
MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.5668 Fax: 617.253.1690
Email: docs@mit.edu
http://libraries. mit. edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Some pages in the original document contain color
pictures or graphics that will not scan or reproduce well.



1

Protein Engineering and Pattern Recognition

by

Georg Karl-Heinz FUllen
M.Sc. in Computer Science ("Diplom-lnformatiker"),

University of Saarbrucken, Germany
(October 1 992)

SUBMITTED TO THE DEPARTMENT OF CHEMISTRY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN CHEMISTRY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1994

©Massachusetts Institute of Technology
All rights reserved

Signature of Author -

Depart(/ent of Chemistry
. December 2, 1 93

Certified by
Douglas C/ouvan,
The,'s S6pervisor

Accepted by
Glenn A. Berchtold, Chairman,
Departmental Committee on Graduate Students

MA.SSACHUtETS NSTITUTE
or -!-ru;-nlnCy

MAR 2 1 1994
LIBRARIES

e - 11ci



2

To all the folks on the Internet.
Especially to Drew van Camp, Tony Plate and Geoffrey Hinton.

They provided great software, and I returned them bug reports :-)
Yeah, I even fixed one bug 8-)



3

Protein Engineering and Pattern Recognition

by Georg Karl-Heinz Fullen

Submitted to the Department of Chemistry on Dec. 2, 1993 in partial
fulfillment of the requirements for the Degree of Master of Science

in Chemistry

Abstract

For project no. 1, correlations between protein sequences and
phenotypes were explored using combinatorial cassette databases of
sequence information and corresponding spectral information
derived from the expression of mutagenized pigment-protein
complexes for the reaction center (RC) and light harvesting II (LHII)
antenna. Heuristically formulated decision algorithms and computer
implemented neural networks were compared to determine their
accuracy in classification of spectroscopic (i.e., phenotypic)
categories. For the databases examined, decision algorithms
employing very simple rules were able to separate spectral classes
80-84% of the time, based only on the amino acid sequence of the
mutagenized region. Such decision algorithms did not require the
formulation of any heuristic rules that involved site-to-site
interactions, but rather, performed well based on the stringency of
specific critical sites in the protein that accept only a restricted
set of amino acids. In some cases, neural networks scored almost
10% higher than these decision algorithms on the same sequence
databases. If sites critical for the decision algorithms are omitted,
the efficiency of the neural network is still much better than
random: 74% of the members of the LHII library and 87% of the RC
library are correctly sorted. This shows that there are determining
factors in the sequence of these proteins outside the highly
stringent sites used by the decision algorithms. Because a linear
perceptron scores lower than a more sophisticated three-layer
network, some of the factors important for sorting sequences may
involve nonlinear (site-to-site) interactions. However, the success
of the primitive decision algorithms and perceptrons at sorting
sequences into categories suggests that to a first approximation
linear effects predominate in the determination of a phenotype.
For project no. 2, Genetic Algorithms (GAs) and an existing protein
engineering method called Recursive Ensemble Mutagenesis (REM)



4

were compared. REM has proven highly effective both in
experimental work and computer simulations. REM tries to find a
set of "optimal" amino acids at preselected positions in a given
protein so that its functional behavior is enhanced or altered
appropriately. REM utilizes the natural distinction between genotype
(DNA) and phenotype (protein). After heuristical or experimental
identification of fit proteins coded by a random initial DNA
population, REM calculates a new set of fit DNA sequences,
exploiting properties of the genetic code. Moreover, as it is too
tedious to resynthesize every single DNA sequence having coded a fit
protein, generalized schemata (formae) are calculated that serve as
a partially wild-card input for the DNA synthesizer producing the
new generation. This procedure has an affect similar to uniform
crossover, but it also introduces completely new amino acid
residues with related fitness. Although developed independently,
REM may be seen as a GA constrained by experimental requirements.
However, these constraints give rise to a powerful new optimization
and diversification component not found in traditional GAs.

Thesis Supervisor: Douglas C. Youvan
Title: Associate Professor of Chemistry



5

Acknowledgments

You really wanna read an acknowledgment ? So there !
Step 1. Go to the library and collect a sample of at least 25
acknowledgment pages and 25 "near misses" (newspaper articles, ... ).
Failing the latter, you may also generate your "nulls" completely at
random.
Step 2. Train a standard backpropagation neural network to
distinguish "positives" (acknowledgments) from "nulls" (other junk).
Step 3. Try to find a stereotypical input which activates the
network maximally by displaying the typical features of an
acknowledgment page. Collect the text chunks associated with large
weights. In this way you have calculated an acknowledgment
template, with gaps at the lightly weighted positions of the
stereotypical input.
Step 4. Obtain a natural language processing tool from the Internet
to parse your acknowledgment page. If the program dies, go back to
step 1, or file yet another bug report.
Step 5. Try to locate as many of the following people: Douglas
Youvan, Kai Griebenow, Ellen Goldman, Simon Delagrave, Steve
Robles, Mary Yang, Celeste Winant, Bill Coleman, Matt Scholl, . With
their kind assistance, you can execute the following Recursive Text
Filling Mutagenesis (RTFM, not to be confused with "Read the
f***ing manual"). For the zeroeth generation, fill in the gaps
randomly, and let the people you located proof-read the full text.
Calculate new gap target sets from the few positives you got (if
any, that is). Repeat this scheme until you find at least one guy
obtaining a high approval rate.
Step 6. ADD THE FOLLOWING SENTENCES:
Special thanks are due to my supervisor Prof. Douglas C. Youvan, a
nice guy providing me with a fascinating mind-boggling -year
roller-coaster trip into a different culture, a different department,
a completely new world. His unfortunate leaving MIT stopped my
adventure prematurely. Dr Kai Griebenow sat beside me, another
German, funny and knowledgeable. Ellen Goldman was my
collaborator for Chapter 2, a very friendly one, that is. Simon
Delagrave also kindly helped me getting started, and saved me from
missing a not-existent deadline. I apologize for any inconvenience if
you ended up in Step 5 or if I simply forgot to mention you. Anyway,
then you cannot feel characterized inappropriately, like the others.



Step 7. Finally note that you have just generated an
acknowledgment page, but there already is one (this page, but OK,
it's not a good one). Depending on the weather, this exercise will be
either

* regarded as an incredible waste of time and money, or
* as a valuable experience, solid work preparing the way to

high benefits in the future. Maybe you will become the inventor of
the "Automatic Acknowledgment Page Generation Tool" (aka
CyberAck), to the benefit of all graduate students and mankind...
And what the heck, you will not have to write an
acknowledgment on your own !



7

Table of Contents

Chapter 1

Introduction 8

Chapter 2

Estimating Protein Function from Combinatorial
Libraries by Decision Algorithms1 and Neural
Networks 14

Chapter 3

Genetic Algorithms and Recursive Ensemble
Mutagenesis in Protein Engineering 36

Appendix

How to reproduce results reported in Chapter 1 54

1 The term "Decision Algorithm" has been coined by Arkin & Youvan
(1992)



8

Chapter 1

Introduction



9

Will there ever be an "Automatic Acknowledgment Page
Generation Tool", like the one mentioned in the acknowledgment ?
"Yes, this is quite possible," say the true believersTM in "strong"
artificial intelligence (Al). But up to now nobody has come up with a
"hopeful monster", an artificial life form performing tasks in a way
at least mimicking human originality and creativity. Is the
simulation of a human protein engineer easier ? Maybe, because it
may only require "computational intelligence". (Cl, in contrast to Al,
is a term coined to distinguish genetic algorithms (GA's), genetic
programming, artificial neural networks (ANNs) and the like, from
"symbolic" areas of Al, e.g. expert systems. In Cl, intelligence stems
from the cooperative interaction of units, in a highly parallel
manner. Some people call it "connectionism".)

Engineering proteins may be easier than generating
acknowledgments or other pieces of literature, because mimicking
the "engineer" can be replaced by simulating nature itself. The
population of the GA can search the space of possible sequences, like
nature has been doing for billions of years. Given good examples,
neural networks may guide this search, evolving into protein fitness
recognizers, getting closer and closer to nature's own decision
process about what works and what doesn't. Alternatively, genetic
programming may be used to breed an algorithm for this purpose. Or
the population of another GA may work as a classifier by some kind
of direct pattern matching with the sequences to be tested,
resembling an immune system developing antibodies "against" fit
proteins. (Developing the "immune system" itself may be the task of
a meta-GA.) Symbolic Al people will try to implement an expert
system. For some cases, statistical techniques may be sufficient, as
outlined in the next chapter.

In chapter 2, neural networks were applied to estimate
functionality of proteins from combinatorial libraries. These
libraries were designed with spacers between the mutagenized
residues. However, at least for one library, a statistically
significant degree of nonlinear behavior was successfully learned by
neural networks obtaining functionality prediction accuracies of
almost 94%, clearly outperforming the linear (perceptron) model
enabling scores at about 88%. A simple decision rule obtained 84%.
Since 94% is probably close to the theoretical maximum due to noise
in the data, neural networks have fulfilled their promise.



10

For more general protein functionality prediction problems,
and especially if confronted with larger training sets able to exhibit
significant second-order features, neural networks can be expected
to perform even better. At least theoretically, they are able to
approximate almost arbitrary mappings between sequence space and
phenotypic estimations.

As shown in the end of Chapter 3, these mappings can also be
divided into an information decompressing and an information
compressing part. Decompression of an amino acid sequence means
calculating physical properties, first on a local basis. Full
decompression then means calculating the phenotype in its three-
dimensional shape and physical manifestation. (Sure, you need to
solve the protein folding problem, take care of the cell environment,
and more to do this.) Finally, compression of the phenotype means
the calculation of the (degree of) functionality.

At the heart of Youvan, Arkin, and Yang's "Recursive Ensemble
Mutagenesis" (REM, as described in Ch. 3) we will find an
exploitation of the fact that a part of the decompression of amino
acid symbols is homomorphic to the calculation of DNA synthesizer
input (so-called "dopes") faithfully expressing them. That is to say
that estimating molar volume and hydropathy of a "target set" of
amino acids has a rough equivalent in the calculation of the optimal
nucleotide mix at the second DNA triplet position. For example,
moderate-size hydrophobic amino acids have a T (Thymine) at the
second position of their codon, whereas all strongly hydrophilic
residues are encoded by a mix of Adenine (A) and Guanine (G) at
position 2. If we try to express Methionine (M), Phenylalanine (F),
and Valine (V) optimally, we dope with "(A,G,T), T, (G,C)", yielding
M, F, V and Leucine (L), Isoleucine (I). Indeed, L and I have hydropathy
values similar to the other three. This type of doping has been
employed experimentally by Goldman & Youvan for the LH library
analyzed in Ch. 2. There, 6 residues were mutagenized
simultaneously. The residues had to be selected using expert
knowledge, since mutagenizing much more residues in parallel, the
observed number of positives becomes zero.

A nucleotide mix calculated from an amino acid target set does
not only enable the expression of similar amino acids in parallel, but
target sets can be enriched by the unavoidable introduction of amino
acids with similar molar volume and/or hydropathy. This similarity
makes expression of proteins with related functionality more likely,
because disruptive new amino acids are avoided. The scheme



11

target sets ->
synthesizer dope ->
enriched target sets ->
expression of proteins

is a powerful component of protein engineering by REM, especially if
we start with a sequence of phylogenetic target sets, and reiterate.
However, the trick has only been applied with respect to hydropathy
and molar volume (although it is theoretically possible that the
genetic code has a more sophisticated inner structure), and only on a
position per position basis, without looking at amino acid
interactions. Using the natural genetic code and producing only one
DNA synthesizer input one simply cannot take much care of
interrelationships.

Getting rid of these restrictions implies moving to a more
redundant information encoding than DNA. Note that such a new
coding can be simulated by sets of DNA, and likewise, more complex
DNA synthesizer input can be simulated by sets of "dopes". DNA
itself is a redundant encoding, 64 different nucleotide triplets
encode 20 different amino acids and "stop". We just observed that
this makes it easier to have some information (bias) about molar
volume and hydropathy in the second nucleotide of a codon. Sets of
DNA strands, however, can contain a much more sophisticated bias.
Calculating a single DNA synthesizer input representing these
strands as close as possible would put us back, the sophisticated
bias would be lost. But we can calculate sets of dopes. To retain
experimental feasibility, we have to keep the number of dopes very
small, less than 10 using easily available technology.

In this setting, a more complex "generalized genetic code"
maps sets of amino acid sequences into sets of dopes. It can
introduce information (bias) with respect to more physical
properties, and it can even be faithful to their interactions. For this
matter, the generalized genetic code must be sensitive to the
context. Therefore, it has to be a mapping from sets of amino acid
sequences to sets of DNA synthesizer dopes. However, the number
of dopes needed may grow too quickly to be feasible. For instance,
we already need two dopes to encode the observation "fit proteins
have residue A hydrophilic and residue B large, or residue A
hydrophobic and residue B small". How can we provide for complex
interactions in a bunch of physical properties, using only a few
dopes ?



12

Option 1. Let nature reveal the interactions to you, by looking
at the feedback it provides in the form of sequenced fit mutants.
Starting with a random or phylogenetic "zeroeth generation", one can
go through more and more cycles of expression, sequencing, and
formulation of one single new dope, which then becomes more and
more faithful to at least the most dominating linear interaction.
This is the second key idea of REM.

Option 2. Proceed as in option 1, but formulate more than one
dope. For that matter, use a Kohonen network, another self-
organizing neural network, or a standard clustering algorithm to
obtain prototypes from the amino acid sequences. For each of the
cluster prototypes, find a dope expressing them as faithfully as
possible. Note that for each dope, we are constructing one library.

Option 3. Start with several phylogenetic zeroeth generations,
observe throughput (the number of positive mutants), but do not
sequence. Instead, the fit DNA synthesizer inputs yielding high
throughput can be recombined by crossover. Hopefully, these
"superdopes" encode for fitter proteins than their "parents", because
fit building blocks have been recombined. Delagrave and Youvan's
"Exponential Ensemble Mutagenesis" (EEM) uses a similar trick; but
in this case, large parts of the sequence are kept constant, while a
small part is mutagenized. This is because keeping parts of the gene
constant may be the only guarantee for observing any fit mutants at
all in the zeroeth generation. Later, results are put together.

Option 4. Let neural networks discover the interactions. You
will need some sequenced positives, but after training the network,
you can calculate a few stereotypical inputs which activate it
maximally by displaying the typical features of a positive mutant.
(See also the acknowledgment page...) If the sample is
representative, these stereotypes shall contain fit building blocks.
Then you do a sensitivity analysis of the stereotypical inputs you
found. If an input variable has a high influence on the neural
network's prediction about functionality, you have found a
presumably important site. Note that for perceptrons, the
sensitivity analysis boils down to an inspection of the weight
values. The gaps (small sensitivity and/or weight) indicate the sites
which are very flexible. Finally, you have to find dopes which
express the stereotypical inputs as faithfully as possible, using a
random [NN(G,C)] dope at the gap positions.

All methods discussed in this work have one general principle
in common: The replacement of an opaque mapping (nature's decision
process regarding the functionality of proteins or the fitness of DNA
synthesizer dopes) by a computer-implemented one. This



13

replacement is the essence of pattern recognition, as Pao (1989)
points out in his book "Adaptive Pattern Recognition and Neural
Networks". For protein engineering, this replacement is especially
tough, because the natural process of protein functionality
determination cannot be formalized in an easy way. However,
adaptive computational intelligence systems may be able to come
close to nature, avoiding the need for a complete and efficient
formalization by approximating it.



14

Chapter 2

Estimating Protein Function from Combinatorial
Libraries

by Decision Algorithms1 and Neural Networks

Collaborator: Ellen R. Goldman, PhD

1 The term "Decision Algorithm" has been coined by Arkin & Youvan
(1 992)



15

A modified version of the following text has been submitted to the
Proceedings of the National Academy of Sciences USA.

Abstract.
Correlations between protein sequences and phenotypes were explored

using combinatorial cassette databases of sequence information and the
corresponding spectral information derived from the expression of mutagenized
pigment-protein complexes for the reaction center (RC) and light harvesting II
(LHII) antenna. Heuristically formulated decision algorithms and computer
implemented neural networks were compared to determine their accuracy in
classification of spectroscopic (i.e., phenotypic) categories. For the databases
examined, decision algorithms employing very simple rules were able to separate
spectral classes 80-84% of the time, based only on the amino acid sequence of
the mutagenized region. Such decision algorithms did not require the formulation
of any heuristic rules that involved site-to-site interactions, but rather, performed
well based on the stringency of specific critical sites in the protein that accept
only a restricted set of amino acids. In some cases, neural networks scored
almost 10% higher than these decision algorithms on the same sequence
databases. If sites critical for the decision algorithms are omitted, the efficiency
of the neural network is still much better than random: 74% of the members of
the LHII library and 87% of the RC library are correctly sorted. This shows that
there are determining factors in the sequence of these proteins outside the highly
stringent sites used by the decision algorithms. Because a linear perceptron
scores lower than a more sophisticated three-layer network, some of the factors
important for sorting sequences may involve nonlinear (site-to-site) interactions.
However, the success of the primitive decision algorithms and perceptrons at
sorting sequences into categories suggests that to a first approximation linear
effects predominate in the determination of a phenotype.



16

Parallel construction of large populations of molecules by random
mutagenesis or chemical synthesis has become an important approach for
biopolymer engineering. The advances in combinatorial biological and chemical
techniques make it necessary to develop methods for analyzing large databases
of sequence-function correlations. This is particularly crucial when reiterative
methods are planned to improve the library.

Combinatorial cassette mutagenesis (CCM) provides molecular biologists
with a powerful method of exploring mutations in a protein (Oliphant et al., 1986;
Reidhaar-Olson et al., 1991). Entire segments of a gene can be replaced with
cassettes of synthetic DNA in which multiple codons have been changed
randomly or semi-randomly. Selection or screening criteria are established by
the experimenter to classify the CCM mutants as "positives" or "nulls". Positive
mutants may be pseudo wild type (phenotypically indistinguishable from wild
type) or may express novel phenotypes, while nulls have no functional protein
assembly as judged from the selection or screening criterion. Currently, a major
challenge lies in interpreting the massive amount of sequence information from a
CCM experiment; correlations between the amino acid sequence of a mutant
versus its phenotype may not be obvious.

The efficiency of simple decision algorithms (DAs) constructed by the
experimenter (as previously described, Arkin & Youvan, 1992; Youvan et al.,
1992) and artificial neural networks (ANNs) was compared in the analysis of
amino acid sequence data from CCM experiments. The DAs we considered are
in the form of simple decision rules based on amino acid positions critical in
phenotypic determination. ANNs allow one to model nonlinear, almost arbitrary
interactions between the input variables which unlike the DA considers that the
determination of protein phenotype is influenced by many possible types of
interactions between the amino acids in the chain.

We examined sequence data from a phylogenetically based CCM
experiment of the light harvesting II (LHII) antenna (Goldman & Youvan, 1992)
and random CCM of the bacterial reaction center (RC) (Robles & Youvan, 1993)
from Rhodobacter capsulatus. LHII is a peripheral light harvesting protein which
binds both a dimer and monomer of bacteriochlorophyll (Bchl) (Zuber, 1986).
These pigments can be specifically detected by their near infrared absorption
spectra (dimer absorbing at 855 nm; monomer at 800 nm) and provide a
colorimetric indicator of protein expression and assembly. Digital imaging
spectroscopy (Yang & Youvan, 1988; Arkin et al., 1990; Arkin & Youvan, 1993;



17

Youvan et al., 1993) was used to screen the LHII CCM library. Two classes of
mutants were observed in addition to nulls: pseudo wild type (spectrally similar to
wild type), and pseudo light harvesting I (LHI) (spectrally resembling the LHI core
antennae). Sixty two of the positives comprising both of these classes were
sequenced. The RC is the pigment-protein responsible for charge separation,
and without a functional RC, the bacteria cannot grow photosynthetically.
Combinatorial RC mutants were selected for photosynthetic growth, and
sequences for 25 functional mutants were analyzed.

Materials and Methods

Digital imaging spectroscopy. Digital imaging spectroscopy (DIS) was
performed using a ColonyImager (Kairos Inc., Mountain View, CA) which
facilitates the parallel screening of the ground state visible and NIR spectra from
hundreds of colonies directly on a petri dish. Briefly, this new methodology
employs a charged coupled device as a detector to image petri plates mounted
on the exit port of an integrating sphere. The light source uses an 1/8 meter
monochromator to illuminate the dish at different wavelengths and the integrating
sphere produces uniform illumination. Spectra are obtained at 5-10 nm
resolution; 2 nm band shifts can be detected. For quick analysis of the data, all
the spectra from a single petri dish can be presented as a two dimensional color
contour map display. Each colony is represented by a horizontal row; absorption
is color coded at each wavelength along the row according to a color bar. The
spectra can be sorted according to similarity, maximal absorption at various
wavelengths, or wavelength of maximum absorption. Different display modes
allow the spectra to be scaled relative to the lowest and highest absorption
anywhere in the image, or to have each spectra scaled between its own
maximum and minimum absorption (as shown in the two panels of Figure 1).

LHII sequence and spectral database. Additional positive mutants were
spectrally characterized and sequenced from the previously constructed library
described in Goldman & Youvan, 1992. Seven amino acid residues in the P3
subunit were simultaneously mutagenized using combinatorial cassettes based
on phylogenetic target sets. The mutagenized positions were chosen to be on
one face of a transmembrane alpha helix, that comprise the binding site for one
of the Bchls of the dimer. DIS showed that 6% of the library bound Bchl in two



18

spectroscopic classes: 1) pLH2 mutants have wild type like absorption
characteristics with an 855 nm dimer peak and 800 nm monomer peak, 2) pLH1
mutants have the dimer band red shifted to 865 nm and the monomer band
reduced or absent. Mutants which showed only absorption characteristic of free
pigments in the membrane (760 nm absorption) were classified as nulls. The
complete sequence data are shown in Table 1. Each mutant was classified
according to its spectral characteristics; Figure 1 shows a color contour map
representing the spectra of all the positive mutants that were sequenced. The
phenotypes of a few of the mutants appeared to be growth dependent, therefore
there is the potential for a 10% experimental misclassification based on the
colony's age at the time of imaging. Only unique amino acid sequences were
considered for the classification experiments.

Reaction center mutants. We used the sequence information from the nine-site
library described by Robles and Youvan, 1993. Nine amino acids in the vicinity
of the monomeric Bchl in the active branch of the RC were randomized
simultaneously using CCM. These positions were both in the L and M subunits
of the RC, and according to the X-ray structure of the Rhodopseudomonas
viridis RC (Deisenhofer et al., 1985), all are in van der Waals contact with the
active branch monomer Bchl. Functional mutants were selected by
photosynthetic growth: one in 50,000 colonies plated was found to grow and was
therefore considered "positive".

Formulating and evaluating decision algorithms. The simple DAs used in this
analysis evaluate each sequence and classify the protein as a positive, or reject it
as a null, based on stringent sequence positions. More complex DAs might
include sets for protein folding, energy minimization, and overall change in
hydropathy and/or molar volume relative to wild type, etc.

For both the LHII and RC sequences it was possible to formulate simple
rules for determining positives based on visual inspection of the sequence
databases. In the case of LHII, one can generalize that if there is not a Thr in the
+7 position, the sequence leads to a null. Additionally, a rule can be formulated
to separate the two Bchl binding phenotypes: if the sequence is classified as
positive, amino acids with molar volumes larger than Thr (116.1 A3) in the -7
position yield a pLH1 phenotype, while amino acids of smaller or equal molar
volume yield the pLH2 type spectra. In the case of the RC database, the best



19

criterion for classifying a mutant as positive requires residue L154 to be Leu;
otherwise, the mutant is classified as null.

The percent of incorrect phenotypic classification can be evaluated for
these simple DAs. The average number of null sequences (see next paragraph)
which the DA wrongly labels as positives can be calculated based on the
frequency of critical amino acids in the nucleotide mixture used to construct the
cassette. The number of nulls considered is set equal to the number of unique
positive mutants. The experimentally determined positives that the DA would
mistake for nulls are determined by counting from the compiled sequences.

Randomly generated nulls for ANN evaluations. Since only a few nulls were
sequenced, we generated sequences randomly obeying the construction scheme
of the library in question. The throughput of the library (6% and 0.0002% for the
LHII and RC libraries, respectively) gives us an estimate on how many of these
"pseudo-nulls" are false negatives. Adding the few true nulls did not change
significantly the outcome of our ANN simulations (data not shown). We always
averaged at least 16 experiments, each with different random sequences.

Neural network construction and training. We employed standard
backpropagation neural networks (Rumelhart et al., 1986; Hertz et al., 1991)
consisting of an input layer, a varying number of hidden units, and a binary output
layer. In most experiments, the input layer consisted of 12 units for the LHII
mutants (2 features for all 6 sequence positions, excluding the His), and 18 units
for the RC mutants (9 sites, each with 2 features). We considered two classes of
features: (1) molar volume and hydropathy, and (2) artificial letter encoding. For
the latter, each one-letter amino acid abbreviation was viewed as a binary
number, split into high and low significant bits, and both values were scaled to lie
in the interval (0,1). Both physical property values were normalized to lie in the
same interval. Regardless of the class of feature selected, the total number of
input neurons is not changed, therefore the results of experiments are directly
comparable whether using physically meaningful variables or other
representations.

The class labels ("0" for nulls, and "1" for positives) were used as target
values. To train the network, we used the backpropagation of errors method,
employing a sophisticated conjugate gradient descent with line search,
implemented as "Rudi Mathon's conjugate gradient with Ray Watrous' line



20

search" by the backpropagation module of Geoffrey Hinton's Xerion Neural
Network Simulator. All incoming activations were weighted, summed, and
transferred to the units of the next layer using the standard logistic or linear
(perceptron) functions. Additionally, we tried the exponential function as a
transfer function. Target values and calculated output activations of the network
were considered to agree if they deviated by less than 10%. The square of any
excess difference was added to the overall error to be minimized.

Evaluation of neural network performance. We were not interested in
constructing any specific ANN, but rather in investigating the general usefulness
of ANNs for phenotypic estimation of combinatorial libraries. In this case cross-
validation is a valid technique for accessing the suitability of various neural
network architectures. We did 16 partitions of the data into randomly ordered
training and testing sets. For each division of data we trained the network 8
times using different random starting weights and recorded the testing set
classification of the best training set classifier (see Fig. 2). Often, this classifier
has memorized the training set and does not generalize well. However, it would
not be fair to record the best testing set classification accuracy. Reporting the
average testing set accuracy would have been possible; however, it is common
practice to put a neural network in operation which has been trained on all data
points, thereby achieving minimum error.

RESULTS

LH versus nulls. In the separation of LH positives from nulls, the DA required
positive mutants to have a Thr in the +7 position. Four of the sequenced
positives would be wrongly classified according to this rule. Furthermore, 19
nulls would be missclassified as positives (this was calculated based on 57 null
sequences, so that there is an equal number of unique positive and null amino
acid sequences; the original doping scheme coded for 33% Thr). This leads to
an overall rate of 91 correct classifications per 114 mutants (i.e., 80%).

As shown in Fig. 3A, a neural network with one hidden neuron and an
exponential transfer function scored better than the DA, at about 86%. Using an
exponential transfer function works as a guard against overfitting since the target
values are "0" and "1". In this case, large weights memorizing particular aspects
of the training set are discouraged because their influence on the activations



21

would be amplified exponentially and the small target values could no longer be
met. Indeed, weight values observed in this case were typically smaller than 6.
The corresponding "standard" ANN using the logistic transfer function developed
weight values in the order of 100, and performed significantly inferior at about
82%. If the number of training cases is small, memorization becomes an
important factor, explaining the very bad performance for small training set sizes.
The same effect has been observed for networks with more hidden neurons.
Using the artificial letter encoding of the amino acids, accuracy is 84% regardless
of the transfer function (data not shown). This result indicates that using
physically realistic features can aid the learning process, but it can also lead to
unwanted memorization.

Fig. 3B gives a more detailed picture of network accuracy for large training
set sizes. We observe slightly suboptimal performance at 85% for perceptron-like
networks with no hidden neuron and a linear transfer function. This indicates (but
does not prove) the presence of nonlinear interrelationships between the amino
acids. Furthermore, introducing a cost term associated with each weight
enhances performance of the "standard" ANN, but using an exponential transfer
function or omitting the hidden neuron seems to be the superior guard against
memorization. Altering the cost term may improve performance above the 84%
peak we obtained by adding 1% of the sum-of-the-squares of all weights to the
network's error, but it is a tedious process. Inferior performance was observed
using weight costs other than 1%: 0.01, 0.1, 0.5, 2, 3, 4, and 5%.

Fig. 3C shows the network accuracy if it is not presented the determining
+7 position. The 74% accuracy shows that the determination of phenotype is
influenced by the remaining positions. Using a direct letter encoding of the 20
amino acids (as discussed above), we observe an accuracy of approximately
73%. Presenting only molar volume or only hydropathy values of the determining
+7 position, we observe 79 vs. 85% accuracy, respectively. In these cases, the
network's ability to distinguish between Thr and residues with similar physical
properties is diminished. Using hydropathy rather than molar volume, Thr is more
easily distinguished from other amino acids doped at this position (i.e., Lys, Asp,
Arg, Ser).

Three way separation of LH data. Further separation of the positives into pLH1
and pLH2 was based on the rule that if the mutant is positive and has a large
(molar volume) amino acid at the -7 position it will be pLH1, otherwise it will be



22

pLH2. Using this simple DA 77% of the nulls, pLH1, and pLH2 mutants are
correctly categorized. We observed a very slight advantage for neural networks
(80% correct classification), which was again obtained by the network
architecture less vulnerable to memorization. The network with an exponential
transfer function and no hidden neuron performs significantly better than the
network with one hidden neuron (77% correct classification). Using a logistic
transfer function, results dropped below 77%.

RC versus nulls. Using a simple DA operating on a data set of combinatorial
mutants, separation of functional versus non functional RC mutants was based
on the rule that a Leu is required at position L154 for the protein to be positive.
This DA yields 6 errors in the 25 functional mutants, and an additional 2 errors
out of 25 nulls which are missclassified as positives because of the frequency of
Leu in an NN(G/C) dope. This simple DA approach results in 42 out of 50 correct
classifications (i.e., 84% accuracy). The low number of positives counted could
cause some concern with respect to the square root of N law (i.e., counting
errrors for a small sample size), but in our case, the comparisons we have made
with ANNs are limited to this specific database. While another sampling of
mutants from the LH or RC library will probably lead to values other than 80 and
84%, these values are exact for the database studied herein.

Unlike the LH data, memorization is not an important effect for the RC
classification. Panel 4A shows that the network with a logistic transfer function
performs better than the one with an exponential function; we obtain up to 91%
versus 84% accuracy. There must be significant nonlinear interrelationships
between the input features (molar volume and hydropathy of the amino acids),
since the perceptron network can only obtain accuracies of up to 88%. No
significant change in performance was observed if the number of restarts with
new random weights is increased from 8 to 128, or decreased from 8 to 2 (data
not shown). This indicates that there are no significant problems with local
minima. If the number of training cases is very small (between 14 and 18),
chances are high that a linear decision surface exists. Then the perceptron
network converges and performs surprisingly well. It is a property of the RC
library that with high probability even a few positives contain enough information
for a high classification accuracy. Furthermore, the information contributed by
separate sites is likely to be redundant in the determination of a phenotype.



23

ANN accuracy stays slightly above 90% for networks with up to 40 hidden
neurons, but it drops to 70-78% using the artificial letter encoding (data not
shown). Learning is again diminished by using physically meaningless features.
Hinton diagrams of perceptron ANNs reveal that the network is unable to
concentrate weights on residue L154, which would enable it to score as good as
the simple DA.

Panel 4B shows that after adding a cost term (i.e., 10% of the sum-of-the-
squares of all weights) to the error we observe a better prediction of up to 92%.
Moreover, networks with 40 hidden neurons obtain almost 94% accuracy if a
weight cost of 20% is selected. We could not obtain better results trying a wide
variety of combinations between the weight cost term and the number of hidden
units.

If the most determining residue (L154) is not known to the network,
performance drops slightly to 87%, indicating the presence of strong determining
factors in the remaining residues (see Fig. 4C). Dropping other sites, we observe
accuracies between 88 and 91%. In particular, leaving out residue L146 does not
impair accuracy. At this site we observe a range of amino acids widely scattered
in molar volume and hydropathy space, contributing no valuable information to
the decision process.

DISCUSSION

There are many types of combinatorial biological and chemical
experiments which should be amenable to analysis of sequence-phenotype data
by simple DAs and ANNs. Phage display technology can be used to generate
libraries of up to 109 different proteins (Smith, 1985; Hoogenbaum et al., 1991),
that can be screened by affinity for an arbitrary compound. Libraries of synthetic
random peptides (Lam etal., 1991; Houghten etal., 1991) have similarly been
constructed and screened by binding to acceptors. As combinatorial chemistry
becomes more feasible, the databases will become even more complex with a
larger repertoire of building blocks which will include thousands of organic
chemicals.

We chose to use pigment binding proteins in our experiments because
DIS can be used to rapidly assay phenotypes directly from petri dishes.
Genomic RC and LHII deletion backgrounds (Youvan et al., 1985) and plasmids



24

that facilitate CCM have been developed for both the LHII (Goldman & Youvan,
1992) and RC (Robles & Youvan, 1993) systems.

The selection of our machine learning method was preceded by a review
of comparisons between various symbolic and connectionist paradigms. On the
theoretical side, Pao (1989) points out that the essence of pattern recognition is
the replacement of an "opaque" mapping from examples to attributes by a similar
but "transparent" computer-encoded mapping. In our case, we try to map amino
acid sequences to estimates of functionality. Neural networks can learn an
exceptionally rich class of mappings (Cybenko, 1989; Hornik, 1989). Exploration
of different architectures minimizes our assumptions on the underlying opaque
mapping even further.

On the practical side, many publications (for reviews, see Presnell &
Cohen, 1993; Hirst & Sternberg, 1992) report encouraging results using ANNs in
protein research. Furthermore, an advantage for ANNs was observed in two
cases (Shavlik et al, 1991): 1) small amounts of training data, and 2) numerical
training data. Our experimental data meet both criteria.

Factors affecting decision algorithms. It is possible that DAs could change
based on the context of the mutagenesis. A sequence position that is decisive
when non continuous amino acid residues are mutagenized might be more
flexible when a contiguous stretch is mutagenized. Preliminary results show that
the molar volume of the -7 position might not be responsible for pLH1 versus
pLH2 phenotype when six amino acids (-10, -9, -8, -7, -6, -5) are randomized
simultaneously (S. Delagrave personal communication). However, preliminary
sequences in a library where 17 amino acids (-10 through +6) were mutagenized
with phylogenetic target sets (Goldman, unpublished results) showed that the
phenotypes of the mutants followed the -7 rule.

For both the LH and RC experiments there is some misclassification
inherent to the experiment. Up to 10% of the mutants may vary in phenotype
depending on their growth time and conditions. The 94% categorization
efficiency achieved by the ANN may be close to the highest level that can be
expected taking into consideration the inaccuracy of the experimental data. For
each library some of the experimentally determined positives will be wrongly
classified by the DA. Due to the small sample size, the number of missclassified
positives could be slightly different if a second set of positives were isolated.



25

Decision algorithms and phylogeny. The LH deduced DAs do not recapitulate
the phylogenetic data, but rather appear to be specific for Rb. capsulatus LHII.
The rules fail when applied to the sequences of homologous light harvesting
antennae compiled by Zuber, 1990. The +7 sequence position (the determining
DA factor between nulls and LH in the library) is a conserved Arg in the P
subunits of core antennae (LH I). Among the peripheral antennae (LHII), there is
a division among Thr:Asn:Ser of 7:4:4, with a single sequence having a Lys at
the +7 position. In the experimental LHII positives the molar volume of the -7
position determines the type of spectral phenotype. However, many of the LHII
type antennae from different species (69%) have amino acids with larger molar
volume (Val, Leu, Phe) in their -7 position. Although most of the LHI type
antennae also have amino acids with large molar volume in their -7 position,
there are a few exceptions.

Success of primitive decision algorithms. Originally, simple DAs formulated
for computer simulations of recursive ensemble mutagenesis (REM) (Arkin &
Youvan, 1992; Youvan et al. 1992) were postulated to be too simplistic for actual
experimental data. However, LHII antennae and RCs were found to have critical
amino acid positions that are basic phenotypic determiners (positive vs. nulls).
The success of these simple rules suggests that, as a first approximation, the
correlation of sequence and phenotype can be examined on a site-by-site basis.
This suggests that CCM can be based on evaluation per site, and justifies the
use of phylogenetic target sets in formulating cassettes as well as the
construction of target sets per position from positives using random mutagenesis
as a basis for REM (Delagrave et al. 1993). One should be able to randomize
arbitrary regions of these proteins and then combine the sequence information to
formulate target sets for larger cassettes (exponential ensemble mutagenesis
(EEM) (Delagrave & Youvan, 1993)).

Acknowledgments. Dr. Mary Yang developed the system used in the digital
imaging spectroscopy shown in Figure 1. Neural network construction and testing
scripts were based on the Xerion Neural Network Simulator developed at the
University of Toronto by Drew van Camp, Tony Plate and Geoffrey Hinton. This
work was funded by NIH GM42645, DOE 9102-025, DOE DE-FG02ER20019,
and by the Human Frontiers Science Program.



26

References

Arkin, A. P., Youvan, D. C. (1992). Proc. Natl. Acad. Sci. U.S.A. 89:7811-7815.

Arkin, A. P., Youvan, D. C. (1993). In Deisenhofer H. & Norris JR. (eds) The
Photosynthetic Reaction Center, Vol. 1 (pp. 133-155) Academic Press, New
York.

Arkin, A., Goldman, E., Robles, S., Coleman, W., Goddard, C., Yang, M.,
Youvan, D. C. (1990). Bio/Technology8:746-749.

Cybenko, G. (1989). Math. Contr. Signals, Syst. 2, 303-14.

Deisenhofer, J., Epp, O., Miki, K., Huber, R., & Michel, H. (1985). Nature
318:618-624.

Delagrave, S., Youvan, D. C. (1993) Bio/Technology. In press.

Delagrave, S., Goldman, E. R., Youvan, D. C. (1993). Protein Eng. 6:327-331.

Goldman, E. R., Youvan, D. C. (1992). Bio/Technology10:1557-1561.

Hertz, J., Krogh, A., Palmer, R. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley: Reading, Massachusetts.

Hirst, J.D., Sternberg M.J.E. (1992) Biochemistry 31, 7211-8.

Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P.,
& Winter, G. (1991). Nucl. Acid. Res. 19:4133-4137.

Hornik, K., Stinchcombe, M., White, H. (1989). Neural Networks 2, 359-66.

Houghten, R. A., Pinilla, C., Blondelle, S. E., Appel, J. R., Dooley, C.T. & Cuervo,
J. H. (1991). Nature 354:84-86.



27

Lam, K. S., Salmon, S. E. Hrsh, E. M., Hruby, V. J., Kazmierski, W. M. & Knapp,
R. J. (1991). Nature 354:82-84.

Oliphant, A. R., Nussbaum, A. L., Struhl, K. (1986). Gene 44:177-183.

Pao, Y.-H. (1989) Adaptive Pattern Recognition and Neural Networks, (Addison-
Wesley, Reading, Massachusetts), p.8.

Presnell, S.R., Cohen, F.E. (1993) Annu. Rev. Biophys. Biomol. Struct. 22, 283-
98.

Reidhaar-Olson, J. F., Bowie, J. U., Breyer, R. M., Hu, J. C., Knight, K. L., Lim,
W. A., Mossing, M. C., Parsell, D. A., Shoemaker, K. R., Sauer, R. T. (1991).
Meth. Enzym. 208:564-587.

Robles, S. J., Youvan, D. C. (1993). J. Mol. Biol. 232:242-252.

Rost, B., Sander, C. (1993) PNAS 90, 7558-62.

Rumelhart, D.E., Hinton G.E., Williams R.J. (1986). Nature 323, 533-6.

Shavlik, J.W., Mooney R.J., Towell G.G. (1991) Machine Learning 6, 111-43.

Smith, G. P. 1985 Science 228:1315-1317.

Yang M. M., Youvan, D. C. (1988). Bio/Technology 8:746-749.

Youvan, D. C., Ismail, S., & Bylina, E. J. (1985).

Youvan, D. C., Arkin, A. P., Yang M. M. (1992).

Gene 38:19-30.

In: R. Maenner, B. Manderick,
(ed) Parallel problem solving from Nature, 2 (pp 401-410) Elsevier publishing Co.
Amsterdam.

Youvan, D. C., Goldman, E., Delagrave, S., & Yang, M. M. (1993).
in press.

Meth. Enzym.



28

Zuber, H. (1986). TIBS 11:414-419.

Zuber, H. (1990). In: Drews G & Dawes EA (Eds.) Molecular biology of
membrane-bound complexes in phototropic bacteria. (pp 161-180) Plenum
press, New York.



29

Figure Legends

Table 1 Amino acid sequences of the LHII mutants experimentally classified
as positives. The sequence positions are relative to the Bchl-binding His (0).
The 'P' mutants show a pLH2 phenotype, while the 'S' mutants are classified as
pLH1. The row number indicates the position of the spectra in Figure 1.
Although there are some duplications at the amino acid level, each mutant had a
unique nucleotide sequence. Rows 27, 28 and 39 are all WT.

Fig. 1 Color contour maps generated by the DIS ColonyImager
showing the spectra of each sequenced positive. The horizontal axis
corresponds to wavelength (710-950 nm) and the vertical axis to colony row
number. Each row represents the spectrum of a mutant, encoded by
pseudocolor. The color bar shows the range of optical density (OD) from low
(black) to high (white). The left panel is in 'absolute mode' (highest OD in the
image mapped to white, lowest OD in the image mapped to black); this shows
the range of expression levels. The right panel is in 'full deflection mode' (highest
OD for each spectrum mapped to white and the lowest OD mapped to black); this
representation enables a more direct comparison of the spectral peaks. The row
number can be used to find the corresponding amino acid sequence in Table 1.
Raw spectral data were sorted according to maximum absorption in the absolute
mode, then by wavelength of maximum absorbance in the full deflection mode.

Fig. 2 Exploration and testing of neural networks. We recommend such an
extensive evaluation to minimize assumptions on the model, and to maximize
confidence in the network's accuracy. In the inner box, entitled: "Test specific
neural network", every indentation represents a loop over all possible values or
sets as specified one block above, similar to indentation in a C program. The
outer box gives an idea of what different neural network architectures shall be
explored. The search is by no means complete; one may also change the error
measure, the training algorithm, etc.

Fig. 3 Neural network performance for the LH class separation between
positives and nulls, as a function of training set size. Panel A shows accuracies
of networks with one hidden neuron, and both logistic (filled circles) and



30

exponential (filled squares) transfer functions. Panel B is a cutout of panel A,
adding accuracies of a perceptron network with no hidden neuron and a linear
transfer function (filled triangle), and documenting the effect of adding a
percentage of the sum-of-the-squares of all weights to the overall network error.
These percentages are 0.1% (large circle), 1% (small circle), and 3% (medium-
sized circle); these results were obtained using networks with one hidden neuron
and a logistic transfer function. Panel C shows the accuracy of networks with
one hidden neuron and an exponential transfer function that were confronted with
data missing information about the most determining residue used by simple DAs
(position +7). Information on this residue is either completely neglected (large
box), or molar volume alone (medium-sized box) or hydropathy alone (small box)
is considered at this sequence position. All runs involved 16 segregations of the
data into training and testing set, each of which includes 16 different sets of
randomly generated nulls. All error bars indicate the standard error of the mean
for a 95% confidence level. The bold bar indicates the 80% accuracy obtained by
the simple DA discussed in the text.

Fig. 4 Neural network performance for the RC class separation between
functional and null, as a function of training set size. Panel A shows networks
with one hidden neuron, and logistic (filled circles) or exponential (filled squares)
transfer function. The filled triangle is used for a perceptron network (no hidden
neurons, linear transfer). Panel B is a cutout of panel A, including accuracies of
networks (1 hidden neuron, logistic transfer) which add a percentage of the sum-
of-the-squares of all weights to their error. This weight cost is 10% (large circle)
and 20% (small circle). Additionally, networks with a logistic transfer function and
many hidden neurons have been tested, e.g., weight costs of 20% and 20 hidden
neurons (small cross) and 40 hidden neurons (large cross) were used. Panel C
shows the accuracy of networks with one hidden neuron confronted with data
missing about the most determining residue for simple DAs (L154). Performance
is plotted for a logistic (filled circle) and a linear transfer (filled triangle). Omitting
site L146 instead leads to results plotted by unfilled markers, i.e. circles for a
logistic and triangles for a linear transfer, respectively. Some error bars have
been omitted for clarity. All runs involved 16 segregations of the data into training
and testing set, each for 16 different sets of randomly generated nulls. All error
bars indicate the standard error of the mean for a 95% confidence level. The bold
bar indicates the 84% accuracy obtained by the simple DA discussed in the text.



sequence row
-7-4-3 0 3 4 7

WT G A L H S A T 27

S1 L G L H A F T 52
S2 L G L H A A T 62
S3 I V T H A A T 64
S4 V G V H A G T 65
S5 L A A H A G T 61
S6 M A L H A A T 47
S7 L A V H S A T 59
S8 V A V H S W T 53
S9 A A L H S T N 63
S10 L A V H S A T 56
S11 L V L H S A T 48
S12 V A L H S G T 54
S13 V G A H S A T 58
S14 VA L H A W T 51
S15 I A T H A T T 49
S16 M A L H S CT45
S17 L A A H A G T 55
S18 V A A H A Y T 44
S19 L V I H A G T 57
S20 IV T H S AT42
S21 V G I H S A T 60
S22 L A V H A M T 46
S23 M G V H A M T 43

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
Pll
P12
P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P33
P34
P35
P36
P37
P38
P39
P40

sequence row
-7-4-3 0 3 4 7
S G I H A G T 33
C G I H A G T 40
A G V H S A T 36
T A I H S M T 34
A A A H A W T 12
GA LHA GT 3
GA TH S F T 9
G G I H S Y T 35
A V L H S A T 23
G A V H A K T 13
G G A H A V T 15
G G A H V A T 24
G A V H A F S 18
G A L H S I T 32
GG I H S Y T 38
A A V H S G T 30
GG L H A V T 10
A A A H A W T 14
C G L H A A T 50
T A A H S A T 41
GVIHAGT 8
G G L H A V T 22
T A V H A Y T 31
GAAHS IT 2
G A A H S A T 26
A A I H A A T 17
T A T H A V T 37
G G I H A V T 16
AA I HVAS 6
TATHVAT 5
G A A H A K T 21
FA VHVAT 7
S G THAMT 1
A G A H S A T 25
G A A H S F S 19
GG A H A W T 11
W G V H A F T 29
G V L H S G T 20
AVIHAMT 4

Table 1

31



32

ec

I I I I I I I I
cn Colony number 

= _

(0

VI

o

L

Fig. 1

= C



33

Fig.2

Specify neural network architecture
Specify transfer function, etc.
Specify number of hidden neurons

Test specific neural network
Use various training set sizes
Randomly segregate data
Train neural net several times
Find testing set classification
of best training set classifier

Report test results
Report optimal neural net architecture



0)
C1

O

01

o
06

Phenotypic Estimation
O O O O
01 O cn O o ioD
0n % L1 bo u to En

Phenotypic Estimation
0 0 0 0 0 0

0 b bo b bo b bo
MO .D A N) to . 01 0)

Phenotypic Estimation

0 
in n

0
9bO° a°

aw (A

o
0
",,I 01

O
o

co E

O
b)

o

34

-I
"I

O2.(a

C)
CD

C)
N
C)

0
C)

0

c0)

0O

*.04 
_ -

I. I

, . I . . . . I . . . . I . . . .

.4

M4M

. . . . ..

D" "

...
. . . . . . . . .

-*1i

.
So

C/)
CD

N
CD

% 'O

I
I *

,

0

Iq'

I * 

I
4'

O
',
\I

O
Ds

Ur

-I

3

CD

N
(I)

Fig. 3

. . . . . . . . . . . . . . · . . I · . . .. . . . . . . . . . . . . . ..w E 

A - - -

. . . . . . . . . . . . . . . . . . . . . . .I . . ..I . .&

-

v~

(D I T|.... I T.. T . .. _ . .T . .

! ._$3 I....,



Phenotypic Estimation
0p o

I. t .o io
I

0

-A

5'

C)

0

0

)
N 8

.O

_.&0 

n KI
C)

tFig. 4

Phenotypic Estimation
o o .o o o

~mm8D 8 e em

.~ . . . . . . ..... .

Phenotypic Estimation
o o

01 ~ ~ o- C
* 4 < I ,7 .o*<_*

4 ,4 ,, . -,4 . -o4 40-o
,4-4-.. -o--
I-0-4-~,o

35

o
CA

.... .... I .... I ...

04.40 " -

IW_cc

C_ _c

, .... "! .... . . .

.O"

_ :

.1 O."~~~~~

iI 0. 90-

. .... ..... ....

. . . . . . . I . . . . . . . I I . . . . .§ T' * ' ~~~~~~~~~~~~~~1, ... ' 'T.

I ... 0

.4 e.

4
4~~~~1'4'4

'4

-~~~~~~~~~ - - - - -f f - - - - - - - -

-

n)C

.A

I.
•

.Li -

. .. . . . . . . . . . . . .



36

Chapter 3

Genetic Algorithms and Recursive Ensemble
Mutagenesis in Protein Engineering



37

A hypertext version of the following text shall be submitted to "Complexity
International".

Abstract.
We compare Genetic Algorithms (GAs) and an existing protein

engineering method called Recursive Ensemble Mutagenesis (REM).
This method has proven highly effective both in experimental work
and computer simulations. REM tries to find a set of "optimal" amino
acids at preselected positions in a given protein so that its
functional behavior is enhanced or altered appropriately. REM
utilizes the natural distinction between genotype (DNA) and
phenotype (protein). After heuristical or experimental
identification of fit proteins coded by a random initial DNA
population, REM calculates a new set of fit DNA sequences,
exploiting properties of the genetic code. Moreover, as it is too
tedious to resynthesize every single DNA sequence having coded a fit
protein, generalized schemata (formae) are calculated that serve as
a partially wild-card input for the DNA synthesizer producing the
new generation. This procedure has an affect similar to uniform
crossover, but it also introduces completely new amino acid
residues with related fitness. Although developed independently,
REM may be seen as a GA constrained by experimental requirements.
However, these constraints give rise to a powerful new optimization
and diversification component not found in traditional GAs.



38

1. Introduction.

One of the most exciting areas in molecular biology is the
design of artificial proteins with applications in medicine (Houghton
et al., 1991), industrial catalysis (Radledge & Lewis, 1 991), and
nearly all fields of the life sciences. Originally, computer
simulations of REM (Arkin & Youvan, 1 992, Youvan et al., 1 992) were
meant for the design and prediction of laboratory experiments on
proteins of the photosynthetic apparatus (Delagrave et al., 1 993;
Goldman & Youvan, 1992). Here, we have a fast way to detect
functional proteins. It is relatively easy (although not trivial) to
examine the spectra of photosynthetic bacteria by Digital Imaging
Spectroscopy (Yang & Youvan, 1988; Arkin & Youvan, 1993; Youvan et
a!., 1993). In this way, we can detect whether the artificially
mutagenized photosynthetic proteins can bind a bacteriochlorophyll
or not. Such new but still functional proteins are studied
intensively in photosynthesis research.

In the next section, we will describe the experimental protocol
of REM. The computer simulation of these laboratory experiments is
difficult because it requires at least a solution to the protein
folding problem to evaluate a new protein's fitness exactly. Since
protein folding is presumably NP-hard (Unger & Moult, 1993),
heuristic decision algorithms were formulated instead. Using them,
REM was simulated as described in section 3. A comparison between
REM and GAs is given in section 4. REM's utilization of the genetic
code in the optimizing calculation of new genotypes (DNA sequences)
from the fit phenotypes is a feature which generalizes GAs to a
concept called "generalized REM" (GREM) algorithms. A first
discussion of this generally applicable idea is given in section 5.

2. The experimental protocol of REM.

In our laboratory, the following procedure is performed to
engineer functional proteins performing tasks related to an original
protein. Given the original sequenced wildtype, the experimenter



39

chooses positions in its amino acid sequence which should be
relevant for the protein's performance. These amino acids can be
changed by a method called "combinatorial cassette mutagenesis"
(Oliphant et al., 1986; Reidhaar-Olson et al., 1991). Briefly, this
method consists of using a DNA synthesizer to produce a gene
fragment which then replaces those parts of the original gene that
specify the selected amino acids. Synthesizing random DNA leads to
an approximately random change at the selected amino acid
positions. More exactly, the genetic code's mapping of DNA
nucleotide triplets to amino acids determines the amount of each
amino acid encoded by random DNA. For example, since Alanine is
encoded by 4 of the 64 nucleotide triplets (GCG, GCA, GCC and GCT),
a DNA synthesizer producing sequences containing the nucleotides A,
C, G, and T with 25% probability at each of the 3 positions gives us
about 6% (1/1 6) Alanine.

Leaving out A and T at every third position, one still encodes
every possible amino acid, but they are distributed more evenly. We
will denote the first kind of DNA synthesizer input by "NNN", the
second one by "NN(G,C)". Here, "N" is a wild-card symbol for
equiprobable A, C, G, T and (G,C) is the wild-card symbol for 50% G
and 50% C. We have adopted the term "doping scheme" to designate a
synthesizer input. Note the similarity of this concept to "schemata"
in GA theory. In fact, the "doping schemes" specify "formae", that
are generalized schemata (Radcliffe 1991). For example, some
commercially available DNA synthesizers are able to produce DNA
according to the following doping schemes:



40

Nucleotide Mixture Symbol

25% A, 25% G, 25% C, 25% T N
33% A, 33% G, 33% C (A,G,C)
33% A, 33% G, 33% T (A,G,T)
33% A, 33% C, 33% T (A,C,T)
33% G, 33% C, 33% T (G,C,T)
50% A, 50% G (A,G)
50% A, 50% C (A,C)
50% A, 50% T (A,T)
50% G, 50% C (G,C)
50% G, 50% T (G,T)
50% C, 50% T (C,T)
100% A A
100% G G
100% C C
100% T T

Fig.2. DNA Synthesizer Doping Schemes

The REM protocol (Fig. 3) starts with synthesizing random
[NN(G,C)] DNA, transforming bacteria to produce the new proteins
having approximately random amino acids at the chosen positions
and then searching for functional proteins, for example by Digital
Imaging Spectroscopy (see section 1). The DNA sequences leading to
the functional proteins are determined. To avoid duplicates, REM
discards those DNA sequences that encode a protein already found to
be functional.



Synthesize random DNA
replacing preselected nucleotide triplets

/....._
--o Express the new proteins in bacteria

Search for functional proteins

Determine DNA sequence

Discard DNA sequences leading to duplicates

Calculate new DNA doping schemes
by SSD or PG calculations

Synthesize new DNA

I

Figure 3. The experimental protocol of REM (adapted from Delagrave et al.,
1993).

Now, the GA researcher expects that the DNA sequences
encoding functional proteins are recombined by cross-over and used
to form the new generation. However, in the laboratory this is at
least a very tedious if not impossible task. Therefore, we calculate
a few or only one new DNA doping scheme as an input for the DNA
synthesizer, producing the new generation of DNA sequences in
parallel. The new doping scheme is calculated as follows. For each
of the chosen amino acid positions a "target set" is formulated as
the multiset of all amino acids observed at this position. Which of
the admissible DNA doping schemes can generate the target set as

41



42

closely as possible? Our DNA synthesizer accepts the nucleotide
mixtures of Fig. 2 as input. Three of them form a nucleotide triplet
which in turn determines a multiset of amino acids, the generated
set. The generated set should be "close" to the target set. We are
using two notions of "closeness":

(1) The target set is "liberally" closest to the generated set if and
only if the sum of squares of the differences

SSD= (PA(i) -_pAi)) 2

is minimal. Here, i is an index running from 1 to 20, representing the
i th amino acid, PT (i) is its frequency in the target set T, and PA (i)
is the probability of i if doping scheme A is used.

(2) The target set is "conservatively" closest to the generated set,
if and only if the group probability

c= iPA(i)
i

is maximal. Here, i takes only the index values of the amino acids in
the target set. In this case, all amino acids in the target set must be
present in the generated set since PG is zero otherwise. In the first
case, however, amino acids may be discarded. In both cases, new
amino acids may be introduced which are unavoidably encoded by the
doping scheme designed to encode the target set. These newly
introduced amino acids can play an important role, see the next
sections.

Having calculated optimal DNA doping schemes encoding the
target sets (one per position) as closely as possible, REM uses them
as an input for the DNA synthesizer and generates the new
population in parallel, starting the next cycle. Using REM, an up to
107-fold increase in the observed frequency of functional proteins,
compared to random mutagenesis, has been found experimentally



43

(Goldman & Youvan, 1992, Delagrave & Youvan, 1993). In the latter
case, 16 amino acid positions were mutagenized.

3. Computational simulations of REM.

Since some results have been reported elsewhere, we will only
give a brief summary. As mentioned in the introduction, the
difficulty of the protein folding problem makes an exact simulation
of the experiments impossible. However, computer simulations
using different heuristic decision algorithms as fitness functions
can reveal important aspects of REM (choice of parameters, expected
results, etc.). Figure 4, adapted from Youvan et al. (1992), shows the
efficiency of REM in generating protein populations of a desired
functionality. The decision algorithm used evaluates the probability
that the mutagenized protein contains a binding site for chlorophyll
(see section 1). The population size is set to 10,000, the maximal
cardinality of functional proteins used to determine the DNA doping
scheme for the next iteration is 50. The plots are average results of
REM starting with 10 different initial populations. Plot B shows
results using PG, whereas plot C shows results using SSD. These
may be compared with plot A, where a randomly generated
population is used for each iteration. Note that in this application of
REM our goal is not a single optimum but a diverse population of
functional proteins.



3500

2800

2100

1400

700

0

0 1 2 3 4 5 6 7 8 9

Iterations

Figure 4. Computer Simulations of REM. (From Youvan et al. (1992),
adapted)

4. Comparisons between GAs and REM.

Experimental constraints are the main reason for the
differences between current REM and canonical GAs (Goldberg 1 989).
These are:

1. In the currently implemented version, the fitness function
evaluates to either 1 (retain) or 0 (discard), just as the protein
engineer distinguishes between functional and non-functional
proteins. This constraint, however, can be relaxed immediately for
those applications of REM which allow a continous measurement of
fitness. The probability of the amino acids in the target set used by
the SSD or PG calculation will then be multiplied with the fitness
value. Both calculations will return a doping scheme more
frequently expressing the amino acids belonging to the fit proteins.

44



45

Note, however, that for PG the effect of the weighted probabilities
is multiplicative rather than additive.

2. The recombination procedure of REM is similar to uniform
crossover (Syswerda 1991) if one views the DNA synthesizer doping
schemes (see section 3) as representations of the populations of
DNA they are describing. Every doping scheme containing wildcard
symbols can be identified with the set of all DNA strands it
represents. Then, ignoring the effects of the SSD or PG calculations,
the fit nucleotide triplets of the old generation of DNA are faithfully
represented by the doping scheme, from which the new generation of
DNA is sampled randomly. Indeed, REM can be formulated this way,
see Arkin & Youvan (1992). In GA terminology, we are calculating
"formae", generalized schemata (Radcliffe 1991) in an intermediate
step, and we use the formae to construct the new generation.
Traditional n-point-crossover between DNA strands cannot be
employed experimentally, because it would be quite impractical to
implement.

3. A distinction between genotype and phenotype appears
occasionally in the GA literature (e.g. Gerrits & Hogeweg 1990,
Polani & Uthmann 1992). REM, however, utilizes the natural
distinction between DNA and encoded proteins. The genotype-
phenotype mapping is given by the genetic code, as discussed in
section 2. The genetic code is degenerate, mapping 64 possible
nucleotide triplets to 20 possible amino acids (and "stop"). This
degeneracy, or redundancy, makes it easy to encode information
about the physical properties of amino acids in the second of the
three nucleotides, as shown in Figure 5 [adapted from Yang et al.
1990]. This structural property of the genetic code is exploited by
the SSD or PG dependent calculation of the next DNA doping scheme
from the target set. As mentioned in section 2, some amino acids
not included in the target set are "accidentally" encoded by the
calculated doping scheme. But there is an enhanced probability that
these newly introduced amino acids are similar to the ones in the
target set, at least as far as hydropathy and molar volume are



46

concerned. For example, if we try to express Methionine (M),
Phenylalanine (F), and Valine (V) optimally, the amino acid set which
is "liberally closest" (i.e., has a minimal SSD value) with respect to
this target set is encoded by the dope "(A,G,T), T, (G,C)", yielding M,
F, V and Leucine (L), Isoleucine (I). Indeed, L and I have hydropathy
values similar to the other three. Since hydropathy and molar volume
seem to be the most important parameters for protein folding and
function (Robles & Youvan, 1993), the mutagenized protein has a
higher probability of being functional; any large change of these
values would lead to a high risk of obtaining a non-functional
protein. This, together with the general feedback mechanism
provided by selection explains the advantages of REM reported in the
end of both sections 2 and 3.



200

g 150

.J

0

100

60

-5 -4 -3 -2 -I 0 1 2 3 4 5
HYDROPATHY

Fig. 5. Hydropathy versus molar volume of amino acids (single-letter code),
grouped with respect to the nucleotide at the second codon position. The
shadowed region contains the group with Guanine at the second position
(termed "NGN"). Here, most of the amino acids have extreme values or
special properties (W, R, G, S, C). Serine belongs to 2 groups (NGN and
NCN). (Adapted from Yang et al. 1990.)

5. Generalized REM algorithms.

47

_., i r . . . . . . . . . . . -..

w
..~~

I

I I p I . I I

=A _ _e-OW

I



48

In this section, the observations made at the end of the last
section are used to motivate an algorithm optimizing not only by
selection and recombination or mutation, but also by changing
populations while mapping between different representations of
increasing redundancy. The action of a GA can be seen as a flipflop
process between a representational space and a property space,
where recombination and/or mutation occurs in the former and
fitness evaluation takes place in the latter. (Therefore, there are
two changes of the population in standard GAs: The selection of the
fittest, and the recombination. In this section we will investigate
the third population change arising from REM.)

At least for engineering problems, the property space can be
huge: it may be spanned by all sorts of dependent variables
("features") that can be calculated from the proposed solutions. In
the protein engineering case, the proposed amino acid sequence is
the starting point for calculating physical properties, for instance,
tabulating average hydropathy and molar volume values of each
amino acid position. Later, one tries to calculate physical
properties for the whole protein and a main goal is the
determination of the three-dimensional structure of the protein.
These problems are largely unresolved, and in many cases, the
cellular environment has to be taken into account, making feature
calculation even more complex. In REM, exact feedback about a
protein's fitness is given by the experiment.

We have just introduced the concept of a more and more
detailed property space, and the fitness evaluation can be seen as an
exploration of this space. Furthermore, this exploration is a
decompression of the original information (the amino acid
sequence), because one needs more bits (units of information) to
encode the three-dimensional structure than one needs to encode the
amino acid sequence. We will now see that this decompression can
be mirrored in the representation space.

Looking at the degree of information compression, one can
imagine a more and more detailed (redundant) coding on the left-
hand side, and a more and more detailed (evaluated) property space



49

on the right-hand side, with a compact encoding of the phenotype in
the center:

rakes place typical flipflop process of a canonical GA;
there is no redundant coding

Fig. 6. Action of a GA in an abstract setting. The representation spaces are
on the left, and the physical property spaces are on the right.

On the left, every vertical line represents one possible
representation space. The longer the line, the more redundant is the
representation. On the right, every vertical line corresponds to one



50

property space, the length of the line indicating its complexity (i.e.,
number of variables, degree of resolution).

For
genotype
1`r-N

I \%

I \

I\

I

I

I

I

the protein engineering case, we utilize a redundant
(DNA):

\1

I
I
I
I
I
I

\%
N1

NSI
N

genetic I evaluation,
code properties

genetic
code and survival o

SSD/PG

DNA level
Here,
recombination
takes place

I fittest

)f physical

'the

(

amino acid sequences
(proteins)

property space
occupied by fit
proteins

Fig. 6. Action of REM in the abstract setting of Fig. 5

As we observed in section 3 and 4, the genetic code is not a
random mapping from the primary phenotype to the genotype; instead
the correlation of special physical properties (hydropathy, molar
volume) and the second nucleotide position of the triplet helps in the
optimization process. By including neighboring DNA nucleotide

VP-

I~

.0 100

j i
K1



51

triplets, one can with high probability include amino acids
neighboring in the physical property space. (This is the main side-
effect of the SSD or PG calculations.) In other words, a weak quasi-
homomorphism (similar to Holland et al. 1986, Riolo 1991) between
maps in the representational and the property space is exploited.
Clusters in the representational space tend to correspond to
clusters in the physical property space.

The last ingredient of our algorithm is the recombination
taking place on the redundant encoding level. In the protein
engineering case, this is the DNA level, and uniform crossover is
simulated by the calculation of a doping scheme (forma) used for the
generation of new DNA.

In general, generalized REM algorithms optimize in two
directions: moving to the right, fitness is evaluated and used for
selection; moving to the left, the mapping between representations
of different redundancy is implicitly changing the population. On the
left, reproduction can take place, hopefully recombining building
blocks that contribute to high fitness on the right, and yielding new
building blocks that represent structures of even higher fitness in
the property space.

If our goal is the construction of a diverse population of fit
individuals, generalized REM algorithms are especially suited
because the calculated formae are the start of a new diverse
generation of fit phenotypes.

Acknowledgments.

This work was funded by NIH GM42645, DOE 9102-025, DOE DE-
FG02ER20019, and by the Human Frontiers Science Program.



52

References.

Arkin, A. P., E. Goldman, S. J. Robles, W. J. Coleman, C. A. Goddard, M.
M. Yang and D. C. Youvan. 1990. Bio/Technology 8: 746-749.

Arkin, A. P., Youvan, D. C. (1992). Proc. Natl. Acad. Sci. U.S.A.
89:7811-7815.

Arkin, A. P., Youvan, D. C. (1993). In Deisenhofer H. & Norris JR. (eds)
The Photosynthetic Reaction Center, Vol. (pp. 133-155) Academic
Press, New York.

Delagrave, S., Goldman, E. R., Youvan, D. C. (1 993). Protein Eng.
6:327-331.

Delagrave, S., Youvan, D. C. (1993) Bio/Technology. In press.

Gerrits, M.,
Nature 7,
Berlin.

Hoogeweg, P. (1990). In: Parallel Problem Solving from
H.P. Schwefel, R. Manner, (Ed.) (pp. 70-74) Springer,

Goldman, E. R., Youvan, D. C. (1992). Bio/Technology 10:1 557-1 561.

Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.A. (1986).
Induction. Processes of Inference, Learning, and Discovery. MIT
Press, Cambridge MA.

Houghten, R. A., C. Pinilla, S. E. Blondelle, J. R. Appel, C. T. Dooley and
J. H. Cuervo. (1991). Nature 354: 84-86.

Oliphant, A. R., Nussbaum, A. L., Struhl, K. (1986). Gene 44:177-183.

Polani, D., Uthmann, T.
Nature 2, R. Manner,
publishing Co. Amsterdam.

(1992). In: Parallel
Manderick B (Ed.)

Problem Solving from
(pp. 421-29) Elsevier



53

Radcliffe, N.J. (1991). Complex Systems 5: 183-205.

Ratledge, C. and D. Lewis. (1991). J. Chem. Tech. Biotech. 28: 109-
110.

Reidhaar-Olson, J. F., Bowie, J. U., Breyer, R. M., Hu, J. C., Knight, K. L.,
Lim, W. A., Mossing, M. C., Parsell, D. A., Shoemaker, K. R., Sauer, R. T.
(1 991). Meth. Enzym. 208:564-587.

Riolo, R. (1991). In: Proc. third International Conference on Genetic
Algorithms. J.D. Schaffer, (Ed.). (pp. 322-27) Morgan Kaufmann, San
Mateo.

Robles, S., Youvan, D.C. (1993). J. Mol. Biol. 232: 242-252.

Syswerda, G. (1991). In: Proc. third International Conference on
Genetic Algorithms, J.D. Schaffer, (Ed.). (pp. 2-9) Morgan Kaufmann,
San Mateo.

Unger, R., Moult, J.. (1993). J. Mol. Biol. 231: 75-81.

Yang M. M., Youvan, D. C. (1988). Bio/Technology 8:746-749.

Yang, M. M., W. J. Coleman and D. C. Youvan. 1990. In Reaction
Centers of Photosynthetic Bacteria. M.-E. Michel-Beyerle. (Ed.)
(Springer-Verlag, Germany) 209-218.

Youvan, D. C., Arkin, A. P., Yang M. M. (1992). In: Parallel problem
solving from Nature, 2 R. Maenner, Manderick B (Ed.) (pp 401-410)
Elsevier publishing Co. Amsterdam.

Youvan, D. C., Goldman, E., Delagrave, S., & Yang, M. M. (1993). Meth.
Enzym. in press.



54

Appendix

How to reproduce results from Ch. 2



55

Welcome to Xerion, and the add-on's for protein functionality
estimation with Neural Networks.

This is the README for the directory "$XERIONDIR'. $XERIONDIR is the value

of a shell variable, currently /usr/people/georg/xerion, as defined in
/usr/people/georg/.cshrc.

Relevant files are in the directories $XERIONDIR/nets/bp,
$XERIONDIR/bp.sim, espec. $XERIONDIR/bp.sim/Paper,
and in $XERIONDIR/doc/Problems.

See the README file and the documentation in $XERIONDIR/doc for more
info on Xerion.

In the following, reproduction of results reported in Chapter 2 is

discussed, and the programs and files are described.

Example: How to reproduce the data from Fig. 4C :

0. Disable the graphics, by typing unsetenv DISPLAY';
otherwise, a memory handling bug in Xerion will cause higher and
higher memory consumption.

1. Start bp, in $XERIONDIR/bp.sim, or one of its direct subdirectories.

You see:

>bp
Unable to open display, graphics disabled.

Xerion, V3.1.147, Wed Apr 14 12:19:53 EDT 1993 IRIX System V Release 4.0.1

Copyright (C) 1990, 1991, 1992, 1993 University of Toronto, Toronto, Canada.

All rights reserved.
Written by: Drew van Camp, Tony Plate.

Reading file "/usr/people/georg/xerion/config/xerionrc".
Reading file "/usr/people/georg/xerion/config/bprc".

bp->

2. Type explNoHiddenAExp, to generate the accuracy data for the

network with exponential transfer, missing site L154 (that's site no. 3 if

counting the mutagenized sites starting with 0, therefore the input indices
are 6 and 7; there are 2 inputs per site).
The following dialog will take place:

bp-> explNoHiddenAExp
Parameters:

No. of Inputs ? (12)16

Feature ? (M)
Min. No. of Hidden Neurons ? (0)1

Max. No. of Hidden Neurons ? [1 + 1 if only one net shall be explored] (4)2



56

No. of Outputs ? (2)
Specials ? (untold/none)Expil616
Index of first disconnected Input ? (0)6
Index of second disconnected Input ? (0)7
How many rounds [16]? (16)
maximal testing set size [112/40]? (24) 40
minimal testing set size [32/8]? (8)
number of divisions [16]? (16)
number of retries ? [8](8)
Only 2 Outputs reasonable for 18-Nets
Created Net 16Mlo2d6d7
Now make changes e.g. type set currentNet.weightCost = 0.1
Then type in name of continuing script (explNoHiddenBExp)

3. Type in explNoHiddenBExp, and the network testing begins:

bp-> explNoHiddenBExp
Nets with 1 to 2 hidden neurons will be confronted 16 times with new (random)
data
Dealing with Nets having 1 Hidden Neurons
Round no. 0
Appending random Pseudo-Nulls to 16Mlo2d6d7's natural
Training Set of Positives, 18PosData2, saving the whole set
in auto16Mlo2d6d7.ex, which is loaded as a Training Set.
The Testing Set is deleted. The random seed is 10.
Appending/ Writing results to
/usr/people/georg/xerion/bp.sim:ferrl6Mlo2d6d7Expil616
Current Testing Set Size is : 8
Will divide Data Set 16 times
Doing 8 Retries, writing to
/usr/people/georg/xerion/bp.sim:ferrl6Mlo2d6d7Expil616
errorVec = ( 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )

4. If the script has finished, type quit

5. Calculate accuracies for the perceptron network in the same way, replacing
explNoHiddenAExp with explNoHiddenALin, 1 Hidden Neuron with 0, and
explNoHiddenBExp with explNoHiddenBLin.

6. Calculate accuracies for nets missing site L146 in the same way, the indices
for this residue are 0 and 1, since L146 is the zeroeth mutagenized residue.

7. The files ferr16Mlo2d6d7Expil616, ferr16Mlo2d6d7Linil616,
ferrl6Mlo2d0dlExpil616, and ferrl6Mlo2d0dlLinil616 should have been produced
by step 0-6. Now produce the corresponding .dt files by extracting
the relevant data using $XERIONDIR/PdataExtr. Type the following:

>$XERIONDIR/bp.sim/PdataExtr "ls ferrl6Mlo2d6d7Expi1616 ferrl6Mlo2d6d7Lini16l6
ferrl6Mlo2d0dlExpi1616 ferrl6Mlo2d0dlLinil16l6 50

(For the data of Fig. 3, the last number must be 114 instead of 50,
since there are 114 LC mutants but 50 RC mutants.)

8. Concatenate the .dt - files:



57

>cat ferrl6Mlo2d6d7Expil616.dt ferrl6Mlo2d6d7Linil616.dt
ferrl6Mlo2dOdlExpil616.dt ferrl6Mlo2dOdlLinil616.dt > data.dt

9. In termworks on the MAC, login to the UNIX workstation, and type

> more data.dt

10. copy the text into the clipboard

11. paste the clipboard into MS WORD

12. save the MS WORD file as "Text only", not as "Normal"

13. import the MS WORD "Text only" file using KaleidaGraph's "File -- Open"
menu, skipping one line, reading titles, and using delimiter "space, >3"
(this should all be default)

14. use copy&paste to transfer the data from ferrl6Mlo2d6d7Linil616,
ferrl6Mlo2dOdlExpil616 and ferrl6Mlo2dOdlLinil616 [which appear in appended
rows] into appended columns, using rows corresponding to that of
the ferrl6Mlo2d6d7Expil616 data

15. Draw the plot according to the Kaleidagraph manual.

How to check results quantitatively via a script:

0. Disable the graphics, by typing "unsetenv DISPLAY";
otherwise, a memory handling bug in Xerion will cause higher and
higher memory consumption.

1. Start bp, in $XERIONDIR/bp.sim, or one of its direct subdirectories.
In sub-subdirectories, you need to type $XERIONDIR/bp.sim/bp.
If you need example importance (unequal weighting of LH1 vs. LH2 in the
3-class-seperation), follow the same procedure in $XERIONDIR/bp.simImp
(you may have to uncompress the executable).

Note: There should also be an alias for 0) and 1): type bpnG".

2. Call the appropiate expl... script
depending on whether you need a special transfer function,
or inclusion of true nulls.

The script will ask for the relevant parameters.
Use the variable "Specials" to denote intensity ("i1616"), changes that
you do in step 2', the choice of transfer function ("Exp"), etc.

2'.If necessary, set a weight cost by typing "set currentNet.weightCost = X.Y"

3. Everything else is automatic after typing in the name of the continuing
script. If the script has finished, type "quit".



58

4. Use "PdataExtr" from $XERIONDIR/bp.sim to produce an extract
of the data file produced by the bigTest" script.
See PdataExtr_README for details.

How to check results qualitatively via the Graphical User Interface:

1. Start bp, in $XERIONDIR/bp.sim, or one of it's direct subdirectories.
In sub-subdirectories, you need to type $XERIONDIR/bp.sim/bp.
If you need example importance (unequal weighting of LH1 vs. LH2 in the
3-class-seperation), follow the same process in $XERIONDIR/bp.simImp
(you may have to uncompress the executable).

2. Create a net, by calling createNet inside the bp module.
The script will ask for the relevant parameters.
Via the Group types window, you can change the transfer function, etc,
so that you do not need createNetExp, createNetLin.

2'.If necessary, set a weight cost by typing "set currentNet.weightCost = X.Y".

3. Generate an example set by typing "newRndDat". Use "newRndNulls"
instead, if you want to include true nulls (LH data only).

4. Permute examples and move examples to the testing set by
typing "moveTe". The script will as~ you for the relevant parameters.

5. Use the "Learning methods" window to randomize the weights
(via the menu "Network"), to reset the search, and to minimize error
[i.e. train] (by pressing the "Do It!" button).

6. Use "classTest -t TESTING -stat" to calculate accuracy on the testing set;
use "classTest -stat" to calculate accuracy on the training set.

7. Use "moveTe" for any new segregation of the data, and "newRndDat"
to generate new random data.

How to export data from the SGI into a figure:

1) If you would like to plot the data from several data files
in one plot, concatenate the .dt-files

2) copy them on the MAC into the clipboard via termworks
3) paste them into MS WORD
4) save the MS WORD file as "Text only", not as "Normal"
5) import the MS WORD "Text only" file using KaleidaGraph's "File -- Open"

menu, skipping one line, reading titles, and using delimiter "space, >3"
(this should all be default)



59

6) use copy&paste (the correspondence in file $XERIONDIR/bp.sim/Paper/
ProblemsWithKaleidaGraph shows that
there is no other way) to put data from the bottom to
the right; append columns and change column names as appropiate.

This is the README for the directory $XERIONDIR/bp.sim/Paper

Abbreviations used for the filenames in this directory tree

ferr.. indicates an output file from the "bigtestM script
ferr..dt tabular data file extracted from the output file; contains

Testing set size, mean, standard error of the mean,
[ other values of minor interest , and no. of reruns.

12 12 inputs ( i.e. LH data )
10 10 inputs ( i.e. LH data, ONE SITE LEFT OUT )
18 18 inputs ( i.e. RC data )
16 16 inputs ( i.e. RC data, ONE SITE LEFT OUT )

M feature mask for molar volume and hydropathy
L feature mask for artificial letter encoding

o2 two output neurons (2-class-categorization)
o3 3 output neurons (3-class-categorization)

dXdY disconnect (omit) input units X and Y, e.g.
dlOdll ... 10 and 11, this is the +7 site for the LH data
d10d10 ... 10 only

d6d7 ... 6 and 7, this is L154 for the RC data

iXY X segregations of data, Y inclusions of new random data
i1616 the standard intensity of the testing process

newL using the better artificial letter encoding of nndNewL.c

Exp using exponential transfer; default is logistic transfer

Lin/Perc using linear transfer; default is logistic transfer

none using logistic transfer (this abbrev. is omitted later on)

K/Killed output file from the bigtestw script has been killed before completion
(e.g. because full evaluation would have taken weeks)

KXY killed after XY rounds (inclusions of new data)

wtX.Y using a weightCost of X.Y; default is 0



60

rdX.Y using a zeroErrorRadius of X.Y; default is 0.1

retrX using X retries (restarts of backprop w/ new random weights;
default is 8)

Nulls using true nulls

Imp using example set importance (implicit in 3-class seperation data)

CONTENTS OF DIRECTORY TREE, $XERIONDIR/bp.sim/Paper

XYdata # contains the extracted data in tabular form, for the
# respective Figure XY, and also the data not shown".

FigXY/ # contains the (compressed) outputs
# of the bigTest" script, and the extracted data in
# tabular form, for figure XY.

FigXY/ # contains also some of the data not shown".

FigXY/dns/ # contains most of the "data not shown", sometimes sorted into
# subdirectories

FigXY/junk/ # contains junk data which may nevertheless reveal patterns
# not yet noticed

Fig5/ # contains the 3-class seperationtdata for the LH mutants

ProblemsWithKaleidaGraph/
# look here how to import data from the SGI into a figure
# and to learn about KaleidaGraph's deficiencies

UnpolishedButWorkingDataExtractors/
# if you have problems with PdataExtr in $XERIONDIR/bp.sim,
# you may use this unpolished one, who did most of the
# heavy-duty data extraction work

junkOld8_4data/ # data with 4 new inclusions of random data ("rounds"),
# and 8 segregations only

withTrueNulls/ # same as before, but including true nulls

----------------------------------------___________

This is the README for directory $XERIONDIR/nets/bp
CONTETS OF DIRECTORY, $XERIONDIR/net----------------------------------------bp

CONTENTS OF DIRECTORY, XERIONDIR/nets/bp

# Testing Script



bigTest

conftable*

conftableReadme

# Xerion script for the test process outlined in the
# inner box of PNAS draft Fig. 2;
# the script will ask for the relevant parameters.
# alternative way of calculating accuracies (not used);
# instead, the relativeError command is used by bigTest

# Network creating Scripts

createNet

createNetExp

createNetLin

# Xerion script creating one net; the script will ask
# for the relevant parameters; logistic transfer is used
# same as before; create one net w/ exponential transfer
# same as before; create one net w/ linear transfer

# Network exploration scripts, mainly implementing a loop over different numbers
# of hidden neurons, AND THE LOOP OVER. DIFFERENT SETS OF RANDOM DATA

explNoHiddenA # Start exploration: ask for loop,etc parameters

# and create Net (w/ logistic transfer)

explNoHiddenAExp # same, create net w/ exponential transfer

explNoHiddenALin # same, create net w/ linear transfer

explNoHiddenB # Continue exploration: loop over various no's of hidden

# neurons, and test with different sets of random data

explNoHiddenBExp # same, create net (if any) w/ exponential transfer

explNoHiddenBLin # same, create net (if any) w/ linear transfer

explNoHiddenBNulls # same, logistic transfer, use newRndNulls for nulls

explNoHiddenBNullsExp # same, exponential transfer, use newRndNulls

# Create new segration of data, to be used especially manually

moveTe # Move all examples to training set, permute, and move
# specified no. of examples back to testing set

# Generate data sets with new random nulls

newRndDat

newRndNulls

# Generating data sets w/ feature vectors and labels
# of positives and random nulls; no parameters.
# same, but using true nulls as well.

# Generating feature vectors

nnd* # Use this program on purpose only; nndNewL.c fixes a

nnd.c # bug' producing feature vectors containing zeroes

nndNewL* # From a set of sequences (in the format defined at the

nndNewL.c # start of nndNewL.c), generate appropiate feature vectors

# (Raw) data sets and generation of random nulls

12PosData2

12PosData3

12rng*
12rng.c

# amino-acid sequ. of the LH POSITIVES w/ labels;

# '2' indicates 2-class seperation, '3' indic. 3-class sep.

# called by the newRnd... scripts

# used to generate random' nulls w/ Ellen's doping scheme

61



18PosData2

18rng*
18rng.c

# amino-acid sequ. of the RC POSITIVES w/ labels;

# called by the newRnd... scripts
# used to generate random nulls w/ NN(G,C) dope

12NullDataL2

12NullDataL3

12NullDataM2

12NullDataM3

# example sets appended by newRndNulls;
# contents are appropiate feature vectors for the TRUE NULLS
# '2' indicates 2-class seperation, '3' indic. 3-class sep.

# Other

tSzDvRz # Also known as bigTest", see above

OHiddenLayer.layout

lHiddenLayer.layout
2HiddenLayer.layout

# used by createNet, see Xerion Manual p.13

./Backup/RawData: # sequence data in raw form

./ 120RawData 18RawData
.. / 12RawData

./Backup/RndExGenAndFeatureGen: # backup for the utilities

./ ../ 12rng.c 18rng.c nnd.c nndNewL.c

./Devel:

./
# better, but untested scripts

OOREADME buildNet datRndNulls

bigTest datRndNew explNet

./SlightlyOlderUnpolishedButWorking:
# if you observe problems with some of the scripts,
# use the older scripts from this directory
# instead by copying them to

# $XERIONDIR/nets/bp; these scripts were used for the main
# part of the heavy-duty data generation. The "expl..."

# scripts are named tExHi... in this directory

./TestProtocols:

prot16 d12d13n

prot16Llo2dl2dl3n

# protocols on debugging the scripts, etc.
protPnets
protPnets.in
protRz

62


