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Abstract

This thesis presents a numerical analysis of gas spring hysteresis losses in Stirling
cryocoolers for a wide range of operating conditions which are characterized by an
oscillating flow Peclet number. Originally from a model that assumes adiabatic working
spaces and decouples heat exchange component irreversibilities from a basic cycle, the
governing equations are extended to include gas-to-wall heat transfer in the piston
cylinders. By basing the heat transfer upon a complex Nusselt number, the new model
is able to predict the phase shift between heat transfer and gas-to-wall temperature
difference. For low values of Peclet, a theoretical expression is used to determine the
complex Nusselt number; for high Peclet, an empirical correlation is used. The greatest
losses can occur for intermediate values of the Peclet number. The attribution of losses
to several causes is explored by calculating entropy generation for selected control
volumes. Between extreme situations, performance may vary by as much as a factor
of two. Therefore, when designing a Stirling cryocooler, one must pay attention to the
conditions under which heat transfer occurs. Merely increasing heat transfer rates will
not necessarily improve the performance of Stirling cryocooler. The cylinder wall must
be anchored to the temperature of the adjacent heat exchanger in order for additional

heat transfer from the gas to have any positive effect.
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Chapter 1
BACKGROUND

1.1 Stirling Cycle Description

The ideal Stirling cycle is a completely reversible cycle that has two isothermal heat
transfer processes involving compression and expansion, and two regenerative isochoric
processes. The working fluid flows between two variable volumes via a regenerator. For
a refrigerator, the volume used for expansion work is maintained at a low temperature,
whereas the compression volume is at a high temperature. The temperature in each
variable volume is kept constant by unrestricted exchange with a heat reservoir. The
regenerator acts as a thermal capacitance which removes heat energy from the working
fluid during one part of the cycle and transfers the energy back during another part.
An ideal regenerator has no volume and introduces no pressure drop. Heat transfer
occurs across an infinitesimal temperature difference. Because the processes are ther-
modynamically reversible, the performance of an ideal Stirling cycle is the same as that

of a Carnot cycle. In practice, a cooler and a heater are added to improve the actual

heat exchange.

Among the many configurations used for a Stirling refrigerator, the two cylinder
type shown in Figure 1 represents the most general case, for the piston displacements of
this type may be altered to simulate the volume variation of the other configurations.
The setup, commonly referred to as the alpha configuration, has five axially aligned
components. In between the two opposed cylinder working spaces are the heat exchange
components. The regenerator, located at the center, is flanked on either side by a
heat exchanger which is often the compact tubular type. The heat exchanger next to
the warm compression space cools the working fluid by dumping heat energy to the
environment. The heat exchanger bordering the cold expansion space extracts energy

from the refrigeration load.

1.2 Previous Analytical Studies

The simplest analysis available is the application of the Second Law of Thermo-
dynamics to the ideal cycle. This gives Carnot coeificient of performance. Analyses

of greater complexity are required to determine operating conditions. Schmidt (1871)
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devised a method that accounted for the physical dimensions of a machine. His model
included the volume of the heat exchange components. Because the temperature of
each component is assigned, the expansion and compression processes are isothermal.
Closed form solutions are obtained when the volume variations in these spaces are
taken to be sinusoidal. The dead volume of the heai exchange components affects the
pressure ratio and power requirements. However, since the heat exchange components

are still assumed to be ideal, the coefficient of performance is for a reversible cycle and

is a function of temperature.

Finkelstein (1960) went a step further by considering working spaces that were
adiabatic. While the Schmidt model relies on the ideal gas relation to determine pres-
sure and mass, the Finkelstein adiabatic model requires conservation of energy. The
coefficient of performance resulting from the adiabatic model is lower than that for a
reversible cycle since mixing losses are included. Mixing loss occurs when gas from
one component enters an adjacent component that has gas at a different tempera-
ture. A temperature discontinuity exists between a working space and its adjacent
heat exchanger, because each is considered a separate control volume. The discrepancy
entails that the temperature of the mass flux be dependent on flow direction. The fluid

assumes the temperature of the component from which it is flowing out.

Although mixing losses are significant, other losses should be considered. In the
Finkelstein analysis, the heat exchange components are assumed to be ideal. Nonideal
behavior of the heat exchange components can create substantial losses. In actual
heat exchange components, fluid friction is one major source of irreversibilities. An-
other cause is the heat transfer across finite temperature differences. An analysis that

calculates these irreversibilities is needed.

The problem of modelling real Stirling cycles is quite complex. To accurately model
conditions, the machine may be divided into many nodes to which conservation of mass,
energy and momentum are applied. The general problem involves a large number of
simultaneous differential and algebraic equations that are mostly nonlinear. Solution
requires numerical methods. The problem may be simplified by selecting pertinent
control volumes and independent variables. Further reduction may be achieved by
assuming steady state conditions. Typically the equations are initialized and integrated

repeatedly until convergence is attained. Solving these simultaneous equations is time
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consuming and expensive. Often simplifying assumptions are made to obtain results.

The accuracy of high order analyses is often compromised by such assumptions.

To analyze the losses effectively without extensive computational time, Qvale (1967)
decoupled irreversibilities due to pressure drop and ineffective heat exchange from a
basic model that had ideal heat heat exchange components. The cylinders are assumed
to be adiabatic. First, the basic performance with only adiabatic compression and
expansion losses is calculated. Then the irreversibilities due to nonideal components
are determined and used to modify the basic performance. Pressure and mass variations

were assumed to be sinusoids leaving volume to be determined.

Rios (1969) eliminated the sinusoidal restraint of this scheme by using volume as
the independent variable. All the heat exchange components are lumped into a single
dead volume. Variables for temperature and dead volume mass are eliminated by
nondimensionalization. This produced a basic performance calculation that quickly
converged within several cycles. In the basic cycle, the only irreversibility is due to

adiabatic compression and expansion. The theory was supported by experimental data.

Nonideal behavior of the heat exchange components is another significant source
of losses. Companion papers have been submitted to evaluate these decoupled losses.
Qvale and Smith (1969) evaluated losses due to imperfect heat transfer in the regen-
erator. Rios and Smith (1969) presents an approximate method to calculate pressure
drop. Regenerator design was addressed in Harris, Rios and Smith (1971). Regenerator

geometry was varied to minimize the sum of losses.

1.3 Gas Spring Hysteresis Losses

When a gas spring is first compressed and then allowed to expand back to the initial
rest state, a certain amount.of work is lost. The irreversibility is due to gas-to-wall heat
transfer which is inherent in machinery with reciprocating pistons. Chafe (1988) has
shown that under certain operating conditions, gas spring hysteresis losses can seriously
affect the performance of cryogenic machinery. Machine speed had a primary influence
on the losses. The phase shift between the heat transfer and the gas-to-wall temperature
difference is not adequately explained by conventional convective relations. Lee (1983)
theoretically developed a complex heat transfer model that predicted losses reasonably

well. Kornhauser (1989) proposed a complex Nusselt number that is a strong function
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of an oscillating flow Peclet number. A semi-empirical correlation was obtained for this
dependence. The time parameter required when computing heat transfer is supplied
by the Peclet number. Fast cycling times, characterized by high Peclet numbers, have
near adiabatic conditions because there is no time for heat transfer to occur. Low

Peclet numbers indicate slow cycling times with near isothermal conditions.

1.4 Objective

It has been experimentally shown that gas-to-wall heat transfer in the reciprocat-
ing machinery can be a principal source of losses. The purpose of this thesis is to
develop a model that includes this kind of heat transfer. The number of parameters re-
quired to describe heat transfer in the cylinders has been reduced to minimize solution
complexity. With this improved model, one might gain a qualitative understanding of
how design parameters affect performance. Contrary to the assumptions of the afore-
mentioned models, actual conditions in cryogenic machinery are neither completely
adiabatic nor isothermal. The decoupling of irreversibilities in heat exchange compo-
nents can still be employed. While not as rigorous other analyses, the model provides

fast yet illuminating results.

The formulation of the system equations is presented in Chapter 2. Detailed deriva-
tions are given in Appeadixes A and B. In Chapter 3, the method of solving the dif-
ferential equations is described. Chapter 4 summarizes how the decoupled losses are
calculated and how they modify the model performance. Chapter 5 provides an in-
terpretation of the numerical results. The results account for losses caused by heat
transfer from cylinder wall to working gas as well as adiabatic compression and expan-

sion. Under certain conditions, gas spring hysteresis loss can be quite significant.
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Chapter 2
GOVERNING EQUATIONS

2.1 Introduction

In this chapter, the governing equations for the Stirling system are summarized.
Pressure, mass, and heat transfer are the independent variables. Temperature is elim-
inated by nondimensionaliziation. Conservation of energy and mass are used to obtain
the differential equations for pressure and mass. The form of each equation is depen-
dent on the direction of mass flow. The heat transfer equation is based upon a complex

Nusselt number that is correlated as a function of an oscillating flow Peclet number.
2.2 Basic Model with Ideal Components

2.2.1 Assumptions

The model for actual operating conditions is a modification of Rios’s adiabatic
model which is based on the Stirling alpha configuration as shown in Figure 1. The
components of the Stirling refrigerator are divided into three primary control volumes.
The warm and cold volumes at either end are each considered to be active volumes
in which piston work is performed. The gas in each active volume is assumed to be
perfectly mixed. Losses due to shuttle heat leak and axial conduction are neglected.
The third volume, a lumped dead volume, consists of the dead volume in both heat
exchangers and in the regenerator plus any dead volume presiding in the working
volumes. The heat exchangers and the regenerator are idealized by assuming that
neither heat exchange temperature differences nor pressure drops exist. The vs;orking

fluid is assumed to be an ideal gas.

2.2.2 Pressure and Mass Equations

By including heat transfer in the energy equation and introducing ideal gas relation,

differential equations for the mass in a working cylinder may by derived.

diM=rdv+ivap -2 Lgg fordM>0,
v i
N . . (2.1)
d.M=——(PdV+—'VdP———dQ) fordM< 0.
PV ¥ ~
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where ~ is the ratio of specific heats and P, M, V and Q represent the respective
dimensionless pressure, mass, volume and heat transfer. The variable Q represents
gas-to-wall heat transfer only in the cylinder, not in the heat exchanger. Other forms
of heat transfer are not considered in this idealized model. To account for adiabatic
compression and expansion losses, two separate equations that depend on direction of
mass flow are needed. When mass is entering a cylinder, its temperature is determined
by the nearby heat exchanger. When mass is leaving the cylinder, gas temperature
depends on the pressure, volume and mass in the cylinder. The mixing of gases at

different temperatures leads to losses. The above equations apply to both warm and

cold cylinders.

The total gas mass of the system is assumed to be constant. The differential form

of the mass conservation equation may be written in dimensionless terms:

Rot dMo + VadP + dMy = 0. (2.2)

The subscripts w and ¢ respectively denote the warm and cold ends. Since pressure
drops are assumed to be nonexistent, pressure P is the same for both cylinders. The
geometry-related parameters are the reduced dead volume V4 and the displaced mass
ratio R,:. The reduced dead volume is the ratio of the mass contained in the dead
space to the mass contained in one half the warm cylinder volume at the same standard
pressure and temperature. The parameter is related to the amount of gas that enters
the dead volume from one cylinder but does not travel all the way to the other cylinder.
No refrigeration is realized from the work expended to move this gas. The displaced
mass ratio represents the ratio of the cold mass to the warm mass contained in their

respective half volumes at their respective heat exchanger temperatures.

Because there are two working volumes, four possible mass flow combinations exist.
The pressure derivative for each set of mass flows is obtained by substitution of the
appropriate mass derivatives into Equation (2.2), followed by algebraic rearrangement:
Pressure is the same for both warm and cold ends since pressure drops have been

assumed to be nonexistent in the model. The resulting pressure equations are
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’ykvtvc’{'vw"i"yvd 7 thv +‘vw+'7vd d'M >0’
dV, dVy dQc dQ.
i — R"tM”_vZJ“M‘"WH _I)R"‘M Py, P By, . am. <o
TTTTTM, My ) 7 o Mo Mu dMy < 0’
Rot 3 +T+’Y d ut—P-+—P—+’7 d
dV, d
-7 M, " . dM >0’
th'_P"'*'vw'i"Y‘vd thT'*"vw'i"yvd
dV, d
thPch-{—Mw——v— Ryt dQc + My Qo dM, >0
dP = —v Yoy (v-1) PVy gy Me>
My My dM, <0’
Rutvc+—'P_+’7.Vd th‘\)c+__ﬁ_+7vli

(2.3)

2.3 Heat Transfer Model

2.3.1 Complex Nusselt Number

The heat transfer phenomenon in a gas spring is predicted reasonably well by a
cornplex heat transfer model. Such a model is used to estimate the heat transfer that
occurs in the working cylinders of Stirling refrigerators. Near the isothermal limit,
heat transfer losses are low if the gas-to-wall temperature difference is small. Near
the adiabatic end of the spectrum, the rate of heat transfer is small. Previous Stirling
cycle analyses have not adequately modeled this gas-to-wall heat transfer in the working
spaces. The primary reason is that an ordinary convective heat exchange model, based
on a heat transfer coefficient and a gas-to-wall temperature difference, is incapable of

predicting the heat transfer phase shift.

2.3.2 Heat Transfer Equatiofx

The heat transfer model employed here uses a complex Nusselt number with an
imaginary term involving the temperature derivative. The dimensionless heat transfer
relation and appropriate dimensionless parameters are derived in Appendix B for simple

piston-cylinder compressors and expanders:

dQ —_ ’7 L D/L, 1 {NuR (T Twau)do + Nur —

r y—11 + D/L, Pe,

aT

= (2.4)
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where Pe, is an oscillating flow Peclet number, Nup and Nuy are the real and imagi-
nary parts of the Nusselt number, T is dimensionless temperature, and subscript wall
refers to the cylinder wall. The heat transfer area is described in terms of the volume
VY within the working space and the bore-to-stroke ratio D/L,. In the heat transfer
equation, we make the simplifying assumption that the cylinder wall temperature re-
mains constant throughout each cycle. As discussed in Appendix B, Pe, is assumed

constant over a cycle and is evaluated at peak pressure and exchanger temperature.

The oscillating flow Peclet number Pe, and the bore-to-stroke ratio D/L, are two
independent dimensionless parameters necessary to describe the heat transfer in the
working volumes, since the two Nusselt numbers are functions of Pe,. The Peclet
number reflects the rate of heat transfer in relation to the operating speed of the
cooler. The bore-to-stroke ratio is associated only with the geometry of the working
volume. The left-hand term within the square brackets is the real part of the complex
model and is associated with conventional heat transfer which is proportional to gas-
to-wall temperature difference. The right-hand or imaginary term relates heat transfer
to the rate of change of temperature. By including the imaginary term, the phase shift
that exists between heat transfer rate and gas-to-wall temperature difference may be

predicted.

Temperature is not a primary variable and may be eliminated by substitution:

PY dP 4V dM\ [PV
dQ =—X NuR(T——Twau)dﬂ—i-NuI (—P_+T——._M—) <T>] (2.5)

where
~ V+D/L, 1

T 3-11+D/L, Pe,’

(2.6)

2.3.3  Theoretical and Experimental Correlation

The Peclet number reflects the rate of heat transfer in relation to the operating
speed of the cooler. The complex Nusselt number has been related to the Peclet number
by both theory and experiment. The complex Nusselt number may obtained from
either the analytical results of Lee (1983) or the empirical results of Kornhauser (1989)
depending on an oscillating flow Peclet number Pe,, defined by
w Dﬁ

2, (2.7)

Pe, =
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where w is the angular speed of the piston motion, a is the thermal diffusivity of gas,
and Dj, is the mean hydraulic diameter of the cylinder. The oscillating flow Peclet
number for adiabatic conditions is infinity. The corresponding value for isothermal
conditions is zero. These values can be physically explained by considering a cylinder
with a reciprocating piston. As the piston is speeded up, there is little time for heat
transfer to occur and conditions become adiabatic. When the piston is slowed down,
there is more time for heat transfer and isothermal conditions are approached. For the

remaining chapters, the name Peclet will refer to Pe,,, for convenience.

Lee (1983) derived a theoretical expression for the complex Nusselt number. Lee’s
model is based on a one dimensional energy equation for an ideal gas without convection
in the boundary layer. Heat transfer is related to the difference between a constant
wall temperature and a mixed mean bulk temperature. The amplitude of pressure and

temperature fluctuations is assumed to be small so that variations in gas density may

be neglected.
(1+1¢) tanhz

1— (tanhz/2)’

(2.8)

Nug = /2 Pe,

where

z = (1+1)\/Pe, /8.

Kornhauser (1989) compared predictions by Lee’s expressions and found good cor-
relation for intermediate values of Pe, and large deviations for high and low ranges.
Kornhauser obtained a semi-empirical power law expression for data points with Pe, >
100 by assuming that the real and imaginary parts of the complex Nusselt number were
equal:

Nug = Nur = 0.56 Pe2%. (2.9)

The fit is for experimental cases with a volume ratio of two. For a small Pe,, the
imaginary part of Nuc in Equation (2.8) is much smaller than the real part, which
means that in Equation (2.4) the heat transfer is proportional to the temperature
difference and no phase shift occurs. For a large Pe,,, the real and imaginary parts are
equal according to Equation (2.9) and the phase lead of the heat transfer is 45° from
the gas-to-wall temperature difference. In Figure 2, the Nusselt numbers from both

correjations are plotted against Peclet in the appropriate ranges from 10 to 1000.
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The complex theoretical expression of Equation (2.8) may be expressed in terms of
a real and an imaginary part:

4u /2 Pe,, (ub(tanh u — a) + ¢[ub(tanh u + a) — tanh? u — o?])

(2ub — tanh u — a)2 + (tanh u — a)? ,  (2.10)

Nuc=

where

u = \/Pe, /8,

a = sin u cos usech?u,

b = cos? u + sin? u tanh? u.

This expression is used in plotting Figure 2.

The Nusselt-Peclet correlations presented above are for a closed gas spring systein
in which the amount of mass is fixed and the volume variation is small compared to the
average volume. Unlike closed gas springs, the working volume of a Stirling machine
has continuously varying mass and large volume ratios. Consequently when mass and
volume are near zero, large rates of temperature change arise and cause numerical
problems during simulation. The temperature derivative term in Equation (2.4) is
physically related to the pressure fluctuation. This pressure fluctuation causes a near
adiabatic temperature swing in the turbulent gas core in the cylinder. The sudden
change in temperature is not due to the pressure fluctuation, but rather, due to the
reversal in flow direction between the working volume and the adjacent heat exchanger.
Therefore, evaluating the heat transfer rate based upon the temperature derivative is

not suitable when the volume is near a minimum. The derivative of pressure may be a

more befitting term.
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Chapter 3
SOLUTION METHOD

3.1 Introduction

To facilitate further discussion, the differential equations are described as functions
of the dependent variables below. Function f,; is obtained from Equation (2.5). Func-

tion f, is directly taken from Equations (2.3). Function f,, is from Equations (2.1).

dQ = fq(P:dpa M,dM)’
dP = fp(P, M,dQ), (3.1)
dM = fm(P,dP, M,dQ).

Because volume and its derivative are given as prescribed inputs, they are considered
not as variables, but rather as parameters much like Ry,:, V4, Pe, and D/L,. The
equations as they stand cannot be solved by numerical integration because the functions

depend on derivative terms shown on the right hand side.

Since the ideal adiabatic case has no heat transfer, all the derivatives may be
eliminated by substitution:
dQ =0,
AP = fpigeas (P M), (3-2)
AM = frigeat (P> Foigeass M) = Frmigeas (Py M)-

When heat transfer is included, a nondeterminate loop results. The pressure derivative

becomes a function of the heat transfer derivative, and visa versa. The heat transfer

derivative must either be approximated or eliminated.

3.2 Perturbation Method

Since the heat transfer correlations (2.8) and (2.9) are approximate for averaged
conditions, it is appropriate to use a perturbation method to obtain numerical results.
The perturbation methods consists of estimating the heat transfer derivative using the

heat transfer relation (2.5) with pressure and mass waves from previously calculated
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points. For example, the dP and M may be calculated using the ideal adiabatic equa-
tions (3.2). Alternatively, dQ may be extrapolated from previously calculated points.

Because dQ becomes an input, function f, is eliminated from the integration scheme.

Solutions using the perturbation scheme exhibited fluctuations when the gas mass
in a cylinder approached a minimum. This instability indicates that the heat transfer
model used is inadequate for large compression ratios. Lee (1983) assumed that density
changes were negligible in deriving his heat transfer relation. Kornhauser’s (1989)
correlation was fitted for cases that had a volume ratio of 2.0. The present heat

transfer model clearly needs to be improved in order to apply to systems with large

volume ratios.

3.3 Full Method

To achieve smooth solutions with the present model, heat transfer is eliminated
algebraically from the set of equations. After the heat transfer relation (2.5) is substi-

tuted into mass equations (2.1), the mass derivative becomes:

iM = F (Pdv +lyap 4221y [NuR(ﬂ—v-  Toau)dd + XYL (PgV 4+ Vap) ) .
¢! gl M M
(3.3)
The factor F depends on mass flow:
M2
F= , 3.4
B+ ZINu APV (34)
where )
_ ) ME, for dM > 0;
ﬂ_{MPv, for AM < O, (3:5)

To solve for pressure, the mass derivative for each cylinder is substituted into the

continuity equation (2.2). The general form for the pressure differential equation is:
R')thNc +Fw N‘Ul

P = R FoDot FuDy’ (3.6)
where
~1 PV P
N:Pd.\)—}—'y—‘y-—}( [N’U,R (T—Twau)do-{-NuIﬁdV], (3.7)
I I v
D—7V+ p” }(NuIM (3.8)
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The quantities N and D apply to either cylinder. Once the pressure derivative is

known, it is back substituted into Equation (3.3) to solve for the mass derivative.

3.4 Sclution Algorithm

Since the governing equations are for a cyclic system, they may be solved as a steady
state boundary value problem. A typical method for solving boundary value problems
involves setting the derivatives as finite differences and then solving the resulting set
of nonlinear equations. Instead of using finite differences, the problem has been trans-
formed into an initial value problem to be solved using one point iteration. After the
state variables are given initial values, the set of first order differential equations are
numerically integrated over one cycle. The end values (at 360°) of pressure and mass
are compared with the initial values (at 0°). If the values do not match, the state
variables are reinitialized with the end values, and the integration is performed again.

The procedure is repeated until convergence is attained.

To obtain the pressure and mass variations of the basic cycle, several inputs are
required. The properties of the working gas must be known. The piston displacements
and speed need to be specified. The r:lative proportions of the cylinders are taken as
inputs. The operating temperatures of the heat exchangers are required. The size of

the total dead velume must also be selected.

In Rios’s analysis, the dead volume of both cylinders is added to the reduced dead
volume V,;. Thus, the minimum volume of each cylinder is zero containing no residual
gas. This step accelerates convergence of the solution because as the last bit of the
mass leaves the cylinder, no memory of temperature is retained. When there is no
mass, there is physically no temperature. The returning mass has a temperature of
unity, that of the warm heat exchanger. In the present analysis, a small dead volume is
kept in the cylinders to prevent instabilities. To account for heat transfer, temperature
is used indirectly in the governing equations causing some terms to have mass as a

denominator. If the volume in a cylinder decreased to zero, no mass would remain and

singularities would result.
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Chapter 4
INCORPORATING SOLUTION WITH DECOUPLED LOSSES

4.1 Introduction

The model presented in previous chapters already includes irreversibilities caused
by gas-to-wall heat transfer in the cylinders and by adiabatic compression and expan-
sion. These two irreversibilities have a major effect on overall performance. Other
major losses in Stirling-type refrigerators occur in the heat exchange components. This
chapter will outline how these other losses are calculated and used to modify the per-
formance of the cycle with perfect components. Previous analyses permit decoupling of
heat exchange component irreversibilities from the basic performance of the adiabatic
model. Addition of gas-to-wall heat transfer in the cylinder will not alter the method

by which the decoupled losses are determined.

4.2 Design Approach

The basic performance is found by assuming perfect heat exchange components that
have no frictional losses, no gas-to-wall temperature differences, nor axial conduction,
but have dead volume. The components include the regenerator and the two heat
exchangers. Imperfect components affect the basic performance in two ways. Three
major losses are associated with the heat exchange components: (1) the loss due to
imperfect heat exchange, (2) that due to pressure drop, and (3) the loss due to axial
conduction. Pressure drop in all the components and imperfect heat transfer in the
heat exchangers influence the pressure-volume relationship. Other losses affect the
heat loads to the heat exchangers. Axial conduction, imperfect heat exchange in the
regenerator, and the effect of piston motion belong to this second category. Once these

losses are calculated, they may be added directly to the heat exchanger loads.

In the design of refrigerators, the conditions at the warm end compressor are often
selected first. Various heat exchanger designs are then evaluated in conjunction with
the chosen compressor. The calculation of component losses may be carried out in the
same fashion. The design approach would be to use the same warm end geometry for
both basic and real cycle calculations. By retaining warm end conditions, one would

alter the cold end design to satisfy mass conservation and pressure drop considerations.
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Once the basic calculations are done, the merits of different kinds of heat exchange
components may be compared. The geometry of these components may be optimized
within the constraints imposed by the dead volume input. Harris (1970) developed a

regenerator optimization algorithm which was verified experimentally.

4.2 Pressure Drop

Pressure drop losses are treated by Rios and Smith (1970). The refrigeration load
is equal to the work produced in the cold expander. Consider a control volume con-
taining the cold cylinder and the adjacent heat exchanger. For cyclic steady conditions
with perfect components, the net flow through the regenerator interface is zero because
temperature is specified to be constant. The heat flow into the control volume through
the walls of the heat exchanger and the cylinder must equal the work output. The
refrigeration load is, therefore, directly affected by pressure drop in imperfect compo-
nents. A pressure correction term and a volume correction term are used to correct
the work output. When evaluating performance, the volume correction term may be

neglected if pressure drops are small compared to the cyclic pressure variation.

The pressure drop is based upon local friction factors. The friction factors may be
determined from the steady state correlations of Kays and London (1984). The local
velocity needed for calculations is obtained from the mass flux. Gas flow is assumed
to be one dimensional. The geometry and temperature profile of the heat exchange

components are necessary to completely describe the pressure drop.

4.4 Imperfect Heat Exchange

The loss due to imperfect heat exchange has been treated by Rios, Qvale and
Smith (1969). Imperfect heat transfer occurs across finite temperature differences be-
tween bulk gas and wall. Because the temperature difference is small compared to
the temperature spanned by the regenerator, the impact on regenerator performance is
small. Because the gross heat load of the regenerator is larger than the load of either
heat exchanger, the regenerator accounts for a major fraction of dead volume losses.
Correction involves determining an effective average temperature for the gas that flows
out of the heat exchanger into the cylinder. The average temperature is based on the

heat load of and the number of transfer units of each heat exchanger. The ratio of new
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cold to new warm temperature is a factor used to correct the cold work.

Loss due to imperfect heat exchange may be treated as an enthalpy flow. The net
enthalpy flow is necessary to heat the gas as it flows from cold end to warmn end of the
regenerator. Qvale and Smith (1969) examined the behavior of regenerators subjected
to sinusoidal pressure and mass variations. They obtained an approximate closed form
solution for the enthalpy flux. Rios (1969) extended the solution to arbitrary volume
variations. Basic performance is modified by subtracting the enthalpy flux from the
refrigeration load per cycle and adding the same amount of the cooling requirement of

the warm heat exchanger.

4.5 Axial Conduction

Axial conduction is estimated by using a bulk thermal conductivity for the regen-
erator matrix and for the regenerator shell, and by finding the temperature profile of
the regenerator. The temperature gradient may be obtained from regenerator theory.
Alternatively, a linear temperature gradient provides fair results. Axial conduction
may also be viewed as an enthalpy flux which decreases the refrigeration load while

increasing the cooling requirements.
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Chapter 5
TRENDS AND INTERPRETATION

5.1 Introduction

The purpose of introducing heat transfer in the cylinder walls is to better estimate
overall efficiencies. Experimental results by Chafe (1988) have shown that gas spring
hysteresis losses are greatest for intermediate operating speeds. In this chapter, the
complex heat transfer model is used to confirm this trend. Two operating conditions
are examined. One is with an effective isothermal wall; the other is with an effective
adiabatic wall. The distribution of losses among heat transfer and mixing irreversibil-
ities is determined by calculating entropy generation. Finally, entropy generation is
related to coefficient of performance by computing the power input required for a given

unit of refrigeration.

5.2 Inputs

The curves presented in this chapter evaluate performance for a wide range of Peclet
values. In computing a given data point, the value of Pe, is set to be the same for both
cylinders. For Pe, < 100, Lee’s theoretical correlation (2.8) is used to determine the
complex Nusselt number. For Pe, > 100, Kornhauser’s experimental relation (2.9) is
used. The fixed parametric inputs are v = 1.665, Ry: = 1.0, V4 = 1.0, and D/L, = 1.0
for both cylinders. For a displaced mass ratio of unity, pressurization of the lumped
dead space of the heat exchange components will be approximately equal from both
warm and cold ends. The volume variation is sinusoidal. At a crank angle of 0°, the
cold cylinder volume is at a minimum. The phase lead of the cold cylinder volume
variation over the warm end is 90°. Stirling machines operate near their maximum
potential for this phase difference. To prevent instability problems a dead volume is
introduced so that a finite amount of mass is present in each cylinder at top dead

center. The amount of dead volume residing in each cylinder is five percent of the total

cylinder volume.

5.3 Coefficient of Performance

The coefficient of performance (COP) is a yardstick for comparing all refrigerators.

It is defined as the ratio of the refrigeration heat load to the required power input. The
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energy extracted as the refrigeration load is equivalent to the work done by the gas at
the cold end. Consider the cold heat exchanger and the cold cylinder as one control
volume. Because the heat exchangers and the regenerator are ideal, there is no net
enthalpy flux into the control volume under periodic steady state conditions. The gas
passing through the interface between the heat exchanger and the regenerator is always
at the same temperature, regardless of flow direction. By energy conservation, the work
expended per cycle in the cold cylinder must equal the net heat transfer per cycle which
is the heat load to the specified control volume. The heat load is transferred primarily
through the cold heat exchanger and partly through the walls of the cold cylinder.

Thus, the coefficient of performance for a nonideal cycle may be expressed in terms of

work: .
refrigeration load Rot —T‘i- W,
COP - t » t = - w T* . (5.1)
net power inpu Yo — Ros T "

w

Dimensionless work is converted to real units when multiplied by the maximum pressure
Pmaz and the corresponding half swept volume V,. Since COP is itself a ratio, the
term poqz is canceled out and a volume ratio remains. In calculating the COP, the
environment temperature is assumed to be 300K; the refrigeration load temperature is
taken to be 80K. For an ideal Stirling cycle operating between two temperature limits,
T* and T,, the coefficient of performance is the same as that of a Carnot refrigerator

and is obtained by use of the second law of thermodynamics:
COPGar = 7—. (5.2)

-1

In Figure 3 the operating limits of the Stirling model performance are drawn for the
gamut of Peclet conditions. The upper curve represents the case when the cylinder wall
heat transfer contributes toward the refrigeration load. The lower curve represents the
case when the net cyclic heat transfer through the cylinder wall is zero. The sudden
change in slope at Pe, =100 arises from the use of two heat transfer correlations. As

seen in Figure 2, the transition from one correlation to another is discontinuous.

The curve denoted as tsothermal represents the condition when the cylinder wall
temperature is set to be equal to the temperature of the bordering heat exchanger. The

dimensionless wall temperature becomes unity. The wall temperature is assumed to be
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constant throughout the entire cycle. The heat energy transferred from cylinder wall
to working fluid contributes to the heat load. As Pe, is decreased towards the lower
limit, the refrigeration load shifts from the cold heat exchanger to the cold cylinder
wall. In addition, the increase in gas-to-wall heat transfer dampens the amplitude of
temperature swing experienced by the cylinder gas. The mixing losses due to compres-

sion and expansion, which are maximum for high Pe,, gradually diminish to zero at

the isothermal end.

The other limiting value for the cylinder wall temperature is the adiabatic wall
temperature which is the temperature the wall attains when there is no net heat transfer
per cycle. The curve representing this condition is denoted by adiabatic. Any net heat
transfer experienced should occur through the heat exchanger, not the cylinder. The
adiabatic wall temperature is determined by iteratively adjusting the wall temperatures
of both cylinders until each cylinder has zero net heat transfer. In reality, the wall
temperature would not be constant over an entire cycle; however, the variation is quite
small. For the warm cylinder, the adiabatic wall temperature must be increased above
unity because the warm gas temperature over most of the cycle is above one. At the
cold end, the cylinder wall temperature is below unity. The adiabatic wall temperatures

for the warm and cold cylinder walls are shown in Figure 4 as a function of Peclet.

The pressure ratios for the two limiting cases are compared in Figure 5. As Peclet
decreases, one sees a general decrease in pressure ratio. The pressure ratios for the

adiabatic wall cases are somewhat higher since damping due to heat transfer is lower.

The curves denoted by isothermal and adiabatic represent the limiting conditions
in real operations. Figure 3 shows that the coefficient of performance for a Stirling
refrigerator can be decreased by a factor of two if it is not designed properly. To obtain
peak performance, all heat transfer across cylinder walls should contribute to the heat
load. This measure is especially important for small refrigerators that have low range
Peclet numbers. Because it is proportional to the square of the hydraulic diameter, the
Peclet number is strongly influenced by size. Most Stirling refrigerators, however, tend
to operate with Pe, >100. The difference in performance between the tsothermal and

the adiabatic curves is still significant in this range.

As Peclet decreases below 100, predictions by the two heat transfer relations begin
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to diverge for the adiabatic wall cases. By assuming that the real and imaginary parts
of the Nusselt number are equal, Kornhauser’s correlation has a fixed 45° phase shift
between heat transfer and gas-to-wall temperature difference. The resulting predictions
show gradual drop in performance for Pe, < 100. Lee’s correlation, on the other hand,
has a changing phase shift and predicts a substantial drop in performance. Instead of
decreasing mixing losses as in the isothermal wall temperature case, the phase shift in
heat transfer acts to augment the total losses. Losses grow as heat transfer increases

with decreasing Peclet. At very low Peclet, the phase shift is small and the losses

diminish.

5.3 Entropy Generation

The origin of losses may be better understood by examining entropy generation.
Entropy is generated in the basic model by the mixing gases of different temperatures
and by cylinder wall heat transfer. The losses due to mixing may be separated into
an inflow part and an outflow part. When mass is flowing into the cylinder, consider
a control volume of infinitesimal width that is placed just inside the cylinder head
boundary. Pressure is equal on both sides of the control volume and does not contribute
to a net entropy change. Temperature, however, does. Gas enters the control volume
at the heat exchanger temperature, but exits at the bulk mean gas temperature in the
cylinder. An entropy change is associated with the temperature difference. Energy
conservation dictates that heat transfer to the control volume must accompany the
change in temperature. The heat transfer occurs at the bulk mean gas temperature.

The entropy generated per cycle in the control volume may be exp ‘essed as follows:

sgm,,.,,-_-/ 7 (lnT—lnT*)dM—/ %Q,

v—1
=/ 721(1117—1117*—-7—-“7—?—)611\4,
_ T -1
_/i”_l(ln?' —)aM, (5.3)

where T is the temperature of the gas in the cylinder and T* is the temperature of the
gas in the heat exchanger. On the last step, the dimensionless temperature of the heat
exchanger is replaced by the value one. Note that the integral is evaluated only when

mass is flowing into the cylinder, that is when dM > 0. A similar control volume may
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be placed on the heat exchanger side of the interface when considering irreversibilities
due to flow out of the cylinder. Gas enters the control volume at the cylinder mean
temperature, but exits at the heat exchanger temperature. Heat energy is transferred
across the control volume surfaces at the heat exchanger temperature. The expression

for entropy generation due to outflow is

_[ e [ 42
SQen,ouf, - /Wt ’7_1(1117 lnT )dM ot T*’
_ gl T L=
_/m”_l(lnr InT* - = )dM,
i
= InT — (T - 1))dM, 5.4
[ T —(T-1) 5:4)

where dM, which is the change in cylinder mass, is negative during outflow. The

integral is evaluated only when dM < 0.

The losses due to heat transfer to and from the cylinder wall may be determined by
examining a control volume of inf{nitesimal thickness along the cylinder walls. Since all
gas flows are one dimensional and parallel to the cylinder wall, no mass flows through
the control volume. Therefore, entropy change is only associated with heat transfer
at different temperatures. Heat transfer with the cylinder wall occurs at the wall
temperature; heat transfer with the gas occurs at the gas temperature. The third part

of entropy generation is then

1 1
S en,wall = f ("' - _"') dQ 5.5
I T e \T T (5:5)

In Figures 6 and 7, the three individual losses and their total sum are calculated
for the isothermal wall case at the cold and warm ends. Figures 8 and 9 have the
same curves for the adiabatic wall case. In all instances, the entropy generation due
to cylinder wall heat transfer is maximum for an intermediate value of Peclet. The
magnitude of generation is slightly less for the adiabatic wall case because the gross
heat transfer rate is smaller. At the high Peclet limit, gas-to-wall heat transfer is
practically nil and leads to no irreversibilities. As Peclet is lowered, the increase in
heat transfer has a dominant effect on gas-to-wall losses. The effect reaches a maximum
in the intermediate Peclet range. For the cases examined here, the peak is at about

Pe, =20. When Peclet is lowered further, the lack of temperature variation becomes
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the predominant effect. Because gas temperature remains constant throughout the

cycle, the cyclic integral of Equation (5.5) is zero.

5.4 Temperature Variation

The inclusion of heat transfer dampens the magnitude of the temperature swings.
Whenever gas temperatures rise above that of the wall, heat transfer to the wall reduces
the amount of rise. Whenever, temperatures go below that of the wall, heat transfer

from the wall lessens the extent of drop.

Unlike the gas-to-wall heat transfer losses, mixing losses behave differently for the
two cases. The isothermal wall case will be discussed first. At the lower Peclet limit,
both inflow and outflow mixing losses diminish to zero because temperature does not
fluctuate. The temperature remains constant at a value equal to the heat exchanger
temperature. Because gas on either side of the cylinder head boundary is always at
the same temperature, no entropy generation due to mixing occurs. At the high Peclet
limit, inflow losses are much smaller than outflow losses. This difference in magnitude
may be better understood by inspecting Figures 10 and 11, which show temperature
histories at several values of Pe, for the respective cold and warm ends. The mass
history for Pe, = 10 is also included. The mass curve does not change much for
different values of Peclet. When mass is accumulating in a cylinder, the temperature
difference across the cylinder head interface is small. For the cold end the portion
of the cycle is approximately between 180° and 360°. For the warm, the period is

approximately from 90° to 270°.

The case with an adiabatic wall exhibits different behavior in the low to intermediate
Peclet range. The temperature histories tor this case are shown in Figures 12 and 13.
The major difference is that mixing losses do not diminish to zero at the low Peclet limit.
Although gas temperature in the cylinder remains constant throughout the cycle, its
value differs from the temperature of the adjacent heat exchanger. Outflow and inflow
mixing losses are about the same magnitude. The peaking of gas-to-wall heat transfer
losses for intermediate Peclet becomes apparent since mixing losses no longer decrease

to zero for low Peclet.
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5.5 Watts Power per Watt Refrigeration

Measuring a system’s power requirement for a given unit of refrigeration will offer
an alternative perspective of the system’s performance. The quantity under investiga-
tion is the inverse of the coefficient of performance and has units of watts per watt.
For a reversible cycle, the quantity is simple the inverse of COPs,,.. However, when

entropy is generated, additional power input is required to produce the same amount

of refrigeration.

To derive a relation that links entropy generation to the inverse of COP, the first
and second laws of thermodynamics are applied the entire system. The net work
input is balanced by the net heat transfer into the cold end and out of the warm end.
The summation of entropy transfers is balanced by the total entropy generated. The

two laws of thermodynamics may be combined with the definitions of Equations (5.1)

and (5.2) to produce

1 1 T Sgen
_ Tw Zgen . 5.6
COP COPCar * (Tc*) ( Sin )total ( )

where s;,, is the entropy transferred intc the cold end. Dividing through by COPgL

and converting to dimensionless terms gives

-1 *
CcOP —1+COP5L E:_) (sﬁ’ﬂ) ,
T total

COPC_GI;T c sin
=1 + T:; th Sgen,c + Sgen,w , (57)
T;) - T: th wC
Power _ Power loss
Carnot power N Carnot power’

The quantity one on the right-hand side represents the ideal reversible portion.
Irreversibilities, represented by the right most term, increase the amount of work re-
quired. The components of the above relation are shown in Figures 14 and 15 for the
respective isothermal wall and adiabatic wall cases. The value one represents the power
necessary for an ideal cycle. The power compensations for both cold end and warm
end irreversibilities are added one at a time to show their relative magnitudes. Because
Ryt =1, the relative magnitudes of the dimensionless cold and the dimensionless warm

entropy generations are the same in real dimensions.
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Chapter 6
CONCLUSION

A Stirling cycle model that is capable of predicting gas spring hysteresis losses has
been developed. The gas-to-wall heat transfer in the working cylinders is based on
a complex Nusselt number which has been previously correlated as a function of an
oscillating flow Peclet number. This Peclet number is related to the operating speed
of a system. For a system with the same geometric dimensions and working fluid, a
high value of Peclet indicates a high cycling rate, while a low value corresponds to a
low cycling rate. The complex Nusselt number accounts for the phase shift that exists
between heat transfer rate and gas-to-wall temperature difference. The regenerator

and heat exchangers are idealized so that no frictional and heat exchange losses occur

within these components.

The origin of losses is investigated using entropy generation analysis. Specifically,
three causes are examined: (1) mixing during inflow to the cylinder; (2) mixing during
outflow from the cylinder; and (3) gas-to-wall heat transfer in the cylinder. The degree
of irreversibility depends upon the conditions under which gas-to-wall heat transfer
takes place. Two hypothetical extreme conditions are considered. For one extreme,
referred to as the isothermal wall case, the cylinder wall acts as an extension of the
adjacent heat exchanger by assuming the heat exchanger temperature. For the other
extreme, the cylinder wall acts adiabatically by attaining the temperature for which

the net heat transfer per cycle in the cylinder is zero, even though there is heat transfer

through out the cycle.

The additional power requirements (loss) due to the three sources of irreversibility
are calculated for each extreme along the gamut of Peclet values. The major trends
in the warm end are highlighted in the bar graph of Figure 16. The losses for various
cases are shown along the same axis so that their relative magnitudes may be compared.
Altogether, eighteen cases are shown. Three Peclet values are presented: a low value
of 0.2, and intermediate value of 20, and a high value of 1,000,000. The power loss for
inflow, outflow and wall flux are given for both isothermal and adiabatic conditions at
each Peclet value. For both isothermal and adiabatic wall conditions, power losses due

to cylinder wall heat flux are highest for the intermediate Peclet range, but are near
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zero at the high and low ends. The inflow and outflow mixing losses act differently
for the two wall conditions, notably in the low and intermediate Peclet ranges. As the
lower limit of Peclet is approached, mixing losses diminish to zero for the isothermal

wall condition, but either increase or level off for the adiabatic condition.

The combination of peak wall flux losses for an intermediate Peclet value and high
mixing losses in the low to intermediate range produces an adiabatic condition that
compares unfavorably to the isothermal condition. Compuiational results show that
performance between the two conditions may differ by as much as a factor of two.
Therefore, the designer shoui| beware that enhancing heat transfer will not necessarily
improve the performance of Stirling cryocooler. The cylinder wall must be anchored
to the temperature of the adjacent heat exchanger in order for additional heat transfer

from the gas to be of any use.

The incorporation of a complex heat transfer model does not complicate existing
methods for decoupling losses due to nonideal behavior of the regenerator and heat
exchangers. The combination of the present model with the decoupling methods should
provide an efficient tool suitable for analyzing the principal irreversibilities. The current
equations, however, are not adequate for making accurate predictions. Based upon
low volume ratios, the heat transfer correlations restrict the breadth of the model’s

applications. Further work to revise the heat transfer model is recommended.

33



JANTOA
NO | SS3HdNOD
WHVM

d3ONVHOX3
1V3H d0olvy3
NEVM  -N393Y

J3ONVYHOX3
1V3H
a1od

JANTIOA
NO | SNVYdX3
a1o9

Figure 1. Components of a Stirling Refrigerator
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Figure 7. Entropy Generation for Warm End with Isothermal Wall
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Figure 11. Temperature Variation for Warm Cylinder with Isothermal Wall
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Figure 12. Temperature Variation for Cold Cylinder with Adiabatic Wall
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Figure 13. Temperature Variation for Warm Cylinder with Adiabatic Wall
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Appendix A
STIRLING MODELS

A.1 Introduction

In this appendix the basic equations for the Stirling analysis will be derived. To
reduce the number of dependent variables, the equations are converted to dimensionless
terms. Energy and mass conservation plus the ideal gas relation are applied to control
volumes resulting in differential equations for pressure and mass. These equations are

an extension of the adiabatic model developed by Rios (1969).

A.2 Dimensionless Values

The model equations are written in dimensionless form to reduce the number of pa-
rameters and dependent variables. Properties are combined with the ideal gas constant
and reference values of pressure, mass and volume to produce a pure number. For each
work space, variables are nondimensionalized with respect to the volume amplitude V,
of the piston displacement. The volume amplitude of a cylinder space is defined as
one half the difference between the maximum and minimum volumes. The correspond-
ing value for temperature is the temperature of the adjacent heat exchanger denoted
by T*. The temperatures of the heater and cooler in this model taken to be fixed.
The maximum value of pressure p,,q., over a cycle is used as a reference. Because the
model assumes no pressure drop (explained below) in the heat transfer components,

the maximum pressure is the same for both compression and expansion spaces.

The primary variables describing the work spaces are pressure, mass, volume and
heat transfer. Pressure p and volume V are simply normalized respectively with p,,q;
and V,. The ideal gas law is used to normalize mass m. The product p,,q; Vo has units
of energy and is combined with the heat transfer variable Q. The primary dimensionless

variables, denoted by calligraphic lettering, are defined as follows:

p=-2L , 'VEV M-____mRT QE———Q——.

DPmazx Va ’ Pmaz Va ’ Prmaz Va

(4.1)

Other properties may be obtained from the above variables. Gas temperature T

is normalized with respect to heat exchanger temperature 7" and is equivalent to the
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product of pressure and volume divided by mass:

T P

-1';: = __.’;t_. (A.2)

T

The temperature derivative dT7 may be determined by differentiating the natural log-
arithm of the right-hand side in Equation (A.2):

d(ln%%)-) =d(InP+InV —InM),

(R)-%59E

Work W is normalized to the product p,,q; Vs. The dimensionless work work per
cycle W is found by the cyclic integration of dimensionless pressure with respect to

dimensionless volume:

W=

W —fpdv. (A.4)

pmaa: Va B

Entropy s, which has units of energy over time, may be normalized as follows:

T*
p mazs Va )

$ (4.5)

S

Using a bulk flow model, the change in entropy of the gas within the control volume is

dependent on mass flow, heat transfer and entropy generation:

ds = Y (s dm)in — 3 (sdm)ous + 3 S‘TQ + dsyoms (4.6)

where T is the temperature at which each heat transfer occurs. Under steady state
conditions, the cyclic integral of the change in entropy is zero. For a control volume

with one inflow port, one outflow port and one heat reservoir, the entropy generated

f dsgen = f (5 dm) ous — f (s dm)in — f 5113. (A7)

The entropy of an ideal gas with constant specific heats may be expressed to a reference

per cycle is

value s,: T
p
s—So=—Rln—+¢,In—. A8
po P To ( )
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With Equations (A.7) and (A.8), the dimensionless entropy per cycle may be derived:

-4 g & (- 7 g
Sgen—iut( 1nP+’Y_1lnT)dM iﬂ( lnP+1_llnT)dM fT. (A.g)

A.3 Assumptions

The assumptions used in this analysis are the same as those in Rios’s with the

exception that the cylinders are no longer adiabatic:
1. The gas in each cylinder is instantaneously and perfectly mixed.
2. Losses due to shuttle heat leak and axial conduction in the cylinders are neglected.

3. All the interactions in the heat exchange components are reversible having

a. no pressure drop,
b. no gas to wall temperature difference,

c. no axial conduction.

4. The temperature profile of the heat transfer components is constant with time.

5. The system is one dimensional with temperature uniform along any plane perpen-

dicular to the axis.

6. The working fluid is an ideal gas.

A.4 Model with Heat Transfer

The components of the Stirling refrigerator are shown in Figure 1. They are di-
vided into three primary control volumes. The compression and expansion spaces at
either end are each considered to be active volumes in which piston work is performed.
The third volume, a lumped dead volume, consists of the dead volume in both heat
exchangers and in the regenerator plus any dead volume presiding in the working vol-
umes. In the derivation below, energy conservation is applied to the cylinders to obtain
differential equations for mass. With assumption (4) above, the mass of the lumped

dead volume may be expressed as a function of pressure without applying conservation

of energy.
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The ideal gas law is
pV =mRT, (A.10)

where p is pressure, V is volume, m is mass, and T is temperature. The ideal gas
constant R may be expressed as the difference between the specific heat at constant

pressure ¢, and the specific heat at constant volume c,:

R =¢p — cy. (A.11)

The ratio of specific heats « is defined as

7= cp/cv~ (A.12)

The first law of thermodynamics is applied to the two adiabatic volumes:

dE = dQ — dW + hdm. (A.13)

Note that by assigning a constant temperature gradient to the regenerator and heat
exchangers, applying the first law to the dead volume is avoided. Energy E, work W

and enthalpy h are simplified in the energy equation to produce

¢y d(mT) =dQ — pdV + ¢, T dm. (A.14)

Substituting Equation (A.10) into the left side of Equation (A.13) gives

Cy d(—’i’-) =dQ — pdV + ¢, T dm,

R
%’ (pdV +V dp) = dQ — pdV + ¢, T dm,
Cy Cy _
(—R;—l-l) pdV + 2V dp—dQ = ¢, T dm. (A.15)

Substitution with Equations (A.11) and (A.12) and solving for the change in mass
yields
1

1 7—1
BT (pdV-!-’dep ~ dQ). (A.16)

dm =
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When gas is moving into the active volumes, it is at the same temperature as the
adjacent heat exchanger wall. Denoting the heat exchanger wall temperature by T*,

Equation (A.16) becomes

1 1
dm = BT+ ( dv + :; | 4 dp) for dm > 0. (A.17)

When gas is flowing out of the control volume, the ideal gas law (A.10) may be used
to further reduce Equation (A.16) by eliminating temperature:

m 1 7-1
dm=— |(pdV +~-Vdp— ——d ) for dm < 0. A.18
pv( tvap-1=tag (4.18)

The heat exchanger temperature T* may be eliminated by nondimensionalization.
Rewriting the mass derivative equations (A.17) and (A.18) in terms of the definitions

in Equation (A.1):

iM=rPdV+Lyap - 121 o for dM> 0,

Mo 1y (4.19)
d.M=—(Pd'V+—'VdP-—1——-dQ) for dM< 0.

PY ol v

To obtain a differential equation for pressure, mass continuity is used. Since the

entire system is closed, total mass is conserved:

Myiotal = Me + mq + m,, = constant. (A.20)

Upon differentiation,
dme + dmg + dm, = 0. (A.21)

where subscript ¢ denotes the cold end, d the dead volume, and w the warm end.

Introduction of another dimensionless term may be used to eliminate the dead volume

mass mgq:

Vaw
mg = 'Vd gﬁ‘_’ (A.22)

where V,,, is the warm volume amplitude. The reduced dead volume V4 may considered

as the ratio of the volume due to mg under warm end conditions (at pressure p and
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temperature T,;) to the average warm volume Vg,,. The parameter is related to the
amount of gas that enters the dead volume from one cylinder but does not travel all

the way to the other cylinder. Differentiating Equation (A.22) gives the change in the

dead volume mass:
Vaw
RT}

dmg = Vy4 dp. (A.23)

Mass continuity may now be converted into dimensionless form:

Rot dMg + Vg dP +dMy =0, (A.24)

where the displaced mass ratio is defined as:

= . A,

The displaced mass ratio represents the ratio of the cold mass to the warm mass con-

tained in their respective half volumes at their respective heat exchanger temperatures.

Since there are two active volumes (a cold cylinder and a warm cylinder) that can
have mass flowing either in or out, there are four possible combinations of mass flow.

By introducing Equation (A.19) for the case when dM, > 0 and dM,, > 0, a differential

equation for pressure may be obtained .

Ryt (Pdvc+1vcdp—1l1d9c) + VadP + (pdv,,,+lvwdp— 1:—1-de) =0,
“y 8l v v
P (Rye dV, + dVa) + % (Roe Vo + Vo + 7 Va) dP — 1;—1 (Roe Q. +d0,) =0,
Roz dVo + dV,, RuedQ, +d0,
LKA e erst arae Tl U b s Ty
(A.26)

Pressure equations for the three other mass fiow combinations may be derived in the

same fashion. The result for each of the four mass flow combinations are summarized

below:
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dP = — k"tpdv"-*‘Pdv‘”_l_ ( ___1) RotdQo +dQ., for dM >0
" Rt Vo + Vus +7 Va Rut Vo + Vu + 7 Va M, >0’
c d w c Cxw
th Mc dv 'I"-Mw v kut Mc dQ M dQ dM
dP:—fy v vw +(,1__1) Pv va f ¢<0
vt 5 +—P"+’7 d t 5 +7+’7 d
Rut Me —— 4Ve + P dV, Rot M Q“+dQ
dP_"' vt ° 'VQ w+ ( __1) Pv v f dM <0
- 7 -Mc ’7 Mc dM >0’
dVy, w
dP = —y Vu + (v—1) PVy for c>0
Mw My dM <0’
Rot Vo + —— +vVa Rot Vo +— +9Va

P P

(A.27)

For the adiabatic case, the heat transfer term dQ is zero. This simplified version is the

one that Rios developed.
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Appendix B
HEAT TRANSFER MODEL

B.1 Introduction

In this appendix, the relation describing heat transfer from wall to gas is derived.
In order to maintain simplicity, the heat transfer is described in terms of pure num-
bers related to geometry, speed and gas properties. The heat transfer relation, when

combined with the pressure and mass equations, fully describe the work spaces of the

Stirling system.

B.2 Parameter Definitions

Because the Nusselt-Peclet correlations (2.8) and (2.9) are based entire cycles and
not local conditions, Peclet should be found in terms of average conditions. To obtain a
better correlation, an oscillating flow Peclet number is used in place of the conventional
Peclet number. The condition assumed to represent the approximate average will be
when the piston is located at mid-stroke, the pressure is at the cycle maximum, and
the temperature equals that of the heat exchanger. The conventional Peclet number is

a pure number that represents the ratio of heat capacity to axial heat conduction:
Pe — velocity x lenqti‘z . (B.1)
thermal di ffusivity

For reciprocating machinery the characteristic length is the hydraulic diameter. The
hydraulic is defined as four times fluid volume divided by heat transfer area. The piston
crown, the cylinder head, and the side wall of the cylinder comprise the heat transfer

area. When the piston is halfway through its stroke, the hydraulic diameter becomes
bV
h = A ’
_ 4(rD%/4) (L./2)
= 2(r D?/4) + (D) (L./2)’
_ D
1+ DJL,’

(B.2)

where A is area, L, is the stroke length of the piston and D is the cylinder diameter.

The characteristic mean velocity ¥ is an angle averaged velocity:
_}_ 2L,
27 1/w’

v =
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7= wlk, (B.3)

T H

where w is the angular frequency of compression and expansion. The conventional

Peclet number then becomes
_ w L,, Dh

To

Pe (B.4)

)
where a is the thermal diffusivity of the gas and is equal to k/p c,. The oscillating flow
Peclet number Pe, results when Pe is multiplied by Dp/L,. A factor of w/4 is added
so that the expression is consistent with established conventions:
Pe, = -}PC—L_:’
_wD
T 4o’

_wDZpc
=T (B.5)

When expanded, Pe, becomes a function of hydraulic diameter, frequency, and
gas properties. Even though gas density will change with pressure and temperature,
density may be assumed to be constant for the purposes of observing trends affected
by gas-to-wall heat transfer. Average gas density p is approximately that at maximum
pressure and at the temperature of the adjacent heat exchanger

pmaa:
== B.6
P= TR (B.6)
This approximation is consistent with the approximations used by Kornhauser in de-
veloping his expressions for Nuc as a function of Pe,. By inserting Equation (B.6)

into (B.5), oscillating flow Peclet then becomes

WD}z,,pmaa: i
Pe,, = T -1 (B.7)

B.3 Equation Development

The complex heat transfer model in this analysis is based upon a complex Nus-
selt number Nucs which allows for prediction of heat transfer phase shift. Korn-

hauser (1989) writes Newton’s law of convection in terms of complex heat transfer,
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temperature and Nusselt number:

d
’%C- = _hC A (TC - Twall)’
Qe _ , k
el A Dy Nuc (Te — Twaii)- (B.8)

where h¢ is a complex convective heat transfer coefficient. The negative sign indicates
that her.t transfer from the wall to the gas is positive. The wall temperature Ty, qy is
assumed to be constant and, therefore has no complex part. By expressing complex

temperature as a sinusoidal variation, the real part of heat transfer may be simplified

to

aQ k Nuy dT)’ (B.9)

i —A-ﬁ;- (NuR (T — Twau) — I
where Nugr and Nuy are the real and imaginary parts of Nug, T and Ty,qi are respec-
tively the mean bulk gas temperature and wall temperature, w is the angular frequency
of the cycle, k is the thermal conductivity of gas, and Dy is the mean hydraulic di-
ameter of the space. The Nusselt number is strongly dependent on Peclet number.
Equation (B.9) includes the phase shift that exists between heat transfer and tempera-
ture difference. The heat transfer area includes the piston crown and the cylinder head
as well as the side wall of the cylinder. The side wall area is the product of instanta-
neous length and cylinder perimeter. Dividing the instantaneous volume by the cross

sectional area will give the instantaneous length. The total area at any point in time is

A= (}7)272) (D) +2 (x= D?/4),

4V 7« D?

o+ (B.10)

After substituting for hydraulic diameter and area, the heat transfer equation (B.9)

becomes
dQ 4V nD?\ 1+ DL, Nus dT
a ( D2 ) D ¥ [N"R O o) =7 |- (P10

Heat transfer may be nondimensionalized by the term py,qz Vo which has units of
energy. Since volume will be an input that is a function of the crank angle 6, it is

appropriate to take the heat transfer derivative with respect to 8:

dQ dQdt dQ/dt 1
d0  dt d0  pasVew' (B-12)
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A dimensionless equation results when temperature is normalized to the temperature
of the adjacent heat exchanger temperature. Algebraic manipulation will transform

the complex heat transfer relation into

aQ 1 V+D/IL, 1 _ a7
do - 7_1 1 +D/La Pew [N'UR (T Twall)"*'NU:[ do:l . (B-13)

Equation (B.13) can also be written in terms of dimensionless mass, pressure and

volume using the definitions in (A.2) and (A.3):

PY dPp dV dM PY
dQ =X [N‘U,R (_M— — Twan)dl + Nup (—}3" + =T W) (T)] . (B.14)

where ) is an abbreviation for

v V+DL, 1 (B.15)

X= 11+ DL, Pey’

Equation (B.14) is the desired nondimensional expression for heat transfer in the work-
ing volumes. We will observe that two independent dimensionless parameters, Pe,, and
D/L,, are necessary to describe the heat transfer in the working volumes, since the two
Nusselt numbers are functions of Peclet. The Peclet number reflects the rate of heat
transfer in relation to the operating speed of the cooler. The bore-to-stroke ratio is

associated only with the geometry of the working volume.
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Appendix C
COMPUTER CODE

D.1 Introduction

This appendix lists the computer routines used for running the cycle simulations.

The code was written to be compiled with the Microsoft C 5.0 compiler.

D.2 Header file

The header file contains all the global definitions, constants and external variables.

It is included in all the other modules.

#include <math.h>
#include <stdio.h>
#include <string.h>

#define PI 3.14169266358979

#define SIZE 200 /* gize of data array */

#define NODES 2 /* number of cylinders #*/

#define VARS 9 /+ pumber of variables to be calculated for each node */
#define sqr(x) {(x) * (x)) /* macro for square function */

enum node {4,L};

enum var {vV,P,K,T,Q,¥,SI,80,8¢};

extern void error (char name[],char message(]);

extern void correct (int iter,double eps,double hmin,int maxsize);

extern void odeint (int i[]l,int j[],int nvar,double eps,double hmin,int maxsize);

/* derivative functions #/
extern double entpy_infl (int i,int j,double x,double y[NODES] [VARS],double dy[NODES] [VARS]):

extern double entpy_outf (int i,int j,double x,double y[NODES][VARS],double dy[NODES] [VARS]);
extern double entpy_wall (int i,int j,double x,double y[NODES] [VARS],double dy[NODES][VARS]):
extern double heat_deriv (int i,int j,double x,double y[NODES][VARS],double dy[NODES] [VARS]):;
extern double mass_deriv (int i,int j,double x,double y[NODES] [VARS],double dy[NODES] [VARS]);
extern double pres_deriv (int i,int j,double x,double y[NODES] [VARS],double dy[NODES] [VARS]):;
extern double temp_deriv (int i,int j,double x,double y[NODES] [VARS],double dy[NODES][VARS]);
extern double volm_deriv (int i,int j,double x,double y[NODES] [VARS],double dy[NODES] [VARS]);
extern double work_deriv (int i,int j,double x,double y[NODES][VARS],double dy[NODES] [VARS]);

/% value functions */
extern double pres_value (int i,int j,double x,double y[NODES] [VARS],double dy[NODES] [VARS]);

extern double temp_value (int i,int j,double x,double y[NODES][VARS],double dy[NODES] [VARS]);
extern double volm_value (int i,int j,double x,double y[NODES] [VARS],double dy[NODES] [VARS]);
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extern int kount ; /* counter for data array size */
extern double xp[SIZE]; /* data array for storing crank angle */
extern double yp[NODES] [VARS] [SIZE]; /#* data array for storing values */
extern double dyp[NODES][VARS][SIZE]; /#* data array for storing derivatives #/

/* array of pointers to value functions #/
extern double (* f£[NODES] [VARS]) (int i,int j,double x,double y[NODES] [VARS],double dy[NODES] {VARS]);

/* array of pointers to derivative functions */
extern double (+df [NODES] [VARS]) (int i,int j,double x,double y[NODES][VARS],double dy[NODES] [VARS]);

extern double G; /* specific heat ratio */

extern double RVT; /* displaced mass ratio */

extern double VDTOT; /% reduced dead volume */

extern double phaselag; /* phaselag of warm piston to cold piston */
extern double PE[NODES]; /* Peclet number */

extern double DL[NODES]; /* bore-to-stroke ratio */

extern double NUR[NODES]; /* real part of complex Nusselt number */
extern double NUI[NODES]; /* imaginary part of complex Nusselt number */
extern double DEADVOLM[NODES] ; /% cylinder dead voiume */

extern double WALLTEMP [NODES]; /* cylinder wall temperature */
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D.3 Driver code

The driver is used for inputting and outputting data files, assigning function point-
ers, initializing variables, and setting parameters. The subroutine input reads in the
input parameters and data points from a previous simulation. All function assignments
and any desired parameter changes are made in the assign subroutine. After initial-
ization is completed, the correct subroutine is called to run the cyclic simulations. In
adiabtemp, the cylinder wall temperature is adjusted iteratively until there is no net
heat transfer to and from the cylinder wall. The output subroutine prints out the in-

put parameters, the converged data points and the calculated performance to specified

files.

#finclude "defs.h"

void assign (double peclet, double eps, double hmin, int maxsize);
void adiabtemp (FILE #ptr, int iter);

void error (char name[], char messagel]):

void fenter (FILE #ptr, char name[], double #*variable);

void ienter (FILE #*ptr, char name[], int *variable);

void input (FILE #ptri, FILE #ptr2);

void output (FILE #ptri, FILE #ptr2, FILE #ptr3);

int maxindex (int i, int j);

int minindex (int i, int j);

int iter; /* maximum number of cycle iterations */
int maxsize; /* maximum number of data points */
double eps; /* error criterion for integration */
double hmin; /#* minimum stepsize for integration #*/

double G, RVT, VDTOT, phaselag;

double PE[NODES], DLINODES], NURINCDES], NUI[NODES], DEADVOLMINODES], WALLTEMP[NODES];

main(void)
{
int i;
FILE *ptrl, *ptr2, *ptr3, #ptr4;

ptrl = fopen("aip6.dat", "r");
ptr2 = fopen("alp5.ful", “"w");
ptr3 = fopen("tipb.ful", "w");

ptrd = fopen(“cop.ful", "w");

input (ptri, ptri);

assign(1.0eb, eps, hmin, maxsize);
correct(iter, eps, hmin, maxsize);
output (ptr2, ptr2, ptr4);
adiabtemp (ptr4, 10)

output (ptr3, ptr3, ptrd);

/*

/*
/*
/*
/*
/*
/%

sample run #*/

read parameters and data pointe from aip6.dat */
assign new Peclet number #*/

run cycle simulation with new inputs */

output data to alpb.ful */

calculate cycle with adiabatic temperature */
output data to tipb.ful */

fclose(ptrl); fclose(ptr2); fclose(ptr3); fclose(ptrd);
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void assign(double pe, double ee, double hh, int mm)

{

int 4, §, k;

PE[H] = pe;

PE[L] = pe;

eps = ee;

hmin = hh;

maxsize = mm;

for (i=0; i<NODES; i++){

}

f[i][V] = volm_value;
df[i]J[V] = volm_deriv;
f[i]1[P] = NULL;
df[i]1[P] = pres_deriv;
£[iJ[M] = NULL;

df[i] [N] = mass_deriv;
£f[i][T] = temp_value;
df[i]1[T] = temp_deriv;
£[i]1[Q] = NULL;
df[i1[Q] = heat_deriv;
£[il[¥] = NULL;
df[i1[W] = work_deriv;
£[i][81] NULL;
df[i] [SI] = eatpy_infl;

f[i][s0] = NULL;
df[i] [SO] = entpy._outf;
£[i][8¥] = NULL;

af[i] [S¥] = entpy_wall;

£[L1[P] = pres_value;

for (i=0; i<NODES; it++)}{

if (PE[i] >= 100){

NUR[i] = 0.56 * pow(PE[i], 0.69);

NUI[i] = NUR[i];

}

else{
double u, a, b;
double tanhu, coef;

u = sqrt(PE[i] / 8.0);

tanhu = tanh(u);

a = sin(u) * cos(u) / sqr(cosh(u));

/* ussign new values to parameters */

/* assign function pointers */

/* calculate complex Nusselt number */
/* from Kornhauser’'s correlation */

/* from Lee's correlation */

b = sqr(cos(u)) + sqr(sin(u)) * sqr(tanhu);

coef = 4.0+u*sqrt(2.0 * PE[i]);

coef /= sqr(2+utb-tanhu-a) + sqr{tanhu - a);

NUR[i]
NUI[i]

coef * (u*b*(tanhu - 2));
coef * (utb+(tanhu + a) - sqr(tanhu) - sqr(a));



/+ enter variables of type double */
void fenter(FILE #ptr, char name[], double *variable)

{
char s[12];

fecanf (ptr, "%s", 8);
if (strcmp(name, 8) == Q)

facanf (ptr, "%+ =\tJ%1f%+[*\nl\n", variable);
elee

error("fenter", strcat(name, " not read"));

}

/* enter variables of type int */
void ienter(FILE #ptr, char name[], int *variable)

{
char 8[12];

fscanf (ptr, "%s", 8);
if (strcmp(name, 8) == Q)

foacanf (ptr, "%*[ =\t}%i%+*[~\nl\n", variable);
else

error("ienter", strcat(name, " not read"));

}

/* print error message and function in which the error occured */
void error(char name[], char message[])
{
fprintf(stderr, "\n¥%s: %s\n", name, message);
exit(1);
}

/* return index of data point with maximum value during a cycle */
int maxindex(int i, imnt j)
{

int k, kmax;

kmax = 1;
for (k=1; k<=kount; k++)
if (ypl[il[j1ik] > yp[il[j] [kmax])
kmax = k;
return (kmax) ;

}

/* return index of data point with minimum value during a cycle */
int minindex(int i, int j)
{

int k, kmin;

kmin = 1;

for (k=1; k<=kount; k++)

if (yplil[j10c] < yp[il[j] [kmin])
lmin = k;
return(kmin) ;
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/+ determine adiabatic wall temperature of cold and warm cylinders by iteration */
void adiabtemp(FILE #ptr, int adiabiter)

{
double q1 [NODES], q2{NODES], qlow[NODES], qhigh[NODES];
double tlow[NODES], thigh[NODES], increment=0.15;
int i, n;
n=0;
for (i=0; i<NODES; i++){ /* initialize guesses */
q1[i] ~ yp[il[Q] [kount];
thigh[i] = 0.0;
tlow[i] = 0.0;
}
for (;:){
for (i=0; i<NODES; i++)
q2[i} = yp[il [Q] [kount];
fprintf(ptzr, "%6.4e %6.de ", PE[H], PE[L]);
fprintf(ptr, "%6.4f %6.4f ", WALLTEMP[H], WALLTEMP[L]);
fprintf (ptr, "%6.4f %6.4f\n", q2[H], q2[L]);
printf ("%6.4f %6.4f ¥, WALLTEMP[H], WALLTEMP[L]);
printf ("%6.4f %6.4f\n", q2[H], q2[L]);
if ((fabs(q2[H])<0.001 &k fabs(q2[L])<0.001) || n >= adiabiter)
break;
for (i=0; i<NODES; i++){ /* reassign upper limit if net heat transfer postive */
if (q2[il > 0){
thigh[i] = WALLTEMP[il;
ghighl[i] = q2[il;
}
if (q2[i] < 0){ /* reassign lower limit if net heat transfer negative %/
tlow[i] = WALLTEMP[il;
qlow[i] = q2[i];
}
if (q2[il/q1[il < 0){ /% determine new wall temperature by interpolation
if sign of heat transfer changes */
WALLTEWP[i] = - qlow[il/(qhigh[il-qlow[il)*(thigh[il-tlow[il);
WALLTENP[i] += tlow[il;
}
if (q2[il/q1[i] > 0) /* if sign of heat transfer does not change */
if (thigh[i] != 0.0 && tlow[i] != 0.0)
WALLTEMP[i] = (thigh[i] + tlow[il) / 2.0;
else
WALLTEMP[i] -= q2[il /fabs(q2[i]) * increment;
qilil = q2[il;
}
correct(iter, eps, hmin, maxsize);/* simulate cycle with new wall temperatures */
n+=1;
}
}



void input(FILE #ptri, FILE #ptr2)

{
int i, j, k:
double x, y, dy, dummy;
if (ptr1 1= NULL){ /* scan parameters */
fenter (ptri, "PE[L]", &PE[L]);
fenter(ptrl, “PE[H]", &PE[H]);
fenter(ptrl, "DEADVOLM[L]", &DEADVOLM[L]);
fenter (ptrl, "DEADVOLM[H]", &DEADVOLM[H]);
fenter(ptri, "WALLTEMP[L]", &WALLTEMP(L]);
fenter(ptri, "WALLTEMP(H]", &WALLTENP([H]);
fenter(ptri, “DL[L]", &DL[L]);
fenter(ptri, "DL[H]", &DL[H]);
fenter (ptri, "G, &G) ;
fenter(ptri, “RVI", &RVT) ;
fenter(ptri, "VDTOT", &VDTOT) ;
fenter(ptrl, "“phaselsg", &phaselag) ;
fenter(ptrl, “eps", &eps) ;
fenter(ptrl, "hmin", &hmin) ;
ienter(ptrl, “iter", kiter);
ienter(ptrl, "maxsize", kmaxsize) ;
phaselag *= PI / 180.0; /* convert degrees to rad */
}
if (ptr2 != NULL){
fscanf (ptr2, "[*\n]\n");
for (k=1; ; k++){ /* scan variable values */
facanf (ptr2, "%1f ", &x);
xplk] = x / 180.0 # PI;
for (j=0; j<=W; j++)
for (i=0; i<NODES; i++){
fscanf (ptr2, "%1f *, &ky);
yplil[jl[x] = y;
}
fscanf (ptr2, "\n");
if (x >= 360.0) break; /% stop if end of cycle is reached */
}
kount = k;
facanf (ptr2, "\n");
for (k=1; k<=kount; k++){ /* scan variable derivatives */
fscanf (ptr2, "%*f ");
for (j=0; j<=W; j++)
for (i=0; i<NODES; i++){
fscanf (ptr2, "%1f ¥, &dy);
dypl[il[§1[k] = ay;
}
fscanf (ptr2, "\n");
}
}
}
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void output(FILE #ptri, FILE #ptr2, FILE #ptr3)

{

int i, j, k;

double pmaximum, rp, cop, tc=80.0, tw=300.0;
double y[NODES][VARS], dy[NODES][VARB], sgen[NODES];

/% normalize dimensionless variables with respect to maximum pressure

except for volume and temperature */

pmaximum = yp[H] [P] [maxindex(H, P)];

for (i=0; i<NODES; i++)
for (j=0; j<VARS; j++)
for (k=1; k<=kount; k++)
if (((enum var) j != T) &k ((enum var) j 1= V))
yplil[j1[k] /= pmaximum;

/* output parameters used for latest cycle simulation */
if (ptrl 1= NULL){

fprintf(ptrl, "PE[L] = %4.2e\n", PE[LD);
fprintf (ptrl, "PE[H] = %4.2e\n", PE[H]);
fprintf(ptri, "DEADVOLM[L] = %4.2e\n", DEADVOLM[LI);
fprintf (ptrl, "DEADVOLM[H] = %4.2e\n", DEADVOLM([H]);
fprintf(ptrl, "WALLTEMPIL] = %9.5f\n", WALLTEMP[L]);
fprintf(ptrl, "WALLTENP[H] = %9.6f\n", WALLTEMP[H]);
fprintf(ptrl, *DLIL] = %9.6£\n", DLILD);
fprintf(ptr1, "DL[H] = %9.6f\n", DLIHD);
fprintf (ptrl, "G = %9.5f\n", @);
fprintf(ptri, “RVT = %9.5f\n", RVI);
fprintf(ptri, "VDTOT = %9.6f\n", VDTOT) ;
fprintf(ptrl, "phaselag = %9.6f\n", phaselag * 180.0/PI);
fprintf(ptrl, “eps = %4.2e\n", eps) ;
fprintf(ptrl, "hmin = %4.2e\n", hmin);
fprintf(ptrl, “iter = %9i\n", iter);
fpointf(ptrl, “maxsize = %9i\n", maxsize) ;
fprintf (ptrl, "\n");

}

if (ptr2 != NULL){
for (k=1; k<=kount; k++){ /* output variable values */

fprintf(ptr2, "%12.8f v, xp[k] * 180.0 / PI);

for (j=0; j<=W; j++)
for (i=0; i<NODES; i++)
fprintf (ptr2, "%12.8f

fprintf (ptr2, "\n");

}
fprintf(ptr2,

"\a") ;

for (k=1; k<=kount; k++){

fprintf (ptr2, "%12.8f

for (j=0; j<=W; j++)
for (i=0; i<NDDES; it++)
fprintf (ptr2, "%12.8f

fprintf (ptr2, "\n");

v yplil[§1[k]);

v, xp[k] * 180.0 / PI);

v, dyplil[j1[kD);
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fprintf (ptr2, *\n");
for (k=1; k<=kount; k++){ /* output entropy values */
fprintf (ptr2, *%12.8f ", xp[k] # 180.0 / PI);
for (j=W+#1; j<VARS; j++)
for (i=0; i<NODES; i++)
fprintf (ptr2, "%12.8f ", yplil[j1(k]);
fprintf (ptr2, "\n");
}
fprintf(ptr2, "\n");
for (k=1; k<=kount; k++){ /# output entropy derivatives */
fprintf (ptr2, "%12.8f v, xp[k] * 180.0 / PI);
for (j=W+l; j<VARS; j++)
for (i=0; i<NODES; i++) ,
fprintf (ptr2, "%12.8f ", dyp[il[jl1[kD);
fprintf (ptr2, "\n");
}
fprintf (ptr2, "\n");

/% calculate pressure ratio, coefficient of performance, and total
entropy generation */

rp = yp[H] [P] [maxindex(H,P)] / yp(H] [P] [minindex(H,P)];

cop = (tc/tw) * RVT * yp[L][W¥] [kount];

cop = - cop / (yp[H][¥] [kount] + cop);

cop *= (tw/tc) - 1.0;

for (i=0; i<NODES; i++)
sgen[i] = yp[il [SI] [kount] + yp[il[80] [kount] + yp[i] [8W] [kount];

fprintf (ptr2, "%6.4f %6.4f ", sgen[H], sgen[L]);

fprintf(ptr2, "%6.{f %6.4f\n", rp, cop);

fprintf(ptr2, "\n");

printf ("%6.4f %6.4f\n", rp, cop);

(ptr3 != NULL && ptrl !'= NULL){

fprintf(ptr3, "%4.2f %4.2f %4.2f %4.2e ¥, RVT, VDTOT, DL[H], PE[H]);
fprintf(ptr3, "%4.2f ", log10(DEADVOLM[H]));

fprintf(ptr3, "%4.2f %4.2f ¥, log10(hmin), logiO(eps));
fprintf(ptr3, "%6.4f %6.4f ", WALLTEMP[H], WALLTEMP[L]);

fprintf (ptr3, "%6.4f %6.4f *, yp[H]1[Q)[kount]l, yp[L][Q][kountl);
fprintf(ptr3, "%6.4f %6.4f *, yp[H][¥][kount], ypI[L][¥][kount]);
fprintf(ptr3, "%6.4f %6.4f ", yp[H][SI][kount], yp[L][SI][kountl);
fprintf(ptr3, "%6.4f %6.4f ", yp[H]([80][kount], yp[L][S0] [kount]);
fprintf(ptr3, "%6.4f %6.4f *, yp[H][SW][kount], yp[L]IS¥W][kount]);
fprintf(ptr3, "%6.4f %6.4f *, sgen(H], sgen[L]);

fprintf(ptr3, "%6.4f %6.4f\n", rp, cop);
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D.4 Cycling routine

In the subroutine cycle, cyclic integration is repeated until the property values at
the end of the integration equal those at the beginning. Before the integrator odeint
is called, variable that require integration are identified. Work, heat and entropy are
initialized to zero. Unless convergence is reached, the cycle is repeated starting with

improved starting values. The subroutine correct repeats cycle to double check

convergence.

#include "defs.h"

void cycle (int iter, double eps, double hmin, int maxsize);
void correct (int iter, double eps, double hmin, int maxsize);

int kount ;
double xp[SIZE], yp[NODES][VARS][SIZE], dyp[NODES][VARS][SIZE];

double (* f[NODES][VARS]) (int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS]);
double (* df [NODES][VARS]) (int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS]);

/* run cycle simulation a couple times to double checke convergence */
void correct(int iter, double eps, double hmin, int maxsize)
{

int i, j, k, n;

double mass, pres, temp, work;

double mdiff, pdiff, tdiff, wdiff;

printf ("correct: PE=%f PE=%f", PE[H], PE[L]);
n=0;
do {
mass = yp[H] [M] [kount];
pres = yp[H][P] [kount];
temp = yp[H][T] [kount];
work = yp[H] [¥] [kount] ;
n +=1;
printf ("\n%i-*, n);
cycle(iter, eps, hmin, maxsize);
mdiff = fabs((yp[H] [M] [kount] - mass) / yp[H][H] [kount]l);
pdiff = fabs((yp[H] [P] [kount] - pres) / yp[H][P][kount]);
tdiff = fabs((yp[H] [T] [kount] - temp) / yp[H][T] [kount]);
wdiff = fabs((yp[H] [¥] [kount] - work) / yp[H][¥][kount]);
} while ((mdiff>0.01 || pdiff>0.01 || tdiff>0.01 || wdif£>0.01) && n<iter);
if (n==iter){
printf ("pdiff=%6.4f mdiff=Y%6.4f ", pdiff, mdiff);
printf ("tdiff=%6.4f wdiff=Y6.4f ", tdiff, wdiff);

}
printf ("\n");

[

]
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/* repeat cycle simulation until end values equal initial values */
void cycle(int itexr, Couble eps, double hmin, int maxsize)
{

int 1, j, k, n, nvar;

int g[VARS+NODES], h[VARS*NODES];

double pdiff, mdiff, tdiff, wdiff, work;

/* search for variables requiring numerical integration and note
their array indexes */
nvar = 0;
for (j=0; j<VARS; j++)
for (i=0; i<NODES; it++)
if ((£[i]1[j] == NULL) &k (af[i1[j] != NULL)) {

nvar += 1;
glnvar] = i;
h[ovar] = j;

}

/* repeat cycle until convergence */
printf ("cycle:");
n=0;
do {
work = yp[H] [¥] [kount];

/% reset work, heat, and entropy integrals */
for (i=0; i<NDDES; i++){
yp[il [Q] [kount] = 0.0;
ypl[il [¥] [kount] = 0.0;
yp[il [SI] [kount] = 0.0;
ypl[il [80] [kount] = 0.0;
ypli]l [S¥] [kount} = 0.0;
}
/+ call cycle integrator */
odeint (g,h,nvar, eps ,hmin,maxsize) ;
n +=1;
printf(*%i,", n);
mdiff = fabs((yp[H] [N] [kount] - yp[H]I[MI[1]) / yp[H] [M] [kount]);
pdiff = fabs((yp[H] [P][kount] - yp[HI[PI[1]) / yp[H1[P][kount]);
tdiff = fabs ({yp[H]I [T][kount] - yp[HI[TI[1]) / yp[H][T] [kountl);
wdiff = fabs ((yp[H] [¥] [kount] - work) / ypI[H][W][kount]);
} while ((mdiff>0.01 || pdiff>0.01 || tdiff>0.01 || wdiff>0.01) && n<iter);
if (n==iter){
printf (Ypdiff=%6.4f mdiff=%6.4f ", pdiff, mdiff);
printf ("tdiff=%6.4f wdiff=%6.4f ", tdiff, wdiff);

}
printf ( L} u) :
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D.5 Property Functions

The functions used to calculate properties of the

section. The functions describing the volume variation

#include “"defs.h"

double entpy_infl (int i, int j, double x, double y[NODES][VARS],
double entpy_outf (int i, in% j, double x, double y[NODES][VARS],
double entpy_wall (int i, int j, double x, double y[NODES] [VARS],
double heat_deriv (int i, int j, double x, double y[NODES][VARS],
double mass_deriv (int i, int j, double x, double y[NODES][VARS],
double pres_deriv (int i, int j, double x, double y[NODES][VARS],
double pres_value (int i, int j, double x, double y[NODES][VARS],
double temp_deriv (int i, int j, double x, double y[NODES][VARS],
double temp_value (int i, int j, double x, double y[NODES][VARS],
double volm_deriv (int i, int j, double x, double y[NODES][VARS],
double volm_value (int i, int j, double x, double y[NODES][VARS],
double work_deriv (int i, int j, double x, double y[NODES][VARS],

working gas are listed in this

are also given.

double dy[NODES] [VARS]) ;
double dy[NODES] [VARS]);
double dy[NODES] [VARS]) ;
double dy[NODES] [VARS]);
double dy[NODES] [VARS]);
double dy[NODES] [VARS]);
double dy[NODES] [VARS]);
double dy[NDDES] [VARS]);
double dy[NODES] [VARS]);
double dy[NODES] [VARS]);
double dy[NDDES] [VARS]);
double dy[NODES] [VARS]);

double hezt_deriv(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])

{
double heatcoef, dheat;
switch ((enum node) i){
case H :
case L : dy[i]l[T] = (+#af[L1[TDD(,T,x,y,dy);
heatcoef = G/(G-1) / PE[il;
heatcoef *= (y[i][Vv] + DL[il) / (1.0 + DL[il);
dheat = NUR[i] * (y[i][T] ~ WALLTEMP[il) + NUI[i] * dy[il[T]):
dheat *= ~heatcoef;
return(dheat) ;
default : error("heat_deriv", "no case matches i");
}
}
double mass_deriv(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])
{
double coef, factor, dmass;
coef =G / (G-1) / PE[i];
coef *= (y[il[v] + DL[il) / (1.0 + DL{il);
if (dy[i] [M] >= 0.0)
factor = sqr(y[il [M]);
else
factor = y[H][P] * y[il[v] * y[il[M];
factor += (G-1) / G * coef * NUI[i] * y[HI[P] * y[il[Vl;
factor = sqr(y[il [M]) / factor;
dmass = NUR[i] #* (y[i][T] - WALLTEMP[il);
dmass += NUI[i] / y[i]l[M] = (y[HI[P] * ay[il(V] + y[il[V] * ay[H][P]);
dmass *= coef * (G-1) / G;
dmass += y[H][P] # dy[il[V] + y[il[V] * dy[H][P] / G:
dmass *= factor;
return(dmass) ;
}
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/* entropy generation due to mixing when gas flows into a cylinder */
double entpy_infl(int i, int j, double x, double y[NODES]IVARS], double dy[NODES]([VARS])

{
double dentp;

switch ((enum node) i){
“case H :
case L : if (dy[il[M] > 0.0){

dentp = log(y[il[T1) - (y[il[T] - 1.0) / y[il[T];
dentp *= G / (G-1) * dy[i][M];
3 .

else
dentp = 0.0;
return(dentp) ;
default : error("entpy.infl", "no case matches i");
}
}

/* entropy generation due to mixing when gas flows out of a cylinder */
double entpy_outf(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])

{
double dentp;

switch ((enum node) i){
case H :
case L : if (dy[il[M] < 0.0){

dentp = log(y[il[TD) - (y[il[T] - 1.0);
dentp *= G / (G-1) * dy[i] [N];
}
else
dentp = 0.0;
return(dentp) ;
default : error("entpy_outf", "no case matches i");
}
}

/% entropy generation due to gas-to-wall heat transfer inm a cylinder */
double entpy _wall(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])

{
double dentp;

switch ((enum node) i){

case H :

case L : dentp = (1.0 / y[il[T] - 1.0) #* ay[il[Q];
return(dentp) ;

default : error("entpy_wall", "no case matches i%);

}

73



double pres_value(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])

{
switch ((enum node) i){
case L : return(y[H][P1);
default : error("pres._value", "no case matches i%);

}
}

double pres_deriv(int ii, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])

{
double coef [NODES], factor[NODES], denom[NODES], numer[NODES], dpres;

int i;
for (i=0; i<NODES; i++){

y[E1vl = (£01IVDD(4,V,x,y,dy);
dy[il (V] = (*af[i][V]) (i,V,x,y,dy);
y[il1[r] = GLHEIITDGLT,x,y,dy);
coef[i] =G / (G-1) / PE[i];

coef[i] *= (y[il[v]l + DL[il) / (1.0 + DL[i]);
if (dy[i1[M] >= 0.0)
factor[i] = sqr(y[il[M]);
else
factor[i]l = y[HI[P] * y[il[V] * y[il[M];
factor[i] += {G-1) / G * coef[i] * NUI[i] * y[H][P] #* y[il[V];
factor[il = sqr(y[i]l[M]) / factor[il;
denom[il = y[i]J[V1/G + (G-1)/G * coef[i] * NUI[i] * y[ilIV] / y[il[MI;
numer[i] = NUR[i] * (y[il[T] - WALLTENP[il);
numer[il] += NUI[i] * y[H][P] * ay[il[Vl / y[il[M];
numer[i] *= coef[il * (G-1) / G;
numer[i] += y[H]1[P] * dy[i][V];

}
dpres = - RVT * numer[L] * factor[L] - numer[H] * factor[H];

dpres /= RVT * denom[L] * factor[L] + VDTOT + denom[H] * factor[H]:;

return(dpres) ;
}
double temp_value(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])
{

double temp;
switch ((enum node) i){
case H :
case L : if (y[ilIv] == 0.0 || y[il[H] <= 0.0)
error("temp_value®, “zero mass");
else
temp = y[HI[P] * y[ilIV] / y[ilM];
break;
default : error("temp_value", "mo case matches i");
}
return(temp) ;
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double temp_deriv(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])

{
double dtemp;

switch ((enum node) i){

case H :
case L : if (y[il[V] == 0.0 || y[il[M] <= 0.0)

error("temp_deriv", "zero mass");
dtemp = dy[H][P] / y[HI[P];
dtemp += dy[il1[V] / y[il[V]l;
dtemp -= dy[i][M] / y[il[M]:
dtemp *= y[i] [T];
return(dtemp) ;
default : error("temp_deriv", "no case matches i");

}
}

double volm_value(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])

{
double angle, volume;

angle = x + 1.64PI;

volume = 0.5 * (2.0 - DEADVOLM[il);

switch ((enum node) i){

case H : volume *= (1.0 + gin(angle - phaselag));
break;

case L : volume *= (1.0 + sin(angle));
break;

default : error("volm_value","no case matches i");

}
volume += DEADVOLM[i];

return(volume) ;

}
double volm_deriv(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])

{
double angle, dvolume;

angle = x + 1.65+PI;

dvolume = 0.5 * (2.0 ~ DEADVOLK[i]);

switch ((enum mode) i){

case H : dvolume *= cos{angle - phaselag);
return(dvolume) ;

case L : dvolume *= cos(angle);

return(dvolume) ;

default : error("volm_deriv', "mo case matches i");

}
}
double work_deriv(int i, int j, double x, double y[NODES][VARS], double dy[NODES][VARS])
{

switch ((enum node) i){

case H :

case L : return(y[H][P] * ay[il[V]);
default : error(“"work_deriv", "no case matches i");

}
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D.6 Integrator

A fourth order Runge-Kutta integrator with adaptive stepsize control is used for
the cyclic integration. The code is adapted from Numerical Recipes in C by Press,
Flannery, Teukolsky and Vetterling. The basic Runge-Kutta algorithm is contained in
rk4. The subroutine rkqc determines the stepsize that satisfies the error criterion. In
odeint, first initializes the array of variables and continues integration until the end

of the cycle is reached. The calculated data points are saved at set intervals.

#include "defs.h"

void rkd(double y[NODES][VARS],double dydx[NODES][VARS],int i[]l,int j[I,
int n,double x,double h,double yout [NODES] [VARS]);

void rkqc(double y[NODES] [VARS],double dydx[NODES][VARS],int i[],int j[I,
int n,double *x,double htry,double eps,double hmin,
double yscal[NODES] [VARS],double *hdid,double *hnext);

void odeint(int il[l,int j[],int nvar,double eps,double hmin,int maxsize);

void rk4(double y[NODES][VARS],double dydx[NODES][VARS],int i[],int j[],int n,
double x,double h,double yout [NODES][VARS])
{

int a;
double xh,kh;
double dym[NODES] [VARS],dyt[NODES] [VARS],yt [NODES] [VARS];

hh=h+0.5;

xh=x+hh;

for (a=1;a<=n;a++){
yt[i[al]l[j[all=y[i[al]l [j[al]l+hh*dydx[i[=]]1[j[al];
dyt[i[al]l[j[all=dydx[il[a]l][j[2]];

}
for (a=1;a<=n;a++) dyt[ifall[j[all=(+df[i[a]ll1[j[al]) (i[al,jl[al,xh,yt,dyt);

for (a=1;a<=n;a++){
yt[il[all[j[all=y[i[al][j[al]l+hh+dyt[ila]l][j[al];
dym[ilal]l{j[all=dyt[i[al][j[a]];

}
for (a=1;a<=n;a++) dym(ilall[jlall=(+df[i[al][j[a]]) (ilal,j[a]l,xh,yt,dym);

for (a=1;a<=n;at++) {
yt[i[all[j[2]l]l=y[i[al]l[j[al]+h+dym[i[al][j[al];
dym[il[all[j[al]l += dytii[all[jlall;

}
for (a=1;a<=n;at+) dyt[ilal]l[jlall=(*df[i{al}(j[al]) (ilal,j[a]l,x+h,yt,dyt);

for (a=1;a<=n;a++){
yout[i[al]l[j[al]l=dydx[il[all[j[all+dyt[i[al][j[all+2.0+dym[i[all[jlal];

yout [i[a]][j[2]]1+=h/6.0;
yout [i[al] [j[all+=y[il[al][j[al];
}

/* correct for negative masses */
for (a=0; a<NODES; a++)
if (yout[a][M] < 0.001)

yout [a] [M]=0.001;
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#define PGROW -0.20

#tdefine PSHRNK -0.25

#idefine FCOR 0.06666666 /* 1.0/16.0 */ -
#define SAFETY 0.9 e
#define ERRCON 6.0e-4

void rkqc(double y[NODES][VARS],double dydx[NODES][VARS],int i[],int j[I,
int n,double #*x,double htry,double eps,double hmim,
double yscal [NODES] [VARS],double #hdid,double *hnext)
{
int a;
double xsav,hh,h,temp,errmax;
double dysav[NODES] [VARS], ysav[NODES] [VARS] ,ytemp [NODES] [VARS];

xsav=_%x) ;
for (a=1;a<=n;at++){
yeav[ilall[jlall=y[i[a))[j[al];
dysav[i[all(j[a]ll=dydx[i[al]l[j[al];
}
h=htry;
for (;;) {
hh=0.6+h;
rkd4 (ysav,dysav,i,j,n,xsav,bh, ytemp);
*x=xgav+hh;
for (a=1;a<=n;at++)
dydx[ilall[j[all=(*af[i[al]l[j[al])(ila],j[al,*x,ytemp,dydx);
rkd(ytemp,dydx,i,j,n,*x,bh,y);
*x=xsav+h;
if (#x == xsav) error("rkgc","step size too small");
rkd (ysav,dysav,i,j,n,xsav,h,ytemp);
errmax=0.0;
for (a=1;a<=n;a++) {
ytemp[i[all[j[al]l=y[i[all[j[all-ytemp[i(al]l[j[all;
temp=fabs (ytemp[ila]][j[al]l/yscallilall[j[2]]);
if (errmax < temp) errmax=temp;
}
errmax /= eps;
if ((errmax <= 1.0) || (h <= hmin)){
shdid=h;
#hnext=(errmax > ERRCON ? SAFETY+h+exp(PGROW+log(errmax)) : 4.0+h);
if (+hnext < hmin) *hnext = hmin;
break;

h=SAFETY+h+exp (PSHRNK*1log(errmax));
/% if next stepsize to small, set to hmin since hmin limited
by truncation errors */
if (b < hmin) h = hmin;
}
for (a=1;a<=n;a++)

y[ilall[j[a]] += ytemp[ifal]l[j[al]+FCOR;
}

#undef PGROVW
#undef PSHRNK
#undef FCOR

#undef SAFETY
#undef ERRCON
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#define MAXSTP 1.0e+b
#define TINY 1.0e-30

void odeint(int i[],int j[],int nvar,double eps,double hmin,
int maxsize) e

{
int nstp,a,ii,jj;

double dxsav,xsav,x, hnext,hdid,h;
double y[NODES] [VARS], dy[NODES][VARS], yscal[NODES][VARS];

dxsav=2,0+PI/maxsize;
h=dxsav; /* initialize stepsize */
x=0.0;
xs8av=0.0;
xp[0]=0.0;
/* initialize arrays that store instantaneous values and derivatives */
for (ii=0;ii<NODES;iit++)
for (jj=0;jj<VARS;jj++){
y[iil[§§1=yp[iil [jj] [kount];
dy[iil [jj1=dyp[ii] [jj] [kount];
yp[4il [jj1[11=yp[ii] [jj] [kount];
dypliil [§§1[11=dyp[iil [§j] [kount];
}

kount = 1;

for (nstp=1;nstp<=MAXSTP;unstp++) {
printf ("%17.16f", x);
for (a=1;a<=nvar;at+)
dy[ilall[jlal)=(+af [i[al]{j[al]) (ilal,jlal,x,y.dy);
for (a=1;a<=nvar;at++)
yscal[ilal][j [al}=fabs(y[il[al] [j[all) +fabe(dy[i[al][j[a]]+h)+TINY;
if (x+h > 2.0+PI) h=2,0+PI-x;
rkqc(y,dy,i,j.nvar,&x,h,eps, hmin,yscal, khdid, khnext) ;
if (x-xsav > dxsav || x >= 2.0+PI)
if (kount < maxsize-1) {
xp[++kount]=x;
for (ii=0;ii<NODES;ii++)
for (jj=0;jj<VARS;jj++){
ypliil[jj] [kount)=y[ii]l [jj];
dyp[iil [j] [kount]=dy[iil[jj]1;
}
xsav=x;

}
printf ("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b") ;
if (x >= 2.04PI) return;
if (bnext < hmin) error("odeint","step size too small");
h=hnext;
}

error("odeint","too many steps");

}

#undef MAXSTP
#undef TINY
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