consider an applied
force F as shown in Figure 2.3. If the force points into the friction cone, then no
matter what magnitude this force has, the tangential component of the reaction
force due to friction will cancel the tangential component of the applied force.
If the force lies outside the friction cone however, the maximum fricticnal force
will negate only a portion of the applied force, leaving a net applied force F,,,
parallel to the surface as shuwn. Therefore if an object in one point contact
with a surface exerts a force that lies within the [riction cone, it will be stuck
and unable to move. If the force the object applies lies outside the friction cone,
the remaining net applied force will cause the olject to move and accelerate
along the surface. The interior of the friction cone, then, represeuts the range of
possible reaction forces one object or surface can exert on another in one point

contact in the presence of friction.
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Figure 2.3: Sticking and Sliding

We shall use the friction cone both here and in later chapters to provide a
visual way of inlerpreting the force interactions possible between parts during
assembly. For cases where there is more than one point of contact, the friction

cone shall be used to visualize the ranges of possible reaction forces at each

poiat.

2.2.2 Jamming and Wedging

Using the concept of the friction cone we mnay now formalize our definitions of
the modes of failure during assembly mentioned in the first chapter. Figure 2.4
shows the peg in two point co'nta.ct_‘. with the sides of the hole as well as the
associated friction cones at both contact points. If we apply a force and or
moment to the peg, a certain set of reaction lorces applied by the hole on the
peg will arise. These forces must, by delinition, lie within the shaded areas
defined by the friction cones.

The question of whether or not the peg will slide under these conditions

becomies one of whether the reaction forces are in the interior of the [riction
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Figure 2.4: Jamming



CHAPTER 2. A PLANAR EXAMPLE 29

cones or on their boundaries.. If the reaction forces are inside the friction cones
then we say the peg is jammed in the hole. No motion between the peg and hole
is possible unless the applied force and or moment is changed. If, however, both
reaction forces lie on the edges of their respective friction cones, the peg may be
able to slide. We say may because we have not determined if there are any net
applied forces remaining at the points of contact. If there are net applied forces
remaining, parallel to the surfaces of contact, then the points of contact will
slide and accelerate in the directions of those forces. If the applied force and or
moment is applied in such a way that the reaction forces lie on the edges of the
friction cones and there are no net forces remaining, then we say that the peg is
in a state of impending motion. Impending motion means that, like the jammed
state, the peg is not moving and hence in static equilibrium. However, unlike
the jammed state, the peg is on the verge of moving. If the applied forces and
or moments were changed just slighﬁly towards discquilibrium, then net forces
would appear and the peg would start to accelerate.’

Figure 2.5 shows the peg again in two point contact with the sides of the
hole. This figure is exactly the same as the previous with the exception that
the peg is not as deep in the hole as before. We also notice that the friction
cones are in slightly different positions and orientations relative to one another.
[n particular, the origin of each friction cone lies within the boundaries of the
other. An intcresting consequence of this condition is known as wedging. Let
us assume for the moinent that the peg, and possibly the hole as well, are not
rigid, but instead have some stiffness K. If we allow the peg to become jammed
in the hole, then some component of the reaction forces on the peg may point
towards each other. Since the peg has somie finite stiffness, these components
of the reaction forces will store energy in the peg by deforming it. This stored
energy and the associated forces generating it are separate from those reaction
forces that are due solely to the force aud moment applied to the peg externally.
In other words, if we allow the peg to become wedged in the hole, i.e. jammed

with some part of the reaction forces pointing towards each other, then even

?See [Simunovie 79] and [Whitney 82].
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if we change the applied force and moment, the resuitant reaction forces may
remain within the [riction cones. Specifically, if the components of the reaction
forces generated by the deformation of the peg are large in comparisen to those
generated by the externally applied force and moment, it is possible to end up
in a situation where it is impossible to continue the assembly.?

The determination of when it is possible to wedge and when it is not de-
pends on the position of the peg and hole in two point contact. Our primary
goal in developing strategies for successful assembly will be based on avoiding
the jammed state altogether. We shall assume that if we are able to develop
strategies that are guaranteed not to result in jamming, then wedging will not
be a problem. We shall therefore not specifically deal with the issue of wedging

but shall, from time to time, refer to the concept to limit some of our later

assumptions.

2.3 A Proposed Assembly Strategy

Having established more clearly the conditions under which our assembly could
fail, we shall outline a strategy designed to avoid the modes of failure just
discussed. In particular, we shall determine a strategy that is guaranteed not
to jam the peg during its insertion into the hole. A strategy that is relatively
insensitive to variations of such parameters as part tolerances, positioning errors,

and slight variations in part geometry will be the most desirable.

2.3.1 Selection of Initial Conditions |

Every strategy will begin with a set of initial conditions from which to proceed. If
these initial conditions are difficult to achieve reliably and the resulting strategy
is too semsitive to these conditions, then the overall strategy will not be very
robust. For example, we can imagine a strategy for inserting the peg into the

hole that requires the axis of the peg to be perfectly aligned with that of the

3See [Stmunovic 79] and [Whitney 82].
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Figure 2.6: A Reliable Initial Condition

hole and the peg positioned within the range of tolerances of the hole.r The
resulting strategy would then simply be to move the peg down into the hole
under position control. If the initial conditions could be achieved reliably and
the resulting commanded motion feliably executed, there would be no doubt as
to the success of the assembly. This is in fact how many machines, including
robots, are presently utilized to execute assembly tasks. For cases where such
initial conditions can not be guaranteed, however, the associated strategy will
almost surely fail.

In Figure 2.6 we see ancther proposed initial condition from which to insert
the peg into the hole. Here the peg has been tilted relative to the hole such that
one corner of the peg is now in the hole. If we require as our initial condition only
that one corner of the peg be in the hole, then we have redaced the positioning

accuracy required to obtain such a condition. Specifically, if we are able to

*See Figure 1.2,
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Figure 2.7: Kinematic Equivalent of a Chamfer

position a point within the dimensions of the hole then we can reliably obtain
such an initial condition. Because this is such a robust initial condition, we shall
choose it as the starting condition for our assembly strategy. In fact, as we shall
see later, we will be able to relax even this condition since our resulting strategy
will not be very sensitive to it.

Another way to think about tilting the peg into the hole as an initial condition
is to consider the function of a chamfer. Figure 2.7 shows two pegs, both with
their rotational axes fixed, in contact with a hole. In the first case, the hole is
chamfered and the peg is vertical with respect to the hole. In the second case,
the hole is unchamfercd and the peg is tilted with respect to the hole. The
bottom part of the figure shows a slice of the associated configuration spaces of
the two systems. Namely, if we choose a point on the bottom of each peg and
slide the pegs while in contact with the respective holes, keeping the rotational

axes fixed, the points will trace out the curves shown. These curves can be
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used to represent the kinematic constraints between the peg and the hole in
each case. We can sec from these curves that as far as kinematic constraints
are concerned, the entry conditions for the chamfered hole and the unchamfered
hole with tilted peg are equivalent. By choosing to tilt the peg in establishing

our initial conditions, then, we are in effect establishing the kincmatic equivalent

of a chamfer.

2.3.2 Applied Forces and Moments

As we outlined earlier, the forces applied to objects in contact play a major role
in determining whether the objects will slide or stick. If we choose to control
our assembly by means of applied forces, we can directly determine whether
these forces will result in jamming. If we choose a position-controlled strategy,
for example, the resulting applied forces would be determined by the inherent
stiffness of the positioning device and in general would be difficult to control.
Tor the purposes of developing a strategy, then, we shall choose an externally
applied force and moment to control the insertion of the peg into the hole. At
this point we shall make no assumptions as to the source of these forces and
moments.

In using the applied force and moment to guide our assembly, we shall con-
strain the peg and hole to slide along each other’s surfaces. Oﬁr constraints on
the applied forces and moments, then, will take the form of avoiding jamming
and avoiding the breaking of contacts. This second constraint arises from the
fact that the jamming constraints will in general depend on the position of the
peg relative to the hole. If we allow contacts to be broken, then we will be
unable to precisely determine in what position the peg shall be when contacts
are resumed. By following surfaces and restricting the breaking of contacts we

shall be taking advantage of the geometry of our system to guide the assembly.®

5Sce Section 1.3.3.



CIIAPTER 2. A PLANAR EXAMPLE 35

2.4 A Model of the 2D Chamferless Peg and
Hole

We now begin the process of developing the mathematical models with which
we shall generate our applied force-moment jamming and breaking contact con-
straints. As we develop these models we shall be making a number of assump-
tions. The liniitations these assumptions place on our models and resulting
strategies will therefore also have to be examined. Our aim will be to re-
duce these model-based uncertainties wherever possible while maintaining the
tractability of the problem. We will at the same time attempt to avoid assump-

tions and approximations that would preclude the extension of our models to

three dimensions.

2.4.1 Assumptions of Model

As we recall from Section 2.2.2, the.three possible conditions resulting from a
certain applied force and moment on the peg in two point contact with the hole,
excluding wedging or breaking contact, are jamming, sliding, and impending
motion. In the case of impending motion, the peg was considered to be on the
verge of moving while still maintaining static equilibrium. This impending mo-
tion state represents the boundary betwcen jamming and sliding. In terms of
representing the jamming constraints on applied forces and moments, then, we
shall examine this boundary state in detail. In particular, our model of the peg
and hole system will be developed under the assumption of quasi-static equi-
librium. By quasi-static we mean that the force and moment terms introduced
by motion, i.e. damping and inertia, will be assumed negligible. Therefore the
only terms that will appear in our governing equations will be static force and
moment terms. By making our quasi-static assumptions we are not restricting
the peg from moving, but we are restricting the resulting velocities and acceler-
ations to be small enough so as not to affect the force and moment cquilibrium

of our system.
As we stated carlier in Section 2.2.1, we will be assuing that dry Coulomb
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friction is acting between the parts. In particular, we shall be using the stalic
coefficient of friction u,. In general the static coefficient of friction is larger than
the dynamic coefficient of friction yy that governs friction between moving ob-
jects. By assuming only one coeflicient of friction u equal to the static coeflicient
of friction, we are making a conservative assumption. We are therefore implic-
itly assuming that solutions which work for systems with higher coefficients of
friction will also work for systems with a lower p.

In modeling the geometry of our system we shall be assuming rigid parts.
In addition, since we are assuming a quasi-static analysis, we shall model the
parts without mass or rotational inertia. Since the parts are assumed to have
negligible mass, the effects of gravity will also be considered negligible.

In deriving and simplifying our system equations, we shall avoid the temp-
tation to make small angle approximations. This will be especially important in
cases where the operating range of the system is rather large, such as the case
where the peg is tilted relative to the hole.

As we progress through the strategy development procedure we will continue
to make assumptions as necessary. As we shall see, we will be required to revise
and extend some of the assumptions we have already made to arrive at an
acceptable solution. This need to revise assumptions is an inherent part of the

design process, examples of which we shall see over and over again throughout

the foilowing chapters.

2.4.2 Possible Configurations During Assembly

In order to derive the appropriate quasi-static equilibrium equations, we will first
have to identify the contact configurations possible between the peg and the hole,
since each of these configurations will have different boundary conditions.
Figure 2.8 illustrates seven of the possible configurations between the peg
and the hole. The other seven are the mirror images of these seven and result
from the peg being tilted in the opposite direction, giving a total of 14 possible
configurations. All of the contacts are assumed to be point on plane. We notice

that configurations 1 and 7 look identical except for being on opposite sides of
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the hole. In fact the only difference between them is in the fact that the peg in
configuration 1 must slide to the left to reach the hole and configuration 7 must
slide to the right. As we shall see, the direction of sliding will affect the result-
ing equations, so we shall distinguish these as two separate configurations. Two
kinds of configurations owitted from this list are shown in Figure 2.9 where the
contact is between two planes. Another special case is shown in Figure 2.10.
Here the bottom corner of ‘the peg has just crossed the top corner of the hole.
These special configurations represent transitions between the original 14 con-
figurations listed. Each of them can be represented as some combination of the
other 14, as shown. We will nuwmber the configurations as shown, using a ‘prime’
to indicate a corresponding configuration with opposite tilt.

The degrees of freedom of each of these configurations are listed next to the
appropriate illustration. For the peg unconstrained in the plane of the assembly,

there are three independent parameters necessary to specify its position (z,y, 0)
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Figure 2.10: Corner Crossing

and thercfore three degrees of freedom. For the peg in one point contact with
the hole there are two degrees of freedom, and for the peg in two point contact
with the hole there is onc degree of freedom, and so on.

In general a given assembly strategy will not involve all 14 of the configura-
tions listed and so we shall choose a subset sufficient to describe the insertion

process. This subset will be selected later as part of the strategy development

process.

2.4.3 Geometry of the Chamferless Case

When the peg is in contact with the hole and the number of degrees of freedom
is less than three, the set of dependent position parameters can be expressed
in terms of those that arc independent. We shall determine these dependency
relationships by deriving the kinematic constraints between the peg and the hole
for various contact configurations.

Figure 2.11 shows the peg and the hole with a coordinate frame aflixed to
cach. The width of the hole is given by the parameter D, the width of the peg by
d, and the displacement of the peg’s coordinate frame from the tip along the axis
of the peg is given by L. One way to specify the position of the peg relative to the

hole is to just determine the coordinate transformations between the two frames.
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However, such a representation would be somewhat more cumbersome than we
need at this point.® A simpler way to represent the kinematic constraints of our
system is shown in Figure 2.12.

For the case where the peg is in two point contact outside of the hole (config-
uration 3), we can define the linear contact parameters [ and s as shown. From

the figure and the dimensions given we can then write

(d~s)cos@+Ilsind =D

2.3
(d—s)sind@ =lcosd (2:3)
Solving for s and { we obtain
s=d —‘D cosf (2.4
[l=Dsin@ _

where the sense of 0 is as shown. For the case where the peg is in two point

contact inside of the hole (configuration 5), as shown in the lower part of the

8In Clapter 3, where the geometric constraints will be considerably more complex, we will

adopt such an approach.
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figure, we can write
Lsing-dcos0 =D (2.5)

which gives us the expression for { as

| = D -~ deosd (2.6)

sin 0

Using these expressions we can determine the positions of the contact points
on the peg solely in terms of !, s, or the angle of tilt 8. For the one point
contact cases, the tilt and contact position variables will be independent and

will therefore have to be specified separately.

2.4.4 Quasi-static Force Analysis

Now that we have developed the geometric models of the peg and hole system
we will derive the governing quasi-static force and moinent balance equations.
As we stated earlier, we will assume that the peg is in a state of impending
motion and will therefore constrain the reaction forces to lie on the boundaries
of their respective friction cones.

We will begin by considering the case of the peg in two point coutact outside
of the hole (configuration 3). Figure 2.13 shows the applied force and moment
and the resulting reaction forces that the hole applies to the peg. Note that
the frictional forces are acting to opposec the motion of the peg as it aligns itself
with the hole, i.e. the peg is in impending motion towards the direction of
insertion. The applied force and moment are applied to the peg with the force
vector passing through the origin of the coordinate frame as shown and we shall
derive all of our equations in the peg coordinate frame. The applied force F
will be represented in polar form as shown in the figure. Therefore the = and y

components of the force become

F,=Fsna (2.7)

F,=~Fcosa

where the sense of « is as shown, We can write the force and moment balance



CHAPTER 2. A PLANAR EXAMPLE 43

Figure 2.13: Force Equilibrium: Configuration 3

equations as follows

> F, =0
5 F, =0 (2.3)
S M,=0

where the point o is located at the origin of the peg’s coordinate frame. For this

particular configuration we can write
ZFI =Fsina—uf,— fo=0
ZFy =—Fcosa— fi—pufa=0

d . '
S My = M L~ fi(G =) ~uhl ~HL-)=0  (29)

When we plug the kinematic constraint relations for { and s in terms of § and

eliminate f; and f,, we obtain the following expression

f 50 — sin 0 o d 0+ psind
M = Fsina L+D~'u—mb,, e + Feosa -—f—+DEO—--————S ,,F pom (2.10)
, pe+1 2 o+ 1
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This equation determines the values of the applied force F', at an angle a to the
axis of the peg, and the applied moment M that will keep the peg in a state of
impending motion in a given position of the peg determined by 8. We can also
solve the two force balance equations for the reaction forces f; and f5 in terms

of the applied force angle o

usin o + cos o
=F
sin o — pcos o
fo=F 1 (2.11)

In order to determine the limits on the applied force so as not to break contact,

we shall solve these two expressions for f; > 0 and f2 > 0 respectively to obtain

a > arctan (—-:—J

(2.12)
a > arctan{u)

We notice that Equations 2.12 are in the form of inequalities but Equa-
tions 2.10 is an equality. In order to determine which values of M and F will
jam and which will slide in terms of these equations, we shall have to introduce
sonie inequalities. Recall from Figure 2.3 the definition of the {riction cone. If we
have a reaction force on the edge of the cone with no net applied force, we know
that we are in a state of impending motion. If we imagine a small variation in the
tangential component of the reaction force of the form fiangentiat — Frangentiut + 6
where 0 < § < 1, then the resulting equilibrium equations will determine the
applied force and moment necessary to balance this extra tangential component
of the reaction force. If we include this § into our equations and solve them for
é > 0, the resulting inequality expressions will determine which way to depart
from impending motion equilibrium for sliding to occur. By replacing ufy with
pfi + 6, and pfs with ufs + 8, and re-evalnating Equations 2.9, we obtain the

following expression

) pcosd —sind d cos@ + psinf
M=PFsina |L+D——F——F—— |+ Fecoso | =~ + D e
[ pi 1 ]+ [ 2 p+1

sin @ — cosf) +sin & g
6 [Du(sm c0;2)++15m + cos } (2.13)
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Since the parts are assumed perfectly rigid, the magnitude of the applied
force will not affect the resulting equilibrinmn except to scale the associated
moment. We can therefore normalize our force and moment balance equations

with respect to the applied force.” If we solve the above equation for § > 0 and

divide through by F, we obtain the inequality

0 —sind d 6 in &
M > sina L+D—~———--—-—-—-*——ucos,, s cosa |—= + Do TEINT ;l—,u,sm (2.14)
F pe+ 1 2 ue+1

where we restrict the expression multiplying § to be greater than zero. This will
be guaranteed if # > arctan (’%)

The two sets of Equations 2.14 and 2.12 together represent the constraints on
the applied force and moment that will successfully slide the peg in the direction
of insertion for a given position of configuration 3.

We can follow a similar process to determine the constraint inequality equa-
tions for configuration 5. Figure 2.14 shows the peg in two point contact within
the hole. Again the reaciion forces are assumed to be on the edges of their re-
spective friction cones and the system is assumed to be in an equilibrium state of
impending motion. The senscs of the frictional components of the reaction forces
are opposing the motion of the peg into the hole. The quasi-static equilif)rium

equations are

YF, =—fy+ ficos — usinf@ + Fsina=0
LE, =uficos+ fisin0+ ufo— Feosa=0 (2.15)
S Mi=M + pfad + fol — r(;) cosa—FLsina =0

where the moments have been taken around point 1 for simplicity. Again making
the substitutions pf; — ufi + 6, and pfo — ufo + 6 and solving we obtain the

following
F(pusina — cos @)

p#r—1)sind —2ucosé

f1=(

fom F(cos apsin @ — cos @) — sin a(pcos 8 + sin 0))
' (12— 1)sind — 2ucost

"Note that wedging may require this assumption to be revised under certain couditions. Sce

Section 2.2.2.
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Dipcos + sinf) +d Ez,,’—'l-sinZH— cos 20
M=Fsmna|L-— (v ) - ( = a )
1— (usin0 — cos0)?
, d+ D(pusind —cos8) d
+Fcosa[1—(usin9—cost7)2 2

p {(D—d)(l—}—cosﬁ—usin(?)] (2.16)

1— (usind — cosd)?
If we solve the above equations for fi > 0, fo > 0, and é > 0 respectively, we

obtain the following constraint expressions

1
a < arctan (—)
7

a > arctan M
ucosd + sin 6

M D(pcos0+ sind) + d (’% sin 20 — pcos 20)
— >sina (L — - +
F 1— (usind — cos 9)?
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| ~ (using —cos8)? 2

The assumptions made in evaluating the above inequalities arc that 8 > 0, which

cos & [d + D(psind —cos@) d (2.17)

must be true to be in this configuration, and u < 1. For a case wherc u > 1, the
relaticn @ > arctan (;%—‘:—1) must be true for the inequalities to remain the same.
If this last relation is not true, then some of the inequalities will be reversed.

Tor the peg in one point contact with the hoie, as shown in Figure 2.15, we
can carry out a similar impending motion analysis. In this case, however, the
force and moment balance equations will be decoupled. For the system shown
we can write

ZszFsina—Mﬁ:O
'ZFy:fI —Fecosa=10
!
ZML:M-FLsina—-F(%—s)cosa:O (2.18)

ad

Here the peg will not break contact for —% < o < . The peg will slide towards
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the hole if
a > arctan(u) (2.19)

and the peg will rotate towards two point contact if
M d
7 < Lsina+ (E - s) cos o (2.20)

We notice that the moment has no direct effect on januning in one point contact.
Only if the applicd force lies within the friction cone will the peg jam.
The constraint equations for the rest of the contact configurations are:

Configuration 1

sinf) — pcosd

For slidi
cos § + psin&) I

a < arctan (

T . « s
o > (9 - -2—) For maintaining contact

M d
— > Lsina - 5 cos For rotating towards vertical (2.21)

F
Configuration 2

/1
a < arctan ( —) For sliding
W
o 2 0 For maintaining contact
M .
F

d
> (L—-{)sina - 5 cosa For regaining two point contact (2.22)

Configuration 6

usin g — cos @

lidi
pcosf + sin 0) For sliding

o > arctan (

a < § For maintaining contact
M . d . . .
T < Lsina+ 3 cos & For regaining two point contact (2.23)
Configuration 7

sin@ — pcos@

e Tor shidi
cos @ + usin ()) or SHCIng

a > arctan (
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s e
o> (0 — 5) For maintaining contact

M d
7 > Lsina — 7 cosa For rotating towards vertical (2.24)

For the ‘primed’ configurations we shall define ¢ as being the opposile angle
of tilt. All other conventions will remain unchanged.
Configuration 1’

a > arctan peosd - s;.m ¢ For sliding
cos ¢ + psin ¢

T e
a< ( 5 ¢) For mainraining contact

M
7 < Lsino+ 5 cos For rotating towards vertical (2.25)
Configuration 2

a > arctan (—1) For sliding
K

o < 0 TFor maintaining contact

M d '
¥ < (L —[)sima+ —cosa For regaining two point contact (2.26)
Configuration 3'

1
a < arctan (;) For /i >0

a < arctan(—u) For fo > 0

M . [ cos ¢ — sin ¢ d cos ¢ + psin @
?Ssma[L—}-D ) J +cosa[———D——;§T—1——— (2.27)

For no jamming
where ¢ > arctan (i“-ﬁ) as for configuration 3.
Configuration 4/

o < arctan(—u) For sliding

T T ..
—— < a< 5 For maintaining contact

2

M i { . . .
— > Lsina - (% — s) cos @ For regaining two point contact (2.28)

r
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Configuration 5' :
1

a > arctan (——) For fi >0
K

cos¢ — sin.
a < arctan e . i For fo > 0
ucos ¢+ sin ¢

D(ucos¢ + sind) +d (E%—l sin 2¢ — jLcos ‘2(,6)
- <sina (L ~ - = ,,
F 1 - (usin ¢ — cos $)?
d d+ D{usin¢ — cos ) : .
-~ & .2
+ cos o [2 T (pomd — cos p)? For no jamming (2.29)

where ¢ > 0, and u < 1. For a case where u > 1, the relation # > arctan (;%ET)
must again be true. If this relation is not true, theu some of the inequalities will
be reversed.

Configuration 6’

a < arctan (Cos ¢ ,us.m ¢) For sliding
Jicos P+ sin ¢

a > —¢ For maintaining contact
M ) d . .. .
F > Lsina — 2 cos For regaining iwo point contact (2.30)
Configuration 7'

sin ¢ + pcosd
psin g — cos

¢ < arctan ( ) For sliding

n ..
a< (E — gb) For maintaining contact

| R

d
< Lsina+ = cosa For rotating towards vertical (2.31)

2.4.5 The Applied Force-Moment Constraint Space

Now that we have derived the equations that govern the constraints on our ap-
plied forces and moments, we need a means by which we can represent these
constraints collectively for developing an assembly strategy. igure 2.16 illus-

trates an example of one such visual representation. The vertical axis is the ratio
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Figure 2.16: The Applied Force-Moment Constraint Space
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of the magnitude of the applied moment to the applied force, and the horizontal
axis is the angle o that the applied force takes with respect to the centerline
of the peg. If we plot as curves in this space the constraint equations just de-
rived for given positions of the peg, we will be able to determine graphically the
allowable ¥ and « values to control our system. '

Since the constraint curves are functions of the configuration as well as the
position of the peg relative to the hole, we will need to determine a path of the
peg. This path will consist of a set of configurations and positions that will take
the peg from its initial condition to being fully inserted into the hole. In order
to determine what force and monient will move the peg along such a path, we
will determine the intersection regions bounded by the constraint curves of each
position. If an intersection region exists that is vélid over all points of the path,
then any force-moment combination within this region will constitute a valid

control input for an assembly strategy.

2.4.5.1 Plotting the Constraint Curves

In order to obtain a feeling for the types of solution regions we will be dealing
with, we shall plot a few constraint curves for various configurations of the peg

and hole. As an example, we will consider a peg and hole system with the

following parameters

d =0.995 in
D=1.000 m
L=2.000 i

u=0.9 aluminum on alumimuin

Figures 2.17 and 2.18 show some pairs of constrainl curves from case 3 and
its complement 3' for various values of § and ¢. As we can see, there is no
intersection region for two cases of the peg outside of the hole with opposite tilts.
We interpret this to mean that the initial tiit of the peg must be determined as
part of an inscrtion strategy since a force and moment that will slide for one tilt

will jam for the other. We also see that the regions Lounided by Liie constraint
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Figure 2.17: Peg Oul of the Hole
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curves become steeper as the angle of tilt (¢ or ¢) is decreased, i.e. for a given
a the magnitude of the corresponding % becomes larger.

Figures 2.19 and 2.20 show some pairs of constraint curves from cases 5 and
§' for various values of 8 and ¢, For this case of the peg in the hole we see that
there is an intersection region for the peg in opposite tilts.® Here the intersection
region becomes larger as the tilt of the peg (positive or negative) is decreased,
corresponding to the peg sliding deeper into the hole. We interpret this to mean
that unlike the case of the peg outside of the hole, there exists a set of forces
and moments which will siide the peg inside the hole regardless of which way
the peg is tilted. In addition, as the peg slides deeper into the hole the range of
these sliding forces and moments increases.

The set of constraint curves for the peg outside of the hole supports our
selection of the peg tilted relative to the hole as an initial condition. If we
tilt the peg before we begin the insertion then we know in advance which way
it will be tilted as it enters the hole. Therefore, we will choose to begin our
assembly path with the peg in configuration 3. From configuration 3 we will
slide in two point contact until the bottom corner of the peg crosses the top
corner of the hole. FFrom this transition point we will continue to slide in two
point contact inside the hole (configuration 5) until the peg is fully inserted.
As we mentioned in Section 2.3.2, we shall avoid breaking contacts in order to

reduce the uncertainty of where the peg would resume two point contact with

the hole.

2.4.5.2 Constraints at the Configuration Transition

As we saw in Figures 2.17. through 2.20, the constraint curves changed as a
function of the position of the peg relative to the hole. Since these changes were
rather gradual, we can say that the constraint curves are well behaved for small
changes in position within a given conliguration. The next questién is how do
these curves behave in a transition befween conﬁg’urf"ttions. In particular, given

our proposed assembly path, a transilion of configurations will occur when the

8Except for 0 = 0, and ¢ = ¢, where the enrves lie on top of one another.
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Figure 2.21: Corner Crossing

bottom of the peg crosses the top edge of the hole. It will therefore be necessary
to establish the behavior of the constraint curves during this transition.

We can determine at precisely what angle of tilt corner crossing will occur by
examining Equation 2.4. At corner crossing the linear parameter s will become
zero. So by solving fquation 2.4 for s = 0 we obtain

0. = arccos (%) (2.32)

By evaluating the constraint equations for configurations 3 and 5 with 0 = 6,
and superimposing the resulting curves in the (%{— vs «) plane, we obtain the
regions shown in Figare 2.21.

Whereas the constraint curves changed only slightly for variations in position
within a configuration, from this fignre we see that there is a significant and
discontinuous change in solution regions in the transition between couligurations

3 and 5. Since the curves will vary only slowly within a configuration, forces and
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moments that are chosen from within a force-moment constraint region for one
position will in general be valid for a range of positions within the configuration.
Therefore, as ihe peg slides along a portion of an assembly path that lies within
one conliguration, we can represent the general force-moment constraints for
that portion of the path in terms of just one position.

In addition to the realization that configuration transitions represent the
points at which a given assembly strategy would be most likely to fail, we can
see that for the corner crossing transition between configurations 3 and 5, there
13 a region of overlap between the constraint regions. This overlap region, shown
shaded in the figure, represents those force-moment values that are guaranteed
to carry the peg through corner crossing while satisfying the no-jamming and

no-breaking contact constraints.

2.4.5.3 Efects of Parameters on Constraint Boundaries

In order to gain a better understanding of the factors that will affect the like-
lihood of our finding a solution that will neither break contacts nor jam the
assembly, we will determine how the constraint curves behave with different
chosen parameters. In other words, if we choose to assemble a peg with a dif-
{ rent clearance relative to the hole (D — d), a different friction u, or choose a
different value of L, does the force-moment sclution region change significantly?
Since the corner crossing region is the sight of the greatest discontinuity in con-
straints within the range of positions we’ve examined, we shall concentrate our
investigation here.

Figures 2.22 and 2.23 show the corner crossing constraints with four values
of (D — d). We see that as the clearances are decreased, all other parameters
remaining constant, the constraint curves of configurations 3 and 5 change only
slightly. In fact, the jamming constraint curve of configuration 3 does not change
at all, while that of configuration 5 {peg in the hole) becomes slightly stecper
and shifts to the left. These changes indicate that for the peg outside of the hole,
the clearance has little or no elfect on the conditions necessary for sliding while
for the peg in the kole, the ratio of the moment to force needed for sliding is

only slfghtly greater for tighter fits. In terms of the hreaking contact constraints,
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since the' value of 8, bccovmes smaller for tighter tolerances, the peg will have a
wider range of angles of the allowable applied force for configuration 5 as the
clearance is decreased. ,

In terms of the curves that define the boundaries of the allowable applied
force-moment intersection region at corner crossing, i.e. the jamming and lower
bound breaking contact curves for configuration 3 and the upper bound breaking
contact curve for configuration 5, the clearance has little or no effect on the size
of the resulting solution space.

Figures 2.24 and 2.25 show the corner crossing constraint regions with four
different values of the coefficient of friction u. Here we see that the value of the
friction has a rather significant effect on the size and location of the resulting
intersection of constraint regions. For the case of no friction, any angle « of the
applied force between 0 and 7 will maintain two point contact. Thus, almost
any combination of the applied force and moment that lies in the upper right
quadrant of the constraint space will successfully slide the peg through the corner
crossing region. As the value of the coefficient of friction is increased towards
one, we see that the intersection of constraint spaces becomes smaller. At a
value of ¢ = 1, according to our analysis, there is no intersection region at
corner crossing, indicating that it is impossible to slide and maintain two point
contact at the same time during this transition phase. Under these conditions,
then, it could be necessary to allow contacts to be broken at corner crossing.

Figures 2.26 and 2.27 show the corner crossing constraint regions for four
values of the parameter L. We recall that L is distance from the bottom of
the peg of the point at which the applied fcrce F' intersects the axis of the peg.
In terms of the sliding constraint equations, the value of L will determine the
magnitude of the equilibriumn moment associated with a given applied force. For
a value L equal to zero (applying the force at the tip of the peg), the jamming
constraint curves lie near the horizontal axis. This implies that for an applied
force at the tip of the peg, little moment need be applied to guarantee the peg
will slide at corner c_rossing.g As the value of L is increased, the corresponding

magnitude of the applied moment must also increase to guarantee sliding. We

9Sce [Whitney 82].



CHAPTER 2. A PLANAR EXAMPLE - 63

i

—
-

|
|
|
|
|
!

T

|
|
|
|
|

Config. 3 ’
.y e Config.5 I
PLFIRA --->
STRAINT T =03

\

24

AP -==>

1

— e —— e e ——— ——
o
ol

Figure 2.24: Corner Crossing: Various Coeflicients of Iriction g



CHAPTER 2. A PLANAR EXAMPLE

CONCTRAINT 3 !

A

MLAA ===

Figure 2.25: Corner Crossing: Various Coefficients of Friction u, (Cont.)

64



CHAPTER 2. A PLANAR EXAMPLE | 65

Figure 2.26: Corner Crossing: Various L’s
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also notice that the value of L has absolutely no effect on the breaking contact
constraints on . Thus, the distance L at which the force F is applied from
the tip of the peg serves only to scale the corresponding value of the minimum

applied moment M.

2.4.6 The Resulting Insertion Strategy

Using the results of the previous sections, we can now specify a strategy that

will successfully insert the peg into the hole.

e We begin by specifying the initial conditions from which to start our com-
pliant strategy. For the chamferless peg and hole, we begin by tilting the
peg relative to the hole and establishing two point contact, as outlined in

Section 2.3.1.

e Next, we determine the quasi-static constraints that will allow the peg to
slide in two point contact outside of the hole from its initial tilted position
to corner crossing. We do this by identifying a single region in the applied
force-moment constraint space that covers that portion of the assembly

path.

¢ I'rom corner crossing, we determine the applied forces and moments that
will continue to slide the peg in two point contact inside the hole. Since
the constraint regions for the case of the peg in the hole become larger as
the peg slides deeper into the hole, the corner crossing constraints will rep-

resent the most conservative bounds on the allowable force and moment.

¢ Finally, a single applicd force-moment vector is chosen from the resulting
single intersecting constraint region that will slide the peg along the entire

assembly path.

If all of these conditions can be met, the peg will be gnaranteed to slide in two

point contact, into the hole, without jamming.
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2.5 Summary

In this chapter we have modeled the effects of friction and part geometry on the
insertion of a two dimensional chamferless peg into a chamferless hole. We have
outlined a reliable initial condition that marks the starting point for subsequent
assembly motions in the presence of uncertainty. In addition, we have shown
how the need for physical modifications to the geometry of parts to aid in their
assembly can be avoided in many cases by choosing the proper strategy.

We have chosen the applied force and moment as our primary control vari-
ables and represented the constraints that the presence of friction in our system
places on the determination of these variables. In particular, we have presented
the (%’f— vs &) plane as a visual means in which to represent these [rictional con-
straints. By intersecting constraint regions within this force-moment plane we
have provided a means to search for the proper moments and forces that will
guide an assembly in sliding motion. We have also seen how the various param-
eters that describe an assembly affect the range of applied forces and moments

that will determine the resulting strategy.



Chapter 3

Assembly in Three Dimensions

The previous chapter examined assembly in a two-dimensional planar domain.
We now turn our attention to the more general and considerably more difficult
case of assembly in three dimensions. Our goals in this chapier will be to extend
the assumptions and conclusions of the last chapter and from these develop a
set of techniques sufficient for planning assembly strategies in three dimensions.
As we shall see, many of the factors that affect planar assembly are similarly
present in three dimensions, yet modeling these factors will in general be more
difficult and the resulting models nmore cumbersome to manipulate. In addition,
factors that did not explicitly appear in the two-dimensional case will also have
to be examined.

As a result of these added complexities, the assumptions and simplifications
required to adequately inodel and analyze three-dimensional assembly will be
greater in number. Although these additional restrictions indicate the resulting
solutions will be of a less general nature, enough generality remains to make
such an analysis uscful.

We shall use as an example the rectangular peg and hole described in Chap-
ter 1 and shown in Figure 3.1. As noted, the rectangular peg and hole provides
a siimple yel non-trivial example of a general three-dimensional assembly. Many
of the techniques and conclusions drawn from this example can be extended to

more cotiplex parts modeled as collections of polyhedra (see Section 1.4).

69
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<>

Tigure 3.1: The Rectangular Peg and Hole

3.1 Brief Overview

The basic approach of planning assembly strategies in three dimensions follows
closely that of the last chapter. Namely, a set of possible configurations between
parts is identified, and from this set, a trajectory is chosen which moves a part
from soine initial state to a final desired confliguration.

As before, the overall goal will be to reduce the level of uncertainty at each
stage in the assembly and thereby reduce the likelihood of premature or unan-
ticipated motion termination. This will be accomplished by initiating contact
between parts and sliding along their edges and surfaces, allowing them to act as
guides. By establishing and maintaining contact between parts, the degrees of
freedom of the system and their associated positional uncertainties will gradually
be reduced.!

The modes of failure identified in the two-dimensional case will be extended

into three dimensions and represented as constraints on the applied forces and

ISee Section 3.2.1.3



CHAP'TER 3. ASSEMBLY IN THRIWE DIMENSIONS 71

moments that are the control variables of the system. Initial conditions will be
specified and the requirements for reliably transcending various configurations
encountered during assembly will be outlined. In addition, properties of the
system that are uscful for planning strategies will be identified and applied in
the specific example of the rectangular peg and hole.

Geometric models of the parts being assembled will be developed and the
governing quasi-static force balance equations derived. Techniques for evaluating
and manipulating the resulting solution spaces will be developed, and a means
for visualizing the elfects of various parameter changes on those solutions will
be provided.

Finally, a means of evaluating the resulting strategies in terms of various
design criteria will be detailed. In general, the process of establishing configura-
tions and initial conditions, selecting applicd forces and moments, and evaluating
the resulting strategies will be iterative in nature. As noted in the first chapter,
the designer of an assembly strategy, just as any other designer, will have to
make a number of assumptions and choices during the design process. Often,

these choices will need to be reviewed and revised as more details about the

design become apparent.

3.2 Outlining a Strategy

An underlying assumption of the strategy development process is that the sim-
plifications, assumptions, and conservative approximations that are made will
still result in a viable solution region being identified. One risk of this assump-
tion is that an approach that is-too conservative may fail to find any solution
at all, even il one actually exists. This dilemma of ‘keeping the baby and throwing
away the bath water’ demonstrates the need to carefully evaluate the assump-
tions that are made in each step of the design process. With this in mind, we will
now outline the assumptions and conclusions that will be made in developing a

strategy to insert a rectangular peg into a rectangular hole.
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Figure 3.2: Edge-Edge Contact Betizcen Peg and Hole

3.2.1 Identifying Useful Properties

The first step in developing a strategy is to identify the important factors that
affect the assembly process. Here we will present a list of Heuristics that can be
applied in the design process. Many of these heuristics result from the conclu-
sions of the last chapter, while others arc derived from observations made while
examining the parts and subassemblies discussed bricfly in chapter one. While
some of these rules may not apply to all assemblies, hence the name heuristics,

many of them are general enough that they will be useful in most situations

encountered.

3.2.1.1 Dominance of Edge-Edge Contact Between Convex Polyhe-
dral Parts

Most of the interactions involving polyhedral parts mvolve edges contacting
edges. In fact, in the case of the rectangular peg and hole, all contacts between

the peg and the hole are edge-edge until all four bottom corners of the peg have
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cleared the rim of the hole, as can be seen w Figure 3.2.° This information
will be useful when determining the set of possible configurations of the peg
and hole since it will define the class of allowable contacts that determine those
conligurations.

Since many parts can be represented as a coliection of polyhedra, as shown in
Chapter 1, this observation has an additional level of importance and generality.
As we shall see later, modeling parts in terms of interacting edges provides

a convenient framework in which to represent the effects of geometry on an

assembly strategy.

3.2.1.2 A Reliable Initial Condition

A fine motion strategy will often begin with initial conditions inherited from a
series of gross motions required to place a part in or near contact with another
part. These initial conditions will have a significant effect on the motions that
follow. It is therefore desirable to have an initial configuration, i.e. a set of
contacts, which is relatively insensitive to the posi‘tioning errors associated with
gross miotions.

In the case of the rectangular peg and hole, one such configuration is the three
edge-edge contact configuration shown in Figure 3.2 . In this configuration, slight
positioning errors do not result in any significant changes in the resulting motion
constraints since the contacts all remain edge-edge. In other words, by tilting
and rotating the peg we are establishing contact between large edges of the peg
and large edges of the hole. Since it is assumed that the lengths of these edges
are cousidcrably greater than any positioning errors we are likely to encounter,
we can safely guarantee that the desired contacts will be made. This initial
condition is exactly analogous to the technique of tilting the two-dimensional

peg relative to the hole to obtain the kinematic equivalent of chamfers (see

Section 2.3.1 ).

2The one exception to this example is the case of a bottom corner of the pey sliding on the
surface surrounding the cdge of the hole. [Tere it is assuned that the peg has been started

with enc corner already in the hole.
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Figure 3.3: Uncertainty of Various Degrees of Ireedom

3.2.1.3 Relationship Between Degrees of Freedom and Uncertainty

Consider the points shown in Figure 3.3. Point one is above the surfaces, point
two is on surface A, point three is along the intersection of surfaces A and B, and
point four is in the corner formed by the intersection of all three surfaces. In the
first case, the position of point one relative to the surfaces is known within some
uncertainty ball of radius €, where ¢ is the maximum allowable linear positional
uncertainty.® Tn the second case, the position of point two is known within an
uncertainty circle, also of radius e. Since point two is constrained to lic on the
horizontal surface A, there is no uncertainty associated with its vertical position.
In the third case, the position of point three is known along an uncertainty line
of length 2¢ which lics on the intersection of surfaces A and B. Finally, in the
fourth case, the position of point four is known with respect to the surfaces with

1o uncertainty at all, since it is constrained to lie at the intersection of all three

surfaces.

TWe say finear beeause a point can have no uncertainty associated with an orientation.
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This example serves to illustrate the direct relationship between the degrees
of freedom of a system and the positional uncertainty associated with those
degrees of freedom. To put it another way, the positional uncertainty of a system
with n degrees of freedom can be represented by an n-dimensional region. As
the number of degrees of freedom is reduced, the dimensions of the uncertainty
region are also reduced.? The velocity uncertainty associated with n degrees
of freedom can also be represented in a similar fashion as will be shown in
Section 3.2.3.

The fact that positional uncertainty is reduced as the degrees of freedom are
reduced is an important consideration when planning an assembly strategy. By
reducing the degrees of freedom of a system it is possible to reduce the like-
lihood of encountering an unanticipated motion terminating configuration, i.e.
a configuration that was not anticipated while planning the assembly strategy
and that would cause the assembly to jam or otherwise fail. In addition, fewer
degrees of freedom implies fewer position (and velocity) parameters to be spec-
iied by the designer. This is desirable since one of the assumptions a designer
must make during motion planning is what positions and velocities are required
to move towards a given goal configuration. As the degrees of freedom are re-
duced, more of these parameters are automatically specified by the kinematic
constraints of the assembly and are hence less ambiguous than those that must
be plucked out of the air or otherwise determined.

This relationship between the degrees of freedom of a system and its associ-
ated positional uncertainty is the primary reason behind the specified require-
ment that parts must slide along each other during assembly. It should be noted
that this requirement is a conservative one since a more general approach would

allow contacts to be hroken in some instances.

3.2.1.4 Robustness of the Edge-Corner Contact for Constrained Slid-
ing Motions

4Note that this reduction is equivalent to taking lower dilensional ¢ross-sections of the uncer-

taiuly region,
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Figure 3.4; The Three-Dimensional One Point Friction Cone

In Section 2.2.1 we defined the one point friction cone as the set of all possible
reaction forces that a surface (or edge) could exert at that point. Figure 3.4
shows an extension of the one point friction cone into three dimensions. As we
can see, the three-dinensional one point friction cone is a direct and obvious
extension of its two-dimensional counterpart.® In addition, a onc point friction
cone can be defined in the interaction between two edges. In this case, also
shown in F igure 3.4, the axis of the cone is defined by the common normal of
the two edges. Section 3.3.4.1 provides a more detailed explanation of how these
normals (both sense and magnitude) are determined. |

Figure 3.5 shows the friction cone corresponding to an edge-corner contact.
In particular, the contact of an edge of the peg with a corner of the hole. As
we can see by comparing Figure 3.5 and Figure 3.4, the corner friction cone is
considerably larger than the simple one point {riction cone. This indicates that

the range of reaction forces possible in an edge-corner contact is considerably

5T fact the word ‘cone’ suggests its three-dimensional form
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Figure 3.5: The Three-Dimensional Corner Friction Cone

greater than for a simple one point (or edge-edge) contact. This is a useful fact
to consider in planning a strategy since the larger range of reaction forces means
that a larger range of applied forces and moments can be made without breaking
contact.’

In addition, a single corner contact represents a constraint on two degrees
of freedomn rather than just one, as in a single edge-edge contact. This can be
easily seen by considering a corner as being comprised of two edges. Satisfying
the constraint of being on both edges simultaneously, i.e. in the corner, means
that two one degree of [reedomn constraints are being imposed simultaneously.
Therefore a single edge-corner contact reduces the total degrees of freedom by
two. From the previous section, we know that fewer degrees of freedoin nieans
fewer uncertainties to contend with. With these facts in mind, a strategy that

contains edge-corner contacts will tend to be more ‘robust’, i.e. less susceplible

to the cffects of uncertainty.

8 There is also a greater set of forees and moments that can tesult in juaming, but in developing

our strategies we intend to avoid those sets,
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3.2.1.5 Transition of Constraints at Intersections of Configurations

We have used the term configuration a number of times up to this point. In order
to describe the interactions between parts in three dimensions, we shall take the
term configuration to mean a set of contact types, i.e. edge-edge, edge-corner,
vertex-face, etc.. In addition, each edge, corner, vertex, etc. is specified uniquely,
i.e. top right corner of hole, bottom left vertex of peg, etc., as are the contacts
belween them. For example, the particular three point edge-edge contact shown
in Figure 3.2 is an example of one possible configuration of the peg and hole
under this definition. The peg can have any set of contact positions along the
corresponding six edges (three on the hole, three on the peg) and still remain
within the given configuration. Therefore a configuration represents an infinite
range of possible positions within which a uniquely specified set of contact types
is maintained.

In the last chapter we saw that the greatest changes in the sliding and break-
ing contact solution regions of the 2D peg and hole occurred at a transition of
configurations. Namely, when the bottom edge of the peg crossed the top cor-
ner of the hole, the curves bounding the solution space shifted discontinuously.
In the configurations both preceding and following the corner crossing point,
i.e. out of the hole and in the hole respectively, the solution space regions were
comparatively well behaved and changed only slowly with the position of the
peg. It was for this reason that most of the analysis was centered around this
transition point (see Section 2.4.5.2). ‘

In the three-dimensional case, we shall expect the same sort of behavior from
the corresponding solution regions. As we shall see later, the transition points
between configurations will experience the greatest changes in the resulting
solution space. We shall use this assumption to limit our search for solutions
to the regions immediately surrounding changes in configuration. In addition,
we shall assume that the solution regions change only slowly both before and
after these transitions. Thercfore an applied force and moment that works just

before or just after a transition point will be assumed to work over a range of
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positions within the vicinity of those configuration transitions.” This assumption
is important since the modeling and analysis procedure is discrete in nature in
that it represents a force and moment balance only at a particular position within
a configuration. If we can extend the analysis to include the contact positions
surrounding the ones explicitly specified then we can reduce the number of these

positions that must be examined.

3.2.2 Determining the Set of Possible Contact Cases

Having listed our agssumptions and conclusions about three-dimensional assem-
bly, we now begin the process of actually developing a strategy for inserting a
rectangular peg into a rectangular hole. We start this process by determining
a set of contact configurations from which we can construct a path, i.e. a se-
quence of positions of the peg and hole within the chosen configurations, that
will connect an initial state to a desired end state.

We will begin by considering all of the possible configurations given an allow-
able set of contact types and from these select a subset large enough to specify a
complete trajectory. As we shall see, the set of configurations that are possible

grows rapidly with the geometric complexity of the parts being modeled.

3.2.2.1 Types of Contact Considered

Figure 3.6 shows the set of nire single contact types possible between two rigid
bodies [Salisbury 82]. Of this set of contacts, three are unstable and only appear
as transient states. These three are the point on point, point on line, and line on
‘point contacts. We also sce that some contacts are simply the inverse of another,
namely the point on planc vs. the plane on point, and the line on plane vs. the
plane on line. Each of thesé pairs represent identical constraints and hence can

be combined. This leaves as with four distinct types of contact. These are:

e line on line contact,

e point on plane contact,

7 Just how broad these ranges are will be determined later,
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Figure 3.6: General Contact Types

e line on plane contact, and

e plane on plane contact.

Gf these remaining types of contact, the plane on plane contact is compara-
tively rare in the rectangular peg and hole since it requires the two planes to be
exactly parallel, by definition, which can only occur when the axes of the peg
is exactly aligned with those of the hole.® The line on plane contact is also less
common than the first two cases in the rectangular peg and hole example.

We have now left ourselves with two basic types of contact with which to
represent the set of possibfe contact configurations of the rectangular peg and
hole. These are the line on line, which we shall refer to as edge-edge, and the
point on plane contacts, which we shall refer to as vertex-face. We note that the
other types of contact which we have just climinated can still be represented as

combinations of these two contacts types. Tor example, a line on plane contact

81 other words all of the edges have been cleared and the peg has only one degree of frecdom

alony its vertieal axia
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could be represented as two vertex-face contacts or a plane on plane contact
as lhree vertex-face contacts acling simultaneously, etc.. Thercfore we have not
completely eliminated the possibility of including these contacts in our strategy.’
We shall also consider the corner contact case mentioned earlier to be included

as part of this extendable representation.

3.2.2,2 The Complete Set of Contact Configurations

From the allowable contacts just derived we can construct a list containing the
complete set of contacts between the rectangular peg and hole. To do so it is
first useful to specify a notation with which to represent these configurations.
It should be noted that the notation we shall use is not the only possible or
even the best notation for describing contacts, but is intended only to serve as a
consistent fcrmat in which to combine contact types. First the peg and hole are
separated and the contacts on cach listed separately. For the peg, the contacts

are noted as:

o SE for a Side Edge of the peg,
o BE for a Bottom Edge of the peg, and

e V for a Vertex of the peg (bottom vertex).

In addition, the specification of the number of edges or vertices involved is given
as well as the relationship to similar edges or vertices on the same part. Namely,
A for adjacent and O for opposite. So for example BE2O refers to = contact
involving two opposite bottom edges of the peg. The Contact types for the peg

are.

SEL  BE1 Vi
SIE2A BE2A V2A
BE2C V20

I'or the hole, the notation is:

98¢e also Section 2.4.2.
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e TE for a Top Edge of the hole, and
s S for a Side of the hole (inside).

As for the peg, we specify the number of cach contact type included and the
relationship between them, i.e. A for adjacent and O for opposite. So the
notation TE2A refers to a contact involving two adjacent top edges of the hole.

The contact types for the hole are:

TE1 81
TE2A S52A
TE20

TE3

TE4

By combining the types of contact listed and matching the contacts of the
hole to those of the peg, the total number of contact types possible for the
peg and for the hole can be determined. An assumption made during this
combination process is that four is the maximum nwinber of single independent
contacts allowed. A few relatively straightforward rules are used to govern this

process. They are:

o The number of contacts of the peg equal the number of the corresponding

contacts of the hole.

e A vertex of the peg can only contact a face of the hole (vertex-face contact).
o An edge of the peg can only contact an edge of the hole (edge-edge contact).

Applying these rules to the contact types listed, we obtain a list of 23 contact
types. However, in order to specify the complete list of configurations we must
farther specify exactly what edges are in contact with what other edges and
what vertices are in contact with what faces. Tor example, to determine cach
configuration of the contact case SE1:TEL (contacts of Lhe peg: conlacts of the

hole), we determine all possible combinations of these single edges possible. For
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this case there are 4 x4 or 16 possible combinations, Therefore the SELTEL case
has 16 associated confligurations. A similar process can be used to determine
the conligurations for the rest of the contact cases generated. Such an analysis
produces 1060 possible configurations of the rectangular peg and hole, given the
two basic contacl representations of edge-edge and vertex-face.

As we can sce [rom the previous development, the number of possible contact
configurations for a pair of relatively simple three-dimensional parts such as
the rectangular peg and hole is quite large, even after making a number of
simplifications regarding the types of contact allowed.!” One can imagine the
number of configurations that would have to be modcled for a more geometrically
complicated pair of parts, such as those shown in Chapter 1. From this type of
analysis it seems clear that just mindlessly generating and analyzing all of the
possible configurations would not be the way to approach the problem. Instead,
as was the case for the two-dimensional assembly of Chapter 2, it makes niore
sense to select a reasonable subset of conligurations that will sufficiently describe

an assembly path. In Section 3.3.2 we will present such an approach.

3.2.3 The Independent Parameters Specifying an Assem-
bly State

In the second chapter we outlined the assumptions underlying a quasi-static
model of assembly. Among these were that the effects of velocities and accelera-
tions on the resulting reaction forces were negligible. In fact we considered these
terms to be zero and assumed the peg to be in a state of impending motion.
Implicit in this assumption was the fact that if the peg were to move, it would
do so in a pre-determined direction. This sense of direction of the impending
motion allowed us to determine what direction to assign the frictional reaction
forces at the points of contact. In fact what we were doing was: specifying a
velocity of the peg in sense only.

When we introduced the friction cone in Section 2.2.1 we indicated that

the frictional force opposed the motion {or impending motion} of the point of

O ompare this to the 14 configurations of the two-dimensional peg and hole of Chapter 2.
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Figure 3.7: Velocity Related to Friction

84



CHAPTIER 3. ASSEMBLY IN THRIEN DIMIENSIONS 85

contact. This sense of motion allowed us to determine which way the [rictional
component of force should point. In the three-dimensional friction cone this is
still true. However, as shown in Figure 3.7, the sense of the frictional component
of the reaction force is no longer a binary choice. For the three-dimensional
friction component to be specilied, the direction of the velocity of the contact
point must be specified in the plane. Again this contact velocity is in sense only,
but now its specification requires an additional (orientation) parameter, in this
case p. As before, the frictional component of the reaction force will he opposite
in sense to this velocity.

For a quasi-static analysis, the parameters required to specify the state of
an assembly are the position of the peg relative to the hole and the sense of
the velocity of the peg relative to the hole. The number of parameters required
to specify the position of the peg is equal to the number of degrees of freedom
remaining in a given configuration. If the velocity of the peg is considered in
sense only, i.e. a vector of unit magnitude, then the number of parameters
required to specily it is equal to the degrees of freedom minus one. Therefore,

for a given assembly state the number of independent parameters that must be

specificd by the planner is given by:
Npu,-“m =2 Nda! -1 (333)

where N,grqm 15 the number of parameters and Nyop is the number of degrees of
freedom of the system. As an example of this consider again the two-dimensional
peg and hole. For the peg in two point contact the number of parameters was
2% 1—1=1, namely the position of the peg (in terms of either the angle of tilt
or the insertion depth).!!

Given the addition of urit velocity to our list of parameters specifying an
assetbly state, we can again sce the rclationship between the number of these
parancters and the number of associated uncertainties in our system. Specifi-
cally, we can extend our conclusions regarding positional uncertainty from Sec-

tion 3.2.1.3 and state that the total number of uncertaintics associated with a

1 As mentioned carlier, the velocity required only a binary (&) specilication and therefore did

not require any extra parametess.
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given assembly state (assuming a quasi-static model) is equal to the number
of parameters nccessary to specify that state, Npyrum. Thercfore, each time we
remove a degree of freedom from our systemn, we are removing two associated
uncertainties. This lends further support to our strategy of reducing the degrees

of freedom of our system wherever possible.

3.2.4 Determining Velocity Trajectories Between States

In the overall task of planping an assembly trajectory, the unit velocity of the
peg relative to the hole will serve the dual purpose of specifying the sense of the
frictional forces at the points of contact as well as specifying the motions that will
be used to connect-the various contact configurations. In this second function,
the unit velocity vector will (just as the position parameters will) represent
certain bounds on the set of applied forces and moments that will move the peg
between the desired configurations. TFigure 3.8 shows a representation of this
bounding function in terms of a velocity error cone. The positional uncertainty
of point P, is again represented as a ball of radius ¢. From this uncertainty ball
we extend a cone to the goal region P, which represents the desired mngé of
goal positions of our system. This goal regron may be the final desired position
of the peg or some intermediate goal in the overall trajectory. Velocity vectors
originating in P, and pointing towards P, whose directions lie on or within
the bounds formed by the edges of the cone represent those unit velocities that
are guaranteed to reach the goal region. '* Similarly, unit velocities that lie
outside the bounds of this cone may not always end in a desired configuration
(we recall that, by definition, a unit velocity represents a sense only and has no
associated magnitude).

Figure 3.8 also illustrates an interesting relationship between the uncertain-
ties associated with position and those assoctated with unit velocity. Given a
positional uncertainty ball at position P and an allowable range of positions

in Py, the width of the velocity cone that connects them will be determined

125¢e [Erdmann 84] for a more formal description of the error cone as related to fine motion

planuing.
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Figure 3.8: The Velocity Error Cone
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by the distance between the two states. Therefore a unit velocity between two
regions that have a large separation will be more constrained, i.e. fall within a
narrower range, than a unit velocity betwcen two regions that are closer together,
assuming the relative sizes of the two regions remain constant. This relationship
between the distance of a move and the size of the associated uncertainty regions
places a lower bound on the number of discretely modeled positions that will
sufliciently describe an assembly path.

In this discussion we have used a symmetric cone to represent the bounds
on unit velocity for illustrative purposes only. Although the actual unit velocity
bounds between given states will in general be non-symmetric and non-linear

functions of position, the qualitative conclusions will still be valid.

3.2.5 Selecting the *'roper Forces and Moments

As was the case with the two-dimensional pég and hole, the control variables of
the three-dimensional rectangular peg and hole will be the applied forces and
moments. Aside from the initial conditions and states describing an assembly
path, the only variables we shall be specifying will be the forces and moments
applied to the peg. Given this, we shall want to represent the constraints of
our system: geometry, tolerancing, friction, etc., in terms of constraints on the
applied forces and moments. We shall do this in a way similar to that of the
last chapter, namely, we shall construct a force-moment space in which we shall
scarch for solution regions. These regions will determine the range of forces and
moments that are guaranteed to move the peg between desired configurations
with a minimuin chance of premature motion termination.

The two major constraints that we shall be representing in this force-moment
space are again jamming and breaking contact. Jamming as a mode of failure
of an assembly was outlined in Chapter 1 and treated in detail in Chapter 2.
'Breaking of contact between two edges or surfaces, although not specifically in
itself a mode of failure, represcuts an increase in the degrees of freedom of our
system and, given the relationship to uncertainty, is considered undesirable.

Scarching for a set of allowable forces and moments in the last chapter
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amounted to graphically finding intersection region: between various constraint
curves in a two-dimensional (% vs «) space. We shall adopt a similar procedure
in this chapter but, given the greater complexity and size of the new force-
moment space, we shall have to adopt new techniques for breaking the solution

regions down into more manageable form.

3.3 Modeling and Analysis

Given our outline of Section 3.2, we now begin the process of modeling the
rectangular peg and hole, analyzing these models, and finding acceptable values
for the applied forces and moments. Most of the assumptions and conclusions
developed up to thi;s point will be applied to these new models. As they become

necessary, we shall note any new assumptions we make.

3.3.1 Geometric Representation of Parts

As we have mentioned a number of times, geometry will be a major factor in
determining the behavior of a system during assembly. The models we use in
developing an assembly strategy must therefore be sufficiently flexible to allow
easy representation of this important factor. Figure 3.9 shows the rectangular
peg and hole with the three edge-cdge contacts of the configuration from Sec-
tion 3.2.1 indicated on both. The dimensions of the peg: length, width, and
Leight, have been assigned the variables: [, w, and k respectively. We have
assigned to the peg a right handed coordinate fraimme relative to which we can
specify any poiut on the peg. The z-axis of the coordinate frawe lies along the
centerline of the peg and the z-axis and y-axis are aligned with the sides of the
peg as shown. The origin of the frame has been displaced along the centerline
by a distance L from the bottom of the peg.!® In this example there are three
points of contact between the peg and the hole which are numbered as shown,
The positions of these pointls in the peg’s [rame are represented by the position

vectors Iy, Ra, and R3 respectively.

ENotice that the value of T may be greater or less than the value of .
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Figure 3.9: Representation of Part Geometry
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The dimensions of the top of the hole, length and width, have been assigned
the variables ' and w' respectively. Since we are primarily concerned with the
problem of having the peg enter the hole and not how far it can then be inserted,
we shall not bother to specily the depth of the hole. Again we have assigned
a right handed coordinate frame to the hole in which we can specify points of
contact. The 2'-axis points vertically out of the hole and the z'-axis and y'-axis
are aligned with the edges of the hole. The origin of the frame is located in
the corner shown in Figure 3.9 and lies in the plane formed by the top edges of
the hole. The three points of contact relative to the hole coordinates are then
represented by the vectors ""l, IE’Z, and IS& respectively.

By aligning the coordinate frames with the edges of the peg and the hole
we are able to take advantage of the simplicity inherent in representing edges
of a right parallelepiped. Namely, each edge-edge contact can be represented by
a position vector with only onc independert unknown. For example, the three
components of the position vector R, are: [/2 —a along the z-axis, —w/2 along
the y-axis, and —L along the z-axis. We see that the y and z components of R
are simply constant dimensional parameters of the peg. Only the z component
contains an unknown variable a, which in this case represents the displacement
of contact point one along the edge which is aligned with the z-axis. Therefore
any motions of the peg within the configuration will result in changing only the
value of a for vector Ia.

Vertex-face contacts, although not as easily represented as edge-edge con-
tacts, can also be represented in a relatively straightforward way. For a point of
contact on a vertex of the peg, the components of the position vector contain no
unknowns since the position of the vertex relative to the rest of the peg renains
constant. The corresponding position vector in hole coordinates will lie in the
plane formed by the side of the hole in contact and will therefore contain an

unknown in those two of its three components that lie in the plane.
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3.3.2 Selecting a Subset of Configurations

From the list of configurations developed in the last section we will now select
a subset from which to build an assembly strategy. As was mentioned in the
introduction to this chapter, the development of an assembly strategy is an
iterative process. Thercfore, the set of configurations initially chosen may prove
to be insufficient and therefore need to be revised later in the design process. In
fact we shall see some specific examples of how the geometry of a specific case
under study, including f[actors such as tolerancing, will have a significant impact
on the final configurations chosen to describe an assembly path.

In generating our configuration subset we shall make use of the heuristics of
Section 3.2.1. In particular, we shall select configurations that tend to increase
the number of constraints, contain edge/corner contacts, and require only small
motions to reach the next configuration in the assembly path. This last crite-
rion, i.e. that of considering only small motions between configurations, follows
directly from our discussion of the relationship between unit velocity and posi-
tion uncertainties, It is designed to help us to reduce the associated errors of
sampling only a few points per configuration to represent the path of motion
through the configuration. In ether words, it is intended to support our assump-
tion that the solution spaces will not change appreciably between configuration
transition points. Our aim then is to make the assembly problem more tractable
by zmalyzing.as sparse a sct of actual positions as possible.

3 pt. Edge-Edge Contact: [Case 1]

The first contact configuration we shall use, shown in Figure 3.10, is the 3
pt. edge-edge contact outlined in Section 3.2.1.4. As was mentioned earlier, this
edge-edge configuration provides a very robust initial condition for our strat-
egy since it requires a low positioning resolution to achieve reliably. With this
configuration providing the starting point for the following configurations that
will be achieved through compﬁant motions, the positioning resolution of our
system becomes less important in plzm-ning our strategy. Since each edge-edge
contact removes onc degree of [veedom from the peg, it has three remaining

degrees of freedom in this configuration. In terms of our contact notation of
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Figure 3.10: Case One

Section 3.2.2.2, Case 1 is of the form (SE1.BE2A:TIL3).

Bottom Edge in Corner: [Case 2]

From the three edge-edge configuration we shall next establish contact be-
tween a corner of the hole and a bottom edge of the peg. This contact, shown in
Figure 3.11, represents a reduction from three to two degrees of freedom for the
peg. Case 2 also represents a transition of configurations since the bottom edge
of the peg is now touching a new edge of the hole, as well as the previous one.
In other words, this transition case represents two configurations of the peg and
Lole occurring simultaneously. These configurations are both also of the form
(SE1.BE2A:TE3), where a different top edge of the hole is specified in each.

Bottom Edge-Corner, Side Edge-Corner: [Case 3]

From Case 2, we will establish another edge-corner contact, this time between
an adjacent side edge of the peg and an adjacent corner of the hole, as shown
in Figure 3.12. Here again, Case 3 represents a transition of configurations.

The first two configurations of Case 2 are still valid, and to them we have
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Figure 3.12: Case Three
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Figure 3.13: Case Four

added a third simultaneously occurring configuration. The models used to define
the equilibrium of this case will represent a combination of models that would
represent those three configurations, each delined separately. Here again the
three configurations are all of the form (SE1.BE2A:TE3).

Peg in the Hole: [Case 4]

I'rom Case 3, we will slide until the peg has cleared the top edges of the hole.
As the peg slides in to the hole, contact will be established between a vertex of
the peg and a face of the hole, as shown in Figure 3.13. The configurations used

to describe Case 4 are of the form (SE2A.V1:TE2A.51) and (SE1.VL:TE1.81).

3.3.3 XKinematic Constraints

We recall that an unconstrained three-dimensional rigid body can have a max-
imum of six degrees of freedom and will therefore require six independent pa-
rameters to describe its position uniquely. As we reduce the degrees of freedom

by imposing motion constraints, we reduce the nnmber of these parameters that



CHAPTTER 3. ASSIEMBLY IN THRICI DIMENSIONS 96

may be specified independently. We shall now develop representations for these

constraints for the set of configurations just chosen.

3.3.3.1 Coordinate Transformations

Given a pair of coordinate frames, one moving and the other fixed, we can deter-
mine a transformation that relates the translational and rotational displacement

of the moving frame relative to the fixed reference frame. This transformation

is of the form:

Uf{;md — [C] U"mouing + R‘” (334)

where U/ represents the axes of the fized reference frame, U™ represents
the 1noving coordinate frame, [C] is a 3 x 3 rotational transformation matrix
representing the rotational displacement of the two coordinate frames in the
fixed frame, and R, is the column vector representing the linear displacement

of the origins of the two frames in the fixed frame. Therefore to represent any

— moving

vector K, of the moving frame in the fixed frame we write:
- [ized = troving ~
Rm ~ =[C] R + Ry (3.35)
—~ moving . . -+ fized |
where R,, is any vector in tke moving frame and R, is the correspond-

ing vector in the fized reference frame.

For the purposes of our model we shall choose the fixed coordinate frame to
be that of the peg and the moving frame to be that of the hole. This may seem
strange since it is the peg that shall actually be nioving while the hole remains
stationary, but since we shall be specifying our applicd forces and moments
relative to the peg it makes more sense to choose the peg to be our reference.
Therefore all of our specified motions will be of the hole moving around the peg.**

We shall choose a roll-pitch-yaw representation of rotation for convenience.
Namely, a rotational displacement of the hole relative to the peg will consist of

a rotation 0, about the 2'-axis of the hole, followed by a rotation 0, about the

M The task of trausforming these motions for the purpose of implementation consists a straight-

forward inversion and will be detailed i Chapter 4.
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y'-axis of the hole, followed finally by a rotation 0. about the 2'-axis of the hole.

We can represent these rotations in matrix form by:

10 0
ROT(2',0,) =10 cosl, —sinf, (3.36)

0 sinfy cosl,

for the 2’ rotation:

cosfly 0 sinfy
ROT(y',Oy:) = 0 1 0 (3.37)

~sind, 0 cosf,

for the y' rotation: and

cosf, —sinf, O
ROT(Z’, 031) = sin 02/ cos 821 0 (3.38)
0 0 1

for the 2’ rotation. .
To determine the clements of the rotation maltrix [C] we carry out the fol-

lowing matrix multiplications:
[C] = ROT(Z',0.) ROT(y',0,) ROT (<, 8,) (3.39)

where the matrices are multiplied in reverse order, namely the second times the
third, and then the result by the first. We do this because the rotation matrices
operate on vectors by post multiplication, hence the vector being rotated would
be placed at the far right. of the above expression to be operated on by the

ROT(z',0,) matrix first. What we end up with is the matrix:

Cu Cp Cyis
[Cl=| Cu Cun Cuy (3.40)
Cy Ci Cyg _|'
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where the eletuents have the values:

Ciy =cosfycosf,

Clg = sin 01' sin Byl cos Hzr - N3 B:EI sin 021

Ci3 = sin 8, sin 0, 4 cos 8, sin 0, cos 8

Cay = cos b, sin f,

Cag == sin 8, sin 8y sin 0 + cos &8, cos O, (3.41)
Caz = cos 0 sin 0y sinf,r — sin f, cos 0

03; = —sin ()y,

Cia = sin @, cos 8,

Cas = cos 8, cos b,

We shall represent the components of R, as:

=1 Ry (3.42)

3.3.3.2 Motion Constraints for Given Configurations

Now that we have geometric models of the peg and hole and the transforma-
tions necessary to relate them, we may begin the task of characterizing the
kinematic constraints imposed by the part geometries. In particular we shall
want to specify the position of the hole relative to the peg in terms of the
smallest set of independent parameters allowable. The previous coordinate
transformation contained the maximum set of 6 unknown position parameters
(0;,0;,0’:,.Rmu,Ry”,Rzn). For a configuration with three degrees of freedom, for
exaniple, only three of these parameters may he specified independently, while
the other three will be functions of these. Qur task thercfore is Lo generate these
relationships for each of our cases.

We begin with case one described earlier in this chapter. Figure 3.14 shows
this case with all three contact points specified in both coordinate systems. We
note that the vector pair R and .I:’.ll both describe the saime point in their
respective coordinate frames. This is also true for the other two pairs: Iy and

—f — — 1
Ity , By and Ry. We can usc these vector pairs to determine the nccessary
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z A

Tigure 3.14: Kinematic Constraints: Case One
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constraints since point one must be the same point in both coordinate frames
as must also be true for points two and three. We therefore have the three
constraints we +sere looking for.

We note that point one is constrained by definition to lie on the bottom edge
of the peg as shown in Figure 3.14. This edge, which is parallel to the z-axis
of the peg, can also be represented as the intersection of the bottom and side
faces of the peg as shown. Since point one in hole coordinates, represented by
the tip of vector .lfll, must also be subject to this same constraint, we can write

the following relation:

0| Ciw Ciz Cis ! Rz w
1 . Cgl C'_)_Q ng a + qu = "—'2" (343)
0 Cy Cyz Ciyg 0 Rz,
which translates into the scalar equation:
I'Cip + d'Co + Ry = —E;]‘ (3.14)

The above equation states that poini one must be located a distance —w/2 from
the origin of the peg’s coordinate frame aloug the y-axis, or to put it another
way, the dot product of the unit vecvor representing the normal of the back face
of the peg and the vector lill transformied into peg coordinates is cqual to the
magnitude of the y-axis component of the vector R

Siinilarly, using a more compact vector notation, we can write:
— -] —
U.-[[C] Ry + Ry} =~L (3.45)

which produces the scalar equation:

1’031. + (L'C:}Z + RZ() =1L (346)
The term U, is a unit vector pointing in the peg’s +z direction and is of the
form:
U,={ 0 (3.47)
L

B3 Refer to Figure 3.9 for ' a', ote..
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For points two and three we can similarly write the expressions:

= > - { {
U - [[C) B + Ro] = ~5¥Cu + Ry = 3 (3.45)
[jy ) HC] ﬁ‘-’l + RIJ] = “‘;gblczl + Ry, = “%{ (3.49)
T 5 ! 5 L ! !
U, - [[C] Ity + RUJ = ““'?:('w - C )Clg + Rzy = —'2' (3.50)
U. - ([C] Ifiil + -é;l} = —L(w' — ¢')C + Rzg = ~L (3.51)

These six equations represent the kinematic constraints between the peg
and the hole for case one. Trom them we can choose any three independent
paranieters to describe the position of the hole relative to the peg in case one.
For simplicity we shall choose the set of roll-pitch-yaw angles: (8.1, 8y, 0.1).
We can now solve for all of the position variables in termns of the roll-pitch-yaw
angles and the constant parameters of the peg and the hole. We do this by
representing the above equations in matrix lorm, inverting the resulting matrix,

and multiplying both sides by the result. Thus we can write:

(Cy 0 0 01 0] a —2 Gy |
C 0 0 001 4 ~L —1'Cy
0 Cu 0 L O00f] (=d)|_ ~4 (3.52)
0 Cy 0 010 Rz, -y
0 0 Cip L 0O Ryq -4
0 0 Cp 00 1]{ Rz ~L

To save space, the resulting expressions for (@', b', w', Rzy, Ryy, Rz), are listed

in Appendix A.
The other contact pm‘a,metefs, such as: a, b, and ¢, can be solved by plugging

the above expressions back into the transformation:

Ry = [C] B + Iy (3.53)
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and solving. We should mention that for the other cases where there are fewer
than three degrees of freedom,; the above matrix will not be square due to the
fact that the three angles (,:,0,,,0./) will no longer all be independent. The extra
equalions (rows of the matrix) are redundant and will represent the kinematic
constraints between these angles. These extra rows will be removed from the

matrix and sol.cd separately, leaving a square matrix to be inverted for the

linear parameters.

3.3.4 Representation of Sliding Constraints

Now that we have represented the kinematic constraints of the peg and hole, we
will want to represent these constraints in terms of the forces they impart to the
system during assembly. To do this we shall determine the contact normals and

contact point unit velocities and use-these to model the normal and tangential

contact forces.'¢

3.3.4.1 Determining Contact Normals

Figure 3.15 shows two cdges in contact. If we assume these to be frictionless
edges then we can see that the only forces that the cdges can exert on each other
in static equilibrium lie along the common normal between them. Any other
forces would cause the edges to accelerate relative to each other. In the presence
of friction, the two edges can exert reaction forces within a friction cone centered
about this normal.'” If we represent these two edges by the unit vectors ¢ and

-

7 as shown then the sense of the common normal is given by the cross product:
Mmrmal —=1X] (354)

We note that the sensc of the normal N, ,ma is given by the order in which
the vectors are crossed and its magnitude is determined by the cross product

relation. For the case of the peg and the hole, we shall assume that all novmals

18800 Section 3.2.4

17Spe Seetion 3.2.1.4
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noiral

IMigure 3.15: Contact Normal for Edge-Iidge Contact

point into the peg, i.e. an edge of the lLole can only push on an edge of the peg,
and the magnitude of the normal shall be 1, i.e. a unit vector, since we care

about the sense of the vector only. Therefore, to determine a normal vector of

unit magnitude we write:

(3.55)

g —_—
Npormal = ==

where the z component of the normal is always taken to be pesitive (pointing
into the peg). For a vertex-face contact, the contact normal will simply be the
normal of the face of the hole that the peg is touching, transfornied into peg

coordinates.
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| Figure 3.16: Contact Normal for an Edge-Corner Contact

For case one, the three edge-cedge contact normals will be:

L= o)

- i, Ut
o — i E .
2 . <01 (3.56)

— 7 U

Ay = [%z—f’m
where the primed unit vectors of the hole would frst have been transformed into
the peg’s coordinate frame. The contact normals for case 1 in terms of model
parameters are contained in Appendix A.

For the case of an edge of the peg in contact with a corner of the hele, the
definition of the contact normal becomes somewhat more complicated. As we
showed in Section 3.2.1.4 we can think of the corner of the hole as consisting
of two edges of the hole which are simultaneously in contact with an edge of
the peg. Therclore, each of the two edges of the hole defines a different normal

when crossed with the edge of the peg. If we consider the edge-corner contact
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to be [rictionless, then the reaction forces that can be exerted between the two
bodies could lie anywhere in a 90” arc between these two normals in the plane
they define, as shown in Figure 3.16. Here the contact normal is defined to
be the quarter plane bounded by the vectors 7 and #'. If we consider a three-
diniensional symmetric friction cone to be centered around the normal 7 and
then sweep the normal and the friction cone until they are aligned with the
normal 7', the voluime swept out represents the set of possible reaction forces in
the presence of [riction. The corner friction cone mentioned in Section 3.5 was

derived in this fashion.

3.3.4.2 Determining the Contact Velocities

As we mentioned in Section 3.2.4, the sense of the frictional reaction force will
be determined by the sense of the velocity (or impending velocity) of the contact
point. For the case of the peg moving around the hole, the contact velocities will
be given by the velocities of the points of contact relative to the peg coordinates.

Given a contact point m, specified in both coordinate frames and related by the

coordinate transformation:

B = [C] Ry + R, (3.57)
we can dilferentiate the relationship with respect to time and obtain:
d, - d - d, -1 d,.
S (Fn) = (O B + (0] SRy 4 () (3.58)

To determine the velocities of the contacts relative to the peg coordinates, we
pick a contact point which is fixed relative to the coordinates of the hole. The
velocities we shall then be concerned with are the velocities of these fixed points
relative to the peg’s coordinate frame. Since these points arc fixed relative to
the coordinates of the hole, the term d—dt(R:,,l) will be zero, therefore the velocity
of contact m, relative to the peg, is given by:
(1) = SO B + 5

We note that since the velocities given by the above equation are of contact

(1) (3.59)

points fixed to the hele and moving relative to the peg, the [rictional forces
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imposed on the peg will point in the same direction as these velocities. As
was the case with the contact normals, we are concerned only with the sense
of these velocities and not with their magnitude. To turn the above velocities
into the unit velocities we want, we shall divide each of them by their respective

magnitudes. Therefore the unit contact velocity at point m will be given by:
o 5"
5, = ) (3.60)

mo i

[ ()]

In the edge-corner case we note that in order fo: the cdge of the peg to

remain in contact with the corner of the hole, no component of the unit contact

velocity for that point may be parallel to the top edges of the hole that define
the corner. Therefore, the unit contact velocity for the edge-corner case must

be parallel to the edge of the peg that defines the contact.

3.3.5 Representing the Assembly State

We have now determined the kinematic constraints of our system and the unit
vectors that we can use to represent the normal and tangential contact forces
in our force balance equations. Before we proceed to develop these equations
we shall first look at how these relationships can best be represented in terms
of developing an assembly strategy. Here we shall use the term assembly state
to define the set of position and unit velocity parameters of the peg in a given

configuration.

3.3.5.1 Nominal Position in Terms of Roll-Pitch-Yaw Coordinates -

In Section 3.3.3.2 we chose to represent the position of case one in terms of the
three roll-pitch-yaw angles (8,0, ,0,). We could also have chosen an independent
set of the edge contact parameters such as (a, b/, ¢'). In fact such a-set might be
more aseful in specifying a desired configuration. For example, in the transition
between case one and case two we are concerned with establishing an edge-
corner contact at point three. In view of this it would make more sense to use

the edge contact parameters to specify position since we then could casily set
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up an initial condition that would guarantee point threce would reach the corner
before any other contacts, i.e. ¢’ = 6. However, solving for the roll-pitch-yaw
angles explicitly in terms of these variables would have have been extremely
difficult since it would have involved inverting large trigonometric expressions
and choosing among muitiple solutions. In addition, the resulting expressions
would have proven too unwieldy to incorporate into later equations. In the
interests of computational simiplicity then, we shall resign ourselves to using the

roll-pitch-yaw angles for now as our independent position parameters.!8

3.3.5.2 A Convenient Representation of Contact Velocities

In addition to the position parameters for the peg and hole system, we must
also specify parameters for the unit velocity of each contact point. Again, in
“light of our concern for establishing a desired configuration, we might wish to
specify our unit velocity in terms of the velocities of contact points along the
edges. Lﬁckily, in the case of velocity, we are able to do this. Consider again

cquation 3.59:

a, d - od, -
—_ = (R
2= Len w2+ L)
The derivative of the rotational transforination matrix can be represented in the
form: d
S C) =Wl (3.61)
where
0w, -w
Wii=1 - 0 (3.62)
w, -—w;, 0

The matrix [W'] represents the velocity of the hole coordinates relative to the
peg coordinates in terms of an angular velocity w' about the insianiancous azis
of rotation in the fixed frame. We notice that the clements of [W'] are linear

and would therefore be easy to invert. Since we are able to easily specify our

BNote that the number of independent roll-pitch-yaw angles will depend on the degrees of

freedom of the given case, see Section 3.3.3.2.
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velocity in termms of any sel of parameters we desire, we shall do so as outlined
helow.

From the kinematic constraints of the previous section we obtained expres-
sions for the linear contact parameters in terms of angles. By differentiating
these expressions with respect to time, we obtain a set of equations relating
the lincar edge contact velocitics to the angular velocities of the hole coordinate
frame. In case one for example, if we choose our linear parameters to be (a', b,

¢'), then we can write:

a'=F(0.,0,8")

) yr vz
¢ =7(0,,00,0.)

where 7,,() represent lincar functions. Therefore we can express the above equa-

tions in matrix forin and write:

(:l’ Au Al2 Alg 01. l
b oo=| A An Axg | 0 (3.63)
¢! Az A Agp 7 J

where the elements of [A] represent the coefficients of the angular velocity terms.
We can now easily solve for the angular velocity components in terms of the
linear contact velocities, by inverting [A] and multiplying for example. Now we
have a set of parameters, three for case one, rcpresenting the velocity of the
hole relative to the peg. As we stated in Section 3.2.3, we are concerned only
with a velocity of unit magnitude. For simplicity we shall normalize the contact
velocity parameters.!? In case one for example, if we choose ¢' = —1, then 4’
and b can be expressed in terms of ¢’; thereby reducing the number of velocity
parameters by one.

What we now have are expressious for the position and unit velocity paran-
eters of the peg and hole system, in terms of the independent roll-pitch-yaw
angles and a set of normalized contact velocities. This set of independent pa-
rameters, or state vartables, are what will have to be specified in the assembly

planning process. In Section 3.5.1 we shall develop procedures to incorporate

19T his corresponds to dropping the maguitude parameter of a vector.
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the a prior: speciflication of these state variables into the strategy development

process by setting limits on their allowable values.

3.3.6 Quasi-static Equilibrium Equations

The final step in our modeling process is to [ormulate the quasi-static lorce and
moment balance equations for our system. In the previous sections we deter-
mined the unit normal and velocity vectors which will define the senses of the
corresponding normal and tangential reaction forces. We shall now incorporate
these expressions into the equations that govern the applicd forces and moments

of our system.

In their simplest form, we can represent the requircments for guasi-static

equilibrium by:

Y F=Fat) fi= (3.64)
1=1
and .
STM =M+ Y. (Rix fi)=0 (3.65)
i1

where F.,, and M,,, arc 3 X 1 column vectors representing the applied forces
and moments respectively, R; is the position vector of contact ¢, and j-:l is the
reaction force (normal and tangential combined) at contact ¢. All vectors are
expressed in the peg coordinates.

To constrain the reaction forces to lie on the edge of their respective friction

cones, i.e. impending sliding motion, we can write:
¥ _ Tnormal Ttangent
fi= [ + f;

where

]-‘hmyunt
1

=p

-
f normul
1

In the second chapter we introduced the variable § to represent an infinites-

imal departure from equilibrium.® In particular, we stated that by adding § to

G0 Section 2.1.4
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the frictional component of each reaction force and solving the equilibrium equa-
tions for § > 0, we could specify which side of the constraint curves represented
jamming (reaction forces within the friction cone), and which side represented
sliding. We shall adopt the same procedure for the three-dimensional equilib-

rium equations. Therefore, we can write:

— -

f‘.tunyc:nt N j;_tlm!lf'"t + ;5: (366)

c Flangent
where 6; < 1 and has the same sense as [
In terms of the unit normal and velocity vectors developed earlier, we can

tewrite our reaction forces as:

frommel = [ (3.67)
}’-itangunt — ﬂfzﬁ; (368)
5; = 6%; (3.69)

where f;, i, and § are scalar quantities, For the special case of the edge-corner
contact of Section 3.3.4.1, where the normal force will lie somewhere within a

907 arc between two boundine normals, we shall represent the normal force as:
g 3 P

fnormal _ fi(7; sin ¢ + 7 cos $:} (3.70)

1

where the actual sense of the normal vector is defined by the parameter b,
Determining the value of ¢: shall be done in Section 3.5.2.

We can now rewrite our equilibrium cquations as:

Y F = Bt + Y (fifis + phidi + 63) = 0 (3.71)

t=]

and
DM = Moy + 3 (B x i) + (B x pfidi) + (B x 65,)) = 0 (3.72)
isl :
The above equations will be used to define the boundaries of our applied
force-moment solution regions. All of the factors that we have identified as

significantly affecting the assembly process are embodicd in these two cquations.
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[actors such as friction, geometry, tolerances, unit velocity, and position, are all
represented as constraints on the applied forces and moments that will be used
to control the assembly process. Our next task will be to represent and analyze

these constraints in as manageable and straightforward a way as possible.

3.4 The Applied Force-Moment Solution Space

Recall from the second chapter the solution space of (ﬁ—l vs ) [or the planar peg
and hole. In it we represented the limits on the applied force and moment that
would result in sliding, jamuming, or breaking contact. In this chapter we shall
follow a similar approach for the three-dimensional rectangular peg and hole.
Our aim will be to develop a visual interpretation of the effects of the various
factors that contrel assembly, and to develop graphical techniques that will aid
in the search for forces and moments that will guarantee successful assembly.
In this manner the process of interrelating the constraints from all the various
factors in assembly will be reduced to a process of searching for solution regions

within a well defined geometric domain.

3.4.1 The 5 Dimensional Force-Moment Space

In the two-dimensional case the set of applied forces and moments took the
form (F,,F,,M.). In addition, since the system model was quasi-static, the
magnitudes of the applied forces and moment could be normalized. In other
words, the applied force was transformed from cartesian to polar coordinates
and the resulting equations divided by its magnitude F, sc that the resultin‘g
terms were of the form (%, a). We were thereby able to reduce the order of the
solution space from 3 to 2.2

In the three dimensional case we have applied forces and moments of the form
(Fp,Fry Foy M, ,M,,M.). Since the three-dimensional system is also governed by
quasi-static equations, we can similarly normalize the above terms. Figure 3.17

shows the applied force represented in spherical coordinates. To represent the

HSee Section 2.4.5.
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Figure 3.17: Applied Force in Spherical Coordinates

force in the coordinates of the peg we write:

F, = Fsinacosf

F,=Fsinasinf (3.73)
F,=-Fcosa

where o and § are defined as shown. By dividing the equations through by
the term F, the resulting terms are (Mf‘-,‘lf,fl,“}’ ,,0). We therefore have a 5

dimensional force-moment solution space for the three-dimmensional system.

3.4.2 Making the Solution Space More Tractable

As we stated earlier, our aim is to develop representations of the constraints
on our applied forces and moments that will help us visualize and hence better
understand the relationship between the various factors that affect assembly. In
the case of the two-dimensional peg and hole, this visualization took the form of
the (%5 vs. a) solution plane. In the three-dimensional case, the 5 dimensional
solution space does not secmu to fulfill this goal directly since it is in general

very dillicult to plot, much less conceptualize, regions that are defined in 5
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dimensions. We therefore must find ways in which to represent the solution

regions in lower dimensional, and hence more manageable, domains.

3.4.2.1 Subdividing the 5D Solution Space

In order to be able to visualize the solution regions defined by the quasi-static
equilibrium equations, they must be represented into domains whose dimensions
are less than or equal to three. If we re-examine the equilibrium equations of

Section 3.3.6 in terms of their scalar components, we see that there are six scalar

equations of the form:
Y =0
o F, =0
S F, =0
Y M=
53 M,=0
> M,=0
Within these cquations are four sets of variables. Namely, the set of applied
forces and moinents in their new form, (Mf,%z,%i,a,ﬁ), the set of normal
reaction forces, (f; for 7 = 1,2,3,...), and (¢:;) where applicable, the set of
state variables, (0,,0y,0,,4d', b, ...), and the set of constant system parameters,

(Lw, ', w', L, u).** Of these four sets, two, namely the state variables and the

(3.74)

system parameters, must be predetermined before the solution regions can be
defined. The remaining two sets of variables, normal reaction forces and applied
forces and moments, will be determined by the equilibrium equations. Of these
last two scts, a given number of variables in each will be independent. For ex-
ample, in case one there are three points of edge-edge contact. Therefore there
are three normal reaction forces, fi, fo, and f3. If we solve the force balance
equations for (fi, f2, f2) in terms of functions of o and £ and substitute these

into the three moment balance equations, we will end up with three equations

22The one other variable that appears is § which is defined as being infinitesiimal and therefore

not considered in the above sets.
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of the form:

=9
Mﬁ& — g,_,(a, ) (3.75)
M=

where G,,() represent not necessarily linear functions. From this we see that,
for case one, the solution regions are determined by three independent functions
of o and 3. We can therefore represent our solution regions in three separate

solution subspaces of the form:

B

vs (a, f)
vs (o, B)
vs (a, B)

Figure 3.18 shows constraint surfaces represented in these three subspaces that

ST

were generated for a particular state of casc one. We note that the two hori-
zontal axes of each subspace represent the same (o, 8) plane. In other words,
the three (three-dimensional) subspaces have two of their three dimensions in
common with each other. The third dimension in each, namecly (”;;‘,-A}I;i, A—;’L)

are independent of the other two. When the equilibrium equations are solved

as inequalities for § > 0, the surfaces represent sliding constraints. Namely, one
side of each surface will represent applied forces and moments that will jam the
assembly, while the other side represents those that result in sliding.

To determine the breaking contact constraints on the applied forces and
moments, we take the expressions for f; in terms of @ and £ and solve them
for f; > 0, assuming 6§ = 0. In the example of case one, the breaking contact
constraints take the form of curves in the (o, §) plane. These curves, shown in
Figures 3.19 and 3.20, represent limits on the direction of the applied force I
that will break contacts. If we superimpose the curves, as shown, then a region
is defined in which all of the reaction forces arc guaranteed to be positive, i.e.
pushing on the peg. If we extend these constraints into our three subspaces,
then the portions of the sliding constraint regions that lie within these breaking
contact bounds represent valid solution regions for the case being considered.
Sliding regions that lic outside these bounds are not valid since they assume

negative reaction forces which are not physically realizable in our system.
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Figure 3.18: Sliding Constraints in 3 Three-Dimensional Subspaces
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Figure 3.20: Breaking Contact Constraint Curves, (Cont.)
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This particular representation of the solution space as a collection of three-
dimensional subspaces makes it considerably easier to visualize the force and
moment constraints and will therefore prove to be particularly useful in the strat-
egy development process. The one catch to this representation lies in the fact
that for contact cases with fewer than thrce degrees of freedom, the (%, %’i, A—f;)
dimensions of the solution space will no longer be independent of each other.
To deal with this problem, we will first examine the relationship between the
degrees of freedom of a system and the order of the resulting force-moment

constraint regions.

3.4.2.2 Number of Contacts and the Resulting Constraint Curves

We recall that the degrees of freedom a system hags is determined by the number
of independent parameters necessary to specify its position uniquely. For a
three-dimensional rigid body a maximum of six degrees of freedom is possible,
namely three position parameters and three orientation parameters. As we
add constraints we introduce dependency relationships between some of these
parameters. Just as we defined degrees of freedom, we can similarly define
degrees of constraint, namely the number of position or orientation parameters
that are no longer independent. We can therefore write the following relationship

for a three-dimensional rigid body.
do.f+doc=86

This expression illustrates the complementary relationship between the degrees
of freedom and degrees of constraint of a system. ‘

Consider again the six equilibrium equations of Section 3.4.2.1. TFor the
example of case one, the peg and hole systemn had three contact points each
representing one degrece of constraint and therefore had three (6 — 3) = 3 de-
grees of freedom remaining. By solving for and eluninating the three reaction
forces, we were able to reduce the six equations to three, cach one defining a
surface that varied in three dimensions (see Figure 3.18). In other words, each
surface represents a constraint simultancously relating three of the five force-

moment parameters (the three surfaces together constrain all five parametors).
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In addition, we were able to. derive and solve cquilibrium equations, in terms
of the normal reaction forces, that guaranteed contacts would not be broken.
These constraints took the form of three surfaces that varied in two dimensions
of our three dimensional subspaces. Bach surface simultaneously represents the
constraints on two of the five force paranicters (e,3). For any one given surface,
three of the five force-moment parameters are independent and hence not con-
strained by that surface. We note that none of the breaking contact coustraint
curves determine any constraints on the three %— dimensions of our applied
force-moment space. This is represented by the breaking contact curves in the
(a,3) plane being swept into each of the % dimensions. This represcntation
serves to illustrate why we chose to decouple our five-dimensional force-moment
space into the 3 three-dimensional subspaces.

Let us for the moment imagine the general siz-dimensional applied force-
momcut space, for example consisting of the dimensions (F,, I',, F,, M, M,, M).

If we now imagine a contact case of the peg and hole containing only two
contact points, thercfore possessing four degrees of freedom, then by eliminat-
ing the two reaction force terms we will be left with four equations. Each of
these equations will relate (constrain) three of the six force-moment parameters,
thercby defining a surface that varies in three of the six dimensions. We can
also solve the two equations for the reaction forces greater than zero which will
define two surfaces that each vary in two dimensions of our three-dimensional
subspaces.

For the case of a system with only one contact point (five degrees of freedom)
the result of eliminating from the six equilibrium equations the single normal
reaction force term will be five equations, each relating two force-mouent pa-
rameters. Each equation will define a surface that varies in two dimensions.
The single breaking contact constraint equation will represent a plane fixed by
a point on (and perpendicular to) one of the axes in each of the subspaces.

Figure 3.21 illustrates the meaning of Lhe term ‘e surfoce varying in n-
dimensions’. We can summarize the relationship between the degrees of [reedom

a system has and the dimensionality of its constraint boundaries in the general

six-dimensional force-moment space as follows:
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Figure 3.21: Variation of Surfaces in the Six-Dimensional Force-Moment Con-

straint Space
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Degrees Sliding Breaking-Contact

of Constraint Constraint

Freedom Boundaries Boundaries

five five surfaces varying in one (plane) perpendicu-
two dimensions lar to one dimension

four four surfaces varying in two surfaces varying in
three dimensions two dimensions

three three surfaces varying in three surfaces varying in
four dimensions three dimensions

two two surfaces varying in four surfaces varying in
five dimensions four dimensions

one one surface varying in six five surfaces varying in

dimensions

five dimensions

121

The two cases we omitted from the above list are six degrees of freedom and
zero degrees of freedom. A system with six degrees of freedom is by definition
unconstrained and will thercfore have no constraint boundaries. A system with
zero degrecs of freedom will be fully constrained and therefore be unabie to
move, i.e. unable to break contacts or slide.

Since our constraint space is a fve-dimensional subspace of the general six-
dimensional force-moment space, we will have to reduce the dimensions of the
corresponding constraint surfaces accordingly.?® In addition, by choosing to
represent the applied forcé in polar form using the angles o and f§, we have
introduced three nonlinear equations in three unknowns.** Some of the resulting
constraint surfaces for few degrees of freedom, therefore, will not appear to be

directly swept into higher dimensions due to the presence of these trigonometric

functions.?®

2 8ee Section 3.4.1.

H8ee Equation 3.73.

o - + L] . . - - *
BBy directly swept we mean along astraight line parallel to the axis of the dimension juto which
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What we can conclude fram the above discussion is that contact cases with
three or fewer contacts, i.e. three or more degrees of freedon, can be represented
in a straightforward way in our three force-moment constraint subspaces. In
general, the fewer degrees of freedom that are constrained, the more decoupling
of the resulting constraint equations is possible. Thercfore, the constraint regions
are bounded by lower dimensional surfaces.

As we mentioned briefly in the previous section, the cases that have more
constrained degrees of freedom pose a slight problem. Just as more degrees of
freedom resulted in lower dimensional constraint boundaries, fewer degrees of
freedom will represent higher dimensional constraint boundaries. To represent
these more constrained cases in our three subspaces, we shall have to sclect a
priort some values related to the applied force-moment parameters. This will be
equivalent to taking cross-sections of the higher dimensional constraint bound-
arics and projecting them into our lower dimensional subspaces. In Section 3.5.2
we shall illustrate a method for doing this that can be easily incorporated into
the strategy development process.

At this point we should pause and review exactly what the constraint sur-
faces previously derived actually represent. We recall that the equilibrium equa-
tions of Section 3.3.6 represent the peg and hole system in a given state defined
by the state variables representing both the position and unit velocity of the
peg. Therefore the resulting solution space surfaces actually represent equi-
librium only for that particular state. What we will be assuming is that the
regions bounded by these surfaces are well behaved in the neighborhood of this
state and therefore may be used to represent a larger portion of the assembly
trajectory.’® The scope of our solutions will therefore degend on the scope and
validity of these assummptions, as well as the other assumptions we’ve made up
to now. In Section 5.2.1 of Chapter 5 we shall examine the relationship of the 5
dimensional solution space for a discrcte state to higher dimensional spaces that

would represent a more general solution for all states.

the cnrve is being extended.

206500 Section 3.2.1.5.
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3.5 Selecting a Strategy

We have now completed the task of modeling the rectangular peg and hole
system and have developed a means of representing valid solution regions in
terms of the imposed constraints. Our task now will be to utilize these tools in
the development of a compliant assembly strategy. In effect we shall be pulling
together the previous work of this chapter and integrate it into an overall plan
of attack for developing such a strategy.

As we mentioned in the beginning of this chapter, we have adopted a design
approach to assembly planning. In order to make the problem more tractable,
we have been forced to make a number of assumptions and simplifications. Qur
approach then will combine the analysis techniques just developed and the as-
sumptions made throughout this and previous chapters. As we mentioned ear-
lier, the process of planning an assembly strategy will by necessity be somewhat
iterative in nature. It will not be surprising then if we are forced to respecify
certain parameters within our models. Our hope is that the tools provided here
will make that respecification process more straightforward and therefore reduce
the total nunber of iterations necessary during the planning process.

We can break down the planning process into five basic steps. The first two,
pamely selecting. configurations and then modeling them, have already been
completed. The next two steps are to select an assembly lrajectory consisting of
a nuunber of state variable sets with which to discretely approximate the motion
of our system, and to select a suitable set, or sets, of applied forces and moments
with which to control the assembly process. We shall deal with these two steps
next. The last step will be to evaluate the resulting asseinbly plan to deternine
if another iteration is necessary. This last step will be dealt with in Section 3.6.
The overall planning process is illustrated in Figure 3.22. The implementation
of a resnlting strategy, here shown as a scparate step, comes about after the

iterations within the loop have been completed.?

T8ee Chapter 4,
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Figure 3.23: Relating Position and Unit Velocity State Variables

3.5.1 Determining State Parameters

Given the peg and hole system in a state with n degrees of freedom, the number
of state variables that define that state will be 2 x d.o.f. — 1.22 We also notice
that this is again equal to the number of total uncertainties of our system defined
in Section 3.2.3. We can break down the number of these parameters into those
that specify position (n) and those that specily the unit velocity (n — 1). One
way that. we can think of these two groups of state variables is to say that the
position variables represent discrete points along a particular trajectory of the
peg, and the unit velecity variables represent a way to connect one position to
the next along this trajectory. This is illustrated in Figure 3.23

Recall the velocity error cone of Section 3.2.4. With it we examined qual-
itatively the relationship between position and unit velocity errors, as well as
the relationship between allowable unit velocity error and the distance between
discrete positions. We will now use a slightly modified version of this concept to

establish bounds on the unit velocity state variables in terms of position state

288¢e Section 3.3.5.2
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Figure 3.24: Case One Revisited

variables. For the purposes of illustration, we will again use case one as an ex-
ample, and have repeated an earlier figure for reference in Figure 3.24. For case
one, we chose the state variables (0,,8,,0,,4d, b)

As we mentioned in Section 3.3.5.1, the choice of roll-pitch-yaw angles to
explicitly represent position results from the compuiational complexity of de-
termining position in another equivalent set of variables. If we are willing to do
a little numerical iteration, we can determine what angles would give us the de-
sired set of linear edge contact immmeters. We can therefore, for a given state,
implicitly represent our state variables as (a',b,c’,d’ ,b) Note that the position
and velocity terms now correspond except for the absence of the term ¢&'. This
is duc‘ to the fact that we normalized é&' to be —1.%°

In general, the velocities of the contact points will be nonlinear functions

of the position of the hole relative to the peg. In other words, if we assume

050¢ Section 3.3.5.2
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a set of instantancous coutact velocities at one position, at another position
these velocities are likely to have different values. If we assume small motions,
however, then the velocities of the contact points can be assumed to be constant

over those motions. Therefore, for small motions of the hole we can write:
P1 = po + poAt (3.76)

where py represents an edge position at state 0, p; represents the same variable
at state 1, py is the linearized edge contact velocity, and At is an arbitrary time

step. So for the state variables we can write:

a'lza’u -+ a(,At
b.l :b(] + i)()Af (377)
¢y =cly + EHAL

For the third equation we remember that ¢’ = —1. In addition, our strategy
calls for the contact defined by the variable ¢/ to reach the corner of the hole

first, i.e. ¢, = 0 while @’; > 0 and &, > 0. We can therefore solve the third

equation for At as:
A
At = —<o =d) (378)

€

and substitute the above expression back into the first two equations to obtain:

by =bg + byc'o :

In order to ensure that ¢’; reaches zero first from a given starting position,

we can solve the above two equations for a’; > 0, and b; > 0 respectively to

obtain: _
> —%0
AT o (3.80)
by 2 -~

¢n
We now have expressions that represent. the lower bounds of our two unit velocity
state variables in terms of our initial position state variables that will guarantee

the desired transition configuration. To represent upper bounds on the unit



CHAPTER 3. ASSEMBLY IN THRER DIMENSIONS 128

2’ unit velocity bounds
A nominal path
Psrart
P
\ goal
+e
-g
- . +e .
A \
i I
c ’

(c'=0)

Figure 3.25: The Lincarized Velocity Error Cone

velocity state variables, we could constrain the direction of sliding to be towards

aligning the peg and the hole. In this case that would translate to:

Gp<0

; 3.1
b, <0 (3.81)

which constrains the position variables (a',b,¢') to become smaller with time.

We could also generate similar expressions that would provide unit velocity
bounds with an associated position error ke for cach position variable, which
would guarantee the desired configuration transition in the presence of positional
uncertainty. A way to represent this process graphically is shown in Figure 3.25,
where the axcs of the figure represent the contact position state variables, and
the slopes of the lines connecting the error regions represent the bounding values
of the normalized edge contact velocity variables, and the dotted line represents
a nominal trajectory assuming ne uncertainty.

This figure r=presents the unit vel-city error cone and uncertainty ball in

terms of onr state variables. It is a linearized analogy to the more general crror
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cone mentioned earlicr because we have assumed constant edge velocilies over
our range of motion. With this figure we can visualize the relationships between
our state variables as well as uncertainty. Since these state variables must be
provided a priort in order to construct the force-moment regions of our solution
space, it will serve as an important visual tool in our planning process, as well

S0

as in evaluating the sensitivity to uncertainty of the resulting strategy.

3.5.2 Choosing ‘Cross-sections’ of Higher Dimensional
Regions

In Section 3.4.2.2 we illustrated how a system with greater than two degrees of
freedom could be represented in our three force-moment subspaces. For cases
with two or fewer degrees of frecdom, however, we are not as easily able to de-
couple the MF dimensions of the five-dimensional solution space. We mentioned
that one way around this problem would be to choose a value for one or more of
the force-moment dimensions and solve the resulting equations for the remaining
variables, which could then be represented in our three subspaces. As we said
in Section 3.4.2.2, this would be equivalent to taking cross-sections of the Ligher
dimensional constraint regions and projecting them into our lower dimensional
subspaces. One problem with this approach is that if we chose a value that lies
outside of the higher dimensional solution region then no solution cross-section
will be found. It would therefore be necessary to iterate until the range over
which such a variable is valid could be determined.

From our list of chosen contact cases of Section 3.3.2, we see that the highly
constrained cases quite often involve edge-corner contacts. We recall from Sec-
tion 3.3.4.1 that one of the variables appearing in the force balance equations
for these cases was the angle ¢,,, which represents the direction of the normal
contact vector, 7,,, at point m within a 90° range. We could think of this vari-
able as if it were another normal reaction force. In other words, if we chose not
to use the representation of the corner contact with the angle ¢,,, we could have

added an additional force at point m such that the corner was constrained by

W& Section 3.6.2
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two normal forces perpendicular to cach other. One advantage of using the ¢y,
representation instead is that we know its value must be between 0 and 90° to
have any physical significance. Therefore, if we choose ¢,, to be the variable by
which we will take cross-sections of our higher dimensional constraint regions,
then we know the resulting regions will be valid if 0 < ¢,, < 90°. By using
the ¢ variables in our equations, we will therefore able to take cross-sections of
the solution regions [or highly constrained cases and ‘fit’ them into our three-
dimensional subspaces for subsequent evaluation.

One issue that arises with the a priori specification of ¢,, is that of causality.
Specifically, since ¢,, is not one of the variables whose value is directly under
our control, it is not clear that specifying its value is a sufficient condition to
determine a unique cross-section of a higher dimensional solution region. Work
on determining the uniqueness of this sectioning technique has not yet been
completed. For the present we shall assume that, where necessary, we can specify
the value of ¢,, in our strategies. If this assumption later proves to be incorrect,
then it will be necessary to choose hixed values of the applied force-moment

parameters, as mentioned earlier.

3.5.3 Finding Solution Regions

Having developed the techniques to specify consistent sets of state variables
and represent all of the cases we shall be considering in our three-dimensional
subspaces, we will now establish the techniques with which to search for selution
regions within these spaces. As stated earlier, we shall favor techniques that
allow us to visualize the effects of various parameters on the solution regions

and therefore allow us to gain an intuitive feel for these effects.

3.5.3.1 Intersecting Solution Spaces

For each state of our assembly we are now able to generate surfaces that repre-
sent the constraints on our applied forces and moments that will result in the
assembly continuing in the manner desired. Each state, thercfore, has associated

with it a set of constraint surfaces unique to that state. These surfaces arc ali
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represented in a common set of three 3 dimensional force-moment subspaces.
If we intersect the regions defined by the constraint surfaces of these various
states, the resulting intersection regions will represent solutions common to all
of the states. In other words, we begin by picking a series of vectors, whose
components represent the variables of a given state, in such a way that they
form a discrete set of points along an assembly path. The intersection region
of all the force-moment solution spaces associated with those points, then, will
represent the forces and moments that will successfully guide the assembly along
that path. We can best illustrate this process with an example.

Recall the surfaces for casec one shown in Figures 3.18 through 3.20. The

combined breaking contact curves of Figure 3.20 can be thought of as a collection

3

of surfaces extending vertically into each of the three —}:,—fl dimensions.** In a

similar fashion, Figures 3.26 and 3.27 show the constraint surfaces (represented
in the same subspaces) corresponding to a given state of case two. In Figure 3.28
we have intersected the breaking contact solution regions for the two cases in the
(o, 8) plane. The shaded region, then, represents values of the force direction

angles that will not break contacts in either case.

3.5.3.2 Superposition of Curves in the Alpha-Beta Plane

If we intersect two or more sliding constraint surfaces in the &r{i vs (a,f) sub-
spaces, it would be rather difficult to picture the exact shape of the resulting in-
tersection region, as it would constitute a rather complicated three-dimensional
volume. Fortunately, there is an alternative way of representing this form of
intersection. Figure 3.29 shows the curves dcfined by the intersection of the two
M: constraint surfaces, for cases one and two, projected into the (a, B) plane.
The shaded regions in this figure determine the values of o and 3 that lie within
non-jamming regions common to cases one and two. By performing similar op-
erations for the surfaces in the %i vs (a,B) and %= vs (o, B) subspaces and

projecting ail of the curves, including these for breaking contacts, into the same

3 Corresponding to surfaces that vary in two dimensious and are swept iuto the third. Sce

Section 3.4.2.2
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Figure 3.27: Solution Regions for Case Two, (Cont.)
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(a, B) plane, we will end up with a region defining the values of a and g that
will neither jam nor break any contacts with the proper associated moments.
To determine what the resulting ranges allowed for the AF’L terms are, we can
pick values for a and 3 within the solution region and back solve the constraint
cquations for them explicitly.

To find a force-moment solution region valid for the entire assembly path, we
can extend this procedure to include the solution regions for all of the contact
states under consideration. Our search for an overall solution region, then,
reduces to a two-dimensional search for intersection regions in the plane defined
by the applicd force angles o and . In general, a single solution valid over the
entire assembly path will not be found on the first iteration, and a number of
iterations on the set of state vectors will be required, equivalent to re-specifying
the nominal assembly path. This iteration and re-specification may also have to

include new configurations as well as states.

3.5.4 Multi-Step Strategies

It is possible thai even after a number of iterations have been made, a single
solution region may not always be found. There may be cases where the con-
servative assumptions regarding jamming and breaking contacts will prove to
be too restrictive and need to be modified to find a solution. It is quite possi-
ble, for example, that an assembly may. require more than one set of applied
force-moment vectors to guide it along a given assembly path. We will now
examine how these multiple applied force-moment vectors may be determined
when necessary.

If we are able to find a single force-moment solution region which is valid
over the entire assembly path from initial state to fully assembled end state,
then all that needs to be done is to select a point withia this region to define a
single applied force-moment vector to control the assembly. The only question

that remains is iow robust this solution region is in Lhe presence of uncertainty.

32 As an example of this, the cases one through four listed in Section 3.3.2 were the result of a

munber of iterations, with the final set being dilferent from the first.



CHAPTER 3. ASSEMBLY IN THREE DIMIENSIONS 136

The issue of robustness shall be dealt with in the next section. In general, it is
worthwhile to make at least a few iterations on the assembly path to determine if
such a single solution is likely. After these iterations, the designer should be able
to determine if his solutions seem to be converging towards a single region. The
decision to give up searching for a single step strategy and adopt a multi-step
approach is a decision that must be made after evaluating these initial trials.

If we are not able to find a single force-momient solution region for a complete
assembly path, we may be forced to choose a set of solution regions which,
taken sequentially, will cover the entire assembly path. The termination state
of one solution region would then become the beginning state for the next.
The question here becomes one of how reliable is a given termination state in
terms of estnbli'shin’g the initial conditions for the next segment of the assembly
path, with a minimum amount of associated uncertainty. To divide our overall
assembly path into a set of intermediate paths with associated intermediate
solution regions, we must decide what restrictions we wish to apply during these
transitions. We stated earlier in the chapter that our primary goal was to avoid
jamming and breaking contacts in the search for our solution regions. In the
cases where we are unable to find a single solution region we must reconsider
these restrictions. For example, if we determine a solution region which slides
the peg into the hole in the first three of four states in an assembly path but
leaves the peg jammed in the fourth, it will be necessary to apply a different
force-moment vector which will carry the peg from this jammed state to the
desired end state. One possible strategy, then, may be to allow the peg to jam
in this fourth state, and then continue with a new force-moment vector, forming
a two step assembly strategy. Although a two step strategy (or more generally
a multi-step strategy) is less desirable than a single step strategy since it would
tend to preclude a simple or passive implementation, it still represents a valid
assembly strategy. The termination state then becoines the immmediate goal state
as far as the previous path segments are concerned. All restrictions cencerning
the selection of position and unit velocity state variables required to reach this
state reliably will still hold.

As an example of when a multi-step strategy would be required, consider the
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transition between the solution regions of two cases, 4 and B, of the peg and
hole assembly. Figure 3.30 shows the intersection regions for the Mrl subspace of
cases A and B in the {a,f) plane. The intersection between sliding constraint
regions does not overlap the intersection of the breaking contact regions shown,
so a separate force-moment vector must be used to satisfy the sliding solution
regions for each case separately. The rcsulting motion will end with the peg
jammed in the beginning state of case B. To ensure a stable initial state for
the next motion, the new force-moment vector will have the same a and g
components, ensuring that no contacts shall be broken in the transition process.

In considering multi-step strategies it will be necessary to rank the vari-
ous constraints in terms of their importance in defining a robust intermediate
termination state. Of the two major constraints considercd for the single step
strategies, jamming and breaking contact, the breaking contact constraint rep-
resented the most important restriction since breaking contacts resulted in a
higher degree of uncertainty. A jammed state on the other hand maintained
the number of contacts, but represented a termination of motion along the as-
sembly path. Therefore, for multi-step assembly strategics, breaking contact
constraints represent the primary restriction relating the separate solution re-
gions, with jamming becoming a secondary consideration. In terms of our three
force-moment subspaces, then, the intersection of contact maintaining regions
in the (o,8) plane will be the first priority, with the intersection of non-jaumuning
regions wherever possible as the second priority.

Developing a multi-step strategy, then, is analogous to developing a single
step strategy except that the goal state from a previous step will determine the
initial conditions for the next.”® The resulting applicd force-moment vectors
can be represented by a chain of discrete points in the three force-moment sub-
spaces. ach point will lie within a solution region valid over some segment of
the total assembly path. We will say that the chosen assembly path (discrete set
of state vectors) and applied force-moment vector(s) together form an assembly
trajectory. Figure 3.31 shows an assembly path in the space of position pa-

rameters {configuration space), as well as the associated path in force-moment

33500 [Erdmann 84].
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space. Each point chosen in force-moment space will have associated with it
one or more points in configuration space. The points in force-moment space
represent the applied force-moment vectors valid for the corresponding states.
These combined sets of (force-moment/pesition state variable) points represent
points along the overall assembly trajectory. This trajectory, then, combines
the projected assemubly path in configuration space with the controlling applied
force-moment path in force-moment space, and is the final product of the strat-
egy developinent process. ‘

Another consideration in allowing our system to become jammed during a
multi-step strategy is that of wedging. We recall from Section 2.2.2 that if a
system is jammed in a state where some components of the reaction forces point
towards each other, reaction forces could arise that were uncontrollable by means
of the applied force and nioments. In order to reduce the risks of wedging, then,
it will be necessary to limit the magnitude of the applied force such that the
reaction forces due to the elastic deformnation of the parts are insignificant by

comparison. In the fourth chapter we shall see how the issue of wedging will be
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taken into account when considering implementations of strategies.

The next step towards using the resulting strategy to control an actual assem-
bly lies in the implementation of the assembly trajectory utilizing some passive
device, if possible, or an active control law relating the various parameters of
the trajectory.’® No assumption is made concerning the time domain in the
development of these strategies. In other words, the models used to generate
a multi-step strategy, as well as for a single step stralegy, will not determine
the amount of time required before switching to the next applied force-moment
vector in the assembly trajectory. The determination of this switching param-

eter, either in terms of time or position, will depend on the particular formn of

imiplementation sclected for the strategy.

3.6 Evaluation

Having now developed a strategy and with at least one iteration of the design
loop completed, it is time to coinpare and evaluate the results to determine if
another iteration is in order. To perform this evaluation adequately we will have
to consider issues such as sensitivity of the resulting strategies to uncertainty,
their simplicity in terms of implementation, and the generality of the strategies
as applied to other assemblies. We will begin by again considering the issue of

uncertainty.

3.6.1 'Determining the Effects of Uncertainty

One of the reasons we considered controlling an assembly with the applied forces
and moments in the first place is the belief that the resulting behavior of the
system would be relatively insensitive to uncertainty in position. Assuming that
we have climinated the possibility of encountering unanticipated configurations
by properly choosing cur state variables, we will consider the behavior of our
force-moment solution regions within the neighborhood of a given state. A-

solution region which varies markedly with a small change in position will be

34Gee Section 1.3.3
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considered to be sensitive to positional uncertainty and therefore less desirable
than a more insensitive region.

In terms of an assembly trajectory, we can say that a solution region in
force-moment space that is strongly coupled with its associated state vector in
configuration space is less robust than an equivalent solution space and force-
momnuent pair that are less strongly coupled. Since the components of this state
vector represent both position and unit velocity, this coupling will be a function
of both the position and unit velocity of that state. In addition, since the
limits on the unit velocity components can be expressed in terms of the position
components of that state and neighboring states (see Section 3.5.1), the resulting
mapping of sensitivity from force-moment space to configuration space is solely
a function of tHe position states of the chosen assembly path.

To establish a quantitative means of comparing the sensitivity of a given
assembly trajectory to that of another trajectory, we can write the following

relation: "
aVr

aP
where §+ is defined as the sensitivity factor of a given trajectory T, Vr is the

St = (3.82)

volume of the associated solution region in force-moment space, and P is the
nominal assembly path. Since the assembly path of our trajectory T would be
made up of discrete states, we can discretize the evaluation of 8 for each state
along the patfh. In terms of our three force-moment subspaces and the positional

uncertainty term € we can rewrite Equation 3.82 for a given state A of trajectory

T as:
[P vﬂ - vﬂ+e
Are T
€
where the volume of the solution region for state A has the units of length® and
the positional uncertainty ¢ has unit of length. The sensitivity factor of state
A, then, has the units of leng:ﬁh2

For a given state the boundmg surfaces of our force-moment solution regions

(3.83)

are functions of & and § only, so we can explicitly write the sensitivity factor

1 > [ /g_? [QWM / d_“ da dﬂ] (3.84)

F baund

as:
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for 7 = z,y, 2z, and where

M; —‘M"_Mﬂ“l
Fbound — | F F

Ate
Ofb(,,md““—‘-[a'iq n aé N a,’.‘;] ﬂ[al" n ...Qi“]

where %{4 bourd 7€ the bounding surfaces that vary in three dimensions, 0py,q are
the bounding surfaces that vary in two or less dimensions (a and B), and n is the
number of contacts in case 4. To judge which of two selected trajectories is more
. sensitive in terms of the states along those trajectories, then, we can compare
the average sensitivity factors of each. The trajectory with the lower average
sensitivity factor can be considered to be less sensitive to positional uncertainty
and hence more robust. In addition, since we are able to evaluate each discrete
state along a given assembly trajectory, we can optimize that trajectory to make
the total semsitivity factor a minimum.

The above sensitivity factor provides an approximate quantitative measure
of the sensitivity of solution regions to positional uncertainty in a given state,
As such, the sensitivity factor is a useful addition to the previously presented
visual techniques to evaluate sensitivity of a given strategy. We note that a
similar procedure may be used to determine the sensitivity of the force-moment
solution regions to variations in other parameters as well. For example, if we use
¢ to represent variations in, say, the coeflicient of friction y, or the tolerances
of our parts (I' — 1), etc., then the above expression for §; becomes a general

sensitivity factor for state A for any parameter of interest.

3.6.2 Propagation of Errors Between Discrete States

Recall the linearized error cone of Section 3.5.1. With it we were able to represent
graphically the bounds imposed of the unit velocity components of our state
vector. In addition, we were able to illustrate the relationship between the
maximum uncertainty at the beginning state of a given contact case and the
maximum uncertainty at the end state of that case.3® Since the states that

comprise our assembly path are discrete in nature, there is no way to represent

%3ee Figure 3.25
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(c’=0)

(6°=0)
c’=0

Figure 3.32: Linking Discrete States Via the Velocity Etror Cone

the effects of uncertainty acting continuously along that path. However, given
the discrete error cone connecting two states, we are able to approxiinate the
propagation of errors along our assembly path.

Figure 3.32 shows a series of states linked by error cones in a three-dimension-
al linear configuration space. State A is the initial state of case I, which has three
degrees of freedom and therefore has a three-dimensional error ‘cube’ of length
2¢ on a side. State B represents the cnd state of case I and the beginning state of
case II. Case IT has only two degrees of freedom so the uncertainty region is now
a two-dimensional rectangle. The dimensions of this rectangle are determined
by the extreme values of the remaining independent position state variables
that intersect other, possibly undesirable, configurations. In other words, if
state variables a or b lic outside the rectangle in state B, one of the dependent
contact position variables would become less than or equal to zero, indicating an

additional contact had been made or an existing contact had been broken. The
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Figure 3.33: Propagation of Linearization Errors

plane containing this new uncertainty rectangle is the plane defined by ¢’ = 0.
State C represents the end state of case II and the beginning state of case IIL
Case III has only one degree of freedom so its uncertainty region is a line.®
The endpoints of the line represent extreme values of a that represent two new
configurations. State C could be the goal state of a strategy, an intermediate
state in a strategy, or a sub-goal of a sub-strategy. These connected error cones
serve as a visual as well as analytical means to bound our assembly path in
terms of the maximum anticipated positional uncertainty of our system.?’

In Section 3.5.1 we indicated that the velocities between states would be con-
sidered constant. One consequence of this assumption was the requirement that
the distance between discrete states be small. In general this linearization as-
sumption, as well as other assumptions and simplifications will introduce errors
that will also be propagated along the assembly path. Figure 3.33 illustrates
this error propagation. Assuming no uncertainty for the momeni, the position

at state A is known precisely. A linear velocity is assumed to move the system

38Notc the analogy to the uncertainty regions in Figure 3.3.

37See [Brooks 82].
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from state A to state 8. The actual path of the system is shown as a dotted
curve, and the actual state B is at a different position than projected. This
process is repeated in nioving the system to state C, where the error continues
to grow. As we stated before, the inherent system uncertainty here is assumed
to be zero. The propagated errors we are seeing, then, are an example of model
based uncertainty introduced by our simplifications. Unlike inherent system
based uncertainty, we have some control over this kind of uncertainty. To avoid
the risks associated with model based uncertainty we have to be careful to ex-
amine our assumptions continually and be as conservative as possible with our
restrictions. In the case of the errors shown in the figure, for example, we have

chosen a set of velocity error cones that will contain these propagated errors.®

3.7 Summary

In this chapter we have modeled the insertion of a three-dimensional rectangular
peg into a rectangular hole. By using a set of modeling elements that describe
the interactions between simple straight edges and flat surfaces, we have tried
to extend the generality of these models to include a wide variety of rectangular
parts.

We have outlined a set of heuristics to aid in the development of assembly
strategies and identified a set of contact configurations that would be sufficient
to describe an assembly path. In addition, we have determined a set of initial
conditions that reduces the positional precision required of the device performing
the assembly.

The representation of the state of an assembly in terms of a convenient set of
linear contact parameters was introduced. In order to represent the limits that
uncertainty places on the specification of an assembly path, the use of a linearized
position uncertainty region and velocity error cone were also introduced.

We have again chosen the applied force and moment as the control variables

of the insertion. We have extended the concept of the applied force-moment

38Note that the range of errors propagated in this fashion will in general be bounded by the

geometric constraints of the asscmbly.
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solution space developed in the last chapter and represented within this space the
constraints imposed by friction on the range of forces and moments that would
allow an assembly to proceed. Due to the higher dimensional nature of this force-
moment space for three dimensions, methods of simplifying the representation
of constraint surfaces into lower dimensional subspaces were developed. These
subspaces were then used as a convenient domain in which to intersect and
compare constraints for different configurations of the peg and hole.

In cases where intersection regions might not be found that span an entire
assembly path, the concept of the multi-step strategy was introduced. Here a
strategy was considered that allowed jamming to occur between commanded
motions under controlled circumstances. An overall assembly strategy, then,
would consist of a set, or chain, of compliant motions that would connect an
initial configuration to a desired goal configuration. This additional strategy
was presented as an extension of the earlier planning techniques to allow them
to handle cases that otherwise might have not appear to possess solutions.

Finally, the means of evaluating and comparing the relative sensitivity of
strategies to uncertainty was presented in order to guide the iteration towards

the development of a robust assembly strategy.



Chapter 4
Implementation

Up to this point we have focused our attention on the development of assembly
strategies and have not primarily concerned ourselves with the issues involved
in their implementation. In particular, while developing our assembly strategies
in the last two chapters we have avoided the explicit specification of pesition
and velocity terms wherever possibie and chose the applied force and moment
as the primary control variables of our system. By considering only the applied
forces in controlling the assembly, we have implicitly assumed that we could
implement a strategy in pure force control.!

In this chapter, we shall provide two examples of strategy implementation.
In the case of the two-dimensional peg and hole of Chapter 2, we shall prescnt a
passive device which successfully performs chamferless insertion in the presence
of signiﬁéant positional uncertainty and tight part tolerances. For the case of the
three-dimensional rectangular peg and hole, we shall present an implemnentation
based on active force control using a robot.

Implementation of compliant motion strategies, both in terms of analysis
and actual hardware, involves many interesting and difficult issues. Cur aim in
this chapter will be to provide a sampling of some of these issues as they relate
to our understanding of how strategics may be better designed with their im-

plementation in mind. As we shall see, a passive implementation will in general

L8ee Section 1.3.3.
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be faster, simpler, and more robust for a given set of part parameters; while
an active (computer controlled) implementation will often have lower perfor-
mance, but may be more easily modified and applied to a wider range of parts.
Indeed the decision to pursue a passive verses active strategy implementation
will invariably depend upon the associated tradeoffs between performance and
flexibility for a given case.

The seccond major goal of this chapter will be to evaluate experimentally the
results of our previous derivations and calculations. In particular, by providing
a proof of concept, we hope to verify that the models developed and assumptions

made throughout the strategy development process are valid representations of

the actual physical systems.

4.1 2D Example: A Passive Implementation

Figure 4.1 shows a simple planar mechanism implementing a passive insertion
strategy. The material of the peg, hole, and linkage is aluminum, and the white
background is Teflon sheet used to reduce external friction. The Clearance
between the peg and the hole shown is 0.002 inch and the measured static
coeflicient of friction is p, = 0.6. The total time required for a typical insertion
using this device is on the order of one second. If the linkage is made to move
much faster, inertial effects become evident and the peg tends to jam.

The mechanism consists of four links intcrconnected by four joints, three
rotary and one sliding, as shown. Neglecting rigid body motion of the entire
mechanism in the plane, the linkage has onc degree of frecedom. There are no
energy storage elements incorporated ints the mechanism (i.e.. springs), and the
only non-conservative forces and moments acting between the links are those
due to [riction. In order to analyze the equivalent force and moment exerted on
the peg, we shall examine the mechanism in quasi-static equilibriufn. Figure 4.2

presents a schematic illustration of the linkage of Figure 4.1. The force and
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Figure 4.1: Mechanism Performing Insertion
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Figure 4.2: Chamferless Insertion Mechanism

moment balance squations are:

Y F,=—fsina+ Fsin(f—¢) =0
Y, =fcosa— Fcos(fy—~¢) =0 (4.85)
S My=m —I[Fsing =0

From the kinematic constraints of the linkage, using the law of cosines, we can

| = lysin 8y + /12 — [2 cos 0,° 4.86
12

Combizing these expressions, we derive the following applied force and moment

? = [lysin 6y + /13 — l£ cos 6,%] sin ¢

@ = 02 — gb ) (487)

write:

equations:

where '—}3 and o are opposite in sense to the equivalent terms applied directly to

the peg in the analysis of chapter two.



CHAPTER 4. IMPLEMENTATION 151

»

- x
o

Config. 3

— . Config. 5

ALFHA —=->

Figure 4.3: Experimental Results from the Planar Insertion Mechanism

Using the quasi-static model of the planar linkage, experiments were per-
formed and the equivalent applied forces and moments acting on the peg were

determined. The mechanism parameters used in the experiment were

1,=5.50-inches
{;=2.80 inches

The results of these experiments were plotted in the corner crossiug (% vs @)
plane for the given parameters-of the peg and the hole and are shown in Iig-
ure 4.3. As we can see from the distribution of data points, the mechanism
succeeded in performing insertion over a wider range of applied forces and mo-
ments than predicted by our model. We notice that all of the po'ints recorded
correspond to values that should allow the peg to slide (ie., are above the appro-
priate 4} curves), but that many would theoretically correspond to values of o
that wonld cause contacts to be broken. We recall from the plots of Figures 2.24

and 2.25 that the breaking contact limits on « were strongly influenced by the
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value of y whereas the sliding constraint curves were less so. This would indicate
that the value of u chosen for our model, which we measured experimentally,
could be a significant source of error in our model.

Another possible reason for the discrepancies observed is the presence of un-
modeled external friction in the system, provided by the surface of the plane.
Since friction is acling on the insertion mechanism as well as the peg, the mag-
nitude and direction of the apparent force and moment acting on the peg would

differ from that modeled.

4.2 3D Example: Implementing a Strategy on
a Robot

For three-dimensional assembly, the development of a passive assembly mech-
anism is _not, unfortunately, so straightforward. In order to demonstrate the
validity of our results from Chapter 3, we shall choose to implement our assem-
bly strategy on a roi-ot operating under force control. The parameters from our
three-dimensional analysis that we shall be using for our implementation are
the initial conditions of the peg and hole, and the applied forces and moments
derived from the force-moment subspace regions for cases 1 through 4. The plots

from which these force and moment were derived ave contained in Appendix 3.

4.2.1 The MIT Compliant Motion System

Figure 4.4 shows the M.LT, Artificial Intelligence Lab’s PUMA 600 robot which
has been extensively modified to run both in position and compliance control
modecs under the high level command of a Symbolics 3600 lisp machine and
the lower level command of two PDP 11/23 minicomputers. Attached between
the wrist and end effector of the robot is a 6 axis strain gauge force sensor
which allows the PUMA to sensc forces along and moments about a set of
cartesian axes located ab the wrist. The compliance mode of the PUMA used in

the experiments conducted for this thesis was impleraented in the form of the
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Figure 4.4: PUMA 600 Robot, Modified for Active Compliance
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compliance equation:

A§ = B;*JT((F; ~ F)| (4.88)

where:
A8 The-velocities to be added to the joint velocities of a non — compliant
trajectory, a 6 vector.
B! Inverse of the joint damping matrix, a 6 element diagonal matrix.
JT  Jacobian transpose in the frame of the compliance center, a 6 X 6
matrix.
Fr The commanded cartesian force — torque vector, a 6 vector in the
compliance center.
Fg  The transformed force — torque vector as measured by the wrist sensor.
For the purposes of our implementation we shall be specifying the com-
manded forces and moments to be exerted by the robot. Although we have
commanded no velocities the implementation of compliance on the PUMA in-
corporates a significant amount of joint damping B{l in order to maintain the
stability of the system while in contact with the enyironment.? As a result,

the speed of the resulting implementation will be reduced considerably in the

presence of this joint damping.

4.2.2 Expei'imental Setup

Figure 4.5 shows the experimental setup used for inserting a rectangular peg
into a rectangular hole. The rectangular peg, shown in Figure 4.6 is made of
machined steel and is fixed to the force gauge at the end of the PUMA'’s wrist.
In order to improve the stability of the force control algorithm, 0.125 inch rubber
spacers are placed between the wrist and peg mounting plates to act as a low
pass filter on the sensed force signals.

The hole into which the peg will be inserted, shown in Figure 4.7, is also
made of machined steel. The sides of the hole are bolted to each other through
horizontal slots, as shown. These slots allow the dimensions of the hole to be
varied. The hole assembly is then rigidly bolted to the work surface. The

2§ee [Jones and O'Donnell 85},
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Figure 4.5: Setup for the Three-Dimensional Peg and Hole
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Figure 4.6: Rectangular Peg

/

Figure 4.7: Adjustable Rectangular Hole
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Az Peg Coordinates
Y
y
x
X
Y
Robot Coordinates Z

_ Figure 4.8: Wrist Coordinates of the PUMA

parameters of the peg and hole used in the experiment are:

[ =1.250 in
w =1.000 in
' =1.255 in
w'=1.005 in
L =2.000 in

u =05  steel on steel

The coordinate frame of the wrist of the robot, shown in Figure 4.8, is
different from the peg coordinate frame in which we specified our commanded
forces and mon cats. In order to specify the proper forces and moments, then,

we shall have to transform them into the wrist coordinates of the robot. The

transformation for this is simply

Tpeg— " Yrobot
Ypeg = —Lrobot

Zpeg = ~—Zrobot
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In addition, the origin of the wrist coordinate frame of the PUMA is located
6.5 inches from the tip of the peg. Since our strategy was developed for a tip
to coordinate frame distance of only L == 2.0 inches, we shall have to scale our
moments about the z and y axes of the robot by a factor of 3.25.

We recall from Section 3.3.5.1 that the orientation of the peg was determined
in roll-pitch-yaw coordinates.®> We also recall that another way to represent a
given position of the peg in a given contact case was to determine a set of
linear edge contact parameters (@',b, etc.) and then iterate to determine the
corresponding roll-pitch-yaw zmgleé. To set up the peg in initial contact with
the hole, then, we simply place the robot in compliance mode and move the peg

by hand to the desired position.

4.3 Results

The commanded forces and moments in the wrist coordinates of the PUMA

were:
= 26.8 ounces

= 22.4 ounces

F,

F, = 19.6 ounces

F;

M,=-139.2 in — ounces
M,= 160.0 in — ounces

M,= 8.8 in — ounces

These values correspond, after scaling, to the following values derived from the

force-moinent intersection regions in Appendix 3.

—0.98 radians
0.94 radians

=—1.23 inches
1.07 inches

~0.07 inches

i

=[R 'x:LEh:L? W R

Il

3 Actnally, we specified the position of the hole relative to the peg.
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The Specific values chosen for the applied forces represented a tradeofl be-
tween system resolution and the stiffness of the peg and hole hardware. Specifi-
cally, the force control algorithm of the PUMA is capable of exerting forces and
moments within a resolution of approximately 10 ounces (in-ounces) about
a nominal selected value. This resolution limitation places a lower bound on
the commanded forces and moments that will meet the requirements of a given
strategy. On the other end of the scale, the problem of part deformation. and
wedging places an upper bound on the allowable commanded forces.* The values
chosen, then, represent a reasonable compromise between these two limitations.

Once the peg was positioned relative to the hole and the desired forces and
monients entered into the controller, the PUMA was commanded te begin com-
plying. Figures 4.9 and 4.10 show the progression of the assembly.

During the assembly, marks were made on the peg along the edges of the hole.
Figurc 4.11 shows this process and the resulting visual record of the assembly.
The total time required to complete the insertion shown was approximately
1 hour and 10 minutes. As we can see, this performance does not conipare
favorably with that of the passive implementation of Section 4.1. One reason
for the low speed of the implementation was the large amount of robot joint
damping required to maintain stability during contact between the peg and the
hole.

Despite the rather low performance of the robot implementation, the ex-
perimental results do appear to indicate that the nominak forces and moments
derived from our strategy development procedure are valid given the limitations
of the robot’s force resolution capability and variations in the established initial
conditions. Although operating very slowly, the robot did succceded in carrying
out the insertion in the presence of a significant amount of positional uncertainty.
The portion of the assembly path that consisted of the peg entering the hole
(edge crossing, cases one through three) took a little over a minute to complete

while the remaining 69 minutes counsisted of the peg slowly sliding deeper into

the hole (case four).

4Gee Section 2.2.2.
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Figure 4.9: PUMA Performing Peg in Hole Insertion
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Figure 4.10: PUMA Performing Peg in Hole Insertion, {Cont.)
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Figure 4.11: Visaally Recording the Assembly



Chapter 5

Conclusion

5.1 Summary

In this thesis we have developed compliant motion strategies that successfully
insert a rectangular peg into a rectangular hole without the aid of chamfers.
The modeling and analytical techniques that have been developed along the
way have given us the means with which to plan assembly in three dimensions.
By controlling our system wich a set of applied forces and moments, aad rep-
resenting motion constraints in terms of limits on those forces and moments,
we have reduced the sensitivity of our solutions to positional uncertainty. We
have determined a set of initial conditions that are insensitive to small positional
variations, and in so doing, have reduced the overall positioning requirements
and increased the robustness of the assembly system.

The applied force-moment constraint space represents a convenient domain
in which many of the factors that affect assembly can be combined and stud-
ied. The response of a system to changes in various parameters, such as posi-
tion or tolerancing, can be represented visually as changes in the corresponding
constraint surfaces. The search for forces and moments that would guide an
assembly towards completion can then be reduced to scarching for intersecting
regions, bounded by constraint curves, in a two-dimensional plane.

By limiting ourselves to the quasi-static domain we were attempting to

163
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reduce the complexity of modeling and analyzing three dimensional systems.
When it was determined that the combined jamming and breaking contact con-
straints necessary to guarantec a reliable strategy could be too restrictive under
some circumstances, we extended our strategies to allow multiple force-moment
vectors to be applicd sequentially. Transition states between the application
of new force-moment vectors would allow the system to be jammed under pre-
determined conditions.

Finaily, by separating the applied force and moment terms from the posi-
tion and velocity terms as much as possible in our analysis, we have not tied
our resulting strategies to any one particular means of implementation. In fact,
we were able to devise different implementation strategies from the same form
of analysis for the two and three-dimensional rectangular peg and hole exam-

ples, and demonstrated the validity of the resulting strategies by means of their

implementation.

5.2 Generality of the Planning Process

The strategy development process outlined in this thesis is an intermediate strat-
egy planning technique in that many of the decisions and parameter specifica-
tions are lelt up to a designer instead of being determmined automatically. In
Figure 3.22 of Section 3.5 we presented a flow chart of the strategy development
process outlining the iterative nature of the design process of assembly plan-
ning. Much of this iteration results from the limitations of our models and the
assumptions necessary to make the problem manageable. A natural question
to ask, then, is how general are our strategy development techniques and the
assembly strategies that result from their use. Putting it another way, have
our assumptions and simplifications limited the generality of the strategy de-
velopment process to any great extent and, if so, how may we cvaluate and
possibly overcome some of these limitations? In order to address these ques-
tions, we shall compare our planning procedure to some more general (and as of

yet unimplemented) high level procedures developed for fine motion planning.
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5.2.1 Higher Dimensional Constraint Regions

Recall from Section 3.4.2.2 that the solution regions in the 5 dimensional ap-
plied force-moment space represented the set applied forces and moments that
would cause an assembly to slide at a specific position and in a given direction.
We chose to model only discrete states of the assembly in order to reduce the
tremendous complexity involved in developing models valid for all states. Fach
state, by our definition, consisted of the independent set of position and unit
velocity parameters that allowed the equilibrium condition of the assembly to
be uniquely defined. In order to specify the force-moment constraints over the
entire assembly path, then, it was necessary to discretely pick points along that
path. Solution regions for each point, or state, were then intersected to deter-
mine if any general solution regions existed over the path or some segment of
it. In order to validate this discretization of the assembly trajectory, we had to
assume that the force-moment constraint surfaces were well behaved functions
of position.! The only conditions under which we could not make this assump-
tion were at configuration transition points, wherz we knew from the results
of Chapter 2 that these transitions often accompanted large and discontinuous
changes in the associated constraint regions.

Figure 5.1 illustrates conceptually the relationship of these single state force-
moment constraint regions to the constraint regions valid for all positions and
velocities. A state defining a set of regions in our 5 dimensional force-moment
space would map to a single discrcte point in the state space of the assembly,
and would represent a cross-section, or subspace, of this higher dimensional
constraint region. An assembly path would be a set of points, or in the limit
a continuous curve, projected onto the surface of this higher dimensional re-
gion. Each point on the curve would represent a state (position and correspond-
ing instantaneous unit velocity) of the system along that path. ’._["he assembly
trajectory, then, would be the resulting curve represented in the entire force-
moment-position-velocity space.

We recall that the number of independent parameters necessary to describe

L8ec Seetion 3.2.1.5.
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Figure 5.1: Discrete Points on a General Constraint Surface

a state of & system was 2 X dof — 1. From this we can conclude that, for the
quasi-static domain, the full state constraint space would have 16 dimensions,
consisting of the five applied force-moment parameters (a, 3, %=, %{"-,%’.&), six
position paramecters, and five velocity parameters. In the case of the three-
dimensional peg and hole assembly, where we started out in a configuration
with only three degrees of freedom, we could represent the comstraints in a
13 dimensional full state constraint space as long the peg never exceeded three
degrees of freedom.

We mention the full state constraint space here only for completeness. To
make the actual assembly planning process tractable, given the complexity of
searching a 16 dimeunsional solution space, it will be necessary to choose an
assembly pgth ahead of time, as we have done. By using planning tools such
as the velocity error cone developed in Section 3.5.1 and heuristics similar to
those of Section 3.2.1, we have tried to circumvent some of these complexities

whercver possible.
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5.2.2 Relationship to More Formal Techniques

If we examine the full state constraint space more closely, we see that the six
position state variables we have added to the five unit velocity state variables
and five force-moment paramesters represent the dimensions of the configuration
space of the assembly. This is not surprising since we have alrezdy seen that the
configuration space is a natural domain within which to represent the geometric
constraints specifying an assembly path.

A more formal techniyue for synthesizing fine motion strategies automatically
is that outlined by Lozano-Pérez, Mason, and Taylor [83], which we mentioned
briefly in Section 1.3.4. In this planning approach (zlso known as the LMT ap-
proach) everything, including friction, is represented in the configuration space
domain. First order damping is assumed to govern the motion of the system,
so the applied forces and moments are directly related to the difference between
the commanded and actual velocity via the damping matrix. The jamming
constraints in this approach are represented as constraints on the commanded
velocity of the system.>

Because applied forces and moments are linked by the specification of damper
dynamics to the difference between the commanded and actual velocities, the
LMT approach maps the force and moment constraints directly into the state
space of the assembly. In particular, by specifying commanded velocities of the
system, the applied forces and moments are determined automatically in terms
of the difference between these velocities and their components projected onto
the configuration space constraint surfaces. The backprojections described by
Erdmann [84] automatically determined a chain of connected regions in config-
uration space stretching from the final goal configaration to the specified initial
configuration of the system.

The chain of backprojected regions is analogous to the assembly path we
specified in state space. Backprojections, however, determine a continuous path
(or volume) that explicitly represents the limits on the path imposed by un-

certainty. In order to determine the bounds on the discrete points along our

#ere the terin velocity is assumed to represent general, i.e. both linear and rotational, velocity.
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path, we employed linearized approximations of unit velocity uncertainty cones.
In addition, our discrete assembly path was specified starting with an initial
configuration of the asserubly and ending at an acceptable goal state, instead of
vise versa, with the determination of the intermediate points often requiring a
few iterations. The task of determining this path, rather than being automatic,
had to be perforined almost entirely by the designer.

A major advantage of the LMT approach is that it does not constrain parts
to only slide over one another to determine a successful strategy. In fact, any
motion that does not jam an assembly and terminates in a state lying within a
desired goal (or pre-goal) region constitutes a legal move, whether contacts are
broken or not. The greater freedom in selecting command variables provides
a greater chance for a strategy being found which will guarantee a successful
assembly. This generality, however, comes at the expense of greater complexity
both in terms of the models used to describe the system as well as the number of
_configurations that must be explicitly examined for surfaces that will cause jam-
ming. As we saw in Section 3.2.2, the number of possible contact cases grows
rapidly with the geometric complexity of the system being modeled. Conse-
quently, there is as yet no full scale implementation of the LMT approach in

three dimensions.

5.3 Suggestions for Future Work

As we stated earlier, by simplifying our system models wherever possible, and
incorporating heuristics in the place of formal constraints in many instances, we
have attempted to make the problem of planning three-dimensional assemblies
more tractable while minimizing the workload on the designer. While the re-
sulting technique is neither as formal or general as the LMT approach, it does
provide a useful intermediale ievel approach to three-dimensional assembly plan-
ning. As with any area of research, however, niuch more work remains to be
done before assembly planning techniques such as these can be put to use in

industrial assembly.
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¢ Full Dynamic Modeling of Part Interactions
In this thesis we assumed a quasi-static equilibrium model for our system.
A more complete and accurate model would be a full scale second order
model capable of determining the behavior of parts under full inertial
effects. In using these models we would again have to come to terms with’
the issue of complexity in modeling and analysis. Specifically, by including
accelerations in our specification of the state of a system, we would have
increased the dimension of our state space accordingly. While it might be
possible to derive constraints on these extra values similar in concept to
the unit velocity error cone, it is not clear they would provide any more
insight into the assembly process. It might then become necessary to use
numerical simulations to examine the behavior of the system in a set of

phase planes (subspaces of the full state space).

e Modeling of Non-Rigid Compliant Parts
In addition to modeling the inertia of parts, it would be useful to examine
the behavior of non-rigid parts in assembly, such as during inelastic col-
lisions. During our discussion of wedging in Section 2.2.2, we considered
the peg to have some stiffness K. Even though we were allowing the peg
to deform by means of this stiffness we assumed the deformation was small
enough to be considered negligible. In assemblies involving plastic or rub-
ber parts, for example, this rigid model assumption would be invalid. One
possible approach to handle the modeling of complex flexible parts would
be to utilize finite element analysis techniques. Here again, the issue model

complexity will be significant.

e Incorporating Better Models of Friction
Throughout this thesis we have used the dry Coulomb model of friction.
For a process like assembly where friction is such a significant factor, how-
ever, a more complete and accurate model would be desirable. Since fric-
tion is extremely nonlinear in nature, these extended models nrust usually
be implemented by means of computer sinulation. If compliant part mod-

cls are used, the orientations of the reaction forces will also depend on
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the corresponding deformation of the parts. In addition, if the parts are
allowed to deform such that area contacts are possible, a new model of

friction incorporating reaction torques about the normal cf contact will be

required.

e Extending Models to Include General Polyhedra
As we mentioned in Section 1.4, one of the reasons for considering rect-
angular parts is the fact that many relatively complex parts can be rep-
resented, in terms of their assembly, as collections of polyhedra, among
the most common of which is the right parallelepiped. It would be useful,
therefore, to extend the rectangular modeling techniques to include other
types of polyhedra, thus building up a ‘library’ of modeling components
from which to construct (automatically if possible} and evaluate vurious
part representations. This process of extending our existing models would
be relatively straightforward except for the added algebra associated with
representing non-orthogonal edges in a set of orthogonal coordinates. In
addition, the set of possible contact configurations would become some-

what more complicated due to the odd angles hetween edges.

e Developing Strategies for Collections of Polyhedra
Once general polyhedral models have been developed, it will be desirable
to integrate these models into the strategy development procedure. Specif-
ically, by representing the various interacting cdges and surfaces of a part
as a collection of the appropriate polyhedra, the resulting force-moment
solution spaces may be used to find the proper applied forces and mo-
ments to control the system, just as for the rectangular peg and hole.
The difficult part comes about in determining a complete and consistent
set of contact configurations that sufficiently span an assembly path and

determining the corrcsponding set of state vectors describing that path.

¢ Improved Strategy Implementation Procedures
The last issue we dealt with in this thesis dealt with and examined in the

least detail was implementation. The process of developing the hardware
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or software necessary to implement an assembly strategy was treated as
a separate issue from developing the strategy itself. Because it is such an
integral part of automated assembly, the issue of implementation descrves,
and is receiving, much more focused attention. Specific examples of this
work may be found in the areas of improved force control techniques as
well as the development of devices with adjustable passive compliance.
Further work is needed to unify and integrale these areas into assembly

planning.



Appendix A

Generating the Constraint

Surfaces

In this appendix we present the batch files used by MACSYMA™ to gener-
ate the kinematic constraint equations, the unit angular velocity of the hole in
terms of edge contact velocities, the contact normals, and the force and mo-
ment balance equations used to generate the constraint curves and surfaces of
Section 3.4.2.1 and Appendix C. For each case, the batch files are loaded and
executed in the order presented, with PLOT MEC and INTSCT MEC being

run on the results.!

1The files presented here were written for Version 304 of MACSYMA running on a DEC KL-10.
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To Plot the Constraint Surfaces

/s  plot mec. plots aolution spaces for cases i thru 4 +/

/%  Make sure that casevalue file has been loaded for the given case  +/
/3  plot checks for the presence of £4 »/

dynamalloc:print$

dateplot:falae$
noprint:trues

plotnumprec:3d$
n:10%
equalscale:true$

xmin:-1.578
xmax:1,67§
ymin:-1.67%
ymax:1.674

phis:""$

f*  plot breaking coatact comstraint curves in ALPHA vs BETA plane »/

plotmode: * [g.gr]l$

if flagl=out then plot2{alphai,beta,-1.57,1.67,concat("beta ---> ™,

part (signi,.1},part(sign1,2),™)") " ||| alpha",

concat (“Force Constraints for Fi>0 ",cagene," “,runname,” ",phis)) elss
(plot2(2lphal, beta,~1.67,(root1-.01),

concat("beta ---> (",part(signi,1i},part{signi,2),"}"),"~[[] alpha","* first),
plot2(alphal,béta,{root1+.01),1.67,falae,false,

conicat ("Force Constraints for Fi>0 ", cagens,” ",runname,” ",phia), same,last)}$
(dovard_f1ile() ,dover_file())¢

if flag2=out then plot2(alphaZ, beta,-1.57,1.67,concat("beta —--> (",

part (aign2,1) ,part(sign2,2),")"),"~{|| alpha®,

concat ("Force Comstraints for F2>0 ",caseno,” ",runname.” ",phiz)) else
(plot2(alpha2,beta,-1.57,(root2~-.01),

concat("beta --=> (*,part(aign2,1),part(sign2,2),")"},"~1{| alpha®,

nw first),

plot2(alpha2,beta,(root2+.01),1.57,falge,false,

concat("Force Comstraints for F2>0 ",cageno,” ", runname,” ¥,phis),same, last))$
(dovard_file() ,dover_file(})$

it flagd=out them plot2(alpha3,beta,-1.67,1.57,concat("beta ===> (",
part(aign3,1) ,part(sign3,2),")") ,""||{ alpha",

concat ("Force Constraints for F3>0 ",cageno,” ",ruaname," ",phis)) else
(plot2(alphad,beta,-1.57, (root3-.01),

concat("beta ---> (",part(sign3,1),part(sigad,.2),")"),"" ||| alpha",

" first),

Flot2(alpha3, beta,{root3+.01),1.67,falge,falge,

concat("Force Conatraints for F3>0 ",caseno," ",runname,” ",phis),same,last))$
(dovird_file() ,dover_file())3

/% superimpose plota +/
plotmode: ' {g.grl$
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it flagi=out then plot2([alphail}, beta,-1.57,1.57,[0],"beta --->",
" |{| alpha",concat{"Brzaking contact curves

",caseno," ", runname),first) else

{plot2{alphal,beta,-1.57, (root1-.01),

"beta --->","{[| alpha",

concat ("Breaking contact curves “,cadeno,” " ,runname).firet),
plot2(alphal,beta,(root1+.01),1.67,[0) ,false,tnlae,"*, same))$

xaxis:false$
yaxis:falae$

if flag2=out then plot2([alpha2] ,beta,-1.57,1.67,[1] ,52ae) else
(plot2([alpha2) ,beta,-1.67,(root2-.01),[1]),5ame},
plot2{[alpha2] ,beta, (roov2+.01),1.57, (1] ,seme})$

1f flagd=out then plot2([alpha3],beta,-1.57,1.67,[2],false, falze,
concat ("Breaking contact curves ", cageno," ",runname),same,last) alse
{plot2([alpha3],beta,~-1.57,(rooz3d-.01),[2]) .nameplot(plt3a),
plot2([alpha3] ,beta, (rootd+.01),1.67,[2] ,sane,last))$

(dovard_file() ,dover_file())$

xaxis:trued
yaxis:trued

/* Plot jamming constraint surfaces in force/moment subspaces and their
contours in the ALPHA ve EETA plane 3/

kill(xmin.xmax.ymin.ymax)#
equalecale;:false$

plotmode: ' {g.grlé

n:i6$
titlex:concat ("Mx/F vs (ALPHA,BETA) ", caseno," ", runneme,” ",phis}$

plot3d(expmx,beta,-1.67,1.57,alpha,-1.57,1.57,8ignx,false, titlex)$
nameplot (pltxi)$

equalscele:trued

contx(zmin,znax,n) :={1st:[] ,for count:0 step 1 thru un do(

1at:sppend(lst, [zmin+abs(zmax-zmin) /n*count])),1at) 4

zmin:zmin3d$

zmax :zmax3d$

titlex:"Nx/F="+expmx$

replot(true,contour,"beta --->",""|]| alpha”,.titlex),contours;contx(zmindd,
zmax3d,n)d

(dovard_tile() ,dover_file())$

znin:zxin3d$

zmax :zmax3d$

n:10$

titlex:"Surface Contours"d . )

replot{true,contour,concat ("beta ---> ", caseno,” ",runname),”" ||| alpha®,
titlex},contourg:cont={zmindd, zmax3d,n)$

nameplot{pltx2)$ .

replotd (pltx1,pltx2) ,contours:contx (zmindd,zmax3d,n)$

(dovard_f4le{) dover_file())}$

equalecale:falsed

n:i68 .
titley:concat {"My/F vi {ALPHA,BETA)} ",casemo,” ",runname," ",phis)$
sistadicapay.beta.-1.57,1.57 . ainh4,-1.57,1.57. . sdgny . talae, bitley) $
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napeplot (plty1)$

equalacale :true$

conty(zmin,zmax,n):=(lat:[],for count:0 step 1 thru n de(

1ot :append (1at, [zmin+abe (zmax-zmin) /necountl)),lat)$

2min:zmin3d¢

Zmax:zmaxdd$

titley:"My/F="+expmy$

replot{true,contour concat ("beta ---> " caseno,"” * runname) ,"“|}| alpha®,
titley),contours:conty(zmindd,znax3d,n)$

(dovard_tile() ,dover_file())$

zmin:zmin3dd$

zmax :znax3d$

n:108

titley:"Surface Contoura"$

replot (true,contour,"beta --->"""{}1 alpha",titley} ,contours:coaty(zmindd,zmax3d.n)$
nameplot (plty2)$

replotd(pltyl,.plty2),contours:conty (zmindd,zmaxdd.n}$

(dovard_file() ,dover_f1le())$

equalscale:falee$

n:168

titlez:concat ("M2/F va (ALPHA,BETA) ",caseno," ", rumneme," ",phis)$
p10t3d(expmz.beta.-1.57,1.51.a1pha.-1.57.1.51.cignz.rnlnn.titlez)‘
nameplot{pltz1)$

equalacale:true$

contz(zmin,zmax,n) :=(1st:[],for count:0 step 1 thru n do(

1at:append (1st, [zmin+abs(zmax-zmin} /nscount]}) 1at)$

zmin:zmindd$

2max:zmax3d$

titlez: "Mz/F="+expmzé

replot(true,contour,concat ("beta ---> *,caseno,” " runname),.”" ||| alpha",
titlez),contoura:contz(zmindd,zmax3d,n)$ -
{dovard_file() dover_tile())$

zmin:zmindd$

zmax :zmax3d$

n:10$

titlez:"Surface Contoursa"$

replot(true,contour,"beta --->",""||| elpha”.titlez).contonrn:contz(zninad,zmnxad.n)t
nameplat (pltz2)d :

replotd (pltzi,pltz2) ,contours:<ontz {zmin3d,znax3d,n) ¥

(dovard_file() .dover_file())$

equalscale:falsed
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To Plot the Intersection of the Sliding Constraint Surfaces

/¢ intsct mec, intersects two surfaces and projects intersection curve into
the (alpha.beta) plane +/

dynamallec:print$
/* data for surfaces to be intersected =/

mxyz :"MY/E"; /* which subspace is being modeled =/
cases:"A & B"; /* which cases are being intersected ¢/

201:4.77672637; /* coefficients +/
bbi:-10.9360841; /% for surface */
€c1:0.49162617; /+ one +/

a82:-0.486644814; /+ coefficlents */
bb2:-1.76717762; /+ for surface +/
©e2:0.342795227;: [/« two ¢/

/% forming two equations and intersecting /

mfi:aat*gin(alpha)+sin(beta)+bbissin(alpha)*con(beta)+cclecon(alpha);
mf2:3a2+sin(alpha)+sin(beca)+bb2¥sin(alpha)scos(beta)+cciscos{alphe);
intersect:ev({mri-mr2) ,iafeval);

/+ parting equstion to plot */
assume (sin{alpha)>0,coa{alpha)>0,sin(beta)>0,coa(beta)>0);

an:1f aign(part(intersect,1})=neg then -part(intersect.1,1,1) else part{intersect.i,1);
bb:if aign(part(intersect,2))=neg then -port(intersect,2,1,1) else part({intersect,2,1);
cc:if sign(part(intersect,3))=neg then -part(intersect,3,1,1) else part{intersect,3,1);

alpha:atan(-cc/{az«ain(beta)+bbecos(beta)));
root :atan{-bb/az);
i? root<-1.67 or rcot>1.67 then flag:out else flag:in;

dateplot:falae$
noprint:true$
plotnumprec:3$
equalscale:true$

xmin:-1.574
xmax:1.578
ymin:-1.57¢
ymax:1.67%

/* plot intersection curves in ALPHA ve BETA plane ¢/

plotmode:* [g.grls

if flag=out then (plot2{alpha,beta,-1.57,1.67,"BETA ---> ", "“|[| ALPHA",

concat ("INTERSECTION OF SLIDING CONSTRAINT SURFACES ",mxyz," ",cases))) ealae
(plot2{alpha,beta,-1.57,(root-.006),

“BETA ---> ", "“!{] ALPHA" "% firet),

plot2(alpha,beta, (root+.006),1.57,false, falge,

concat ("INTERSECTION OF SLIDING COISTRAINT SURFACES ",mxyz," ",cases),same,last))$
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(dovard_file() ,dover_file{))$
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For Case One

/* kini mec, Kinematic equations and solutions for casel (post multiplying)se/

dynamalloc:printé
batch(vactor,oper)$
/% generating kinematic constraint equations ¢/

emat tranoposa(aatrix([ce11,ce12,ec1d], [ce21,ce22,¢cc23], [cc31,ce32,cc33])):
r0:matriz([rx, zy,rz]);

1:(1,0,0);

3:00.1.,01;

k:[0,0,1};

rip:matrix({lp,ap.01):
rip:macrix([bp,0,0]);
rip:matrix([0,up-cp,0]);

pi:rip.caat+z0;
p2:rlp.caat+rl;
pl:rip.cmat+rd;
pti:partipi,.1);
pt2:pars(p2,1);
pti:part(ps,.1);

el:dot{].pt1)+w/2;
e2:dot (k,pt1)+11;
e3:dot(1,pt2)+1/2;
eq:dot(),pt2)+w/2;
eb:dot (1,pt3)+1/3;
e8:dot (k,pt3)+11;

eqt:ev(el);
eql;ev(el);
eqd:ev(ed):
eqd:av(ed);
eqb:ev(eb);
eqb:ev(ef) ;

/*  put equations in matrix form and solve #/

solmat:matrix({cc22,0,0,0,1,0], [cc32,0,0,0,0,1],[0,cc11,0,1,0,0],
[0,¢c21,0,0,1,01,[0,0,cc12,+,0,0],[0,0,c¢32,0,0,1]);

thenat :metrix([-1pscc21-w/2}, {~1pvcc3t-111, [-1/2],[-v/2],.[-1/2],
[-11]);

resuit:invert (solmat) .rhemat;

/¢ evaluate axpressions with rotation matrix elements 4/

batch(rpyrot) ;
k111(c);

ev(result{1,1])¢
ap:trigatap(});
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ev(result[2,1])9
bp:trigaimp(¥):
ev(wp-result(3,1])8
ep:trigsimp(%);
eviresult[4,1])8
rx:trigsimp(¥);
ev(result(5,1])8
ry:trigsimp(%);
ev(result{s,1])$
rz:trigsimp(¥);

/e  8olve for a,b,c ¢/

ri:matrix([1/2-e],[-%/2],[~11));
r2:matedx([-1/3], [-w/2],[b-11]);
ra:matrix({-1/32], Iv/3-¢], [-211};

ro:matrix({rx], [ry], (rz]);

rip:matrix([1p], [ap],(0]);
r2p:matrix([bpl, {0T, [0]).;
r3p:matrix ([0], [wp-cpl, (01);

coat:tranapose(cmat);

ev(zi-{emat.rip+r0));
%1.1):
rhs(part(aolve(%,.s).1));
a:trigeimp(X):

ev(r2-(emat.r2p+r0));
%081
rhs(part(solve(i,b),1));
b:trigsiap(%);

ev(r3-(cmat.r3p+r0));
%(2.1];
rha(part(solve(%,c),1)):
citrigatmp(X); -

save([resltl,mec,dek,dy] ,ap.bp,cp,rx,ry,rz,a,b.c);
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/+ vell mec caleulates the angular velocities in terme of linesr
velocities */ .

dynamalloc:print;

load(resltl);
values;

declare(l,constant);
declare (w,constant);
declare(lp,constant);
declare(wp,constant);
declare(ll,zonstant);

dizt (bp)$
dbp:trigeimp(%):
dirr(n)s
ds:trigeimp(1);
dif? (cp)$
dep:trigaimp(X);

load (Zacexp);

ratexpand{dbp)$
dbp:collectterns(X,del{tx),del(ty) dellt));

ratexpand(db)$
db:collectterma(},del(tx),del{ty),del(tz));

ratexpand(dep)$
dep:collectterns (¥%,del(xx),del(ty) del(tz));

/%  seperste sguations as cosfficients of del(tx) . del(ty), del(tz) */

amat :matrix(fatl,a12,a13], {a21,222,423], [431,032,433));
ainv:invert(amaz)$
linvel:matrix({del_bpl.[dal bl ,[del_cpl}e
¢elang:ainv.linvel$

dél_tx:ratsimp(delang(1,1]);
del_ty:ratsimp(delang(l,11):
del_tz:ratsimp(delang(3,1]);

ev(part(dbp,3)/del{tx))$
ati:zrigeimp(¥);

ev(part (dbp,2)/del(ty))$
a12:trigsimp(%);
ev(part{dbp,1)/del(s2))%
al3:vrigeimp(R); .
ev(part(db,3)/del{tx))$
a2i:trigsinp(%);
ev(part{db,2) /del(ty))$
a22:trigsimp(%);
ev{part(db,1) /del{tz))$
a23:trigeinp(%);
ev(part(dcp,3)/del(tx))$
a31:trigsimp(%);

ev{part (dcp,2)/del(ty))$
a32:trigai=p{¥):
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ev(part (dcp,1)/del(tz))$
a33:trigsinp(¥);

ev{del_tx)$
del_tx:trigeimp(%);
ev(del ty)4
del ty:trigeimp(¥);
ev(del_tz)§
del_tz:trigoimp(%);

save([dtx1,mec,dak,nsingl ,del_tx):
save([dtyl, mec,dak,nsing] ,del_ty);
save([dtz1, mec,dak, naing] ,del_t2);
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/o nandvi me¢, determines normal and contact velocity vectors for casei o/

dynamalloc:print;
batch(vector,oper) ;

batch(rpyrot) ;
cmat:c;
kill(e);

/* normals +/

1:[1,0,0];

j:l0,1,0];

k:[0,0,1];
ip:transpose(matrix(1));
jp:transpose(matrix(]));
kp:trenspose{matrix(k));
ip:coat.ip;

Ip:emat. §p:

kp:emat.kp;
ip:[ip[1.13,4pla.11.1p(3.11]:
ip: [jpl1.11,3p (2,11, 4p{3.1]11;
kp: kp[1.1}.kp(2,1],kp{3.11];

ni:erose{i,p);

sqre (n1(2] “2+n1{2]"2+n1(3]"2);
n1/¥%;

ni:transpose (matrix(¥)}; -

n2:crosslk,ip);

sqrt (n2{1] “2+n2{2]~2+n2{3]-2);
n2/%;

n3:treaspose(matrix (%))

n3:cross(jp,§);

oqre (n3[1]-2+n3[2] ~2+n3(3]"2);
n3/%; )
a3:transpoee(matrix());

/e velccities o/

trigsiup{dift (czat))$

subst (deltx,del(tx) ,%)$

subst (delty.del{ty) ,X)$ °
del_cmat:subst(deltz,del{tz),%);

rip:matrix([1p], {ap],[0]):
r2p:aatrix([bpl, (0],[0]):
r3p:aatrix([0], [wp-cpl,{0]);

del_rO:matrix([del_rx], [del_ry]l, [del_rz]);
del_r1:del_cmat.rip+del _r0;

sqrt (del _ri1{t,1]*2¢del_ri[2,1]*2+del_r1(3,1]1°2);
vi:(del_ri/¥%);

del_r2:del_cmat.r2p+del_ro;
sqre (del_r2{1,1] “2+del_»r2[2,1)"2+del_»2([3,1]2);
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v2: (del_r2/%);

del_r3:del_cmat.r3p+del r0;
:qrt(del_rsll.l]‘2+dil,r3[3.1]‘2*101_:3[3.!]‘2);
v3:(del _x3/%);

load(resiti);

declare(l,constant) ;
declare(lp.constant);
declare(v,constant) ;
declare(wp,constant);
declare{ll,constant);

del_rx:trigsimp(difg(rx))¢
subst (deltx,dsl(tx)  X}%

subst (delty, del(ty) ,4)$
del_zx:subst(deltz,del(t2).%);

del_ry:trigeinp(aizf{ry))$
subat (deltx,del(tx) ,%)8

subst (delty,del(ty) ,X)8
del_ry:oubst{deltz,dak(tz).%);

del_rz:trigsinp(dife(rz)}s
subst(deltx,del(tx) , %)

subst (delty,del(cy) ,X)®
del_rz:subst (delts,ded(tz).%);

k111(allbut(ui.nz;na.rl.vz.vs.rg.ry.rz.dnl_rx.dol-ry.dol_r:,
a.b,c,ap.bp,cp))’

rix:ev(1l/2~a,infeval);
riy:-v/2;

riz:-11;

r2x:-1/2;

r2y:-v/2:
r2z:ev(b-11,infeval);
r3x:-1/2;
r3y:ev(w/2-c,infeval);
r3x:-11;

nix:nifi,1];
siy:a1(2,1];
niz:nif3,1];
n2x:n2(1,1];
n2y:n2(2,1);
n2z:n2(3.1);
n3x:n3[f,1];
n3y:n3[2,11;

n3z:03[3,1]; .
vix:vilt,.11;

viy:vi[a,1];

viz:v1(3,1};

vax:v2[1,1];

v2y:v2(2.1];

v2z:v2[3,11;

v3x:v3{1,1};

v3y:vaf2,1];

v3z:v3[3.1];
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save([reslti,mec,dsk,dy] ,rix.riy,riz,r2x,r2y,r2z,r3x,r3y,r3z,nlx,nly,niz,nlx,
n2y,n2z ,.n3x.n3y,n3z,vix,viy,viz,vix,v2y,v2z,v3x,v3y,viz,del _rx,del_ry,del) _rz,
ap,bp,cp.&,b,c.rx,ry,re);
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/*  valsi mec, creates and evaluates parametsrs for ceass one ./
/* writefile{); +/

load (reslti);

caseno:“casel”;

runnane:"run2”;

/% peg and hole psrameters ¢/
tol:0.006; /¢ tolerance +/
1:1.26;

vw:1.00;

Ip:l+tol;

wp:iwetol;

11:2.0;

u:0.6; /¢ friction +/

/% roll-pitch-yaw anglese/
tx:~0.20915;

ty:0.14324;

t2:-0.51218;

/*  the linesr parameters are: */

check() :=ev([a,b,¢,ap,bp,cp,rx,ry,r2}, infeval) $
cheek();

/% edge contact velocities ¢/

del_ep:-1.0; /% defined ¢/

del_bp:-0.B;

del_b:-0.3;

/% 1linear limits on edge velocities (zssuming del_cp=-1) ¢/

del_bp_min:ev(-bp/cp,infeval); /v del_bp must be more positive 4/
del_b_nmin:ev(-b/cp,infeval); /+ del_b must be more positive ¢/

/* end configuration froi given values (linear assumptions) s/
cp.end:0.0;
bp_end:ev(bp+del_bpscp,infeval);
b_end:er(b+del_becp,infeval);
/* closefile{}; v/

/¢  batch casel mee »/

/* batch(casel); =/
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/¢ frcbli mec, deteraines the force and moment balance equations, casel e/

dynamalloc:print;
batch(vector,oper);

ri:[eix,.riy,ri1z];
r2:(r2x,rly.r2z};
r3; [r3z,r3y,r3z];
ni:[nix,niy,niz};
n2: {n2x,n2y,82z];
n3:[n3x,n3y.n3z]);
vi:fvix,viy,viz);
v2:[v2x,v2y.,v2z);
v3: [v3x,vdy,v3z):

rixni:matrix{cross(ri,n1));
r2xn2:matrix(cross(r2,n2)};
r3xn3:matrix{cross(rd,nd));

rixvi:macrix(cross(ri,v1));
r2xv2:mateix(cross{r2,v2});
rixv3:matrix(cross(r3,v3});

a1:watrix(al);
nZ:patriz(n2) ;
n3:matrix(n3);
v1:patrix(vl):
v2:matrix(vd);
v3:matrix(v3d);

fext:mateix{[2x,2y,£2]):
mext :matrix( [mx,2y,az});

fhal:fcxt+£10n1+tﬂ'n24f3tn3+n-fltvi+ntf2tvz+n‘!3'v3+del‘(vi*v2+13):

mhll:mex:+t1tr1:n1+ntfx‘rixv1+rztrzzn2+uttztrﬂxv2+fsvraxn3+uttatr!xv3
+dels (rixvi+r2xv2+r3xv3};

fhalx:fbai(1,1};
fhaly:fball1,2]);
tbalz:fbal(1,3);

mbali:mbal(l,1];
mbaly:mball1,2];
mbalz:mbal{1,31;

eliminste([fbalx,fbaly,zbalz], [22,231)4
solve(%.21)8 .
nfi:che{%{1});

elininato([fhalx.fbaly.tbalz].[fl:fsl)t
solve(%,.22)$
pf2:cho(%(1]1);

eliminate( [fbalx,fbaly,fbalz], [£1,12])¢
solve(%,13)¢
n23:che (%(11);
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f1:nf18
£2:n128
£3:n038
14:nmg

cave([mand?1, mec,dsk,dy] ,mbalx,mbaly,abalz,f1,£3,23,£4);
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/* Casei mec, combines and evaluates expressions for computation of jamming
and breaking contact regions »/

/*  Make sure that valsi has been batched »+/
dynamallec:print$

londfile(dtxi,mec, dak,neing);
deltx:ev(del_tx,infeval)$

loadfile(dtyl.mec,dsk,neing):
delty:ev(del_ty,infeval)$

loadfile(dtzi,mec,dsk,nsing);
deltz:ev(del_tz.infeval)$

loadfile(nandfl, mec,dsk,dy);

del_rx:ev(del_rx,infeval)$
del_ry:ev(del_ry,inferal)$
del_rz:ev(del rz,infeval)$
rix:evirix)$

riy:ev(riy)$

riz:ev(riz)$

r2x:ov{r2x)$

r2y:ev(ray)$

r2z:ev(riz)$

r3x:ev(r3x)$

r3y:evr(r3y)$

r3z:ev(riz)$

nix:ev(nix)$

niy:ev{niy)$

niz:evi{niz)$

nx:ev(nir}$

n2y:evin2y}$

n2z:av(n2z}$

13x:ev(n3x)$

ndy:evindy)$

n3z:evindz)$
vix:ev(vix,infeval)$
viytev(viy,infeval)$
viz:ev(viz, infeval}$
v2x:ov(v2x,infeval)
v2y:ev(vly,infeval)$
viz:ev(v3z,infeval) $ ®
v3x:ev(vix,infeval)$
v3y:ev(v3y,infeval)$
viz:ev(vdz,infecval)$

ratprint:faloes
keepfloat:trued
expop:98
expoa:0¢%
ratexpand:falsed
numer:truef

f1:ratexpand{ev(ri,infaval))s
£2:ratexpand(ev(£2, infeval))$
£3:ratexpand(ev(23, infeval))$
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mbalx:ratexpand(svimbalx,infevall)$
mbaly:ratexpand{ev(zbaly,infeval})d
mbalz:ratexpand(ev(abalz,infavel))$

solve(mbalx,del)$
expand(xhs(%[1]))%
expmx:ev(},float);

solve(nbaly,del)$
expand(rhs(%[5])) ¢
expmy:ev(%,float);

solve(mbalz, del)$§
expand (rhe(%[1]))%
expnz:ev(¥,float);

/¢ Determining jamming and non-jamming sides of eurfaces ¢/
assume (mx>0,my>0,a2>0) $ /+  this ascumption is not pecessary ¢/

signc:sign (pazt(ezpax,1)}$

termx:1f signrcneg then -part(expmx,1,1,1) else par:(expmx.1,1}$ )

signx:if signz=neg them "Mx/f is less than (balow surfaca)® else "Mx/f ia greater than
{above surface)”;

expux:expand (- (expax-part (expax,1)) ftermx);

signy:sign(part(expmy.1))$ )

termy:if signy=neg then -part{expay.i.i,1) else part{expuy,1,1)$

signy:1f signy=neg then "My/f is lecse than (below surface}™ else "Ny/f is greater than
(above surface)”;

expay:expand (- (expay-part(expmy,1)}/terny);

signz:sign(part (expaz,.1))$

termz:if signz=neg then -part(expmz.1,1,1) else part(expme,i,1)$

signz:it signzaneg then "Nz/f is less than {belox surface)® else "Mz/f is greater than
{above purface)";

expaz:expand(- (expmz-part{expnz, 1)) /veraz);

de1:0.08

ev(f1)$

£1:expand(})$

L£14+"0a%;

ev(f2)$

12:expand (%)$

£2+0G="; .
ev(f£3)$

£3:expand(%)$

£3+10=";

/* Deternining breaking contact and non-breaking contact sides of curves 174

assune(£x>0,£y>0,22>0)$4 /¢ this assunmption 1s not necessary .74
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c1:1f sign(part(f1,1))=zneg then -part(fi,1,1,1) else part(fi,i.1)9

b1:4f sign(part(f1,2))=neg then -part(f£1,2.1,1) else part(£1,2,1)4

ai:if sign{part(f1,3))=neg then -part(f1,3,1,1) else part(£1,3,1)8
alphai:atan(el/(atécos(beta)+bieain(beta)));

Footl:stan(-ai/b1)$

1f rooti<-1.57 or rooti1>1.57 then flagi:ont else flagl:in;

alscos(rootl+ 01)+blesin(rooti+.C1)4

sign1:1f sign(%)=neg then "alpha < for Beta > "-rooti else "alphe > for Beta > "+rooti;

c2:1f eign(part(£2,1))=neg then -part(£2,1.1,1) else part{11,1,1)$

b2:1¢ sign{part(£2,2))=neg then -part(£2,2,1.1) else part(f2,2,1)4

a2:1f sign{part(£2,3))=neg then -part(£2,3.1.1) else part(£2,3,1)¢
alpha2:atan(c2/(a2+cos(beta)+b2ssin(beta))};

root2:atan(-a2/b2)$

1f root2<-1.57 or root2>1.6Y then flagl:out else flagl:in:
a2scos(root2+.01)+b2+sin(root2+.01)8

sign2:4¢ sign(¥)=neg then “slpha < for Beta > "4root2 else "alpha > for Beta > "+pootd;

¢3:1f sign(part(£3,1))=neg then -part{£3.1,1,1) else part(£3,1,1)$

b3:1f siga{part(£3,2))=neg then -part(£3,2,1,1) else pazrt(13,2,1)4

a3:if sign(part(£3,.))=neg then -part(£3,3,1,1} else part(£3,3,1)¢
alpha3:atan{c3/(edscos(beta)+b3v+sin(beta)));

root3:atan{-a3/b3)$

1f Toot3<-1.57 or root3>1.67 then flag3:out else flag3:in;
adecos(root3+.01)+b3*sin(rootd+.01)$ .

aign3:1f sign(%)=neg then "alphs < for Beta > "+root3 else "slpha > for Bata > "+rootd;

fx:ain(alpha) *cos(bete) $
ty:sin(alpha) *ssin(beta)d
£z:-cos(slpha)d

-expmx:expand (ov (expmx)) §
"Mx/F="+eXpmX ;
expmy:expand (ov(expmy) ) #
“My/Fa"+expuy;
expmz:expand{ev(expmz)) $
"Mz /F="+expas;

save([colval,mec,dsk,dy] ,caseno,runname,signx,signy,signz,expax, expmy, expuz,
nlphal.rootl.!lagl.lignl,nlphu:.root?.!lagz.lignz.alphna.roozs.tlagi.uign3.t4):
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For Case Two

/¢ kin2 mec, kinematic equations and solutions for case2 (post multiplying).
bottom sdge in corner ¢/

dynamalloc:print;
batch(vector,oper);

cunt:trnunpone(nntrix([celi.cclz.cclal.[ccﬂl.cc22,cc23],[ccsl.ccaz.tcasl));
r0:matrix([rx,ry,rz});

1:{1,0,0]; ’

j:00,1,0);

x:[0.0,1];

rip:matrix([1p,ap.0});
r2p:matrix({bp,0,01};
r3p:matrix([0,wp,00): /* note cp is zere o/

plirip.cmat+ro;
p2:r2p.cmatero;
pa:rdp.cmatérl;
pti:part(pl,1);
pt2:part(p2.1):
pt3:part(p3.1):

el:dot(),pt1)+w/2;
e2:4dot (k,pt1)+11;
ed:dot(1,pt2)+1/2; /¢ redundant equation ¢/
ed:dot (],pt2)+w/2;
'S:Aotﬂi.pta)*llz;
ed:dot (k,ptd)+11;

eqizev(el);
eq2:ev{«l);
eq3:ev{ed);
egd:ev(ed);
eqb:evieb);
eq6:ev{ed);

constraint:ev(eq3-eq6); /* specifies redundancy of eq3 ¢/

/+ inverting equitions, without third equation containing constraint on
RPY angles +/

solmat:matrix{[ee22,0,0,1,0], [cc32,0,0,0,1],(0,cc21,0,1,0],(0,0,1,0,0],
[0.0.0.0.1]);

rhemat imatrix([~lpscc2i~w/2], [-21-1peccdi] , {-w/2],[-1/2-wpeecid],
[-11-wp=»ce321);

result:ratsimp(invert{solzmat) .rhsmat);

/¢  evaluste expressions with rotation matrix elements */

batch(rpyzot);:
kill{c);

ev(result(1,1])$
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ap:trigsimp(%);
ev(result[2.11)8
bp:trigsimp(X);
cp:0;
ev(rzsult[3,1])¢
rx:trigeimp(%);
ev(resuls4,11)8
ry:trigaimp(X);
eviresult(6,1])$
rz:trigeimp(¥):

/%  Bolve for a,b,c ¢/

ri:matrix([1/2-a), [-v/2],[-10]);
r2:matrix((-1/2], [-w/2] ., {b-111);
r3:matrix([-1/2], [v/2-¢],[-11]);

r0:matrix(frx], [ryl. [rz]):

rip:mateix([1p], [=p]. [0]);
r2p:mateix([bpl, [0],[0]):
r3p:matrix([01, [wpl,[01);

cmat:transpose(cuat);

ev(ri-(cmat.rip+r0));
%(1,11;

rhe(part (solvs(},a).1));
a:trigeimp(¥);

ev(r2-(cpat.r2p+r0));
%[3.1):
ths(part{(solve(%,d),1));
b:trigsinp(%);

ev(r3-(cmat.r3p+r0));
%2.1);
ths(part{solre(X,c).1));
c:trigeinp(¥);

constraint :trigsimp(ev(constraint,infeval));

tnvo([reslté.noc.dck.dy].canutraint..p.bp.cp.rx.ry.r:.a.b.e):
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/¢ vel2 mec calculates the angular velocitleo in terms of linear
valocities for case2 ¢/

dynamalloc:print;

load(resltd);
values;

declare(l,constant);
declare(w,constant);
declare(lp,constant);
declare(wp,constant};
declare(ll,constant);

dizf(b)$
db:trigaimp(¥);
dife(bp)$
dbp:trigeinmp(¥);

del_conet:dir? (constraint)$
load(facexp);

ratexpand(del_conat}$
del_tz:rhs (part(solve(%.del(tz)) . 1));

subst (del_tz,del(tz),db)$
ratexpand(%)$
db:collectterms(%,del(tx) dellty});

subst(del_tz,dal(tz),.dbp}$
ratexpand(%)$
dbp:collecttorﬂ!(l.dol(tx),dol(ty));

/%  scperate equations as cosfficients of del(tx),del(ty) o/

amat:matrix([a11,a12], (a21,8221)8
ainv:invert (amet)$

1invel :matriz{[del_b], {del_btpl)$
delang:ainv.linveid
del_tx:ratsimp(delang[1,1}}$
dei_ty:ratsimp(delang[2,11)%
ev(part (db,2) /del(tx))$
ati:trigeinp(¥)$
ev(part (dt,1) /del(ty))$
212:trigelmp(X)$

ev(part{dbp,2) /del(tx))$
a21:trigeinp(%)$

ev{part (dbp,1)/del(ty))$
a22:trigsinp(%)$

del_tx:ev(del_tx,infeval)$
del_ty:ev(del_ty,infeval)$
subst(del_tx,del{tx) del _t2)$

subst(del_ty,del(cy) 1) §
del_tz:ev(¥,infeval)$

1

(

13
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save([dtx2,mec . dek, nsing] ,del tx);
save([dty2,mec,dsk,nsing] . del _ty);
save([6tz2,mec,dak,neing] ,del_tz);
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/¢ nandv2 mec, determines normal and contact velocity vectors for case2 of

dynamallec:print;
batch(vector,oper);

batch(rpyrot);
cmat:c;
ki1l(e);

/* normals of

1:{1,0,0];

§:00,1,0];

k: [0,0,1];

ip:transpose (matrix(1));
jp:transpoee{matrix(]));
kp:tranepoae (matrix(k});
ipicmat.ip;

Jpicmat. ipi

kp:cmat . kp;
ip:[1p(1.1].1p(2,1],1p([3,11]);
jp:0ypla.1) . 9pi2,11,9p(3,11):
kp:ikpl1.1],kp{2,1] ,kp[3.1]1;

ai:cross{l,jp):

oqrt (n1[11-2+n1{2]2+n1{3]1*2);
n1/%; .
ni:transpose(matrix(}});

n2:cross(k,1ip);
sqrt(n2[1]~2+n2{2]-2+n2{3]1°2);
n2/%;

n2:transpose (matrix(%));

n3s:cross(ip,j);

aqre (n3a{1]-2+n3s(2] “2+n3s (3] "2);
n3a/%;

nis:transpose (matrix(%));

n3¢:crosa(jp.}):

sgrt (n3c{1]-2+03c[2]“3+n3¢{31°2);
ade/%;

n3c:transpose (matrix(¥%));

/*  velocities ¢/

trigeinp(difs (cmas) ) $

gubst (deltx,del(tx),%)$ .

subst (delty,del(ty) )¢
del_cmat:subst(del_tz,del{tz),%); .
rip:matrix([1p}, [ap], [01);
r2p:matrix{{bpl, f0],[0}):

rap:matrix({o0], [wpl,[0]);
del_r0:matrix({del_rx],[del_ry],[del_rz]);

del_ri:del_cmat.rlp+del _r0;
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sqre(del_ri{1,11°2+del_r1[2,1}"2+del _ri[3,1]72);
vi:{dsl_r1/%);

del_r2:del_cmat.r2p+del_r0;
sqre(del _r2{1,1]1"2¢del_r2[2,1]"2+del_r2{3,1]72):
v2:(del_r2/%);

del_r3:del _cmat_rip+del _r0;
sqrt(del_r3f1,1)-2+del_r3[2,1]"2+del_r3[3,1]72);
v3:(del_rd/%);

load (- 281t2);

declare(l,constant);
declare(1p,constant);
declare(w,conatant);
declare (wp,constant);
declare(ll,censtant);

del_rx:trigsimp(dift(cx))$
subgt{deltx, del(tx) X)¢
subst{delty.del(ty) A)$
del_rx:subst (del_tz, del(tz) . %);

del_ry:trigsimpidiff(ry))$
subat{deltx,del(tx) %)¢

subgt (delty,del(ty) X} $
del_ry:aubst (dol_tz,del(tz},%);

del_rz:trigsimp(dirf(rz))$
subat (deltx,del(sx),N)$

subst (delty,del(ty),%)8
del_rz:subst(del_tz,del(tz)},%):

ki1l {a)ibut(pt,n2,n38,n3¢,v1,v2,v3,2x.0y.rz,del_rx,del _ry,del rz,
a,b,c,ap,bp,cp,constraint)};

rix:ev(1/2-a,infevel);
riy:-u/2;

riz:~11;

r2x%:-1/2;

r2y:-w/2;
r2z:ev(b-11,iafeval);
e3x:-1/2;
r3y:ev{w/2~c,inteval) ;
riz:~11;

nix:n1{1,1];
niy:nif2,1];
niz:ni[3,1]1;
n2x:n2{1,1]1;
n2y:n2(2,1];
n2z:n2[3,1];
nisx:n3s[1,1);
n3sy:n3al[2,1];
n3sz:n3efd,1);
ndcx:n3el1,1);
ndey:n3c[2,1);
n3cz:n3e(3,1];
vix:vifi,1];
viy:vi[2,1]);
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viz:vi[3,1]);
va2x:v2(1,1];
v2y:v2{2,1];
v2z:v2{3,1];
v3x:v3[1,1];
v3y:val2,1}:
v3z:v3(3,1];

save([reslt2,mec,dsk,dy],rix,r1y,r1z,r2x,r2y,zr2z,r3x,rdy, r3z,nlx,nly,niz,.n2x,
n2y,n2z,n3sx,n3sy.n36z,.n3ex. ndey . n3cz, vix, vy, viz,v2x,v2y,v2z,v3x,v3y,v3z,
del_rx,del_ry,del_rz,ap,bp,co,s.b,¢ =x,ry,rz,conatraint);
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1L valg? me¢, creates and checks values for case iwo of
/e writefile(); =/
load(realt2);

caseno: "cage2”;

runname:"rund”;

/¢ peg and hole parameters =/
t0ol;0.006; /¢ tolerance 3/
1:2.28;

w:1.00;

Ip:1+tol;

wp:wetol;

11:2.0;

u:0.5; /¢ friction »/

/% Toll-pitch-yaw snglwss/

tx:-0.20915;
$2:-0,.11218;

/¢  orientation of normal for £3 ¢/

phi3:¥pi/d; /+ 0 <= phi3 <= JPI/2 +/

/oty is determined from tx,tz */

load(imal);

/e the linear parameters are ¢/
t{ty) :=""constraint;

zeolveepn:1.0e-4; o
zsolvensig:4;

check() :={sol:zsolve([f],[-1.0]),

ty:part(sol,2,1) ,ev([a,b,c,ap,bp,cp,rx,ry,rz]l .infeval));
check() ;

tx;

ty:

tz;

/% edge contact velocities o/

dei _b:-1.0;

del_bp:-1.0; /¢ defined ¢/

/% linear limits on edge velocities (assuming del_bp=-1} of

del_b_nminzev(~b/bp,infeval}; /¢ del_b must be more positive +/
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/¢ end state baded on glven values (linear agsumptioms) =/

bp_end:0.0;
b_end:ev{b+del_bebp,infeval);

/¢ closefile(); o/
/*  batch case2 +/

/o batch(case2); =/
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/= frcbl2 mec, determines the force and moment balance equations, case2
the fourth contact parameter is the angle phi3, bottom edge in corner s/

dynamalloc:print;
batch(vector,oper);

ri:[rix,r1y,riz];

r2: {r2x,r2y,.r2z];

r3:[r3x,r3y,r3z);

ni:[nix,nly,niz);

n2:[n2%,n2y,n22}; -

n3g:[n3ax,ndsy,ndez]; /* two componenta »/
n3c: [n3ex,n3ecy,ndecz]; /¢ of normal 3 sf
vi:{vix,viy,viz]:

v2: [vax,v2y,v2z];

v3: [v3x,v3y,v3z];

rixnl:matrix(cross(ri,nt)});
r2xn2:matrix(croas{r2,n2});
r3xn3s:matrix(cross{r3,nc3s});
r3xn3c:matrix{cross(r3,n3¢));

rixvi:matrix(cross(ri,v1));
r2xv2:matrix(cross(x2,v2));
r3xv3:matrix(cross(rd,vi));

al:matrix(ni);
n2:matrix(n2);
n3s:matrix(n3s);
ndec:natrix{(n3c);
vi:matrix(vi);
v2:matrix(v2);
v3:matrix{(v3);:

fext:matrix{[fx,ry,22]);
mext:matrix{[nx,my, mz]);

fbal:fext+f14n1+£2ous+£3s (n3evsin(phi3)+ulcscon(phild)) +ustisvi+u~£20v2+usLI+v3
+deles (vi+v2+v3);

mbal:mext+fisrixnl+ustfisrixvi+f24r2xn2+ust24rixvl
+£3% (r3xn3s+ein(phi3) +r3xnic+cos (phid) ) +usfIsr3xvivdels (rixvier2avi+rdxvad);

fbalx:fbalf1,1]; °
fbaly:fbalft,2];
fhalz:fball1,3]:

pbaix:mballl,il;
mbaly:mballi,2];
mbalz:mbal(1,3];

eliminate([fbalx,fbaly,fbalz], [£2,£3])$
solve(}.11)$
nti:cha{¥%[1]):

eliminate([fbalx,thaly, fbalz]l, [£1.£3]1)8
solve(%,22)$
af2:the (%[11);
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eliminnte([fbnlx.tbnly.fbalz].[fl,!?j)‘
aolve(%,£3)8%
nfi:che(%[1]);

f1:nt1$
22:n£2%
£3:n232
£4:""¢$

save( [mandf2,mec,dsk,dy] ,mbalx,mbaly,obalz,f1,£2,£3,24);
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/e Case? mec¢, combines aad evaluates parameters for the jamming and
breaking contact equations */

P Kake aure that vels2 has been batched and velues chosen for tx,iy,te af

dynamalloc:print$

losdfile(dtx2, mec,dok, naing);
deltx:ev(del_tx,infeval)$

loadfile(dty2,mec,dek,naing);
delty:ev(del_ty,infeval)$

loadfile(dtz2,mec,dsk,nuing);
del_tz:ev{del _tz,infeval)$

loedfile(mandfZ,mec,dsk,dy);

del_rx:ev{del _rx,infeval)$
del_ry:ev(del_ry,infevall)$
del_rz:ev(del_rz,infeval)$
rix:ev(rix)$

riy:eviriy)$

riz;ev{riz)$

rix:ev(rix)$

riy:ev(r2yl)$

r2z;ev(r2z)$

rix:ev(rix)$

r3y:ev(r3g)$

r3z:ev(r3z)$

nix:evinix)$

niy:ev{niy)$

niz:;ev(niz)$

n2x:ev{nix)$

n2y:evin2y)$

n2z:ev(niz)$
n3sz:ev{ndsx)¢
nlay:ev(adsy)$
nisz:ev(ndaz)$
nicx:av(ndex)$
n3cy:ev{n3cy)$
ndez:ev{ndez)$
vix:ev(vix,infeval)$
viy:ev{viy.infeval)$
viz:ev{viz,infeval)$
vix:ev{v2x,infeval) $
v2y:ev{v2y,infeval)$
v2z:ev{v2z,infeval)$
y3x:ev(vix infeval); /*+ should be 0 &/
vy:ev(viy,infeval); /*+  ahould be +-1 ¢/
viz:ev{v3z,iafeval); /e ghoald be O ¢/

ratprint:falsed
keepfloat:trues
expop:93
expon:98
ratexpand:falae$
numer:trued ’
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f1:ratexpand(ev(fi, infeval)}$
£2:ratexpand(ev(12,infeval))$
£3:ratexpand(ev(f3,infeval))$

mbalx:ratexpand(ev(mbalx, infeval)}$
mbaly:ratexpand(ev{mbaly,infeval))$
mbalz:ratexpand(ev{mbalz,infeval)}$

solve(mbalx,del) $
expand{rha(%[11))$
expnx:ev(%,iloat};

solve(mbaly.del)$
expand (che (%[1]))8
expay:ev(%,flcat);

solve(mbalz,del) $
expand(rhs(%[1]))$
expaz:ev(},float);

assume (mx>0,ny>0,n2>0)$

signx:sigr (part(expmx.1))$

termx:1f signi=neg then -part({expmx,1.1.,1) else part{expmx,1,1)$

signx:1f signx=neg then "Mx/f is less than (below surface)” else "Mx/f 1s greater than
(above surface)"; )

expmx:expand (- (expax-part(expmx, 1)) /termx) ;

signy:sign{part(expmy,1))$

terny:if aigny=neg then -part(expmy,1,1,1) elsa part(expay,1,1)$

signy:if signy=neg then "My/f is less than (below surface)” else "My/f is greater than
{above surface)”;

expmy: expand (- (expmny-part (expmy, 1)) /terny) ;

aignz:sign(part (expmz,1))$

termz:if signz=neg then -part(expmz,1,i,1) else part(expmz.i,1)8

signc:if signz=neg then "Mz/f 1is less than (below surface)” else "Mi/f is greater than
(above surface)";

expnz:expand (-(expmz-part(expmz,1})/ternz);

del:0.08

ev(21)8
t1:expand(%) ¢
£1010=";

ev(12) ¢
£2:expand(%)$
£2+00=";

ev(£3)%
£3:expand(%)$
13e10="}

agsume (£x>0,2y>0,£z50)$

c1:1f signipart(f1,1))=neg then -part(fi,1,1,1) else part{f1,1,1)3
bi:1f sign(part{21,2))=neg then -part(f1,2,1,1} else part(f1,2.1)4
al:1f sign(part(f1,3))=neg then -part(£1,3,1,1) else part(f1,3,1)%
alphai:atan(ct/{alscoa(beta)+bissin(beta)));
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rooti:atan{-a1/b1)}$ .

1f root1<-1.67 or root1>i.E7 thenm tlagi:out else flagi:in;
al*coa{rosti+.01)+bisain(root1+.01)$

signi:if sign(¥)=neg then "alpha < for Beta > "+rootl else "alpha > for Beta > "+rooti;

c2:4f oign(part(£2,1))=neg then -part(f2,1,1,1) else part(£2,1,1)¢

b2:1f sign{part(£2,2))=neg then -part(f2,2,1,1) else part(£2,2,1)%

a2:if eign(part(£2,3))=neg then -part(£2,3,1,1) else part(£2,3,1)8
alphaZ:atan(c2/(aZ¢cos(beta)+b2¢ain(beta)));

root2:atan(-a2/b2)§

if root2<-1.B7 or root2>1.67 then flag2:cut else flag2:in;
a2¢con(root2+.01)+b2+sin(reot2+.01)$

sign2:1f sign(})=meg then "alpha < for Beta > "+root2 else "alpha > for Beta > "+root2;

¢3:1f sign(part(2£3,1))=neg then -part(£3,1,1,1) else part(f£3,1,1)¥
b3:4f sign(part(£3.2))=neg then -part(£3,2,1,1) elsz part{f3,2,1)8
a3:if sign(part(£3,3))=neg then -part(£3,3,1,1) else part(£3,5,1)8
alpha3d:atan{c3/(a3*cos(beta)+bl+sin(beta)));

raoot3:atan(~a3/b3)$

if root3<-1.57 or root3>1.67 then flag3:onut else flag3:in;
a3escos({root3+.01)+b3*sin(rootd+.01)§

sign3:1f sign({)=neg then "alpha < for Beta > "+root3 else "alpht > for Beta > "+rootd;

tx:8in{alpha)scoa(beta)$
ty:sin(alpha)ssin(beta)$
tz:-cou(alpha)t

expmx:expend (ev(expmx)) $
"Mx/F="+expmx;

expmy :expand (ev(expmy) ) $
“My/F="+expay;
expmz:expand{ev(expnz))$
"Hz/F="+expme;

save{[cos2val ,mec,dek,dy],caseno, runname,phil, signx, signy, signz, axpax,expay,
expmz,alphai.rooti.flagi.signi,alpha2,root2,f1ag2,91gn2,alpha3, root3,f1agl,
2ignd,14);
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For Case Three

/¢ kin3a mee, kinematic equations and sclutions for case3a (post multiplying)e/
dynamalloc:print;
batch(vector,oper);

cpat ;transpose (matrix(fecll,cc12,ec13], [cc21,cc22,cc23], [cc3i,cc32,cc33]));
r0:matrix([rx,ry,rz]);

i:[1,0,0];

§:10,1,01;

k:[0,0,1];

rip:matrix{({1p,ap,0]);

r2p:matrix({0,0,00); /* note bp iz zero #/
rip:matrix{[0,wp,0]); /* 29t cp is zers L7

pi:rip.coat+rl;
P2:rlp.cmat+xr0;
p3:rd3p.cmat+r0;
pti:part{pi,1);
pt2:part(p2,1);
pt3:part(p3.1};

ei:dot(].pti)+v/2; /¢ redundant with e4 =/
e2:dot (k,pt1)+11;

ed:dot(1,pt2)+1/2;

ed:dot(j,pt2) +w/2;

eb:dot (1,pt3}+1/2; /* redundant with e3 ./
e6:dot(k,pt3)+11; :

eql:ev(el);
eq2:ev(el);
eq3:ev(ed);
eqi:ev(ed};
eqb:ev(e5);
eqb:ev(e6);
constrainti:ev{eq3-eqb);
constraint2:evieqi-eqd) :

/¢ 4inverting equations, without first and fifth equations containing
constraints on RPY angles +/

nalmat:matrix([ccsz.o.o.il.[0.1.0;0].[0.0.1.0}.[0.0.0.1]);
rhemat matrix ([-1p*ce31-11], [-1/2], (-w/2}, [-11-wp*cc32});

result:rataimp(irvert(solnat) .rhamat);

/¢  evaluate expressions with rotation matrix elemeants 3/

batch(rpyrot) ;
kill(e);

ev(renult[l.i])i
ap:trigsimp(%);
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bp:0;

cp:0;
eviresult[2,1])8
rx:trigeinmp{y);
evi(result[3,11)8
ry:trigsimp(});
eviresult(4,1])8$
rz:trigaimp(¥);

/« Bolve for a,b,c ¥/

ri:matrix([1/2-a],[-w/2].[-11]);
r2:matrdx{[-1/2], [~w/2},{bv-11]):
r3:matrix([-1/2], [w/2-¢},[-11]):

rO:matrix{[rx}, [ryl, [rz]);

rip:matrix([1p], (ap},[0]);
r2p:matrix([0], (0], [0)):
r3p:matriz ([0], [wpl, [01):

cmat:transpose(cmat):

ev(ri-{cmat.rip+r0));
%01.17; .
rhe(part (solve(%,2),1));
a:trigeimp(¥);

ev(r2-(cmat.r2p+r0));
%03.11;
rhs{part(solve(}.b},1));
b:trigsimp(%);

ev(rd- (cmat.c3p+z0));
%02.11;
rhe(part(solve(¥.,c),1));
c:trigsinp(X);

constraiati:trigaimp(ev(constrainti,inteval));
constraint2:trigsimp(ev(constraint2,infeval));

|¢rn([r0313;.ncc.dlk.dy].conltrninti,conltrlint2.ap.bp.cp.rx.ry.rz.n.b,c):
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/* vella mec calculstes the angular velecity in terms of the linear
velocity for caseds (one d.0.f.) »/

dynamalloc:print;

load(resl3a);
values;

declare(l,constant);
declare{w,constant);
declare(1lp,constant);
declare(wp,conatant)};
declare(1l,constant);

"1 (b} ¥
db:trigaimp(%);

del_consti:diff (constrainti)$
del_conat2:4ifZ(constraint2)$

load (facexp);

ratexpand(del_conat1)$
del_tz:rhs(part{solve(¥,del(tz)),1)):

subst{del_tz,del(tz) .del_const2)$

ratexpand(%)$
del_ty:rhe(part(solve(%.del(ty)).1));

subst(del_ty,del(ty),del_constl1)$
rataxpand (%) §
del_tz:rhs(parc{solve(¥,.del(tz)),1});

subst (del_tz,del(tz), db)¢
subst (del_ty,dsl(ty),4)$
ratexpand(%4)$
db:collectterms(¥,.del{tx));

/o  seperate equation into & coefficient of del(tx) [}

amat:iall;:

ainv:i/ali;
liavel:del b:
delang:2invslinvel$
del_tx:ratsimp(delang);:

ev(db/del{tx))$
ati:trigsimp(%);

ev(del_tx,infeval)$
del_tx:trigsimp();

ev(subat (del_tx,del(tx) del_ty),infeval);
del_ty:trigesimp(%);

ev(subst(del_tx,del{tx) .del_tz).infeval);
del_tz:trigsimp(%);:

save([dtx3a,zec,dak,naing] ,del _tx);
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save ([dtyda,.mec,dek,.neing) .del ty);
save ([dtzda,mec,dek,.nsingl] . del_tz);
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/* nenv3a mec, determines normal and contact velocity vectors for caseda +/
dynamalloc :print;
batch(vector,oper);

batch{rpyrot}:
cmat:c;
kill(c);

/¢ normals ¢/

1:01,0,01;

§:00,1,0]:

k:(¢,0,1];
ip:transpose(matrix(i));
jp:transpose (matrix(§));

kp: transpose (matrix{k)):
ip:cmat.ip;

jpremat. 1p;

kp:cmat . kp;

1p: [1pl1.1].1p[2,1] .1p(3.1]11:
Jp: [jpl1,11.§pf2.1),p(3,1]);
kp: [kp(1.1].xp[2,1] ,xp[3,113;

ni:cross{l,}p);
sqrt(n1[1]"2+n1{2]"2+n1[3]“2);
ni/%;

ni:transposs{matrix(%));

nls:croos(k,1p);

sqrt (n2s{1]-2+n2e(2]~2+n28[3]°2);
nis/%;

n2s:transpossz (matrix(l)):

n2c:cross(jp.k);

agre (n2e{1] “2+n2¢[2] "24n2c{31°2);
n2e/%; :
n2¢:transpoee{matrix(¥));

n3a:crosa{ip.j):

sqret (n3e[1]-2+n38{2]"2+n3a{3]1"2);
n3s/%:

nds:transpose (matrix(¥));

ndec:cross(jp.));

sqre (n3c(1]1-2+n3c[2]"2+n3¢(31-2);
nde/%;

n3c:transpose (matrix(¥));

/*  velocities 4/

trigsinmp(dif? (cmat)) 4

subst (deltx,del(tx) %) 8

subst (del_ty,del(ty).%)8
del_cmat:subst{del_tz,del(tz).%);

rip:matrix([1p], [ap].[0]};
r2p:oatrix([0], (01, [0]);
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r3p:matrix ([0}, [wp], [01):
del_ro:matrix([del_rx3, (del_ryl, [del_rz]);

del_ri:del_cmat.rip+del_r0;
sqrt (del_ri[1,1])"2+del_r1[2,1]1"2+del r1(3,11°2);
vi:{del_r1/%);

del_r2:del_cmat.r2p+del_r0;
nqrt(del_rQ[l.1]‘2¢del_r2[2.l]”2+d01_r2[3.1]‘2):
v2:(del r2/%);:

del_r3:del_cnat.rip+del_r0;
lqrt(del_r3[1.11‘2+del_r3[2.1]‘2vd01_23[3.1]‘2):
v3:(del_*3/%):

lond(resida);

declare(1,conatant};
declare(lp,constant);
declare{w,constant);
declare(wp.constant}:
declare(1ll,conatant);

del_rx:trigeimp(dizf(rx))$
subst (deltx, del{tx) %38

subat {del_ty,del(ty) . %)$
del_rx:subst(del_tz,del(zz) X);

del_ry:trigsimp(di2(ry))$
subst{deltx,del{tx) X)$

subat (del_ty,del(ty) )8
del_ry:oubst(d=1_tz,dei(tz).%X):

del_rz:srigsimp(dize(zz))¢
subst (deltx,del(tx) %) $
subst(del_ty,del(ty) %) ¢
del_rz:subet(del_tz,del(tz).%);

k111(nllbut(n:.nﬂ-,n?c.nSu.nSccvi,vz.vs,rx.ry.rz.dcl_r!.dol_ry.dll_r:.
n.b.c.ap.hp.cp.conltrninzl,ccnlttaintZ));

rix:ev(l/2-a,inteval);
riy:-w/2;

riz:-11;

r2x:-1/3;

r2y:-w/1;
r2z:ev(b-11,infeval);
r3x:-1/2;:
r3yiev(w/2-c,infeval); .
r3z:-11;

nix:nifL,1);
nty:ni[2.1];
niz:ni[3,1];
n2sx:n2s[1,1);
n2sy:n2e(2,1];
n2sz:n2s[3%,1]:
n2ex:n2efl,1];
r2cy:n2¢{2.1];
n2ez:n2el3,1};
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n3ax:n3s(1,1];
n3sy:n3s(2,1];
n3sz:n3s{3,1];
n3ex:n3e{l,1];
n3ey:nde(2,1];
n3cz:ndcf3,1);
vix:vi{1,11
viy:vi(2,1);
viz:vi[3,1];
vax:v2[1,1];
v2y:v2(2,1);
v2z:v2[3.1]1;
vax:v3[1.1];
vay:va[2,1];
v3z:v3[3,1]:

save ([resl3a,mec,dsk,dyl,rix,rly,riz,r2x,r2y,r22,r3x,r3y,rdz,nlx,nly,niz,n28x,
nZsy.nzsz.n2:x,n2cy.n2cz.n3ax‘n35y.nasz.n3cx,n3cy,n3cz.le.vxy.vlz.v2:,v2y.v2:.
v3x,v3y,v3z,del_rx,del_ry.del_rz,ap.bp,cp.a,b,c,rX,ry,rz,
conatraintl,conatraint2);
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/* vals3a mec, creates and checka values for case thres A “/
/e writefile(): +/

load(reslda);

caseno:"case3A";

runname :"runb”;

/* solve far ty ¢/
solvc{ev(constrainti),ty);
evty:rho(part (ev{%,infeval),1));
ty:evty;
conatraint2:ev{constraint2,infeval);
xki11(ty);

/¢ peg and hole parameters */
tol:0.005; /* tolerance #*/

1:1.25;

w:1.00;

1p:l+tol;

wpiw+tol;

11:2.0¢ .

u:0.6; /* frictiom s/

/% roll-piteh-yaw angless/

tx:-0.15491;
/% orientation of normals for £2 and £3  */

phiz:%p1/2; /¢ 0 <= phi2 <= jpi/2 +/
phi3d:0.0; /¢ 0 <= phi3 <= Ypi/2 ¢/

/¢ tz is determined from tx and ty */
load (imal):
£(tz) :='"constraint2;

zaolveeps:1.0e-4;
zsolvensig:4:

/*  the linear parameters are: s/

cheek () :=(kil1(tz, ty) ,ty:evty, soltz:zsolve ([t],[-0.06]} ,tz:part(soltz,2,1),
tysev(ty).ev(la.b,c,ap,bp,cp,rx,ry,rzl,infeval));

check(); '

tx;

ty;

tz;

/* edge contact veloeity +/

del_b:-1.0; /+ binary chorce (1 d.o.f.) +/
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/+ end state based on given values (linear assumptions) */
c_end:0.0; /» trivial +/

/* clopefile(); s/

/* Dbatch caseda mec */

/¢ batch{caselda); »/
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/* tcbl3a mec, determines the force and moment balance equations. caselda
the fourth parameter is phi2, the fifth parameter ls phi3, side edge
in corner, bottom edge in corner  */

dynamalloc:print;
batch(vector,oper);

ri1:[rix,r1y.riz];
r2:[r2x,r2y,r2zl;
r3:[r3x,rdy,r3z};
r1:[nix,niy,niz};
n2s: [n28x.n2sy.n2ez); /+ two components 4/

n2e: [n2cx,.n2ey,n2ez); /e of normal 2 ./
naa: [n3sx,ndey,ndsz]; /¢ twe components ¢/
n3c: [n3ex,n3cy.ndcz]l; S+ of normal 3 ./

vi:[vix,viy,vizl;
v2: [v2x,.v2y,v23);
v3:[vax,vdy,v3z]:

rixni:matrix(crosa(ri,ni));

r2xn2s:matrix{crosa(r2,n2s});
r2xn2c:matrix(cross(r2,n2c)};
rixn3s:matrix{cross{rd,n3s));
raxndc:matrix{crosa(rd.nde));:

rixvi:matrix{cross(ri,vi));
r2xv2:natrix(crosa(r2,v2));
r3xv3:matrix(crose{rd,v3)}:

ni:matrix(ni);
n2e:matrix(n2s);
n2c:matrix{n2ec);
n3s:matrix(nds);
n3c:matrix(n3e};
vi:matrix(vl);
v2:matrix(v2);
v3:matrix(v3);

text :matzrix([fx,2y.12]);
mext :matrix( [mx,my,nz]);

fhal :fext+f1isn1+£2» (nZo*sin(phl2) +n2c+cos(phi2)) +13+ (n3e+ain(phi3)
+n3c-con(ph13))+u‘t10v1+u-fztv2+ut13¢73¢delt(71+w2+v3):

mbal:mext0!1tr1xn1+u-fltrlxv1+12'(ernza-sin(phiz)+r2xn2c*cos(phii))+u-f2tr2xv2
+13-(raanstsin(phis)+ern3c-cos(ﬁhia})+n113-r3x13+del~(rixv1+r2x72*r32v3);

fbalx:tball1,1];
thaly:fbal(1,2];
fbalz:tbalfi,3];
mbalx:mballl,1];
mbaly:mbalf1,2];
mbalz:mbal(1,3];

eliminate([tbalx,fbaly,tbalz], (22,3108
solve (.11} ¢
nfi:rhe(%[11);
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elinminate({fbalx,tbaly,fbalz],[£1,£3])8
solve(’,12)$
nt2:che (%[1]);

eliminate{[fbalx,fbaly,fbalz], [f1,22])$
salve(’,r3)8
nt3:rha{%{1]);

f1:nfi$
£2:n128
13:n23$
14:""‘

save ([nndf3a,mec,dok,dy] .mbalx,mbaly . mbalz,f1.22,£3,14);
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/% Cageda mec, combines and evaluates parameters for the jamming and
breaking contact equations */

/* make sure that vals3a has been batched and values choaen for tx,ty,tz «/

dynamalloc:print$

loadfile(dtx3a,mec,dsk,neing) ;
deltx:ev(del_tx,infeval)$

loadfile(dty3a,mec,dsk,nsing);
del _ty:evidel_ty)$

loadfile(dtz3a,mec,dsk,nsing);
‘del_tz:ev{del_tz)$

loadfile(mndf3a,mec,dsk,dy);

del_rx:ev(del_rx,infeval)$
del_ry:ev{del_ry,infeval)$
del_rz:ev(del_rz,inteval)$

rix:;ev(rix)$

riy:ev(riy)$

riz:ev(riz)$

r2x:ev(r2x)$

r2y:ev(r2y)$

r2z:evir2z)$

r3x:ev(r3x)$

r3y:ev(r3y)$

r3z;ev(raz)$

nix:ev(nix)$

nty:ev(niy)$

niz:ev(niz)$

n2sx:ev(n2sx)$

n2ay:ev(n2ay)$

nisziev(n2sz)$

n2cx:ev{n2ex)$

n2cy:evin2cy)$

n2c¢z:evi{n2cz)$

n3sx:ev(n3sx) $

n3ay:ev(ndsy)$

n3az:ev(ndsz)$§

n3cx:ev(ndex)$

n3cy:ev{ndcy)$

ndcz:ev(ndcz)$

vix:ev{vix,infeval}$

viy:ev(vly,infeval)$

viz:ev{viz,infeval)$

v2x:ev{v2x,infeval); /¢  ghould be 0 ¢/
v2y:ev(v2y,infeval); /* echould be 0 */
v2z;ev{v2z,infeval); /* ahould be -& */
v3x:ev(v3x,inteval); /* phould be 0 */
v3y:ev(v3y,infeval); /* should be 1 ¢/
v3z:ev(v3z,infeval); /%  should be 0 #/

ratprint:false$
keepfloat:true$
expop:9¢
expon:9%
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ratexpand:false$
numer : true$

f1:ratexpand(ev(f1.infeval))$
12:ratexpand{ev{22,inteval))$
#3:ratexpand(ev(f3,infeval))$

mbalx:ratexpand{ev(mbalx,infeval))$
mbaly:ratexpand(ev(mbaly,infeval))$
mbalz:ratexpand{ev(mbalz,infeval))$

solve(mbalx,del)$
expand(rha{%[1}))8
expmx:ev(},float);

golve (mbaly,del)$
expand (rha (%{1]))8
expmy:ev(},float);

solve(mbalz,del)$
expand(rhs(%[11))$
expmz:ev(},float);

assume (mx>0,my>0.mz>0) §

aignx:sign(part(expmx,1)}$
termx:if signx=neg then -part(expmx,1,1,1) elae part(expmz 1.1)8

#ignx:1f signx=neg them "Mx/f ls less than (below surface)" else "Mx/f 1s greater than

(above surface)™;
exptx: expand (- (expmx-part (expmx, 1)) /termx) ;

signy:sign(part (expmy,1))$
termy:1if aigny=neg then -part(expmy,1.1,1} elae part (expmy,1,1}$

signy:if signy=neg then "My/f is lesa than (below surface)" elae "My/f 1s greater than

{above surface)";
expmy:expand (- (expmy-part (expmy,1))/termy) ;

aignz:aign{part(expmnz,1))$
ternz:1f aignz=neg then -part{expmz,1,1.1) else part (expmz,1,1)$

signz:if signz=neg then "Nz/f is less than (below surface)" elae "Nz/f i1a greater than

(above surface)®;
expmz; expand (- (expmz-part (expmz,1))/ternz);

del:0,08%
ev(£1)8
£1:expand(})$
£1470=";
ev(r2)$
£2:expand(%)$
£2+10="
ev{£3)8
t3:expand(%)$
£3+4m0=";
aggume (£2>0,1y>0.12>0)§

c1:1f sign(part{f1i,1))=neg then -part(f1,1,1,1) else part(f1,1,1)8
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b1:if sign(part(f1,2))=neg then -part(£1,2,1,1) elae part(f1,2,1)8

at:if sign(part(f1,3))=neg then -part(£1,3,1,1) else part(11,3,1)8
alphai:atan(ci/(ai*cos(beta)+bivain(beta)));

reoti:atan(-a1/b1)$

if rooti<-1.BT or rooti>1.57 then flagi:out else flag!:im;
alrcoa(rooti+.01)+birain(rooti+.oN$

aigni:if aign(¥)=neg then "alpha < for Beta > "+pgoti else “alpha > for Beta > "+rooti;

e2:1f sign(part(f2,1))=neg then -part(£2,1,1,1) elae part(£2,1,1)%

b2:1f asign{(part(£2.2))=neg then -part (£2,2,1,1) else part (£2,2,1)¢

a2:4f aign(part(f2,3))=neg then -part(£2,3,1,1) elge part(£2,3,1)8
alpha2:atan(c2/(a2*cos(beta)+b2+ain(beta)));

root2:atan(-a2/b2}%

1f root2<=1.B7 or root2>1.57 then tlag2:out else flag2:in;
a2+cos(root2+.01)+b2%ain(root2+.01)$

sign2:1f aign(%)=neg then "alphe < for Beta > "+rootl else "alpha > for Beta > "sroot;

¢3:17 sign(parz{23,1))=neg then -part(£3,1,1,1) else part (£3,1,1)8

b3:1f sign(part(£3,2))=neg then -part(£3,2,1,1) else part(23,2,1)%

#3:1f sign{part{£3,3))=neg then -part(£3,3,1,1) else part(£3,3,1)%
alpha3:atan(c3/(a3%cou(beta)+b3*ain(beta)));

root3:atan{-a3/b3)%

if root3<-1.67 or root3>1.E7 then flagd:out else flagd:in;
a3+coa(root3+.01)+b3ssin(root3+.01)¢

sign3:if sign(%)=neg then "alpha < for Beta > "sroot3 else alpha > for Beta > "+root3;

fx:e1n(alpha) *cos(beta)$
fy:sin(alpha) *sin(beta)$
1z:-cos (alpha)$

expmx:expand (ev{expomx)) $
"Mx/F=""+expnx;
expmy : expand (ev (expry)) $
"My/F="+expmy;
expmz:expand(ev(expmz))$
"Mz/F="+expnz;

save ([¢a3avl, mec,dsk,dy], caseno,runname,phi2,phi3, signx,signy,signz,expnx,
expmy.expmz.alphnl.rnot!.flagi.nigni.nlphaz.root2.rlagz.aignz.alphna.roota.
flag3,signd, f4);
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For Case Four

/% kind mec, kinematic equations and solutions for case4 (post multiplying)+/

dynamalloec:print;
batch(vector,oper);

cmat :transpose(matrix([ccil,ece12,ce13], [ec21,cc22,cc23], [cc31,ce32,cc33]));
r0:matrix({rx,ry.rzl);

1:[1,0,0];

§:00,1,0];

k:[0,0,1];

/* note lack of contact one */

r2p:matrix([0,0,01}:

r3p:matrix([0,wp-cp,0]):

rdp:matrix([{1p-dp) ,wp.-ep]); /% note new contact vector +/

p2:r2p,.cmat+ro;
pdirdp.cmat+ro;
p4irdp.cmat+ro;

pt2:part(p2.1):
pta:parti{p3.1);
pté:part(p4,1);

el:dot(l,pt2)+1/2;

e2:dot(],pt2)+w/2;

#3:dot (1,pt3)+1/2; /+ redundant/inconsistent equation s/
ed:dot(].pt3)-w/2;

eb:dot (1,ptd)~1/2; -

e6:dot(§,ptd)-w/2;

e7:dot (k,ptd) +11;

eqi:ev(el);
eq2:ev{e2);
eq3:ev{e3); /v redundant/inconsistent equation */
eqd:evied);
eqb:ev(eb):
eq6:ev(e6) ;.
eql:ev(e?);

constraint:ev(eq3-eql);
/* 1nverting equations, without equation containing RPY constraint +/

solmat:matrix{[¢,0,0,1,0,0],[0,0,0,0,1,0],[cc22,0,0,0,1,0],
[0,cc12,~cc13,1,0,0],[0,¢cc21,~223,0,1,0], [0,cc31,-¢€33,0,0,1]);

rhonat :mateix ([-1/2], [-w/21, [w/2);
[-wp*ee12+1/2], [w/2-wpsec22]), {-11-wpeec32]);

result:ratsimp(invert(solmat) .rhamat);

/% evaluate expressions with rotation matrix elements o/

batch(rpyrot) ;
x1ll(c);
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ev{wp-result{i,1])¢
cp:trigaimp(¥);
ev(lp-result{2,1])$
dp:trigeimp(%);
ev(result(3,1]1)8
ep:trigaimp(%);
ev(result[4,11)¢
rx:trigainmp(%):
ev(result[6,1]1}9
ry:trigeimp(%):
ev{result[6,1])%
rz:trigeimp(%);

/* note lack of r1 &/
r2:matrix([-1/2},[-w/2],(b-111);
r3:mavrix([-1/2], [w/2], [nc-111);
rd:matrix((1/2], [v/2].[-11]):

r0:matrix([rx], [ry], [r2z});

/* note lack of rip «/
r2p:matrix{[0},[0], [01);
r3p:matrix([0] . fwp-<cpl, [0]);
rap:matrix([1p-apl, [wpl, [-epl):

cmat:transpose(cmat);

ev(r2-(cmat.x2p+r0));
%3, 1);
rha({part(aolve(%,b),1)):
b:trigeimp(¥);

ev(r3-{cmat.r3p+r0));
4[3,11;

rha(part{solve{}, ne),1));
ne:trigeimp(%);

conltraint:trigllmp(ev(con:traint.in!ava!)):

save ([resltd,mec,dak,dy] ,constraint,cp,dp,ep,b,nc,.rx,ry.rz};
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/+ veld mec calculates the angular velocity in terms of the linear

velocity for cased ¢/
dynamalloc:print;

load(resltd);
values;

declare(l,.constant);
declare(w,constant);
declare(lp,constant);
declare(wp,constant);
declare(ll,constant);

a1r1(ap)s
ddp:trigsimp(%);

diftiep)s
dep:trigsimp(%);

del_const:diff (corstraint)$
load(facexp):

ratexpand(del_const)$
solve(¥,del{ty)):
del _ty:rha(part(%.1));

subst {del_ty,del(ty).ddp)d
ratexpand(%)$
ddp:collectterms (X,del(tx) ,del(tz));

subst{del_ty,del(ty),dop)¥
ratexpand(%) $
dep:collectterns(%,del(tx), del(tz));

/%  seperate equation and represent as a ccefficient of del(ty)

amat:matrix({all,a12],[a21,222])8
ainv:invert(amat)$
1invel:matrix([del_dpl, [del_epl)$
delang:ainv.linvel$
del_tx:rateimp(delangt,1])$
del_tz:ratsimp(delang{2,1])$ -
ev(part (ddp,2) /del(tx));
all:trigsimp(%);

ev(part (ddp,1)/del(tz));
ai2:trigeimp (%) ;

ev(part (dep,2)/del(tx));
a21:trigsimp(%);
ev(part{dep,1)/del(tz}):
222:trigeimp(%);

ev(del_tx)$
del_tx:trigsimp(¥%):
ev(del_tz)$
del_tz:trigaimp(%);

«f
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subst(del _tx,del(tx) del_ty);
subat (del_tz,del(t2) ,%);
ev(%)$

del_ty:trigeimp(%);

save ([dixd ,mec,dsk . nsingl ,del_tx):
save([dtyd,mec,dak, neingl .del_ty):
save ([dizd ,mec dok, nsingl . del_tz2):
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/e nandvd mec, determines normal and contact velocity vectora for cased ¢/
dymamalloe:print;
batch{vector,oper);

batch(rpyrot);
cmatic;
kill(c);

/* norzals ¢/

1:{1,0,01;

j:[0,1,0];

x:[0,0,1);
ip:trenspose(matrix(1));
jp:tranepose(matrix(}));
kp:transpose(matrix(k});
ip:cmat.ip;

jp:cmat. p;

kp:cmat.kp:
1p:[ipl1,1].4p12,1],4p(3,1]1);
ip: [4p{1.11,5p{2.11, 4p(3,1]11;
xp: (kpl1,1] . kp{2,1] .kp[3,11);

n2e:cross{jp.k):

sqrs (n2s(1]*2+n2s8[2]~2+020 (3] "2);
n2a/%;

n2a:transpose{matrix(%)):

n2c:crosal{k,ip):
sq:t(n2c[1]‘2+n2c[2]‘2+n2c[3]“2);
n2e/%;

n2c:transpose(matrix(s));

n3:croas(jp.k); /% note nev norzal at point 3 #/
sqrt (n3 [1] "2+n3[2]" 2+n3[3]‘2).

n3/%;
n3:transpose(matrix(%));

nd:-ip: /* note new normsl at polnt 4 */
nié:transpose (matriz(¥));

/*  velocities »/

trigeimp(dift (cmat))$

subst (deltx,del(tx), %}$

subst (delty,del(ty) A} $
del_cmat:subst(deltz,del(tz},%):

r2p:matrix{[0], [0],{01);
r3p:matrix([0], [wp-cpl, [0]);
rip:matrix([1p-dp], [wp], [-ep)):

del_ro:matrix([det_rx], [del_ry], [del_rz]);
del_r2:del_cmat.r2p+del_r0;

sqrt (del_r2[1,1]-2+del_r2(2,1] "2+del_r2(3.,1]"° 2);
vZ:(del_r2/%);
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del_r3:del_cmat.r3p+del_r0;
sqrt(del_ra[l.1}'2¢de1_r3[2.1]‘2‘d01_r3[3,l]‘2):
v3:(del_r3/%);

del_rd:del _cmat.rip+del_r0;
sqrt {del_r4[1,1]"2+del_r4[2,1]"2+del_r4(3,1]°2);
vd:(del_rd4/%);

load{resltd);

declare(l,constant);
declare(lp,constant);
declare(w, consiant);
declare(wp.constant):
declare(ll,conatant);

del_rx:trigsimp{dift(zx))$
subat (deltx.del(tx),%)¢

subst (delty, del{ty) . A)$
del_rx:subst(deltz, del(tz),%):

del_ry:trigsimp(ditf(zy))$
subst {(deltx,del(tx) . %)$
subst{delty, del(ty), )8
del_ry:subat(deltz,del(sz),%):

del_rz:trigeimp(dife(rz))#
subat (deltx,dal(tx) %) 8

subst (delty,del(ty) . %)$
del_rz:subat(deltz,del{tz),%);

k111(allbut(n2'.n2c.n3.n4.72.73.v4.tx,ry.rz,dcl_rz.dol_ry,dol_rz.
b,n¢,cp.dp,ep,constraint));

£2%:-1/2;
£y -w/2;
r2z:ev(b-11,infeval)};
r3x:=1/2;
r3y:v/2;
raz:ev(ne-11,infevel);
rdx:1/2;
rdy:s/2;
r4z:=-11;

n2sx:n2s(1,1}; -
n2ey:n2a{2,1];
n2sz:n2e[3.1];
a2cx:n2e[1,1};
nley:n2ef2,1];
n2ez:n2c{3.1);
n3x:nd{1,1];
n3y:n3(2,1];
n3z:n3{3,1];
ndx:ndl1,1];
ndy:n4f2.1];
ndz:n4[3,11;

v2x:v2{1,1];
v2y:v2[2,1];
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v2z:v2(3,1];
vax:va(1,1):
vay:v3f2,1];
v3z:v3([3,1];
vix:v4[1,1]);
vdy:vd[2,1];
vdz:v4[3,1];

save([resitd.mec,dok,dy] ,r2x,r2y,222,r3x,rdy, r3z,rd4x,rdy, rdz,
n2ex.n2sy,n2sz,n2cx,n2cy,n2cz,ndx,ndy,ndz,ndx,ndy, rndz,
v2x,v2y,v2z,v3x,v3y,v3z,v4x,vdy,viz del_rx.del ry,del_rz,
cp.dp,ep,b,nc,rx,ry,rz,conatraint);
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/»  cased mec, creates and evaluates parameters for cage four .74
/v writefile(); +/
load{resltd);

caseno:"cased"®;

runname : “rund”;

/+ peg and hole parameters «/
tol:0.006; /¢ tolerance */
1:1.26;

w:l.00;

1p:1+tol:

wpiw+tol;

11:2,0;

u:0.6; /¢ triction o/

/* roll-pitch-yaw sngless/

tx:-0.07573; /+ -0,08414:+/
t2:-0.00108; /+ -0,00114;¢/

/% orientation of normals for fi and £2 +/

phi2:%pi/8; /* O <= phi2 <= Ypi/2 +/

/+ ty is determined from tx,tz ¢/

load(imsl):
ratprint:falsed

/* the linear parameters are */
£(ty):='‘constraint;

zsolveeps:1.0e-4;
zaolvensig:4;

check{) :=(s0l:zs0lve([t],[-1.0]),

ty:part(sel,2,1) ,ev({b,nc,cp,dp,ep,rx,ry, 2], infeval));
check();

tx;

ty:

1z

/* edge contact velocities %/

del_ep:1.0; /+ defined +/

del_dp:0.0; /+ stay away from cormer in hole 7 4/
/¢ closetile(); +/

/* choose a value for ty and batch cased mee  +/
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/* batchicased); s/
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/* frebld mec, determines the force and moment balance equations, cased ./

dynamalloc:print;
batch{vector,oper);

r2: (r2x,r2y,r2z);
r3:[rax,riy,riz};
r4:[rdx,riy,r4z];

n2s:[n2ex,n2ey,028z]: /* two components ¢/
n2c:[nlcx.nley.n2¢z]l: /o of normal 2 ./
nd: [n3x,n3y,n3z);
nd:(ndx.ndy,ndz];

v2: [v2x,v2y,v2z];
v3:[v3x,v3y,v3zl:
vd:[vdx, vdy, viz];

r2xn2s:matrix{cross(r2,ns));
r2xn2c:matrix{cross(r2,n2¢));
1r3xnd:matrix(crose(rl,nd));
rdxnd:matrix(cross(rd,nd));

r2xv2:matrix(croan(r?,vl1));
r3xv3:matrix(cross(rd,vd));
rdxvd:matrix(cross(rd,vd));

n2s:matrix{n2s);
n2¢:matrix(nlc):
n3:matrix(n3d);
n4:matrix(nd);

v2:matrix(v2);
v3:matrix(v3);
vd:matrix{vd);

text:matrix([tx,.ty.121);
mext :matrix([mx,ny,.mz]);

fbal:fext+f2¢(n2e*sin(phi2)+n2c+cos(phi2))

+£3sn3+14snd+usf2ev2+uef3svirurtdevirdels (virvi+vd) ;

mbal :mext+f2+ (r2xn2a+sin(phi2)+

r2xn2c*cos (phi2) ) +23+r3xn3+L49r4xnd+ur£2oT2XV2+u*L3+rIxvi+usf+rixvs

+dels (r2xy2+r3xv3+rdxvd);

fbalx:ratexpand{tdal[1,1]);
tbaly:ratexpand(fbal[1,2]); .
fbalz:ratexpand(fbal1,3]);

mbaix:ratexpand(mbalf1,1]);
mbaly:ratexpaad(mbai[1,2]);
mbalz:ratexpand(mbal[1,3]);

eliminate([fbalx,fhaly,fbalz], [£3,24]);
solve(%,.22);
nt2:rhe(part(%,1));
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eliminate((fbalx,fbaly,fbalz], [£2,14]);
solve(%.13);
n£3:rhe (part(%4,1));

eliminate([fbalx,tbaly,fbalz], [£2,23]);
solve(%.14);
nt4:rhs (part(%.1));

/e £1:727; 8/

£2:rateimp{nr2);
23:ratsimp{nt3};
24:ratsimp (nfd);

save([mandf4,mec,dsk.dy],mbalx,mbaly,zbelz,f1,£2,23,14);
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/* Cased mec, collects and evaluates parameters for jamming and breaking
contact curves for cased ¢/

/» make sure that valed has been batched and values chosen for tx,ty,tz */
dynamalloc:print;

loadfile(dtx4 ,mec,dek, asing):
deltx:ev(del_tx,infeval);

loadfile(dtyd ,mec,dsk,nsing):
delty:ev{del _ty,infeval);

loadfile{dtz4 ,mec,dsk,neing);
deltz:ev(del_tz, infeval);

loadfile{zandf4,mec,dak,dy);

del_rx:ev(del rx,infeval);
del_ry:ev(del_ry,infevel);
del_rz:ev(del_rz,infeval);

r2x:ev(r2x);
riy:ev(r2y);
r2z:ev(r2z);
r3x:ev(r3x);
riy:ev{rdy);
riz:ev(riz);
rdx:ev(rdx);
rdy:ev(rdy);
riz:ev(rdz);

n2sx:ev{nZsx):

n2sy:ev{n2sy);

n2az:ev(n2sz);

n2cx:ev{nlcx) ;

nlcy:ev(nley);

n2ez:evi{nlcz);

ndx:ev(n3x);

n3dy:ev(ndy);

n3z:ev(n3z);

ndx:ev{ndx);

ndy:evindy);

n4z:ev(ndz);

vix:ev(v2x,infeval); /+ should be 0 =/
v2y:ev(v2y,infeval); /¢  should be 0 &/
v2z:ev(v2z,infeval): /%  should be +-1 */
vix:ev(v3x,infeval);

v3y:ev(v3y,infeval);

v3z:ev(vdz, infeval);

vix:ev(vdx,infeval);

vdy:ev(vdy,inteval);

vdz:ev(vdz,infeval);

ratprint:falae;
keepfloat:trTue;
expop:9;
expon:9;
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ratexpand:false;
numesr;:true;

£2:ratexpand(ev(f2,infeval));
t3:ratexpand(ev(f3, infeval});
f4:ratexpand(ev(£4,infeval));

mbalx:ratexpand{ev(mbalx,inteval));
mbaly:ratexpand{ev(mbaly,infeval)):
mbalz:ratexpand{ev(mbalz,infevel));

solve{mbalx, del);
expand{(rho(%(1]))$
expax:ev(%, float);

solve (mbaly, del};
expand(rhs (1[1]))¢
expmy:ev(%,float);

solve(mbalz,del);
expand(rha (X[1]1))4
expuz:ev(¥l,float);

assume (2x>0,ny>0,02>0)$

signx:eign(part (expax,1});

termx:if signx-neg then -part{expmx,1.1,1) else part(expmx,1,1);
signx:if signx=neg then "Mx/f is less than (below surface)” else
(above surface)”;

expmx : expand (- (expmx-part (expmx,1)}/ternx);

eigny:sign(part (expmy,1));

termy:4if signy=neg then -part(expmy,1,1,1) else part (expmy,1,1});
eigny:if aigny=neg then "My/! is less than (below surface)" else
(above surface)";

expny:expand(- (expmy-part {expay, 1)} /termy):

signz:sign(part(expmz,i));

termz:if aignz=neg then -part(expmz,i,1,1} else part{expmz,i,1);
gignz:4f signz=neg then "Mz/f is less than (below surface)” else
(above surtace}";

expmz:expand (- (expmz-part (expaz, 1)) /ternz);

del:0.08

ev(22)9
12:expand (X)) $
£24m0=";

ev(£3)3 .
23:expand(})$
£3400=";

ev(f4)$
24:expand(%}$
14+"0=";

assume (£x>0,2y>0,12>0) §

"Mx/f 1o greater than

"My/t 19 grrater than

"Mz/t ie greater than

c2:1f signlpart(£2,1))=neg then -part{f2.1,1,1} else part(12.1,1)$
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b2:if sign(part(£2,2))=neg then -part(£2,2,1,1) else part(£2,2,1)%

a2:if sign{part(£2,3))=neg then -part(£2,3,1,1) else part(f2,3,1)$
alpha2:atan(c2/(a2¢cos(beta)+b2+*sin(beta)));

root2:atan{-a2/b2)$

if root2<-1.57 or root2>1.57 then *lag2?:out else flag2:in;
a2ecos(root2+.01)+b2+sin{reot2+.01)¢

sign2:1f sign(’)=neg then "alpha < for Beta > "+root2 else "alpha > ior Beta > "+root2;

c3:1f sign(part(£3,1))=neg then -part(f3,1,1,1) else part(£3,1,1)$

b3:if sign{part(£3,2))=neg then -part(£3,2,1,1) elae part(£3,2,1)8

ad:if sign(part(£3,3))=neg then -part(£3,3,1,1) else part(£3,2,1)$
alpha3d:atan(c3/(a3+con(heta)+b3vsin(beta)));

rootd:atan{-a3/b3}$

if rootd<-1.57 or root3>1.57 then flagd:out e¢lse flagd:im;
a3%cos{root3+.01)+b3+*sin{rootd+ 01)8%

oign3:if sign(%)=neg then "alpha < for Beta > "+rootd else "alpha > for Beta > "+rootd;

c4:1f sign(part(£4,1))=neg then -part(24,1,1,1) else part(f£4,1,1)$
ba:1t signi{part(f4.2))=neg then -part(f4,2,1,1) else part(£4,2,1)¢
né:1f sign{part(f4,3))=neg then -part(£4,3,1,1) else part{r4,3,1)8
slphad:aten(cd/{adscon{beta)+ddssin(beata)));

rootd:atan{-ad/b4)$

1f root4<-1.567 or rootd>1.57 then flagd:out else flagéd:in;

adrcos(rootd+.01) +ba*sin(root4+,01) ¢
signd:1f sign(%)=neg then "alpha < for Beta > "+root4d else "alpha > for Deta > "+rootd;

tx:sin{alphsa) =cos(beta}$
fy:ein(alpha)+sin(beta)$
£z:-coe(alpha)$

expomx:expand{ev(expx))$
“Mx/F="+expmx;
expmy:expand(ev{expmy))$
“My/F=*+expmy ;
expmz:expand {ev(expmz)) $
"Mz/F="+expmz;

/* To interface with PLOT MEC, change f4 specifications to £1 o/

alphai:alphads
rooti:root4$
flagl:f1lagd$
aigni:aignd}

save ([eadval ,mee,dok,dy].caseno,runname,phi2,signx, aigny,aignz, expnx,
eypmy, expmz ,alpha2, root2,t1ag2,aign2.alphad.rootd,
£lagd,sign3,alphal,rootl,flagl,signi);



Appendix B

Expressions for Case One

As an example of the expressions genecrated by the MACSYMA™ code of the

previous appendix, we provide the following listing from case one. The list of

variables are:
For the peg and hole parameters:

L =l
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For the position terms:

For the velocity terms:

AP =d
BP =¥’
CP=¢
RX =Rz,
RY =Ryo
RZ =Rz,

DELTX =4,
DELTY =4,
DELTZ =94,
DELB =b
DEL_BP=¥
DEL_CP=¢'
DEL.RX=Rz,
DEL.RY=Ry,
DEL_RZ =Rz,
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For the vector components of the force balance terms:

FX =F;
FY =F,
FZ =F,
MX =M,
MY =M,
MZ =M,
R1X=R,
R1Y=R,
R1Z =R,
N1X=n,
N1Y=ny
N1Z =n,
ViX=n
ViY=v,
V1Z =v,

T — component
y — component
z — component ( Ry, B3 similar)
T — component
y — component
z — component (ng, ng similar)
z — component
y — component

z — component (va, v3 similar)
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Kinematic expressions from KIN1 MEC

THE EDGE CONTACT PARAMETERS ARE:

A=

LP COS(TX) SIN(TY) SIN(TZ) - LP SIN(TX) COS(TZ) + L SIN(TX) COS({TY)

SIN(TX) COS{TY)
B=
2
- (LP COS{TX) SIN(TX) SIN(TY) SIN (TZ)
2 2 2 .
+ (- LP COS (TX) COS (TY) + 2 LP €OS (TX) - LP) COS(TZ) SIN(TZ)
2 2

LP COS(TX) SIN(TX) SIN(TY} COS (TZ))/(COS(TX) SIN(TX) COS (TY))

I

Ca
SIN(TX) COS(TY) W + LP SIN(TX) SIN(TZ) + LP COS(TX) SIN(TY) COS(TZ)
SIN(TX) COS(TY)
AP=
2 .
LP COS(TX) SIN(TY) SIN (TZ) - LP SIN(TX) COS(TZ) SIN(TZ)
COS(TX) SIN(TX) COS(TY)
BP=
2 2
(LP COS(TX) SIN(TX) SIN (TZ) + (LP - 2 LP SIN (TX)) SIN(TY) COS(TZ)
: 2 2 2
SIN(TZ) - LP COS(TX) SIN(TX) SIN (TY) COS (TZ))/(COS(TX) SIN(TX) COS (TY))
CP=

(COS(TX) SIN(TX) COS(TY) WP + LP SIN(TX) COS(TZ) SIN(TZ)
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2
+ LP COS(TX) SIN(TY) COS (TZ))/(COS(TX) SIN(TX) COS(TY))

THE COMPONENTS OF THE VECTOR RO ARE:

RX =
2 2

((4 LP SIN (TX) - 2 LP) SIN(TY) COS (TZ) SIN(TZ)

‘ 2 3
+ (2 LP COS{TX) SIN(TX) SIN (TY) + 2 LP COS{TX) SIN(TX)) COS (TZ)

- 2 LP COS{TX) SIN(TX) COS(TZ) - L COS(TX) SIN(TX) COS(TY))

/(2 COS(TX) SIN(TX) COS(TY))

RY=
2

- (COS(TX) SIN(TX) COS(TY) W + (2 LP COS(TX) SIN(TX) SIN (TY)

3 2
+ 2 LP COS(TX) SIN(TX)) SIN (TZ) + (2 LP --4 LP SIN (TX)) SIN(TY) COS(TZ)

2 2
SIN (TZ) - 2 LP COS(TX) SIN(TX) SIN (TY) SIN(TZ}}/(2 COS(TX) SIN(TX) COS(TY))

RZ=
2

LP SIN(TX) COS(TZ) SIN(TZ) + LP {OS(TX) SIN(TY) COS (TZ) - LL COS(TX)

- L b e N W Y N S -y - P WP Y AR M VR WD WS M W A G WL &S em e b e S e . L

COS(TX)
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Force and moment balance results from FRCBL1 MEC

FORCE BALANCE, X DIRECTION
(V3X + V2X + VIX) DEL + F3 U Vv3X + F2 U VaX + FL U ViX + F3 NM3X + F2 N2X
+ F1 NIX + FX = 0

FORCE BALANCE, Y DIRECTION
(V3Y + v2Y + V1Y) DEL + F3 U Vv3Y + F2 U VaY + F1 U viY + F3 N3Y + F2 N2Y
+ F1 N1Y + FY = 0

FORCE BALANCE, Z DIRECTION
(V3Z + V2Z + V1Z) DEL + F3 U V3Z + F2 U V2Z + F1 U ViZ + F3 N3Z + F2 N2Z
+ F1 N1Z + FZ = 0

MOMENT BALANCE, X DIRECTION-
(R3Y V3Z - R3Z V3Y +'R2Y V2Z - R2Z V2Y + R1Y V1Z - R1Z V1Y) DEL

+ F3 U (R3Y V3Z - R3Z V3Y) + F2 U (R2Y V2Z - R2Z V2Y)
+ F1 U {R1Y V1Z -~ R1Z V1Y) + F3 (N3Z R3Y - N3Y R3Z) + F2 (N2Z R2Y - N2Y R2Z)

+ F1 (N1Z R1Y - N1Y R1Z) + MX = 0

MOMENT BALANCE, Y DIRECTION
(- R3X VaZ + R3Z V3X - R2X V2Z + R2Z V2X - R1X V1Z + R1Z ViX) DEL

+ F3 U (R3Z V3X - R3X V3Z) + F2 U (R2Z vaxX - R2X va2Z)
+ F1 U (R1Z ViX - R1X V1Z) + F3 (N3X R3Z - N3Z R3X) + F2 (N2X R2Z - NZZ‘RZX)

+ F1 (N1X R1Z - N1Z R1X) + MY = 0

MOMENT BALANCE, Z DIRECTION
(R3X V3Y - R3Y V3X + RZX v2Y - R2Y VaX + R1X V1Y - RiY V1IX) DEL

+ F3 U (R3X VAY - R3Y V3X) + F2 U (RZX V2Y - R2Y V2X)
+ F1 U (RIX V1Y - R1Y VIX) + F3 (N3Y R3X - N3X R3Y) + F2 (N2Y R2X - N2X R2Y)



APPENDIX . EXPRESSIONS FOR CASE ONE 239

+ F1 (N1Y R1X - N1X R1Y) + MZ =

REACTION FORCE, Fl=

2 2
- ((({U VIX + (- N3X - N2X) U) V2Y + ((N3Y + N2Y) U - U V1Y) V2X

- N2X U V1Y + N2Y U V1X + N2X N3Y - N2Y N3X) VaZ

2 ' 2 :
+ (((N3X + N2X) U - U VIX) v2Z + (U V1Z + (- N3Z - N2Z) U) v2X + N2X U Vi1Z

. 2
- N2Z U VIX ~ N2X-N3Z + N2Z N3X) V3Y + ((U V1Y + (- N3Y - N2Y) U} va2Z

2
+ ((N3Z + N2Z) U - U V1Z} vay - N2Y U V1Z + N2Z U V1Y + N2Y N3Z - N2Z N3Y)

V3X + (N3X U V1Y - N3Y U VIX + N2X N3Y¥ - N2Y N3X) v2Z

+ (- N3X U V1Z + N3Z U ViX - N2X N3Z + N2Z N3X) v2Y

+

(N3Y U V1Z - N3Z U V1Y + N2Y N3Z - N2Z N3Y) V2X + (N2X N3Y - N2Y N3X) ViZ

(N2Z N3X - N2X N3Z) V1Y-+ (N2Y N3Z - N2Z N3Y) V1X) DEL

+

2 2
(FX U VaY - FY U V2X + (FX N2Y - FY N2X) U) Vaz

+

2 2 _ ~
(- FX U V2Z + FZ U V2X + (FZ N2X - FX N2Z) U) V3Y

+

2 ' 2
(FY U Vez - FZ U V2Y + (FY N2Z - FZ N2Y) U) V3X + (FY N3X - FX NaY) U vaz

+

+ (FX N3Z - FZ N3X) U V2Y + (FZ N3Y - FY N3Z) U VZX + (FX N2Y - FY N2X) N3Z

(FZ N2X - FX N2Z) N3Y + (FY N2Z - FZ N2Y) N3X)

<+

3 2 3 2 2 2
J(((U VIX + N1X U ) VaY + (-"U V1Y - N1Y U ) V2X - N2X U VIY + N2Y U vix

3 2
+ (NIX N2Y - NIY N2X) U) V3Z + ((- U VIX - NIX U ) v2Z
3 2 2 _ 2
» (U VIZ +NIZ U ) VZX + N2X U VIZ = N2Z U VIX + (N1Z N2X - N1X N2Z) U)
/ 3 2 3 2 2
VaY +/((U VIY # NLY U ) V2Z + (- U VAZ - NIZ U ) V2Y - N2Y U viZ

{

/2

\’H/:/ggi U V1Y + (N1¥ N2Z - N1Z N2Y) U) V3X
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2 2
£ (N3X U VIY - N3Y U VIX + (NIY N3X - N1X N3Y) U) v2z

2 2
+ (- N3X U VIZ » N3Z U VIX + (NIX N3Z - N1Z N3X) U) vay

2 2
(N3Y U VI1Z - N3Z U VIY + (NLZ N3Y - N1Y N3Z) U) vax

+

+ (N2X N3Y - N2Y N3X) U V1Z + (N2Z N3X - N2X N3Z) U V1Y
+ (N2Y N3Z - N2Z N3Y) U VIX + (N1X N2Y - N1Y N2X) N3Z

(N1Z MZX - N1X N2Z) N3Y + (N1Y N2Z - N1Z NZ2Y) N3X)

+

REACTION FORCE, F2=

2 2
- (({(U VIX + NIX U) V2Y + (- U VIV - NIY U} V2X + {N3X + NIX) U V1Y

+ (- N3Y - N1Y) U VIX - N1X N3Y *+ N1Y N3X) V3Z

2 2
+ ((- U VIX - NIX U) V2Z + (U VI1Z * N1Z U) V2X + (- N3X - N1X) U V1Z

+ (N3Z + N1Z) U VIX + N1X N3Z - N1Z N3X) VaY
2 . 2

+ ((U VIY + NIY U) V2Z + (- U VIZ - N1Z U) V2Y + (N3Y + NIY) U V1Z

+ (- N3Z - N1Z) U VLY - NIY N3Z + N1Z N3Y) V3X

+ (N3X U VIY - N3Y U VIX - NIX N3Y + N1Y N3X) V2Z

+ (- R3X U VIZ + N3Z U VIX + NIX N3Z - N1Z N3X) V2Y

+ (N3Y U V1Z - N3Z U VIY - NIY N3Z + NIZ N3Y) V2X + (N1Y N3X - N1X N3Y) V1Z

+ (N1X N3Z - N1Z N3X) V1Y + (N1Z N3Y - N1Y N3Z) ViX) DEL

2 2
+ (- FX U V1Y + FY U VIX + (FY NIX - FX N1Y) U) V3Z

1 2 2 . N
+ (FXU ViZ - FZ U VIX + (FX N1Z - FZ N1X) U) V3Y

2 2
# (- FY U VIZ + FZ U VIY + (FZ NIY - FY N1Z) U) V3X

+ (FX N3Y - FY N3X) U VIZ + (FZ N3X - FX N3Z) U V1Y + (FY N3Z - FZ N3Y) u vix

+ (FY NIX - FX N1Y) N3Z + (FX N1Z - FZ NIX) N3Y + (FZ N1Y - FY N1Z) N3X)
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3 2 3 2 2 2
Z(((U VIX + NIX U ) V2Y + (- U V1Y - N2Y U ) V2X - N2X U V1Y + N2Y U VIX

3 2
+ (NIX N2Y - N1Y N2X) U) V3Z + ((- U VIX - NIX U ) V2Z

3 2 2 2
+ (U VIZ + N1Z U ) v2Xx + N2X U VIZ - N2Z U VIX + (N1Z N2X - N1X N2Z) U)

3 2 3 2 2
V3Y + ((U V1Y + N1Y U ) V2Z + (- U VIZ - N1Z U ) vaY - N2Y U VIZ

2
N2Z U V1Y + (N1Y N2Z - N1Z N2Y) U) V3X

+

2 2
(N3X U V1Y - N3Y U VIX + (N1¥Y N3X - NI1X N3Y) U) V2Z

+

2 2
(- N3X U VI1Z + N3Z U VIX + (N1X N3Z - N1Z N3X) U) vzy

+

2 2 :
(N3Y U V1Z - N3Z U V1Y + (N1Z N3Y - N1Y N3Z) U) vax

+

(N2X N3Y - N2Y N3X) U V1Z + (N2Z N3X - N2X N3Z) U V1Y

+

+

(N2Y N3Z - N2Z N3Y) U VIX + (N1X N2Y - N1Y N2X) N3Z

(N1Z N2X - NIX N2Z) N3Y + (NIY N2Z - N1Z N2Y) N3X)

+

REACTION FORCE, F3=
2 ' 2
- ((((U VIX + N1X U) V2Y + (- U V1Y - NIY U) V2X - N2X U V1Y

2
N2Y U VIX + NIX N2Y - N1Y N2X) Vv3Z + ((- U VIX - N1X U) vaz

+

2 .
(6 V1Z + N1Z U) v2X + N2X U V1Z - N2Z U ViX - NiX N2Z + N1Z NZ2X) V3Y

+

2 2 -
((U VIY + NIY U) V2Z + (- U V1Z - N1Z U) V2Y - N2Y U VIZ + N2Z U V1Y

+

+ N1Y N2Z - N1Z N2Y) V3X + ((- N2X - N1X) U VIY + (N2Y + N1Y) U VIX + NIX N2Y

N1Y N2X) V2Z + ((N2X + N1X) U V1Z + (- N2Z - N1Z) U VIX - NiX N2Z

+

N1Z N2X) V2Y + ((- N2Y - N1Y) U V1Z + (N2Z + N1Z) U V1Y + NIY N2Z

N1Z N2Y) V2X + (N1X N2Y - N1Y N2X) V1Z + (N1Z N2X - N1X N2Z) V1Y
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2 2
+ (N1Y N2Z - N1Z N2Y) ViX) DEL + (FX U VIY - FY U VIX

2 2
+ (FX N1Y - FY N1X) U) V2Z + (- FX U VIZ + FZ U VIX + (FZ NIX - FX N1Z) u)

2 2
vay + (FY U V1Z - FZ U V1Y + (FY N1Z - FZ N1Y) U) v2X

+ (FY N2X - FX N2Y) U VIZ + (FX N2Z - FZ N2X) U VIY + (FZ N2Y - FY N2Z) U VIX
+ (FX N1Y - FY NI1X) N2Z + (FZ NIX - FX N1Z) N2Y + (FY N1Z - FZ N1Y) N2X)

3 2 i 2 2 2
JO((U VIX + NIX U ) VY + (- U VIY - NIY U ) V2X - N2X U V1Y + N2Y U VIX

A 3 2

+ (NIX N2Y - N1Y N2X) U) V3Z + ((- U VIX - NIX U ) V2Z

3 .2 2 2
+ (U VIZ + NIZ U j V2X + N2X U VIZ - N2Z U VIX + (N1Z N2X - N1X N2Z) U)

3 2 3 2 2

VaY + ((U VIY + NIY U ) V2Z + (- U VIZ - NIZ U ) V2Y - N2Y U ViZ
2
+ N2Z U V1Y + (NiY N2Z - N1Z N2Y) U) VaX
2 2
+ (N3X U V1Y - N3Y U VIX + (N1Y N3X - N1X N3Y) U) vazZ

2 2
+ (- NGX U VIZ + N3Z U VIX + (N1X N3Z - N1Z N3X) U) vazy

2 2
(N3Y U V1Z - N3Z U V1Y + (N1Z N3Y - N1Y N3Z) U) v2X

-+

+

(N2X N3Y - N2Y N3X) U V1Z + (N2Z N3X - N2X N3Z) U viy

(N2Y N3Z - N2Z N3Y) U VIX + (N1X N2Y - N1Y N2X) N32Z

.

(N1Z N2X - N1X N2Z) N3Y + (N1Y N2Z - N1Z N2Y) N3X)

+
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The components of the force and moment balance equations are:

From VEL1 MEC
DELTX=

5 3 2
- ({((2 DEL_B COS (TX) - 2 DEL_B COS (TX)) COS (TY)

-3 5
+ (4 DEL_CP COS(TX) - 4 DEL_CP COS (TX)) SIN(TX) COS(TY) - 8 DEL_B COS (TX)

3 ,
+ 14 DEL_B COS (TX) - 6 DEL_B COS(TX)) SIN(TY)

5 3 2
+ (6 DEL_BP COS (TX) - 10 DEL_BP COS (TX) + 4 DEL_BP COS(7X)} COS (TY)

5 3 4
- 8 DEL_BP COS (TX) + 14 DEL_BP COS (TX) - 6 DEL_BP COS(TX)) SIN (TZ)
2 4 - 2
+ {((2 DEL_BP COS (TX} -~ 2 DEL_BP COS (TX)) SIN(TX) FOS (TY)

4 2 .
+ (8 DEL_BP COS (TX) - 10 DEL_BP COS (TX) + 2 DEL_BP) SIN(TX)) SIN(TY)
4 o 2 3
+ (2 DEL_CP COS (TX) - 2 DEL_CP COS (TX)) COS (TY)
2 4 2
+ (6 DEL_B COS (TX) - 6 DEL_B COS (TX)) SIN(TX) COS (TY)
4 2
+ (- 4 DEL_CP COS (TX) + 6 DEL_CP COS (TX) - 2 DEL_CP) COS(TY)
4 2 3
+ (8 DEL_B COS (TX) - 10 DEL_B COS (TX) + 2 DEL_B) SIN(TX)) COS(TZ) SIN (TZ)
3 5 2 '
+ ({(2 DEL.B COS (TX) - 2 DEL_B COS (TX)) COS (TY)
3 5

+ (4 DEL_CP €OS (TX) - 4 DEL_CF COS{TX)) SIN(TX) COS(TY) + 6 DEL_B COS (TX)

3 .
- 11 DEL_B COS (TX) + 5 DEL_B COS(TX)) SIN(TY)

5 ‘ : 3 2
+ (- 5 DEL_8P COS (TX) + 9 DEL_BP COS (TX) - 4 DEL_BP COS(TX})}) COS (TY)

5 3 2
6 DEL_BP COS (TX) - 11 DEL_BP COS (TX) + 5 DEL_BP COS{TX)) SIN (7Z)

-+

4 2 2
({(DEL_BP COS {TX) - DEL_BP COS {(TX)) SIN(TX) COS (TY)

+
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4 2
+ (- 2 DEL_BP'COS (TX) + 3 DEL_BP COS (TX) - DEL_BP) SIN(TX)) SIN(TY)
2 3 3
+ (DEL_CP COS (TX) - DEL_CP COS (TX)) COS (TY)
4 Co2 2
+ (2 DEL_B COS (TX) - 2 DEL_B COS (TX)) SIN(TX) COS (TY)
4 2
+ (2 DEL_CP COS (TX) - 3 DEL_CP COS (TX) + DEL_CP) COS{TY)
4 2
+ (- 2 DEL_B COS (TX) + 3 DEL_B COS {TX) - DEL_B) SIN(TX)) COS(TZ) SIN(TZ)
3 3
+ ((DEL_CP COS{TX) - DEL_CP COS (TX)) SIN(TX) COS(TY) + DEL_8 COS {TX)
3 2

DEL_B COS({TX)) SIN(TY) + (DEL_BP COS{TX) - DEL_BP COS (TX)) COS {TY)

3 3 2 3
DEL_BP COS (TX) - DEL_BP COS(TX))/{((LP COS (TX) COS (TY) = 4 LP COS (TX) ,

+

3 3
+ 3 LP COS(TX)) SIN(TY) COS (TZ) + (LP COS (TX) - LP COS(TX)) SIN(TY)
2
COS(TZ)) SIN(TZ) + ((4 LP COS (TX) - LP) SIN(TX)
2 2 4
- 3 LP COS (TX) SIN(TX) COS (TY)) COS (7Z)
2 2 2 2

+ (2 LP COS (TX) SIN(TX) COS (TY) + (LP - 3 LP COS (TX)) SIN(TX)) COS (T2))

DELTY=

5 3 3
- ((((2 DEL_B COS (TX) - 2 DEL_B COS (TX)) COS (TY)

3 2
(4 DEL_CP COS(TX) - 4 DEL_CP COS (TX)) SIN(TX) COS (TY)

+

5 3 .
(- 8 DEL.B COS (TX) + 14 DEL_B COS (TX) - 6 DEL_B COS(TX)) COS(TY)) SIN(TY)

+

5 3 3
+ (6 DEL_BP COS (TX) - 10 DEL_BP COS (TX) + 4 DEL_BP COS(TX)) COS (TY)

5 3 :
(- 8 DEL_BP COS (TX) + 14 DEL_BP COS (TX) - 6 DEL_BP COS(TX)) COS(TY))

+
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3 2 4 3
SIN (TZ) + (((2 DEL_BP COS (TX) - 2 DEL_BP COS (TX)) SIN{TX) COS (TY)

4 2
+ (8 DEL_BP COS (TX) - 10 DEL_BP COS (TX) + 2 DEL_BP) SIN(TX) COS{TY))

4 2 4
SIN(TY) + (2 DEL_CP COS .{(TX) - 2 DEL_CP COS (TX)) COS (TY)

2 4 3
+ (6 DEL_B COS (TX) - 6 DEL.B COS (TX)) SIN(TX) COS (TY)
) 4 ' 2 2
+ (- 4 DEL_CP COS (TX) + & DEL_CP COS (TX) - 2 DEL_CP) COS (TY)
4 -2 '
+ (8 DEL_B COS (TX) - 10 DEL_B COS (TX) + 2 DEL_B) SIN(TX) COS(TY)) COS(TZ)

2 3 5 3
SIN (TZ) + (((2 DEL.B COS (TX) - 2 DEL.B COS (TX)) COS (TY)

3 2
+ (2 DEL_CP COS (TX) - 2 DEL_CP COS(TX)) SIN(TX) €OS (TY)
5 ' 3 )
+ (6 DEL_B COS (TX) - § DEL_B €OS (TX) + 3 DEL_B COS(TX)) COS(TY)) SIN(TY)

5 : 3 3
+ (- 5 DEL_BP COS (TX) + 7 DEL_BP COS (TX) - 2 DEL_BP COS(TX)) COS (TY)

5 3
+ (6 DEL_BP COS (TX) - 9 DEL_BP COS (TX) + 3 DEL_BP €OS(TX)) COS(TY)) SIN{TZ)

- 4 3 ' 2 4
+ ((DEL_BP COS (TX) SIN(TX) COS (TY) + (DEL_BP COS (TX) - 2 DEL_BP COS (TX))

4 2
SIN(TX) COS(TY)) SIN(TY) + (2 DEL_B COS (TX) - DEL_B COS (TX)) SIN(TX)

3 2 4
COS (TY) + (DEL_B COS (TX) - 2 DEL_B COS (TX)) SIN(TX) COS{TY)) COS(TZ))

3 2 3 2 .
/(((LP COS (TX) COS (TY) - 4 LP COS (TX) + 3 LP COS(TX)) SIN(TY) COS (TZ)

3 -

+ (LP COS (TX) - LP COS(TX)) SIN(TY)) SIN(TZ)

2 ) 2 - 2 3

+ ((4 LP COS (TX) - LP) SIN(TX) - 3 LP COS (TX) SIN{TX) COS {TY)) COS (TZ)
2 2 "2

+ (2 LP COS (TX) SIN(TX) COS (TY) + (LP - 3 LP COS (TX)) SIN(TX)) COS(TZ))
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DELTZ=

2 2 2
- (((2 DEL_CP COS(TX) SIN (TX) COS (TY) - 4 DEL.CP COS(TX) SIN (TX))

b 3
SIN(TY) + 2 DEL_BP COS(TX) SIN (TX) €COS (TY)

5 3
4 DEL_BP COS(TX) SIN (TX) COS(TY)) SIN (TZ)

4 2 4 3
((((DEL_BP - 2 DEL_BP COS (TX)) SIN (TX) - DEL_BP SIN (TX)) COS (TY)

+

6 4
(4 DEL_BP SIN (TX) - 2 DEL_BP SIN (TX)

+

4 2
(4 DEL_BP COS (TX) - DEL_BP) SIN (TX)) COS(TY)) SIN(TY)

5 3 3
(2 DEL_CP SIN (TX) - 3 DEL_CP SIN (TX) + DEL_CP SIN(TX)) COS (TY)

+

+

& . 4 2 3
(- 2 DEL_B 'SIN (TX) + DEL_B SIN (TX) + DEL_B SIN (TX)) COS (TY)

+

5 3 2
(- 4 DEL_CP SIN (TX) + 4 DEL_CP SIN (TX) - DEL_CP SIN(TX)) COS (TY)-

+

6 P 2
+ (4 DEL_B SIN (TX) - 2 DEL_8 SIN (TX) - DEL_B SIN (TX)) COS(TY)) COS(TZ)

2 : 3 3 3 3
SIN (TZ) + ((((2 DEL_B COS (TX) SIN (TX) - DEL.B COS (TX) SIN{TX)) COS (TY)

2 4 2
+ (4 DEL_CP COS(TX) SIN (TX) - 4 DEL_CP COS(TX) SIN (TX)) COS (TY)

5 3 3
+ (4 DEL_B COS(TX) SIN (TX) - 4 DEL_B COS (TX) SIN (TX)

3
+ (2 DEL_B COS (TX) - DEL.B COS(TX)) SIN(TX)) COS(TY)

2 3
- 4.DEL_CP COS(TX) SIN (TX)) SIN(TY) + ((4 DEL_BP COS (TX) - DEL_BP COS(TX))

3 3

3 .
(TX)) SIN(TX)) COS (TY)

SIN (TX) + (DEL_BP COS(TX) - 2 DEL_BP COS

3 3 3
+ ((2 DEL_BP COS (TX) - DEL.BP COS(TX)) SIN(TX) - 4 DEL_BP COS (TX) SIN (TX))
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2 4 2
COS(TY)) COS (TZ) + ((2 DEL_CP COS(TX) SIN (TX) - 3 DEL_CP COS(TX) SIN (TX})

2 5 2
COS (TY) - 2 DEL_B COS(TX) SIN (TX) COS(TY) + 4 DEL_CP COS(TX) SIN (TX))
5° 3
SIN(TY) - DEL_BP COS(TX) SIN (TX) COS (TY)

5
+ 2 DEL_BP COS(TX) SIN (TX) COS(TY)) SIN(TZ)

4 2 3 4 2
* (4 DEL_B COS (TX) SIN (TX) COS (TY) - 4 DEL_B COS (TX) SIN (TX) COS(TY))
3 4 2 3
COS (TZ) + ((DEL_BP COS (TX) SIN (TX) COS (TY)
4 2 '
- 2 DEL_BP COS (TX) SIN (TX) COS{TY)) SIN(TY)
4 2 3 4 2

- 2 DEL_8 COS (TX) SIN (TX) COS (TY) + 2 DEL_B COS (TX) SIN (TX) COS(TY}))

4 3 2 4
COS(TZ))/(((LP COS (TX) COS (TY) + (3 LP COS (TX) - 4 LP COS (TX)) COS(TY))

2 4 2 .
SIN(TY) COS (TZ) + (LP COS (TX) = LP COS (TX)) COS(TY) SIN(TY)) SIN(TZ)

3
+ ((4 LP COS (TX) - LP COS(TX)) SIN(TX) COS(TY)

3 3 3
- 3 LP COS (TX) SIN(TX) COS (TY)) COS (T2)

3 3 3
+ (2 LP COS (TX) SIN(TX) COS (TY) + (LP COS(TX) - 3 LP COS (TX)) SIN(TX)

COS(TY)) COS(TZ))
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From NANDV1 MEC
DEL_RX=
4 2 3
- (DELTZ ((((3 LP COS (TX) - 3 LP COS (TX)) COS (TY)

2 4 2
(6 LP COS (TX) - 6 LP COS (TX)) COS(TY)) COS (TZ)

+

4 2
(LP COS (TX) - LP COS (TX)) COS(TY)) SIN(TZ)

+

3 3
{6 LP COS (TX) - 3 LP COS(TX)) SIN{(TX)} COS{TY) SIN(TY) COS (72Z)

+

3
(2 LP COS(TX) = 4 LP COS (TX)) SIN{TX) COS(TY) SIN(TY) COS(TZ))

+

3 2
DELTY ((2 LP COS (TX) - LP COS{TX)) SIN(TX) COS (TZ) SIN(TZ)

+

4 : 2 2 4 2
+ ({LP COS (TX) - LP COS (TX)) €COS {TY) + 2 LP COS (TX) - 2 LP COS (TX})

3 2 S .
SIN(TY) COS (TZ) + (LP COS (TX) - LP COS (TX)) SIN(TY) COS(TZ))}

, 2 2 2 2
- LP DELTX COS{TY) SIN{TY) COS (TZ) SIN(TZ))/(COS (TX) SIN (TX) COS (TY))

DEL_RY=

2 4 3
(DELTY (((LP COS (TX) - LP COS (TX)) SIN (TY)
. 4 2 3
+ £3 LP COS (TX) ~ 3 LP COS (TX)) SIN(TY)) SIN (TZ)
3 2

(LP COS(TX) - 2 LP COS (TX)) SIN({(TX) COS{TZ) SIN (TZ)

+

4 2 3
((LP €COS (TX) - LP COS (TX)) SIN (TY)

+

2 3
(2 LP COS (TX) - 2 LP COS (TX)).SIN(TY)) SIN(TZ))

+

3 3
DELTZ ((6 LP COS (TX) - 3 LP COS(TX)) SIN(TX) COS(TY) SIN(TY) SIN (TZ)

-+

4 2 2
((3 LP COS (TX) - 3 LP COS (TX})) COS(TY) SIN (TY)

+
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4 2 2

+ (3 LP COS (TX) - 3 LP COS (TX})) COS{TY)) COS{TZ) SIN (TZ)

3 ,
+ (2 LP COS{TX) - 4 LP COS (TX)) SIN(TX) COS(TY) SIN(TY) SIN(TZ)
2 4 2
+ (LP €COS (TX) - LP COS (TX)) COS(TY) SIN (TY) COS(TZ))
2 2 2 2

+ LP DELTX COS(TY) SIN(TY) COS(TZ) SIN (TZ))/(COS (TX) SIN (TX) COS (TY))

DEL_RZ=
2
- (DELTZ (2 LP COS (TX) SIN(TY) COS(TZ) SIN(TZ)

2
- 2 LP COS(TX) SIN(TX) COS (TZ) + LP COS(TX) SIN(TX))

2 2 2
- LP DELTX COS(TZ) SIN(TZ) - LP DELTY COS (TX) COS(TY) COS (TZ))/COS (TX)

L
2 SIN(TX) COS(TY)
R1Y=
W
2
R1Z=
- LL
RZX=
L
2

R2Y=
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R2Z=
2

- (LP COS(TX) SIN(TX) SIN(TY) SIN (TZ)

2 2 2
+ (- LP COS (TX) COS (TY) + 2 LP COS (TX) - LP) COS(TZ) SIN(TZ)

2 2
- LP COS(TX) SIN(TX) SIN(TY) COS (TZ))/(COS(TX) SIN(TX) COS (TY)) - LL

R3X=
L
2
R3Y= _ .
W SIN(TX) COS{TY) W + LP SIN(TX) SIN(TZ) + LP COS{TX) SIN(TY) €COS(TZ)
2 SIN(TX) COS(TY)
R3Z=
- LL
N1X=
0
NiY= .
SIN(TX) COS(TY)
, 2 2 2
SQRT((SIN(TX) SIN(TY) SIN(TZ) + COS(TX) COS(TZ)) + SIN (TX) COS (TY))
N1Z=

SIN(TX) SIN(TY) SIN(TZ) + COS(TX) COS(TZ)

e S B W VI R R S A I T P R W R R T SRR TR NP MR R N AR ML ND m W M A R AL R YD e e e e

2 2. 2
SQRT( (SIN(TX) SIN(TY) SIN(TZ) + COS(TX) COS(TZ)) + SIN (TX) COS (TY))

P Y L L T
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NZX=
A COS(TY) SIN(TZ)
2 2 2 2

SQRT(COS (TY) SIN (TZ) + COS (TY) COS (T2))

N2Y=
COS(TY) COS(TZ)
2 2 2 2

SQRT(COS (TY) SIN (TZ) + COS (TY) COS (TZ))

N2Z=
0
N3X=
SIN(TK) COS(TY)
2 2 2
SQRT((SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ)) + SIN (TX) COS (TY))
N3Y= _
0
N3Z=
SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ)
: 2 2 2
SQRT((SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ)) + SIN (TX) COS (TY))

Vix=

(AP (DELTZ (- SIN(TX) SIN(TY) SIN(TZ) - COS(TX) COS(TZ))

+ DELTX SIN(TX) SIN(TZ) + DELTX COS(TX) SIN(TY) COS(TZ)

+ DELTY SIN(TX) COS(TY} COS(TZ)) + LP (- DELTZ COS(TY) SIN(TZ)

- DELTY SIN(TY) COS(TZ)) + DEL_RX)/SQRT(EXPT(AP

(DELTZ (- SIN(TX) SIN(TY) SIN(TZ) - COS(TX) €OS(TZ)) + DELTX SIN(TX) SIN(TZ)
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+ DELTX COS(TX) SIN(TY) COS(TZ) + DELTY SIN({TX) COS(TY) COS(TZ))

+ LP (- DELTZ COS{TY) SIN(TZ) - DELTY SIN(TY) COS(TZ)) + DEL_RX, 2)
+ EXPT(AP (DELTZ {SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ))

+ DELTX COS(TX) SIN(TY) SIN(TZ) + DELTY SIN(TX) COS(TY) SIN(TZ)

DELTX SIN(TX) COS(TZ)) + LP (DELTZ COS(TY) COS(TZ) - DELTY SIN(TY) SIN(TZ))

+ DELRY, 2) + EXPT(AP (DELTX COS(TX) COS(TY) - DELTY SIN(TX) SIN(TY))

]

DELTY LP COS(TY) + DEL_RZ, 2))

viY=
(AP (DELTZ (SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ))

+ DELTX COS(TX) SIN(TY) SIN(YZ) + DELTY SIN(TX) COS(TY) SIN(TZ)
DELTX SIN(TX) COS(TZ)) + LP (DELTZ COS(TY) COS(TZ) - DELTY SIN(TY) SIN(TZ))

+ DEL_RY)/SQRT(EXPT(AR (DELTZ (- SIN(TX) SIN(TY) SIN(TZ) - COS(TX) COS(TZ))
+ DELTX SIN(TX) SIN(TZ) + DELTX COS(TX) SIN(TY) COS(TZ)

+ DELTY SIN(TX) COS(TY) COS(TZ)) + LP (- DELTZ COS(TY) SIN(TZ)

DELTY SIN(TY) COS(TZ)) + DEL_RX, 2) + EXPT(AP
(DELTZ (SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ))

+ DELTX COS(TX) SIN(TY) SIN(TZ) + DELTY. SIN(TX) COS(TY) SIN(TZ)

- DELTX SIN(TX) COS(TZ)) + LP (GELTZ COS(TY) COS(TZ) - DELTY SIN(TY) SIN(TZ))
+ DEL_RY, 2) + EXPT(AP (DELTX COS(TX) COS(TY) - DELTY SIN(TX) SIN(TY))

- DELTY LP COS(TY) + DEL_RZ, 2))

ViZ=
(AP (DELTX COS(TX) COS(TY) - DELTY SIN(TX) SIN(TY)) - DELTY LP COS(TY}

+ DEL_RZ)/SQRT(EXPT(AP (DELTZ (- SIN(TX) SIN(TY) SIN(TZ) - COS(TX) COS(TZ))
+ DELTX SIN(TX) SIN(TZ) + DELTX COS({TX) SIN(TY) COS{TZ)

+ DELTY SIN(TX) COS(TY) COS(TZ)) + LP (- DELTZ COS(TY) SIN(TZ)

- DELTY SIN(TY) COS(TZ)) + DEL_RX, 2) + EXPT{AP

(DELTZ (SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ))
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DELTX COS(TX) SIN(TY) SIN(TZ) + DELTY SIN(TX) COS(TY) SIN(TZ)

+

DELTX SIN(TX) COS(TZ)}) + LP (DELTZ COS(TY) COS(TZ) - DELTY SIN(TY) SIN(TZ))

DEL_RY, 2) + EXPT(AP (DELTX COS(TX) COS(TY) - DELTY SIN(TX) SIN(TY})

+

DELTY LP COS(TY) + DEL_RZ, 2))

V2X=
‘ (BP (- DELTZ COS(TY) SIN(TZ) - DELTY SIN(TY) C0S(TZ)) + DEL_RX)
2
/SQRT((BP (DELTZ COS(TY) COS(TZ) - DELTY SIN(TY) SIN{(TZ)) + DEL_RY)
. o 2
+ {BP {- DELTZ COS(TY) SIN(TZ) - DELTY SIN(TY) COS(TZ)) + DEL_RX)
2
+ (DEL_RZ - BP DELTY COS(TY)) )
V2Y= :
(BP (DELTZ COS(TY) COS(TZ) - DELTY SIN(TY)} SIN(TZ)) + DEL_RY)
. ' 2
/SQRT((BP (DELTZ COS(TY) COS{TZ) - DELTY SIN(TY) SIN(TZ)) + DEL_RY)
2
+ (BP (-~ DELTZ COS(TY) SIN(TZ) ~ DELTY SIN(TY) COS(TZ)) + DEL_RX)
. 2
+ (DEL_RZ - BP DELTY COS(TY)}) )
v2Z=
(DEL_RZ - BP DELTY COS(TY))
2
/SQRT((BP (DELTZ COS{TY) COS(TZ) - DELTY SIN(TY) SIN(TZ)) + DEL_RY)

: 2
+ (BP (- DELTZ COS(TY) SIN(TZ) - DELTY SIN(TY) COS(TZ)) + DEL_RX)

2
+ (DEL_RZ - BP DELTY COS(TY)) }-

Vax=
((DELTZ (- SIN(TX) SIN(TY) SIN(TZ) - COS(TX) COS(TZ))

+ DELTX SIN(TX) SIN(TZ) + DELTX COS(TX) SIN(TY) COS(TZ)
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+ DELTY SIN(TX) COS{TY) COS(TZ)) (WP - CP) + DEL_RX)

/SQRT(EXPT((DELTZ (- SIN(TX) SIN(TY) SIN(TZ) - COS(TX) COS(TZ))

+ DELTX SIN(TX) SIN(TZ) + DELTX COS(TX) SIN(TY) COS(TZ)

DELTY SIN(TX) COS(TY) COS(TZ)) (WP - CP) + DEL_RX, 2)

+

EXPT((DELTZ (SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ))

+

DELTX COS(TX) SIN(TY) SIN(TZ) + DELTY SIN(TX) COS(TY) SIN(TZ)

+

DELTX SIN(TX) COS(TZ)) (WP - CP) + DEL_RY, 2)

2
((DELTX COS(TX} COS(TY) - DELTY SIN(TX) SIN(TY)) (WP - CP) + DEL_RZ) )

+

V3Y= ' ‘
((DELTZ (SIN(TX) SIN(TY) COS(TZ) ~ COS(TX) SIN(TZ))

+ DELTX COS(TX) SIN(TY) SIN(TZ) + DELTY SIN(TX) COS(TY) SIN(TZ)
- DELTX SIN(TX) COS(TZ)) (WP - CP) + DEL_RY)
/SQRT(EXPT((DELTZ (- SIN(TX) SIN(TY) SIN(TZ) - COS(TX) COS(TZ))
+ DELTX SIN(TX) SIN(TZ) + DELTX COS(TX) SIN(TY) COS(TZ)

DELTY SIN(TX) COS(TY) COS(TZ)) (WP - CP) + DEL_RX, 2)

+

EXPT((DELTZ (SIN(TX) SIN(TY) COS(TZ) - COS(TX) SIN(TZ))

+

DELTX COS(TX) SIN(TY) SIN(TZ) + DELTY SIN(TX) COS(TY) SIN{TZ)

+

DELTX SIN(TX) COS(TZ)) (WP - CP) + DEL_RY, 2)

2
({DELTX COS(TX) COS(TY) - DELTY SIN(TX) SIN(TY)) (WP - CP) + DEL_RZ) )

+

v3z=
((DELTX COS(TX) COS(TY) - DELTY SIN(TX) SIN(TY)) (WP - CP) + DEL_RZ)

/SQRT(EXPT((DELTZ (- SIN(TX) SIN(TY) SIN(TZ) - COS(TX) COS(TZ))
+ DELTX SIN(TX) SIN(TZ) + DELTX COS(TX) SIN(TY) COS(TZ)

DELTY SIN(TX) COS(TY) COS(TZ)) (WP - CP) + DEL_RX, 2)

+

EXPT((DELTZ (SIN(TX) SIN(TY) COS(TZ} - COS(TX) SIN(TZ))

+

DELTX COS(TX) SIN(TY) SIN(TZ) + DELTY SIN(TX) COS(TY) SIN(TZ)

+
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- DELTX SIN(TX) COS(TZ)) (WP - CP) + DEL_RY, 2)

‘ 2
+ ((DELTX COS{TX} COS(TY) - DELTY SIN(TX) SIN(TY}) (WP - CP) + DEL_RZ) )
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Appendix C

Constraint Surfaces

In this appendix we present the comstraint surfaces (cases one through four)
used to select the commanded forces and moments for the strategy implemented

in Section 4.3.

257
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Figure C.1: Parameters for Case One

The state variables for case one are:

a = 0.1446
b = 0.2390
¢ = 0.16821
a' = 0.2666
¥ = 0.1560
¢ = 0.1478
R.=—0.7752
R,=—0.4646
R,=—1.7386
‘ b =-0.3000
b =—0.5000

¢ =—1.0000
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M2/T is less than (balow surface)

Figure C.2: Sliding Constraint Curves, Case One
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80—
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Figure C.3: Breaking Contact Constraint Curves, Case One

260
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Figure C.4: Parameters for Case Two

The state variables for case two are:

a = 0.0854
b = 0.1949
¢ = 0.0107
d = 0.1333
¥ = 0.0818
¢ = 0.0000
R,=~0.7055
R,=—0.4909
R.=—-1.7935
b =-0.5000
¥ =-1.0000

— ®
$3= 5
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Figure C.5: Sliding Constraint Curves, Case Two
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Figure C.6: Breaking Contact Constraint Curves, Case Two-
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Figure C.7: Parameters for Case Three

=0
R; = (000)

The state variables for case three are:

a = 0.0043
b = 0.1540
¢ = 0.0069
a = 0.0236
b = 0.0000
¢ = 0.0000
R,=—0.6250
R,=-0.5000
R,=-1.8461
b =-1.0000
$2= 1
$3= :

264
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i
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Mz/f is greater than (above surface) ) beta -—>

. Figure C.8: Sliding Constraint Curves, Case Three
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Breaking contact curves. casedA rynd
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Figure C.9: Breaking Contact Constraint Curves, Case Three
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Figure C.10: Parameters for Case Four

®'=0)
R} =(000)

The state variables for case four are:

b = 0.1041
nc= 0.0282
¢ = 0.0021
d = 0.0047
e = 0.0102
R.=—-0.6250

=-—0.5000
R,=-1.8959
d' =—0.0000
e = 1.0000
$2= 7

267
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Mx/F vs (ALFIA BETA) cased rund
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Figure C.11: Sliding Constraint Curves, Case Four
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Figure C.12: Breaking Contact Constraint Curves, Case Four
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