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Natural Object Categorization
Aaron F. Bobick

Submitted to the Department of Brain and Cognitive Sciences on July 22,
1987 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

This thesis addresses the problem of categorizing natural objects. To
provide a criteria for categorization we propose that the purpose of a catego-
rization is to support the inference of unobserved properties of objects from
the observed properties. Because no such set of categories can be constructed
in an arbitrary world, we present the Principle of Natural Modes as a claim
about the structure of the world.

We first define an evaluation function that measures how well a set of
categories supports the inference goals of the observer. Entropy measures for
property uncertainty and category uncertainty are combined through a free
parameter that reflects the goals of the observer. Natural categorizations
are shown to be those that are stable with respect to this free parameter.
The evaluation function is tested in the domain of leaves and is found to
be sensitive to the structure of the natural categories corresponding to the
different species.

We next develop a categorization paradigm that utilizes the categoriza-
tion evaluation function in recovering natural categories. A statistical hy-
pothesis generation algorithm is presented that is shown to be an effective
categorization procedure. Examples drawn from several natural domains are
presented, including data known to be a difficult test case for numerical cat-
egorization techniques. We next extend the categorization paradigm such
that multiple levels of natural categories are recovered; by means of recur-
sively invoking the categorization procedure both the genera and species are
recovered in a population of anaerobic bacteria.

Finally, a method is presented for evaluating the utility of features in
recovering natural categories. This method also provides a mechanism for
determining which features are constrained by the different processes present
in a multiple modal world.

Thesis Supervisor: Dr. Whitman Richards
Professor, Department of Brain and Cognitive Sciences
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Chapter 1

Introduction

1.1 The Problem: Object Categorization

Let us travel back to the jungle of our ancestors. We see an object in the
distance, moving slowly on four legs. The object has black stripes on a beige
coat of fur, a large appendage in front (the "head") with sharp serrations in a
hinged opening, long whisker-like hairs in front, and a narrow, elongated rear
appendage that oscillates. Suddenly, we notice the object has turned and two
round, black objects, recessed in the front appendage, are now pointed in our
direction. As it begins to move toward us, we quickly decide that this is an
appropriate time to leave, and with due haste.

If analyzed only casually, the above scenario appears to be an example of
simple and rational behavior. We view an object which we perceive to be a
tiger, we know that tigers feast on people, and thus we decide to run for our
lives. But let us examine the scenario in greater detail. Our first (perceptual)
act is to encode some stimulus information: an object' with four downward
pointing appendages, translating across our visual field, endowed with certain
physical characteristics. Our last (behavioral) act is a decision to flee, based
upon knowledge of the potential behavior of that object. But, somewhere in
between those two events, we make the critical inference about unobserved
properties of an object from the observed properties. Given only a sensory
description of an object, we are able to make inferences about unobservable

1For this example, and in fact for the entire thesis, we ignore the question of how we
know that some part of the visual stimulus comprised an "object," a single entity.
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properties such as the intentions of an animal. How is such an inference
possible?

The obvious, in fact seemingly trivial, answer is that sensory informa-
tion available is sufficient to determine that the object is a tiger; thus, our
knowledge about the behavior of tigers allows us to predict the behavior of
the object. That is, given the sensory information, we conclude that the
object is a member of the "tiger" category and thus we expect the object to
behave in a manner consistent with the behavior of other objects of the same
category.

But this answer to the question of how the observer makes predictions
about. the behavior of objects is not adequate. Simply announcing a category
to which an object belongs does not provide the observer with the necessary
predictive power. For example, suppose we view the previously described sit-
uation, but decide that the object in question belongs to the category "large
fuzzy thing." In this case, our ability to make inferences about the behavior
of the object is limited, and our response might not be appropriate for the
situation. The large fuzzy thing would partake of an early supper. Although
the category asserted is correct, "large fuzzy thing" does not support the
inferences that are necessary for observer to interact successfully with his
environment.

However, the intuition that the observer accomplishes his inference task
by determining the "correct" category of an object is strong. The only diffi-
culty with the previous example was that some categories (like "tiger") are
more useful for inference than others ("large fuzzy thing"). Therefore, if the
observer is to predict the important behavior of objects by determining the
categories to which they belong, then those categories must be matched both
to the goals of the observer and to the structure of the world. In particu-
lar, these categories must satisfy two requirements. First, using only sensory
information, the observer must be able to determine the category to which
an object belongs. Second, once the category of an object is established,
membership of the object in that category must allow the observer to make
important inferences about the behavior of the object. Which inferences are
important depends upon the goals of the observer.

As we will discuss in the next section, we have no a priori reason to
believe that a set of categories exist that permits the observer to both identify
the category of an object from sensory information and predict unobserved
properties as well. And if such categories do exist, how would the observer

11



come to know them? The goal of this thesis is to understand and provide a
solution to the problem of discovering the useful categories in the world.

We can decompose the object categorization problem into the following
three questions:

* What are the necessary conditions that must be true of the world if
a set of categories is to be useful to the observer in predicting the
important properties of objects?

* What are the characteristics of such a set of categories?

* How does the observer acquire the categories that support the infer-
ences required?

These problems follow one another directly. By identifying the structure
in the world that must be present in order for the observer to be able to
construct a set of categories that supports important inferences, we are able
to specify the characteristic structure that such a set of categories must
exhibit. Once we have identified these characteristics we can attempt to
recover categories that satisfy these conditions.

1.2 A Necessary Condition: Natural Modes

We have stated that goal of categorization is to permit the inference of impor-
tant properties of objects. Often, however, many of the important properties
of objects are not directly observable. There is no direct sensory stimulus
for "tends to eat human beings for dinner." Thus, if the observer it to ac-
complish this categorization task, then he is required to predict unobserved
properties from observed properties. How is this possible? Certainly, one
could construct a world in which the inference task was not feasible. If the
important (unobserved) properties of objects are independent of the proper-
ties available to the observer through his sensory mechanisms, then no useful
inferences could be made. No set of categories could be constructed that
would allow the observer to predict the behavior of objects. Therefore, if we
assume that useful categorization is possible, if we accept human perception
as an existence proof that the goal of making reliable inferences about the
properties of objects can be achieved, then it must be the case that our world
structured in a special way.

12



To capture this structuring of the world, we propose the Principle of Nat-
ural Modes, a claim that the world does not consist of arbitrary objects,
but of objects highly constrained by the processes that create them and the
environment that acts upon them. Natural modes - clusterings of objects
in properties important to the interaction between objects and their environ-
ment - cause objects to display large degrees of redundancy; for example,
most objects with beaks also have wings, claws, and feathers. Because ob-
jects within the same natural mode exhibit the same behavior in terms of
their important properties, the natural modes are an appropriate sets of
categories for the recognition task. Once the natural mode of an object is
established, important properties of that object can be inferred. Stated suc-
cinctly, natural modes provide the basis for a natural categorization of the
world.

The goal of the observer, then, is to recover the natural mode categories in
the world. Our task is to develop the theoretical tools necessary to allow the
observer to accomplish achieve his goal. In the chapters that follow, we will
develop more fully the concept of natural modes, derive a measure sensitive
to whether a set of categories corresponds to natural clusters, and generate
a procedure by which the observer can recover the natural categories from
the data provided by the environment.

1.3 Thesis Outline

The thesis is logically divided into three parts. The first part develops the
philosophical groundwork for the recovery of natural categories. Chapter 2
begins with a discussion of the goals of categorization and how those goals
require an appropriately structured world. The Principle of Natural Modes
is then developed as a characterization of the structure of the world and
as a basis for categorization. The philosophical, physical, and psychologi-
cal implications of the claim of natural categories are explored; in particular
we reconcile formal logical arguments against natural categories with the
physical and psychological evidence supporting their existence. Chapter 3
examines some of the previous work in the fields of cognitive science, clus-
ter analysis, and machine learning that is relevant to recovery of natural
categories.

The second part of the thesis, consisting of chapter 4, addresses the prob-
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lem of measuring how well a set of categories reflects the structure of the
natural modes. We develop a measure, based on information theory, that
assess how well a set of categories supports the goals of the observer: the re-
liable inference of unobserved properties from observed properties. Because
it is the existence of natural modes that permits the observer to accomplish
this inference task, we argue that a set of categories - a categorization -
that supports the goals of the observer must reflect the natural modes. The
behavior of the measure is demonstrated in the natural domain of leaves.

Finally, in chapters 5 and 6, we address the issue of the recovering the
natural modes from a set of data. In chapter 5, we define a categorization
paradigm inspired by the formal learning theory work of Osherson, Stob,
and Weinstein [1986]. Within the context of this paradigm, we develop a
dynamic categorization algorithm which makes use of the measure developed
in chapter 4 to evaluate hypothesized categorizations. The performance of
this algorithm is tested in three natural domains, including a set of data that
have served as a test for other categorization systems. The results indicate
that the categorization algorithm is an effective method for recovering natural
categories. An analysis of the competence of the algorithm is provided and
predicts the observed behavior.

In chapter 6, we extend the analysis of the categorization algorithm into
domains in which there are multiple natural clusterings. Such domains are
formed when more than one level process constrains the properties of objects.
For example, we will consider the domain of infectious bacteria where there
is structure at both the genus and species level. We develop a procedure
by which the observer can recover both levels of categories. Furthermore,
we provide a method by which the observer can determine which properties
of objects are constrained by each level of process. This same mechanism
enables the observer to evaluate the utility of a property for performing the
categorization task.

In the conclusion of the thesis, chapter 7, we summarize the results of the
previous sections, once again consider the utility of recovering the natural
categories in the world, and discuss potential extensions to the work.

14



Chapter 2

Natural Categories

We begin our study of natural object categories by examining a task that
explcitly makes use of such categories: object recognition. By recognition
we simply mean the act of announcing some category when an object is pre-
sented. Our first consideration will be the goal of recognition, which we will
propose to be the inference of important unobserved properties from observed
properties. If recognition is to be perfomed by announcing the category to
which an object belongs, what kinds of categories would permit the observer
to attain this goal? Under what conditions is such a goal possible? To help
achieve these goals, we will propose the Principal of Natural Modes: a claim
- about the world - that there exist sets of natural categories ideally suited
to the task of making useful inferences. This claim will need to be reconciled
with philosophical and logical arguments against the ontological existence of
such categories. In support of natural modes and their use for recognition
we will present evidence from both the physical world and the psychologies
of various organisms. Finally, we will be able to pose the categorization
problem as the discovery of natural mode categories in the world.

2.1 The Goal of Recognition

Suppose we wish to construct a machine (or organism) which is to perform
object recognition by announcing some category for each object encountered.
What set of categories would be appropriate? Certainly we cannot answer
this question without placing further constraint on the output of this ma-
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Figure 2.1: A canonical observer viewing a canonical object. The Oi's and
Uj's represent observed and unobserved properties, respectively. The goal of the
observer is to infer the Uj's from the Oi's.

chine. Otherwise, any arbitrary categorization would be valid, e.g."announce
category 1 if the the object is less than 100 feet away; announce category
2 otherwise." Therefore we need to provide an additional constraint as to
what makes a suitable or useful categorization.

To provide such a constraint, let us propose that the object recognition
task - and therefore object categorization - has as its goal the following:

Goal of Recognition is to predict important unobserved prop-
erties from observed properties.

This goal requires that when an object is "recognized," which we have de-
fined to mean when some category is announced, it should be the case that
inferences about that the unobserved properties of the object can be reliably
asserted. Properties of particular interest are those that affect the object's
interaction with the environment, of which the observer is a part.

To illustrate the goal, consider our observer in Figure 2.1. While viewing
some object the observer measures certain observable properties Oi. The ob-

16
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or overall length, or they may be more complex measures such as a descrip-
tion of the basic geometric parts of the object [Hoffman and Richards, 1985].
From these properties, the observer wants to infer the unobserved properties
Uj. These unobserved properties may include function ("something to sit
upon") or behavior and affordances [Gibson, 1979] ( "something which moves
and will try to eat me"). This basic inference is really the basic problem of
perception, and we can use this goal of recognition to provide criteria for an
appropriate set of categories.

Notice, however, that being able to make reliable inferences about an
object's properties from its category is not sufficient to satisfy the goal of
recognition. Recognition requires using one set of properties (observed) to
make inferences about another set of properties (unobserved). Thus, we
need not only the ability to infer reliably an object's (unobserved) properties
from its category, but also the ability to infer an object's category from its
(observed) properties. For example, the validity of the predictions should
degrade gracefully as less observed information is provided; it will often be
the case that the observer only recovers a subset of the observable proper-
ties. Also, the observer should be able to make predictions about objects not
previously viewed. That is, the observer must be able to generalize appropri-
ately such that the predictions about the non-observed properties of a novel
object tend to remain valid.

As an aside, we should address the (skeptic's) question of why use cate-
gories at all to satisfy the goal of recognition. If one's goal is only to make
predictions about unobserved properties from the information provided by
observed properties, then a more direct strategy would be to recover the
relationships between the two. For example, one could estimate all the con-
ditional probabilities (of every order) and use these estimates to make predic-
tions. One response to this argument is that we have not (yet) claimed that
categories are the best mechanism for solving the inference problem. Rather,
if given the problem of constructing categories for the recognition task, then
reliable inference is one means of defining suitable criteria. However, we ac-
tually do wish to make the claim that categories are an efficient and effective
means of achieving the goal of reliable inference about unobserved properties.
We must postpone the defense of this claim until we discuss the principle of
natural modes, to be presented in the next section.

Given the goal of constructing a set of categories consistent the proposed
goal of recognition, is it possible for an observer to perform such a categoriza-
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tion of objects? Will his categorization permit the inference of unobserved
properties? The answers to these questions clearly depend on the domain in
which the recognition system is to operate. If there is no correlation between
the sensory data and the behavior of an object, then no such inference is
possible. If every object in a world (including witches, bicycles, and trees)
is spherical in shape, blue in color, and matte of surface, then such visual
attributes would be useless for inferences of unobserved properties important
to the observer. Under such circumstances a visual recognition system which
performed useful classification could not be built. Therefore, if we are to
claim that the goal of the recognition system is to place objects in the world
into categories that permit the prediction of unobserved properties, then for
such a system to be successful it must be the case that the world is struc-
tured in such a way as to make these inferences possible. This is a strong
claim, and one which is fundamentally different from stating that the only
structure present is that which is imposed upon the world by the observer's
interpretation.

2.2 Natural Modes

If we take the human vision system as an existence proof that it is possible
to define a categorization of objects that permit inferences about an objects
unobserved properties (e.g. I can visually categorize some object as a "horse"
and predict many of its unobserved properties based upon that categoriza-
tion), then it must be the case that the natural world is structured in some
particular way. What would be the basis of such structure?

To gain insight into this question, consider the Gedanken experiment of
giving a grade school art class the assignment of drawing pictures of imagi-
nary animals - animals the children have never seen and about which noth-
ing has been said. The results are as varied as the children who produce
them: multiple-headed "monsters", flying elephants, and other composite
animals are produced. Completely bizarre-looking creatures also emerge.
There seems to be no limit to the the number of animals that one could
imagine. Yet, they live only in the mind, and in the world of children's toys
which produce creatures such as Bee-Lions.

If these animals could exist, (i.e. we could physically construct them) why
don't they? In some instances, the laws of biological physics simply preclude
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their feasibility. Flying elephants would require a weight, surface area, and
muscle relation that cannot be created from the biological hardware used to

'make an elephant [McMahon, 1975]. Other animals, although feasible, may
not exist because such creatures were either never formed by mutation, or, if
formed, they were made extinct by forces in the environment. In this latter
case and in the case of impossible animals, we can view the situation as an
entity (the animal) which did not satisfy the environmental constraints in
effect at the time. In fact, given the complexity of the natural world and
the extensive pressures brought to bear by Nature on an organism, most
arbitrarily-designed animals would perish, because the chance of creating
arbitrary organisms which would be well-suited to the environment is almost
zero. Unlike the world of the imagination or children's toys, the natural
world cannot contain objects of arbitrary configurations.

As such, the existing species are special in an important way. The species
represent finely tuned structures, Nature's solutions to the constraint sat-
isfaction problem imposed by the myriad of negative environmental con-
straints. "Survival of the fittest" may be interpreted as simply the statement
that the surviving species satisfy the environmental constraints better than
any other species competing for the same resources. Because of the extent
of these constraints, each of the solutions must be highly constrained; that
is, there is no small set properties of an organism which is sufficient for its
survival. Stream-lined contours, fins, eyes on opposite sides of their body-
these attributes combined with a vast set of internal structures permit fish
to survive in the aquatic environment.

Also, these solutions tend to be disparate. [Mayr, 1984; Stebbins and Ay-
ala, 1985]. Because species of similar construction will be competing for the
same resources, variations in properties important to the organism 's survival
are removed, unless the variations are large enough such that the organism
is now in a different niche. The pressure of natural selection moves the evo-
lution of species to a discrete or clustered sampling along those dimensions
relevant to a species survival. We refer to this clustering as the "Principle of
Natural Modes," and because it is central to our development of a natural
categorization we restate it as follows:

Principle of Natural Modes: Environmental pressures force
objects to have non-arbitrary configurations and properties that
define object categories in the space of properties important to
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the interaction between objects and the environment.

We do not live in a world of randomly created objects and visual scenes, but
in a world of structure and form.

To refine our claim about natural modes, we let us make explicit the
claims that are being made, as well as those that are not. First, the existence
of natural modes implies that objects do not exhibit uniform distributions of
properties. Rather, objects display a great deal of redundancy, redundancy
created by the complex sets of constraints acting upon objects. For example,
we do not see the mythical Griffin (half eagle, half lion). Objects with beaks
also (tend to) have feathers and wings and claws. Redundancies such as these
make it "easy" to recognize an object as a bird: a few clues are sufficient.
Second, we do not intend to restrict the claim to only natural objects; in
section 2.4.1 we will discuss constraints acting on man-made objects as well.
Finally, we are not claiming there exists a unique set of object categories.
We allow for the possibility that the clustering of objects along dimensions
important to the interaction between objects and the environment may be
"scale" dependent: clustering occurs at different levels of the object hierarchy.
For example, consider the division between mammals and birds, and then the
separation between cows and mice. The clustering which separates mammals
from birds occurs at a level of biological processes much "higher" than that
which separates cows from mice. WVe will further develop the concept of levels
of categorization in chapters 4 and 5 when we consider matching the goals
of the observer to the structure of the world. For now we can assume that
"natural mode categories" refer some selection of categories corresponding
to a natural clustering at some level.

In the interest of completeness, two important comments need to be made.
The first is that we are not stating that there exist objective categories in
the world, independent of any categorization criteria. Rather, we are stating
that there exists a clustering along dimensions which are important to the in-
teraction between the object and its environment. Therefore, if some sensory
apparatus is encoding properties related to these important dimensions, then
there will be a clustering in the space defined by that sensory mechanism.
The reason for making this point here is that there is a large body of work
by both philosophers and logicians arguing that there do not exist objective
categories in the world. By restricting the claim to consider only those prop-
erties important to the interaction between the object and the environment
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we can finesse the problem of objective categorization. In section 2.3.1 we
will provide a brief review of the arguments against the ontological status of
natural categories and we will discuss how those ideas relate to the claim of
natural modes.

The second point is that the Principle of Natural Modes is similar to
Marr's "Fundamental Hypothesis" which argued that if a collection of certain
observable properties tended to be grouped, then certain other properties
(unobservable) would tend to group similarly [Marr, 1970]. The principal
difference is that Marr did not provide a motivation for why one would expect
to find certain observable properties grouped in clusters. In fact, the claim
of natural modes by itself is not sufficient to provide a clustering of objects
in the feature space of observable properties. Therefore we extend our claim
with the following addition:

Accessibility: The properties that are important to the inter-
action of an object with its environment are (at least partially)
reflected in observable properties of the object.

Fortunately, this claim is easily justified. For example, the basic shape of
an object usually constrains how the object interacts with its environment.
The legs of an animal permit it mobility. The color of an object is often
related to it's survival: plants are green and polar bears are white. As such,
the important aspects of an object tend to be reflected in properties which
are observable. Therefore, the Principle of Natural Modes taken together
with claim of Accessibility provide a basis for why one might expect to find
a clustered distribution of objects in an observer's feature space.

Finally we can combine the goal of the observer - to construct a set of
categories which allow the observer to predict important unobserved proper-
ties of objects - with the claim of natural modes. We make the following
claim about the appropriate set of categories for recognition:

Natural Categorization: If an observer is to make correct
inferences about objects' unobserved properties from the observed
properties, then he should categorize objects according to their
natural modes.

This claim follows naturally from our goal of recognition and the proposed
Principle of Natural Modes. Given that the observer is seeking to infer
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the properties which describe how an object interacts with it's environment,
and given that these properties cluster according to natural modes, then
the observer should attempt to categorize objects according to their natural
modes. Accessibility states that this goal can be accomplished using sensory
data.

Before proceeding to the next sections, let us return to the skeptic's ques-
tion of why one should use categories to accomplish the proposed goal of
recognition - the inference of unobserved properties from observed proper-
ties. Now that we have presented the Principle of Natural Modes we can
argue that the world contains categories of objects which support generaliza-
tion. For example, suppose one believes that a certain set of objects forms a
natural category, and that one of those objects exhibits a certain (in general)
unobserved property, e.g. it attacks human beings. Then, one would make
the prediction that all objects of this category would exhibit the same prop-
erty. If one were using standard conditional probabilities, one could not make
this assertion without some particular a priori probability statement about
how to generalize over objects of "similar" observed properties. But such
a statement is equivalent to believing in the existence of natural categories.
Thus, a more natural (and more efficient) method of using this knowledge is
to explicitly represent the categories themselves.

In the next three sections, we will consider arguments against and ev-
idence for the existence of natural modes. The primary argument against
natural modes stems from the work of philosophers and logicians considering
the abstract implications of natural categories. The favorable evidence, how-
ever, is derived from consideration of the physical world, and the organisms
that inhabit it.

2.3 The Philosophical Issue of Natural
Categories

2.3.1 Questions of ontology

Ontology may be described as the branch of philosophy that concerns what
exists [Carey, 1986]. As mentioned in section 2.2 there has been considerable
attention paid to the question of whether categories can really be said to
exist in the world, rather than being constructs in our head. In this section
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we will provide a brief review of the logical argument against the existence
of objective natural categories. Then, we will reconcile this argument with
the principle of natural modes.

The basic issue at hand is do categories exist in the world independent of
some observer? Would "rabbits" be a more natural category than "round-
or-blue-things" if there was no organism to perceive them? Prima facie, the
principle of natural modes would argue for the existence of such categories.
However, we will see that natural categories can only be said to exist if we
provide constraint external to objects themselves; an outside oracle will be
required to restrict what aspects of an object may be considered as relevant
to categorization. Only then is it reasonable to consider one categorization
of objects as more natural than another.

Perhaps the most complete discussion of the subjective nature of cate-
gories is provided in Goodman [1951]. There it is demonstrated that, by the
appropriate choice of logical primitives with which to describe objects, any
similarity relationship between objects can be constructed. Thus, if a natural
set of categories is defined by some measure on a similarity metric, then any
categorization may be selected. Though thorough, Goodman's presentation
is quite dense and difficult to recount. As such we will provide an alternative
form of the argument as given by Watanabe [1985]. This formulation - re-
ferred to as the Ugly Duckling Theorem - makes the issues of categorization
quite clear.

Let us state the theorem directly and then sketch the proof:

Ugly Duckling Theorem: Insofar as we use a finite set of pred-
icates that are capable of distinguishing any two objects consid-
ered, the number of predicates shared by any two such objects is
constant, independent of the choice of two objects. [Watanabe,
1985, p. 82]

We will provide a proof of this remarkable result for one special case; through
it we will be able to see why an external source of constraint is required if
we are to consider one categorization more natural than any other.

To prove the Ugly Duckling Theorem, let us consider a world of objects
that are described by only 2 binary predicates, A and B (Figure 2.2). In this
case the predicates are unconstrained in the sense that A and B carve the
world up into four different object types, cl ... 4, corresponding to the the
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Figure 2.2: A world with two independent starting predicates A and B.

logical descriptions of {(A n B), (A n -B), (-A n B), (-,A n --,B)}. Now let us
consider the question of how many properties are shared by any two objects.

First, one must realize that although there are only two starting pred-
icates, there are many composite predicates, and each such predicate is a
property in its own right. In fact, every combination of the atomic regions ai
is an allowable predicate or property. Let us define the "rank" of a predicate
to be the number of regions or object types (as) which must be combined
to form that predicate. For example, the predicates of rank 1 are exactly
those logical combinations given above. a defines the predicate (A n B)
which is said to be "true" for the object al and "false" for objects a 2, a 3,

and a 4. An example of a predicate of rank 2 is (-,A) formed by the union
(a 3 U a 4 ). An interesting predicate of rank 2 is given by the union (a 2 U a 3 ):

the logical equivalent is the exclusive-OR (AGB). The exclusive-OR must
be an allowable predicate: if A corresponds to "blind in the left eye" and B
corresponds to "blind in the right eye," then (A0B) is the predicate "blind
in one eye," a perfectly plausible property. Since all possible combinations
of regions are permitted to form predicates (if one allows the null predicate
which is false for all objects, and the identity predicate which is true for all
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Figure 2.3: Predicates arranged in a lattice layered by rank and connected such
that a straight line indicates implication from the lower rank to the higher rank.

objects) there are 24 = 16 possible predicates defined in our simple world of
two starting predicates.

We can arrange these predicates in a "truth" lattice as shown in figure
Figure 2.3. The lattice is layered by rank and connected such that a straight
line indicates implication from the lower rank to the higher one. For example
(A n B) implies A which in turn implies (A U -B). Notice that the rank 1
predicates correspond to each of the different possible objects. The properties
which are true for an object may be found by following all upward connections
from that object's node; similarly, any node in the lattice accessible from two
different objects represents a property shared by those objects.

Now, the important question is how many properties are shared by any
two objects. Given the symmetry of the lattice is should not be surprising
that each of the objects shares exactly 4 properties with each of the other
objects.' If we consider the complete set of possible properties, then any two

'Watanabe [1985] extends the discussion to include any number of predicates. In general
if there are m atoms, where an atom is defined by an indivisible region ci, then there
are 2m predicates and any two objects share 2(m- 2) of them. This result is valid even
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objects have exactly the same number of properties in common. Thus any
similarity metric based upon on the number of common properties would
assign an equal similarity to all object pairs. Given this state of affairs, it
would not be plausible to consider any one categorization of objects, any one
grouping of instances according to some similar properties, as more natural
than some other.

Yet, most observers would agree that a dog and a cat are more "similar"
than are a dog and a television. How can we resolve this intuition against
the theorem of the Ugly Duckling (so named since it states that the Ugly
Duckling is as similar to the swan as is any other duck)? The answer must lie
in somehow restricting the set of properties which can be considered. In our
simple world of two base predicates there were 14 non-trivial properties which
were considered. Under this description all objects were equally similar. If,
however, we remove certain properties from consideration, then it will be the
case that some pairs of objects will share more properties than others, and
a similarity metric base upon shared properties will yield distinct categories.
How, then, can we decide which properties to remove from consideration?

Unfortunately, it is impossible to decide which properties to discard sim-
ply on syntactic grounds, that is without consideration to their meaning.
Both Goodman [1951] and Watanbe [1985] provide persuasive arguments
that no property can be regarded as a priori more primitive or more ba-
sic than any other; a redefintion of terms which preserves logical structure
but changes the basic vocabulary can always cause syntactically complicated
properties to become simple, and simple ones to become complex.2 Also,
as with the example of "blind in one eye," unusual or disjunctive concepts
may be just as sensible as those defined more simply in a given vocabulary.
Thus, if we are to weight some properties more than others, we must have
an external motivation for doing so. This source of information is referred to
as "extra-logical" by Goodman.

Let us once again consider the principle of natural modes. We state that
objects will tend to cluster along dimensions important to the interaction
between objects (organisms) and the environment. That is, we claim that

if the starting predicates are constrained, e.g. the predicate B includes A such that A
implies B. The only critical assumption is that the vocabulary used to describe the
objects partition the world into a finite number of distinct classes.

2Though see Osherson [1978] on some syntactic conditions which should be met by "nat-
ural" properties. This claim, however, is controversial. (see [Keil, 1981; Carey, 1986])
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if we restrict the properties of consideration to those only involved with an
object's interaction with the environment, then there will be a clustering
of objects which will define natural categories. Thus our external source of
information, our oracle which decides what properties should be considered,
are the laws of the physical and biological world. The physical constraints
imposed upon objects and organisms select the properties of objects in which
natural categories are defined.

2.3.2 Induction and natural kinds

A related problem of philosophy is the issue of natural kinds. As an illus-
tration, consider an example similar to that described by Quine [1969]: An
explorer arrives on an uncharted island, and meets natives never before vis-
ited by "civilized" men. Being an amateur linguist the explorer attempts to
compile a dictionary of the vocabulary of the natives. One day, while accom-
panying the explorer on a trip through the forest, a native points to an area
where a rabbit is sleeping beneath a tree and utters the word "blugle." The
explorer writes in his dictionary that "blugle" means "rabbit." Quine asks
how does the explorer know that the native is referring to the rabbit and not
the situation rabbit-under-a-tree. Even if the explorer could test this dis-
tinction (say by pointing to another rabbit, perhaps cooked, and announcing
"blugle" and awaiting the response) he could never test all possible meanings
consistent with the situation.

Yet, we believe the explorer is probably correct in his conclusion, and
even if he is not correct on his first attempt, we believe that he will probably
be correct on his second or third (perhaps "blugle" means "sleeping" or
"cute," but surely it does not mean "small-furry-leg-shaped-piece-within-ten-
meters-of-that-particular-tree"). After considering how it is possible for the
the explorer is likely to be correct, and related problems such as why people
tend to agree on the relative similarities between objects, Quine concludes
that people must be endowed with an innate "spacing of qualities" [1969, p.
123]. Such a spacing would provide people with a standard of similarity that
permitted convergence of their descriptions of the world. An innate quality
space is an example of extra-logical constraint being provided to the observer
for the formation of object categories.
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2.4 Natural Object Processes

In this section we provide a brief discussion of the physical basis underlying
the natural modes. In Bobick and Richards [1986] the construct of an object
process, is proposed as a model of the processes responsible for the creation
of natural modes. An object process represents the interaction between some
generating process (which actually produces objects) and the constraints of
the environment. For the discussion here we consider some of the physical
evidence for natural object processes responsible for the natural modes and
relate those processes to the claim of Accessibility.

2.4.1 Physical basis for natural modes

We have made a claim about the structure of the natural world: objects
cluster in dimensions significant to their interaction with the environment.
If this is the case, then there must be underlying physical processes which
give rise to these clustered distributions, and produce these natural modes
of objects. Therefore we should be able to find evidence in the world of such
processes.

Fortunately, such evidence is quite abundant. In the world of biologi-
cal objects, the fact that structures must evolve from previous structures
places a strong constraint on the forms present [Dumont and Robertson,
1986; Thompson, 1962]. As Pentland [1986] has noted, "evolution repeats
its solutions whenever possible," reducing the number of occurring natural
forms; this conclusion was also reached by Walls [1963] in his discussion
about the repeated evolution of color vision. An interesting observation sup-
porting this claim is provided by Stebbins and Ayala [1985] who noted the
non-uniformity in the distribution of the complexity of DNA. Another form
of support comes from the field of evolutionary biology. Mayr [1984] states:

[The biological species] concept stresses the fact that species consist
of populations and that species have reality and an internal genetic
cohesion owing to the historically evolved genetic program that is
shared by all members of the species.

The objective existence of species represents a structuring of the world inde-
pendent of any particular observer.

Structure in the physical world can also be discovered by examining the
physical processes responsible for the existence of many forms. Steven's anal-
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ysis of patterns [1974] is an example of constraint imposed by the physics
of matter in the formation of structure; the fact that "interesting" patterns
emerge is an example of natural modes. (See also Thompson [1962].) The
work by vision researchers to model different physical processes so as to con-
struct representations for different types of objects is plausible only because
there are limited ways for nature to create objects [Pentland, 1986; Kass and
Witkin, 1985; Pentland, 1984]. Even chaotic systems have modes of behavior
[Levi, 1986].

It should be noted that man-made objects are also subject to constraints
upon form, although the environmental pressures are different. For example,
a chair must have certain geometric properties to be able to function appro-
priately. It must allow access and stability, placing significant constraints on
it's shape. A table must have a flat nearly horizontal surface with a stable
support to function as a table. An even more complicated set of constraints
related to ease of manufacturing and peoples' aesthetic interests operates on
most constructed objects. Why is it that most books have similar aspect
ratios? The common visual scene of "row houses" is an example of structure
imposed by man mimicking the type of natural modes produced by nature.
For a more extensive discussion about constraints on the shapes of objects
and the non-arbitrary nature of objects see [Winston, et al., 1983; Lozano-
Perez, 1985; Thompson, 1961].

2.4.2 Observed vs. unobserved properties

It is important to relate the existence of natural object processes to the claim
of Accessibility. The claim of Accessibility states that some of the properties
important to an object's interaction with the environment are reflected in
observed properties; the importance of this claim is that it permits us to at-
tempt to recover the natural categories from the observed properties. In light
of the discussion about natural object processes, we can view Accessibility
as independence between the sensory processes and the processes responsible
for the structure of an object. Because the distinction between observed and
unobserved properties occurs only because of the sensory apparatus, we can
look for natural modes in only the observed properties and assume that the
modal behavior of the unobserved properties will follow. Because most of the
data provided to the observer are observed properties, this dissociation be-
tween observed and unobserved properties is essential for recovering natural
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categories.

2.5 Psychological Evidence for Natural
Categories

Until now, our arguments for the existence of natural modes have rested
on evidence from the world itself. In particular we have claimed that the
physics of our world, including the evolutionary pressures of the environment,
cause objects to have non-arbitrary configurations. However, if it is the case
that it makes sense to describe our world as having natural categories, and,
as we have claimed, that describing the world in terms of these categories
permits one to make useful inferences about objects, then we might expect
these categories to be manifest in the psychology of organisms that make
such inferences. That is, we should be able to detect the presence of natural
categories in the mental organization of the world used by different perceiving
organisms. Notice that the existence of mental categories does not imply the
existence of categories in the world, only that the world is structured in such
a way as to permit the formation of visual categories which are useful to
observer. Therefore the ability to create such a categorization is a necessary
condition for the expression of natural modes in observable properties.

In fact, a wealth of literature exists attesting to the psychological real-
ity of natural categories. Evidence may be found in both cognitive science
and animal psychology. In particular the interaction between natural cat-
egories and perceptual recognition tasks has been extensively investigated.
We present a brief review of the relevant literature, especially as relates to
object perception.

2.5.1 Basic level categories
In 1976, Eleanor Rosch and her colleagues published what has become a clas-
sic paper in the field of cognitive psychology [Rosch, Mervis, Gray, Johnson,
and Boyes-Braem, 1976].

The principal finding of that work was that people tend to categorize ob-
jects in the world at a one particular abstract taxonomic level. This level is
operationally defined as the level at which categories have many well defined
attributes but at which there is little overlap of the attributes with those of
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other categories. As an example consider the simple taxonomic relation of
"fruit - apple --. McIntosh-apple" where x - y means x includes y. In this
case, Rosch et al. demonstrated that the preferred level of description is "ap-
ple." The reason for this was given to be that few attributes can be assigned
to "fruit" relative to the number of attributes assignable to "apple," while the
lower level category "McIntosh-apple" is a category whose atrributes overlap
extensively with other lower level categories such as "Delicious-apple." The
basic level, in this case "apple", is that taxonomic level at which category
members have a well defined structure (in Rosch's concrete noun examples
we explicitly mean physical structure) and at which there were no other cat-
egories that significantly share that structure. Perhaps the most important
aspect of the work by Rosch, et al. was the demonstration that categories at
the basic level appear to be more accessible for a variety of cognitive tasks
(presently we will consider the interaction between basic level categories and
the perceptual task of object recognition), indicating that these categories
enjoy some special psychological status. That is, is there strong evidence
that these categories have some degree of psychological reality.

Several attempts have been made to formally define basic level categories
in terms of attributes and categories; this thesis implicitly contains one such
attempt. Let us postpone the discussion of these theories until chapter 3
where a review of the various disciplines which have addressed the catego-
rization problem - these include cognitive psychology, pattern recognition
and machine learning - is presented. For now, the important point is that
there exists empirical evidence of a particular set of categories being used to
describe objects in the world.

One of the cognitive operations in which basic level categories show a
marked superiority is that of object recognition, whether the actual task be a
speed of naming task [Rosch, et al. 1976; Murphy and Smith, 1982; Jolicoeur,
Gluck, and Kosslyn, 1984;] or a confirmation task where the subject is primed
with the name of a category and has to decide whether a picture of an object
belongs to that category (see the analysis of Potter and Faulconer [1975]
given in Jolicoeur, et al. [1984]). These findings are of particular interest here
because the principal problem addressed by this thesis is that of categorizing
objects into classes suitable for the recognition. Specifically, we would like
to know whether basic level categories are special in a perceptual sense as
opposed to simply being more easily accessed as concepts by some cognitive
process.
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To address this question, Murphy and Smith [1982] designed an artifi-
cial world in which to test the perceptual superiority of basic level cate-
gories. By using artificially created superordinate, basic, and subordinate
categories, they were able to control factors such as word frequency, order
of learning, and length of linguistic description (real basic level categories
tend to have simple one word labels). These factors were considered to be
possible confounding factors in the results originally reported by Rosch, et
al. 1976]. Murphy and Smith did indeed replicate the finding that objects
can be categorized fastest at the basic level. They attributed this superiority
to the fact that basic level categories have more perceptual structure than
superordinate categories, while at the same time having many discriminat-
ing attributes from other basic level categories. Because these were artificial
objects, Murphy and Smith were able to claim that the advantage demon-
strated by the basic level categories in the task of recognition was caused by
a purely perceptual mechanism.

Jolicoeur, et al. [1984] extended the work of Murphy and Smith. Mur-
phy and Smith [1982] postulated that categorizing objects as belonging to
superordinate categories was difficult (slower) because of the disjointedness
of the perceptual structure. For example, to test if an object is a fruit
would require matching the incoming stimulus to a highly disjunctive per-
ceptual model (something that would match either a banana or an apple).
Jolicoeur, et al. make the stronger claim that that superordinate and subor-
dinate categorizations are slower because object recognition first takes place
at the basic level, and then further processing is required to determine the
superordinate or subordinate category. For example, if the task requires de-
termining whether an object is a fruit, then when presented with an image
of an apple, the subject would first recognize the object as an "apple," and
then use semantic information to conclude that it is indeed a "fruit." Simi-
larly, if attempting to categorize at the subordinate level, the subject would
again first determine the basic category and then compute the necessary ad-
ditional perceptual information required to determine the subordinate level,
e.g. "McIntosh."

To test this hypothesis, Jolicoeur, et al. considered the correlation be-
tween latencies in both perceptual and non-perceptual tasks. In one exper-
iment they discovered that the time to name the superordinate category of
an object when presented with its image correlated well with the time to
name the superordinate category given the word describing an objects basic
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category. For example, the latencies measured when subjects were given the
word "apple" and required to announce "fruit" behaved similarly to those
latencies recorded when subjects were presented with a picture of an apple.
One possible interpretation of this result is that that some words are inher-
ently easier to access than others. To rule out this possibility, correlations
were checked for items within the same superordinate category; both "apple"
and "banana" require the response "fruit." For each such item the correct
superordinate response is identical, allowing us to remove the effect of the
degree of difficulty in making the response. Here too the latency of the per-
ceptual task correlated well with the latency of the linguistic task. Thus the
superordinate categorization data support the claim that perceptual access
does indeed occur at the basic level.

Jolicoeur, et al. [1984] performed a second experiment to test the claim
that objects were accessed at the basic level. Recall that under this hypoth-
esis additional perceptual processing beyond basic level is required only for
subordinate categorization. Superordinate identification required only se-
mantic information (e.g. knowledge that an apple is a fruit). Thus one would
expect a differential effect between the latencies (and error rates) of identi-
fication for subordinate and superordinate categories as one varied the the
duration of exposure to the perceptual stimulus. In fact, such a differential
effect was found: reducing exposure times from 1 sec. to 75 msec. produced
no effect on the latencies to name superordinate categories but produced a
large increase in the time required to name the subordinate category. Thus,
the subordinate categorization data also support the claim that object recog-
nition first occurs at the basic level.

In summary, cognitive psychology provides evidence that people make
use of a particular categorization of the world in a variety of cognitive tasks.
These basic level categories occurred at the taxonomic level at which objects
possessed a high degree of structure while minimizing category overlap; this
condition is equivalent to stating that knowledge of an object's basic level
category would permit many inferences about the objects properties, while
identifying an object's category would be reliable given the minimal overlap
with other basic level categories. While the existence of these categories does
not necessarily (in the logical sense) imply the existence of natural categories
in the world, it does support the view that the world is structured in such
a way as to make a categorical description useful a variety of tasks. The
work demonstrating that object recognition first takes place at the basic
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level supports our claim in section 2.2 that categories which would be useful
for making reliable inferences about objects are the appropriate categories
for recognition.

2.5.2 Animal psychology
If the structure of the world is such that there exists a categorization which
is natural for recognition (would permit reliable inferences about objects)
then it should be the case that other organisms in the same world would
also exhibit such a categorization in their psychologies. Therefore let us
consider the work performed with animals in trying to establish which set of
categories they possess. Unfortunately one is limited in the types of tasks one
can require an animal to do, and most conclusions about animals' categories
are based on how well and how quickly they learn to discriminate various
sets of stimuli. Nevertheless, interesting results about the categorization of
objects used by animals have been reported. Hernstein [1982] provides an
excellent review of the studies of animals categories.

Cerella [1979] studied the ability of pigeons to learn to discriminate white-
oak leaves from other types of leaves. After learning to perfectly discriminate
40 white-oak leaves from other leaves, the pigeons were able to generalize
to .40 new instances of white-oak leaves. Such results suggest that the pi-
geons acquired a "category" corresponding to white-oak leaves. Cerella then
trained pigeons using 40 non-oak leaves and one white-oak leaf, repeated
many times; he then tested these pigeons with probes including 40 different
white-oak leaves. Still, with only having seen one white-oak leaf, the pigeons
were able to successfully discriminate between white-oak leaves and other
leaves. This remarkable finding suggests that not only do the pigeons form
a category corresponding to the white-oak leaves, they also extract the at-
tributes necessary to distinguish the "natural" category white-oak leaf from
other leaves. This type of learning provides powerful evidence that the world
is clustered in recoverable natural modes: an organism's perceptual processes
are tuned to be sensitive to the attributes of objects that are constrained by
the processes responsible for the object's formation. As in the experiments
reported by Gould and Marler [1987] concerning the role of instinct in animal
learning, these results underscore the importance of providing the organism
with the necessary underlying theory of structure if the organism is to suc-
cessfully interact with its environment.
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Hernstein and de Villiers [1980] tested the ability of pigeons to learn the
"natural" category of fish. One of the reasons they chose fish is that fish
are not part of the natural habitat of pigeons and thus their prior experience
could not influence the results. Their training stimulus set consisted of 80
under-water photographs, 40 which contained fish (in various orientations
and occlusion relations) and 40 which did not; the negative examples did
contain images of other creatures such as turtles and human divers. Pigeons
rapidly learned to discriminate between the two sets of images, reaching a rate
of discrimination comparable to that of experiments using objects normally
found in the pigeons habitat such as trees and people [Hernstein, Loveland,
and Cable, 1976]. When tested on novel pictures, all the pigeons generalized
in at least some of the tests. Another set of pigeons was trained using the
same stimuli, but, the in this case the pictures were divided randomly. The
pigeons were unable to achieve a discrimination ability comparable to the
fish versus non-fish group and any ability they did acquire took longer to
achieve. Thus we may take these findings to suggest that pigeons developed
the "natural" category of "fish." The interesting aspect of this result is that
fish are not part of the environment normally experienced by pigeons nor
have they been so for 50 million years. Therefore it is unlikely that the
genetic experience of the species would encode the category "fish." Thus
we can assume that there is something about the general perceptual process
of the pigeons which makes "fish" a natural category. This is analogous
to Quine's [1969] innate quality space mentioned in section 2.3. The fact
that the innate quality space of pigeons - an organism unfamiliar with the
aquatic environment - would lead to the formation of a category "fish" is
additional evidence that natural modes exist in the world and that they are
perceptually recoverable.
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Chapter 3

Previous Work

Although the problem of categorization addressed in this thesis is one of psy-
chology - how do people organize their representation of objects with respect
to recognition - the general problem of discovering "natural" or important
classes in a collection of instances can be found in many branches of science.
Particularly relevant here are the following three disciplines: 1) cognitive sci-
ence, in which several attempts have been made to formalize the concept of
basic level categories; 2) cluster analysis, the study of the automated parti-
tioning of numerical data into meaningful classes; and 3) machine learning,
a subfield of artificial intelligence which considers the issues involved in pro-
ducing a machine which can learn about structure in its environment. The
scope of this chapter precludes giving a thorough description of all the rele-
vant work contained in these disciplines; several complete books have been
dedicated to each. As such, we will present a brief description of the im-
portant contributions which relate directly to the problem addressed by this
thesis: discovering a set of categories that are useful for recognition in terms
of permitting reliable inferences about an object's properties. The reader is
referred to [Smith and Medin, 1981], [Anderberg, 1973], and [Michalski, et
al., 1983; Michalski, et al., 1986] for references giving more detailed analyses.

3.1 Cognitive Science

In section 2.5.1 we referred to the work on basic level categories as evidence
for the existence of natural categories in human mental representation we
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now consider that work in terms of its theoretical development. Cognitive
scientists have attempted to formalize the definition of basic level categories
in terms features and their distributions. Because these categories display the
desirable properties discussed in chapter 2 - they are highly structured per-
mitting many inferences to be made about the properties of objects contained
in those categories, and they are quite dissimilar to one another making clas-
sification more reliable - it is important to understand these prior attempts
to specify basic categories. We will then draw upon some of them in our own
development of a categorization metric in chapter 4.

In the original work of Rosch, et al. [1976] basic level categories are de-
scribed as the taxonomic level which maximized the cue validity of a category.
As used by Rosch, et al., the cue validity of a feature for a category is a psy-
chological quantity which measures how indicative a certain feature would
be of some category. The cue validity of a category is defined to be the sum
of the cue validities of the various features or attributes true of the objects in
that category. For example, the cue validity of feathers would be very high for
the category "birds," but less so for "ducks" since many objects which have
feathers are not ducks. Likewise for the features "wings", "beaks", and "lays
eggs". To consider whether basic level categories can be defined in terms
of cue validity we need to provide a formal description of that psychological
quantity.

The most common formal definition of cue validity is that of conditional
probability.1 That is, the cue validity of some feature fi for a category Cj is

'Unfortunately, the term "cue validity" has more than one formal definition in the
cognitive science literature. Conditional probability is the interpretation taken by
Smith and Medin [1981] and Murphy [1982], though the formulation provided by
Smith and Medin (p. 79) is mathematically incorrect. The cue validity to which
Rosch, et al. refer is probably based upon the definition provided by Beach [1964]
and Reed [1972]. In their formulation, the cue validity of a feature for a category is
calculated by considering both the frequency of occurrence a feature (averaged over
all categories) and its diagnostic value in identifying that category. Let p be in-
versely proportional to the over-all frequency of occurrence of some feature fi. Then,
in this formulation, the cue validity of feature fi for some category Cj is equal to
p (prior probability Cj) + (1 - p) (conditional probability Cj Ifi). This formulation was
provided to explain the psychological phenomenum that subjects tend to weight the true
conditional probability of feature by how often the feature tends occur. However, this
formulation must be considered ad hoc, motivated only by a desire to fit the data. See
Kahneman and Tversky [1980] for a detailed discussion about the relationships between
probability theory and people's predictive judgments.
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taken to be the conditional probability that some object is a member of Cj if
it is known that feature fi is true of that object. (We assume for now that a
feature is either true or false for any given object.) A simple formula for the
conditional probability can be given in terms of the frequency of occurrences
of a feature in different categories. Let us assume that Na is the number of
objects in the category Ca for which some feature fi is true. Likewise for
Nb, and for now we can assume that there are only two categories. Then,
if We assume that the number of occurrences can be used to estimate the
underlying probability distributions, then simple probability theory yields:

Cue validity of Na
fi for category Ca Na( ) + Nb

If there are more than two categories, then the additional occurrences of
the feature in those categories are simply added to the denominator. The
denominator is simply the total number of objects in the world exhibiting the
feature; it remains constant regardless of the number or type of categories
into which the world is partitioned. With this definition in hand, we can now
consider whether basic level categories can indeed be defined in terms of cue
validity.

As Murphy [1982] has noted, maximizing cue validity cannot be the basis
for basic level categories. A simple example will quickly demonstrate this
fact. Following Murphy, let us consider the taxonomic hierarchy of "physical-
object", "animal", "bird", and"duck", and let us examine the cue validity of
the feature "has-wings" with respect to this hierarchy. Again, define Nphy,
to be the number of "physical-objects" for which the feature "has-wings"
is true. Similarly for Nanimal, Nbird, and Arduck. By definition, Nphys >
Nanimal > Nbird > Nduck Therefore, since the denominator in the expression
for cue validity remains constant regardless of the partitioning of the objects,
it must also be the case that the cue validity for "has-wings" increases as one
moves up the taxonomic hierarchy. This agrees with the intuition that if p
is the probability that some object is a "bird" given that one knows some
feature about that object, then the probability that it is an "animal" should
be at least p. Since the cue validity of any feature for a category increases
as the category becomes more inclusive, the most inclusive category would
be the level which maximized total cue validity. The basic level categories
would possess lower cue validities than the most general category "thing."

The underlying reason that cue validity cannot be used to define basic
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level categories is that cue validity contains no consideration of the density of
a feature within a category. That is, only the conditional probability of the
category given the feature is measured, ignoring the likelihood that a given
category member contains that feature. This extra component is included in
the collocation measure proposed by Jones [1983]. Using the above notation,
the collocation of a category and a feature Icj,/. is defined by:

IfcJ,, = P(Cj Ifi) P(fiICj)

The first term is the conditional probability corresponding to the cue validity
discussed above. The second term, however, reflects the density of a feature in
the category. Because the collocation is a product of these two probabilities,
it's value can be large only when both terms are large. Though the first term
(cue validity) grows as categories become more inclusive, the second term is
diminished when a category becomes less homogeneous. Thus the maximum
of this function will occur at some intermediate depth in the taxonomic
hierarchy. Jones argues that the basic level categories occur at the taxonomic
level which tend to maximize the collocation as measured over all the features.

A simple example will illustrate the properties of the collocation measure
and how it relates to basic level categories. After Jones [1983], suppose
we have the feature can-fly and the hierarchy "duck", "bird", "animal".
Suppose there are 10 instances of "duck", all of which can fly, 90 other
instances of "bird", 80 of which can fly (allowing for some non-flying birds)
and 900 additional instances of "animal" of which 10 can fly (for animals
such as bats). If we assume that the occurrences can be used to estimate the
probabilities, then we can compute the following collocations: Iduck,can -fly =

.10, Ibird,can-fly = 81, Ianimal,can-fly = .10. Thus, the collocation measure
attains a maximum at the basic level ("bird").

Jones [1983] proposed a particular method for converting raw collocation
measures into an index measuring the degree to which a category is basic.
This construction can only evaluate one category with respect to the other
categories of some categorization. It does not readily permit one to compare
one set of categories to another, making it inadequate for the task of selecting
an appropriate set of categories. Also, there is a question as to whether the
"degree to which a category is basic" is a meaningful quantity. However, the
basic principal of combining two terms reflecting the diagnosticity of features
and the homogeneity of categories (here expressed as conditional probabili-
ties) is consistent with the goals of categorization proposed in chapter 2. A
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high degree of homogeneity in a category permits an observer to infer features
(properties) of an object once its category is known, and a high diagnosticity
of a feature for some category makes correct categorization easier and more
reliable. In chapter 4, where we develop a measure of the utility of a set of
categories for recognition, we will return to this discussion of these two, in
some sense opposing, goals.

It should be noted that in terms of being useful for our purposes of creat-
ing a categorization which is suitable for recognition, there is a fundamental
difficulty with the collocation measure: the relative weights of the two prob-
abilities are arbitrarily set to be equal. To examine this issue more closely,
consider the following modified version of collocation:

Kc,f ',= P(Cilf) . P(f lCj)(-x)

In K', the exponent A, (O < A < 1) reflects the relative contribution of the
ability to infer an object's category given its features (expressed as the condi-
tional probability P(Cjlfi) ) as compared to the ability to predict an object's
features given its category (P(filCj)). Such a relative weight is necessary if
we are to use this measure to help select a categorization appropriate for
recognition. The observer needs to be able to trade-off how much informa-
tion about an object he needs to infer from the category against how difficult
it is to identify an object's category from its features. Without such a pa-
rameter, the categories that the collocation measure will select as basic or
fundamental will be completely determined by the distribution of features
which the observer measures; the goals of the observer cannot be used to
constrain the selected categories. In chapter 4 we will introduce an explicit
parameter which represents this trade-off.

Finally, we should mention the work of Tversky [1977]. In that seminal
paper, Tversky constructs a contrast model of similarity; it is so termed be-
cause the similarity between two objects depends on not only the features
they have in common, but also the (contrast) features they do not. By further
introducing an asymmetry in the manner in which two objects are compared,
Tversky is able to explain the empirical finding that similarity is not psy-
chologically symmetric. For example, most subjects rated North Korea as
more similar to China than China was to North Korea (Remember these data
were recorded in 1976!). The aspect of the contrast model theory which is
relative to our discussion is Tversky's proposal of using his similarity metric
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as a measure sensitive to the basic level categories. Tversky realized that
a measure which only considered the similarity between members within a
category would select minimal categories (the opposite of cue validity); cat-
egories would tend to become more homogeneous as they were refined. To
compensate for this deficiency Tversky suggested creating a measure to se-
lect basic categories by multiplying the average similarity between objects in
a category by a weighting factor which increased with category size. This
product would then behave in a fashion somewhat analogous to that of col-
location. However, a weight based upon category size must be viewed as an
ad hoc solution; the number of objects contained in a category should not
determine whether that category is at the basic level in a taxonomy.

We should note that cognitive science has not addressed the question of
how basic level categories are acquired. That is, even if one has a measure
which is sensitive to the basic level of a taxonomy, one cannot recover the
basic level categories unless a taxonomy is provided. Arguing that a tax-
onomy is provided through instruction (objects are placed in a hierarchy by
teachers) seems to be an untenable position; otherwise, one would have to
believe that in the absence of instruction basic level categories would not be
formed. Also, the fact that animals form "natural" categories about objects
with which they (and their ancestors of 50 million years) have had no expe-
rience [Hernstein and de Villiers, 1980] argues against taxonomies provided
by instruction.

In summary, we can conclude that a measure which is sensitive to basic
level categories must contain at least two components. These components
should reflect not only the similarity within a category, but also the dissim-
ilarity between categories. (In the next section we will see that these two
components are key to many cluster analysis algorithms.) However, provid-
ing a measure which can indicate basic or natural categories is only part of
the categorization problem. The issue of how one discovers these categories,
of how one hypothesizes about which categories are natural, must also be
addressed.

3.2 Cluster Analysis

One of the common problems encountered in science is that of generating a
reasonable interpretation and explanation of a collection of data. Whether
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the data consist of various astronomical recordings [Wishart, 1969] or of the
descriptions of several diseased soy bean plants [Michalski and Stepp, 1983b],
a basic step in the analysis of the data is to appropriately group the data
into meaningful pieces. In the case of the astronomical data, the spectral-
luminosity profiles are grouped in such a way so as to identify four classes of
stars: giants, super-giants, main sequence stars, and dwarfs. This grouping
process - segmenting the data into classes which share some underlying
process - is often the most important and' yet the most difficult step in any
experimental science.

Cluster.analysis (sometimes referred to as unsupervised learning) is the
study of automated procedures for discovering important classes within a set
of data. Traditionally, data are represented as points in some d dimensional
feature space, where each dimension is some ordinal scale. Such a represen-
tation allows one to construct various distance metrics, and then to use those
metrics to define "good clusters." Algorithms are then developed to discover
such clusters in the data. We present of brief analysis of common metrics
and methods used in cluster analysis, and will relate these comments to our
current question of object categorization for recognition. The presentation
here is drawn in part from Duda and Hart [1973] and Hand [1981].

3.2.1 Distance metrics

At the heart of every clustering algorithm lies a distance metric which defines
the distance between any two data points. Most of these metrics require
that the data be represented as points in an d dimensional space, and that
distances along each dimension be well defined.2 Standard numerical axis are
typically used in real applications [Hand, 1981]. The notation we will adopt
is each object or data point is represented by a vector x = {xl,x 2, ... ,d}

where xi is the value for x in the ith dimension.
2Some approaches to cluster analysis have defined distance metrics on representations
which use binary (as opposed to ordinal) dimensions (see for example Jardine and Sibson
[1971]). The distance between two objects is defined to be the Hamming distance:
the number of dimensions on which the objects take different values. The similarity
between two objects - the logical inverse of distance - is referred to as the matching
coefficient. These metrics, however, have difficulties similar to those associated with
traditional distance metrics (see text). Problems of scale become problems of resolution
and relative importance; other issues concerning the use of such metrics remain the
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An important question in designing a distance metric for such a system is
whether the measure should be scale invariant. For example, one can assume
that the values along each dimension are normally distributed; scaling would
then consist of a linear transformation of each dimension to yield unit vari-
ances. The difficulty in deciding whether such scaling should be performed is
illustrated in figure Figure 3.1. Here, a rescaling of the dimensions changes
the apparent clusters. If a measure were scale invariant, it would not be able
to detect the differences between these two data distributions. Whether this
behavior is desirable depends on the domain and the semantics of each of
the dimensions. That is, one cannot decide on the basis of the data alone
whether scaling is appropriate. This requirement for outside information is
similar to WVatanabe's argument against natural categories presented in chap-
ter 2: knowledge of which features are important cannot be determined by
looking only at the data itself without additional information being provided.

Ignoring the issue of scaling, we can consider several distance metrics
which assume that the dimensions are appropriately scaled.3 One common
distance metric is the usual Euclidean metric:

dl(x,y) = (- yi)2

By using the Euclidean measure, one is making the assumption that different
dimensions are compatible and that distances along a diagonal are equivalent
to distances along a dimension. Often, such an assumption is unreasonable:
combining years-of-education and height yields no meaningful quantity. In
such cases, the city block metric is more appropriate:

d

- d2(x,y) = lxi- YiI
i=l

In this case the dimensions are weighted equally, but no interpretation is
given to the interaction between dimensions.

same.
3 As such we will not describe such classic measures as Mahalanobis's distance, which
assumes the data are sampled from a multi-variate normal distribution and scales the
data by the inverse of the estimated cross correlation matrix.
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Both dland d2 are special cases of the general Minkowski distance:

d3(x, y) = E lXi- Ir

By varying r one can control the degree of interaction between dimensions.
When r = 1, The Minkowski measure equals the city block metric; r = 2
yields the Euclidean measure. As r - oo, the Minkowski distance converges
to

d4(x,Y) = maxlx - Yil

which represents "total" interaction: the dimension along which two data
points differ the greatest completely dominates the other dimensions.

There are two fundamental assumptions in distance metrics such as these
whose validity is questionable if the task is one of categorizing objects into
categories suitable for recognition. The first of these is that there are no (or
at most few) dimensions that are unconstrained in the data. If there are
many such dimensions, then the distances between objects in these dimen-
sions will act as noise, making it difficult to detect the important distances
along the constrained dimensions. When attempting to categorize objects
for recognition, the important properties - properties which are indicative
of an object's category - are as yet unknown. Thus, it is likely that some
of the properties measured will be unconstrained in the objects.

The second basic assumption is that the same distance metric is appli-
cable throughout all of feature space. Normally, these distance metrics are
insensitive to the absolute values of the feature vectors being compared; the
distances between data points are determined solely by the differences along
each dimension. Thus, these metrics do not alter their behavior as a function
of a feature vector's position in feature space. With respect to categorization,
this assumption requires that the properties that are important for measuring
the distance between some particular pair of objects must be important for
all pairs of objects. This requirement does not seem reasonable for a world
in which the constrained properties of objects vary from one object type to
another.

Finally, most clustering algorithms require not only being able to specify
a distance between two data points, but also between a data point and a
cluster of data points; the distance between two clusters is often required as
well. Because the method of measuring distances between clusters is often
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determined by the method used for discovering clusters, we will present the
inter-cluster measures in those sections.

3.2.2 Hierarchical methods

Most cluster analysis programs can be described as being one of two types
of algorithms, or as being a hybrid of the two. The first of these consists of
hierarchical methods which automatically produce a taxonomy of the data
samples. In divisive clustering, the taxonomy is constructed by starting with
all data points belonging to a single cluster and then splitting clusters until
each object is its own class. Agglomerative methods begin with each sample
as a separate cluster of size one and then merge classes until all samples are
in one category. Since similar issues underlie both techniques we will consider
only the agglomerative methods. Our discussion will follow that of Duda and
Hart [1973].

For this discussion, represents the number of clusters; Xi is the ith
cluster, a set of data points; xj is the jth data point, represented as a feature
vector; n is the number of data points. The basic algorithm for agglomerative
clustering can be written as a simple iteration loop:

1. Let c = n and Xi = {xi}, i = 1,...,n.

2. If = 1, stop.

3. Find the nearest pair of distinct clusters, say Xi and Xj.

4. Merge Xi and Xj into a new Xi, delete Xj, and decrement .

5. Go to step 2.

When executed, this procedure produces a dendrogram such as that in Fig-
ure 3.2. The vertical axis measures the distance between the clusters as they
are merged. At a distance of 2, objects A and B were combined to form a
new cluster; likewise at a distance of 3, C and D were combined. Finally at a
distance of 3.5, the cluster {A, B} and the cluster {C, D} were combined to
yield a single cluster. In a moment, we will show that the dendrogram does
not always yield a tree structure which is consistent with increasing distance.

To execute the agglomerative procedure, one must define the distance be-
tween two clusters. Many measures have been proposed, but we can separate
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Figure 3.2: Dendrogram (b) of the clustering of the data in (a). This dendrogram
would result for many inter-cluster distance metrics including nearest-neighbor and
centroid-distance.
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them into those which find a minimal or maximal distance between all pos-
sible pairing of objects in the two clusters, and those which compute some
average distance. An example of the former group is the nearest-neighbor
metric in which the distance between two clusters is defined to be the dis-
tance between the two closest points, one from each cluster. Because of the
ability of a single data point to dramatically affect the distance between two
clusters, this class of measures exhibits the undesirable behavior of being
sensitive to outlying or "maverick" riembers in a cluster.

To remove this undesirable behavior, measures based upon either average
distances or the distances between average members are used. However,
these metrics can cause clusters to be formed that are "closer" to each other
than the sub-clusters from which they were originally formed. An example of
this is shown in Figure 3.3a. In this case we assume that the distance metric
used between two clusters is the Euclidean distance between the (arithmetic)
average of each cluster. In this example, data point A is merged with data
point B because they are the closest pair; the distance between them is 2.2
units. (Note that A, B, and C could be the average of previous clusters
found as opposed to being single data points.) Next, data point C is merged
with the new cluster {A, B} as they are the only remaining two clusters.
But, the distance between these to clusters is only 2.0 units, less than the
original distance between A and B. Thus, the dendrogram displaying this
agglomerative clustering might be drawn as in Figure 3.3b; the taxonomy is
no longer consistent with distance.

For the task of partitioning objects into categories suitable for recognition,
hierarchical methods have a serious deficiency: they require the complete
data set be present at the start of the procedure. The addition of a new data
point can radically alter the structure of the dendrogram by providing a
new link between previously separated clusters. This is especially a problem
for methods which rely on an inter-cluster distance metric such as nearest
neighbor. Such a system must recompute the entire dendrogram when new
data are observed. Because the observer in the natural world will often
encounter new objects, a hierarchical approach would not be appropriate for
creating natural object categories.

We conclude our description of hierarchical methods by commenting on
the utility of the dendrogram. Suppose one were to hierarchically cluster
some data and that the resulting dendrogram was that of Figure 3.4. Notice
that as the distance between clusters is increased the objects are quickly
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Figure 3.3: (a) Data points A, B, C with Euclidean distances between them as
indicated. The distance between the average of A, B} and C is less than the
distance between A and B. (b) The resulting dendrogram.
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Figure 3.4: A hypothetical dendrogram. If there is some physical significance
to the distance measure, one could infer that this data was generated by several
discrete processes. In particular, while a description of the data as having 6 groups
or 2 groups seems reasonable, a description which claimed there were 5 groups
present seems arbitrary. This requirement that the description of the clusters be
stable with respect to the distance metric is analogous to Witkin's discussion of
the scale-space description of image intensity profiles [Witkin, 1983].
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clustered into 6 groups. Then, after increasing the distance sufficiently, 3 of
the groups are merged in quick succession while the others clusters remain
separate. The process repeats for the other set of 3 clusters. Eventually, the 2
clusters are combined to form one global category. An intuitive interpretation
of such a dendrogram is that there are discrete processes reflected in the data
and that any valid category description would reflect these processes. For
example, description D 2 which partitions the objects into 5 categories seems
less valid than descriptions D 1 or D 3 because of the sensitivity of D 2 to the
distance metric. If one thinks of the distance metric as the scale at which the
data are observed, then D 1 and D 3 are stable with respect to small changes
in that scale, whereas D 2 is not. Zahn [1971] used a similar principle in
recovering clusters by dividing a minimal spanning tree graph of the data
at edges whose length were inconsistent with the other edges in the tree.
The notion of a description being stable with respect to a scale parameter
is reminiscent of Witkin's [1983] scale space description of image intensity
profiles. In chapters 4 and 6 we will return to this question of stability of
description with respect to the "scale" of the observation.

3.2.3 Optimization methods

The second basic approach to cluster analysis is category optimization. In
these methods, one assumes that there exists some known number of classes
c. The data are first partitioned into c classes (either randomly or by some
hierarchical method), and then some suitable clustering criterion is optimized
by transferring data samples from one cluster to another. An example of such
a method is the k-means method which can be written as (following Duda
and Hart [1973]):

1. Choose some initial values for means l, . . ., tc.

2. Classify the n samples by assigning them to the class of the closest
mean. (This is equivalent to clustering the objects to minimize the
sum of the squares of the distances of the data points to the cluster
means i.

3. Recompute the means Al,... Ai as the average of the samples in their
class.
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4. If any mean changed value go to Step 2; else STOP.

Each iteration improves some measure (in this case the sum of the squared
distances from the data points to the cluster means) of the "goodness" of the
clusters.

As in all optimization procedures, there are two important components to
the algorithm. The first component is the criteria used to measure the quality
of clusters. Most criteria are based on the scatter matrices W and B, repre-
senting the within-cluster scatter and between-cluster scatter, respectively.
The formulas for these matrices are unimportant for the discussion at hand;
they may be found in Duda and Hart [1973, p. 221]. Their basic purpose
is to measure the compactness of each cluster and the inter-cluster separa-
tion. Several criteria which attempt to "minimize" W (in terms of either
the trace or the determinant) and "maximize" B have been proposed. The
above algorithm which attempts to minimize the squares of the distances be-
tween the data points and their cluster mean is equivalent to minimizing the
trace of W. The use of these matrices reveals the underlying assumption of
these measures that "good" clusters are those which are tight hyper-spheres
in features space, separated by distances that are large with respect to their
diameters. Whether such measures are appropriate for a given task depends
upon the validity of the distance metric. Almost all analyses using such scat-
ter matrices assume a Euclidean metric; as discussed in section 3.2.1 such a
metric may be inappropriate for object categorization.

It is important to note that categories which can be represented as tight
hyper-spheres in feature space begin to satisfy the criteria for a categoriza-
tion proposed in chapter 2. If categories exhibit little within-cluster scatter,
then knowledge of an object's category permits a detailed inference about
that object's features. Also, object categorization becomes less sensitive to
measurement noise when categories are well separated in feature space; the
inference of an object's category from observable features becomes more reli-
able. However, if the degradation of an object's description is caused by the
omission of features as opposed to being caused by noisy measurements, then
separated clusters do not insure reliable categorization. Separation in fea-
ture space is not equivalent to redundancy in feature space.4 As discussed in

4In chapter 4 we will provide a formal definition for redundancy. For now, let us as-
sume redundancy measures how easily one can categorize an object given only a partial
description of that object.
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chapter 2, categorization for recognition requires being able to determine an
object's category from only partial information. Thus, while the optimiza-
tion criteria used for cluster analysis are related to the proposed goals of
categorization and recognition, they are inadequate for producing a suitable
set of categories.

Given a clustering criteria, the problem of finding the best set of classes
is well defined. Because there is only a finite number of data points n, there
is only a finite number of partitions of the data into c classes; clustering
reduces to finding the best partition. Unfortunately, the number of possible
partitions is on the order of cn/c! (when n > c, see Rota [1964]), making ex-
haustive search impossible even for a relatively small number of data points.
Therefore, the second component of the optimization procedure is the search
algorithm used to find good clusters.

One approach is to use a pruned complete search, a form of branch-
and-bound [Winston, 1977]. Even this method, however, quickly becomes
combinatorially intractable. (Hand [1981] provides an example with n = 20,
c = 3, where the pruning reduced the search by a factor of 1000, but still left
almost one million partitions to be considered.) A more common method of
search is that of gradient descent, where objects are incrementally transferred
from one cluster to another to improve the clustering criterion. In the k-
means method, clusters are modified by transferring each point to the cluster
whose mean is closest to that point. However, such a method is sensitive
to the initial hypothesis and, as with all gradient descent algorithms, may
terminate at a local minimum. One radical approach to search is to try
random partitions in an effort to find one of the best m partitions by testing
a set of M partitions. [Fortier and Solomon, 1966]. Simple probability theory
can determine how large M must be in order to be likely to discover one of
the m best partitions. The difficulty with this approach is that M grows too
quickly with n for some fixed probability of success. In chapter 5 we will
develop a similar strategy for recovering classes of objects, but will apply the
random search to only small subsets of the n samples. By restricting the the
random search to small sets, we can maintain a high probability of success
without testing arbitrarily large numbers of partitions.

As a final comment we note that the use of optimization methods usually
requires the a priori knowledge of the number of clusters present; often, such
a priori information is not available. One solution to this problem is to
augment the search procedure with the ability to split or merge categories
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at "appropriate" times; such a capability also allows optimization methods
to cope with the addition of new data points. The well known ISODATA
program of Ball and Hall [1967] provides such a mechanism in a clustering
program which uses the trace of W presented above as the optimization
criteria. If the sum of the squared distances between the data points and a
the mean of any cluster becomes greater than some user specified threshold,
then the cluster is split into two clusters. Likewise, pairs of clusters are
merged if their means are separated by a distance less than some other user
specified threshold. This method is successful for limited domains where such
thresholds can be specified. However, a more consistent approach to cluster
splitting and merging is to do so whenever such a change will improve the
criteria measure. Such a procedure is possible only if the clustering criteria
is not biased towards having many or few clusters. For example, the sum
of squared distances is always reduced by splitting a cluster and thus would
bias the procedure to find many (in fact n) clusters. Because the measure
of the quality of a categorization we will develop in chapter 4 is not biased
to having many or few clusters, we will be able to split and merge clusters
according to the improvement of the clustering measure.

3.2.4 Cluster validity

'An alternative to adding a cluster formation and deletion ability to opti-
mization methods is to simply execute the same optimization procedure for
a range of c, and then to compare the results. However, to select one c
over another requires being able to assess the validity of a clustering of some
data. Likewise, when generating a taxonomy with a hierarchical method,
one is guaranteed that there exists a clustering of the data into c classes for
all c, 1 < c < n. To determine which of these descriptions represents "struc-
ture" in the data requires some method of determining whether a particular
clustering is an arbitrary grouping of the data imposed by the algorithm, or
a grouping robustly determined by the data themselves. Unfortunately, few
methods for answering this question exist, and most of these are weak.

One formal method of assessing cluster validity is based on statistical
assumptions about the distribution of the data. As an example, consider an
optimization method which seeks to minimize the sum of the squared within-
cluster distances. Because c + 1 clusters will always fit the data better than
c clusters, we cannot use the absolute measure to determine which clustering
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is to be preferred. However, suppose we assume that the underlying data
are sampled from c normally distributed classes. Then, one can derive an
expected value for how much the clustering criteria would improve by using
c + 1 clusters instead of c. (For details of such a derivation see Duda and
Hart [1973].) By comparing this value to the actual improvement obtained
by splitting the c clusters into c + 1 clusters, one can determine the validity
of the new cluster. This method is only applicable when some underlying
distribution of the data can be assumed and thus has limited applicability
to domains where one is attempting to discover the structure of data. Be-
cause cluster analysis is usually used as a tool for such discovery, statistical
measures of validity are highly suspect.

A simpler, intuitive approach to the validity problem may be referred to
as "leave some out" methods [Hartigan, 1975]. In these methods either some
of the data points or some of the dimensions used to describe the samples
are omitted while executing the clustering procedure. After a set of clusters
is generated (or, in hierarchical methods, selected from the taxonomy) the
additional data points or dimensions are checked for consistency. A stan-
dard, though weak, method of checking is to test the statistical distribution
of the additional sample points or dimensions. For example, the distribution
of values along a previously omitted dimension would be checked for statis-
tically significant differences between clusters. If such a difference is found,
then the belief that the discovered clusters reflect structure in the data is
strengthened. The weakness of this method is that not finding a significant
difference only determines that some particular dimension is not constrained
within the clusters discovered. Assuming a sufficient quantity of constrained
dimensions, one would test other omitted dimensions, hoping to find con-
strained dimensions that supported the clustering discovered. Because of
the qualitative nature of these methods, little formal analysis is possible.

The problem of whether an unconstrained dimension disconfirms the be-
lief that a particular clustering is valid brings to light a fundamental short-
coming of cluster analysis: there is no a priori criteria for success. Let us
assume that we have arbitrarily fast computing machinery and that we se-
lect the optimal partition of some data according to a particular clustering
criteria. It makes no sense to ask whether these clusters are "valid" classes,
because by definition the groups which minimize the metric are the right
groups. Therefore, if one wants to be able to say that the recovered classes
are "valid" for some task, then it must be the case that the criteria used
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directly measures validity of the classes for the task at hand. In chapters
1 and 2 we defined the categorization task to be that of creating a set of
categories that permitted robust categorization and the reliable inference of
an object's properties from its category. Thus, if we are to create such a
set of categories, will need to create a metric which directly measures these
aspects of a categorization.

3.2'.5 Clustering vs. classification

It is important to note the difference between cluster analysis as described
above and -pattern classification [Hand, 1981]. The term "classification" usu-
ally refers to the problem of deciding to which of a known set of categories a
novel object belongs. Most of the pattern recognition and classification liter-
ature does not address the problem of discovering categories in a population
of objects. It is assumed that a data analyst will provide a representative set
of known instances; the problem of classification is to determine a measure
or procedure by which new objects can be correctly classified.

However, one aspect of classification theory does relate to the problem of
discovering structure within data. Often, the goal of a classification program
is build a decision tree that provides an algorithmic decision sequence that
will correctly classify new objects [Quinlan, 1986; Breiman, et. al. 1984].
In constructing such trees, a trade-off exists between the mis-classification
rate and the total complexity of the decision function, often measured by
the number of nodes in the decision tree. Breiman et. al. [1986] suggest a
pruning mechanism that combines the two criteria using a free parameter oa.
This combination of opposing criteria is similar to that proposed by Tversky
[1977] for determining basic level categories and is thus subject to the same
criticism: the complexity of the description - for Breiman, et. al. the number
of nodes, for Tversky the number of categories - should not be confused with
the utility of a set of categories. However, the principle of trading ease of
category inference for a more powerful set of categories is important and will
be central to the theory developed in this thesis.

3.2.6 Summary of cluster analysis

Let us summarize the aspects of cluster analysis relevant to the task of ob-
ject categorization. Three serious deficiencies in cluster analysis techniques
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were identified. First, the use of a distance metric which requires constraint
in all dimensions and is applied uniformly throughout feature space is inap-
propriate for natural object categorization. Different processes in the world
constrain different properties of objects and one must expect that each class
of objects will have unconstrained dimensions. Second, methods of category
formation that require the entire set of data be available initially (such as
hierarchical methods) are not applicable in the natural world where new ob-
jects are often encountered. Third, optimization criteria are only useful if
they directly measure the utility of the categories for a particular task. Cri-
teria based only on distance in feature space cannot guarantee the formation
of categories which permit the inferences required for the recognition task.

However, two positive aspects of cluster analysis were also noted. First,
the dendrogram formed by hierarchical methods provides a method for test-
ing the stability of a clustering with respect to the distance between clusters.
We argued that it might be possible to test the validity of a categorization
if the "distance" axis was sensitive to different processes involved in the cre-
ation of the data points (objects). Second, the tight hyper-sphere categories
preferred by the criteria based upon scatter-matrices begin to satisfy the
goals of a categorization established in chapter 2: the reliable inference of
an object's properties from its category, and the reliable inference of an ob-
jects category from its properties. Better categories can be chosen only if
the clustering criteria directly measure how well the categories support these
goals.

3.3 Machine learning

The last field of research we must consider is that of machine learning. Ma-
chine learning is concerned with the issues involved in constructing a machine
(program) that can discover structure in the world by examining specific in-
stances. Whether the problem is to "discover" the laws of thermodynamics by
"observing" experiments [Langley, Bradshaw, and Simon, 1983] or to learn
the rules integration by being shown examples [Mitchell, 1983], the basic
learning step requires induction: the formation of a general conclusion based
on evidence from particular examples. Unlike deduction programs which de-
rive conclusions known to be true, induction programs are constructed such
that the conclusions they derive are likely to be true.
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For example, the BACON program [Langley, Bradshaw, and Simon, 1983]
is able to discover scientific laws such as F = m a, V = IR, and PV = nRT.
The reason BACON is successful in these cases is that the program explicitly
seeks relations formed by simple additive and multiplicative manipulations.
That is, embedded within the program is the belief (on the part of the pro-
grammer) that if relations of this form adequately describe the data, then
these relations are the correct natural laws. Furthermore, there is the belief
that laws of this form exist, thereby justifying a search for these relations.

3.3.1 Conceptual clustering

One focus of machine learning which is relevant to the task of categorization
is in the area of conceptual clustering [Michalski, 1980; Michalski and Stepp,
1983a,b], a paradigm similar to the cluster analysis methodology presented
above. As in cluster analysis, the task at hand is to categorize a set of data
points into "good" classes. However, in conceptual clustering the notion
of "good" is not (solely) based upon a distance metric, but also on an a
priori belief as to what types of cluster descriptions are "natural." Similar
to the discovery program BACON which makes an assumption about the
form of a natural law, conceptual clustering programs make an assumption
about the form that descriptions of natural clusters should have. We shall
need to relate the particular beliefs about the desired form for descriptions
of natural classes to the goals of categorization and the principle of natural
modes presented in chapter 2.

As an example of conceptual clustering, let us consider the work of Michal-
ski and Stepp [1983a,b]. In their system - CLUSTER/2 - data points are
represented as feature vectors, but the the dimensions are not necessarily
ordinal. Typical features would be "shape" or "color" which could take val-
ues such as "red" or "round," respectively. Convex subsets5 of data points
are described by conjunctive combinations of internally disjunctive feature
selectors; these combinations are referred to as conjunctive complexes. For

5Convex is not exactly the correct description since the nominal features (e.g. "color")
are not metric. However, if they were, and they were arranged (just for this conjunction)
such that the internal disjunctions (e.g. red V blue) were sequential, then the sets would
be convex.
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example,

[shape = round][color = red V blue][size > medium]

would describe the set of all red or blue round things that are at least size
medium. Arbitrary clusters can then be represented by the union of such
conjunctive complexes; these unions, which are made as simple as possible by
eliminating any redundant complexes, are referred to as stars. When a set of
clusters is finally chosen, the stars may be used as conceptual descriptions of
the clusters. Unlike standard cluster analysis, conceptual clustering produces
a description - claimed to be conceptual - of the recovered classes.

Michalski and Stepp describe a procedure for clustering similar to the
k-means method of cluster analysis described in the previous section. An
initial set of c "seed" data points are chosen and "good" clusters described
by the unions of conjunctive complexes are built around those seeds. Then,
an iteration loop is executed in an attempt to select new seeds that yield
better clusters. The details of how seeds are selected, and of how clusters
are constructed are not important for relating this work to the problem of
categorizing objects for recognition. Of interest are the criteria used to judge
the quality of a clustering, and how those criteria relate to the proposed goals
of categorization and the principle of natural modes.

Michalski and Stepp describe four component criteria relevant to the
present discussion. Each represents a different, intuitively desirable prop-
erty for "good" clusters. The first two - commonality and disjointness -
resemble the scatter matrices of cluster analysis. Commonality refers to the
number of properties shared by data points within a cluster; if sharing of
properties is used to define a distance metric, then commonality resembles
the inverse of the within-cluster scatter. Likewise, disjointness measures
the degree of separation - how little they overlap - between each pair
of complexes taken from different stars; this measure is analogous to the
between-cluster scatter. As previously mentioned, clustering criteria based
upon these scatter matrices favor categories that are tight hyper-spheres in
feature space. Also, as discussed, such categories begin to satisfy the criteria
of categorization proposed in chapter 2.

The next component of the clustering criteria reflects an assumption
about the goal of categorization. Discriminabilit6 measures the degree of

6 Michalski and Stepp describe different versions of discriminability in two presentations
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ease in determining the cluster to which an object belongs given only a partial
description of the object. As a clustering becomes more discriminable, less
information is required (on average) to identify an object's category. This
criteria corresponds to one of the goals of categorization outlined in chapter
2: reliable categorization when provided with partial information.

The final element of the clustering criteria of Michalski and Stepp is
simplicity, and it is an assumption about what constitutes a "meaningful"
category in the world. Simplicity is defined as the negative of the complex-
ity, which is simply the total number of feature selectors in all the cluster
descriptions. This criterion reflects the assumption that the most meaningful
categories are those that can be described by a small number of properties.
Let us consider the validity of the simplicity criterion in light of the prin-
ciple of natural modes In one respect, simplicity is consistent with a modal
world: if natural classes are highly clustered in the space of important en-
vironmental properties, then only a small number of these properties need
be described to classify an object. However, when posed in this manner,
this criterion is equivalent to the discriminability criterion above. The more
fundamental meaning of simplicity is that the clusters are defined by a small
number of properties; this is the view of simplicity intended by Michalski
and Stepp, as they refer to the conceptual description of the clusters as the
"meaning" of the classes. In this light, simplicity is at odds with the principle
of natural modes, which posits the existence of highly structured, complex
classes. These categories are discriminable because their complex structures
are highly dissimilar; complex environmental pressures cause objects' config-
urations to be different from one another in a large number of dimensions.
Thus, simplicity - an intuitively appealing criterion - cannot be regarded
as consistent with the goal of categorizing objects according to their natural
modes.

of their clustering procedure [Michalski and Stepp, 1983a,b]. The discrimination index
is defined to be the number of dimensions that singly distinguish all of the clusters -
they take on a different value for each cluster. Dimensionality reduction is defined to
be the negative of the number of dimensions required to uniquely identify the cluster
to which an object belongs; the negative value is used so that the value increases as a
clustering becomes more discriminable. If the discrimination index is greater than zero
(at least one dimension singly distinguishes all of the clusters), then the dimensionality
reduction must be -1. We can define discriminability to be the sum of these two values:
the greater the value, the less restricted is the information that will uniquely determine
an object's category.
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In summary, conceptual clustering represents an improvement over stan-
dard cluster analysis. Besides the the advertised extension of providing a
description of the created clusters, conceptual clustering utilizes criteria that
consider the goals of the observer - discriminability improves reliability -
and an a priori belief about the structure of natural classes - simple classes
are preferred. However, we have argued that the assumption that simple
descriptions are the right descriptions is not valid for the task of categoriz-
ing objects in the natural world; natural objects are highly constrained and
thus complex in structure. Furthermore, conceptual clustering faces the same
category validity problem as cluster analysis. The categories recovered are
those which optimize the particular set of criteria chosen; the criteria were
not chosen according to some task requirement. Thus it is difficult to assess
the utility of the recovered classes for a specified task such as that proposed
in chapter 2: the reliable inference of an object's properties from its category.

We have not presented the method used by Michalski and Stepp to find
possible clusters (they use a form of a bounded best-first search) as it re-
sembles search techniques used in standard cluster analysis. The procedure
is iterative and not well suited to a system which must dynamically gener-
ate categories as new data are observed. Also, the computational expense of
forming these good, but certainly not optimal, clusters is almost prohibitive. 7

3.3.2 Explanation based learning

We stated that the criteria of simplicity used by Michalski and Stepp [1983a,b]
reflected an assumption about the structure of categories in the world. As
with all similarity-based methods, the vocabulary on which the syntactic
operations are performed (operations such as measuring the complexity of a
cluster by counting the number of feature selectors used) implicitly embodies
a theory about the world. As demonstrated in the proof of the Ugly Duckling
Theorem in chapter 2, a different set of predicates can cause previously "sim-
ple" categories to become "complex." Unfortunately, the theory embedded in
similarity based techniques always remains implicit in the vocabulary. Thus
it is difficult (if not impossible) to improve one's theory through experience,
and it is difficult to evaluate the correctness of a theory except by the actual
execution of the similarity-based algorithm.

7For a critique of the conceptual clustering work see [Dale, 1985].
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Recently, a new form of machine learning - referred to as explanation-
based - has been developed in an attempt to incorporate an explicit theory
about a domain into the learning process. For example, the LEX program
of Mitchell [1983] uses a priori information about mathematical relations to
learn the rules of symbolic integration from examples provided by a teacher.
Instead of just using syntactic rules for comparing one formula to another,
the.program uses its knowledge about mathematical functions to form its
gen'eralizations. For example, part of its theory includes the fact that sin
and cos are both trigonometric functions. Therefore, when it is told that the
integration of x sinx can be accomplished by integration-by-parts, the
program hypothesizes a generalized rule that states x trig x can be integrated
by "integration-by-parts." This rule is maintained unless a counter example
is provided by the teacher.

Certainly, an explanation-based approach to categorization would be a
more powerful technique than simple similarity-based methods [DeJong, 1986];8
at present we are unaware of any such attempts. Such an approach would re-
quire an underlying theory of physics of natural objects. The program would
have to know what types of equivalence classes can be created by different
object processes. Evidence for such a strategy existing in organisms may be
found in the work of Cerella [1979] in which pigeons were able to form a nat-
ural category for "white-oak-leaf' from the presentation of just one instance.
The pigeons must have an underlying theory that determines which aspects
of the physical structure of the leaf are likely to be important in determining
its natural class. In chapter 7 we will consider some possible extensions to
the work presented in this these; the most interesting of these incorporates
knowledge of physical processes into the mechanism for recovering natural
object categories.

8Though see Liebowitz [1986] for a discussion of the relationship between similarity-based
and explanation-based methods.
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Chapter 4

Evaluation of Natural
Categories

In chapter 2 we argued that the goal of the observer is to form object cat-
egories that permit the reliable inference of unobserved properties from ob-
served properties; we claimed that to achieve this goal the observer should
categorize objects according to their natural modes. To accomplish this task,
the observer must be provided with two separate capabilities. First, he must
be able to identify when a set of categories corresponds to a set of natural
clusters. This ability requires that the observer be given criteria with which
to evaluate a particular categorization. The second capability required is
that of being able to make "good guesses." Chapter 3 included a section
on the search strategies used by optimization methods of cluster analysis;
such a search strategy is necessary because of the enormous number of pos-
sible partitionings of a set of objects. Likewise, to discover "the correct set"
of categories, the observer must consider that particular set as a possible
candidate. In this chapter we develop a measure of the extent to which a
categorization allows the observer to make inferences about the properties
of objects. We defer the problem of generating suitable hypotheses until the
following chapter.

We proceed by first considering only the goals of the observer, and de-
riving an evaluation function which measures how well a particular catego-
rization of objects supports these goals. We then describe the behavior of
this measure in both a structured (natural modes) and unstructured world.
Finally, by means of an example drawn from the natural domain of leaves,
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we demonstrate the the ability of the measure to distinguish between natural
and arbitrary categorizations

4.1 Objects, Classes, and Categories

First let us define some necessary terminology. We assume there exists a
fixed set of objects, {01, 02, ... , 0n}; 0 denotes the set of all possible objects.
As mentioned in chapter 1, we will not provide a definition for "object,"
though at the conclusion of the thesis we will consider using the construct of
a category to define criteria for being an object. A categorization, Z, is simply
a partitioning of this set of objects, with each equivalence class defined by the
partition being referred to as a category. Notice, that in this terminology (and
for the remainder of this thesis) categories and categorizations are mental
constructs, hypotheses and conclusions made by the observer. In section 4.3.1
we will develop a formal notation for deriving expressions involving categories
and categorizations. The goal of the observer is to create a categorization of
objects that support the goals of inference established in chapter 2.

When we need to refer to the structure of objects in the world, we will re-
fer to object classes. Thus the principle of natural modes states that objects
in the world are divided into natural classes; these classes are produced by
the natural object processes discussed in section 2.4. Because the discussion
of this chapter will focus on the evaluation of the observer's proposed cate-
gorizations, we will not provide a more extensive definition of classes; for a
more formal discussion about classes see Bobick and Richards [1986].

4.2 Levels of Categorization

We begin our development of a measure of how well a categorization supports
the goals of the observer by considering object taxonomies, such as that
pictured in Figure 4.1. (As is often the case, trees in computers grow upside-
down: the root node THING is at the top; the leaves, e.g. "Fido", at the
bottom.) Each non-terminal node represents a category composed of the
union of the categories below it. The terminal nodes - the "leaves" of
the tree - are categories containing exactly one object. Given a set of
objects, one may create a large number of taxonomies. For the purposes of
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developing a measure of the utility of a categorization we will assume that
some particular taxonomy has been provided.

Notice that the set of categories at any level of the taxonomy constitutes
a partitioning of the set of objects and is thus a legitimate categorization.
Suppose our task is to select the level which best allows the observer to satisfy
his goals of making reliable predictions about unobserved (and observed)
properties.' Let us assume that the observer will make these predictions
based upon the category to which he assigns some object and the properties
of other objects known to be of that category. Therefore, to select the best
level of the taxonomy, we have to consider how the depth of the categorization
affects the ability of the observer to correctly categorize an object and the
ability to make predictions about an object once its category is known.

For the remainder of this chapter, we will be considering only observed
properties, since we assume that those properties are the only ones avail-
able to the observer for evaluation of a categorization. As discussed in sec-
tion 2.4.2 the unobserved properties should behave similarly to the observed
properties. Therefore, we assume that a categorization that provides good
performance in terms of predicting observed properties, and that allows reli-
able categorization based on those properties, will also be good for predicting
unobserved properties.

4.2.1 Minimizing property uncertainty

First, consider moving down the tree from the root towards the leaves, moving
from THING to "Fido" (Figure 4.2). In doing so, the categories become more
specialized: knowledge that an object belongs to the category provides more
information about the object. For example, knowing that some object is
a dog allows the observer to predict many more properties (e.g. has teeth,
has hair, has legs) than if he only knew the object was an animal. At the
extreme depth of categorization, each category contains only one object.
Let us assume the observer knows everything there is to know about each

1We should point out that it is somewhat artificial to require selecting some particular
level. This presupposes that the same level is the best level across the entire taxonomy
tree. A more appropriate task would be to pick the best set of spanning nodes, since
the "best" level in one part of the tree may be lower than that of another part. For the
principles to be developed here, however, considering a fixed level of categorization is
sufficient.

65



* * *

* * 0

* COLLIEH POODLE0 0 0 ~ ~USKY

0 5 6 "Ralph" "FId

* 0 a>Ra P3Sat

* 6 S

* S

* 0 0

* * 0

Figure 4.1: A complete taxonomy of objects. The question to be considered
is what is the appropriate level of categorization given the goals of recognition
It should be noted that number of possible taxonomies is enormous. For exam-
ple, if there are 128 objects, then the number of balanced binary taxonomies is
approximately 1055.
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Figure 4.2: A single path from THING to "Fido" in some proposed taxonomy tree.
As the depth of categorization increases, more predictions about unobserved (and
observed) properties are possible; however, classification of an object becomes more
difficult and less reliable, and the ability to categorize novel objects will degrade.
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instance (e.g. "Fido"). Then, at this finest level of categorization, knowledge
of the category to which an object belongs allows complete prediction of its
observed and unobserved properties.

We can describe the process of increasing the depth of categorization as
minimizing property uncertainty, which we denote as Up(Z). This uncer-
tainty decreases as objects in a category becomes more "similar" to each
other. Thus property uncertainty measures the inhomogeneity of each cate-
gory.and expresses the difficulty the observer has in attaining his goal of being
able to predict properties of an object once its category is known. Later, we
will propose an explicit measure for Up which is claimed to be appropriate
for perception. For now we simply note that Up decreases as we move down
the taxonomy hierarchy.

There is, however, a price to be paid for increased categorization depth
and the reduction of property uncertainty. As categories become smaller and
more refined, the differences between categories becomes smaller, making the
task of categorization more difficult and less reliable. For example, to de-
termine that an object is a Siberian Husky generally requires more property
information than to determine that it is a dog. Furthermore, the categoriza-
tion of novel objects becomes less reliable since different categories are now
more similar to each other; deciding whether some new object is a Husky or
a German Shepherd is more difficult than deciding whether it is a Dog or a
Horse. Thus, increasing the depth of categorization facilitates some goals of
the observer while hindering others.

4.2.2 Minimizing category uncertainty

Now, let us consider climbing the taxonomy tree, with the categorizations
becoming coarser as we move from the finest categories to the root node
THING. Now the categories become more general: knowledge of the category
to which an object belongs provides less information about the properties of
the object as we get closer to the root node. At the extreme, where there
is only the one category THING, knowledge of an object's category permits
almost no predictions about any of its properties. Therefore, decreasing the
depth of categorization decreases the ability of the observer to satisfy his
goal of being able to make important predictions about objects based upon
their categorization.

As to be expected, the sacrifice of the ability to make predictions about
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the properties of objects is accompanied by a compensatory increase in the
ease of categorizing an object. In general, less property information is re-
quired to know that an object is a dog than to know that it is a Siberian
Husky.2 In the case of the depth zero categorization, where the only category
is THING, minimal information is required to make the correct classification. 3

Likewise, the ability to categorize novel objects also improves with decreas-
ing categorization depth since the categories become more encompassing.
Climbing up the taxonomy tree reduces the category uncertainty which we
denote as Uc(Z). As with increasing categorization depth, decreasing depth
facilitates some of the recognition goals of the observer and hinders others.

To further refine our definition of Uc, we need to make the categoriza-
tion process more explicit. Let us assume that the process of categorizing
an object is performed by looking at the current categorization of objects
and finding the category whose objects "match best" - an operation which
we will currently leave undefined - the object in question in their observed
properties. If given a complete description of an object, and if that object
matches only objects in one category, then there is no uncertainty in the
categorization process. However, in perception it is often the case that many
of the potentially observable properties are not provided in an object's de-
scription or that an object matches no object in the current categorization
or that it matches objects in several categories. Therefore let us loosely de-
fine the category uncertainty as the uncertainty of the category of an object
given some of its observed properties. This definition also accounts for ob-

2Note there may exist some unique identifying property which will indicate membership
in some low level category. For example, if one knows that an object has one blue
eye and one brown eye, then there is a high probability that the object is a Siberian
Husky. Thus, for that particular property, identifying an object as a dog is no easier
than identifying it as some particular type of dog. However, two points help eliminate
this concern. First, by definition, any property which helps to categorize an object as
a Siberian Husky also helps to categorize that object as a dog. Therefore determining
an object is a dog can be no more difficult that determining it is a Husky. Second,
if we assume the difficulty of categorization is measured not only by the number of
properties required to categorize an object but also by how restricted those properties
must be, then the existence of some unique identifying feature does not make the Husky
categorization easier. Later in this chapter we define a formal measure of the uncertainty
in categorizing an object that is consistent with this assumption.

3 We say "minimal" information as opposed to none because some information might be
required just to know something is a "Thing." For example, is sand in a sandbox a
thing? This problem cannot be resolved with defining what constitutes an object.
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jects that don't match any previous object since they presumably do match
other objects in some of their properties. In later sections where we derive
a particular evaluation function, we will make more precise the idea of some
observed properties.

4.2.3 Uncertainty of a categorization

In the previous two sections we noted that as a categorization becomes either
finer or coarser, some of the goals of the observer are made more difficult to
achieve while others are made easier. Therefore, if the observer requires some
degree of success in all his goals, then the appropriate level of categorization
must lie somewhere between the two extreme granularities of categorization.
However, the question as to what level is appropriate can not be answered
until the desired relative achievement of the conflicting goals of the observer
is specified.

For example, consider an organism that has both simple perceptual needs
- the properties he needs to extract about objects are few and quite crude
- and a primitive sensory apparatus - the extraction of complicated infor-
mation is quite difficult and time consuming. Such an organism would desire
a set of categories relatively near to the top of an object taxonomy. Choosing
such a set corresponds to sacrificing the ability to make precise predictions
about the properties of objects in exchange for reliable and time effective
categorization. Inversely, an organism with great perceptual demands and
refined sensory mechanisms (e.g. primates) would make the opposite choice:
a set of categories that required encoding more sensory information but af-
forded more precise predictions.

Let us propose a categorization evaluation function that makes explicit
the trade-off between these two conflicting goals of the observer. We assume
we have a candidate categorization - a partitioning of the set of objects
into a set of categories - and that our task is to evaluate how well the
categorization satisfies the goals of the observer. We require an evaluation
function that combines Up and Uc in such a manner as to make explicit
the trade-off between the two uncertainties. Let us introduce the parameter
A to represent that trade-off, and let U(Up, Uc, A) be the total uncertainty
of a categorization, where 0 A 1. We will view U as as measure of
poorness of a categorization; the less total uncertainty a categorization has
the more it is to be preferred. A is to be interpreted as a relative weight
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between being able to infer an object's properties from it's category and
being able to infer an object's category from its properties. When A = 0
only the ability to infer properties is considered; thus the best categorization
is that which is the finest. Likewise when A = 1, only the ability to infer the
category is important; in this case the coarsest categorization is preferred.
The important questions that arise are what are the preferred categorizations
as A takes on intermediate values and how does the setting of A interact
with the actual classes present in the world. We will have to postpone the
discussion of these issues until after we derive suitable measures for Up and
Uc.

4.3 Measuring Uncertainty

4.3.1 Property based representation

The observer does not directly categorize the objects in the world. Rather, he
can only operate on a representation of those objects. We define a represen-
tation to be a mapping from the set of all possible objects, 0, to some finite
set 0*.4 Note that even though we required that each object 9i be a member
of only one category (the categorization is a partition in the mathematical
sense) two distinct objects may have the same description in the representa-
tion used by the observer. The representation of object Oi may be identical
to the representation of object j, but since it is a different object, it is per-
mitted to be in a different category. Of course, if one is proposing that the
categories of some categorization correspond to natural mode classes, then
this situation would either be a violation of the Principle of Natural Modes or
simply a representation insensitive to the differences between classes.5 How-
ever, as a potential categorization it is certainly permissible. Furthermore,
a single category may have many objects with the same description, which
corresponds to the situation where the representation does not discriminate
between two objects assigned to the same category.6

4 The finite restriction is included to agree with the intuition that there is some limit to
information encoded by the observer.

5In chapter 5 we will further consider the competence of a representation.
6A problem with allowing distinct objects to have identical descriptions is that it becomes
impossible to distinguish between the case of two different objects being so similar that
they map to the same point in the representation space and the case of two instances
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For our derivation of the quantities Up and Uc we will utilize a property
based representation. Though commonly referred to as feature space repre-
sentation [Duda and Hart, 1973], we prefer the term property description to
emphasize the fact that these properties are of the objects themselves, not
of an image or some other sensory representation. The term "feature" will
be used, but to refer to a predicate defined on objects and computable from
sensory information. We should note that the form of the representation is
not critical to the qualitative results derived about the evaluation function.
If one prefers some other representational form, for example the volumetric
primitive approach of generalized cylinders, then such a representation may
be used as long as a method for computing Up and Uc is also specified.

The terminology of our property based representation is defined as fol-
lows: the term feature refers to a function or predicate computed about an
object; the term value, to the value taken by a feature; the term property,
to the valued feature. For example, "length" is a feature, "6 ft." is a value,
and "having length 6 ft." is a property. Each feature, fi, 1 < i < m, has
an associated set of values {vil, vi2,..., vi,} referred to as the range of the
feature. We require that the range be a finite set but the cardinality of the
range can vary from one feature to the next. F denotes the set of features
{fl, f2,. .. , fm} Using these features, each object 0 is represented by an m-
dimensional property vector P = (vl,, v 2,, . . ,Vmy) where vij is the jth value
of the range of the i t h feature.

As defined at the start of this section, a categorization is a partitioning of
the population of objects, with each equivalence class defined by the partition
being referred to as a category. The symbol Z will continue to be used to
represent some possible categorization; often, however, the operations being
discussed will only be meaningful with respect to some categorization and
the explicit use of Z will be omitted. In the sections that follow we let c be
the number of categories in a categorization, and let Ci be the ith category.
Also, we need a category function, T which maps an object onto its category
in the current categorization: (0k) is the category to which the the object
Ok belongs. We denote (0Ok) as gbk. The size of a category is expressed by
IlCill or by Ilglk depending on whether referring to the ith category or the
category to which object Ok belongs.

of the same object. For now, we assume that somehow we know that each object is
distinct.
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Finally, when we need to refer to the structure of objects in the world,
we will need to refer to the natural classes present. Recall that a class
is distinguished from a category in that a class represents structure in the
physical world, where as a category is part of a categorization proposed by
the observer. We will use the symbol Qj to represent the jth class.

4.3.2 Information theory and entropy

In our discussion about the ability to make inferences about the properties
of objects, we have been using the term uncertainty without having provided
a suitable definition. If we are to propose a measure of the utility of a
categorization based upon uncertainty of inference, we must have a formal
definition of uncertainty consistent with the representation of objects and
categories.

In information theory, uncertainty is the amount of information which is
unknown about some signal [McEliece, 1977]. It is measured in terms of the
probabilities of the signal being in each of its possible states. For example
if some signal A can be in one of two states, each with probability .5, and
signal B can be in one of 4 states each with probability .25, then there is said
to be more uncertainty about signal B, and signal B is said to convey more
information. Shannon, in his original work on information theory [Shannon
and Weaver, 1949], derived an information measure H based upon the entropy
of a probability distribution:

m

H =-pi logpi (4.1)
i=I

where Pi > 0, and ET oP = 1. One of the elegant results of that work
was the demonstration that any measure of uncertainty must use a p logp
formulation if it is to satisfy several desirable and intuitive constraints about
information and communication. As such, entropy has become the standard
means of measuring uncertainty [McEliece, 1977].

The question we need to consider is whether it is appropriate to consider
the uncertainty in the perceptual process to be similar to uncertainty in the
theory of communication. If so, then entropy is a natural measure in which
to express uncertainty. Perhaps the simplest answer to this question is that
perception is communication. We can view the perceptual process as com-
munication between what is being observed and the observer. The channel
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consists of the sensory apparatus; the coded message, the sensory input. It is
the task of the observer to decode the actual message from sensory input. As
such we claim that the traditional measure of uncertainty in communication
theory is an appropriate measure of perceptual uncertainty.7

Also, the particular form of the uncertainty measure is not critical to
the work described here. In fact, an implementation not reported in this
document made use of a measure based on the probability of making an
errot if the observer made his best guess about an object's category. The
results of that implementation were similar to those achieved with the entropy
measure.

When deriving the uncertainty measures of the next sections it will be
useful to keep in mind three properties of the entropy measure H that are
consistent with one's intuition about measuring uncertainty. First, H =
O if there is only one possible state, i.e. pi = 1 and for all j i, pj =
0. Thus, when only one alternative exists (say, about the category of an
object) the uncertainty measure equals zero. Second, for the case when all
the probabilities are equal, pi = pj for all i and j, H increases as the number
of choices increases. The greater the number of alternatives, the greater the
uncertainty. Finally, for a fixed number of alternatives m, H is a maximum
when all of the probabilities are equal, and that maximum value of H is
log m. Uncertainty is the greatest when one has no reason to prefer one
alternative over another.

4.3.3 Measuring Up

In this section we will derive an entropy measure for the property uncertainty
Up. We proceed by assuming that the observer knows that an object belongs

_ to some particular category Ci. The question we want to answer is how much
uncertainty does he have about the object's properties?

There are two ways to think about the properties of objects. The first
is to consider the property vector as a whole, and the uncertainty of the
properties of an object is the uncertainty of the entire property vector. The
second is to consider each component independently. To decide which way

7 The recent work by Bennett, Hoffman and Prakash [1987] on "observer mechanics"
supports the view of perception as an encoding (and projection) of the state of the
world.
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C,

Figure 4.3: Two categories with their objects and associated property vectors.
If the components of the property vector are considered independently then the
uncertainty of Cb is greater than that of C,; otherwise they are equal.

is appropriate for measuring Up, we must consider the tasks of the observer
for which the property information is useful.

One such task is simply needing to know some particular property. For
example, the fact that something is hard (therefore can be stepped on safely)
or that something moves (therefore should be kept at a safe distance) are
properties the observer might want to know directly. Another task, and one
which may be critical for a reliable perceptual process, is the ability to make
predictions about as yet unobserved but potentially observable properties;
these predictions are necessary for the verification of the identity of an object.
In both of these cases, it is the separate uncertainties of the components of
the property vector that are important. Figure 4.3 illustrates this point. For
the perceptual goals of the observer, knowing that some object is a member
of category C. provides him with more useful information than knowing that
some object is a member of Cb. However, for the uncertainty of the properties
of an object given its category to be greater for Cb than for C., then it must
be the case that we consider the properties independently. If the property
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vectors are considered in their entirety, then the property uncertainties of Ca
and Cb would be equal.

We now construct a measure of property uncertainty considering the un-
certainty of each of the features independently. First, we need to define the
uncertainty of a feature in a category. To reduce the complexity of the nota-
tion, we define H(D) to be the entropy of any finite probability distribution
D:

H (D) = - pi log2 pi (4.2)
i=l

where D = {P,P2,. ,Ps}, Pi > 0, and EC0 Psp = 1. For the remainder of
the thesis the base of the logarithm will be omitted from the expressions; we
will always assume it to be 2.

Now let us define the distribution of a feature fi in some category Ca.
Let Pa be the fraction of objects in Ca whose value for feature fi that is
equal to the jth value in the range of fi.8 Then the dist(fi) in Ca is the set

{PilaPi2, . . . Pi,} where V is the number of values in the range of fi. Using
this distribution we define the uncertainty of feature fi in category Ca to be
H(dist(fi) in Ca).

Having defined the uncertainty of a feature in a category we can define our
property uncertainty of the category as the sum of the feature uncertainties:

UP-of-c(Ca) = E H (dist(fi) in Ca) (4.3)
fiEF

The above equation provides a measure to answer the question of how much
uncertainty about an object's properties remains once that object's category
is known. To compute Up(Z) we must extend that measure to provide an
evaluation of the property uncertainty over the entire categorization. Let n
be the total number of objects, n = E ICII. Recalling that T(Oi) represents
the category to which object i belongs, we define Up as the average of
UP-of-c as summed over all the objects in the categorization Z:

1
Up(Z) =- E Up-Of-c('(6Oi)) (4.4)

n Oi in Z

'We do not have to exclude the case where p = 0 because, by L'Hospital's rule,
lim0 oplogp = 0.
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Since Up-of-C is only a function of T(Oi) and not of Oi itself, we can sum over
the categories instead of the objects, weighting each category according to
its size:

Up(z) -c CillUP-of-c(Ci) (4.5)
CiEZ

This second form is computationally less intensive and is the form used in the
implementations discussed later in this chapter. We postpone discussion of
how Up behaves in ideal, noise, and real conditions until after we derive Uc
and can apply a total uncertainty function to both artificial and real data.
Later, we shall also discuss how Up compares with some of the distance
metrics discussed in chapter 3.

4.3.4 Measuring U

Having proposed a measure for Up we must now provide a measure for Uc, the
category uncertainty. In section 4.2.3, we stated that Uc was the uncertainty
of the categorization of an object given some of the object's properties; we
must now make that loose description precise.

To begin, let us assume that "some" of the observed properties means
exactly what it says: we are given only some of the components of the prop-
erty vector describing some object. This situation would arise if some of
the (potentially) observable properties could not be recovered in the current
sensing situation. Consider the uncertainty of categorization if we are given
this incomplete description of the object and our task is to decide to which
category that object belongs. To determine the correct category, the observer
would check each category in turn, noticing whether there are objects whose
property vector matches the components that are provided for the object in
question. If only one category contains any objects that match, then there
is no uncertainty of categorization. If, however, there is more than one cat-
egory, we need some way of measuring the uncertainty as to which category
the object belongs.9

9We do not need to consider the case of an object not matching any of the objects in the
categories. The uncertainty measure is designed for the evaluation of a categorization
in which all objects of the population have been categorized. Thus every object is
guaranteed to match at least one object, namely itself.
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We will design a measure of category uncertainty by assuming that the
percentage of matches that a partial description of an object makes to a
category is representative of the probability that the object actually belongs
to that category. For example, suppose a given partial description of object
Ok, matches 4 objects in category Ca, 12 objects in category Cb, and no objects
in any remaining category. Then we say the probability that Ok belongs in
Ca is .25, and in Cb is .75. This suggests that we' measure the uncertainty of
categorization for an object with the entropy function H.

Let F' be some subset of the set of features F. We define MATCH(Ok, Ca, F')
to be the number of objects in category Ca whose property vectors match
that of Ok in the components contained in F'. As such we define the match
probability pM(Ok, Ca, F') of Ok in Ca on F':

P (Ok, Ca ) = MATCH(Ok, Ca,) (4.6)F)
) C MATCH(Gk, C, F')

where the denominator is simply the sum of the matches over all the cat-
egories. Given the match probabilities, we define the match distribution
of (k, F') to be the set of probabilities PM(Ok, C 1,F'), PM(Ok, C 2, F'),...,
PM(Ok, Cc, F')}. Finally, we can define the category uncertainty for a given
object with a given feature subset description:

Uc of-o(Oi, F') = H(match distributionof (0i, F')) (4.7)

If an object Oi matches only objects in one category in the features of F' then
the uncertainty Uc -of- will be zero.

Having defined the category uncertainty for one object over one subset of
the features, we can compute the category uncertainty Uc for a categorization
Z by averaging over all objects and over all possible subsets of F. However,
to compute such an average we must take into account the probability of
having a particular feature subset F' available for a particular object Oi. For
a given object one set of properties may be highly salient and thus likely to
be viewed, while for another object a different set of objects may be more
likely available. Thus, we define the quantity ps(F', 0) to be the salience
probability, where ps(F', O) > 0, i EF ps(F', 9i) = 1. This probability is
intended to reflect the likelihood of having some particular subset of features
(and only that subset) available for a given object. Let p(F) be the power
set of F - the set of all subsets of F. Then, using the salience probability as
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the appropriate weight for averaging the individual category uncertainties,
we get the following expression for Uc(Z):

1
Uc(Z) = - >E E ps(F', Oi) H(match distribution of (i, F')) (4.8)

1 Oi in Z F'Ep(F)

A special case of the above equation occurs if one assumes that the salience
probability is equal for all feature subsets and for all objects. In this case,
since the cardinality of p(F)equals 2 1Fil, Uc(Z) reduces to:

1 1
Uc(Z) 2 IFI Z H(match distribution of (i, F')) (4.9)

n 21FIl in Z F'Ep(F)

The above equation is used in the implementation discussed later in this
chapter and in subsequent chapters. This special case was employed instead
of the more general formulation because without a model of the sensing
apparatus we have no basis for assigning the salience probabilities.

As a final comment about the computation of Uc, we note that the size
of the power set p(F) grows exponentially as the size of F increases. As IIFI
becomes only moderately large (only 15 or so), 2 11Fll becomes computation-
ally unmanageable, since each of the subsets would be evaluated for each
object. To alleviate this problem, an algorithm was implemented in which
not all possible subsets of F are considered for each object. Rather, for each
different object k, a different set of subsets of features is randomly chosen
for the computation. The number of feature subsets used per object can be
varied, trading speed for accuracy. In the examples shown in this proposal,
the sampling method was used exclusively. A comparison made between the
sampling method and the exhaustive method yielded no significant differ-
ences.

We should note that the strategy of sampling the feature subsets is only
valid when most features are constrained by the natural classes. Otherwise,
there is a high probability that the sampled subsets will contain no useful
information about the category to which an object belongs; the computation
of Uc will produce erroneous results. If we require that such a sampling
strategy be available to the observer, then we have placed an additional
requirement on the representation: the representation must not contain too
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many unconstrained features. Without such a representation, the sampling
strategy observer cannot recover the natural modes.

At the end of the next section, after defining the total uncertainty of a
categorization, we will analyze the behavior of Uc and compare its properties
to the distance metrics criticized in chapter 3.

4.4 Total Uncertainty of a Categorization

Having proposed measures for both Up and Uc, we must now introduce the
parameter A - the relative weight of the two uncertainties - and construct
a measure for the total uncertainty U(Up, Uc, A). We proceed by examin-
ing how the two measures Up and Uc behave under both ideal and pure
noise conditions. By combining those results with some necessary or desir-
able properties that the uncertainty measure should exhibit, we restrict how
U(Up, Uc, A) may be constructed. We then show that a simple weighted sum
satisfies these constraints.

4.4.1 Ideal categories
Our first consideration is how Up and Uc behave in an ideal world where
there are purely modal classes and features. By purely modal we mean
that for each class, each feature takes on a distinct value. l ° Therefore, the

0If the current definition of a modal world appears awkward, it is because we have
just confronted Watanabe's Ugly Duckling Theorem. Notice that we cannot define a
purely modal world without making reference to the features. Given the discussion
of natural modes in chapter 2 one would like to be able to say that some world is
modal, independent of the features used to describe it. Unfortunately, as demonstrated
by Watanabe, this is impossible without restricting the properties of the objects that
may be used to describe the objects. For example, suppose we arbitrarily partition the
world into two groups, Ca and Cb. Then, let us define a set of features F such that
for every fi E F, the objects in category Ca take on the value 1, and every object in
category Cb takes the value 0. (A trivial example of such a feature is "1 if Oi E C,,
O otherwise.) Then, as described by this set of features, the world would be purely
modal. The only method by which we can say there exist classes in the world is by
restricting the properties of consideration to be those that are of importance in the
natural environment. We will return to this point later when considering how the A

evaluation function proposed in this section - an evaluation function derived from the
goals of the observer - relates to the structure of the natural world.
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Figure 4.4: An ideal taxonomy. The hierarchy preserves the class structure
exactly. At level 2, the categories of the taxonomy correspond to the classes Q in
the world.
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features are completely predictive: knowledge of one feature is sufficient to
correctly identify the class allowing the prediction of all other features. One
possible taxonomy of such a world is shown in Figure 4.4. In this case there
are four classes of objects in the world: Qa, fQb, Q, Qd. The taxonomy
is constructed such that at level 2, the categorization formed by the four
categories corresponds exactly to the 4 classes in the world. At that level, all
objects in a category have the same property vector, and across categories
each feature takes on a different value. Because the features, fi, used to
represent the objects are purely modal there are 4 values for each feature,
one value corresponding to each class.

The graphs of Figure 4.5 are the results of evaluating Up and Uc for
each of the different categorizations corresponding to a different level in the
taxonomy. In these and subsequent graphs, the abscissa indicates the depth
in the taxonomy. A depth of zero corresponds to the root node, where the
categorization contains only one category, THING. The depth of d (where d is
the deepest level of the taxonomy and d = log n) corresponds to the case when
each object is its own category. Notice that Up decreases (linearly) from the
root node to level 2. At the root node, all the objects are in one category, and
each feature can take on one of four values; therefore Up = m log 4 = 2m,
where m is the number of features. At level 1, there are only 2 possible
values for each feature in each category; thus Up = m log 2 = m. Finally, at
level 2, each feature is fixed to some value (in this perfectly modal situation)
and there is no uncertainty about an objects properties once its category is
known. Therefore, at level 2 and all subsequent levels Up = 0.

The behavior of Uc may be viewed as the inverse of Up. Uc measures the /
difficulty in identifying an object's category given some of its properties. In am
perfectly modal world however, if no two categories contain objects belonging
to the same real class, then knowledge of any property of an object is sufficient
information to recover the category. This can be seen at levels 0, 1, and 2 in
the graph of Uc. At level 0 all objects are in one category and therefore there
is no uncertainty as to an objects category. At level 1, the two categories do
not contain any elements of a common class: Q, and fib are in one category;
QF and Qd, another. Thus knowledge of any property of an object is still
sufficient to recover its category. Similarly for level 2, each class is in its
own category and there is still no uncertainty about the category. It is only
when level 3 is reached, where the classes are split among two categories,
that any uncertainty arises. As the members of each class are divided among
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more and more categories, UC continues to increase (linearly). At the finest
categorization, at depth d, each object matches an object in n/4 categories.
Thus the maximum value for Uc is log(n/4) = (d- 2).

Before proceeding to the next section, we should note that by defining the
"ideal" category case we have implicitly defined natural classes to be those
that are highly redundant and non-overlapping in the space of "important"
properties. We will return to this point when we consider how the evalua-
tion'function derived in this section relates to the structure of the natural

a-;?~; world. For now, we note that the discovery of categories that behave similarly
to these ideal categories would permit the observer to accomplish his goals
of inference. The set of categories corresponding to level two in the ideal
taxonomy supports the reliable categorization of objects as well as strong
inferences about the properties of an object once its category is known. The
measure we construct of the total uncertainty of a categorization should be
sensitive to categories of this form.

4.4.2 Random categories

We refer to a set of categories in which the features are completely inde-
pendent of the categories as a random categorization. A simple way to con-
sider random categorizations is to construct a random taxonomy, where the
grouping of objects into a hierarchy is achieved arbitrarily (Figure 4.6). If
we evaluate Up and Uc at the different levels of this taxonomy, we would
get the graphs of Figure 4.7. Up remains constant until the number of cat-
egories becomes large and the each category no longer contains a statistical
sample of the different classes of objects in the world. Similarly, Uc increases
monotonically, though the rate decreases as the sampling is spread too thin.
These graphs were derived experimentally through simulations.

The reason it is important to consider the random taxonomy is that such
a set of categorizations represents no structure in the data. The categoriza-
tion is useless for making any predictions. Recall that one of major criticisms
of the standard cluster analysis paradigm is the inability to determine the
cluster validity. Even if there are no clusters present in the data, the clus-
ter analysis programs are obligated to "discover" categories. By requiring
that our uncertainty measure have a certain pathological behavior in the
case where there is no structure in the data, we will provide a mechanism by
which we can determine when discovered categories are indeed valid. Note
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the particular form of random categorizations used here is only one (rather
restrictive) model of the absence of structure. In chapter 6 we will con-
sider an alternative form in which the observer has attempted-to form the
best taxonomy possible in a world which has uniformly and independently
distributed features.

4.4.3 Defining U(Up, U, A)

To construct the uncertainty function U, we will first present several con-
straints that U must satisfy. Then, we will propose a simple measure con-
sistent with these constraints. All of the constraints are expressed in terms
of evaluating the levels of a taxonomy; the term "preferred categorization"
refers to the set of categories selected when the taxonomy level that yields
the lowest value of U is chosen." Two of the constraints will be based upon
the behavior of Up and Uc as described in the previous section.

The first two constraints describe the behavior of U at the extreme values
of A:

1. When A = 0, the preferred categorization should be the finest, with each
object in its own category. This should be true for all possible tax-
onomies.

2. When A = 1, the preferred categorization should be the coarsest, with
all objects in one category. Again, this should be true for all possible
taxonomies.

Another way of expressing the first constraint is that when A = 0, the measure
U should have no U terms, and the preferred categorization would be that
which minimizes Up. The second constraint would correspond to U being
independent of Up when A = 1. These constraints also combine to give A
the intuitive meaning of being a relative weight between the two component
uncertainties.

The next constraint expresses the desired behavior of U under the purely
modal conditions:

"If there exists more than one level of the taxonomy with the same minimum value of
U, then by "preferred" level we mean that the level be one of those with the minimum
value.
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3. In the purely modal taxonomy, the preferred categorization for 0 < A < 1
should be that which corresponds to a separate category for each class
of objects in the world.

For example, in the taxonomy of Figure 4.4, the preferred categorization
should be level 2, where each fQi is in its own category. This constraint states
that level 2 should be preferred for all A not at the extremes. If both Up and
Uc have a non-zero contribution to U, then, in an ideally modal world, the
best categorization is that which selects the modal classes.

re also wish to constrain the behavior of U in the random condition of
the taxonomy of Figure 4.6. Intuitively, we desire that the behavior of U in
the random condition be predictable so that we can determine when we are
evaluating a non-structured set of categories. We will impose this restriction
in the following way:

4. In the random taxonomy (which contains no useful categories), the pre-
ferred categorization should be either the finest or the coarsest, de-
pending on A.

That is, for each A, the value of U should be a minimum at one of the extreme
levels of categorization. Unfortunately, this constraint can not be fully dis-
cussed until we present the concept of lambda-space in the next section. At
that time, we will provide the intuition behind this constraint. For now we
only state that a random taxonomy contains no useful intermediate structure
and thus no intermediate level should be preferred.

Finally we include an constraint which allows us to compare one catego-
rization to the next in a meaningful manner and which allows us to interpret
A as a relative weight between Up and Uc:

5. U should be normalized with respect to the number of objects contained
in the categorization.

If we were strictly adhering to the definitions provided at the beginning of
this chapter we would not need to be concerned with normalization: every
categorization is a partitioning of a fixed population. However, in the next
chapter we will utilize the measure developed here in a dynamic, incremental
categorization method. Thus we need to be able to normalize for the number
objects contained in a categorization. Also, to interpret A as the relative
weight between Up and Uc we must make their scales commensurate.

88



Combined, these constraints restrict the functional form of U; we shall
propose a simple measure for U which satisfies these five constraints. Af-
terwards, we will compare this measure with some of the category metrics
discussed in chapter 3.

We first need to introduce a normalization coefficient which will make
the measure independent of the number of objects in a categorization. Note
that given "enough" objects per category, Up is independent of the number
of objects in a categorization, since it depends only on the entropy of the
properties. Uc, however, may depend critically on the number of objects:
given more more objects we can create more categories and make the num-
ber of possible category matches of an object be arbitrarily large. Therefore
we need to scale Uc appropriately for the number of objects. Also, though
by design both Up and Uc are unitless (or sometimes said to be in units of
information referred to as bits), they are not of the same range. The maxi-
mum value for Up is unrelated to the maximum value for Uc. Therefore to
make them commensurate we will scale the normalized Uc by the maximum
Up.

We compute the normalization coefficient as follows: Suppose we are given
some categorization Z to evaluate. Let us construct two new categorizations
from Z. Define Coarsest(Z) to be the categorization formed by placing all
the objects of Z in one category. Analogously, define Finest(Z) to be the
categorization formed by placing all the objects in Z into separate categories.
We define a normalization factor 7(Z):

l(Z) = Up( Coarsest(Z)) (4.10)
Uc(Finest(Z))

By dividing by Uc(Finest(Z)) we compensate for the number of objects;
the numerator makes the scale the same as that of Up.

Finally, we can propose our measure for the total uncertainty of a cate-
gorization:

U(Z) = (1 - A) Up(Z) + A 7(Z) Uc(Z) (4.11)

The total uncertainty of a categorization is simply the weighted sum of Up
and Uc, where Uc has been scaled to be of the same range as Up; the
parameter A controls the relative weights.
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It is easily shown that equation 4.11 satisfies the behavioral constraints
1-4. Constraint 1 holds because when A = 0, U(Z) = Up, and Up is at
a minimum (in fact zero) at the finest categorization where each object is
in its own category. Constraint 2 follows analogously. Constraint 3 is also
satisfied: if 0 < A < 1, then U is at a minimum (zero) when both Up and
Uc are zero. As shown in Figure 4.5, this occurs only at the desired natural
class categorization. In fact, since zero is the absolute minimum for U, in
an ideally modal world, the categorization which corresponds to the natural
classes is the best possible categorization, not simply the best level in some
taxonomy.

Constraint 4 holds because of the concavity of both Up and Uc in the
random condition. Because the linear sum of two concave functions is also
concave (Luenburger, 1986), U is guaranteed concave for the random case.
Therefore, for all A, the minimum of U is at one of the extreme levels of the
taxonomy.

Of course, one could construct a more complicated measure; given that
the proposed measure satisfies the imposed constraints and that it is similar
to standard functionals for combining constraints, there is no apparent reason
to do so. In the next section we will compare the properties of U(Z) with
some of the distance metrics discussed in chapter 3.

4.4.4 Uncertainty as a metric

Having provided a formal definition for the uncertainty of a categorization,
we can now compare this function to the'distance metrics discussed in chapter
3. Specifically, we should address the criticisms raised concerning the use of
distance metrics to define object categories.

First, notice that although we do not explicitly define the distance be-
tween two objects, the property uncertainty functions do provide an implicit
measure for comparing two objects. In particular, the entropy function im-
poses a Hamming-like distance between objects since the entropy measures
are sensitive to the exact matches between feature values. As mentioned in
chapter 3 such measures are sensitive to the resolution of the features. For ex-
ample, if a feature is continuously valued (e.g. "length") and is histogrammed
into fine-grained buckets, then all objects will take on a different value. In
this case the feature will be able to convey no information about classes in the
data. Thus, using these entropy measures requires that some of the features
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of the representation be suitably chosen to convey the distinctions between
different classes of objects.

For two reasons, the above restriction does not significantly reduce the
utility of the categorization evaluation function. First, it is necessarily true
that the observer must encode relevant sensory information if he is to dis-
cover natural classes of objects. If the only properties of objects used for
categorization were those completely independent of the "type" of object,
then no interesting properties could be predicted from those observations. If
we invoke the power of evolution in the design of the observer, then we expect
that the observer would be provided with a set of features sufficient to deter-
mine the true class of the object and thereby granting him the ability to form
an appropriate set of categories. In chapter 6 we will demonstrate how the
observer could use an initial set of useful features to evaluate the predictive
power of a new feature. But, a sufficient initial set must be provided.

Second, the nature of the entropy measures is that not all of the features
need be constrained. Unlike standard distance metrics where long inter-
object distances in a few dimensions can mask clustering in other dimensions,
entropy measures are statistical in nature and and can detect structure in
separate dimensions. Up was designed to treat the features independently
and Uc considers object matches along different subsets of features. We can
demonstrate this behavior by reconsidering the ideal taxonomy of Figure 4.4.
Let us assume we have the same taxonomy of objects and the same modal
features. However, this time we shall include several noise features - fea-
tures whose values are independent of the object class. Figure 4.8 displays
the results of evaluating Up and Uc for the different levels of a four class tax-
onomy. Notice that both uncertainties are no longer zero at the modal level;
the increase in uncertainty is caused by the noise features. However, there
is still a significant change in the behavior of both Up and Uc at level two.
As the the number of noise features is increased the change in the slope of
the curves diminishes; when there are many more noise features than modal
features the graphs approach those the random taxonomy in Figure 4.7.

The ability to still detect structure in the presence of unconstrained fea-
tures also allows the entropy measure to be used when different features are
constrained for different classes of objects. Therefore, there is no require-
ment of using only features constrained in all classes. Metrics based on the
within-class and between-class scatter matrices are unreliable in the presence
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of unconstrained dimensions. Furthermore, the need to modify the distance
metric as one moves from one region of feature space to another becomes
less pressing since the measure can respond to one set of properties for one
class, and another for a different class. Thus using entropy functions elim-
inates several of the difficulties associated with using distance metrics for
categorization.

We should note that the total uncertainty evaluation function derived in
this section is analogous to the modified measure of collocation discussed in
chapter 3. Had we combined the measures Up and Uc via an exponentiated
product (U(1-) U') we would have produced a measure directly related to
the extended collocation function: 12

KIi, = P(CjIfi)x · P(f ICj) ( l- X )

Thus, we have incorporated the lesson of basic level categories in our measure
of uncertainty: a measure designed to evaluate basic categories must consider
both the cue validity of the features and the internal similarity of categories.

Finally, we note that the category evaluation function derived in the
previous section explicitly measures how well the observer can accomplish
his goals of inference. Recall that one of the criticisms of the cluster analysis
paradigm was that it made no sense to consider the utility of the recovered
classes. By definition the classes recovered were those which minimized the
particular evaluation function. Whether these categories were appropriate
for some task depended on how well the requirements of the task mapped
onto the clustering criteria used. In our case, we have constructed a criteria
that directly measures the utility of a categorization for the task of making
inferences about objects. If one believes that the goal of object recognition is
to make inferences about objects, then the set of categories selected by the
categorization criteria U(Z) is appropriate for recognition.

4.5 Natural Categories

The evaluation of a categorization proposed in the previous section is based
upon the goals of the observer; a categorization which has a "low" measure

12Since both Up and Uc can be zero, this particular expression would be ill-defined unless
other parameters or constants are added.
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of uncertainty U should permit the observer to perform his necessary infer-
ence tasks successfully. Furthermore we have constructed the measure such
that in an suitably defined ideal world, the measure prefers a modal cate-
gorization over any other. However, we have yet to mention the world of
objects which the observer is going to categorize. In section 2 we introduced
the Principle of Natural Modes as the basis for the categorization process.
The claim was made that the reason it is plausible that the observer could
predict unobserved properties from observed properties was that there were
constraints acting in the world which caused redundancies between observed
and unobserved properties to be present. How do we incorporate the idea of
natural classes into our evaluation of categorizations?

4.5.1 Natural classes and natural properties

The first question to be considered is how does the proposed evaluation
function behave if the categorization being measured does reflect the natural
modes present in the world. Recall that U was constructed such that in an
ideally modal world, the categorization corresponding to the natural classes
would be the preferred. In the modal world, each feature was completely
diagnostic. Whether the proposed evaluation function will be able to capture
the structure present in the natural world will depend upon the diagnosticity
of the chosen representation. That is, the representation must be chosen such
that the constraints imposed by the natural object processes are reflected in
the properties measured.

An example will help to illustrate this point. Consider the case where we
have some class of objects where the aspect ratio (ratio between the length
and the width) is fixed by the process which generates that class. Suppose
that both "length" and "width" are features measured about the object, but
that aspect ratio was not. Our measure of total uncertainty would not be
sensitive to this constraint being present in the class. If, however, aspect
ratio was a feature, then this constraint would be reflected in the measure
of both property and category uncertainty; categorizing that particular class
of objects separately would reduce the uncertainty measure. Thus we rely
on the choice of features (which define those properties which are observed)
being appropriate for measuring the constraint that is found within classes.

Note, that we although require that the representation be sufficiently
restricted so that the differences between classes are made explicit, we do
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not require that irrelevant information be prohibited from the representation.
Recall the graphs of figure Figure 4.8. These results demonstrate that the
uncertainty measure can still detect the ideal modal structure even when a
significant portion of the property description is generated randomly. When
we test the evaluation function on real data in the next section, we will
discover that real property descriptions behave in a manner similar to those
produced with modal and noise features.

4.5.2 Lambda stability of natural categories

One might consider a sufficiently low measure of total uncertainty U to be
simple indicator of a correct natural mode categorization. Unfortunately,
this requires having some absolute metric of uncertainty for categorizations.
For example, consider again the taxonomy of Figure 4.1, and recall that we
are considering the categorizations which correspond to the different levels
in the tree. Let us assume that for some A = A0 the third level yielded the
least total uncertainty U. How can we know whether this level reflects modal
structure in the objects of the taxonomy, or if this is simply some arbitrary
categorization which just happens to evaluate to the lowest uncertainty for
the given A? This question is analogous to the question of cluster validity
raised in chapter 3.

Let us assume that we have been given a taxonomy such as Figure 4.1
and that for some discretized range of A, 0 < A < 1, we have selected the
categorization corresponding to the level in the taxonomy which minimizes
the total uncertainty. We can plot the results of this procedure in a lambda
space diagram as illustrated in Figure 4.9. Notice that for A = 0 the best
categorization is that which places all the the objects in their own category.
Likewise, A = 1 selects the top level, where the only category is THING.

The question we must consider is how does the selected level change as A
varies? By design, we know that in the ideally modal case the categorization
corresponding to the modal classes will be preferred for all A, 0 < A < 1.
But what about "real" natural classes?

In Figure 4.9 the hypothetical behavior is that over some (wide) range of
A, the preferred categorization remains the same. We refer to this behavior
as A-stability. The occurrence of A-stability indicates that the categories se-
lected for that range of A are robust with respect to deviations in the relative
weight between property uncertainty and category uncertainty. Therefore,
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they represent an actual structuring of the objects, not an arbitrary min-
imization of the uncertainty function. If the categorization was just the
arbitrary minimum, we would expect that the preferred level would change
as variations in A drive the minimum solution toward either of the two ex-
tremes. In chapter 6 we will consider the question of A-stability in greater
detail and will consider how one can use the measure of stability as a tool to
accomplish other important tasks related to the categorization process, e.g.
evaluating the utility of a new feature.

Another possible behavior as A varies is illustrated in Figure 4.10. In this
case, the only stable points are the two extreme categorizations. Recall that
the fifth constraint on the construction of the total uncertainty function U
was that if there was no internal internal structure of a taxonomy, then the
categorization which should be preferred should be one of the two extremes.
The intuition behind this constraint is the following: Consider a taxonomy
which is created randomly. Therefore in terms of the uncertainties measured,
each level of aggregation represents the same trade-off between category ho-
mogeneity and category overlap, between property uncertainty and category
uncertainty. Now let us describe A as a pressure to move up the taxonomy.
The larger A gets, the easier it is to trade the gain in property uncertainty
for the reduction in category uncertainty which occurs when categories are
merged. When A starts at 0, the preferred categorization is the finest par-
tition, with each object in its own category. As we initially increase A the
preferred level of categorization does not change because there is insufficient
pressure to overcome the increase in property uncertainty which occurs by
randomly combining objects. Eventually, however, A is great enough that
the first level of merging takes place. But, as stated, in a random taxon-
omy each level of merging is the same amount of trade-off between property
uncertainty and category uncertainty. Therefore once A is great enough to
prefer level d- 1 over level d, it is great enough to prefer level d - 2 over
d- 1, continuing until level 0 is reached. Therefore, at some critical A the
preferred level of categorization moves immediately from the lowest level to
the highest level.

As mentioned earlier, the noise taxonomy is only one possible null hy-
pothesis about the absence of structure in a set of categories. In chapter 6
we will again return to the question of category validity, and compare the
results of ideal (purely modal) worlds, real worlds, and a different case of a
noise world. At this point we have a certain degree of confidence that the
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total uncertainty evaluation function will be useful for measuring how well a
categorization reflects the natural mode classes. Let us now test the function
on some real data taken from the domain of leaves.

4.6 Testing the measure

To test the behavior of the uncertainty measure U of equation 4.11 we need
a sample domain of objects which satisfies the criteria of having well defined
natural classes. Of course, this criterion implies a previously agreed upon
method of categorization which produces natural categories. Therefore we
must make the a priori assumption that the science which studies the domain
establishes a baseline to which we compare our evaluation. The validity of
this assumption depends upon how well the science understands the processes
which determine the structure of the objects in the domain.

4.6.1 Properties of leaves

The sample domain used is that of leaves. The categorization of trees ac-
cording to their leaves is a well developed discipline, and there exist agreed
upon categories. The source of the leaf data is Preston's North American
Trees [Preston, 1976].

In order to apply the uncertainty measure to our domain, we must create
a property based description of the leaves. But which properties should be
used? Are arbitrary features permissible, or should our choices be somehow
restricted? To proceed we must delineate some criteria by which to choose
our feature set.

The first restriction we will impose is (well-defined) computability. By
this restriction we mean that if some property is going to be included in
the representation for leaves, then one must be able to provide a plausible
method for computing this property directly from the the physical structure
of the leaf. The reason that this restriction is important is that otherwise the
property "oak-ness" - how much the leaf looks like an oak leaf - would be
an acceptable property. If such features are permitted, then categorization
reduces to providing such features which are characteristic functions for each
category. As Fodor has commented: "if being-my-grandmother is a legiti-
mate feature then it's pretty clear how to do object recognition." [Personal
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communication.] In our leaf example we will further restrict our properties
by requiring them to be computable from information recoverable from an
image of the leaf, precluding features such as stickiness or scent. Our reason
for doing so is simply that visual categorization is of primary interest.

We note here that in the following examples, we did not actually provide
the system with a sensory input (e.g. images). Rather, after deciding which
features were to be used, property vectors were given directly. The motivation
for eliminating the property computation step is that we are not interested
in how well we can provide algorithms capable of measuring the properties.
Our interest lies in seeing how well these properties can be used to measure
structure in categories.

Having restricted our properties to being well-defined computations, we
still have to choose which of these properties should be used. For our first
examples we will use the features normally used by tree entymologists to
classify leaves. By using this set we are guaranteed to have a set of fea-
tures which contain sufficient information to distinguish between the classes
of leaves. Of course, these features tend to be highly diagnostic as they are
used by botanists for the express purpose of classification; however, some of
the features overlap the species considerably (e.g. "length") . Also, we will
consider the case of adding some noise features to the descriptions: features
whose values are independent of the type of leaf. Those results will demon-
strate a graceful degradation in the ability of the uncertainty measure to
detect the correct categories.

Table 4.1 is a list of features used to describe the leaves, the values in
the range of each feature, and a brief description of how they would be
computed from an image. One of the features normally used by botanists to
describe leaf categories is "shape," where several distinct shapes types are
used as primitives. Since this feature bordered on not being a well defined
computation, it was replaced with the three features of width, length, and
flare, where flare is the direction and degree of tapering of the leaf.

Using these features, we can describe several leaf-specifications. A speci-
fication is a set of values for each feature which would be consistent with the
description of a leaf species found in Preston [1976]. Table 4.2 provides the
set of specifications used for the examples used here. Several points should
be made about the features. First, there are features which are not highly
constrained by the specifications and which have high inter-category overlap,
e.g. length and width. Second, the specifications are disjoint; no leaf could be
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Feature Values Method of Computation
Length {1,2,3,...,8,9} Measure directly
Width {1,2,3,...,6,7} Measure directly
Flare {-2,-1,0,1,2} Fit best ovoid
Lobes {1,2,3,...,8,9} Filter and count
Margin {Entire, Crenate, Serrate Fractal dimension of edge

Doubly Serrate}
Apex {Rounded, Acute, Accuminate} Curvature of tip
Base {Rounded, Cumeate, Truncate} Curvature of base
Color {Light, Dark, Yellow} Measure green component of color

Table 4.1: Leaf features and values.

constructed which satisfies more than one specification. Finally, there is no
small subset of features (less than 4) which would be sufficient to distinguish
between the species.

A "leaf generator" has been constructed which takes as input a leaf spec-
ification and produces a property vector consistent with the specification.
These property vectors are the "objects" used for all of the experiments.

4.6.2 Evaluation of taxonomies

To begin our testing of the behavior of the uncertainty measure U, let us
consider the task of evaluating levels of a taxonomy. Although this presup-
poses being provided a taxonomy to evaluate, we will be able to check that
the measure U behaves as predicted. We will be able to compare the situa-
tion in which there is structure in the taxonomy to that when a taxonomy is
created randomly. Later, we will address the problem of discovering natural
categories in an object population.

Figure 4.11 is an example taxonomy. At the bottom of the taxonomy
are the leaves; in this case there are the four types of Oak, Maple, Poplar
and Birch. These single object categories are combined to form the next
level of categories, continuing on until all the leaves are in one category. The
letters written in each node indicate the types of leaves contained in that
node. The bottom nodes (the leaves of the tree, if you will) represent single
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Figure 4.11: A jumbled taxonomy of Oak, Maple, Poplar, and Birch leaves.
Leaves are randomly combined to form higher category.
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Figure 4.12: An ordered taxonomy of Oak, Maple, Poplar, and Birch leaves.
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Length Width Flare Lobes Margin Apex Base Color
Maple {3,4,5,6} {3,4,5} 0 5 Entire Acute Tr-uncate Light
Poplar {1,2,3} {1,2} {0,1} 1 Crenate, Acute Rounded Yellow

Serrate
Oak {5,6,7,8,9} {2,3,4,5} 0 7,9 Entire Rounded Cumeate Light
Birch {2,3,4,5} {1,2,3} 0 19 Doubly-Serrate Acute Rounded Dark
Cottonwood {3,4,5,6} {2,3,4,5} 2 1 Crenate Acuminate Truncate {Light,Dark,

Yellow}
Elm {4,5,6} {2,3} {0,-1} 1 Doubly Accuminate Rounded Dark

Serrate

Table 4.2: Leaf specifications for several species of leaves. A leaf generator was
designed which created property vectors consistent with the different specifications.

instances of leaves. Figure 4.11 is a random taxonomy, where the leaves were
arbitrarily combined to form higher categories. There is a total of 9 levels
(0-8) indicating 256 leaves, 64 of each type. For comparison, Figure 4.12
is an ordered taxonomy of the same leaves in which the nodes have been
constructed so as to preserve the natural classes of the species. The first
question we will consider is how the two components Up and Uc of the
total uncertainty measure behave as we evaluate different levels of these two
taxonomies.

4.6.3 Components of uncertainty

In the graph of Figure 4.13 the quantities of Up and normalized Uc are
plotted as a function of depth in the taxonomy. A depth of zero corresponds
to the top level of the taxonomy with only one category; a depth of 8 (because
there were 256 leaves in this example) is the finest categorization. Both curves
are monotonic in depth as predicted when the quantities were derived. Notice
that both curves vary smoothly, indicating no special level in the taxonomy.
Because the taxonomy was created by randomly combining leaves, no level
contains any more structure than any other level.

Now let us consider the taxonomy in Figure 4.12. In this case the taxon-
omy segregates the different types of leaves at level 2, with the finer divisions
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Figure 4.13: The evaluation curves for the jumbled taxonomy. Plotted are Up
and the normalized Uc as a function depth. The normalization factor causes the
scales of the two graphs to be the same. Both curves change smoothly, indicating
no special level within the taxonomy.

below that level being made randomly. The evaluation curves for this taxon-
omy are plotted in Figure 4.14. Now the curves no longer vary smoothly, but
have a distinct break at the second level where the different types of leaves
are segregated into different categories. Let us trace each of the curves. As
predicted, the property uncertainty starts at a maximum at level 0. Splitting
into two categories, each containing two types of leaves, significantly reduces
the property uncertainty since knowing which of the two categories a leaf
comes from restricts its properties to being of one of two types of leaves in-
stead of four. The next split into four categories (at level 2) causes a similar
decrease in property uncertainty. However, after level two, there is no sig-
nificant decrease in property uncertainty because a category which has 32
leaves of one type has not much less property uncertainty than a category
which has 64 leaves of that type. The property uncertainty remains almost
constant until end effects occur and there are few leaves per category.

The category uncertainty Uc also markedly changes its behavior at the
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Figure 4.14: The evaluation curves for the ordered taxonomy. Plotted are Up
and the normalized Uc as a function depth. For the structured case of the ordered
taxonomy the level at which the species of leaves are separated - level 2 - shows
a marked break in both Up and Uc.

second level. As expected, at level 0, where all objects are in one category,
there is no category uncertainty. Splitting the leaves into two categories
which do not share leaves of the same type produces only a marginal increase
because the categories are quite distinct and partially described leaves are
still easily categorized. Splitting into the four leaf types similarly adds little
category uncertainty. However the next split causes an abrupt increase in
category uncertainty. This is caused by the fact that now there are two
categories containing leaves of each type. Therefore a partially described
leaf will often match leaves in more than one category, yielding a high value
in category uncertainty. As the categorization gets finer Uc continues to
increase.

It is important to notice that the graphs of Figure 4.14 are similar to
those of Figure 4.8. In that example we evaluated a taxonomy of purely
modal classes and features, but with the addition of several noise features.
This similarity indicates that features which are not purely modal - they
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Figure 4.15: The evaluation curves for the ordered taxonomy, but with the
addition of four noise features. Both Up and the normalized Uc show a definite
break at level 2 - the level corresponding to the separate species - but the curves
are becoming more like those of the jumbled evaluation.

do not perfectly discriminate between classes - but which do have some
diagnostic power may be viewed as the combination of modal features with
noise features. To further illustrate this point, we can add more noise to the
leaf example by including pure noise features. Figure 4.15 displays the results
of using the same ordered taxonomy of Figure 4.12 but with the addition of 4
noise features; for each leaf, each of the noise features was randomly assigned
one of 4 values. There is still a definite break in both the Up and the Uc
curves, but they are becoming more like those of the jumbled evaluation of
Figure 4.13. This graceful degradation with the addition of noise is essential
if the category evaluation function is to be included in a robust method for
recovering natural categories.

To summarize, we have empirically shown that the evaluation function
is indeed sensitive to the structure of natural classes - in this case differ-
ent leaf species. This sensitivity is indicated by the marked change in the
behavior of the quantities Up and Uc at the depth of the taxonomy which
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corresponds to the "correct" categories. Also, the components of the evalu-
ation function behave predictably in the absence of natural categories; this
last point is crucial since if we are to use this evaluation function to recover
natural categorizations we must be able to distinguish between a minimum
caused by structure and a minimum which occurs at some arbitrary level of
categorization. To explore this question further let us investigate how the
parameter A affects the evaluation of the taxonomies.

4.6.4 A-space behavior

Let us return to our task of selecting the best level of a taxonomy for a given A.
Figure 4.16 shows the graphs of the total uncertainty U = (1 - A) Up + A r Uc
for the jumbled taxonomy of Figure 4.11 with A equal to .2, .4, .6, and .8.
Selection of the best level for a given lambda is simply finding the depth
which has the lowest value of U. In the case of the jumbled taxonomy, only
the two extremes of depth are ever the minimum, with the trade-off occurring
at about .5. From the graphs for Up and Uc of Figure 4.16 we can construct
the A-space diagram of Figure 4.17. The complete lack of structure in the
taxonomy is reflected in this degenerate A-space diagram; we have empirically
demonstrated the predicted noise behavior of section 4.5.2.

Next let us consider how the total uncertainty U varies with A for the
ordered taxonomy. Graphs of U as a function of taxonomy depth for four
different values of A are shown in Figure 4.18. Notice that for all four values
(.2, .4, .6, .8) the second level has the lowest total uncertainty; the second
level corresponds to the categorization which contains four categories, each
containing all the leaves of one species. Although we know that by design a A
of 0 will select the finest depth (8), and that a A of 1.0 will select the coarsest
depth (0), for this data a A in the interval of approximately 0.1-0.9 will select
the categorization containing four categories. In Figure 4.19 we construct the
A-space diagram for these data. The existence of the large stable region is an
indicator that the categorization selected in that region contains categories
that are highly structured in terms of the way they minimize the uncertainties
of the inferences about an object's properties and its category. It should be
noted that the categories selected are those that correspond to the classes of
leaves as defined by the botanists.
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Figure 4.16: Graphs of U = (1 - A) Up+ A O Uc for the jumbled taxonomy. Top
plot is original vales of Up and normalized Uc. The four panels a-d are for A of
.2, .4, .6, and .8 respectively.
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Figure 4.17: The A-space diagram for the jumbled taxonomy. The degenerate
condition of only having only the extreme categorizations be stable reflects the
lack of structure in the taxonomy.
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Figure 4.18: Graphs of U = (1 - A) Up + A Uc for the ordered taxonomy. Top
plot is original vales of Up and normalized Uc. The four panels a-d are for A of
.2, .4, .6, and .8 respectively.
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Chapter 5

Recovering Natural Categories

We have defined the task of the observer to be that of discovering categories
of objects in the world that correspond to natural modes; these modes are the
natural clusters of objects formed by the interaction between the processes
that produce objects and the environmental constraints that act upon them.
Because objects of the same natural class behave similarly, establishing a
natural categorization - a natural set of categories - permits the observer
to make inferences about the properties of an object once the category of
that object is determined. The question we address in this chapter is what
are the necessary capabilities that must be provided to an observer if he is
to accomplish this task?

We can divide the object categorization task into two components. First,
if the observer is to ever succeed in generating a natural categorization, then
he must be able to determine when a categorization reflects the structure
of natural modes. Given a set of alternative categorizations, the observer
must be able to select the most likely. Thus, he must be provided with a
categorization evaluation function. Second, the observer needs a method of
producing categorization proposals. As objects are viewed, the observer must
be continually refining his current categorization, attempting to recover the
natural categories present. The categorization generation method must be
constructed such that the observer will eventually propose a categorization
corresponding to the natural modes.

We begin this chapter by developing a categorization paradigm that makes
these two components explicit and that agrees with ones intuition about the
categorization process; our development of the paradigm is inspired by work
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in formal learning theory [Osherson, Stob, and Weinstein, 1986]. Then, we
will present a categorization algorithm based upon this paradigm, that has
been implemented and tested; the operation and performance of the algo-
rithm is demonstrated by examples drawn from three domains. Analysis of
the competence of the algorithm provides insight into the effectiveness of the
categorization procedure as well as the types of errors that may be expected.
In particular, for certain ideal cases, the algorithm is shown to be guaranteed
to converge to the correct categories. Finally, possible modifications of the
algorithm to improve its behavior are discussed.

5.1 A Categorization Paradigm

Consider the leaves pictured in Figure 5.1. To most observers there are three
groups of leaves present: ACH, BFG, DEJ. In fact, botanists would state that
there really are three classes of objects present, and that an observer who
identifies those three classes has categorized the leaves "correctly." Using
these leaves as an example let us develop a paradigm for categorizing objects
that is not only consistent with our intuitions about categorization but also
permits us to precisely define the object categorization problem.' We view
the categorization task as a learning problem: the observer attempts to learn
natural object categories as he inspects the world of objects. Thus, the
categorization paradigm we present closely resembles the generalized learning
paradigm developed by Osherson, Stob, and Weinstein [1986], based upon
the language acquisition paradigm originated by Gold [1967]. Our paradigm
consists of four components; each is necessary to define the categorization
task precisely.

The first requirement is that the goal of categorization be stated clearly.
We define a categorization to be a partition of the objects in a population;
the equivalence classes of the partition form the categories. Thus, for Fig-
ure 5.1, any possible grouping of the leaves constitutes a categorization, and
the groups are the categories. However, if the observer is attempting to dis-

'In Bobick and Richards [1986], a formal description of the categorization paradigm is
provided. The terminology developed there permits a formal statement of the cate-
gorization problem. However, most of the important issues developed there can be
discussed informally, by considering an example problem. The reader is referred to
Bobick and Richards [1986] if further detail is required.
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Figure 5.1: A set of 9 leaves. According to the botanists these are 3 instances
each of 3 different species of leaves: White Oak, Sugar Maple, Poplar (common
names). The categorization problem is to find the natural grouping of these leaves.
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cover the "correct" categories than we need a basis for determining a natural
categorization. To provide such a basis we require the Principle of Natural
Modes: environmental pressures interacting with natural object processes
cause the world to be clustered in the space of properties important to the
interaction between objects and the environment. We refer refer to these clus-
ters as natural classes. In Figure 5.1 the natural classes correspond to the
different species of leaves: White Oak (BFG), Sugar Maple (DEG), Poplar
(ACH). The goal of the observer is to recover these natural classes since they
represent instances of objects which share common properties; they were
generated by the same natural object process. Thus, natural classes serve to
define a testable goal of the categorization procedure: produce categories of
objects corresponding to natural classes.2 These natural categories are the
first component of the categorization paradigm.

Three difficulties arise if we consider the recovery of "natural categories"
as an objective goal for the categorization task. Two are philosophical. First,
how can we independently judge if the observer is successful? To do so, we
require independent identification of the natural classes, an omniscient ob-
server or an oracle. Second, as demonstrated by Goodman [1951], Quine
[1969], and Watanabe[1985], natural categories may only be said to exist if
we restrict the properties of objects that are considered important. Oth-
erwise, all objects are equally similar. (See section 2.3.1 for a review and
proof of Watanabe's Ugly Duckling Theorem, a theorem that explains this
counter-intuitive claim.) How then can we say that one set of categories
is more natural than another? To resolve these problems, we rely on the
sciences that study the domains in question to provide an independent as-
sessment of the natural classes. Because botanists have categorized the leaves
in Figure 5.1 into three species, and because botanists study the processes
that create leaves and environments that constrains them, we will assume
that the categories constructed by botanists represent "true natural classes."

The third difficulty in using natural classes as a baseline against which to
judge the competence of the observer is computational in nature. We have

2We have purposely avoided using the phrase the natural classes because we do not
wish to claim that there is a unique clustering of objects corresponding to a natural
partitioning. As discussed in chapter 2, both the division between mammals and birds
and that between cows and rabbits represent natural clusterings. Thus, two observers
could both "correctly" learn the natural categories of the world and yet have different
categorizations. We will return to this issue in the next chapter.
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defined a categorization to be a partition of the objects in the world. But,
there is an uncountable infinity of possible objects.3 Thus, the number of
partitions is also uncountably infinite. Even if there are only denumerably
many objects (an assumption that would be valid if objects are produced by a
countable number of "computational" construction procedures) there would
still be an uncountable set of partitions. How can the observer ever hope to
discover the correct set of categories if the space of potential categorizations
is unsearchable?

\Ve can remedy this situation by placing a constraint on the categorization
environment - the third component of the categorization paradigm - and
by modifying the goal of observer. When an observer views an object (such
as one of the leaves in Figure 5.1), he cannot make use of the object itself
as input to a categorization procedure. Rather, he must operate on some
sensory description of the objects. Thus, let us construct a categorization
environment that consists of objects as described in some representation. As
in chapter 4, we define a representation to be a mapping from the set of all
possible objects onto to some finite set 0*.4 Each element of O* is referred to
as an object description. Because the observer is no longer operating on the
objects themselves, but on their description as expressed in some represen-
tation, we alter the definition of an object categorization: a categorization
Z is a partition of the set of representational descriptions corresponding to
the objects in the world. Now, because there are only a finite number of
object descriptions in the representation, the set of possible categorizations
is not only countable, but also finite. Thus, one can construct computational
procedures capable of searching the space of solutions to the categorization
problem.

One may view a representation as a generalization or abstraction mech-
anism: an infinite number of objects are mapped onto a single point in the
representation. Thus an important question arises as to whether a given rep-
resentation is sufficient to permit correct categorization. Let us (informally)
define a class preserving representation to be one in which disjoint natural

3 A quick proof: How many squares are there having an area less than one square foot?
4If one is uncomfortable with the concept of "the set of all possible objects" then one
can simply define a mapping function, and then let the domain of that function (the
scope of the representation as defined by Marr and Nishihara [1978]) become the set of
possible objects.
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classes of objects in the world map into disjoint sets in 0*.5 If two objects
of different natural classes map into the same point in the representation,
then the representation is not class preserving and the observer will not be
able to correctly categorize the objects. Therefore, for the observer to be
successful in his task, the representation must be constrained to match the
structure of classes. Once again we encounter the Ugly Duckling Theorem
of Watanabe [1986] and require that the representation be chosen so that
important properties, in this case those constrained by the natural classes,
are made explicit. We refer to the description of classes of objects in terms
of a representation as the projection of the classes onto that representation.

Having defined a class preserving representation we can now modify the
component of the categorization paradigm corresponding to the natural cat-
egories. Instead of recovering the natural classes directly, the task of the
observer becomes the recovery of the projection of the natural classes in
some class preserving representation. The categorization proposed by the
observer - the hypothesized partition of representation space - must be
constructed such that if two objects in the world are mapped by the rep-
resentation into the same category (equivalence class) of the partition then
those two objects belong to the same natural class.

To complete the definition of the categorization environment, we must
specify how the observer comes to experience the objects. In the example
of the leaves in Figure 5.1, the observer may simply view all of the objects
"simultaneously." For a large or infinite world, a parallel observation of all
objects is not possible. Thus we define an observation sequence to be an in-
finite sequence of objects, each described according to some representation;
this sequence is viewed serially by the observer. We require that the sequence
be infinite so that the observer always has data available as input to a cate-
gory recovery procedure. However, there are only a finite number of distinct
object descriptions. Therefore we will require that any object description
that represents some object in the world must appear in the observation
sequence an infinite number of times. This property of the observation se-
quence will be important when we discuss the error correcting capability of
a categorization procedure. Note that our definition of observation sequence
guarantees that there exists a point in the observation sequence at which the

5Bobick and Richards [1986] provides a formal definition of a class preserving
representation.
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observer will have viewed all the object descriptions representing objects in
the world.

After encoding some information about the objects in the world, the ob-
server must propose some candidate categorizations. In our categorization
paradigm, we require that the observer announce a categorization hypothe-
sis after each presentation of an object from the observation sequence. We
can decompose the task of announcing hypotheses into two components: hy-
pothesis generation and hypothesis evaluation. These tasks form the last two
components of the categorization paradigm.

Hypothesis generation refers to the method used by the observer to pro-
pose candidate categorizations. One simple approach would be to simply
check all possible partitions of the objects viewed so far: there are only a
finite number of object descriptions and thus only a finite number of possible
partitions. By our definition of of the observation sequence, we know that
the observer only need to wait some finite amount of time before he will
have viewed all the object descriptions present in the world. Assuming that
the observer's decision criteria - the evaluation procedure to be discussed
presently - are capable of selecting the natural class categorization, then an
exhaustive enumeration is guaranteed to find the correct categories.

Unfortunately, the combinatorics of an exhaustive search make such a
procedure impractical. For the 9 objects of figure Figure 5.1, there are over
20,000 possible partitions. If there are 15 objects, the number of partitions
(categorizations) grows to 1.4 billion! Also, an exhaustive partitioning strat-
egy is not well suited to a sequential presentation of objects provided by the
categorization environment. When a new object is viewed, the previous hy-
pothesis is irrelevant because an exhaustive search would again be executed
and the best partition selected. In a world with thousands of objects, the
discarding of previous hypotheses, and the work associated with producing
them, is unacceptable.

An alternative to the exhaustive search is a dynamic, data-driven method
of hypothesis generation. This is the approach used in dynamic classification
(see, for example, Duda and Hart [19731). At each presentation of an object,
the observer considers some (usually small) set of candidate hypotheses based
upon the previous hypothesis and the new object. Because one can limit
the degree to which any new object may alter the current hypothesis, the
incremental strategy has the advantage that the computational complexity
of computing the new hypotheses can be restricted.
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The use of an incremental approach raises some issues that are not rele-
vant when employing an exhaustive strategy. In particular, one must consider
whether the observer will ever converge to some particular hypothesis. Even
though we know that there are only a finite number of partitions, it may be
the case that the observer never converges to some particular hypothesis; for
example, the observer may continually cycle through all the possible parti-
tions. Also, because the observer is not considering all possible hypotheses,
we must consider whether he will ever propose the "correct" one. In the next
section we will describe an incremental hypothesis generation method that
has been successfully demonstrated in several domains. It will be shown that
in certain ideal cases, the method can be constructed such that it will con-
verge with unit probability to the "correct" hypothesis; experimental results
will demonstrate the method's effectiveness on real data.

Finally, given a set of candidate categorizations, the observer needs to be
able to select the one most likely correct: the one which is the most "natural."
To accomplish this task, the observer requires a hypothesis evaluation func-
tion. This function must be constructed such that categories corresponding
to the natural classes are preferred over categories that ignore class structure.
Like the representation, which is required to make explicit the properties of
objects constrained by natural processes, the hypothesis evaluation function
must be matched to the structure of the natural world.

Having defined the four components of categorization we may now state
the categorization problem more precisely. We assume the following are
given: a set of natural object classes, a class preserving representation in
which objects are described, an observation sequence in which all the object
descriptions are presented, a hypothesis generation method to produce can-
didate categorizations, and a hypothesis evaluation function which provides
criteria as to which categorization should be chosen. We say that the ob-
server has successfully categorized the world of objects on some observation
sequence if and only if 1) he announces some categorization hypothesis after
every presentation of an object description, and 2) the observer eventually
converges to a hypothesis which is the projection the natural classes in the
class preserving representation. By "converge" we mean that the observer
eventually announces the correct hypothesis and that he never deviates from
that hypothesis as he continues to view the observation sequence.

Notice that any particular categorization of objects is learnable. A strongly
nativist theory of object categorization would claim that the observer al-
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ways announces a hypothesis corresponding to one particular categorization
Z0, where Z 0o has been selected by evolution to appropriately categorize the
world. That is, the observer would completely ignore the data of the observa-
tion sequence. However, it is unreasonable to expect evolution to provide for
an object category such as "refrigerator." A more plausible theory of catego-
rization, and that which has been proposed here, is that evolution equips the
observer with the necessary tools - representation, hypothesis generation
method, hypothesis evaluation function - for the recovery of natural object
categories.

5.2 Categorization Algorithm

In this section, we will present a categorization system that reflects the
paradigm developed above; this system has been implemented and tested.
Because the representation (the most important aspect of the categorization
environment) and the hypothesis evaluation function are described in detail
in chapter 4, we will only provide a brief description of these components of
the categorization system. The hypothesis generation method, however, will
be presented in detail. We will evaluate the performance of the algorithm by
examining the results of tests conducted in three domains. In the following
sections, we will consider the competence of the categorization algorithm,
the types of errors likely to arise, and possible remedies.

5.2.1 Categorization environment

The representation - the first component of the categorization environment
- used by the categorization system consists of property vectors. Our termi-
nology is defined as follows: feature refers to a function or predicate computed
about an object; value, to the value taken by a feature; property, to the valued
feature. For example, "length" is a feature, "6 ft." is a value, and "having
length 6 ft." is a property. Each feature, fi, 1 < i < m, has an associated set
of values {vil, vi2, . ., vi,7} referred to as the range of the feature. We require
that the range be a finite set but the cardinality of the range can vary from
one feature to the next. F denotes the set of features {f, f2, .. , fm } Using
these features, each object is represented by an m-dimensional property vec-
tor P = (l,, v2z,..., Vm) where vij is the jth value of the range of the ith
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feature.
To complete our specification of the categorization environment requires

the generation of an observation sequence. Normally, the world itself pro-
vides a set of objects that can be sampled to form the sequence. However,
to test the categorization algorithm we need to generate property vectors
corresponding to objects. Furthermore, to evaluate the performance of the
categorization system these property vectors must be constructed such that a
natural categorization exists. To satisfy these criteria, property specifications
- a listing of acceptable property values - are provided for several classes
of objects. An object generator then creates property vectors consistent with
these specifications. We will describe the specific features and values of the
property specifications when we present the examples illustrating the perfor-
mance of the categorization procedure in different domains.

5.2.2 Categorization uncertainty as an evaluation
function

The hypothesis evaluation function provides the criteria by which proposed
categorizations are selected. Because the categorization task requires recov-
ering the natural categories, the evaluation function must reflect the natural
structure found in the world.

The evaluation function is based upon the categorization uncertainty mea-
sure U. It is defined by:

U(Z) = (1 - A) Up(Z) + A (Z) Uc(Z) (5.1)

where Up is the uncertainty about the properties of an object once its cat-
egory is known, Uc is the average uncertainty of the category to which an
object belongs given a subset of the properties describing the object, rq is a
normalization coefficient between Up and Uc, and A is a free parameter rep-
resenting the desired trade-off between the two uncertainties. (See chapter 4
for complete definitions and derivations of these terms.) For the remainder
of this chapter we will assume that A is set to some particular value which
satisfies the goals of the observer. In chapter 6 we will consider the effect of
A on the categorization procedure and its interaction with the natural object
categories.
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We use the total uncertainty of a categorization U as an evaluation func-
tion because this measure reflects the degree to which a categorization per-
mits the observer to accomplish the recognition goal of making reliable infer-
ences about the properties of objects. Thus a categorization which minimizes
U is guaranteed to be useful to the observer: the evaluation function directly
measures the utility of a categorization. This desirable property of the evalu-
ation function is absent in the standard distance metrics employed by cluster
analysis techniques. Furthermore, the Principle of Natural Modes supports
the claim that if a categorization supports the goals of the observer then that
categorization reflects a structuring of the objects consistent with the natural
modes. As such, this function is well suited for the evaluation of proposed
categorizations.

5.2.3 Hypothesis generation

The hypothesis generation method we present has been designed to be con-
sistent with the categorization paradigm. First, the algorithm is guaranteed
to produce a hypothesis at each point along the observation sequence. Thus,
the observer will never halt and refuse to announce a categorization. Sec-
ond, categories are permitted to continually split and merge making every
possible categorization fall within the scope of the algorithm. Finally, the
algorithm takes advantage of the infinite observation sequence by correcting
"mistakes" only when viewing an object previously placed in an incorrect
category. Because the observer is guaranteed to view each object repeatedly,
this form of data driven error correction is appropriate.

The method may be described as a hybrid of divisive and agglomerative
clustering techniques [Duda and Hart, 1973; Hand, 1981]. (See chapter 3
for a discussion of these methods.) The basic steps of the algorithm are as
follows:

1. Construct an initial categorization consisting of a single category by
randomly selecting a small number of objects from the population.

2. View a new object6 from the observation sequence.

3. Given a current categorization hypothesis, select the category to which
adding the new object results in the best new categorization ("best"

6 The term "object" refers to an object description in the property space representation.
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in terms of lowest total uncertainty U.). Add the new item to the
"selected" category.

4. Test if merging the selected category with any other category yields a
better categorization. If so, merge the selected category with the best
of those, and make the resulting category the new selected category.

5. Delete any objects identical to the new object which were previously
categorized into a category different than. that which was selected dur-
ing this iteration.

6. If there are "enough" objects in the selected category, attempt to split
the category into two new categories such that a better categorization
is achieved.

7. Go to Step 2.

We postpone examining the competence of the algorithm until we present
examples of its operation.

5.2.4 Example 1: Leaves

The first domain in which we illustrate the performance of the categorization
algorithm is that of leaves, like those in Figure 5.1. For several species of
leaves, property specifications were generated according to descriptions pro-
vided by Preston [1976]. (Table 5.1) The properties chosen are known to be
diagnostic of leaf species and thus are sufficient for the categorization task.
Note that for these classes of leaves the representation is class preserving: no
property vector can be constructed that satisfies more than species specifi-
cation. For this example, the free parameter A of the evaluation function U
has been set to a value of 0.6.

Let us trace the categorization process by examining the dynamic output
of the program shown in figures 5.2 and 5.3. As each new object is viewed,
a new row is added, showing the categorization proposed by the system in
response to that new object; the new object is shown on the left. In these
examples, the object's names are used to indicate (to the programmer) the
true classes to which the leaves belong, e.g. COTTON-145 is a cottonwood
leaf. The program, of course, uses only the property vectors of the objects as
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Length Width Flare Lobes Margin Apex Base Color
Maple {3,4,5,6} {3,4,5} 0 5 Entire Acute Truncate Light
Poplar {1,2,3} {1,2} {0,1} 1 Crenate, Acute Rounded Yellow

Serrate
Oak {5,6,7,8,9} {2,3,4,5} 0 7,9 Entire Rounded Cumeate Light
Birch {2,3,4,5} {1,2,3} 0 19 Doubly-Serrate Acute Rounded Dark
Cottonwood {3,4,5,6} {2,3,4,5} 2 1 Crenate Acuminate Truncate {Light,Dark,

Yellow}
Elm {4,5,6} {2,3} {0,-1} 1 Doubly Accuminate Rounded Dark

Serrate

Table 5.1: Leaf specifications for several species of leaves. A leaf generator was
designed which created property vectors consistent with the different specifications.

input. The circled numbers to left indicate the significant events that we will
discuss. In this example, the population consists of 150 leaves, 25 examples
of each of 6 species.

Event 1 is the start of the categorization algorithm. Because step 3
of the algorithm requires a current categorization, we begin with an initial
categorization consisting of a small random collection of objects forming
one category. In the next section, when we analyze the performance and
competence of the hypothesis generation method, we will place bounds on
how large this initial category may be.

Event 2 represents viewing a new object, in this case the leaf COTTON-
145. Step 3 of the algorithm selects the category to which adding the new
leaf produces the best categorization. As there is only one category in the
current categorization, COTTON-145 is added to that category. Because
there are as yet no other categories, the merging step (4) and the deletion
step (5) are skipped. Next, the splitting step (6) is executed. It is important
to understand the details of this step because the splitting procedure is the
only means by which a new category can be created and thus is most critical
in determining the competence of the system.

Because the evaluation function U is statistical in nature, based upon
probabilities and information theory, it does not yield reliable results when
applied to categories that are too small. We restrict its application by requir-
ing that any category formed by splitting contain some minimum number of
objects; for this particular example, a category was required to contain at
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...... :---: ::---: -:: ...........................................................................................
1 ) ~Stat: IIRCH-IO IRCH-112 ELM-GO POPLAR-S COTTON-137 COTTON-142 COTTON-13

(2 COTTON-14:ICOTTON-145 BIRCH-IO6 BIRCH-112 EULM- POPLAR-IS COTTON-137 COTTON-142 COTTON-13s

v q COTTON-148:ICOTTON-148 COTTON-137 COTTON-14S COTTON-142 POPLR-SSIELq-6# IRCH-10 IRCH-112 COTTON-138

ELM-SI:ICOTTON-141 COTTON-137 COTTON-14S COTTON-142 POPLAR-SIEL-S EM-6 BIRCH-1l BIRCH-112 COTTON-38

OAKI-37:ICOTTON-148 COTTON-137 COTTON-14S COTTON-142 POPLAR-SSIOAJ-37 ELM-SI ELM-6O BIRCH-106 BIRCH-112 COTTON-138
............ .................... . ........ . .............. ___......__...........i...e __ _. .... e ) ...... e.. _..

BIRCH-123: COTTON-148 COTTON-137 COTTON-145 COTTON-142 POPLAR-OSIBIRCH-123 OA-37 ELM-S1 ELM-60 BIRCH-106 BIRCH-112
I. ICOTTON-138

ELM-S9:ICOTTON-148 COTTON-137 COTTON-145 IOAr-37 ELM-6O ELM-59 COTTON-13* IBIRCH-123 BIRCH-112 ELM-Si
ICOTTON-142 POPLAR-SS I IBIRCH-106

EL-S7:ICOTTON-148 COTTON-137 OTTON-14S IEL-S57 OA0-37 ELH- ELM-S9 IBRCH-123 BRCH-li1 ELM-Si
ICOTTON-142 POPLAR-8S COTTON-138 IBIRCH-106

MAPLE-2:IPOPLAR-95 IELM-63 ELM-S7 IMAPLE-2 OAM-47 ICOTTON-130 OA-37COTTON-14 IMAPLE-14
IBIRCH-121 IELM-S9 ELM-73 IMAPLE-21 MAPLE-ISIOAK-49 COTTON-1441COTTON-137 IPOPLAR-S5
IBIRCH-117 IEL-69 MPLE-17 1OA-46 OAK- 26 ICOTTON-142 IPOPLAR-86
IPOPLAR-96 ELM-68 IELM-56 ELM-60 IOA-4S I ICOTTON-136 ICOTTON-145
IPOPLAR-90 I
IBIRCH-123 
IBIRCH-112 ELM-Si I I I 
BIRCH-6 I I 1 I I

................ ................. ................... ...... s........ ..-... . ............. .............

MAPLE-4:IPOPLAR-95 IELM-53 ELM-S7 ICOTTON-138 ICOTTON-148 IMAPLE-14 IMAPLE-2 IOAK-4S OAK-46
IBIRCH-121 IELM-S9 ELMI-3 OAK-37 OA0-49 ICOTTON-137 IPOPLAR-85 IMAPLE-21 0OAK-26 OAK-47
IBIRCH-11 IELM-69 ICOTTON-144 ICOTTON-142 IPOPLAR-86 RIAPLE-4
IPOPLAR-96 IMAPLE-17 I ICOTTON-13G ICOTTON-145 JIAPLE-IS
IELM-6' IELM-56 ELM-6 I O
IPOPLAR-90

IBIRCH-123 I 
IBIRCH-112 II 
ELM-S I I

IBIRCH-106 I I

* * *

POPLAR-3: IELM-63 ELM-S7 ICOTTON-i3B OA-37ICOTTON-148 INAPLE-Z APLE-21 1OA-3S OAI-41 IPOPLAR-0
IELM-S9 ELM-73 OAI-49 COTTON-144COTTON-137 IMAPLE-4 MAPLE-1S iOAK-45 OAK-46 IPOPLAR-B3
IELM-69 MPLE-17 I ICOTTON-142 I OAK-2 OAK-47 I)MPLE-14
ELU-S6 ELM-6 I ICOTTON-136 IPOPLAR-$S

IPOPLAR-B6
I|~ ~ Ig~ ~ ~ I I I~ ICOTTON-145

IPOPLAR-9S
II I I IRCH-i21
IBIRCH-117
I I I POPLAR-96 ELM-6O
IPOPLAR-90
IBIRCH-123
IBIRCH-112 ELM-SI

^ | I I I IBIRCH-106

OAK-4:IELM-63 ELM-S7 ELM-59I1COTTON-14 IMAPLE-2 MAPLE-21 IPOPLAR-SO POPLAR-83 OA-40 OA-35 OAC-41
IELM-73 ELM-G9 ICOTTON-137 1MAPLE-4 MAPLE-15 IMAPLE-14 POPLAR-BS IOA-4S OAK-46 OA-26
IAPLE-17 ELM-56 ICOTTON-142 IPOPLAR-B3 COTTON-14SIOA-47 COTTON-133
IELM-6 ICOTTON-13 I IPOPLAR-9S BIRCH-121 IOA-37 OAK-49

I I I IBIRCH-117 POPLA-96 ICOTTON-144
I I I IELM-G POPLAR-90 I
I I I IBIRCH-123 BIRCH-112 I

IIEL-Si BIRCH-106 I

Figure 5.2: The output of the categorization program. Each row is the pro-
posed categorization after having viewed the object listed at the left. The output
continues to the next page.
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* * *I

POPLAR-92:IELM-71 ELM-75 ELM--621COTTON-14S IMAPLE-1 MAPLE-I IPOPLAR-9Z SIRCH-18 bAK-34 OAK-32 OA-40
IELM-53 ELM-57 ELM-S91COTTON-133 IMAPLE- APLE-21l IPOPLAR-74 POPLAR-82 IOA-3S OA-41 OAK-45
IELM-73 ELH-69 ICOTTON-14 IAE-4 PLE- S MAPLE-S IIXRCH-IO POPLAR-SO IOAK-46 OA-26 OAK-47
IMAPLE-17 ELM-S ICOTTON-137 I IPOPLAR-S3 POPLAR-S5 ICOTTON-13J OAK-37
IELM-60 ICOTTON-142 I IPOPLAR-86 POPLAR-S IOA-49 COTTON-144
I ICOTTON-136 I ISRCH-121 BIRCH-117 I

I I I IPOPLAUR-96 ELM-6 I
I I I IPOPLAR-9 BIRCH-123 I
I I I IBIRCH-112 ELM-Si I

I I I IBIRCH-106 I

COTTON-138:IELM-71 ELM-75 ELM-621COTTON-138 IMAPLE-Il MAPLE-8 IPOPLAR-92 BIRCH-103 10AK-34 OA-32 OAX-40
ELM-63 EM-57 ELM-S91COTTON-145 IMAPLE-2 MAPLE-21 IPOPLAR-78 POPLAR-2U 1OAK-3S OAK-41 OAK-45IEL-73 ELM-69 ICOTTON-133 IMAPLE-4 MAPLE-1S JBIRCH-iOS POPLAR-80 1OAK-46 OA-26 OAK-47IKAPLE-17 ELM-S6 ICOTTON-14 8 I IPOPLAR-83 POPLAR-SS OAK-37 OAK-49
EL-60 ICOTTON-137 I IPOPLAR-86 POPLAR-9S ICOTTON-144
I ICOTTON-142 I I8XRCH-121 BIRCH-117 I

ICOTTON-136 I IPOPLAR-96 EMI-68 I
I I IPOPLAR-90 BIRCH-123 I

I I I RCH-iZ ELM-SI I
I IIRCH-106 

t ~~~~~~~ic ~~~~~~~~~c:~~~~

COTTOJ-144: EM-51 E71 EL-751COTTO-144 IMPLE-19 MAPLE-9 I POPLAR -92 BRCH-108 10A-34 O-32 OA-40
JEL-6 E-63 EL-571COTTON-13 1 IMPLE-2 MAPLEI21 IPOPAR-78 POPLAA-82 . OA-3S OA-41 O-4S
JELM-59 E-73 ELM-691COTTON-14 S )APLE-4 APLE-IS 19RCH-105 POPLAR-80 IOA-46 OA-26 OA-47
IAPLEI117 ELM-SS ICOTON-133 I POPLAR-93 POPLAR-SS IOAIK37 OA-49
IEL-60 ICOTTON-149 I IPdPLR-l96 POPLAR-9S I

ICOTTON-137 IBRCH-121 BIRCH-117I
ICOTON-142 I IPPLAR-96 ELM-68 
ICOTTONr-136 I IPOPLAR-90 BIRCH-123I

I I ISI~~~~~~~I~RCH-112 IRCH-106 

_ _

Figure 5.3: Continuation of the output of the categorization program.
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least 4 objects. Therefore the algorithm does not attempt to split a category
unless it contains at least twice the minimum number of objects (8 in this
example).

Assuming a category is large enough to be split, as is the case at event
2, candidate partitions must be created. Because the number of partitions
of a category is huge (even when partitioning a set into only two subsets),
not all partitions of a category into two new categories may be attempted.
Therefore, only some (randomly chosen) divisions are tried. Thus, if there
exists a split of a category that yields a better categorization than the cur-
rent hypothesis, the probability of discovering that partition is proportional
to the number of partitions attempted. In the current implementation the
number of partitions considered is proportional to the size of the category;
when we discuss the convergence and correctness properties of this algorithm,
this sampling rate will become important. At event 2, none of the partitions
considered yielded a categorization with a lower uncertainty than the cate-
gorization consisting of only one category.

At event 3, however, a partition is accepted. As before, the new leaf
(COTTON-148) is added to the only category in the current categorization.
However, in this case a split of that category was discovered which yielded
a better categorization than the single category. Event 4 is another instance
of successful splitting.

One of the dangers of an algorithm such as this is that it is possible to
cause two categories to be created which should be one. Event 5 is an exam-
ple of such an occurrence. In this case, the addition of the leaf MAPLE-4,
caused a category to split, separating maples from oaks. But a previous split
had already created a category containing oaks. If the algorithm is to suc-
cessfully categorize these objects, then these two categories must eventually
be merged. That is the purpose of step 4 in the algorithm. At event 6, the
leaf OAK-40 was initially added to the category with the 6 oak leaves. This
category was then merged with the category containing the two other oak
leaves. Even though this second category contained two leaves that are not
oak, the merging of the two categories yielded a better categorization. Merg-
ing assures that splinter categories that are created because of the order of
presentation of the objects may later be reclaimed.

One more form of error correction is necessary. Although merging can
combine categories mistakenly separated, it cannot remove isolated errors
that result from previous mistakes. To correct this type of error, we add
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the deletion step of the algorithm (5). Examples of this step are shown at
events 7 and 8. At event 7, the leaf COTTON-138 was viewed for the second
time, and placed in the category containing only other cottonwood leaves.
Notice that there were two cottonwood leaves present in the oak category,
one of which was previous instance of COTTON-138. Because the current
instance was placed in a different category, the program can correct an earlier
"mistake"' by deleting of the previous instance. Event 8 is a similar event
where MAPLE-17 was corrected.7

The last categorization shown in Figure 5.3 represents the steady state
categorization produced by the algorithm; at this point the program was
interrupted. Notice that the categorization procedure recovered the natural
classes, except for the one category consisting of poplar and birch leaves.
Thus, the algorithm converged, although not quite correctly.

The first observation to be made is that the algorithm performs quite
well. Most tests performed on the leaves domain yielded results as good
as those shown, or better, where the solution was exactly the (botanically)
correct categorization. The fact that an evaluation function based upon the
goals of an observer and an incremental hypothesis generation method could
produce a natural and correct categorization provides empirical support for
the categorization principles embodied in the procedure.

However, as shown, the algorithm does make errors, even in a domain
where it sometimes generates the correct solution. After presenting another
example domain, we will discuss the competence and behavior of the algo-
rithm, the predictable errors, and possible remedies.

5.2.5 Example 2: Bacteria

To further illustrate the behavior of the categorization algorithm, we test the
procedure on a domain comprised of infectious bacteria. For these examples,
property specifications for six different species of bacteria were encoded. Ta-
ble 5.2 displays the specifications for these species; the data are taken from
[Dowell and Allen, 1981]. Because most of the "real" features take on only
one value per species (unlike the leaves where features like "length" and

7A note about the implementation: Because the categorization evaluation function re-
quires that the categories be sufficiently large, categories that grow too small because of
this deletion step are themselves deleted. The infinite observation sequence guarantees
that these objects will be viewed again.
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BF BT BV FM FN FV
bacteroides bacteroides bacteroides fusobacterium fusobacterium fusobacterium

fragilis thetaiotamicron vulgatus mortiferum necrophorum varium
loc GI GI GI OR OR OR
gram neg neg neg neg neg neg
gr-pen R R R {R,S} S {R,S}
gr-rif S S S R S R
gr-kan R R R S S S
dole neg pos neg neg pos pos
esculin pos pos neg pos neg neg
bile E E E E I E
glc Is ls ls none none none
rham neg pos pos {neg,pos} {neg,pos} {neg,pos}
nfl {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4}
nf2 {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} 11,2,3,4}

Table 5.2: The property specifications for six species of bacteria. Because most of
the real features have only one value (unlike the leaves where features like "length"
and "width" varied greatly) two noise features are added (nfl and nf2).

"width" varied greatly) two noise features were added (nfl and nf2). These
features prevented all objects of the same class from having identical property
descriptions.

Of the six species, three are from the genus bacteroides; these are abbrevi-
ated as BF, BT, and BV. The other three - FM, FN, and FV- are from the
genus fusobacterium. Notice that several of the features of the specifications
are determined by the genus, while others are determined by the species. For
example, all members of bacteroides have the property "gr-kan = R" (coding
for "growth in presence of Kanamycin is resistant"). Other properties, such
as "dole," vary between the species, ignoring genus boundaries. These data
were chosen as an example of a population in which there is more than one
natural clustering. In this chapter we are only concerned illustrating the op-
eration of the categorization algorithm. In the next chapter we consider the
issue of multiple clusterings, and the interaction between A and the categories
recovered.

Figure 5.4 displays the results of executing the categorization procedure
with A set to 0.65. Notice that the bacteria have been categorized according
to their genus. Is this the "correct" solution? As mentioned in chapters 2 and
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Start:IFV-72 BV-30 BF-1 FN-53 FM-45 BF-7 T-21

FN-S1:IFN-51 FM-4S FN-S3 FV-72

BT-23:IFN-51 FM-45 FN-53 FV-72

FV-61:IFV-61 FN-51 F-45 FN-53 FV-72

FN-59:IFN-59 FV-61 FN-51 FM-45 FN-53 FV-72

FM-48:IFM-48 FN-59 FV-61 FN-S1 FM-45 FN-53 FV-72

FM-44:IBT-23 BT-21 BF-1 BF-7 V-30 IFV-72 FN-S1

FN-58:IBT-23 BT-21 BF-1 BF-7 V-30 IFN-58 FV-72

BV-35:IBV-35 BT-23 BT-21 BF-1 BF-7 BV-301FN-58 FV-72

BF-4:IBF-4 BV-35 BT-23 BT-21 BF-1 BF-7 IFN-58 FV-72
IBV-30

FN-59

FN-51

FN-S1

FN-51

I T-21

1BT-23

I BT-23

I BT-23

BT-2 3

I FN-53

FN-59

FN-59

1 FN-59

BF-1 BF-7 BV-30

ST-21 BF-1 BF-7

BT-21 BF-1 BF-7

BT-21 BF-1 F-7

BT-?21 BF-1 F-7

I M-44

FNr53 IFM-44

FN-53 IFM-44

FN-53 ITM-44
I

FV-64:IBF-4 BV-35 BT-23 BT-21 BF-1 BF-7 IFV-64 FN-58 FV-72 FN-51 FN-59 IFM-44 FM-48 FV-61 FM-45
IBV-30 IFN-53 I

BV-3E:IBV-36 BF-4 BV-35 BT-23 BT-21 BF-1IFV-64 FN-58 FV-72 FN-51 N-59 IFM-44 FM-48 FV-61 FM-45
IBF-7 BV-30 IFN-53 t

BT-15: IBT-15 BF-9 BT-16 BT-17 BT-13 IFV-71 FN-55 FV-62 FV-64 FN-58 IFM-41 FM-46 FM-44 FM-48 FV-61
IBF-12 BV-31 BV-25 BV-36 BF-4 IFV-72 FN-51 FN-59 FN-53 IFM-45
IBV-35 BT-23 BT-21 BF-1 BF-7 BV-301

BV-27:IBV-27 BT-15 BF-9 BT-16 BT-17 IFV-71 FN-55 FV-62 FV-64 FN-58 IFM-4 FM-46 FM-44 FM-48 FV-61
IBT-13 BF-12 BV-31 BV-25 BV-36 IFV-72 FN-51 FN-59 FN-53 IFM-45
IBF-4 BV-35 BT-23 BT-21 BF-1 BF-7 I
I BV-30 i I

----""~~ I "---…--- - - -- - - …----------- -- …-------- - - ------ -------

BV-28:IBV-28 BT-22 BF-11 BV-34 V--26 iFV-65 FV-69 FN-49 FV-63 FV-6 IFM-37 FM-41 FM-46 FM-44 FM-48
IBV-27 BT-15 BF-9 BT-16 BT-17 IFN-54 FV-71 FN-SS FV-62 FV-64 IFV-61 FM-45
IBT-13 BF-12 BV-31 BV-25 BV-36 IFN-Si FV-72 FN-S1 FN-S9 FN-53 I
IBF-4 BV-35 BT-23 BT-21 BF-1 BF-7 I
IBV-30

FV-70:IBV-28 BT-22 BF-ll BV-34 BV-26 IFV-70 FV-65 FV-69 FN-49 FV-63 IFM-37 FM-41 FM-46 FM-44 FM-4
IBV-27 BT-15 BF-9 BT-16 BT-17 IFV-68 FN-54 FV-71 FN-55 FV-62 IFV-61 FM-45
IBT-13 BF-12 BV-31 BV-25 BV-36 IFV-64 FN-58 FV-72 FN-51 FN-59 I
IBF-4 BV-35 BT-23 BT-21 BF-1 BF-7 IFN-53
I BV-30 _______.____________________________ ___________ ________ ______________~~~~~~~~~~~~~~~~~

FM-40:IBV-2? BT-22 F-11 V-34 BV-26 V-27 T-15 F-9 IFM-40
IBT-16 T-17 T-13 BF-12 BV-31 V-25 BV-36 BF-4 IFV-70
IBV-35 T-23 T-21 BF-1 BF-7 V-30 IFN-55

BT-20:IBT-20 BV-28 BT-22 BF-11 V-34 V-26 V-27 T-15 IFM-40
IBF-9 BT-16 T-17 T-13 F-12 BV-31 BV-25 V-36 BT-41TV-70
IBV-35 BT-23 BT-21 BF-1 BF-7 BV-30 IFN-55

FV-66:IBT-20 BV-28 BT-22 BF-11 BV-34 BV-26 BV-27 BT-15 IFV-66
IBF-9 BT-16 BT-17 BT-13 BF-12 V-31 BV-25 BV-36 BF-41FV-45
IBV-35 BT-23 T-21 F-1 BF-7 BV-30 IFV-71

IFN-53

FM-37
FV-65
FV-62

FM-37
FV-6S
FV-62

FM-40
FV-70
FN-55

FM-41 FM-46
FV-69 FN-49
FV-64 FN-58

FM-41 FM-46
FV-69 FN-49
FV-64 FN-58

FM-37 FM-41
FV-65 FV-69
FV-62 FV-64

FM-44
FV-63
FV-72

FM-44
FV-63
FV-72

FM-46
FN-49
FN-58

FM-48
FV-68
FN-51

FM-48
FV-68
FN-51

FM-44
FV-63
FV-72

FV-61
FN-54
FN-59

FV-61
FN-54
FN-59

FM-48
FV-68
FN-51

FM-45
FV-71
FN-5 3

FM-45
FV-71
FN-53

FV-61
FN-54
FN-59

Figure 5.4: Categorizing bacteria. In this example A equals 0.65. The categories
recovered correspond to the different genera.
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4, the natural clustering of objects in the world occurs at many levels. Mam-
mals and birds represent one natural clustering; cows and horses, another.
That the categorization procedure recovered the different genera is another
demonstration of the ability of the algorithm to recover natural categories.
These two genera consist of two distinct types of bacteria: the bacteroides
are only found in the GI tract and the fusobacterium are located in the oral
cavity. Thus, the categorization recovered in Figure 5.4 is a correct solution.

5.2.6 Example 3: Soybean diseases

The last domain in which we demonstrate the effectiveness of the categoriza-
tion algorithm is that of soybean plant diseases. These data are of interest
because they have been used by previous researchers to demonstrate the
competence of clustering algorithms. Michalski and Stepp [1983b] make use
of these data to demonstrate the effectiveness of their conceptual clustering
technique (see discussion in chapter 3); at the same time they demonstrate
that several standard numerical clustering techniques are not capable of re-
covering the correct categories. Thus, these data provide a means by which
to measure the performance of the categorization algorithm relative to other
clustering procedures.

Table 5.3 displays the property specifications for each of four different
soybean plant diseases;8 these data are derived from the data presented in
Stepp [1983]. In their original form, the data were listed simply as property
vectors of several instances. In order to provide a population large enough
for the application of the categorization algorithm, a property specification
for each species was derived by taking the union of the values of the features
for all instances of that species. For example, the "time" feature for disease
Rhizoctonia Root Rot has the specifed values of {3,4,5,6}; thus, each of these
values occurred in at least one property vector for an instance of that disease.9

Notice that these properties contain much more noise and are less modal
than either of the two previous examples of leaves and bacteria. Successful

8The letters A, B, C, and D of the top line are used for display in the program output.
9 Another modification was the deletion of constant features - features that took the
same value for all instances. In chapter 6 we show that constant features have no effect
on the categorization uncertainty measure U and thus can be removed from consider-
ation. Removing extra features reduces the number of feature subsets and makes the
categorization algorithm more efficient.
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categorization of this domain requires that the algorithm be insensitive to
unconstrained features and robust in its category evaluation.

Figure 5.5 displays the results of executing the categorization algorithm
with a A of .5. Notice that the correct categories, those corresponding to the
species, have been recovered. We should emphasize that the algorithm is not
told how many categories are present, unlike that of Michalski and Stepp
[1983b]. Rather, the algorithm discovers the appropriate number of classes
in its search for natural categories.'0 The fact that the categorization proce-
dure is capable of recovering the correct categories in this complex domain
- a domain in which other clustering techniques have failed - validates the
algorithm as a useful categorization technique.

5.3 Categorization competence

We have demonstrated the effectiveness of the categorization algorithm in
several domains. However, as shown in the leaves example, the algorithm
does not always converge to the correct solution, even in a domain where
it sometimes does produce the correct categorization. To understand the
behavior of the categorization procedure we need to analyze the competence
of the algorithm. The case we consider is when there are only two classes of
objects in a population. The study of this problem will also provide insight
into the behavior of the algorithm when there are more classes present. We
assume that the representation is class preserving, making the categorization
task possible. The issue is whether the algorithm will recover two categories
corresponding to the two classes.

Because we start with a categorization consisting of one category, the

10To be complete we should mention how the categorization of the soybean diseases varies
as we change A; the value of A can affect the categories that are recovered. In fact,
unlike the leaves or the bacteria example, there does exists another categorization that
is reliably recovered by the categorization algorithm. When the value of A is .65, the
recovered categorization consists of the three categories A, B, and {C,D}. This situation
indicates that there are two natural levels of categorization in this domain. In chapter
6 we explore the issue of multiple modal levels, where more than one level of constraint
is operating in a population. Our primary example in that chapter will be the bacteria
where the genera and the species provide multiple levels of constraint. However, because
we do not have any objective evidence of multiple levels within the soybean domain, we
present the multiple categorizations of the soybean diseases in Appendix B.
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A B D D
Diaporthe Charcoal Rhizoctonia Phytophthora

Stem Canker Rot Root Rot Rot
time {3,4,5,6} {3,4,5,6} {0,2,3,4} {0,1,2,3}
stand 0 0 {1,0} 1
precip 2 0 2 2
temp 1 {1,2) 0 (0,1}
hail 0 {0,1} {0,1} 0
years {1,2,3} {0,1,2,3} {0,1,2,3} {0,1,2,3}
damage {0,1} {2,3} 1 1
severity {1,2} 1 {1,2} {1,2}
treatment {0,1} {0,1} {0,1} {0,1}
germ {0,1,2} {0,1,2} {1,2} {0,1,2}
height 1 1 1 1
cond 1 1 0 1
lodging {0,1} {0,1} 0 0
cankers 3 0 1 {1,2}
color {0,1} 3 1 2
fruit 1 0 0 0
decay 1 0 1 {0,1}
mycelium 0 0 {0,1} 0
intern 0 2 0 0
sclerotia 0 1 0 0
pod 0 0 3 3
root 0 0 0 1

Table 5.3: The property specifications for
These data are derived from Stepp [1985].

four species of soybean plant diseases.
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Start: ID*-S0 A*-9 A*-8 D*-60 C*-33 C*-44 D*-58

A*-2:IC*-44 A*-9 A*-8 A*-2 ID*-60 D*-St C*-33 D*-50

D*-51:C*-44 A*-9 A-8 A*-2 ID*-51 D*-60 D*-58 C-33 D*-50

A*-4:IA*-4 C*-44 A*-9 A*-8 A*-2 ID*-51 D*-60 D*-58 C*-33 D*-50

D*-59:'A*-4 C*-44 A*-9 A*-8 A*-2 ID*-59 D*-51 D*-60 D*-58 C*-33 D*-50

D*-49:IA*-4 C*-44 A*-9 A*-8 A*-2 iD*-49 D*-59 D*-51 D*-60 D*-58 C*-33 D*-50

B*-16:IB*-16 A*-4 C*-44 A*-9 A*-8 A*-2 ID*-49 D*-59 D*-51 D*-60 D*-58 C-33 D*-50

A*-12:IA*-12 B*-16 A*-4 C*-44 A-9 A*-8 A*-2 iD*-49 D*-59 D*-51 D*-60 D*-58 C*-33 D*-50

D*-46: A*-12 B*-16 A*-4 C*-44 A-9 A*-8 A*-2 ID*-46 D*-49 D*-59 D-51 D*-60 D*-SS C*-33 D*-50

B*-22:ID*-46 D*-49 D*-59 D*-51 D*-60 D*-581B^-16 A*-2 B*-22 A*-8 IA*-4 C*-44 A*-9 A*-12
IC*-33 D*-50 I I

A*-1:1D*-46 D*-49 D*-59 D*-51 D*-60 D*-581B*-16 A*-2 B*-22 A*-8 IA*-1 A*-4 C*-44 A*-9 A*-12
IC*-33 D*-50 I I

__________________________________________________-_________-___________________________________________________

B*-17:ID^-46 D*-49 D*-59 D-51 0*-60 D*-581B*-17 B*-16 A*-2 B*-22 A-8 IA*-i A*-4 C*-44 A-9 A*-12
IC*-33 D*-50 I I

A*-3:ID*-46 D*-49 D*-S9 D*-51 D*-60 D*-58IB*-17 B*-16 A*-2 B*-22 A*-8 IA*-3 A*-I A*-4 C*-44 A*-9 A*-12
IC*-33 D*-50 i I

B*-23:IB*-25 B*-18 B*-26 B-24 1B*-23 A*-10 B*-21 A*-14 IC*-32 C*-40 C*-37 C*-38 IC*-36 C*-41 D*-47 D*-55
IB*-30 B*-20 B*-19 B*-17 IA*-l A*-11 A*-7 A*-6 A*-31C*-42 C*-34 C*-35 C*-43 iD*-50 C*-33 D*-56 C*-45
IB*-16 B*-22 B*-29 IA*-1 A*-4 C*-44 A*-9 A*-121 ID*-48 D*-46 D*-51 D*-60
I IA*-8 A*-13 A*-2 B*-28 I ID*-54 D*-52 D*-53 D*-59
I I I ID*-58 D*-49

A*-5:18*-25 B*-18 B*-26 IC*-32 C*-40 C*-37 IC*-36 C*-41 D*-47 IC*-44 B*-28 B*-23 IB*-21 A*-14 A*-15
iB*-24 B*-30 B*-20 IC*-38 C*-42 C*-34 ID*-55 D*-50 C*-33 IA*-8 IA*-5 A*-9 A*-3 A*-13
IB*-19 B*-17 B*-16 IC*-35 C*-43 ID*-56 C*-45 D*-48 I IA*-1 A*-11 A*-4
IB*-22 B*-29 I tD*-46 D*-51 D-60 I A*-10 A*-12 A*-7
I I ID*-54 D*-52 D*-53 I IA*-6 A*-2

ID*-59 D*-58 D*-49 I I

B*-20:B*-20 B-19 B*-17 ID*-48 D*-46 D*-51 IA*-11 A*-7 A*-6 A*-31C*-42 C*-34 C*-35 ID-50 C*-33 D*-56
B*-16 B*-22 B*-29 ID*-60 D*-54 D*-52 IA*-1 A*-4 C*-44 A-91C*-43 IC*-45
I ID*-53 D*-59 D*-58 IA*-12 A*-8 A*-13 I I

I ID*-49 1A*-2 B*-28 1 I

B*-30:IB*-30 B*-20 B*-19 ID*-48 D*-46 D*-51 IA*-11 A*-7 A*-6 A*-31C*-42 C*-34 C*-35 ID*-50 C*-33 D*-56
IB*-17 B*-16 B*-22 ID*-60 D*-54 D*-52 IA*-1 A*-4 C*-44 A*-91C*-43 IC*-45
IB*-29 ID*-53 D*-59 D*-58 IA*-12 A*-8 A*-13 I I
I ID*-49 IA*-2 B*-28 i I

D*-55:1B*-30 B*-20 B*-19 B*-17 IA*-11 A*-7 A*-6 A*-3 A*-i IC*-42 C*-34 C*-35 C*-43 ID*-55 D*-50 C*-33 D*-56
IB*-16 B*-22 B*-29 IA*-4 C*-44 A*-9 A*-12 A*-8I IC*-45 D*-48 D*-46 D-51
I IA*-13 A*-2 B*-28 I ID*-60 D*-54 D*-52 D*-53
I I i ID*-59 D*-58 D*-49

B*-24:tB*-24 B*-30 B*-20 B*-19 IA*-11 A*-7 A*-6 A*-3 A*-1 C*-42 C*-34 C*-35 C*-43 ID*-55 D*-50 C*-33 D*-56
IB^-17 B*-16 B*-22 B-29 IA*-4 C-44 A*-9 A*-12 A*-SI IC*-45 D*-48 D*-46 D*-S1
I IA*-13 A*-2 B*-28 I ID*-60 D*-54 D*-52 D-53
I f I ID*-59 D*-58 D*-49

- --- - --- - --- --* - - - -- - -_ - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 5.5: Execution of the categorization algorithm in the domain of soybean
plant diseases described in Table 5.3. For this example, the value of A is .5. The
categorization algorithm successfully recovers the species.

C*-41:11B*-28 B*-21 B*-23 B*-27
IB*-25 B*-18 B*-26 B*-24
iB*-30 B*-20 B*-19 B-17
IB*-16 B*-22 B*-29

IC*-41 C-33 C*-45 C*-36
IC*-44 C*-31 C*-39 C*-32
IC*-40 C*-37 C*-38 C*-42
IC*-34 C*-35 C*-43

ID*-57 D*-47 D*-55 D*-50
ID*-56 D*-48 D-46 D*-51
ID*-60 D*-54 D*-52 D*-53
ID*-59 D*-58 D*-49

IA*-5 A*-8 A*-14 A-15 A*-5
IA*-9 A*-3 A*-13 A*-1 A*-11
IA*-4 A*-10 A*-12 A*-7 A-6
IA*-2
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answer to the above question depends upon whether the algorithm will ever
split a category containing both classes into two categories approximating the
natural classes. By "approximating" we mean that the two new categories
formed are such that any new objects seen will be categorized according to
their true classes. Any mistakes caused by an inexact split would be corrected
when the objects are viewed again at a later time; because the observation
sequence contains an infinite number of repetitions of each object description
we know that every object will be encountered again. We refer to these
approximate categories as captivating categories: they capture all new objects
presented that are members of the appropriate class. Notice that whether a
category is captivating depends upon the hypothesis evaluation function (in
this case the uncertainty measure U) as well as the other categories present:
the evaluation function determines to which category an object is assigned.

For the moment, let us suppose that the only partition of the category
containing two classes that yields a better categorization than the original is
the partition that exactly separates the two classes. We wish to know whether
that one partition will be discovered. We assume that the original category is
formed by viewing an observation sequence which is unbiased in its distribu-
tion of objects from the two classes. Thus, we assume that we have a current
categorization consisting of one category of size 2n and that contained in the
single category are n objects of each of the two classes." We also assume
that only partitions of two equal sized categories are considered as possible
split categorizations; there are (n)/2 such partitions. If the hypothesis gen-
eration method proposes only a fixed number of partitions at each iteration,
then the probability of finding the one categorization corresponding to the
correct categories rapidly decreases as the single category size (2n) increases.
Because (2n)/2 > 2, the probability of finding the correct split during the
current iteration quickly vanishes to zero as new objects are added to the
single category. The exponential rate of increase in the number of partitions
guarantees this is true even if the number of partitions considered increases
polynomially with the size of the single category. (In the current implemen-
tation the number of partitions considered increased linearly with the size
of the category.) Thus, having a high probability of discovering the correct
class-separating categorization requires doing so before the single category

"At the conclusion of the analysis we will briefly consider the case where the single
category contains an unequal number of objects from the two classes.
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becomes "too large."
To further refine our analysis of the combinatorics of category formation,

it is necessary to make some stronger assumptions about the objects being
categorized. Let us consider the case of a modal world. Here, the object
classes and features are such that every feature takes on a different value for
each different class. Let F be the number of features in the current repre-
sentation. We continue to assume that there are only two natural classes
present; thus each feature takes on only two values over the entire popula-
tion. The uncertainty measure U has been constructed such that in a modal
world, the best possible categorization was that which separated the modal
classes. The question we wish to consider is what is the probability that the
categorization procedure presented above will indeed separate the two classes
present.

Let us define a k-overlap partition of a two-class category as a partition
where k objects of each class are in the wrong category. That is, both cate-
gories of the partition contain n - k objects of one class (called the primary
class) and k of the other. Thus, k < (n/2). Because each category contains
k objects that are members of a class of which there are a total of n objects,
there are ()2 k-overlap partitions of a category of 2n objects.'2

The importance of k-overlap partitions is their role in following propo-
sition, whose proof we postpone until we derive analytic expression for the
total uncertainty U of a k-overlap partition:

Proposition 5.1 In a modal world, the categories of a k-overlap partition
are captivating for their primary classes if k < (n/2) and if the uncertainty
measure U is used as the hypothesis evaluation function.

This proposition implies that the creation of a k-overlap partition of a modal
world is sufficient to guarantee that the modal classes will be recovered by
the categorization procedure: once the categories become captivating, all new
objects are categorized correctly and previous mistakes are corrected when
the incorrectly categorized objects are viewed again. Thus the probability of
correctly categorizing the modal world is equivalent to the probability that
a k-overlap partition is created by the splitting step of the categorization

12If k = (an) then the number of k-overlap partitions is ()2/2.
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procedure. To determine this probability we first need to derive an expres-
sion for the total uncertainty of a k-overlap partition relative to the total
uncertainty of the single category categorization.

The total uncertainty for the single category categorization is simple to
derive. Because there is only one category, there is no category uncertainty:
Uc = 0. Because each of the F features takes on only two values, and
because they are evenly distributed, the property uncertainty is equal to
F (-log log - log ) = F. Thus the total uncertainty U of the single
category categorization is (1- A)F.

The expressions for the k-overlap partition of the modal, two-class world
are more complicated. First, because Uc is non-zero when k $d O, we need
to compute the normalization factor V/ - the ratio between the property
uncertainty of the coarsest categorization (a single category) and the cate-
gory uncertainty of the finest categorization. We have already shown that
Up(Coarsest(Z)) is equal to F. It is easy to show that Uc(Finest(Z)) = log n:
If each object is its own category, then in this two class, modal world there are
two sets of n identical categories. Because objects of modal classes have iden-
tical properties, all subsets of features are equally diagnostic; each subset is
consistent with membership in n categories.1 3 Thus the category uncertainty
is log n for each subset of features, yielding an average category uncertainty
of the same value: Uc = log n.

To develop the expressions for Up and Uc for a k-overlap partition, we will
explicitly derive them for the case k = 1. The case k > 1 follows analogously.
First, consider the property uncertainty of the -overlap partition. For each
feature, there are two values present in each category; one value (that of the
primary class objects) occurs n - 1 times, the other value, only once. Thus
the property uncertainty (for each category, and therefore for their average)
is given by:

Up = F. [ 1 log (l) n- 1 log (n-l) (5.2)

or

"3 For the analysis presented here, we assume that the null set is not an allowed subset of
features. Otherwise, for that one subset, the number of categories consistent with the
(null) property description would be 2n.
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Up1 = F- log ( -- log n-1 (5.3)

The derivation of Uc is similar. Because we are considering a 1-overlap
partition of a modal world, any subset of the properties of an object (as before
we exclude the null set) is consistent with n - 1 objects in one category (the
correct "category") and 1 object in the other. Thus the category uncertainty
remains constant for all objects and for all subsets. Its value (and also the
value of Uc for the 1-partition, because Uc is simply the average of this
constant value) is given by:

Uc I = (5.4)
Uc1- |- log lo -1 (54)

The argument is the same for the general k-overlap partition, where k <
n/2. The complete expressions are:

Uck log + log( )] (5.6)
n k

Two properties of the above expressions are worth noting. First, Up = Uc =
O when k = 0.14 This situation is equivalent to an exact partition of the
single category into the two modal classes. By design, the total uncertainty
of a categorization that separates modal classes is zero.

Second, by taking the derivative of the above expressions with respect to
k, one can show that both of the above quantities achieve a maximum at
k = n/2; also, the total uncertainty increases monotonically as k increases
from zero to n/2. Thus, unsurprisingly, the total uncertainty of a k-overlap
partition increases as the class overlap of the categories increases and is max-
imized when exactly half the objects of each class are contained in each of the
two categories. However, stated in a different form, this result becomes im-
portant. Suppose we have a k-overlap partition where k < n/2; the inequality
assures that each category has a primary class to which it corresponds. Next,
suppose we view a new object. The fact that the total uncertainty increases

'4 More precisely the limk.o0 k log () = 0.
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as the degree of overlap increases implies that if we add that object to the
incorrect category - the category whose primary class does not correspond
to the class from which the new object was drawn - then we will increase
the total uncertainty U. Similarly, adding the new object to the correct cat-
egory will reduce total uncertainty. Therefore, to minimize total uncertainty
we will always add new objects to the category corresponding to their pri-
mary class. As such, we have now proven proposition 5.1: the categories of
a k-overlap partition of a modal world form a set of captivating categories
if k < n/2 and if the total uncertainty measure U is used as the hypothesis
evaluation function.

Using the above results we can now determine the probability that k-
overlap partition will be formed when categorizing a modal world. Let us
compute the ratio between the total uncertainty the split (the k-overlap par-
tition) and single category categorizations. Combining the above results and
including the necessary normalization term yields the following expression
for this ratio (referred to by p):

1 i n - -o
[= [1+ -A) log n -n log - n log (n - k)] (5.7)

p represents the decision function used in category splitting step (6) of the
categorization algorithm for the restricted case of two modal classes. If p
is less than 1.0 then the uncertainty of the split categorization is less than
the single category categorization and is thus to be accepted. Notice that p
increases with A. That is it is more difficult to split a category when the value
of A is high. This behavior is to be expected. Higher values of A cause the
uncertainty measure U to weight the category uncertainty Uc more heavily
than the property uncertainty Uc; coarse categorizations with few categories
are preferred over finer categorizations. Thus a higher value of A makes it
more difficult to accept a split categorization over a single category.

Using equation 5.7 we can compute the maximum k such that a k-overlap
partition has lower total uncertainty U than the single category categoriza-
tion. Table 5.4 lists the maximum k for different values of n and A; the
fractional below is the proportion of equal size partitions of a set of 2n ob-
jects that are k-overlap partitions for k less than or equal to the maximum.
For example, when there are 16 total objects (n = 8) and = .4, the maxi-
mum acceptable value of k is 2. Thus, k-overlaps of k E {0, 1, 2} have a lower
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n: 4 5 6 8 10 15 20Labda:5 

20
0.10 1 2 3 3 6 80.48571 0.20635 0.56710 0.61927 0.17890 0.46609 0.34307
0.20 1 1 1 2 3 5 70.48571 0.20635 0.08009 0.13193 0.17890 0.14311 0.11283
0.30 1 1 1 2 3 4 60.48571 0.20635 0.08009 0.13193 0.17890 0.02684 0.02564
0.40 0 1 1 2 2 40.02857 0.20635 0.08009 0.13193 0.02301 0.02684 0.00385
0.50 0 0 1 1 2 3

0.02857 0.00794 0.08009 0.01010 0.02301 0.00281 0.00385

O. iO 0~ 0 0 1 1 3 40.02857 0.00794 0.00216 0.01010 0.00109 0.00281 0.00036
0.70 0 0 0 1 1 2 30.02857 0.00794 0.00216 0.01010 0.00109 0.00015 0.00002
0.80 0 0 0 n o 20.02857 0.00794 0.00216 0.00016 0.00001 0.00000 0.00000
0.90 0 0 0 o 0.02857 0.00794 0.00216 0.00016 0.00001 0.00000 0.00000

Table 5.4: Maximum k such that the k-overlap partition has a lower uncertainty
U than the single category categorization. The fractional number below repre-
sents the proportion of equal sized partitions of the 2n objects that are k-overlap
partitions with k less than or equal to the maximum value.

uncertainty than the single category categorization. As indicated, this set of
partitions constitutes 13% of the all partitions of 2n objects into equal-sized
categories. Notice that for n > 15 the percentage of acceptable partitions is
almost zero for all but the lowest values of A. Thus, we begin to see that
category formation must occur before the initial category size (2n) becomes
greater than 20 or so.

Using the maximum k values, we can compute the probability of success
of the splitting step (6) of the categorization procedure. This probability
depends upon how many partitions of the population are evaluated in each
iteration of the algorithm; we let p represent the number of attempts. We
compute the incremental probability of success (incremental because it refers
to only one iteration of the procedure) by computing the probability that
none of the attempted partitions is a k-overlap partition of a sufficiently
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Increnental Success Probability Table

Hypotheses per iteration: 5

n:
Lambda:

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

4

0.96402

0.96402

0.96402

0.13492

0.13492

0.13492

0.13492

0.13492

0.13492

5

0.68512

0.68512

0.68512

0.68512

0.03906

0.03906

0.03906

0.03906

0.03906

Hypotheses per iteration: 10

n:
Lambda:

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Hypotheses

n:
Lambda:

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.99871

0.99871

0.99871

0.25164

0.25164

0.25164

0.25164

0.25164

0.25164

5

0.90085

0.90085

0.90085

0.90085

0.07659

0.07659

0.07659

0.07659

0.07659

per iteration: 20

1.00000

1.00000

1.00000

0.43996

0.43996

0.43996

0.43996

0.43996

0.43996

5

0.99017

0.99017

0.99017

0.99017

0.14731

0.14731

0.14731

0.14731

0.14731

Table 5.5: Probability of a successful split if 5, 10, or 20 attempts are considered.
This probability is for a single iteration.
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6

0.98480

0.34123

0.34123

0.34123

0.34123

0.01078

0.01078

0.01078

O.0107

6

0.99977

0.56602

0.56602

0.56602

0.56602

0.02144

0.02144

0.02144

0.02144

8

0.99200

0.50710

0.50710

0.50710

0.04950

0.04950

0.04950

0.00078

0.00078

8

0.99994

0.75705

0.75705

0.75705

0.09654

0.09654

0.09654

0.00155

0.00155

10

0.62676

0.62676

0.62676

0.10989

0.10989

0.00545

0.00545

0.00005

0.00005

10

0.86069

0.86069

0.86069

0.20771

0.20771

0.01088

0.01088

0.00011

0.00011

15

0.95662

0.53802

0.12718

0.12718

0.01399

0.01399

0.00073

0.00001

0. 00000

15

0.99812

0.78657

0.23818

0.23818

0.02779

0.02779

0.00145

0.00003

0.00000

20

0.87765

0.45043

0.12181

0.01909

0.01909

0.00180

0.00010

0.00000

0.00000

20

0.98503

0.69797

0.22879

0.03782

0.03782

0.00359

0.00019

0.00001

0.00000

6

1.00000

0.81166

0.81166

0.81166

0.81166

0.04241

0.04241

0.04241

0.04241

8

1.00000

0.94097

0.94097

0.94097

0.18376

0.18376

0.18376

0.00310

0.00310

10

0.98059

0.98059

0.98059

0.37228

0.37228

0.02164

0.02164

0.00022

0.00022

15

1.00000

0.95445

0.41963

0.41963

0.05481

0.05481

0.00290

0.00006

0.00000

20

0.99978

0.90878

0.40523

0.07420

0.07420

0.00717

0.00039

0.00001

0.00000
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low k. Assuming an independent sampling of partitions, the probability of
failure is simply the proportion of partitions that do not satisfy maximum
k-overlap condition multiplied t times. The probability of success is then one
minus this failure rate. Table 5.5 lists values of the incremental probability
of a successful a split as a function of n, A and i. For example, if there are
n = 8 objects in each class, if A has been set to .5, and if i = 10 partitions
are attempted, then the incremental probability of success is 0.0965. It is
important to note that because the probability of failure is the repeated
product of a number less than one - the percentage of partitions that overlap
too many objects of the modal classes - the incremental probability of
success can be made arbitrarily close to unity by increasing t.

To determine whether a single category categorization will at any point
be split into k-overlap partition of two categories, we compute the probability
that every iteration through the algorithm fails to split the single category.
Let us define pf(n, A, i) to be the probability of failing to split a category in
a given iteration; pf is equal to one minus the probability of success. Then,
assuming independence between iterations, the probability of never succeed-
ing in splitting the single category categorization is simply the product of the
probability of failing at each step. Because the number of objects increases
by one with each iteration of the categorization procedure, but our equations
are only defined for an even total number of objects (2n) we approximate
this product as follows:

Prob. of success Ino0,,, = 1 - 'I [p (n, A, t) pf(n + 1, A, )] (5.8)
no

where no is the initial n, equal to half the size of the initial category. It can be
shown that this approximation is conservative in that it under-estimates the
probability of success. Thus, we can finally compute the probability that the
incremental hypothesis generation method will correctly categorize a modal
world of two classes.

Equation 5.8 allows us to compute the probability of a successful cate-
gorization for given starting no, A, and t; the results are displayed in Table
5.6. Several observations should be made about about these results. First,
when the starting no is small, and when p equals 10 or 20, the probability
of success is quite high for most A. (In the current implementation, no = 4
and i averages about 10.) Second, the success probability increases with it,
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Success Probability Table

Hypotheses per teration: 5

Star-t n: 4 5
Lanbda:

0.10 1.00000 1.00000

0.20 1.00000 1.00000

0.30 1.00000 1.00000

0.40 0.99937 0.99768

0.50 0.89540 0.87417

0.60 0.58400 0.49957

0.70 0.33660 0.20197

0.80 0.22838 0.07178

0.90 0.22449 0.06709

Hypotheses

Start n:
Lambda:

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Hypotheses

Start n:
LaMbda:

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

6

1.00000

1.00000

1.00000

0.98883

0.80123

0.47356

0.16048

0.02353

0.01860

per iteration: 10

4

1.00000 1

1.00000 1

1.00000 1

1.00000 0

0.98906 0

0.82695 0

0.55990 0

0.40460 0

0.39858 0

per iteration: 20

4

1.00000 1

1.880000 1

1.00000 1

1.00000 1

0.99988 0

0.97005 0

0.80632 0

0.64550 0

0.63829 a

5

.00000

.00000

.00000

.99999

.98417

.74957

.36314

.13840

.12969

5

.00000

.80000

.00000

.00000

.99975

.93729

.59441

.25765

.24256

6

1.00000

1.00000

1.00000

0.99988

0.96049

0.72286

0.29521

0.04650

0.03686

6

1.00000

1.00000

1.00000

1.00000

0.99844

0.92320

0.50327

0.09084

0.07235

Table 5.6: Probability of successful categorization of the two class modal world,
for different starting values of n and different values of A and M.
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8

1.00000

1.00000

0.99986

0.95377

0.57333

0.24747

0.10193

0.00635

0.00134

10

1.00000

1.00000

0.99859

0.81115

0.47836

0.17659

0.01733

0.00511

0.00009

15

1.00000

0.99841

0.90314

0.49557

0.14445

0.03489

0.00220

0.00010

0.00000

20

0.96393

0.60276

0.17584

0.07944

0.02729

0.00250

0.00013

o.onnno

0.00000

8

1.00000

1.00000

1.00000

0.99786

0.81795

0.43371

0.19346

0.01266

0.00267

8

1.00000

1.00000

1.00000

1.00000

0.96686

0.67931

0.34950

0.02515

0.00533

10

1.00000

1.00000

1 .00000

0.96434

0.72789

0.32200

0.03436

0.01020

0.00019

10

1.00000

1.00000

1.00000

0.99873

0.92596

0.54031

0.06754

0.02030

0.00037

15

1.00000

1.00000

0.99062

0.74555

0.26803

0.06856

0.00439

0.00020

0.oo00000

15

1.00000

1.00000

0.99991

0.93526

0.46423

0.13242

0.00877

0.00040

0.00000

20

0.99870

0.84220

0.32077

0.15257

0.05384

0.00499

0.00026

0.00001

0.00000

20

1.00000

0.97510

0.53864

0.28186

0.10479

0.00995

0.00052

0.00001

0.00000

_ __ ____ __



confirming our earlier statement that the probability of success can be raised
by increasing yu. Finally, as no becomes large, the probability of success drops
rapidly. For example, for A = .6 and ,u = 10, the probability of success drops
from 32% to 7% as no increases from 10 to 15.

To conclude our analysis, we consider two cases that deviate slightly from
the previous conditions. First, is the case of more than two modal classes.
Suppose there are 3 objects of each of four different classes (A, B, C, D) for
a total of 12 objects. In the previous analysis, this situation corresponded to
the case n = 6. Referring to table 5.4, we note that for A = .6 only the 0-
overlap partition is acceptable; there is only 1 such partition, for a probability
of .002. In the new case of 4 classes, however, there are 3 possible partitions
({AB, CD}, {AC, BD}, {AD, BC}) that cause no overlap between classes.
Each of these partitions yields a reduction in the property uncertainty with
no corresponding increase in category uncertainty; each has a lower total
uncertainty than the single category categorization. Thus, with more classes
present the task of initially forming categories is easier.

The second variation is the case where the single category contains an un-
equal number of objects from the two classes; say n of one class of objects and
m of another, where n > m. In this case the question arises of whether the
observer attempts to form unequal sized partitions. Although doing so will
permit him to possibly recover the exact partition, the increase in the possi-
ble number of partitions - the number of partitions is now on the order of

2 n+m as opposed to the previous case of 2n - makes such a strategy unlikely
to succeed. If, however, the observer only attempts equal sized partitions,
then even the best possible partition will result in n - m objects being in
the wrong category. Thus, a smaller percentage of the partitions will be pre-
ferred over the single category than the case where there is an equal number
of objects from each category. Recovering categories corresponding to the
natural classes is more difficult when the objects are unevenly distributed in
the initial categorization.

To summarize, we have determined the theoretical competence of the cat-
egorization procedure for the ideal case of a two-class, modal world. In par-
ticular, we have shown that the probability of successful categorization can
be made arbitrarily high by increasing the number of partitions considered at
each iteration (). Also, for values of p used in the current implementation
and for a wide range of A, the probability of success has been shown to be
quite high. Finally, we have argued that if more than two classes of objects
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are present, the formation of categories is easier (for the same number of
total objects) because a larger percentage of the possible partitions satisfy
the k-overlap conditions.

5.4 Improving performance: Internal
re-categorization

In the previous section we demonstrated that given a modal world, the prob-
ability of a successful categorization is high. However, often the probability
is less than one. Also, real data is not purely modal, making categoriza-
tion formation more difficult; noise features mask category structure. Thus
we can expect errors of the form shown in Figure 5.2: two classes grouped
together in one category.

The results of the previous section show that we can reduce the proba-
bility of this type of error by increasing - the number of category splits
attempted during each iteration of the categorization procedure. However,
the evaluation of a partition is an expensive computation.l 5 Also, as n be-
comes large, the proportion of acceptable partitions is so small that we would
require /u to be huge before a reasonable chance of success was attained. This
sparse distribution of helpful partitions in the combinatoric space of possi-
ble partitions resulted in the poor performance of the random partitioning
algorithm of Frotier and Solomon [1966]. Thus we would prefer a better
solution.

One such possibility is simply re-categorizing each category in an incre-
mental fashion. Consider again the last categorization shown in Figure 5.3.
Let us assume that no split of any of the single class categories would be
accepted, as is always true in the modal case. If we were to re-categorize
each category independently, forming a new observation sequence for each,
then there is some (empirically shown to be high) probability that the poplar
and the birch leaves would be properly separated. By repeated application of
15In the current implementation the decision as to whether split a category is made lo-

cally. The program considers each category as its own population, and evaluates the
proposed split relative to the single category categorization. The normalization factor
used, however, is the one in based upon the total population. Otherwise, it would have
the effect of scaling A. This local decision can be shown to be approximately equivalent
to deciding each split by considering the entire categorization of objects.
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this procedure, the probability of a correct classification can again be made
arbitrarily high.

Figures 5.6 and 5.7 illustrate an example of the implementation of such
a re-categorization procedure. Figure 5.6 displays the result of executing
the categorization procedure on a population of 80 leaves, 16 each of the
species oak, maple, elm, birch, and poplar. The last categorization listed
shos the resultant categorization formed after sequentially viewing the en-
tire'population.16 In this example, the birch and the elm leaves have not been
separated into distinct categories. However, we can re-execute the catego-
rization procedure using the combined category to form a new observation
sequence; when we do so, the categorization procedure correctly separates
the classes (Figure 5.7).17 Though not shown, we should mention that at-
tempts to internally re-categorize the other categories do not yield any new
divisions. The species categories approximate modal classes; any partition
of the species produces a categorization with greater total uncertainty.

At this point we conclude our discussion of methods of improving the
performance of the categorization procedure. There are two reason not to
continue exploring methods of improving the statistical performance of the
algorithm. First, the efficiency issues involved are not directly related to the
question object categorization, but are more questions of statistical sampling;
for example, the current implementation was improved by cycling through
the objects sequentially, instead of generating an observation sequence by
randomly sampling the population. Second, and more importantly, improv-
ing the behavior of the categorization procedure by increasing its efficiency
does not address the fundamental question underlying object categorization:
what information can be provided to the observer to facilitate the recovery of
natural object categories. In the conclusion of this thesis, when we consider
potential extensions to this work, we will return to the issue of recovering

' 6 Notice that several oak leaves are missing. To make the implementation of the catego-
rization procedure more robust, categories that become too small are deleted. Because
every object is guaranteed to be repeated in the observation sequence, these deleted ob-
jects will be categorized again. Also, one birch leaf is contained in the poplar category.
This particular object was mistakenly categorized early in the observation sequence.
When it is viewed again, - the infinite observation sequence guarantees that it will be
seen repeatedly - the mistake would be corrected.

1 7The normalization coefficient is not re-computed when re-categorizing the single cate-
gory. Its purpose it to normalize Up and Uc with respect to entire population.
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Start:IMAPLE-23 POPLAR-51 BIRCH-69 BIRCH-72 POPLAR-60 BIRCH-70 BIRCH-67

ELM-43:1BIRCH-67 BIRCH-69 POPLAR-51 POPLAR-60 IELM-43 MAPLE-23 BIRCH-70 BIRCH-72
E..- RH. _ . . . . . LAR_____ . . . L.. . . . E.............. ..........- .... . . . . . _______. E....-MA. ..... _ B....- B -

ELM-33:IBIRCH-67 BIRCH-69 POPLAR-51 POPLAR-60 IELM-33 ELM-43 MAPLE-23 BIRCH-70 BIRCH-72

POPLAR-53:IPOPLAR-53 BIRCH-67 BIRCH-69 POPLAR-5I POPLAR-60 IELM-33 ELMH-43 MAPLE-23 BIRCH-70 BIRCH-72

POPLAR-62:IPOPLAR-62 POPLAR-53 BIRCH-67 BIRCH-69 POPLAR-51 IELM-33 ELM-43 MAPLE-23 BIRCH-70 BIRCH-72
IPOPLAR-60 I

MAPLE-28:IPOPLAR-62 POPLAR-53 BIRCH-67 BIRCH-69 POPLAR-SI IMAPLE-28 ELM-33 ELM-43 MAPLE-23 BIRCH-70 BIRCH-72
IPOPLAR-60 I

OAK-6:IPOPLAR-62 POPLAR-53 BIRCH-67 BIRCH-69 POPLAR-5I IOAK-6 MAPLE-28 ELM-33 ELM-43 MAPLE-23 BIRCH-70
IPOPLAR-60 IBIRCH-72

ELM-44:IPOPLAR-62 POPLAR-53 BIRCH-67 IOAK-6 MAPLE-28 MAPLE-23 ELM-44 IBIRCH-72 ELM-43 BIRCH-70 ELM-33
iBIRCH-69 POPLAR-51 POPLAR-60

OAK-13:IPOPLAR-6£ POPLAR-53 BIRCH-67 IOAK-13 OAK-6 MAPLE-28 MAPLE-23 IBIRCH-72 ELM-43 BIRCH-70 ELM-33
IBIRCH-69 POPLAR-51 POPLAR-60 IELM-44

* * *

BIRCH-80:IPOPLAR-64 POPLAR-62 POPLAR-53 IMAPLE-17 OAK-II OAK-13 OAK-6 IBIRCH-80 BIRCH-75 ELM-36 BIRCH- .
IBIRCH-67 BIRCH-69 POPLAR-51 IMAPLE-28 MAPLE-23 ELM-44 IELM-43 BIRCH-70 ELM-33
IPOPLAR-60 I I

MAPLE-26:IPOPLAR-64 POPLAR-62 IBIRCH-80 BIRCH-75 ELM-36 IMAPLE-26 MAPLE-PLE-17 IELM-44 OAK-6 OAK-13
IPOPLAR-53 BIRCH-67 IBIRCH-72 ELN-43 BIRCH-70 IMAPLE-23 MAPLE-28 IOAK-11
IBIRCH-69 POPLAR-51 IELM-33
IPOPLAR-60 I

BIRCH-68:IPOPLAR-64 POPLAR-62 IBIRCH-68 BIRCH-80 IMAPLE-26 MAPLE-17 JELM-44 OAK-6 OAK-13
IPOPLAR-53 BIRCH-67 IBIRCH-75 ELM-36 BIRCH-72 IMAPLE-23 MAPLE-28 IOAK-il
IBIRCH-69 POPLAR-51 IELM-43 BIRCH-70 ELM-33 I
IPOPLAR-60 I I

OAK-16:IPOPLAR-S9 POPLAR-54 IELN-46 ELM-34 ELM-40 IMAPLE-29 MAPLE-20 IOAK-16 OAK-8 ELM-38
IPOPLAR-52 POPLAR-64 IBIRCH-68 BIRCH-80 IMAPLE-18 HAPLE-22 IELM-44 OAK-6 OAK-13
IPOPLAR-62 POPLAR-53 IBIRCH-75 ELM-36 BIRCH-72 IMAPLE-26 MAPLE-17 IOAK-l1
IBIRCH-67 BIRCH-69 IELM-43 BIRCH-70 ELM-33 IMAPLE-23 MAPLE-28 I
IPOPLAR-5I POPLAR-60 I I I

MAPLE-25:IPOPLAR-59 POPLAR-54 IELM-46 ELM-34 ELN-40 IMAPLE-25 MAPLE-29 IOAK-16 OAK-8 ELM-38
IPOPLAR-52 POPLAR-64 IBIRCH-68 BIRCH-80 IMAPLE-20 MAPLE-18 IELM-44 OAK-6 OAK-13
IPOPLAR-62 POPLAR-53 IBIRCH-75 ELM-36 BIRCH-72 IMAPLE-22 MAPLE-26 IOAK-il
IBIRCH-67 BIRCH-69 IELM-43 BIRCH-70 ELM-33 IMAPLE-17 MAPLE-23 I
IPOPLAR-51 POPLAR-60 I IMAPLE-28 I

ELM-47:IPOPLAR-59 POPLAR-54 IELM-47 ELM-46 ELM-34 IMAPLE-25 NAPLE-29 IOAK-16 OAK-8 ELM-38
IPOPLAR-52 POPLAR-64 IELM-40 BIRCH-68 BIRCH-80 INAPLE-20 MAPLE-18 IELM-44 OAK-6 OAK-13
IPOPLAR-62 POPLAR-53 IBIRCH-75 ELM-36 BIRCH-72 IMAPLE-22 MAPLE-26 iOAK-l
IBIRCH-67 BIRCH-69 IELM-43 BIRCH-?O ELM-33 IMAPLE-I7 HAPLE-23 I
iPOPLAR-51 POPLAR-60 I !MAPLE-28 I

OAK-14:IPOPLAR-63 POPLAR-61 IELM-41 BIRCH-76 BIRCH-77 IMAPLE-32 MAPLE-27 IOAK-14 OAK-S OAK-7 OAK-2
IPOPLAR-56 POPLAR-55 IELM-39 BIRCH-71 ELM-42 IMAPLE-30 MAPLE-31 IOAK-10 OAK-3 OAK-15
IPOPLAR-50 POPLAR-57 IELM-45 ELM-37 ELM-35 IMAPLE-I9 MAPLE-21 IOAK-12 OAK-9 OAK-I OAK-16
IPOPLAR-58 POPLAR-49 IBIRCH-79 BIRCH-74 ELM-48 IMAPLE-24 MAPLE-25 IOAK-II OAK-4 OAK-6
IPOPLAR-59 POPLAR-54 IBIRCH-66 BIRCH-78 IMAPLE-29 MAPLE-20 I
IPOPLAR-52 POPLAR-64 IBIRCH-65 BIRCH-73 ELM-47 IMAPLE-18 MAPLE-22 I
IPOPLAR-62 POPLAR-53 IELM-46 ELM-34 ELM-40 IMAPLE-26 MAPLE-17 1
IBIRCH-69 POPLAR-51 IBIRCH-68 BIRCH-80 IMAPLE-23 MAPLE-28 I
IPOPLAR-60 IBIRCH-75 ELN-36 BIRCH-72 I I
.. I IELM-43 BIRCH-70 ELM-33 I I

Figure 5.6: Another example of the final categorization yielding a category con-
taining two classes.
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Resume:lBIRCH-75 BIRCH-69 BIRCH-70 ELM-35 BIRCH-74 ELM-38 ELM-45

8IRCH-73:IBIRCH-73 BIRCH-75 BIRCH-69 BIRCH-70 ELM-35 BIRCH-74 ELM-38 ELM-45

ELM-34:IELM-34 BIRCH-73 BIRCH-75 BIRCH-69 BIRCH-70 ELM-35 BIRCH-74 ELM-38 ELM-45

ELM-36:IBIRCH-75 BIRCH-73 BIRCH-70 BIRCH-74 BIRCH-69 IELM-38 ELM-35 ELM-36 ELM-45 ELM-34

BIRCH-71:IBIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 BIRCH-74 IELM-38 ELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-69 

ELM-33:IBIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 BIRCH-74 IELM-33 ELM-38 ELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-69 

ELM-42:IBIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 BIRCH-74 IELM-42 ELM-33 ELM-38 ELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-69 

BIRCH-67:IBIRCH-67 BIRCH-71 IRCH-75 BIRCH-73 BIRCH-70 IELM-42 EtLM-33 ELM-38 ELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-74 BIRCH-69 I

ELM-44:IBIRCH-6 BIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 IELM-44 ELM-42 ELM-33 ELM-38 ELM-35 ELM-36 ELM-45
IBIRCH-74 BIRCH-69 JELM-34

ELM-41:IBIRCH-67 BIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 IELM-41 ELM-44 ELM-42 ELM-33 ELM-38 ELM-35 ELM-36
)BIRCH-74 BIRCH-69 IELM-45 ELM-34

...............................................................................................................

ELM-40:IBIRCH-67 BIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 JELM-40 ELM-41 ELM-44 ELM-42 ELM-33 ELM-38 ELM-35
IBIRCH-74 BIRCH-69 IELM-36 ELM-45 ELM-34

BIRCH-80:IBIRCH-80 BIRCH-67 BIRCH-71 BIRCH-75 BIRCH-73 IELM-40 ELM-41 ELM-44 ELM-42 ELM-33 ELM-38 ELM-35
IBIRCH-70 BIRCH-74 BIRCH-69 IELM-36 ELM-45 ELM-34

BIRCH-72:IBIRCH-72 BIRCH-80 BIRCH-67 BIRCH-71 BIRCH-75 JELM-40 ELM-41 ELM-44 ELM-42 ELM-33 ELM-38 ELM-35
IBIRCH-73 BIRCH-70 BIRCH-74 BIRCH-69 iELM-36 ELM-45 ELM-34

BIRCH-78:IBIRCH-78 BIRCH-72 BIRCH-80 BIRCH-67 BIRCH-71 IELM-40 ELM-41 ELM-44 ELM-42 ELM-33 ELM-38 ELM-35
IBIRCH-75 BIRCH-73 BIRCH-70 BIRCH-74 BIRCH-69 IELM-36 ELM-45 ELM-34

BIRCH-79:IBIRCH-79 BIRCH-78 BIRCH-72 BIRCH-80 BIRCH-67 IELM-40 ELM-41 ELM-44 ELM-42 ELM-33 ELM-38 ELM-35
ISIRCH-71 BIRCH-75 BRCH-73 BIRCH-70 BIRCH-74 JELM-36 ELM-45 ELM-34
IBIRCH-69 I

BIRCH-68:IBIRCH-68 BIRCH-79 BIRCH-78 BIRCH-72 BIRCH-80 JELM-40 ELM-41 ELM-44 ELM-42 ELM-33 ELM-38 ELM-35
IBIRCH-67 BIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 IELM-36 ELM-45 ELM-34
IBIRCH-74 BIRCH-69 

ELM-39:IBIRCH-68 BIRCH-79 BIRCH-78 BIRCH-72 BIRCH-B80 IELM-39 ELM-40 ELM-41 ELM-44 ELM-42 ELM-33 ELM-38
IBIRCH-67 BIRCH-71 BIRCH-7S BIRCH-73 BIRCH-70 IELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-74 BIRCH-69 

ELM-47:IBIRCH-68 BIRCH-79 BIRCH-78 BIRCH-72 BIRCH-80 IELM-47 ELM-39 ELM-40 ELM-41 ELM-44 ELM-42 ELM-33
IBIRCH-67 BIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 IELM-38 ELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-74 BIRCH-69 I

- -- - - -- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -------------,, - , , , , ,, , , , , , ,

ELM-46:IBIRCH-68 BIRCH-79 BIRCH-78 BIRCH-72 BIRCH-80 IELM-46 ELM-47 ELM-39 ELM-40 ELM-41 ELM-44 ELM-42
IBIRCH-67 BIRCH-71 BIRCH-75 BIRCH-73 BIRCH-70 IELM-33 ELM-38 ELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-74 BIRCH-69 I

BIRCH-66:IBIRCH-66 BIRCH-68 BIRCH-79 BIRCH-78 BIRCH-72 )ELM-46 ELM-47 ELM-39 ELM-40 ELM-41 ELM-44 ELM-42
IBIRCH-O80 BIRCH-67 BIRCH-71 BIRCH-75 BIRCH-73 IELM-33 ELM-38 ELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-70 BIRCH-74 BIRCH-69 I

ELM-37:IBIRCH-66 BIRCH-68 BIRCH-79 BIRCH-78 BIRCH-72 IELM-37 ELM-46 ELM-47 ELM-39 ELM-40 ELM-41 ELN-44
IBIRCH-80 BIRCH-67 BIRCH-71 BIRCH-75 BIRCH-73 )ELM-42 ELM-33 ELM-38 ELM-35 ELM-36 ELM-45 ELM-34
IBIRCH-70 BIRCH-74 BIRCH-69 I

Figure 5.7: Re-categorizing the single category containing the birch and elm
leaves of Figure 5.6.
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natural categories.
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Chapter 6

Multiple Modes

The Principle of Natural Modes states that objects in the natural world
cluster in dimensions important to the interaction between objects and their
environment. However, clustering may occur at many levels: mammals and
birds represent one natural grouping; cats and dogs another. This hierarchy
of clusters - multiple modal levels - occurs because of hierarchical processes
involved in the formation of objects; a "dog" may be described as a composite
of the processes that create mammals and those that distinguish a dog from
other mammals. Each process imposes a regularity on the objects, making
inferences about the properties of these objects possible. For example, all
mammals are warm-blooded and have hair.

We have claimed that the goal of the observer is to recover categories of
objects corresponding to natural clusters. But this task is complicated by the
presence of multiple modal levels. The properties constrained by one process
may be independent of those constrained by another. Thus, if the different
properties of objects encoded by the observer are constrained by different
processes, then the category structure reflected in one set of properties is
masked by other sets. The purpose of this chapter is to explore these issues.

We present a solution of the multiple mode problem that first entails iden-
tifying when multiple modes are present, and then incrementally segregating
the population according to processes. We will continue to assume that ob-
jects are represented by property vectors and that the total categorization
uncertainty U is used to measure the degree to which a categorization reflects
the natural modes. U is defined as follows:
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U(Z) = (1 - A) Up(Z) + A r(Z) Uc(Z)

where Up is the uncertainty about the properties of an object once its cat-
egory is known, Uc is the average uncertainty of the category to which an
object belongs, r7 is a normalization coefficient between Up and Uc, and A is a
free parameter representing the desired trade-off between the two uncertain-
ties. (See chapter 4 for a complete definitions of these terms.) In this chapter
we will consider the interaction between A and the categories recovered by
the observer. Also, the behavior of the incremental categorization algorithm
presented in chapter 5 will be used to validate the theory developed here.

Our first step is to identify a null hypothesis, a case in which no modal
structure is present. Being able to detect an unstructured situation will
permit us to develop a strategy that relies on searching for sub-processes
until no further structure can be found. Next, using both a simulation and
a real example of a multiple mode population, we will examine the results
of attempting to categorize such a set of objects; these results will suggest a
method for separating modes according to processes. Finally, we will develop
a method of evaluating the contribution of a feature to the recovery of a
particular modal level.

6.1 A non-modal world

Natural modes are an appropriate basis for categorization because they rep-
resent classes of objects which are redundant in important properties. That
is, from the knowledge of some properties of an object, the observer can infer
a natural mode category that permits him to make inferences about other
object properties. In an ideally modal world, the properties of interest to the
observer - those he encodes about an object - are completely predictive:
knowledge of one property permits predictions about all others.

In this section, however, we wish to define an unstructured world, a world
with no natural modes. In such a world, the properties of objects are indepen-
dent. Knowledge of some properties about an object provides no information
about any of the other properties.' We refer to this world as a non-modal

1We are assuming that the properties encoded by the observer can be independent. A
trivial counter example is when one property is the length of an object and another is
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world. Our goal is to identify such non-modal worlds and to understand the
behavior of the categorization algorithm and of the total uncertainty measure
U when operating in such a world.

6.1.1 Categorizing a non-modal world: an example
We begin with a simulation of a non-modal world. We construct a population
of 64 objects, described by six, independent, uniformly distributed, binary
features. In this world an object is referred to as NULL-8, NULL-24, etc.;
the property vector attached to each object is generated randomly from the
the 26 = 64 possibilities. These objects and features satisfy the non-modal
condition in that knowledge about some of the properties of an object pro-
vides no information about any other properties. Next, we categorize these
objects using an incremental categorization procedure that implements the
total uncertainty measure U as a categorization evaluation function. (For
a detailed discussion of the operation of the categorization algorithm see
chapter 5.) The dynamic output of the categorization system is displayed in
figures Figure 6.1 and Figure 6.2.

Figure 6.1 presents the results of executing the categorization algorithm
with a value of A of .55. Notice that categories continue to split into smaller
categories as new objects are added; the last categorization shown contains
only categories yet too small to be subdivided by the categorization algo-
rithm. In the limit, the finest categorization - the categorization in which
each object is its own category - would be selected. Because reducing the
value of A causes the categorization algorithm to produce only finer cat-
egorizations, we know that for all A < .55, the finest categorization will
be recovered. Figure 6.2 displays the results of running the categorization
algorithm on the same population but with a A of .6. Now, the stable cat-
egorization is one in which all objects are in a single category, the coarsest
categorization possible. Reasoning as before, we know that for A > .6 only

square of the length. A more subtle case is when one property is the area covered by an
object, and another is the perimeter. (The perimeter must be greater than or equal to
2v/A'.) An interesting question is how the observer determines whether redundancy is
caused by natural modes or logical dependence. A simple, though unexplored, solution
relies on the fact that logical redundancies must be true for all objects, whereas modal
dependencies hold only within the particular mode.
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Start:INULL-8 ULL-47 ULL-14 NULL-25 NULL-28 NULL-1 NULL-30

NULL-39:INULL-25 NULL-28 NULL-14 NULL-30 INULL-15 NULL-47 NULL-8 NULL-39

NULL-3:INULL-25 NULL-28 NULL-14 NULL-30 INULL-3 NULL-IS NULL-47 NULL-8 NULL-39

NULL-53:INULL-25 NULL-28 NULL-14 NULL-30 INULL-53 NULL-3 NULL-15 NULL-47 NULL-8 NULL-39

NULL-4:INULL-25 NULL-28 NULL-14 NULL-30 INULL-4 NULL-53 NULL-3 NULL-15 NULL-47 NULL-8
I INULL-39

NULL-32:INULL-32 NULL-25 NULL-28 NULL-14 NULL-30 INULL-4 NULL-53 NULL-3 NULL-15 NULL-47 NULL-8
tI INULL-39

NULL-63:INULL-32 NULL-25 NULL-28 NULL-14 INULL-5 NULL-39 NULL-53 NULL-63 INULL-47 NULL-3 NULL-4 NULL-8
INULL-30 I I

NULL-I:INULL-32 NULL-25 NULL-28 NULL-14 INULL-29 NULL-57 NULL-S9 NULL-15 INULL-I NULL-19 NULL-I2 NULL-47
INULL-30 INULL-39 NULL-53 NULL-63 INULL-3 NULL-4 NULL-8

NULL-31:INULL-32 NULL-25 NULL-28 INULL-1 NULL-I9 NULL-12 INULL-31 NULL-15 NULL-39 INULL-63 NULL-29 NULL-57
INULL-14 NULL-30 INULL-47 NULL-3 NULL-4 INULL-53 INULL-59
I INULL-8 I I

NULL-7:INULL-32 NULL-25 INULL-31 NULL-15 INULL-63 NULL-29 INULL-4 NULL-12 INULL-7 NULL-47
INULL-28 NULL-14 INULL-39 NULL-53 INULL-57 ULL-59 INULL-8 NULL-19 INULL- NULL-3
INULL-30 I I

NULL-48:INULL-32 NULL-25 INULL-63 NULL-29 INULL-4 NULL-12 iNULL-53 NULL-39 INULL-15 NULL-3
INULL-28 NULL-14 INULL-57 ULL-59 INULL-8 NULL-19 INULL-48 NULL-47 INULL-I NULL-7
INULL-30 I I INULL-31 I

-----------------------------------............................................................................

NULL-5:INULL-42 INULL-61 INULL-5 INULL-62 INULL-39 INULL-4 NULL-81NULL-36
INULL-32 INULL-63 INULL-15 INULL-21 INULL-47 INULL-12 INULL-51
INULL-25 INULL-29 INULL-3 NLL-IINULL-3I INULL-48 INULL-16 INULL-35
INULL-28 INULL-57 INULL-7 INULL-23 iNULL-53 INULL-52
INULL-14 INULL-59 I I INULL-19
INULL-30 I I I INULL-24

NULL-20:INULL-6 INULL-64 INULL-4 INULL-56 INULL-60 INULL-23 INULL-30 INULL-42 INULL-33 INULL-51
INULL-10 INULL-39 INULL-8 INULL-40 INULL-57 INULL-21 INULL-14 INULL-58 INULL-I9 INULL-20
INULL-9 INULL-47 INULL-12 INULL-34 INULL-62 INULL-29 INULL-32 INULL-25 INULL-27 INULL-55
INULL-13 INULL-48 INULL-16 INULL-50 INULL-61 INULL-17 INULL-28 INULL-44 INULL-35 1NULL-24
INULL-5 INULL-53 I INULL-52 INULI-59 INULL-31 I I I
INULL-15 I INULL-36 INULL-63 I 

INULL-3 1 I I

INULL-1 I i I
INULL-7 I I I I

Figure 6.1: The output of the categorization system when categorizing an inde-
pendent world. For this execution the value of A is .55. The categories generated
continually split once they are large enough to be subdivided by the categorization
algorithm. In the limit the preferred categorization consists of each object being
its own category.
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-----------------------------------------------------.-----.-- …....______..._________....._______ .............
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------------------------------------------------- …------...-.__......__..__....__.._-. .... ..........
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NULL-41:INULL-42 NULL-38 NULL-34 INULL-13 NULL-15 NULL-29 INULL-ULL-7 NULL-47 NULL-59 INULL-41 NULL-3 NULL-8
INULL-54 NULL-52 NULL-48 INUL-45 INULI-II INULL-39 NULL-19 NULL-23

INULL-7 NULL-21 NULL-I
INULL-6 NULL-5 NULL-17
INULL-35 NULL-51 NULL-32
INULL-28 NULL-9 NULL-18
INULL-10

NULL-31:INULL-42 NULL-38 NULL-34 NULL-54 INULL-41 NULL-3 NULL-8 NULL39 INULL31 ULL-27 NULL-47 NULL-59
INULL-52 NULL-48 INULL-19 NULL-23 NULL-7 NULL-21 INULL-11 NULL-13 NULL-15 NULL-?9

INULL- NULL-6 NULL-5 NULL-17 INULL-45
INULL-35 NULL-51 NULL-32 NULL-28 I

]INULL-9 NULL-18 NULL-10 I

NULL-37:INULL-42 NULL-38 NULL-34 NUL-54 NULL-5254 NULL-48 NULL-37 NULL-41 NLL3 NULL-48 NULL-39 NULL-19
INULL-23 NULL-7 NULL-21 NULL-I NULL-6 NULL-5 NULL-17
INULL-35 NULL-51 NULL-32 NULL-28 NULL-9 NULL-18
INULL-10 NULL-31 NULL-27 NULL-47 NULL-59 NULL-lI
INULL-13 NULL-15 NULL-29 NULL-45

NULL-49:INULL-42 NULL-38 NULL-34 NULL-54 NULL-52 NULL-48 INULL-49 NULL-37 NULL-41 NULL-3 NULL-8 NULL-39
1' .INULL-19 NULL-23 NULL-7 NULL-21 NULL-1 NULL-6 NULL-5

INULI-I? NULL-35 NULL-SI NULL-32 NULL-28 NULL-9
INULL-18 NULL-10 NULL-31 NULL-27 NULL-47 NULL-59
INULL-I NULL-13 NULL-15 NULL-29 NULL-45

…---…--.........................................................................-- _.........-..................

NULL-26:INULL-36 NULL-42 NULL-38 NILL-34 NLL-54 NULL- . INULL-6 NULL-53 NULL-63 NULL-30 NULL-2 NULL-16
INULL-48 INULL-49 NULL-37 NULL-41 NULL-3 NULL-8 NULL-39

INULL-19 NULL-23 NULL-7 NULL-21 NULL-I NULL-6 NULL- ,
INULL-17 NULL-35 NULL-SI NULL-32 NULL-28 NULL-9
INULL-18 NULL-10 NULL-31 NULL-27 NULL-47 NULL-47 59
NULL-11 NULL-13 NULL-15 NULL-29 NULL-45

---------------------------------------- … …-..................................................................

NULL-20:INULL-20 NULL-26 NULL-53 NULL-63 NULL-30 NULL-2 NULL-16 NULL-49 NULL-37 NULL-41 NULL-3 NULL-8 NULL-39
INULL-19 NULL-23 NULL-7 NULL-21 NULL-I NULL-6 NULL-S NULL-17 NULL-35 NULL-SI NULL-32 NULL-28 NULL-9
INULL-3 NULL-7 NULL-31 NULL- NULL-47 NULL-59 NULL-i NULL-13 NULL-1 NULL-29 NULL-45 NULL-36 NULL-42
INULL-38 NULL-34 NULL-54 NULL-52 NULL-48

NULL-12:INULL-12 NULL-2 NULL-61 NULL-53 NULL-63 NULL30 NULL-2 ULL-6 NULL-49 NULL-3 N ULL3 ULL-8

INULL-39 NULL-19 NULL-23 NULL-7 NULL-21 NULL-I NULL-6 NULL-5 NULL-17 NULL-35 NULL-SI NULL-32 NULL-28
INULL-9 NULL-18 NULL-10 NULL-31 NULL-?7 NULL-47 NULL-S9 NULL-I1 NULL-13 NULL-15 NULL-29 NULL-45 NULL-33
INULL-42 NULL-38 NULL-34 NULL-54 NULL-52 NULL-48

Figure 6.2: The output of the categorization system when categorizing an inde-
pendent world. For this execution the value of A is .6. In this case the categoriza-
tion produced consists of a single category.
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the coarsest categorization will be recovered. 2 Thus, for this simulation of a
non-modal world, no structured categorizations are recovered.

The fact that the categorization algorithm found no intermediate struc-
ture in the simulation of a non-modal world is encouraging: the algorithm
should not impose structure on a world that contains none. A brief analysis
of the non-modal world will demonstrate that in general the categorization
algorithm will not recover structured categorizations when no natural clusters
are present.

6.1.2 Theory of categorization in a non-modal world

Our goal is to explain the behavior of the categorization algorithm observed
in the simulation of a non-modal world. To begin, let us consider the best
categorizations one could construct in such a world. For example, what
would be the best set of two categories one could form in a non-modal world
described by binary features? The most structure one could impose would
be to sort the population according to one feature. Because all the features
are independent, members of a category would not have any other properties
in common. Note that if there are m features, then there are m possible
categorizations keeping one feature constant. Likewise, the best set of four
categories would be one in which two features are held constant within each
category; there are () such possible categorizations. We refer to the number
of features held constant in a categorization of a non-modal world as the level
of the categorization. Figure 6.3 displays the different levels of categoriza-
tions for a non-modal world containing only 8 objects. Within each category
is a property vector describing the members; an "x" indicates either a 1 or
a 0. To indicate that there are several possible categorizations at each level,
the feature held constant at level 1 is not held constant at level 2.

To understand the behavior of the categorization algorithm in such a
non-modal world, let us consider how the two components of the evaluation
function U - the property uncertainty Up and the category uncertainty Uc
- vary as we change categorization level. Let us expand our non-modal world
to contain 128 objects described by 7 independent, uniformly distributed,
binary features; we evaluate Up and Uc for each possible categorization level

2 For .55 < A < .6 an intermediate categorization may be recovered, but it is unstable in
that it is not repeatable and a small change in A will force the system to either of the
two extreme categorizations.
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Figure 6.3: Different categorizations of a non-modal world of 8 objects, formed
by varying the number of features held constant. Inside each category is a property
vector describing the members; an "x" represents a feature that varies within the
category.
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Figure 6.4: (a) The evaluation of Up and (normalized) Uc for the different levels
of categorization of a non-modal world consisting of 128 objects. The level is equal
to the number of features held constant, which is also the logarithm of the number
of categories. (b - d) The value of U = (1 - A)Up + 7tAUc for A of .3, .5, and .7.
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0 through 7. Panel (a) of Figure 6.4 displays the results of the evaluation; Uc
has been normalized by V to be of the same scale as Up. Panels (b-d) display
the value of U for A equal to .3, .5, and .7. Notice that as level increases
- as more features are held constant in each category - the value of Up
decreases linearly while Uc increases, also linearly. Because both curves are
linear and because they are normalized to be of the same scale, the change
in Up is equal to the negative of the change in Uc. As illustrated in panels
b-d, the net change in U depends upon the value of A. If A is greater than
.5, total uncertainty increases with level; for A less than .5, total uncertainty
decreases. The value of U is constant when A equals .5.

The linearity of the graphs of Up and Uc is predicted by analysis; these
graphs were actually generated by simulating an independent world and eval-
uating different categorization levels. Each increase in categorization level
is formed by keeping one more feature constant. Thus the property uncer-
tainty is decreased by an amount reflecting the uncertainty of that feature.
Because all the the features are binary and uniformly distributed, the de-
crease is log 2 = 1. The initial value of Up, at level 0, Up is 7log 2 = 7;
the final value is zero. Similarly, with each increase in categorization level,
the number of categories is doubled, and a greater number of properties fea-
tures is required to determine the category to which an object belongs. It
can be shown that the increase in category uncertainty for each increase in
categorization level is log VX = .5. Thus, the value of 77 - the normalization
factor between the two uncertainties - is 2. Let L be the the categorization
level, and let LMax be the maximum possible level; in our simulation with
128 objects LMax = 7. Combining the above results for the two uncertainties
Combining these results and letting L be the level of categorization yields
the following equation for the total uncertainty U:

U = (1 - A)(1.0)(LMa - L) + (2.0)A(.5)L = (2A - 1)L + LMa,(1 - A) (6.2)

That is, U is linear in L, and the slope is determined solely by A. When
A > .5 the slope is positive; when A < .5, the slope is negative.

The implication of the results in Figure 6.4 is that for an independent
world the best categorization is either the coarsest partition, where all objects
are in one category, or the finest, where each object is its own category.
Which is preferable depends on the value of A; for a value of .5 the decision
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is arbitrary.3 Thus, we have explained the behavior of the categorization
algorithm displayed in the previous section. We have also demonstrated the
competence of the incremental categorization algorithm in the non-modal
world: the algorithm generates the correct solution.

The importance of the above result is that it allows the detection of the
attempt to categorize a non-modal world. Because such a world contains no
structure, there are no natural clusters, and no attempt at recovering modal
categories should be made. In the next section we will make use of this
diagnostic capability.

6.2 Multiple Modal Levels

6.2.1 Categorization stability

A ideal modal world is one in which all the properties are predictive of the
natural classes and all the classes are predictive of the properties. The to-
tal uncertainty measure U has been constructed such that categorizations
exhibiting a high degree of modal structure will produce low values of un-
certainty. Because the incremental categorization algorithm developed in
chapter 5 makes use of U as a categorization evaluation function, the algo-
rithm recovers categories corresponding to modal clusters. To overcome the
combinatoric problems in generating possible partitions of a population, the
algorithm is stochastic, and thus is not guaranteed to find the correct modal
solution.

However, the more modal a population - the closer the classes in the
population approximate modal classes - the more reliable and repeatable is
the categorization process; the modal categories will be recovered more often.
This increase in reliability occurs because approximate categorizations, those
that nearly separate the natural classes, are accepted during the incremental
search for the best solution. Also, given an approximately modal world, a
relatively wide range of A will result, with high probability, in the incremental

3 The simulation generated a critical A greater than .5 because of an implementation mod-
ification to the categorization algorithm. Specifically, merging occurs only if a merged
categorization is sufficiently better than the split categorization, where "sufficiently" is
determined by threshold. Using a non-zero threshold imparts some hysteresis to the
system and overcomes instability caused by numerical inaccuracies.
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Length Width Flare Lobes Margin Apex Base Color
Maple 3-6 3-5 0 5 Entire Acute Truncate Light
Poplar 1-3 1,2 0,1 1 Crenate, Acute Rounded Yellow

Serrate
Oak 5-9 2-5 0 7,9 Entire Rounded Cumeate Light
Elm 4-6 2,3 0,- 1 Doubly Accuminate Rounded Dark

Serrate

Table 6.1: Leaf specifications for four species of leaves. A leaf generator creates
property vectors consistent with the different specifications.

categorization algorithm discovering the modal categories. We use the term
categorization stability to refer to the degree to which the recovery of a set
of categories is repeatable and insensitive to changes in A.

As an example of a population exhibiting categorization stability we
present the example of categorizing leaves. For this example, the property
specifications for four species of leaves are generated according to descriptions
provided by Preston [1976]. (Table 6.1) The properties chosen are known to
be diagnostic of leaf species and thus are sufficient for the categorization
task. (For an explanation of the details of object generation using property
specifications see chapter 5.)

When categorizing a population of objects generated according to these
specifications, the correct categories are reliably recovered for .5 < A < .75.4

Figure 6.5 displays the results for two such executions of the algorithm; for
these examples A was set to .6 and .55. In both cases the correct categories,
those corresponding to the species, are recovered.

Outside this stable range, however, the correct categories are not recov-
ered. Values of A near one cause the uncertainty measure to prefer coarse
categories, with high property uncertainty but low categorization uncertainty.
In the case of the leaves, values of A greater than .75 make it unlikely that
the categorization algorithm will discover a partition into two categories that

4An implementation detail: A A of .75 is only successful when recovered categories are
internally re-categorized, as discussed. The re-categorization, however, does not involve
the re-computation of the normalization coefficient 77. Doing so would have the effect
of reducing A because r7 decreases as a population is reduced, and its value directly
multiplies the Uc term in U.
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Figure 6.5: Correctly categorizing four species of leaves. For these executions
of the categorization algorithm the value of A was set to .6 (a) and .55 (b). The
identical results indicate the categorization is stable.
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has a lower uncertainty than having the entire population in only one cate-
gory. Thus the recovered categorization contains only one category. (For a
more complete analysis of the competence of the categorization algorithm,
see Section 5.3.) Conversely, for below .5, the algorithm produces cat-
egories that are continually split, in the limit yielding the finest possible
categorization. As shown in the previous section, this behavior is indicative
of no useful internal structure; within each species, the property variations
are independent.5 This result is "correct" because the method that generates
objects from property specifications does so by generating each property in-
dependently, and there is not structure present below the species level. This
world of leaves has only one modal level of structure.

To summarize the leaves example, we have one region of A that produces
a stable categorization. Also, values of outside this range produce no
useful category structure and the behavior of the categorization algorithm
mimics the case when the world is independent. Recall that the setting of A is
established by the observer according to his goals. The value must be selected
such that the categories provide a balance between the property uncertainty
and categorization uncertainty which satisfies the inference requirements of
the observer. If the A of the observer lies within the stable range for the
leaves world, then the correct categorization for him to recover is exactly the
four species. If, however, the observer's particular value of A lies outside this
range then there exists no natural clustering of the objects that adequately
supports his goals.

6.2.2 Multiple mode examples

We began this chapter by noting that the Principle of Natural Modes does
not imply the existence of a unique clustering of objects. Rather, clusters
which occur at different levels mirror the different levels of processes acting
upon the objects. In this section we will explore the behavior of the catego-
rization algorithm in the case of multiple levels of modal processes. First, we
examine the results of attempting to categorize a real domain in which two
levels of processes are apparent; these results will suggest that the properties

5 The behavior that is expected is the continual splitting of categories. The fact that it
occurred around .5 is not significant and is purely a function of the data. The critical
value of .5 derived in the previous section only applies when the entire population is
independent.

163



BF BT BV FM FN FV
bacteroides bacteroides bacteroides fusobacterium fusobacterium fusobacterium

fragilis thetaiotamicron vulgatus mortiferum necrophorum varium
loc GI GI GI OR OR OR
gram neg neg neg neg neg neg
gr-pen R R R {R,S} S {R,S}
gr-rif S S S R S R
gr-kan R R R S S S
dole neg pos neg neg pos pos
esculin pos pos neg pos neg neg
bile E E E E I E
glc is Is Is none none none
rham neg pos pos {neg,pos} {neg,pos} {neg,pos}
nfl {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4}
nf2 {1,2,3,4} {1,2,3,4} { 1,2,3,4} { 1,2,3,4} {1,2,3,4}

Table 6.2: The property specifications for six different species of bacteria. Be-
cause most of the real features have only one value per species, two noise features
are added (nfl and nf2).

constrained by the higher level process prevent the discovery of the lower
level process. A simulation of an idealized two-process world will produce
similar behavior in the categorization algorithm, confirming the masking of
the lower level modes by the higher level properties.

The domain of infectious bacteria will serve to illustrate the behavior
of the categorization algorithm in a two-process world. Property specifica-
tions for six different species of bacteria are encoded according to data taken
from [Dowell and Allen, 1981]; Table 6.2 displays the specifications for these
species. Because most of the real features take on only one value per species
(unlike the leaves where features like "length" and "width" varied greatly)
two noise features are added (nfl and nf2). These features prevent all ob-
jects of the same class from having identical property descriptions.

Of the six species, three are from the genus bacteroides; these are abbrevi-
ated as BF, BT, and BV. The other three - FM, FN, and FV- are from the
genus fusobacterium. Notice that several of the features of the specifications
are determined by the genus, while others are determined by the species. For
example, all members of bacteroides have the property "gr-kan = R" (coding
for "growth in presence of Kanamycin is resistant"). Other properties, such
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as "dole," vary between the species, ignoring genus boundaries. Still others,
such as "gr-rif," are confounded between levels. These property specifications
are used to generate 12 instances of each type of bacteria.

Figure 6.6 displays the results of categorizing this population with values
of A of .65 and .7. Notice that in both cases the bacteria have been categorized
according to their genus. This categorization is stable: repeated application
of the algorithm consistently discovers the two genera. Furthermore, for
.6 d A < .75 the recovered categories correspond to the genera. If the A of
the observer falls within this range, then the natural categories corresponding
to the genera satisfy the inference requirements of the observer.

Suppose however, the value of A does not fall within this range. Figure 6.7
displays the results of of two executions of the categorization algorithm with
a A of 0.5. In this case the recovered categories do not correspond to either
the genera or the species, but to a composite of the two levels. For example,
in the first execution, ( Figure 6.7a) the category on the left corresponds to
a single species. The next category to the right is comprised of two species
of the same genus. Finally, the last two categories are mixtures of two or
more species, although they only contain instances of one genus. Also, if
the categorization algorithm is repeated, different composite categories are
recovered: the categorization is unstable. Furthermore, if the value of A
is decreased (say to 0.4) the categorization algorithm produces the finest
possible categorization, indicating no modal structure for A less than 0.5.
That is, decreasing A will not permit the categorization algorithm to recover
the species. 6

Compare this example with the leaves example of the previous section.
When categorizing the leaves with a A outside the stable range, the catego-
rization algorithm produces either the coarsest or the finest categorization.
This behavior is similar to that observed when the features in the world are
independent and no natural classes exist. Thus we concluded that there ex-
isted only one modal level in that population. In the case of the bacteria,
however, a A outside the stable range produces (unstable) categories that are
composites of the classes. Thus, the existence of these unstable categoriza-

6We should note that internal re-categorization - without re-normalization - is not
sufficient to resolve the problem. The difficulty in recovering the species lies with the
masking of the species structure by the genus constrained properties, not in the statisti-
cal failure of the categorization algorithm. In the next section we will consider the case
of internal re-categorization with re-normalization.
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Start:I FV-61 BF-12

BT-22:IFN-60 BT-1S

BF-9 FN-60 BV-26 BT-15 FM-38

FM-38 FV-61

FN-54: FN-54 FN-60

BV-36: FN-54 FN-60

FV-65:IFV-65 FN-54

BV-29: FV-65 FN-54

BT-1 FM-38 FV-61

BT-15 FM-3S FV-61

FN-60 BT-15 FM-38 FV-61

FN-60 BT-15 FM-38 FV-61

I BF-12

I V-3 6

BV-36

I V-29

BT-22

BF-12

BF-12

BV-36

BF-9 BV-26

BT-22 BF-9 BV-26

8T-22 BF-9 BV-26

BF-12 BT-22 BF-9 BV-26

FM-41:IFM-41 FV-65

FM-37:IFM-37 FM-41

BV-31:IFM-37 FM-41

FM-43:IBV-31 BV-29
IBF-9 BV-26

FN-54 FN-60 BT-15 FM-38 FV-61

FV-6S FN-54 FN-60 T-IS FM-31

FV-65 FN-54 FN-60 BT-15 FM-31

BV-36 3F-12 BT-22 IFM-43 E

i I BV-29

I FV-61 18V-29

I FV-61 IBV-31

FM-41 FV-61 FM-37

BV-36

BV-36

8V-2 9

BF-12 BT-22 BF-9 BV-26

BF-12 T-22 BF-9 BV-26

BV-36 BF-12 T-22 BF-9 BV-26

IFM-38 FV-65 FN-60 FN-54 BT-15

BV-25:IBV-25 BV-34 BF-7 BT-24 BT-21 BV-30 BT-13 BF-11 IFV-62 FN-S0 FV-70 FV-69 FV-64 FM-44 FN-56 FM-48
IBV-32 BT-23 BV-33 BF-5 BF-10 8F-3 BV-31 8V-29 8V-361Ft-47 FM-42 FV-6 FN-SI FN-52 FN-59 FV-72 FM-40
IBF-12 BT-22 BF-9 8V-26 I1M-36 FV-65 FN-60 FN-54 BT-15 FV-66 FM-43 FM-41
I IFV-61 FM-37

-- …-----------------------------------------…

FN-53:IBV-25 BV-34 BF-7 BT-24 BT-21 BV-30 BT-13 BF-11 IFN-53 FV-62 FN-50 FV-70 FV-69 FV-64 FM-44 FN-56
IBV-32 BT-23 BV-33 BF-5 BF-10 BF-3 BV-31 BV-29 BV-361FM-48 FM-47 FM-42 FV-68 FN-51 FN-52 FN-59 FV-72
IBF-12 BT-22 BF-9 BV-26 IFM-40 FM-38 FV-65 FN-60 FN-54 BT-15 FV-66 FM-43
I IFM-41 FV-61 FM-37

------ Ii ' II -I -I I i II-- II

Start IBT-24 FM-39 BV-32 FV-68 BF-1 FM-47 FV-63

BV-27:IBV-32 FV-63 BT-24 BV-27 IFV-68 BF-1 FM-47 FM-39
--------- ------- -------------------------- -- ----------- ------

FN-52:IBV-32 FV-63 BT-24 BV-27 IFN-52 FV-68 BF-1 FM-47 FM-39

BT-21:IBT-21 BV-32 FV-63 BT-24 BV-27 IFN-52 FV-68 BF-1 FM-47 FM-39

FM-41:IBT-21 BV-32 FV-63 BT-24 BV-27 IFM-41 FN-52 FV-68 BF-1 FM-47 FM-39

FM-40:IBT-21 BV-32 FV-63 BT-24 BV-27 IFM-40 FM-41 FN-52 FV-68 BF-1 FM-47 FM-39

BV-28:IBV-29 BT-21 BV-32 FV-63 BT-24 8V-27 IFM-40 FM-41 FN-52 FV-6S BF-1 FM-47 FM-39

BT-19:IBT-19 8V-28 BT-21 BV-32 FV-63 BT-24 BV-27 1FM-40 FM-41 FN-52 FV-68 BF-1 FM-47 FM-39

FN-50:IBT-19 BV-28 BT-21 BV-32 FV-63 IBF-1 FM-39 FM-47 FM-41 IFN-52 FV-6B FN-50 FM-40
I BT-24 BV-27

* * * *ri<

BT-21:1BT-21 BV-33 BV-26 BF-2 BT-23 BV-31 BF-a BV-32 BF-7 IF-47
IBV-29 BF-12 BV-31 BF-10 BV-34 BF-5 BT-17 BT-13 IFV-65
IBV-35 BV-33 BT-20 BF-6 BF-7 T-14 BT-23 BF-9 BT-15 iFN-55
IBT-18 BT-21 BF-8 BF-2 BT-19 BV-26 BV-36 BV-25 BV-271FV-69
IBV-28 BV-30 BV-32 BT-24 BT-22 BF-3 IFN-59

IFM-39
FV-65

FV-62 FN-56 FM-41
FN-55 FN-49 FN-51
FN-51 FN-49 FV-66
FN-52 FN-58 FN-50
FM-38 FM-37 FM-46
FV-70 FN-S6 FM-43
BF-4 FV-64 FV-63

Figure 6.6: Categorizing bacteria. In these examples A equals (a) .65 and (b) .7.
The categories recovered correspond to the different genera.
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BT-22 BF-9 BV-26

(a)

(b)

FM-39
FV-69
FN-54
FV-68
FM-44
FM-38

FN-52
FM-4 8
FV-61
FM-40
FM-41
FM-47

FV-71 FV-67
FM-44 FN-57
FN-60 FV-62
FV-71 FN-53
FM-45 FV-72
BF-1 FV-67
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Start:IBV-29 FV-64 BV-25 FM-42 BV-30 BF-2 FV-68

BV-26:IBV-25 BV-30 BV-26 BV-29 IFV-68 FM-42 BF-2 FV-64

FM-46:IBV-25 BV-30 BV-26 BV-29 IFM-46 FV-68 FM-42 BF-2 FV-64

BT-16:IBT-16 BV-25 BV-30 BV-26 BV-29 IFM-46 FV-68 FM-42 BF-2 FV-64
---------------------- ---------------------- … -- …

FV-70:IBT-16 BV-25 BV-30 BV-26 V-29 1IV-70 FM-46 FV-68 FM-42 BF-2 FV-64
--- …--- ----- …- -- -- ---- --------- -- - ------- - --- -----------------------

(a) BT-23:IBT-23 BT-16 BV-25 BV-30 V-26 BV-29 IFV-70 FM-46 FV-68 FM-42 BF-2 FV-64

FM-40:IBV-33 BV-34 BV-35 BV-31 IBV-32 BT-19 BV-28 BT-22 IFM-37 FN-59 FM-48 FV-61 IFM-40 FM-45 FM-44 FM-46
IBV-27 BV-25 BV-30 BV-36 IBT-20 BF-11 BF-12 BT-21 IFN-51 FV-71 FV-69 FN-52 IFV-66 FV-70 FV-72 FM-43
IBV-26 IBT-13 BF-8 BF-6 BF-7 BF-31FN-54 FN-49 FN-55 FV-67 IFM-41 FM-39 FM-38 FM-42

I IBT-24 BF-10 BT-14 BF-5 IFN-56 FM-47 FV-64 FN-58 I
I BF-1 BF-4 BT-18 BT-23 IFN-53 FV-65 FN-57 FN-60 I
I IBT-16 BT-15 BT-17 IFV-68 FV-63 FN-50

_ I I .i i II I I 

Start:IBT-22 BV-27 FN-57 BT-18 FN-55 FN-60 BF-3
… ----- …---------- - - - --------------------- - ------- --------- - -----… - …-

BV-30:IBV-30 FN-57 FN-60 FN-55 IBT-18 BF-3 BT-22 BV-27
…----- … -------------------------------------- … -------- …

FM-41:IFM-41 BV-30 FN-57 FN-60 FN-55 IBT-18 BF-3 BT-22 BV-27
…---------- ---------- …---- … ---------- …---- …---

BF-6:1FM-41 BV-30 FN-57 FN-60 FN-55 iBF-6 BT-18 BF-3 BT-22 BV-27
----------------- …------- …----------------------… - - -

BT-20:IFM-41 BV-30 FN-57 FN-60 FN-55 IBT-20 BF-6 BT-18 8F-3 BT-22 BV-27
…--------- ----- - ---------- - … ------ ------------------------- …

BF-12: IFM-41 BV-30 FN-57 FN-60 FN-55 IBF-12 BT-20 BF-6 BT-18 BF-3 BT-22 BV-27

(b) - *
BT-16:IBT-16 BV-36 iFN-51 FN-56 IFV-61 FV-70 IFN-54 FV-63 iFM-40 FM-38 IFV-69 FV-62 IFV-71 FV-67

IBF-10 BV-26 1FN-55 FN-57 IFV-72 FN-52 IFV-65 FN-53 IFM-37 FM-39 iBV-30 FN-59 iFM-45 FV-64
1BF-7 BV-31 IFN-60 IFN-58 FN-50 IFV-68 1FM-44 FM-46 I I
1BV-32 BT-19 I I IFM-47 FM-43 I
IBT-13 BV-28 I I I I
1BV-34 BV-25 I I I I
IBT-24 BF-11 I I I I
IBT-14 BT-21 I I I I I
1BT-23 BF-4 I I I I I
IBV-33 BT-17 I I I I
1BF-2 BF-9 I I I I I
1BF-1 BV-35 I I I I I
1BF-5 BV-29 I I I I I
1BF-8 BT-15 I I I I I I
1BF-12 BT-20 I I I I I I
1BF-6 BT-18 I I I I I I
1BF-3 BT-22 I I I I I I
1BV-27 I I I I I I

Figure 6.7: Unstable categorization of bacteria. In these examples A equals 0.5.
The categories recovered do not correspond to either the genera or the species.
For example, in (a) the left most category corresponds to all instances of of one
species, but the other three categories are mixtures of species from one genus.
This categorization is unstable; repeating the categorization procedure (b) yields
a different composite.
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GS11 GS12 GS13 GS21 GS22 GS23
genus-I genus-1 genus-1 genus-2 genus-2 genus-2

species-l-1 species-1-2 species-i-3 species-2-1 species-2-2 species-2-3
gfl 1 1 1 2 2 2
gf2 1 1 1 2 2 2
gf3 1 1 1 2 2 2
gf4 1 1 1 2 2 2
gf5 1 1 1 2 2 2
sfl 1 2 3 1 2 3
sf2 1 2 3 1 2 3
nfl {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4}
nf2 {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4} {1,2,3,4}

Table 6.3: The property specifications for a simulated two process world. Five
features are modal for the genera (gfl - gf5), two are modal for the species (sfl
and sf2), and two are noise (nfl and nf2).

tions indicates that competing structures - different modal levels - may
be present in the population.

To test the validity of this diagnostic inference, we simulate an ideal
"two-process modal" world. In such a world, some of the features used to
describe the objects are constrained by one modal "process," while others
are constrained by a second modal process. Also, some noise features are
included. Table 6.3 lists the property specifications for such a world. By"two-
process modal" we mean that each feature is modal for the level at which it
operates. For example, gfl (for "genus-feature-l") is modal for the different
genera; it takes on a different value for each of the two genera. Likewise,
sfl is modal for each species within the genus. For this particular example
there are five features constrained by the genus and two by the species;7 two
noise features are also included. The importance of this simulation is that
we know no features confound the two processes. In the bacteria example
certain features (such as "gr-rif") appeared to be affected by both genus and
species. If the categorization algorithm produces unstable categorizations in
this simulation we know that such confounding properties are not required

7In the next section we will explain why we created an imbalance between the number
of features constrained by the genus and the number constrained by the species.
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to produce this behavior and that unstable categorizations are an indicator
of competing modal levels.

A population of 60 objects, 10 per species, is generated according to the
specifications of Table 6.3. The population is then categorized for a wide
range of A. For A greater than .8, the categorization algorithm produces
only single-category categorizations. For .7 < A < .8 a categorization cor-
responding to the simulated genera is recovered. This categorization was
highly stable in that it was recovered on almost all categorization attempts
for A within this range. However, for .5 < A < .6 unstable categorizations
are formed; the categories recovered are approximately the union of some of
the different species. Figure 6.8 displays the result of two executions of the
categorization algorithm with A equal to .5. The algorithm was interrupted
after each of the objects had been viewed once. In Figure 6.8a, the four
resulting categories closely correspond to the those that would be formed by
combining the GS21 species with the GS23 species (both are of the same
genus) as well as combining GS11 with GS13.8 In the other categorization
attempt (Figure 6.8b) a different set of categories is generated. Finally, for
A < .4 the algorithm produces the finest possible categorization, yielding no
structured categories (not shown).

The results of this simulation support the conclusion that multiple modal
levels yield unstable categorization behavior. Unfortunately, we cannot in-
voke the power of evolution to prevent this situation from arising. The ob-
server must be able to recover the natural categories corresponding to a suffi-
ciently structured process level to support necessary inferences. For example,
if the differences in the species of bacteria are important to the observer then
he will need to encode properties that discriminate between genera as well
as properties that can distinguish the species within the genera. Thus, the
observer requires a method of recovering the natural categories at each pro-
cess level in the hierarchy until the appropriate level is achieved. In the next
sections we will describe a possible method for recovering the natural cate-
gories at each level, and for determining the processes associated with each
property encoded by the observer.

8If the algorithm were permitted to continue, subsequent viewing of the objects would
help correct prior mistakes.
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Start:I GS13-29 GS13-22 GS12-12 GS23-59 GS11-3 GS12-19 GS22-49

GS23-56:I GS22-49 GS23-59 GS23-56 GS13-22 I GS12-12 GS13-29 GS12-19 GS11-3

GS23-53:1 GS23-53 GS22-49 GS23-59 GS23-S6 GS13-22 I GS12-12 GS13-29 GS12-19 GS11-3

GS13-26:I GS13-26 GS23-53 GS22-49 GS23-59 GS23-56 GS13-22
-------------- …--------------- - --- -

GS1-10:I GS11-10 GS13-26 GS23-53 GS22-49 GS23-59 GS23-56 GS13-22

GS11-2:1 GS13-22 GS11-2 GS13-26 GS22-49 I G511-10 GS23-59 GS23-53 GS23-56

GS22-48:I GS13-22 GS11-2 GS13-26 GS22-49 I GS22-48 GS11-10 GS23-59 GS23-53 GS23-5S

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

GS11-7 GS11-1 GS11-8
GS11-2 GS11-9 GS11-5
GS11-6

I GS23-55
I GS21-40
I GS22-46
I GS22-50
I GS22-47

I GS22-49
I GS21-39
I GS22-41

I GS23-52
I GS23-54

I GS22-48
I GS23-53

GS22-44
GS22-45
GS13-30
GS23-58
GS13-26
GS13-24
GS22-43
GS23-57
GS23-60
GS23-51
GS23-59
GS23-56

GS13-28
GS13-21
GS12-17
GS12-13
GS12-20
GS12-11
GS12-18

GS12-16
GS13-25
GS12-15
GS12-14
GS11-4 GS13-23
GS13-27
GS13-22

…--- …----------------- - …-----------…

Start:I GS12-13 GS13-21 GS21-35 GS22-49 GS21-34 GS13-25 GS13-23
…---------------------- ………---

GS13-28:I GS22-49 GS13-21 GS21-34 GS21-35 I GS13-25 GS13-23 GS13-28 GS12-13

GS21-38:I GS21-36 GS22-49 GS13-21 GS21-34 GS21-35 I GS13-25 GS13-23 GS13-28 GS12-13
------------------ - …- …… -…--------- --------- ----- ~-'-~- '~~~~I~~'~~~~~~'~~~'~- ------ … -------

GS12-15:i GS21-38 GS22-49 GS13-21 GS21-34 GS21-35 I GS12-15 GS13-25 GS13-23 GS13-28 GS12-13

GS12-18:f GS21-3S GS22-49 GS13-21 GS21-34 GS21-35 I GS12-18 GS12-15 GS13-25 GS13-23 GS13-28
GS12-13

GS12-19: I GS21-38 GS22-49 GS13-21 GS21-34 GS21-35 i GS12-19 GS12-18 GS12-15 GS13-25 GS13-23
I GS13-26 GS12-13

* - --- -*

GS12-11 GS12-19
GS12-14 GS12-18
GS12-17

GS13-26
GS13-24
GS11-10
GS12-15
GS12-16
GS12-20
GS13-27
GS13-25
GS13-23

GS11-3 GSll-7
GS13-30 GS11-4
GS11-6 GS12-12
GS11-5 GS11-9
GS11-1 GS11-8
GS13-29
GS13-22
GS12-13
GS13-28

Figure 6.8: The categorization of the simulated two-process modal world yields
unstable categories when A equals .5 The genus of each object. is indicated by the
first digit in the name; the species, by the second.

-. ,- -
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(a)

GS13-28: I
I
I
I
I
I
I
I
I
I
I
I

GS21-37
GS21-34
GS21-32
GS22-42
GS21-31

GS21-36
GS21-3S
GS21-35
GS21-33

(b)

GS21-33: I GS22-50
GS22-44
GS22-47
GS22-49

GS22-41
GS22-43
GS22-48

I GS21-33
I GS23-59
I GS21-31
GS23-51
I GS23-52

I GS21-35
I G13-21
I GS23-57
I GS21-39

I 5GS21-36
I GS22-42
I GS22-45

GS23-54
GS22-46
GS23-55
GS21-32
GS21-37
GS21-34
GS21-38
GS23-60
GS23-53
GS21-40
GS23-56
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6.3 Process separation

6.3.1 Recursive categorization

Let us continue the simulation example of the previous section. If the goals
of the observer require that he recover more than just the genera, then he
needs a method by which to separate the species. We know that reducing
the value of A below the stable value that recovered the genera will not cause
the categorization algorithm to reliably recover the species; the interaction
between the species and genera cause composite categories to be formed.

Suppose, however, we consider each genus separately, as its own world of
objects. In that case, the world contains only three classes of objects, namely
the three species. Unlike the entire population, which contained more than
one modal level, there is only one level of structure present in this world. If
the observer can recover the modal structure within this population, then,
by applying the procedure to both genera, he would be able to recover the
categories corresponding to the species.

In this world there are three types of features: modal, where each feature
takes on a different value for each class; noise, where the value is independent
of the class; and constant, where the value never varies. The only differences
between this world and previous examples in which there was only one modal
level are the constant features. For example, the leaves domain contained sev-
eral highly diagnostic (almost modal) features (such as "apex" and "base")
as well as mostly unconstrained features (such as "length"). We know that
the categorization algorithm can successfully categorize such a population.
However, we need to consider the effect of the constant features on the cate-
gory recovery procedure. In particular, how does the presence of the constant
features affect the components of the categorization evaluation function U?

It can be shown that constant features have no effect on either Up or
Uc.9 Therefore, if we treat the genus members as separate population, we

9 First, consider Up. Constant features have no uncertainty: 1 log 1 = O. Thus, Up
is unaffected by the addition of constant features. Next consider Uc. At first one
might expect the addition of constant features to add to category uncertainty: constant
features are structure shared by all objects, leading to category confusion. We can show
that this is noi the case.

Let us assume we have a world c classes, and that objects are described by m modal
features (which take a different value for each of the c classes) and by x constant features.
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Start:l GS12-27 GS11-2 GS12-17 GS13-3S GS12-20 GS12-32 GS12-21

GS13-46:1 GS12-17 GS11-2 GS12-27 GS12-21 I GS12-20 GS13-36 GS13-46 GS12-32

GSl1-11:1 GSIl-11 GS12-17 GS11-2 GS12-27 GS12-21 I GS12-20 GS13-38 GS13-46 GS12-32

GS13-33:1 GSll-11 GS12-17 GS11-2 GS12-27 GS12-21 I GS13-33 GS12-20 GS13-38 GS13-46 GS12-32

GS11-13:1 GS11-13 GS11-11 GS12-17 GS11-2 GS12-27 I GS13-33 GS12-20 GS13-38 GS13-46 GS12-32
I GS12-21 I

GS13-48:1 GS11-13 GSll-11 GS12-17 GS11-2 GS12-27 I GS13-48 GS13-33 GS12-20 GS13-38 GS13-46
I GS12-21 I GS12-32

GS12-23:1 GS11-13 GS11-11 GS12-17 GS11-2 GS12-27 I GS12-23 GS13-48 GS13-33 GS12-20 GS13-38
I GS12-21 I GS13-46 GS12-32

GS13-37:1 GS13-37 GS11-13 GS11-11 GS12-17 GS11-2 I GS12-23 GS13-48 GS13-33 GS12-20 GS13-38
I GS12-27 GS12-21 I GS13-46 GS12-32

GS11-16:1 GS12-23 GS13-48 GS13-33 I GS12-27 GS11-11 GS12-21 I GS11-13 GS13-37 GS11-16
I GS12-20 GS13-36 GS13-46 I GS12-17 GS11-2
GS12-32

GS12-29:1 GS12-23 GS13-48 GS13-33 I GS12-29 GS12-27 GSl1-11 I GS11-13 GS13-37 GS11-16
I GS12-20 GS13-38 GS13-46 I GS12-21 GS12-17 I GS11-2
I GS12-32 I I

GS12-26:1 GS12-26 GS12-23 GS13-48 I GS12-29 GS12-27 GS11-11 I GS11-13 GS13-37 GS11-16
I GS13-33 GS12-20 GS13-38 I GS12-21 GS12-17 I GS11-2
GS13-46 GS12-32

GS11-7:I GS12-26 GS12-23 GS13-48 I GS12-29 GS12-27 GS11-11 I GS1ll-7 GS11-13 GS13-37
I GS13-33 GS12-20 GS13-38 t GS12-21 GS12-17 I GS11-16 GS11-2
IGS13-46 GS12-32 I I

GS12-28:I GS12-28 GS12-26 GS12-23 I GS12-29 GS12-27 GS11-11 I GS11-7 GS11-13 GS13-37
I GS13-48 GS13-33 GS12-20 I GS12-21 GS12-17 I GS11-16 GS11-2
I GS13-38 GS13-46 GS12-32 I I

GS11-10:I GS12-28 GS12-26 GS12-23 I GS12-29 GS12-27 GSl-11 I GS11-10 GSll-7 GS11-13
I GS13-48 GS13-33 GS12-20 I GS12-21 GS12-17 I GS13-37 GS11-16 GS11-2
I GS13-38 GS13-46 GS12-32 I

GS13-43:1 GS13-43 GS12-28 GS12-26 I GS12-29 GS12-27 GSl1-11 GS11-10 GS11-7 GS11-13
I GS12-23 GS13-48 GS13-33 I GS12-21 GS12-17 i GS13-37 GS11-16 GS11-2
I GS12-20 GS13-38 GS13-46 1

GS12-32

GS12-18 GS12-19
GS12-25 GS12-29
GS11-11 GS12-21

GS11- GS11-1 GS11-3 GS11-15
GS11-4 GS11-6 GS11-14 GS11-10
GS11-7 GS11-13 GS13-37
GS11-16 GS11-2

Figure 6.9: Recursively categorizing the first genus of the simulated population
described in Table 6.3 with A equal to .65.The species will be correctly recovered.
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expect that the categorization algorithm to be able to recover the species.
We test this conclusion by executing the categorization algorithm on the
members of the first genus of the simulation example of the previous section;
Figure 6.9 displays the results of two categorization attempts, with A set to
.65 in both cases. Notice that the correct species categories are recovered; the
isolated errors would be corrected in subsequent viewing of the incorrectly
categorized objects. Repeated application of the categorization algorithm
shows this categorization to be stable. Thus, the observer can reliably recover
the species categories once the genera have been separated.

We can test this procedure in the domain of the bacteria as well. Figures
6.10 and 6.11 display the results of re-categorizing the genera bacteroides
and fusobacterium, respectively. For the bacteroides the value of A is .6; for
fusobacterium, .5. (In a moment, we will discuss the effect on A caused by
recursively categorizing the genera.) In both of these cases the categorization
procedure reliably recovers the species. In the previous section, we demon-
strated the ability of the categorization procedure to recover the genera.
Thus, using a recursive categorization strategy, the observer could recover
both the genera and the species.

Conceptually, there is a problem with performing recursive categoriza-
tion, and that difficulty is hidden within the computation of the normaliza-

Now, let us evaluate the category uncertainty Uc for the categorization corresponding
to the modal classes, the "correct" categorization. To do so requires computing the
category uncertainty of each object for each possible feature subset description. We
know that there are 2 m+z possible feature subsets (for this analysis we must include the
null set). Because the m features are modal, if any of those features are included in the
description of an object, then there is no category uncertainty. If however, there are
no modal features in the description, then the object may match any category and the
uncertainty is log c. The number of feature subsets containing no modal features is 2'.
Thus the average category uncertainty of each object (and thus for complete average)
is:

2_ 1
Uc= 2 .+ log c = 2-. log c

That is, Uc is independent of x. The intuition behind the result is that the same
proportion of feature subsets contain no modal information, regardless of the number
of constant features. When there are no constant features, then only the null subset
produces category uncertainty. As constant features are added, the number of possible
subsets increases by the same ratio as the number of non-modal subsets (namely 2 ).
This is true for any categorization we evaluate; we used the correct modal categorization
only to make the an analytic computation of the category uncertainty possible.
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Start:BV-32 BF-1 V-35 8F-6 V-43 T-21 8F-13

BT-24:8BT-24 BV-32 BV-43 BV-35 IBF-1 T-21 BF-13 BF-6
…-------- - ---- --------------- … …

BT-17:IBV-32 BV-35 BF-6 BV-43 BF-13 IBT-24 BT-21 BT-17 BF-1
-------------- -- -- ----- ------ …--------- --- T--

BT-27:IBV-32 BV-35 BF-6 V-43 8F-13 IBT-27 BT-24 BT-21 BT-17 BF-1
…----- ------ I--------I ----------------- …---------------------------- ---…

BV-40:18V-40 BV-32 BV-35 BF-6 BV-43 BF-13 IBT-27 BT-24 BT-21 BT-17 BF-1
---------------- …-------------------------------------…-…- ----------------- …-

BF-14:18F-14 V-40 BV-32 BV-35 BF-6 V-43 BF-13 18T-27 T-24 T-21 T-17 BF-1
-------------------------------------------- --- -___ __-__----___________ _ T-------------

8V-33:IBV-33 BF-14 V-40 V-32 V-35 BF-6 V-43 8F-13 IBT-27 BT-24 BT-21 T-17 8F-1

8V-31:IBV-31 BV-33 BF-14 BV-40 BV-32 BV-35 BF-6 BV-43 IBT-27 BT-24 BT-21 BT-17 BF-1
IBF-13 

______ ______________________---- ------------------------ -------------------------------------------------

BV-41:IBT-27 BT-24 BT-21 BT-17 BF-1 IBV-31 BV-43 BV-32 BV-41 BV-33 IBV-40 BF-6 BF-13 BF-14
I IBV-35 I

BV-39:IBT-27 BT-24 BT-21 BT-17 BF-1 IBV-39 BV-31 BV-43 BV-32 BV-41 IBV-40 BF-6 BF-13 BF-14
I B1V-33 BV-35 I

BT-25:8BT-25 BT-27 BT-24 BT-21 BT-17 1V-39 BV-31 BV-43 BV-32 BV-41 B1V-40 BF-6 BF-13 BF-14
IBF-1 BV-33 BV-35

BF-3:IBT-25 BT-27 T-24 BT-21 BT-17 IBV-39 BV-31 BV-43 BV-32 BV-41 8BF-3 BV-40 BF-6 BF-13 BF-14
IBF-1 18V-33 BV-35

BT-23:IBT-23 BT-25 T-27 BT-24 BT-21 IBV-39 BV-31 BV-43 BV-32 BV-41 IBF-3 BV-40 BF-6 BF-13 BF-14
IBT-17 BF-1 IBV-33 BV-35 i

BT-16:IBT-16 BT-23 T-25 BT-27 BT-24 IBV-39 BV-31 BV-43 BV-32 BV-41 IBF-3 BV-40 BF-6 BF-13 BF-14
IBT-21 BT-17 BF-1 IBV-33 BV-35

BT-19:IBT-19 BT-16 BT-23 BT-25 BT-27 IBV-39 BV-31 BV-43 BV-32 BV-41 IBF-3 BV-40 BF-6 BF-13 BF-14
IBT-24 T-21 BT-17 BF-1 IBV-33 BV-35

BF-7:1BT-19 BT-16 BT-23 BT-25 BT-27 B1V-39 BV-31 BV-43 BV-32 8V-41 IBF-7 BF-3 BV-40 BF-6 BF-13 BF-14
IBT-24 BT-21 BT-17 BF-1 IBV-33 BV-35

……---------------…____________________-…__________________________________----- ---------------- ----------
BT-22:IBT-22 BT-19 BT-16 BT-23 BT-25 IBV-39 BV-31 BV-43 BV-32 BV-41 IBF-7 BF-3 BV-40 BF-6 BF-13 BF-14

IBT-27 BT-24 BT-21 BT-17 BF-1 IBV-33 BV-35 I

BV-44:IBT-22 BT-19 BT-16 BT-23 BT-25 IBV-44 BV-39 BV-31 BV-43 BV-32 1BF-7 BF-3 BV-40 BF-6 BF-13 BF-14
IBT-27 BT-24 BT-21 BT-17 BF-1 IBV-41 BV-33 BV-35

BF-9:IBT-22 BT-19 BT-16 BT-23 BT-25 IBV-44 BV-39 BV-31 BV-43 BV-32 IBF-9 BF-7 BF-3 BV-40 BF-6 BF-13
IBT-27 BT-24 BT-21 BT-17 BF-1 IBV-41 BV-33 BV-35 IBF-14

BF-4:IBF-11 BF-5 BT-29 BT-30 BT-20 IBF-4 BF-12 -10 BF-2 BF-15 BF-0 IBV-42 BV-34 BV-37 BV-45 BV-40
IBT-22 T-19 T-16 T-23 BT-25 18T-18 BF-3 BF-7 BF-13 IBF-6 BV-44 BV-39 BV-31 BV-43
IBT-27 BT-24 BT-21 BT-17 BF-1 I IBV-32 V-41 V-33 V-35_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- _ __

__28 BT2
BT-28: BT-28

IBT-20
IBT-25
IBF-1

BF-11 BF-5 BT-29 BT-30
BT-22 BT-19 BT-16 BT-23
BT-27 BT-24 BT-21 BT-17

BF-4 BF-12 BF-13 BF-2 BF-15 BF-8
BF-3 BF-7 BF-13

IBV-42 BV-34 BV-37 BV-45 BV-40
1BF-6 V-44 BV-39 BV-31 BV-43
fBV-32 BV-41 BV-33 BV-35
I

Figure 6.10: Re-categorizing a population of the bacteroides bacteria. For these
executions, the value of A was 0.6. When the population is restricted to only the
genus members, the categorization algorithm reliably recovers the species.
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Start:IFN-24 FM-12 FN-27 FN-17 FV-31 FM-15 FN-22

FM-I:IFM-1 FM-12 FM-15 FN-24 IFN-27 FV-31 FN-17 FN-22

FN-21:IFM-1 FM-12 FM-15 FN-24 iFN-21 FN-27 FV-31 FN-17 FN-22

FV-41:IFM-1 FM-12 FM-15 FN-24 IFV-41 FN-21 FN-27 FV-31 FN-17 FN-22

FM-13:IFM-13 FM-i FM-i2 FM-15 F-24 _FV-4i FN-21 FN-27 FV-31 FN-17 FN-22

FM- 8 :I FM-13 FM-1 FM-12 FM-15 FN-24 IFV-41 FN-21 FN-27 FV-31 FN-17 FN-22

FM-30:IFM-8 FM-13 FM-i FM-12 FM-15 FN-24 IFV-30 FV41 FN-21 FN-27 FV-31 FN-17 FN-22 22

FV-39:IFM-8 FM-13 FM-1 FM-12 FM-1S FN-241FN-230 F-27 FV-39 F N-22 1FV-1 FV-31 FN-30 FN-17

FN-2539:IFM-8 FM-13 FM-1 FM-12 FM-15 FN-241FN-21 FN-27 FN-2 FV-39 F- 22 IFV-41 FV-31 FN-30 FN-17

FN-258:FM-8 FM-13 FM-1 FM-12 FM-15 FN-241FNN- 2 FN-25 FN-2 1 F-27 FV-3 9 IFV-41 FV-31 FN-30 FN-17
IFN-22

FM-25:IFM-8 FM-13 FM-1 FM-1 2 FM-1 5 IFN-28 FN-25 FN-21 FN-27 FV-39 IFV-41 FV-31 FN-30 FN-17
FN-24 IFN-22 I

F-3:IFM-5 FM-8 12M-3 FM-i FM12 FM-15 IFN-28 FN-25 FN-21 FN-27 FV-39 IFV-37 FV-41 FV-3 FN-30 FN-17
IFN-24 IFN-22 I

FV-43:IFM-5 FM-8 FM-13 FM-1 FM-12 FM-15 IFN-28 FN-25 FN-21 FN-27 FV-39 IFV-43 FV-37 FV-41 FV-3 1 FN-30
IFN-24 IFN-22 FN-17

FV-44:1FM-5 FM-8 FM-13 FM-1 FM-12 FM-15 IFN-28 FN-25 FN-21 FN-27 FV-39 tFV-44 FV-43 FV-37 FV-41 FV-30
IFN-24 IFN-22 IFN-30 FN-17

FV-35:IFM-5 FM-8 FM-13 FM-1 IFN-28 FN-25 FN-21 FN-27 IFV-43 FV-35 FV-44 FV-37 IFN-17 FN-30 FV-31 FV-41
IFM-12 FM-15 FN-24 IFV-39 FN-22 I I

FM-10:IFN-28 FN-25 FN-21 IFV-43 FV-35 FV-44 IFN-17 FN-30 FV-31 IFM-5 FM-10 FM-13 IFM-8 FM-1 FN-24
IFN-27 FV-39 FN-22 IFV-37 IFV-41 IFM-12 IFM-15

FN-16:IFN-16 FN-28 FN-25 IFV-43 FV-35 FV-44 IFN-17 FN-30 FV-31 IFM-5 FM-10 FM-13 IFM-8 FM-1 FN-24
IFN-21 FN-27 FV-39 IFV-37 IFV-41 tFM-12 IFM-15
IFN-22 I 

FM-11:IFN-16 FN-28 FN-25 IFV-43 FV-35 FV-44 IFN-17 FN-30 FV-31 IFM-11 FM-5 FM-10 IFM-8 FM-i FN-24
IFN-21 FN-27 FV-39 IFV-37 IFV-41 IFM-13 FM-12 IFM-15
IFN-22 I I I

FN-20:IFN-16 FN-28 FN-25 IFV-43 FV-35 FV-44 IFN-20 FN-17 FN-30 IFM-11 FM-S FM-10 IFM-8 FM-1 FN-24
IFN-21 FN-27 FV-39 IFV-37 IFV-31 FV-41 IFM-13 FM-12 IFM-15
IFN-22 I I I

FM-12:IFN-23 FN-26 FN-19 FN-18 FV-38 IFV-42 FV-40 FV-36 FV-45 FV-41 IFM-12 FM-1 FM-4 FM-9 FM-3 FM-11
IFN-29 FN-16 FN-28 FN-25 FN-21 IFV-34 FV-31 FV-33 FV-32 FV-43 IFM-5 FM-10 FM-13 FM-12 FM-15 FM-6
IFN-27 FV-39 FN-22 FN-17 FN-20 iFV-35 FV-44 FV-37 IFM-14 FM-2
IFN-30

FM-3:IFN-23 FN-26 FN-19 FN-18 FV-38 IFV-42 FV-40 FV-36 FV-45 FV-41 IFM-3 FM-12 FM-1 FM-4 FM-9 FM-3
IFN-29 FN-16 FN-28 FN-25 FN-21 IFV-34 FV-31 FV-33 FV-32 FV-43 IFM-11 FM-5 FM-10 FM-13 FM-12
IFN-27 FV-39 FN-22 FN-17 FN-20 IFV-35 FV-44 FV-37 IFM-15 FM-6 FM-14 FM-2
IFN-30 I I

Figure 6.11: Re-categorizing a population of the fusobacterium bacteria. For
these executions, the value of A was 0.5. When the population is restricted to only
the genus members, the categorization algorithm reliably recovers the species.
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tion factor Ir. By restricting the population to only one genus, the property
uncertainty of the coarsest categorization - the categorization consisting of
only one category - is greatly reduced, thereby reducing the value of I. As
shown in the equation for U:

U(Z) = (1 - A) Up(Z) + A r(Z) Uc(Z) (6.3)

q directly multiplies the Uc term, and thus controls (along with A) the relative
contribution of the two uncertainties. l0 Thus the effect of A on the relative
contribution of Up and Uc to U is modified when qi is recomputed. This
change in the effect of A complicates the interpretation of A as being a trade-
off between uncertainties established according to the goals of the observer.

Perhaps, then, within the present context of categorizing objects we
should view A as a parameter controlled by the observer and used by him
to probe the category structure of the population. If he can discover cate-
gory structure that is stable over a range of A, then he can assert that these
categories are more likely to correspond to natural processes. As yet, the
question of directly relating the goals of the observer to the categorization
process has not been satisfactorily resolved. The intuition that the goals of
the observer specify the trade-off bewteen property uncertainty and category
uncertainty is strong; more work is needed to re-examine the form of equation
6.3 to resolve this issue.

6.3.2 Primary process requirement

As a final comment about process separation we note that we were able to
recover the species structure only after recovering the genera. For recursive
categorization to be effective, there must be a primary process that can be
recovered at each step. In the case of the bacteria, the genera represented
a strong modal structure that could be recovered immediately. In the sim-
ulation, we provided more modal features for the genus categories than for
the species. This imbalance provided a primary process that could initialize

0°Unlike decreasing A, lowering the value of i7 reduces the weight accorded Uc, without
increasing the weight of Up. Normally, reducing A increases the weight of Up making the
categorization evaluation function more sensitive to property variation. This difference,
along with some implementation details about local category formation, is the reason
that reason that simply lowering A will not accomplish the separation of the species,
but that reducing 77 will.
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the recursive categorization procedure. Therefore, if the observer categorizes
objects in a multiple modal world by applying the categorization algorithm
recursively, then he must be provided a with a representation that permits
him to discover a primary process at each level.

6.4 Evaluating and Assigning Features

The emphasis of this chapter, indeed this thesis, has been on the recovery
of natural object categories. We have demonstrated that the observer must
be provided with a representation that reflects the modal structure present
the world. However, it would be desirable for the observer to be able to
improve his representation as he categorizes the objects in the world. By
"improve," we mean make the representation more sensitive to the natural
categories present. In the context of property vectors this process would
include "growing" new features that are constrained by the natural modes, as
well as assigning computed features to the correct modal level. In this section
we provide a mechanism by which the observer can evaluate the effectiveness
of features in terms how well they support the recovery of natural mode
categories.

6.4.1 Leaves example

Let us return to the leaves example introduced at the start of the chapter. We
assume that the categorization algorithm has been executed and the correct
natural mode categories - the species - have been discovered. Furthermore,
we assume that the observer has determined that no other modal levels exist.
Now, we wish to develop a method by which the observer can determine which
features are most sensitive to the species categories.

We proceed by creating a short taxonomy of the leaves shown in Fig-
ure 6.12. The only levels present are those which correspond to solutions to
the categorization algorithm. The middle level corresponds to the species,
and is the "natural" level of the taxonomy. This level has as its super-ordinate
the single-category, which is the recovered solution for A near 1.0. The level
below the species consists of the finest possible categorization, the solution
for A near zero. We construct this taxonomy for the purpose of evaluating
the categorization uncertainty measure U for a range of A and for different
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Figure 6.12: A short taxonomy of leaves consisting only of the natural (species)
level and the two extreme (or noise) levels above and below.
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subsets of the features. That is, for a given subset of features, we will mea-
sure the range of A for which the species categorization is the preferred level
of the taxonomy. We refer to the extent of this range as the A-stability of
the features for these natural categories. We will use the A-stability of the
features to evaluate their utility in recovering the category structure.

Tables 6.4 and 6.5 display the A-stability values for different subsets of
the features. (Not all subsets are displayed.) For example, panel (a) of
the first table reveals that if only the feature "apex" is used to describe
the leaves, then for a range of A of .87, the species level of the taxonomy
is preferred over the other two levels. Notice the inclusion of the feature
nfl, a noise feature. This feature, whose value is assigned randomly for
each object, provides a baseline against which to compare other features.
Panel (a) shows all 1-feature subsets, and the A-stability value associated
with each subset. Notice that "apex," "base," and "color" have a relatively
high stability, indicating they are the best individual features. This does
not mean that each of these features is sufficient for the recovery of the
species categories; for example, poplar and elm both have a rounded base.
Rather, given the particular taxonomy of Figure 6.12 these features are highly
selective of the species level. Notice that "width" and "length" have low A-
stability values, indicating little diagnosticity for the species.. Finally, the
noise feature has no (significant) A-stability.

Panel (b) displays some of the 2-feature subsets, including some pairs
formed by combining a good single feature with noise. First, notice that the
best pair is in fact the combination of the two best single features. This does
not have to be the case. For example, suppose the two best single features
provide redundant information, and that two other feature are orthogonal
in their separation of the population. In that case, the combination of the
two orthogonal features would provided a greater separation of the classes
and thus a larger A-stability value. The less the features in a domain dsiaply
this form of interaction, the easier it is to evaluate addtional features. The
reason for this is that the combinatorics of (k) normally preclude evaluating
all possible subsets of features. If the features combine independently, small
subsets of features can be tested and then combined.

Second, note that the subset (width, apex) has a much greater stability
value than (apex, nfl). This result demonstrates that although the "width"
feature by itself provides little support for the recovery of the natural cate-
gories, it does not act as destructively as pure noise. The highly destructive
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(APEX)
( BASE )
(COLOR)
(MARC IN)
(LOBES)
(FLARE)
(LENGTH)
(1IDTH)
(F I )

A.87
6.87

B. t?7
.68

8.36
.21
.6

6. 

(a) 1 feature subsets
- - - - - - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(BASE COLOR)
(APEX BASE)
(APFX COIOR)
(MARCIN APEX)
(LOBES APEX)
(LOBES COLOR)
(MANRGIN BASE)
(LOBES BASE)
(MARGIN COLOR)
(LOBES NRRGIN)
(FLARE COLOR)
(FLARE BASE)
(FLARE APEX)
(FLARE ARGIN)
(LENGTH BASE)
(FLARE LOBES)
(UIDTH APEX)
(LENGTH LOBES)

(WIOTH MARGIN)
(LENGTH FIRRE)
(WuOTH FLARE)

(COLOR HFI)
(BASE NFl)
(lENGTH UTOTH)
(APEX NFI)
(LOBES N I )
(MARGIN H I )
(FLARE I t)
(WIOTH NFI)
(LENGTH NFI)

6.91
6.91
6.96
6.81
6.81

6.75
6.62
6.61
I.56
I.57
*.53
6.52
6.51
6.51

6.46
6.25
0.24

*.22
6.22
1.22
6.26
6. 19
*. 18
6.1 6
6.66

6. t6

(b) 2 feature subsets

(APEX BASE COLOR)
(MARGIN APEX BASE)
(MARCIN APEX CO{IIR)
(MARGIH BRASE COLOR)
(LOBES APEX COLOR)
(LOBES BASE COLOR)
(LOBES APEX BASE)
(LOBES nRRGIN APEX)

(FLARE
(FLARE
( WIDTH
(UIDOTH
(FLARE
(FLARE
(FLARE
(FLARE
(FLARE
(1IDTH

APEX COLOR)
APEX BASE)
APEX BASE)
APEX COLOR)
BASE COLOR)
LOBES COLOR)
MARGIN BASE)
nARRCIN APEX)
NRRGIN COLOR)
BASE COLOR)

(LENGTH LOBES APEX)
(UIDTH nRRGIN COLOR)
(LENGTH LOBES MARGIN)
(LENGTH LOBES BASE)
(LENGTH MARGIN COLOR)
(HIDTH FLARE APEX)
(WIOIH FLARE BASE)
(HIOTH FLARE COLOR)
(APEX BASE NFI)
(HIOTH FLARE LOBES)
(8ASE COLOR NFt)
(APEX COLOR NFI)
(IOBIS COIOR NF I)
(LOBES APEX HFI )
(WIDIH FLARE ARGIN)
(tFHCIH FlARF BASF)
(LENGTH FLARE COLOR)
(MARGIN BASL NF )
(LENGTH WIOTH BASE)

(LENGTH APEX NFI)
(LENGTH UIOTH FLARE)
(HIOTH MARGIN NFt)
(LENGTH COLOR NFI)
(FLARE LOBES NFI)
(LENGTH MARGIN NFt)
(LENGTH LOBES NF!)
(HIOTH FLARE NFI)
(LENCGTH FLARE NFI)
(LENCTN IOTH F I)

(c) 3 feature subsets

Table 6.4: Selected A-stability measurements for different subsets of features in
the leaves example; subsets of length 1, 2, and 3 are shown. By comparing the
addition of a new feature with the addition of a noise feature (nfl) one can judge
the utility of the new feature.
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R.93
8.86
6.86

6.84
6.82
6.81
B.81

6.73
6.1
8.1I
R. 76

8.69
6.68
6.67
6.67
6.67

6.56
B.56
6.56

B.55
1.52

6.56
6.5s
8.49
.45
.45

6.44
8.44
.44

6.43
9.43
6.43
6.43
.4 2
.42

6. 1B
6. 18
6. 16

6. I 46. 15
6.14
8. 14

.66)
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(MARGIN APEX 8ASF COLOR)
(Inos APfX BRSF COLOR)
(I Rfs MRGCIN RPtX BARRSF )
(0lRS MARGIN APEX COIOR)
(IORtS MRRGIN BASt COLOR)
(F I AR RPIX RRSF COLOR)

(APEX BASF COLOR r I )

(I OREs8.98
6.98

6.86

6.84
6.82

6.64

(a) 4 feature subsets

(I IRR IORFS MARCGN APEX BASE COLOR)
(UIDnIH ORIS MARGCIN RPX BASE COLOR)
( I Nl H I BES MARGCIN APX BASE COL OR)

(NrI lOBES MARGIN APEX BRSF COLOR)

(c) 6 feature subsets

8. 86
.8

8. Ot

(F I ARE

( I RI(FIRR
(IARRE

nARGIN RPIX BRAS COt OR)
MnRRGN RPIX RASE COLOR)
I nRaS AP!X RRSF COl OR)
nhRCGIH RPIX BASF COLOR)
LOBS nRARGIN APEX BASE)
lOBtS MRGIN APX BASE)

(MFI MARGIN APEX BASE COLOR)

B. 9

R.R?

8. B
B. '
R. 79

(b) 5 feature subsets

(UTIOIH FIRRf OBS ARRCIN RPEX BASE COLOR)
(IrGCI1H rLARE ORES NRRCIN APEX BASE COLOR)

(NFr FliARE lORFS MRRCGlN RPX BASF COLOR)

(d) 7 feature subsets

Table 6.5: Selected A-stability measurements for different subsets of features in
the leaves example; subsets are of length 4, 5, 6, and 7.
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action of the noise feature can be further demonstrated in panel (c) of Ta-
ble 6.4. Compare the triplet (apex, base, nfl) with both the first triplet of
(apex, base, color) and with the top pair in panel (b) of (apex, base). The
extreme reduction in the stability caused by the noise is an indication to the
observer that the feature "nfl" has little use and should be removed from his
representation. By using this comparison to noise strategy, the observer can
also evaluate the addition of new features. Given a proposed new feature,"
this mechanism provides a means to evaluate its utility.

The panels of Table 6.5 show that the maximum value of A-stability re-
mains quite high (about .9) until the inclusion of the last 3 features "width,"
"length," and "nfl." Including either "width" or "length" reduces the A-
stability to .78, and the inclusion of the noise feature reduces the stability to
a value of .71. Thus, most of the leaf features are relatively uniform in their
sensitivity to the species structure of the leaves.

6.4.2 Bacteria example

The fact that the different features of the leaves do not exhibit large differ-
ences in their diagnosticity for the species is not surprising; these features
were chosen from a leaf identification reference [Preston, 1976]. There is only
one modal level and each of the features was chosen to be useful in identifying
that level. For the bacteria example, however, there are two modal levels.
Some features are sensitive to the genera, others to the species. Therefore
let us consider evaluating the features of the bacteria domain.

The taxonomy we construct resembles that for the leaves example, but
it includes both natural levels (Figure 6.13). In this case we will evaluate
the A-stability for each natural clustering. Panel (a) of Table 6.6 displays the
A-stability values for several feature subsets for the genus level of the bacteria
taxonomy; included are the best feature subsets of length 3,4, and 5. Notice
that the best subset of length 3 (location, gr-kan, glc) has a A-stability value
of 1.0; this maximum value occurs because these features are modal for the
different genera (see Table 6.2). The best subset of length 4 adds the feature
1 An important, and open, question is how does the observer propose new features?

The literature is quite sparse in addressing this question, with most attempts being
confined to arithmetic combinations of previous features (for example see Boyle [19??]).
Recently, Michalski and his colleagues have explored the issue of the logical manipulation
of features [Michalski, 19??].
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Figure 6.13: A taxonomy of the bacteria of Table 6.2 separated according to
genus and species.
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(loc gr-kan gc)
(loc gr-pen gc)
(gr-pen gr-kan gc)
(loc gr-pen gr-kan)
(gr-rif gr-kan gc)

1.00
0.82
0.81
0.81
0.63

(loc gr-kan glc gr-pen)
(loc gr-kan glc gr-rif)

(loc gr-kan glc nfl)

0.85
0.71

(loc gr-kan gr-pen glc gr-rif)

(loc gr-kan gr-pen glc nfl)
0.67

(loc gr-kan nfl)
l

0.60

4 feature subsets
5 feature subsets

3 feature subsets

(rham)
(esculin)
(dole)
(nfl)

(a)

0.87
0.87
0.87
0.00

1 feature subset

(rham esculin)
(esculin dole)
(rham dole)
(rham nfl)

0.90
0.90
0.90
0.12

(rhm escuin dole)

3 feature subsets

2 feature subsets

(b)

(bile esculin gr-rif)
(esculin dole gr-rif)
(bile dole gr-rif)
(bile esculin dole)
(dole gr-rif gr-pen)
(bile dole gr-pen)
(bile esculin gr-pen)

0.90
0.89
0.89
0.89
6.59
0.58
0.58

(bile esculin dole gr-rif)
(esculin dole gr-rif gr-pen)

4 feature subsets

* .93
0.70

(bile esculin dole gr-rif gr-pen)
w

5 feature subsets

3 feature subsets

(C)

Table 6.5: Evaluation of features for the separation of the (a) bacteria genera
and of the species (b) bacteroides and (c) fusobacterium.
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"gr-pen," but this lowers the stability value to .86. Notice that second best
subset of length 4 reduces that value to .71. Finally, the best subset of length
5, generated by including "gr-rif," is only marginally better than a subset
generated by adding a noise feature to the best length 4 subset (.72 as opposed
to .66). These results demonstrate that the features (location, gr-kan, glc,
gr-pen) are the features most constrained by the processes associated with
the genus of the bacteria, and that the other features provide little useful
genus information.

Next, we evaluate the separation of species with in the genus. For the
genus bacteroides, the features "gr-rif" and "bile" are constant, providing no
information about the species. Thus the only remaining features are "rham,"
"esculin," and "dole." Since each of these take on one value for one of the
species and another value for the other two, and because they each single out
a different one of the three species, these three features behave identically
with respect to A-stability. This behavior is indicated in panel (b) of Table
6.6. For the fusobacterium genus, however, the features do have a differential
effect. As shown in panel (c), the A-stability remains quite high (about .9)
for the best feature subsets of length 4 or less. However, the best subset
of length 5 requires the addition of feature "gr-pen" and the A-stability is
greatly reduced (.76). As "gr-pen" was one of the features discovered to be
important for the separation of the genera, we know that this feature crosses
the modal levels, and thus is a weak feature for the species clustering.

We can summarize the results of the bacteria example by displaying an
annotated taxonomy of the domain (Figure 6.14). The features tied to the
branches represent the properties of the objects constrained by the natural
processes responsible for that particular natural division. In essence, the
observer has learned not only to identify the natural categories, but also to
relate the properties of objects to to the natural processes in the world.
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Figure 6.14: The same taxonomy of the bacteria as in Figure 6.13, but anno-
tated with the features that are important in performing the different levels of
categorization. These features are constrained by the processes responsible for the
different modal levels.
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Chapter 7

Conclusion

7.1 Summary

We began this thesis with the following three questions:

* What are the necessary conditions that must be true of the world if
a set of categories is to be useful to the observer in predicting the
important properties of objects?

* What are the characteristics of such a set of categories?

* How does the observer acquire the categories that support the infer-
ences required?

Let us consider each in turn.
The first question is about the world. What needs to be special about the

world if the observer is to be able to make inferences about the important
properties of objects? As an answer, we proposed the Principle of Natural
Modes: the interaction between the processes that create objects and the
environment that acts upon them causes objects to cluster in the space of
properties important to their interaction with the environment. The impor-
tance of this claim is that without such a constraint, many of the perceptual
inferences that are necessary to the survival of the observer cannot be made.
This statement is true even at the lowest levels of perception. For example,
consider the method by which a tick finds a host. The tick climbs onto a
branch or blade of tall grass, waits until it detects the presence of buteric acid
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(a chemical produced by warm blooded animals), then releases the branch
(or jumps) and falls towards the ground. If no host is underneath, the tick
starts again. Now let us consider the tick's strategy in terms of natural
modes. All mammals have many biological processes in common that are
unique to mammals; as such, mammals form a natural mode. The tick's
strategy is an effective one because the presence of buteric acid is strong in-
dicator of the proximity of a mammal. Although one can view this inference
simply as a high correlation statistic, the underlying reason why the strategy
of the tick is successful is because buteric acid is a good predictor of an object
belonging to the natural mode of mammal.

Although the inferences that must be made by a human observer may be
more varied and more complex than those of a tick, the principles underlying
the predictions of unobserved properties are no different. Given an apple,
we know we can eat it. Given a tiger, we know to run. The necessary
requirement for being able to make these inferences is that we must be able
to determine the natural mode to which an object belongs. The categories
we use to describe these objects must be consistent with the natural mode
structure of the world.

The existence of natural modes allows us to define the problem of cat-
egorization, namely the recovery of object categories corresponding to the
natural modes important to observer. Our solution to this problem required
decomposing the task into two components. First, the observer must be able
to identify when a set of categories corresponds to natural classes, and sec-
ond, he must be able to recover such a set of categories from the available
data. These two components provide the answers to the second and third
questions this thesis sought to address.

We constructed a measure of how well a set of categories reflected the
natural modes by measuring how well the categories supported the inference
requirements of the observer. We argued that if a set of categories satisfied
the goals of the observer and permitted him to make the necessary inferences
about the properties of objects, then that set of categories must capture the
structure of the natural modes.

In our analysis of the goals of the observer and of the characteristics of
a set of categories that support those goals, we identified two conflicting
constraints. First, the observer requires that knowledge of the category of
an object be sufficient to make strong inferences about the properties and
behavior of that object. This requirement favors the formation of fine, ho-
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mogeneous categories. Such categories are highly structured and thus convey
much information about the properties of their members. Larger categories
have less constrained properties and thus the observer has a greater property
uncertainty once the category of an object is known. Second, the inferences
made by the observer must be reliable; thus, he requires that the assignment
of an object to a category be a robust process. Such a constraint favors the
formation of coarse categories, where few properties are needed to determine
category membership. The coarser a set of categories, the easier it is to de-
termine category membership of an object; there is less category uncertainty
for given object.

Therefore, the observer is faced with a trade-off between the ease of mak-
ing an inference about an object and the specificity of the inference. To make
this trade-off explicit, we derived a measure for each of the two uncertainties
(based on information theory) and combined them using a free parameter A
as a relative weight. This combined measure - referred to as the total un-
certainty of a categorization - allowed the observer to explicitly control the
balance of uncertainty. If the observer requires precise inferences, a low value
of A selects tightly constrained categories; these categories provide the nec-
essary inferential power, but at the expense of requiring detailed information
about an object to determine the category to which it belongs. Likewise,
if the observer requires a robust categorization procedure even when little
sensory information is provided, a high value of A causes coarse categories
to be preferred; they are easily accessed with little sensory information, but
they permit the observer to make only weak inferences about the properties
of objects.

The measure we derived is based solely on the goals of the observer; sets
of categories which support the goals of inference of the observer yield lower
total uncertainty than those that do not. But how do we relate this measure
to the natural modes? As argued above, we know that the goals of inference of
the observer can only be accomplished if he recovers the natural categories.
It is the structure of the modes that permits the inference of unobserved
properties from observed properties. Thus, by directly measuring how well
the observer accomplishes his goal, we are measuring how successful he has
been in recover the natural categories.

Having constructed a measure capable of evaluating the degree to which a
set of categories captured the natural mode structure, we next considered the
problem of recovering the natural categories from the data provided by the
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environment. Based upon the learning paradigm of formal learning theory,
we defined a categorization paradigm that allowed us to identify the com-
ponents of the categorization process. This paradigm was developed to be
consistent with our intuitions about the categorization procedure; for exam-
ple, objects are viewed sequentially, with the observer modifying his current
categorization of objects as each new data item is viewed.

There are three critical components in the paradigm. First, is the repre-
sentation, the information encoded by the observer upon viewing an object.
If the representation does not have the power to distinguish between objects
in different natural modes - if the representation is not class preserving -
then the observer can not hope to recover the natural categories. Second,
is the hypothesis evaluation function, which provides the criteria by which
the observer chooses a particular categorization. The last component of the
paradigm consists of of a hypothesis generation method. This component,
which is responsible for producing categorization hypotheses, is also critical
to the success of the categorization procedure. Because of the combinatorics
of partitioning problem, one can not attempt all possible categorizations in
a world of many objects. Therefore, one needs to develop a procedure that
will eventually converge to the correct set of categories.

Using the paradigm as a model we constructed a categorization proce-
dure. This procedure implements the total uncertainty of a categorization as
the hypothesis evaluation function. The hypothesis generation method we
present is a dynamic, data driven procedure. Upon viewing a new object,
the observer produces a new set of categories by modifying the previous hy-
pothesis. Although the algorithm is statistical in nature, and not guaranteed
to produce the correct categorization, we have demonstrated its effective-
ness in several domains. One of these domains consists of the soybean data
of Michalski and Stepp [1983], which have been shown to be challenging for
standard clustering techniques. The algorithm successfully recovered the four
species of diseases present, and did not require the a priori knowledge of the
number of classes contained in the population.

Finally, we considered the case of a multiple mode domain, a domain in
which there is more than one level of natural structures. The example we used
was that of infectious bacteria, where there is structure at both the genus and
species level. We first demonstrated a technique by which the observer could
recover the different levels present. This technique relies on the observer
being able to detect a primary process level; once the observer discovers
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these categories he can then recursively categorize each sub-population in
search of additional structure. To support such a procedure we analyzed the
case of attempting to categorize a world in which there is no modal structure.
By determining the pathological behavior observed in such a situation, we
provide the observer with the necessary halting conditions for the recursive
strategy.

An important aspect of the multiple mode analysis was the development
of a method for evaluating the utility of a feature for recovering the natural
categories. In the single mode world, this technique provides the observer
with the means for evaluating new features, and thus permits him to learn
a better representation. In the multiple modal world this technique also
provides a mechanism for assigning the different features encoded by the
observer to the different process levels present in the domain. This technique
begins to address the fundamental problem of recovering natural processes
as opposed to recovering only the categories formed by the processes.

7.2 Clustering by Natural Modes

One of the contributions of this work is a new method by which to measure
the quality of a set of categories. The measure U - the total uncertainty
of a categorization - reflects how well the categories support the goals of
making inferences about the properties of objects. How does this method
compare to other clustering techniques?

First, we again mention that the categorization procedure based upon
the uncertainty measure was capable of successfully categorizing the soybean
data of Michalski and Stepp[1983]. In their work, they report experiments in
which they attempted to categorize those data using 18 different numerical
clustering techniques. Of these, only 4 were successful. Thus, for at least
this set of data the performance of the categorization technique is at least
comparable to other clustering algorithms. Because the uncertainty measure
has the desirable property of being insensitive to unconstrained features,
it provides a robust method of recovering categories in a domain in which
irrelevant features contaminate the data. Furthermore, we have provided a
technique by which the relevance of a feature can be assessed once the correct
categories are known.

But more important than the performance of the algorithm is the basic
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design of the categorization evaluation function. This function explicitly
measures how well a particular set of categories supports the goals of making
inferences about the properties of objects. Unlike standard techniques that
use a distance metric which is assumed to bear some relation to the desired
structure of the categories, the uncertainty measure directly evaluates the
utility of the categories in terms of the inferences that can be supported.
By directly measuring the degree to which a categorization supports the
performance of the task of interest (namely that of making inferences), we
are more likely to discover a useful set of categories.

7.3 The Utility of Natural Categories:
Perception and Language

Throughout this thesis we have motivated the categorization problem by con-
sidering the inference requirements of the observer. However, other problems
of cognitive science are made less severe if the cognitive system can recover
the structure of the natural world. In particular, let us return to Quine's
question of natural kinds ([Quine, 1969] and section 2.3.1). Quine theorized
that intelligent communication between individuals is possible only if the
individuals share a common description of the world. That is, the similar-
ity space - the qualia - of the individuals must be identical, or at least
approximate. Without a common descriptive space, the individuals would
not be able to resolve the problem of reference: determining the extension in
the world of some vocabulary term used or of some gesture made by another
individual. In light of this requirement the ability to recover the natural
structure in the world provides a basis for communication between individ-
uals. By recovering categories that correspond to natural classes - classes
defined by processes in the world - different observers can be assured of
convergent world descriptions. If two observers are categorizing a population
of objects using identical categorization evaluation functions, and if the cat-
egorization function is appropriate for recovering natural categories then the
two observers are guaranteed to recover similar categories. Therefore, these
observers will be able to develop a common description of objects to serve as
basis for a mutual vocabulary.
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7.4 Recovering Natural Processes: Present
and Future Work

The motivation we have presented for this work centers on the task of making
inferences about objects. In particular we have argued that the observer
must be able to make inferences about unobservable properties of objects
given only sensory information. This task led us to the Principle of Natural
Modes and to the task of recovering natural object categories.

But making inferences about objects is only a sub-goal of a much more
general perceptual goal: understanding the world. The purpose of our per-
ceptual mechanisms is to convey information about the world that is impor-
tant to our survival. One implication of this goal is that we can improve
upon the goal of recovering the natural categories in the world. We know
that the natural modes are caused by the interaction of natural processes.
Therefore, a more complete understanding of the world is achieved if we
recover (discover) the natural processes that are present in the environment.

The last section of chapter 6 - the chapter concerning worlds with multi-
ple natural modes - demonstrated a technique by which the observer could
assign the different features to the different process levels present in the do-
main. In the case of the bacteria, certain features were identified as being
constrained by the genus, and others by the species. This capability begins
to give the observer an understanding of the natural processes responsible for
the natural modes. He does not only acquire the modes themselves, but also
gains the knowledge of how the natural processes constrain the properties of
objects.

One of the potential extensions to this work is to make explicit the con-
cept of natural processes and attempt to recover the processes directly. We
would still assume that classes exist in the world - natural modes. How-
ever, we would associate a generating process with each class, responsible for
producing all the objects in that class. Now, we change the categorization
task by requiring that the observer propose generating processes to explain
the observed objects.

An example: Suppose the observer has seen 100 different objects, and his
task is to propose generating processes to account for them. As before he
could propose a single category, which encompasses all objects. This would
correspond to the universal Turing machine process capable of producing all
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objects. Alternatively, the observer could propose 100 different generating
processes each capable of producing only one object. Just as with the hypoth-
esizing of categories, the observer will want to propose those processes which
correspond to the natural modes, which permit him to make inferences about
properties of objects. In this case however, the observer has a vocabulary of
processes; he must know (or somehow learn) about the types of physical pro-
cesses that can occur. In other words, he is measuring his uncertainty about
properties of the object's generating process as opposed to uncertainty about
the properties directly. This approach has much greater power than a simple
property vector scheme because the categories are formed by constraint on
their physical processes as opposed to constraint on particular properties.
And, in the real world, it is the processes that are constrained.

By searching for processes directly, we would reduce the dependence on
the property representation. This is a desirable goal given the common be-
lief that no simple set of properties is going to be sufficient for recognition;
the general failure of standard pattern recognition techniques supports this
opinion. Thus an alternative approach is necessary, and we need to be able
to incorporate the ideas and principles developed in this thesis into a more
general framework.
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; These are the specifications for the leaf examples. Values are generated by random selection from values
list. Some values are repeated to yield non-uniform distribution

(defvar POPLAR-SPEC (make-instance 'species-specification
:genus 'populus
:species 'tremuloides
:common-name 'poplar
:feature-choice-list
'((length (1.0 2.0 2.0 3.0 ))

(width (1.0 1.0 2.0 ))
(flare (0.0 1.0))
(lobes (1.0 ))
(margin (crenate serrate))

(apex (acute))
(base (rounded))
(color (yellow )))))

(defvar OAK-SPEC (make-instance 'species-specification
:genus 'quercus
:species 'alba
:common-name 'oak
:feature-choice-list
'((length (5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0))

(width (2.0 3.0 3.0 4.0 4.0 5.0 ))
(flare (-1.0 -2.0))
(lobes (7.0 9.0))
(margin (entire))
(apex (rounded))
(base (cumeate))
(color (light)))))

(defvar COTTON-SPEC (make-instance 'species-specification
:genus 'populus
:species 'deltoides
:common-name 'cotton
:feature-choice-list
'((length (3.0 4.0 4.0 5.0 5.0 6.0 ))

(width (2.0 3.0 3.0 4.0 4.0 5.0 ))
(flare (2.0))
(lobes (1.0))
(margin (crenate))
(apex (acuminate ))
(base (truncate))
(color (yellow light dark )))))
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(defvar MAPLE-SPEC (make-instance

(defvar BIRCH-SPEC (make-instance

(defvar ELM-SPEC (make-instance '

'species-specification ;;; really sugar maple
:genus 'acer
:species 'saccharum
:common-name 'maple
:feature-choice-list
'((length (3.0 4.0 4.0 6.0))

(width (3.0 4.0 4.0 5.0))
(flare (0.0))
(lobes (5.0))
(margin (entire))
(apex (acute))
(base (truncate))
(color (light)))))

'species-specification ;; really paper birch
:genus 'betula
:species 'papyrifera
:common-name 'birch
:feature-choice-list
'((length (2.0 3.0 3.0 4.0 4.0 5.0))

(width (1.0 2.0 2.0 3.0))
(flare (1.0))
(lobes (1.0))
(margin (doubly-serrate))
(apex (acute))
(base (rounded))
(color (dark)))))

species-specification
:genus 'ulmus
:species 'americana
:common-name 'elm
:feature-choice-list
'((length (4.0 5.0 5.0 6.0))

(width (2.0 3.0 3.0 ))
(flare (0.0 -1.0))
(lobes (1.0))
(margin (doubly-serrate))
(apex (accuminate))
(base (rounded))
(color (dark)))))
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;; Soybean specifications.

(defvar SOY-A-SPEC (make-instance

(defvar SOY-B-SPEC (make-instance

'soy-specification
:common-name 'a*
:feature-choice-list

'((time (3 4 5 6))
(stand (0))
(precip (2))
(temp (1))
(hail (0))
(years (1 2 3))
(damage (0 1))
(severity (1 2))
(treatment (0 1))
(germ (0 1 2))
(height (1))
(cond (1))
(lodging (0 1))
(cankers (3))
(color (0 1))
(fruit (1))
(decay (1))
(mycelium (0))
(intern (0))
(sclerotia (0))
(pod (0))
(root (0)))))

'soy-specification
:common-name 'b*
:feature-choice-list
'((time (3 4 5 6))

(stand (0))
(precip (0))
(temp (1 2))
(hail (0 1))
(years (0 1 2 3))
(damage (2 3))
(severity (1))
(treatment (0 1))
(germ (0 1 2))
(height (1))
(cond (1))
(lodging (0 1))
(cankers (0))

(color (3))
(fruit (0))
(decay (0))
(mycelium (0))
(intern (2))
(sclerotia (1))

(pod (0))

(root (0)))))
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(defvar SOY-C-SPEC (make-instance

(defvar SOY-D-SPEC (make-instance

'soy-specification
:common-name 'c*
:feature-choice-list

'((time (0 0 2 2 3 4))
(stand (1 1 1 0))
(precip 2))
(temp (0))
(hail (0 0 0 1))
(years (0 1 2 3))
(damage (1))
(severity (1 2))
(treatment (0 1))
(germ ( 1 2))
(height (1))
(cond (0))
(lodging (0 0 0 1))
(cankers (1))
(color (1))
(fruit (0))
(decay (1))
(mycelium (0 1))
(intern (0))
(sclerotia (0))
(pod (3))
(root (0)))))

'soy-specification
:common-name 'd*
:feature-choice-list
'((time (0 1 2 3))

(stand (1))
(precip (2))
(temp (0 1))
(hail (0 0 0 1))
(years (0 1 1 2 3 3))
(damage (1))
(severity (1 2))
(treatment (0 1))
(germ (0 1 2))
(height (1))
(cond (1))
(lodging (0))
(cankers (1 2))

(color (2))
(fruit (0))
(decay (0 0 0 1))
(mycelium (0))
(intern (0))
(sclerotia (0))

(pod (3))
(root (1)))))
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;;; Bacteria Specifications

(defvar BACTERIA-BF-SPEC (make-instance 'bacteria-specification
:genus 'bacteroides
:species 'fragilis
:common-name 'bf
:feature-choice-list
'((location (GI))

(gram (NEG))
(gr-pen (R))
(gr-rif (S))
(gr-kan (R))
(dole (neg))
(esculin (pos))
(bile (e))
(glc (ls))
; (salicin (neg))
; (arab (neg))
(rham (neg))
(nfl (1 2 3 4))
(nf2 ( 1 2 3 4)))))

(defvar BACTERIA-BT-SPEC (make-instance 'bacteria-specification
:genus 'bacteroides
:species 'thetaiotamicron
:common-name 'bt
:feature-choice-list
'((location (GI))

(gram (NEG))
(gr-pen (R))
(gr-rif (S))
(gr-kan (R))
(dole (pos))
(esculin (pos))
(bile (e))
(glc (ls))

; (salicin (neg pos))
; (arab (pos))
(rham (pos))
(nfl (1 2 3 4))
(nf2 ( 1 2 3 4)))))

(defvar BACTERIA-BV-SPEC (make-instance 'bacteria-specification
:genus 'bacteroides
:species 'vulgatus
:common-name 'bv
:feature-choice-list

'((location (GI))
(gram (NEG))
(gr-pen (R))
(gr-rif (S))
(gr-kan (R))
(dole (neg))
(esculin (neg))
(bile (e))
(glc (ls))
; (salicin (neg pos))
;(arab (pos))
(rham (pos))
(nfl (1 2 3 4))
(nf2 ( 1 2 3 4)))))
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(defvar BACTERIA-FM-SPEC (make-instance 'bacteria-specification
:genus 'fusobacterium
:species 'mortiferum
:common-name 'fm
:feature-choice-list

'((location (OR))
(gram (NEG))
(gr-pen (R S))
(gr-rif (R))
(gr-kan (S))
(dole (neg))
(esculin (pos))
(bile (e))
(glc (none))
; (salicin (neg pos))
; (arab (neg pos))
(rham (neg pos))
(nfl (1 2 3 4))
(nf2 ( 1 2 3-4)))))

(defvar BACTERIA-FN-SPEC (make-instance 'bacteria-specification

:genus 'fusobacterium
:species 'necrophorum
:common-name 'fn

,~L^n~ :feature-choice-list
'((location (OR))

(gram (NEG))
(gr-pen (S))
(gr-rif (S))
(gr-kan (S))
(dole (pos))
(esculin (neg))
(bile (I))

(glc (none))
; (salicin (neg))
;(arab (neg pos))
(rham (neg pos))
(nfl (1 2 3 4))
(nf2 ( 1 2 3 4)))))

(defvar BACTERIA-IV-SPEC (make-instance 'bacteria-specification
:genus 'fusobacterium
:species 'varium
:common-name 'fv
:feature-choice-list
'((location (OR))

(gram (NEG))
(gr-pen (R S))
(gr-rif (R))
(gr-kan (S))

(dole (pos))
(esculin (neg))
(bile (e))
(glc (none))
; (salicin (neg))
:(arab (neg pos))
(rham (neg pos))
(nfl (1 2 3 4))
(nf2 ( 1 2 3 4)))))
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;;; Specifications for the simulated two process world.'
(defvar GS11-SPEC (make-instance

(defvar GS12-SPEC (make-instance

(defvar GS13-SPEC (make-instance

'species-specification

:genus 'one
:species 'one-one
:common-name 'GS1l
:feature-choice-list
'((gfl (1))

(gf2 (1))
(gf3 (1))
(gf4 (1))
(gf5 (1))
(sfl (1))
(sf2 (1))
(nfl (1 2 3 4 5))
(nf2 (1 2 3 4 5))

'species-specification
:genus 'one
:species 'one-two
:common-name 'GS12
:feature-choice-list

'((gfl (1))
(gf2 (1))
(gf3 (1))
(gf4 (1))
(gf5 (1))
(sfl (2))
(sf2 (2))
(nfl (1 2 3 4 5))-
(nf2 (1 2 3 4 5))

'species-specification
:genus 'one
:species 'one-three
:common-name 'GS13
:feature-choice-list
'((gfl (1))

(gf2 (1))
(gf3 (1))
(gf4 (1))
(gf5 (1))
(sfl (3))
(sf2 (3))
(nfl (1 2 3 4 5))
(nf2 (1 2 3 4 5))

) ))
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(defvar S21-SPEC (make-instance

(defvar GS22-SPEC (make-instance

(defvar GS23-SPEC (make-instance

'species-specification
:genus 'two
:species 'two-one
:common-name 'GS21
:feature-choice-list

'((gfl (2))
(gf2 (2))
(gf3 (2))
(gf4 (2))
(gf5. (2))
(sfl (1))
(sf2 (1))
(nfl (1 2 3 4 5))
(nf2 (1 2 3 4 5))

'species-specification
:genus 'two
:species 'two-two
:common-name 'GS22
:feature-choice-list
'((gfl (2))

(gf2 (2))
(gf3 (2))
(gf4 (2))
(gf5 (2))
(sfl (2))
(sf2 (2))
(nfl (1 2 3 4 5))
(nf2 (1 2 3 4 5))

'species-specification
:genus 'two
:species 'two-three
:common-name 'GS23
:feature-choice-list
'((gfl (2))

(gf2 (2))
(gf3 (2))
(gf4 (2))
(gf5 (2))
(sfl (3))
(sf2 (3))
(nfl (1 2 3 4 5))
(nf2 (1 2 3 4 5))

)))
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Appendix B

Lambda Tracking

In chapter 6 we described a recursive categorization procedure capable of re-
covering natural categories in a multiple modal world. We illustrated the
technique using the example of anaerobic bacteria; both the genera and
species levels of categories were recovered. In this section we provide an
alternative mechanism for recovering multiple stable structures within a pop-
ulation. This technique has the desirable property of providing an explicit
measure of the degree of structure contained within each separate category.

Recall that for A near zero, the finest possible categorization - a cate-
gorization in which each object is its own category - yields the lowest total
categorization uncertainty U. As A is increased, coarser, less homogeneous
categories are preferred. When A is close to 1.0 the best possible catego-
rization consists of only one category. Thus, we can design an agglomerative
clustering technique [Duda and Hart, 1973, also chapter 3] which forms new
categories by merging previous categories.

The algorithm we use is identical to that introduced in chapter 5 except
that is no longer constant. We begin by categorizing a population of
objects with A set to some low value. Such a setting causes categories to be
continually split, yielding a categorization of many, highly similar categories.
Then, as new objects are observed, we slowly increase the value of A. For each
value of A, the algorithm is permitted to execute until a stable categorization
is achieved. As the value of A increases, categories begin to merge. Finally, as
A approaches 1.0, the categories are merged into a single category. Because
we can track the categorization as the value of A changes, we refer to this
algorithm as A-tracking.
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To illustrate the behavior of the algorithm, we will use the soybean dis-
eases introduced in chapter 5 and re-presented in table B.1. A population of
20 examples of each species of disease is generated. Because the value of A
changes over time, this technique can only be applied to a fixed population;
when the algorithm terminates at A equal to 1.0, there is only one category
and the introduction of a new object would be meaningless.

Normally, agglomerative techniques produce a dendrogram, a diagram of
reflecting the dynamic change in category structure as the distance between
categories is increased (as defined by some metric). For the technique de-
scribed here, we will display the results of the execution in the form of a
A-space diagram (Figure B.1). For each value of A a qualitative descrip-
tion of the categorization produced is illustrated. For example, at A of .55,
the categorization produced consists of three categories corresponding to dis-
eases A, B, and C, and several smaller categories each containing members
of disease D.

We begin with a A of .35. This value of A was found to be sufficiently
low to cause the categorization procedure to continually split previous cate-
gories. When A increases to .40, the separate categories containing members
of disease B coalesce to form a category corresponding to that disease. Notice
that this category remains until A is raised to a value of .95. We refer to this
duration as the A-stability of the B category. This version of A-stability is
different than that presented in chapter 6 which referred to the stability of
the categorization as a whole. In this case, A-stability permits us to consider
the stability of each category individually. In Figure B.1 the four natural cat-
egories corresponding to the four diseases display a (relatively) high degree
a X-stability indicating that these categories correspond to natural structure
in the population.

Notice, however, that the category {C, D} exhibits the same degree of
A-stability as the D category. Such stability may indicate that there exists a
common structure shared by these two diseases that qualifies them as being
a natural mode. However, without independent verification from botanists
we cannot confirm this hypothesis.

Experimental evaluation indicates that the A-tracking algorithm is not
as powerful a technique for recovering multiple modal levels as is recursive
categorization. One explanation for this result is that the algorithm always
considers the entire population as a whole, without limiting its attention to
finding modes within one particular category. Thus, only small ranges of A
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A B D D
Diaporthe Charcoal Rhizoctonia Phytophthora

Stem Canker Rot Root Rot Rot
time {3,4,5,6} {3,4,5,6} {0,2,3,4} {0,1,2,3}
stand 0 0 {1,0} 1
precip 2 0 2 2
temp 1 {1,2} 0 {0,1}
hail 0 {0,1} {0,1} 0
years {1,2,3} {0,1,2,3} {0,1,2,3} {0,1,2,3}
damage {0,1} {2,3} 1 1
severity {1,2} 1 {1,2} {1,2}
treatment {0,1} {0,1} {0,1} {0,1}
germ {0,1,2} {0,1,2} {1,2} {0,1,2}
height 1 1 1 1
cond 1 1 0 1
lodging {0,1} {0,1} 0 0
cankers 3 0 1 {1,2}
color {0,1} 3 1 2
fruit 1 0 0 0
decay 1 0 1 {0,1}
mycelium 0 0 {0,1} 0
intern 0 2 0 0
sclerotia 0 1 0 0
pod 0 0 3 3
root 0 0 0 1

Table B.1: The property specifications for four species of soybean plant diseases.
These data are derived from Stepp [1985].
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Figure B.1: The A-space diagram produced by executing the A-tracking algorithm
on a population of soybean diseases. For each A, a qualitative description of the
categorization is illustrated.
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are available for each stable categorization. For example, if there are four
stable categorizations, then the maximum A-stability range for each catego-
rization would be .25. Thus, although A-tracking allows the assessment of
the degree of structure present in each category, it is not a robust mechanism
for recovering multiple modal categorizations.
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