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ABSTRACT

The performance of modern synchrotron light sources and circular colliders relies

on sustaining very short bunches of high-peak currents. The bunch lengthening in-

stability, i.e.. the sudden increase of both the bunch length and the energy spread

at a threshold current, can be a serious limitation. For short (electron) bunches. the

bunch lengthening instability has traditionally been explained by the coupling of two

adjacent synchrotron modes. However, mode coupling has not been observed exper-

imentally when the bunch current reaches the threshold. In this thesis, we propose

a new instability mechanism for bunch lengthening which occurs with an uncoupled

synchrotron mode. We found that a critical role is played by the nonlinearity of

the static wake force: Without it, the system is described by the Sacherer equation,

and does not have an unstable eigenmode. The nonlinearity of the static wake force

distorts the electron bunch's equilibrium density from its Gaussian shape. By includ-

ing this phenomenon we derived an improved Sacherer equation which has unstable

eigenmodes when the bunch current exceeds a threshold value. While the Sacherer

equation is linear in the bunch current, the new terms in our equation are propor-
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tional to the square of the bunch current. Since the Sacherer equation can be written

as an eigenvalue problem for a symmetric operator, the correction terms, which are

asymmetric operators, push the real eigenvalues into the complex plane when the

current reaches some threshold value. Analytical expressions for these correction

terms are obtained with a parameterization scheme for the equilibrium density. For

short bunches (w,a < 0.7), where ao is the equilibrium bunch length and W, is the

frequency of the broadband resonator impedance, the four lowest order cummulants

are sufficient to construct a density function, which approximates the equilibrium

bunch distribution to great accuracy. We also develop a multiparticle multiperiod

simulation code, which has three major improvements over the existing codes. The

simulation verifies the theoretical predictions based on the instability analysis of our

improved Sacherer equation. \Ve study the SPEAR II parameters analytically and

numerically. Approximating the SPEAR impedance by a Q = 1 resonator, the simu-

lation gives a threshold current around 45mA. The instability analysis based on the

improved Sacherer equation gives dipole and quadrupole modes as the first unstable

modes at 50mA. In the experiment, the quadrupole mode was observed to go unsta-

ble first. We also compare our theoretical model with the observations made at LEP.

Both the experiment and our instability analysis identify the dipole mode as the first

to become unstable for a threshold of 0.113mA, comparing well with the observed

threshold at 0.1mA. Since the bunch lengthening instability is determined by w,ra

and a dimensionless coupling parameter C, we also calculate the critical coupling (c

as a function of wrt, and the result agrees very well with the numerical multimode

Vlasov analysis of Oide and Yokoya for short bunches.

Thesis Supervisor: Dr. Jonathan S. Wurtele

Title: Associate Professor of Physics
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Chapter 1

Introduction

1.1 Coherent Instabilities in Accelerators

The subject of collective instabilities in high-energy accelerators has been studied

since the late 1950s and early 1960s. The importance of the subject lies in the fact

that it is one of the main factors that determine the ultimate performance of the

accelerator. The advancement of this subject over the years is evidenced by the dis-

covery and curing of several collective instability mechanisms. Each accelerator, when

pushed to the limit for its for its performance, will encounter some intensity limit.

As this limit is analyzed, understood, and possibly cured, a new limit emerges. The

process repeats, and the end result is the improved understanding and higher perfor-

mance of the accelerator. The confidence gained by understanding and controlling

collective instabilities in turn provides a basis for ever more advanced accelerators.

W\ithout this knowledge, there could be no linear colliders. high-luminosity circular

colliders, B-factories, free-electron laser drivers, modern synchrotron light sources,

inertial fusion drivers, etc. Today, the study of the collective instabilities has grown

into a large field of activities: methods to measure the impedance of the ring or

linac, novel beam diagnostic techniques, beam cooling techniques, numerical simu-

lation methods, calculation of the wake fields and impedances of complex objects,

impedance budgeting in accelerator design, feedback systems and numerous theo-
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retical studies. Each activity constitutes an important research area; each must be

understood or implemented in the accelerators of the future.

Accelerators must control and manipulate the motion of charged particles. To

design an accelerator, one starts by considering the motion of a single particle. To

describe the dynamics of a beam of particles, one first regards the beam as a collec-

tion of noninteracting single particles moving in the environment determined by the

accelerator design. This environment is defined by the electric and magnetic fields

of the various accelerator components. Given these fields, the linear and nonlinear

dynamics of a single particle or a group of non-interacting particles can be studied in

detail. In the accelerator physics terminology, this area of research is known as beam

optics.

Many accelerator applications, however, require beams of medium or high intensi-

ties. The electromagnetic fields generated by the beam itself increase with increasing

beam intensity. Eventually, the fields generated by the beam interacting with its

immediate surroundings will perturb the externally prescribed fields. Small pertur-

bations of the beam can grow exponentially, thus the beam becomes unstable. To

describe this collective behavior of the beam, the single particle motion must be modi-

fied to include the important self-generated fields. Often in such a study, the detailed

nonlinear dynamics studied in connection with long-time single particle motion is

omitted or simplified.

To be more specific. consider an intense particle beam contained in a metallic

vacuum chamber of an accelerator. The beam interacts electromagnetically with its

surroundings to generate an electromagnetic field, known as the wake field. This field

then acts back on the beam, perturbing its motion. Under unfavorable conditions.

the perturbation of the beam further enhances the wake field, and this leads to an

instability, known as a collective instability, and subsequent beam degradation. The

12



beam and its surroundings form a self-consistent dynamical system. It is a partic-

ular coherent instability of this system, one that places a major limit on machine

performance, that we investigate theoretically and numerically in this thesis.

There are many excellent references regarding the physics of collective beam in-

stabilities. The book by Chao [1] of SLAC introduces and analyzes various collective

instabilities in high-energy accelerators. The presentation is theoretically oriented,

and the emphasis is on the underlying physical principles of these instabilities, typi-

cally using models and soluble examples as illustrations. The discussion is lucid and

penetrating. The most significant feature of this book is that the author focuses his

attention on establishing a solid intuitive picture first using macroparticle models.

The conventional treatment of the subject using Vlasov techniques is postponed to

a later part of the book. Another excellent reference is the ZAP User's Manual [2]

by Zisman, et al. The authors developed a very good accelerator physics code, ZAP,

which calculates the performance of a storage ring in terms of the limitation from

beam-intensity-dependent phenomena. In the ZAP User's Manual, the authors sum-

marize the theoretical foundations behind ZAP, providing the relevant formulations,

physical models and particularly the equations used in the code in evaluating the var-

ious effects of collective instability. Other sources on the beam collective instabilities

can be found in many conference proceedings, accelerator physics school publica-

tions, etc. One particularly useful source is the proceedings [3] of the topical course

on intensity limitations in 1990.

1.2 Bunch Lengthening Instability

In this thesis, we focus our attention on a particular collective instability resulting

from the interaction of beam particles with vacuum chambers: the bunch lengthening

instability.

13



In modern storage rings, bunch length is a crucial parameter. Consider, for ex-

ample, the B-factories planned both in the United States and Japan. In order to

reach the high luminosities desired, one needs to apply strong focusing to compress

the beam to very low beta values at the interaction point. However, due to the in-

crease of transverse beam size at the bunch edges (the hour-glass effect, explained in

Fig 1.1), the luminosity increases only so long as the bunch length is smaller than the

beta value. Another example of a system where bunch length has limited performance

is the damping ring at the Stanford Linear Collider.

In both examples, high bunch currents are strongly desired. Unfortunately, when

the bunch current reaches a critical value, known as the "turbulent threshold', an

instability appears. The effect of this instability in an electron storage ring is to

increase both the bunch length and the energy spread of the beam, compared to its

equilibrium value below the threshold. This is obviously a dynamic process. As the

bunch length increases, the bunch peak current decreases, which in turn, decreases

the longitudinal forces. Radiation damping then serves to reduce the bunch length.

The competition between radiation damping and quantum excitation, together with

longitudinal instability, leads to some new dynamic "equilibrium". This instability

is the bunch lengthening instability, (also known as turbulent bunch lengthening

or anomalous bunch lengthening), and it limits the performance of the B-factories,

synchrotron light sources and other applications of storage rings.

1.2.1 Background

The lengthening of electron bunches in storage rings and circular accelerators was

first observed experimentally [4, 5, 6, 7, 8]. The first analytical studies [9, 10, 11]

identified the mechanism as a deformation of the potential well, formed by the external

RF voltage, due to the induced voltage in the wall impedances. The problem was

analyzed by Pellegrini and Sessler [12] and scaling laws were obtained which were in

14



Figure 1.1: Hour-glass effect: Horizontal axis corresponds to axial direction of motion,
vertical axis corresponds to transverse displacement. Solid line is the beta function.
In order for the bunch's transverse dimension to be as small as possible, the whole
bunch should be inside the area of dashed line. This requires the bunch length to be
smaller than the minimum 3.
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good agreement with observations at low currents.

The induced voltage V(t) seen by the bunch due to wake fields is

V(t) = -Lo J dt'1V4(t' - t)I(t') = - J dwZ(w)I(w) exp(-iwt). (1.1)

Here, W1(t) is the wake field, Z(w) is the Fourier transform of the wake field; I(t) is

the bunch current, I(w) is its Fourier transform; Lo is the ring circumference. The

concept of the wake field will be discussed in greater detail in Ch. 2. It characterizes

the interaction between particles mediated through the wall impedances. In the low-

current limit, Pellegrini and Sessler were able to assume the bunch shape was basically

Gaussian with bunch length or. Keeping terms only to linear order in t, they obtained:

Ne 0') W202
v(t) = -- dwReZ(w) exp(- )

Ne +00 W 2 02
-- +t dwlmZ(w)w exp(- ). (1.2)

,. 2 

Here, N is the number of electrons in a bunch. The first term gives the shift of

equilibrium phase. The second term gives a derivative of RF voltage and changes

the synchrotron frequency. Since energy spread is determined by the synchrotron

radiation below the threshold of bunch lengthening instability, the change in bunch

length A is directly related to the change in synchrotron tune Avs:

A_ A v0 /2_ j+ W2
2 2

_ _ -.'2X dImZ(w)wexp(- ) (1.3)
a vs0 2 7rJ o 2

Here.

c -' (1.4)

is the scaling parameter of Chao and Gareyte [13], wo is the angular revolution fre-

quency, q is the momentum compaction factor, I is the bunch current, vo is the

synchrotron tune and Eo is the bunch energy.

As will be explained in Sec. 2.2.4 impedances for many rings are actually described

by a broadband resonator. For a broadband resonator, InZ(w) is negative below w,'r

16



and positive above. When the natural bunch length a is large, small w contributes.

the effective wall impedance is inductive, and in this circumstance the bunch length-

ens. When oa is small, large w contributes, the effective wall impedance may become

capacitive and the bunch shortens.

However, this analysis is valid above transition, which is always the case for elec-

trons in high-energy storage rings, but not necessarily true for protons. For low-energy

protons (or ions), the dominant space-charge or "negative mass" effect always leads

to bunch lengthening, since it has the negative sign of a capacitance. At higher ener-

gies the space-charge impedance becomes much smaller, and the usual resistive wall

impedance dominates.

Bunch shortening had been observed in SPEAR [8] at low currents, probably

mainly due to the strong capacitive impedance of a number of RF cavities installed to

reach high energies. However, after several years of operation below the peak energy,

some RF cavities were removed and the free space was utilized for the installation of

other equipment. The bunches became longer, which presented no problem until an

attempt was made to increase the luminosity with a mini-beta insertion. A shorter

bunch length would have been needed again in order to avoid the hour-glass effect.

but the space for the old cavities was no longer available.

Bane [14] of SLAC described the so-called SPEAR capacitor, a section of disk-

loaded waveguide with deep slots and varying iris apertures following the beam size,

designed to increase the capacitive impedance as much as possible in the available

space of only two meters. After installation of the waveguide section, shorter bunches

were indeed observed at low currents. However, in order to reach a high luminosity,

the current had to be increased. When it was increased above the turbulent threshold,

the potential-well bunch-shortening was no longer effective and the bunches became

almost as long as before.

17



Burov [15] proposed an idea along similar lines to achieve the bunch shorten-

ing. Dielectric walls were proposed for storage rings, whose essentially capacitive

impedance should shorten the bunches. While this would probably work at low cur-

rent levels, it will not prevent the onset of bunch lengthening at higher currents.

The theory of potential well distortion [17, 18, 19] (see Sec. 2.3) provides the com-

plete equation to determine the equilibrium electron phase space distribution, without

making the small current assumption. In this theory, the particle distribution in the

energy deviation remains Gaussian while the particle distribution in the arrival time

is given by a self-consistent integral equation, known as the Haissinski equation [17].

However, the theory failed to predict the appearance of the turbulent threshold which

was observed experimentally as the onset of stronger bunch lengthening, accompanied

by an increase of the energy spread.

1.2.2 Coasting Beams and the Boussard Criterion

Turbulent bunch lengthening is often explained by the Boussard criterion [20, 21].

Boussard conjectured that the longitudinal instability in a bunched beam is due to

a coasting beam-like instability within the bunch. Qualitatively, the argument goes

as follows: Consider an impedance which induces an instability that has a small

wavelength compared to the bunch length. If the growth time of the instability is

short compared to a synchrotron oscillation period, then the center of the bunch looks

like a coasting beam-except, of course, that it has a high peak current. Therefore. to

estimate the threshold for instability one might use the coasting beam threshold [22,

23] but replace the coasting beam current and the average energy spread with the

highest local values for bunched beams [20].

We consider a longitudinal phase space and take 0 and in as canonical variables.

18



Here 0 is the angular position in the storage ring and W is defined as

= E dEf f(E)' (1.5)

where f(E) is the revolution frequency. The coasting beam analysis is based on the

linearization of the Vlasov equation [24]:

At + 0
+ W' -, = o,ow

where 4,(0, WV, t) is a distribution function in phase space. Then

dO
d - = =2rf(E),

dt
d = eV(O, t);

where V(O, t) is the induced voltage given by Eq. 1.1. We divide (0O, ', t) into a

stationary distribution Co(W) and a small perturbed part li'l(n, W,w) as

(0, w,t) = Co( W)
+/l, x

+ Ed&ci'i(n, 66T8w) exp( iO - iwt), (1.9)

where 4X is normalized as

J dOdT,'(OI W) = Ne. (1.10)

The bunch current is given by:

I(t) = W J dlV . (1.11)

Inserting Eqs. 1.7, 1.8 and 1.9 into the Vlasov equation 1.6 and keeping only linear

terms in 'l yields

i(nO - w)t, = ewoZ() dll j dW l.

We note that l'l is the Fourier amplitude of the n'th azimuthal mode, and that the

azimuthal modes are uncoupled. This is an important consequence of linearization

in 14, which is valid for a coasting beam. As we shall see later, this simplification

19
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does not occur for a bunched beam. Dividing each term of Eq. 1.12 by i(nO-w) and

integrating over IV gives the very important relation:

= ie6oZ(W') J dWl w n' (1.13)

The equation is called a dispersion relation and it plays an essential role in determining

the turbulent threshold. However, it is difficult to handle the dispersion integral in

Eq. 1.13 because of the singularity at w = n. This singularity is a result of the

use of the Fourier transform in Eq. 1.9. A prescription for solving similar problems

was given by Landau [25], who formulated the stability analysis as an initial-value

problem and used a Laplace transform. He showed that the energy spread of the

beam can damp the collective mode. NWNe will not go into the details of this Landau

damping problem. An excellent treatment of Landau damping for the bunched and

unbunched beams in circular accelerators can be found in the book by Chao [1]. It

can be shown that in order to include the Landau damping, we need only make the

substitution:

, = W + iE. (1.14)

where is an infinitesimal small positive quantity. Then the dispersion relation 1.13

can be solved analytically for several equilibrium distributions 14o(W): Lorentzian,

rectangular, parabolic, elliptical, bi-Lorentzian and Gaussian distribution. Ruggiero

and Vaccaro [26]. among other authors, calculated the stability limit diagram. eil

and Schnell [23] summarized their results in a very simple formula

Z(nwo) < (/AE)FVHM (1.15)
<F (1.15)n eco

where F is a form factor which depends on the distribution and is roughly equal to

unity, Io is the current and (E)FwHAI is the energy full width at half maximum of

the stationary distribution '0o( 117).

20



Boussard [20] applied this formula to a bunched beam (though without including

the effects of synchrotron oscillations) in the process of debunching. He used local

values of Io and AE and explained the increase of the energy spread and the ap-

pearance of microwave signals. He named this the "microwave instability". Later his

argument was also applied to bunched beams with synchrotron oscillations.

The criterion 1.15 is usually called the Keil-Schnell-Boussard criterion. However,

some years earlier, Laslett, Neil and Sessler [22] derived the same criterion with a

form factor relevant to a Lorentzian distribution and with Z(nwo) interpreted as the

shunt impedance of a cavity. Thus the same criterion is sometimes also called the

LNS criterion.

The issue of the applicability of a coasting beam instability criterion to a bunched

beam was studied in detail by NWang and Pellegrini [27]. They found that one obtains

a coasting beam-like instability condition provided that:

1. The impedance is broad-band relative to the bunch spectrum (Fourier transform

of the bunch density).

2. The growth rate is much greater than WsO.

3. The instability occurs at wavelengths much shorter than the bunch length.

The third point of this condition is obvious: For bunches which are long compared

to the wavelength of the oscillation (e.g. protons). the bunch can be approximated

by a coasting-beam and the Keil-Schnell criterion can be applied locally. For short

bunches (e.g. electrons) these wavelengths usually correspond to frequencies well

beyond the cut-off of the vacuum chamber. There impedances are much smaller, since

energy cannot be stored in cavities and propagates with the wrong phase velocity in

the beam pipes. Experimentally, the Boussard criterion has been used successfully

to estimate the instability threshold for proton beams. It does not work well for
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short electron bunches, and other more complicated theories have been put forward

to explain bunch lengthening in electron rings.

1.2.3 Mode Coupling Theory

Sacherer [28] initiated a mode coupling theory for the bunch lengthening instability

in electron beams. Since we go into the details of the mode coupling theory a la

Sacherer in Ch. 3, here we will only outline its results and comment on some other

recent work on the bunch lengthening based on the mode coupling theory. The basic

idea is as follows: Before the turbulent threshold, the equilibrium state of the bunch

is given by the theory of the potential well distortion. We assume that the onset

of the turbulent bunch lengthening corresponds to the instability of the equilibrium

given by the theory of the potential well distortion. The Vlasov technique [24, 29] can

be used to analyze the stability of the equilibrium. Sacherer showed that the system

becomes unstable when two adjacent higher order modes couple together. However,

the required strong impedances at frequencies well beyond the vacuum chamber cutoff

make the model less plausible [30].

Chao and Gareyte [13] considered the mode coupling theory for the waterbag

beam. In this model, all the radial modes degenerate and the coupling of synchrotron

modes lead to a scaling law for the bunch length. They showed that the bunch length

is a function of ;c only, where id is given by Eq. 1.4, and they were able to test this

qualitative conclusion with the experiment of Wilson et al. [8]. and the agreement

was surprisingly good.

Theories based on the coupling of the dipole mode with its mirror image ( = 1 and

1 = -1) were published a few years later [4.5. 46]. They did away with the requirement

for large impedances, but comparison of predictions for the turbulent threshold with

measurements at SPEAR [8] were unsatisfactory. Theoretical predictions were usually

too high.
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1.3 Motivation and Outline

The most severe blow to any theory of bunch lengthening based on the coupling of

synchrotron modes is that both the experiment by Wilson et al. [8], and the more

recent experiment by Rivkin et al. [33], did not observe the coupling of lower-order

synchrotron modes at the bunch lengthening threshold. Our multiparticle multiperiod

numerical simulation also confirms this observation. As we mentioned earlier, the

impedances corresponding to the higher order synchrotron modes are very small, it is

unlikely that the bunch lengthening instability is driven by the coupling of high-order

synchrotron modes.

By examining the existing mode coupling theories closely, we have found out that

the nonlinear contribution from the static potential well has not been properly in-

cluded. By linearizing the wake force from the static potential well, previous authors

were able to incorporate all of the effects of a deformed potential well into the in-

coherent frequency shift and the shift of the center of the bunch. As a result (see

Ch. 3), the equilibrium bunch shape remains Gaussian. This approximation signifi-

cantly simplifies the Vlasov instability analysis but, unfortunately, it also misses the

bunch lengthening instability mechanism. In Sec. 3.5, we will show that the non-

linearity of the static wake force distorts the equilibrium density from its Gaussian

shape, which results in asymmetric corrections to the ordinary single-mode Sacherer

equation. This modified Sacherer equation will have unstable eigenmodes when the

beam current reaches a threshold value.

The only work to carefully include potential well distortion is a recent eigenvalue

analysis by Oide and Yokoya [34]. Rather than parameterize the equilibrium bunch

shape by several parameters, Oide and Yokoya used the numerical solution of the

Haissinski equation directly and introduced the action-angle variables for the Vlasov

equation. Although Oide and Yokova's method is, in some ways, more rigorous than
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ours, they can not go too far before plunging into full-fledged numerical computations.

Thus the real instability mechanism is not clear from their analysis. However, Oide

and Yokoya's work serves a good reference to our work and we will compare our

results with theirs in Ch. 5.

This thesis focuses on developing a new theory of the bunch lengthening instability

based on the nonlinearity of the static wake force. Fig. 1.2 highlights various steps of

this new theory and their correspondence with different chapters of this thesis. The

detailed outline of this thesis is listed below.

In Ch. 2. we start from a brief introduction of the longitudinal dynamics of a

charged particle in a circular accelerator without the wake field. Then we introduce

the longitudinal wake field and its Fourier transform, the longitudinal impedance.

We calculate the longitudinal shunt impedance for a localized cavity analytically and

argue that the longitudinal impedance of a storage ring can be approximated by a

broadband resonator. It is this broadband resonator impedance that will be used

in our subsequent analysis of the bunch lengthening instability. In the last part of

this chapter, we develop the potential well distortion theory by solving the bunch-

environment system self-consistently.

Ch. 3 is devoted exclusively to the development of our new theory of the bunch

lengthening instability, and presents a significant new contribution to this field. We

start this chapter by reviewing the SPEAR results of Wilson et al. [8] on the bunch

lengthening instability. Based on the experimental observations and simulation re-

sults, we assume that different synchrotron modes do not couple each other at the

turbulent threshold. Using a Vlasov formalism we derive the single mode Sacherer

equation by linearizing the static wake force and we show that this equation is indeed

stable. In Sec. 3.5 we demonstrate that, by including the nonlinearity of the static

wake force, there will be correction terms to the Sacherer equation. This improved
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Figure 1.2: Relations between the key steps in developing new bunch lengthening
theory and different chapters in which these steps are discussed.
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Sacherer equation will have unstable eigenmodes when the bunch current reaches

some threshold value. This section is the key part of this thesis. Using cummulant

expansion techniques, the equilibrium bunch shape can be approximated fairly well

by four parameters: The center of the bunch < >, the bunch length a, the skewness

-1 and the excess y2. With this approximation, explicit forms for the correction terms

can be analytically derived. In the last section of this chapter, we develop a numerical

algorithm to transform the improved Sacherer equation into an eigenvalue problem.

All numerical results based on the SPEAR parameter will be discussed in Ch. 5.

In Ch. 4, the physics behind our multiparticle multiperiod tracking simulation

is explained. We start from the iteration equations for the longitudinal synchrotron

motion of a single particle and add three terms corresponding to the wake force,

the radiation damping and the energy fluctuation due to the quantum nature of

the synchrotron radiation. We also point out two important characteristics of the

iteration equations, which have not been noticed by other researchers. The first is

related to the phase space trajectory of a single particle executing a synchrotron

oscillation. We show that the trajectory is a tilted ellipse. This knowledge enables us

to load the particle along this tilted ellipse, which reduces the noise that is generated

from the dipole oscillation of the bunch when particles are loaded along an ordinary

ellipse. The second is related to the localized kick that is used in the multiparticle

tracking simulation. The equilibrium distribution of a bunch experiencing a localized

wake force is drastically different from that of a bunch experiencing a distributed

wake force. (Detailed analysis of the equilibrium phase space distribution following

the formalism of Hirata [35] is provided in App. A.) In order to approximate the

real wake field, which is distributed along the ring, we distribute the wake force into

many periods in our multiparticle simulation code. Finally we introduce several new

diagnostics into our multiparticle multiperiod simulation code. These new diagnostics
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are more powerful than most of the widely used diagnostics.

In Ch. 5, we compare the results from our multiparticle multiperiod simulation

with the instability analysis based on the improved Sacherer equation and the experi-

mental measurements of Wilson et al. [8] on the SPEAR II ring and Brandt et al. [36]

on the LEP ring. The agreements are excellent. Since the instability threshold is

determined by two dimensionless scaling parameters, wra and . we have also run our

instability code to determine the critical coupling (c as a function of ara and compare

our result with the full-scale numerical Vlasov analysis of Oide and Yokoya [34]. For

short bunches, the agreements are excellent.

Throughout this thesis, cgs units have been adopted.

27



Chapter 2

Longitudinal Dynamics, Wake
Fields and Equilibrium Bunch
Shape

A charged particle bunch propagating through an accelerator vacuum chamber in-

teracts electromagnetically with its environment (beam pipe, bellows, RF cavities.

etc.) to create a wake field. This field then acts back on the bunch, perturbing the

motion of the particles within the bunch. For sufficiently intense bunch currents, this

feedback may lead to collective instabilities and to subsequent beam loss or degrada-

tion of the performance of the accelerator. In this chapter, we will first discuss the

longitudinal dynamics for a charged particle in a storage ring, without complications

from the wake. Next, we will parameterize the effect of the wake field from a rigid

bunch, i.e., in the approximation that the action of the wake field on the particle

distribution in the bunch can be neglected. Finally this self-consistent bunch shape,

including the wake field effect, will be determined.

2.1 Single Particle Longitudinal Dynamics

Before investigating the collective motion of a charged particle bunch, we will examine

the single particle dynamics. It is convenient to describe the motion of a particle in

the bunch by examining how its motion differs from that of a reference, or designed
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particle. The revolution time for the design particle in a storage ring is

to = U, (2.1)
'o

where Lo is the ring circumference and v0o is the particle's average speed. Another

particle, with a slightly different energy, Eo + 6E, will have a revolution time to + St,

with
t 6L 6v 6E

to Lo vo Eo

The change in revolution time t is composed of two contributions, one from 6L,

the change of traveling distance compared to the design particle, and the other from

vt, the change of the average velocity. Both these terms are proportional to E, as

seen in the second equality in Eq. 2.2. The constant of proportionality 7 is related to

the momentum compaction factor of the ring, a, and the relativistic gamma factor

o = l/1- V/c 2 through:

1
, = ' (2.3)

Let T, be the arrival time displacement of the particle at the accelerating cavity

in the nth revolution, measured relative to the design particle, and 6SE the corre-

sponding energy displacement. The longitudinal motion of a particle with charge e,

where e is the positron's charge, is given by the mapping [38]:

Tn+1 = n - -6En+1. (2.4)
Eo

En+1 E= E - wake field loss

+ eV sin(O - wrf rn)

gain from RF cavity

- eVlsin(d&). (2.5)

synchrotron radiation loss

Eq. 2.4 is identical to Eq. 2.2. Eqs. 2.5 shows that the loss of energy due to the

synchrotron radiation and wake field is compensated by the gain from the RF cavity.
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The synchrotron phase s is chosen to guarantee that particles execute stable syn-

chrotron oscillations: When a particle arrives after the design particle, it must receive

less RF kick. For a ring operating above transition (positive r/), a particle with less

energy requires a shorter time to complete a revolution, thus reducing the delay with

respect to the design particle. In the same way, a particle arrival before the design

particle must receive a larger RF kick so that it requires a longer time to complete a

revolution. The operating frequency of the RF cavity is wrf, which is usually slightly

above a multiple of the revolution frequency w0o to avoid the Robinson instability [10].

Wake field losses result from the interaction of a charged particle with its vacuum

chamber environment. When a charged particle is traveling through an accelerator.

it will excite an electromagnetic field from the RF cavities, the resistive walls of the

vacuum chamber and many small discontinuities: bellows, masks, transitions, etc.

This electromagnetic field is called the wake field and it will lead to energy loss or

gain of the trailing particle. In Sec. 2.2 we will discuss in great detail how to model

the wake field and how to calculate the energy loss associated with it.

For the next generation of advanced light sources and colliders, short bunches

are crucial to the performance of the machine. A clear theoretical understanding of

the bunch lengthening instability has not been achieved in the short bunch length

parameter regime. The focus of this thesis will be on revealing the physics mechanism

driving the bunch lengthening instability. Thus, we assume the equilibrium bunch

length is much shorter than the RF wavelength. Linearizing the RF bucket in Eq. 2.5

produces a simpler set of equations:

Tn+l = -
6 E+1, (2.6)

Eo

6E,+1 = 6E, - wake field loss

-eV cos(O,)wrfmn- (2.7)

Eqs. 2.6 and 2.7, when completed by including radiation damping, quantum emission
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and wake field, form the basis of the multiple particle tracking simulation to be

discussed in Ch. 4.

We can make one more approximation. Observing that changes for and En

are very small in one iteration and the wake field loss is distributed throughout the

ring, we can approximate difference equations 2.6 and 2.7 by differential equations:

dT
-d- =_ (2.8)

dt

d = r - wake field loss. (2.9)
dt I!

Here,
6E

6 E (2.10)
Eo

and wso is given by:

,2 reVsO= - CS(°)Wrf. (2.11)

Without the wake field losses, the particle executes simple harmonic oscillations with

frequency Wsoo. We will show in Sec. 2.2 that the effect of the wake field loss can be

described b an external force acting on a harmonic oscillator:

--i6, (2.12)
dt
d6 1
d T - TF(T). (2.13)dt q EoTo

If we identify T as the generalized coordinate and 6 as the corresponding generalized

momentum. Eqs. 2.12 and 2.13 can be derived from the Hamiltonian:

62 W,2 2 1
H = 2 - ° dT'F(T' ). (2.14)

2 2,,2 rEoTo

2.2 Wake Field and Impedance

In this section we consider how to model the wake field of a localized cavity and then

generalize the result to the wake field of a vacuum beam pipe.
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2.2.1 Cavity Response to a Relativistic Charged Particle

The electric field E and magnetic field B can be written in terms of a vector potential

A and scalar potential · as [39]

E = -VO
c t

B = V x A. (2.15)

Substituting Eq. 2.15 into Maxwell's equations [39]:

V E = 47p,

4w. 1 E
VxB = j+ . (2.16)

we have

2 = -47rp (2.17)

1 D2 A 4w.
V 2A c2 t2 = (2.18)

when the Coulomb gauge V. A = 0 has been used.

It is convenient to expand D in terms of normal modes,

(xt) = f(t)o(x). (2.19)
tt

The normal mode c1 is real and satisfies

, t2

V o + -- 6o, = 0.

along with the orthogonality requirement:

f d3 xV (x) V6,,(x) = 0 if Pt # /'.

The integral is over the cavity volume. Equation 2.17 can be solved:

f d3x 0,,(x)p(x. t)
f d3 V V (X) . V O.(x)
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Next, we expand both A and j in terms of the normal modes:

A(x, t) = qx(t)aA(x), (2.23)

(2.24)j(x, t) = ZA j(t)aA(x).

The normal mode ax(x) is real and satisfies

L.2

72 a,\ + A ax = 0, (2.25)

and the orthogonality condition,

fd3x ax(x) a,(x) = 0 if A A'. (2.26)

Inserting Eqs. 2.23 and 2.24 into Eqs. 2.17 and 2.18, leads to the equation for the

mode amplitude q(t):

d2qA O\ dqx
d2 + + WqA(t) = 4 -cjA(t),
dt2 QA dt A L]

(2.27)

where jA(t) is related to the bunch current j(x, t) by

f d3x a(x) .j(x, t)
jA (t) = aA

f d3x a(x) a(x)'
(2.28)

2.2.2 Green Function Solution for the Mode Amplitude

The solution of the homogeneous equation

d2 q

dt2
wX d qX
QX At

is

(2.29)

(2.30)q,(t) = A' sin Qte- "x t + B' cos QAxteC-

where

Q2 = 2 _ t2A WA A ,

tA, = (2.31)
2Qx
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Since our initial condition assumes a zero field inside the cavity before the bunch

enters, namely q(O) = 0, qx(0) = 0 we have

A' = B' = O. (2.32)

Thus the homogeneous solution does not contribute to the Green function. It remains

to find a special solution to the equation

d2qA wA dqA ,d2 + -- + 2qA(t) = 6(t).
dt 2 Q dt

(2.33)

The solution for both t > 0 and t < 0 is obvious:

qA,(t) = A sin Qte- tX t + B cos Qxte- 'X t

qA(t) = C sin fQxte- VAt + D cos QAte-" x t

t > 0, (2.34)

t < 0. (2.35)

Continuitv of the function qA(t) around t = 0 implies

B = D, (2.36)

and the discontinuity of the function cq(t) around t = 0,

(t = 0+) - (t = 0-) = 1, (2.37)

(QxA, - txB) - (QxC - vAD) = 1. (2.38)

From Eqs. 2.36 and 2.38. we find

q,(t) = ( + C) sin Qxte- xAt + D cos Qxte- v
At

qA(t) = C sin QAte - v xt + D cos Qxte - At

t > 0,

t < 0.

(2.39)

(2.40)

Furthermore, C and D must be zero because of the causality. Thus we get the Green

function of Eq. 2.27:

· G,(t) = { 1 sinQxte-v xt t >0.
t < 0.

(2.41)
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2.2.3 Longitudinal Wake Function and Impedance

We assume that a bunch carrying unit charge enters the cavity at t = 0 along the

center of the cavity. Inside the cavity, we assume that the bunch moves with the speed

of light c. The charge density and the current density can therefore be represented as

p(x,t)

j(x,t)

-= (X)6(y)b(z - Ct). (2.42)

= c(X)(y)6( - ct)i. (2.43)

Using Eqs. 2.42 and 2.43 in Eq. 2.22 yields

4w7r - 6 (0,

fd 3 x Vo(x)2 A

= O otherwise.

O,ct) O < t < L/c,

The amplitude equation 2.27 then simplifies to

wOqA(t) = 4 C 2 O.w fd q cx(t)x= a(x)2 Az(O'Oct).

Using the Green function GA(t) (Eq. 2.41), we find the solution of Eq. 2.46:

4)= c L d
qA\(t) = }dx G (t - ')axz(,,z'). (2.47)

Here we assume that the mode is not sensitive to the transverse position of the bunch.

For convenience, we drop the index A and calculate the average wake force acting on

a unit charge test particle which moves with the speed of light c and arrives at the

cavity at time t = to:

Fz = Ez = -
az c atc t

ta -ldqz()-f(t) (00,z) - c a. O,z).az - Oc dt

The longitudinal wake function Wto(to) is readily calculated by averaging the wake

force experienced by the test charge inside the cavity:

wTv'(to) = -- t dt Ew(t) --
0~t,)= to
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fL(t)

(2.44)

d2qA wx dqA

dt2 Q dt

(2.45)

(2.46)
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4' 1 fL

L d3 x l m(x) 12 o

4 r 1 f fo

L f d3.r a(x)12 J d

First consider the case to > L/c.

(0, 0, cto + ) (°, :)

-Z dz' G'(to + - )a (0, 0, z)a(0 0, '(0 ).
C

(2.49)

Only the current response contributes to the

wake function. Neglecting decay of the wake field during the transit of the test charge

through the cavity,

47r If dz e6 -ikza (0, 0, 0 12
1Wo(to) = L d3 I)2 G (to). (2.50)

For 0 < to < L/c. we break WlI(to) illto two parts: The charge density response,

II'1p(to), and the current response, Itj(to). Then.

-L-f d3 x Vo(x)l 2 dz (0., cto + ),0 (,,z)
Zoo,-

4wr 1 L-

L f d3x VO(X) 2 Jo
4r 1 fL

L fd3x VOV(X) 12 to

The current response is

ILd(to) = Lf a(x) d dz G'(to03 L f dgx ja(x) 12

dz 0(0, 0, cto + Zao(0, )41) T(0 0, 

dz 0(0, O. ) (0, 0, - cto).
oo

Z - I

+ )a,(0, 0, )a(0. 0, -').
C

Rewriting the two-dimensional integration, we have

WVj(to) =

4 1 -z
[ d d,'g(to + )a(0, ~ ): . . )

L d f' lxa(x) 2 '% C

4wr 1 fL dz-' f- Cto

Lf d3 rx la(x) Jcto Jo
d g'(to - - )az(0 0, ')a(0, 0. z).

C

(2.53)

Let us prove the sum of T O(to) and the second term of Eq. 2.53 is zero by considering

'1'o(to) for to in the range of -L/c < to < 0. In this range

4Lr to) w L dz (0, 0, - Icto ) -(O. z)L =fdsx V(x) 2 o(1ol t'
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L4w .r 1~ z fLe d .(0, 0, ) (o,o,: -- cto ),L f d 3x IV6(x)12 tol I

Vo3j(to) =

47r 1
L f d3 x la(x)l2 lo dZ -Ict° dz'g'(

Itol - - )az(O,O, z)a(O,O,Z').
C

Combining Eq. 2.51 with Eq. 2.54, and Eq. 2.53 with Eq. 2.55, we obtain, for 0 <

to < L/c,

lop,(to) + lotj, 2(to) = -%l0(-to) = 0, (2.56)

where Wj,2(to) is the second term in Eq. 2.53. Finally the longitudinal wake function

for any t is,

4_ I o L dz e-ikzaz(0 o, z)12
(t) = L f d3

x la(x) 2 G(t)

The longitudinal impedance Z(w) is defined by

(2.57)

4 W IfSL d Ce ikzaz(0, 0,z)12 iw
Z(w) = L dte"lt¾(t) = f° d aI(O) 2

Jf 0 0 f d3x la(x)12 (-icv)O(~:)

I foL do e-ik za(0, 0, Z)12 Q
f d3 x la(x)12 WA

1
1 +iQ( - W)'

The frequency insensitive part of Eq. 2.58 is known as the longitudinal shunt impedance

of the cavity
R 4 f dz e-ikzaz(0 0, z)12

Q WA f d3 x la(x) 12

With this definition, we arrive at the well-known expression [40]

Z(w) = R
1

The most important result of Eq. 2.60 is that the effect of the wake field for a local-

ized cavity can be described by three parameters: the longitudinal shunt impedance,
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R. expressed in ohms, the quality factor Q of the cavity, and the resonant frequency

'Ax of the higher-order mode. Although impedance Z(w) can have more complicated

frequency dependence for other structures, it is often well approximated by one or

more resonator impedances. These impedances are generally complex quantities, with

their real parts characterizing the dissipative effects of the beam storage ring system

(growth or damping rates of instabilities, parasitic mode energy loss, etc.) and their

imaginary parts characterizing the effects on the reactive, oscillatory part of the sys-

tem (coherent oscillation frequency shifts, etc.).

Fig. 2.3 shows the frequency dependence of both the real and imaginary parts of

a resonator impedance.

2.2.4 Ring Broadband Impedance

The impedance of the RF cavities consists mainly of sharp peaks at frequencies corre-

sponding to the cavity modes. Besides being powered at the fundamental longitudinal

accelerating mode by klystrons, the cavities will also be driven by the beam at higher-

order longitudinal parasitic modes. These higher-order modes usually lie at frequen-

cies higher than that of the fundamental mode. The cutoff frequency, wc = c/b. is an

upper bound for the higher-order mode frequencies. Here. b is the beam pipe radius.

These higher-order resonances often have high Q, corresponding to wake fields that

ring in the cavity for a large number of RF oscillations. They can couple bunches to

each other and lead to the coupled-bunch instability.

For the machines operating at the short bunch length parameter regime, equilib-

rium bunch length is often equal to, or shorter than, the beam pipe radius. Since

the frequency spectrum of the impedance of the RF cavities ranges from zero all the

way to the cutoff frequency w., while the frequency spectrum of the bunch internal

structure starts from c/oat > w,, the wake field due to the RF cavities does not have

much effect on the single bunch collective instabilities. (Here, to is the equilibrium
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Figure 2.3: Resonator impedances. The solid curves plot the real part and the dashed
curves the imaginary part of the impedances. (a) Q = 1. (b) Q = 10.
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bunch length.)

The overall electromagnetical environment of the remainder of the storage ring

is typically described by a broadband impedance [41]. This broadband impedance

gives rise to a short-ranged wake field that induces coherent motion mainly within a

single bunch. Except for the contributions from the resistive wall of a smooth vac-

uum chamber, it is very difficult to calculate or to precisely quantify this broadband

impedance. It varies from ring to ring, and is generated by a large number of electro-

magnetic elements in the storage ring. Discontinuities in the vacuum chamber, such

as bellows and beam collimators, other vacuum chamber cross-section variations, as

well as beam instrumentation, such as beam position monitors, feedback loop pickups

and kickers, and beam injection and abort kickers, all contribute to this broadband

impedance.

It is nearly impossible to calculate analytically or to measure the detailed fre-

quency dependence of the ring broadband impedance. In this work, we will model

the ring broadband impedance mostly by a Q = 1 resonator [41] centered at the char-

acteristic resonance frequency we. \Ve will also model the ring broadband impedance

by a few resonators with Q close to one. This will enable us to obtain a qualitatively

correct picture of the bunch lengthening instability; a more precise impedance model

may change the threshold current slightly.

Fig. 2.4 illustrates the crossover from narrow band impedances to broadband

impedance at the cutoff frequency :. .

The above considerations can be summarized as follows. For the bunch lengthen-

ing instability, we need only consider the ring broadband impedance. This broadband

impedance can often be approximated by one (or at most a few) resonator impedance:

Z() = R (2.61)
el,/Lr
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with Q close to one. The longitudinal wake function of this impedance is given by

,'(t)Lo = J -exp(-it)Z(w).
-, 2r

(2.62)

Here we have changed the notation of the longitudinal wake function to W(t). Per-

forming the Fourier transform. we obtain

W(t)Lo = { exp(- vt)(cos t - sin t)w~t)£0 Q 0q
if t < 0,
if t > 0.

Here, and Q are related to the resonator frequency w, and Q through:

rW
= 2Q'

Q2 = ,W, 2 _ 2.r-

(2.63)

(2.64)

The wake vanishes for t < 0. This is the result of the causality: A particle only

experiences the wake field from those particles traveling ahead of it.

2.2.5 F(T): Wake Field Energy Loss per Turn

In the paragraph preceding Eq. 2.13, we mention that the effect of the wake field

energy loss can be described by a force-like term F(T). We are now in a position to

give an explicit expression of F(r) in terms of the wake function W(7). Introducing

the longitudinal particle distribution p(T), normalized by

drp(T) = 1 (2.65)

the loss of the energy due to the wake field of a bunch with particle distribution p(r)

is given by:

F(r) = Ne2Loj dT'p(T')1V(T'- 7).

Substituting Eq. 2.66 into the Hamiltonian, Eq. 2.14, yields

+ 2q 2
2r/2T

N Je2 Lo f T +'

ri EoTo Jr' 
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H =-

2

(2.66)

dT p(" T1) 1' (T - T ). (2.67)



The first term in this Hamiltonian corresponds to a kinetic energy. The second and

the third terms correspond to a potential energy. In the absence of the wake field, the

potential is parabolic, as expected for simple harmonic motion. The potential well is

distorted when wake fields are included. We shall investigate this distortion in the

next section.

2.3 Potential Well Distortion

We will use the Vlasov technique [24] to study the longitudinal dynamics of a bunch

of charged particles. Sacherer was the first to apply this technique to investigate

collective instabilities in accelerator physics [29]. The book by Chao [1] provide a

good introduction to this subject.

In this section, we will focus on the time-independent solution of the Vlasov

equation to get the equilibrium bunch shape. While a wake field does not have

any effect on the energy spread, it distorts the equilibrium bunch shape p(r).

The evolution of the particle distribution function, '(T, 6, t). in the phase space

of and 6 is governed by the Vlasov equation

O0/ dr O d5 O0
$ + 0. ~(2.68)t dt dt 06 =

Here - and 6 are given by the single particle dynamics:

1 OH
- -. = (2.69)

- 6 = -(2.70)

where H is given by Eq. 2.67. It is easy to verify that Eqs. 2.69 and 2.70 are the same

as Eqs. 2.12 and 2.13 for the longitudinal synchrotron motion.

Since the left hand side of Eq. 2.68 can also be written as d/dt = 0, the time

independent solution (the equilibrium solution of the Eq. 2.68) must be a constant

of motion. WIhen does not depend on time explicitly, the Hamiltonian is the only
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constant of motion for this one-dimensional dynamical system. Thus, the stationary

solution of the Vlasov equation must be a function of H: = f(H).

In order to determine the exact functional form of f(H), we need to consider the

damping and diffusion processes in the phase space. To understand the damping

process, we reexamine Eq. 2.5, where the synchrotron radiation loss U = cV sin(>s)

is a constant. In reality, U is a function of the particle energy: U(Eo + 6E), with

U(Eo) = cV sin(qs). Expanding U(Eo + 6E) around E0, we add a damping term to

Eq. 2.70:

H 2
= H 2 (2.71)

where t = 2To/ d is the radiation damping time [38]. The diffusion process in phase

space is the result of the quantum nature of synchrotron radiation. It can be described

by an energy diffusion constant D. With these additions, the Vlasov equation 2.68

becomes the Fokker-Planck equation [43]:

0 OaH OaH 2 04 2 02 ,
Ot + (06t 6) aT tr + D (2.72)

O' r 06 r t (r tO ' D6'

Substituting the time-independent solution , = f(H) into the Fokker-Planck equa-

tion, noting that H is a constant of motion and OH/06 = 6, we have

2 2
-f + Df' + 62(tf ' + Df") = . (2.73)
t' t'

The condition that Eq. 2.73 must valid for all 6 leads us to

+ Df' = 0. (2.74)

Thus, we conclude that ¢, is an exponential function of H:

H
V xc exp(- -- ), (2.75)

where aso0, the equilibrium energy spread, is determined by balancing the radiation

damping and the quantum diffusion:

2 Dtr (2.76)
2
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Since the Hamiltonian of Eq. 2.67 is a quadratic function of the energy deviation 6,

the equilibrium energy distribution of the bunch is always Gaussian, regardless of the

wake field. Without the wake field, the equilibrium distribution in T is also Gaussian.

This r distribution will be distorted from a Gaussian shape when the longitudinal

wake field is included. In general, the r distribution p(r) is related to the distribution

function by:
1 62

( 6) = 1 exp(- )P(r) (2.77)
727 01 '0 , )Pr

Substituting Eq. 2.77 into Eq. 2.75 with the explicit form of the Hamiltonian given

by Eq. 2.67, we obtain a transcendental integral equation for p(T):

p(7) =( AO exp so I dT' j d7r"P(7")W(T"- .-) (2.78)
2,2, 2

0 iEoToo 0

Here Ao is determined by the normalization of p, f dTp = 1. This equation is some-

times called the Haissinski equation; it was derived independently by many peo-

ple [17, 18, 19]. The double integral in Eq. 2.78 can be simplified further. Consider

the double integral

A(r) = J ] d"p(T")W(T - r'). (2.79)

Changing the variable of integration r" to t = r"- ' gives

A(r) = j d' dtp(t + T')W(t). (2.80)

From Eq. 2.80. A(4) satisfies the following differential equation:

dA = fj+0 dtp(t + T)WV(t). (2.81)
dT

Now, consider
+00

B(T) = -] dtp(t + )g(t), (2.82)

where g(t) is related to the wake function W(t) by

g(t) = j dt'Tl(t'). (2.83)
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Evaluating the derivative of B(r), we find

_B -i f+·xO, + 
dr = - dt Kp(t + 7) g(t)

= j dtp(t + r)Il'(t). (2.84)

In deriving Eq. 2.84, we have used a partial integration with p(+o) = O and g(0) = 0.

Comparing it with Eq. 2.81, we conclude that

A(r) = B(rT) + constant. (2.85)

Substituting the double integral A(r) in Eq. 2.78 with the single integral B(T). and

absorbing the constant into the normalization constant A 0, we get [44]

/ ,,2,2 r f t±7 NJ 
p() = A o xp o T 2 I dtp(t + T)g(t)) . (2 .86)

Obviously, this equation is not easily solvable analytically and often needs to be

approached numerically. Due to the causality of the wake field, it is rather straight-

forward to obtain a numerical solution. Since the right hand side of Eq. 2.86 contains

only the values of p(T') at Tr' > r, Eq. 2.86 can be sequentially solved from the front

to the back of the bunch under the assumption that p() vanishes for T - +cx. For

a fixed A0, we can calculate b(Ao) = Sf drp(r). Then we solve the equation b(Ao) = 1

to determine the correct normalization constant.

Another interesting point from Eq. 2.86 is the relationship between the energy

spread and the equilibrium bunch length. When the current is zero, we have

r/
aTr0 - a60. (2.87)

WsO

Figure 2.5 shows the numerical solution of Eq 2.86 for the SPEAR II ring impedance

for various currents. The bunch shape is Gaussian at low bunch currents, but clearly

distorts as bunch current is increased. Another feature is that the center of the
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bunch shifts forward, so that the parasitic energy losses are compensated for by the

RF voltage.

If a static solution of Eq. 2.86 exists, will it always describe the synchrotron motion

of the bunch? In other words, as we increase the beam current, will the distribution

in energy always be Gaussian with a energy spread independent of the current? The

answer is no. The wake field starts to drive the bunch lengthening instability when

the bunch current reaches some threshold value. The static solution of Eq. 2.86 is no

longer stable and can not describe the motion of the bunch. Both the experimental

observations and theoretical analysis of bunch lengthening will be given in the next

chapter.

Fig. 2.6 plots the measured bunch shapes vs. distributions calculated based on a

modified Haissinski equation for the electron damping ring in SLAC. The agreements

are excellent.
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Figure 2.5: Potential well distorted bunch shape for various beam intensities calcu-

lated for the storage ring SPEAR II parameters based on Haissinski equation 2.86.

(from Bane, Chao and Lee, 1978.)
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Figure 2.6: Potential well distortion of bunch shape for various beam intensities for
the SLC damping ring. Plotted points are data; solid curves are calculations based
on Haissinski equation 2.86. (from Bane and Ruth, 1992.)
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Chapter 3

Theoretical Analysis of the Bunch
Lengthening Instability

In the last section of Ch. 2, we solved the bunch-environment system self-consistently

and determined the equilibrium bunch shape. In this chapter, we will study the

stability of this equilibrium. First, we will summarize the detailed experimental

measurements obtained by Wilson et al. in 1977 [8]. These revealed that, as the

bunch current exceeded a threshold value, the bunch behaved differently from pre-

dictions of the static potential well distortion theory. Most prominently, both the

bunch length and energy spread were observed to increase. They also observed the

strong excitation of several coherent synchrotron modes above the threshold current.

These observations suggest that the equilibrium determined by the static potential

well distortion is unstable when the current reaches a threshold. We will apply the

Vlasov [24] technique to study the bunch lengthening instability perturbatively. Since

most experiments and numerical simulations give no clear evidence of mode coupling

at threshold, we will abandon the mode-coupling approach and search for an insta-

bility which occurs for a single synchrotron mode. Our approach is to include the

nonlinear static wake force. We will show that if we ignore this nonlinearity, the

bunch will always be stable. Nonlinearity of the static wake force gives rise to a

non-Gaussian distortion of the bunch, which in turn drives the bunch lengthening
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instabilit y.

3.1 Experimental Results

In 1977, Wilson et at. [8] reported an extensive measurements of the bunch length

and the energy spread in the storage ring SPEAR II. Some of their results are shown

in Figure. 3.1. Their findings are summarized by:

1. At a threshold current, both the bunch length and the energy spread increase

abruptly. Since the static potential well distortion theory dictates that the

energy spread remains constant. this gives a strong indication that the bunch

motion is no longer described by the equilibrium solution of the Vlasov equation

above this threshold current.

2. Bunch lengthening thresholds coincide with the growth of longitudinal modes.

The quadrupole mode appears at the lowest current, corresponding to the onset

of an abrupt increase in bunch length. Other modes contribute less strongly

at higher currents. This also supports the observation that some synchrotron

modes become unstable at the threshold.

3. The energy width of the bunch core follows the bunch length very closely in the

various current regimes.

4. Below the threshold, there is a nearly linear relation between the shift of the

synchrotron phase angle and the current. This indicates the parasitic mode

resistance must be almost constant. However, this linearity breaks down as the

current reaches the threshold.
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Figure 3.1: Bunch lengthening measurements on SPEAR II. Bunch length, energy
spread, mode strength and phase shift data plotted as a function of bunch current.
(from Wilson et al., 1977.)
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5. There is a scaling behavior of the dependence of the bunch length on the machine

parameters after the current reaches the threshold. This scaling parameter is

20C E (3.1)
Vs0S0

There are other good measurements of the bunch lengthening instability, most notably

the one done on the SLC damping ring by Rivkin et al. [33]. The conclusions are the

same as Wilson's. Rivkin et al. also measured synchrotron oscillation frequencies as

a function of the bunch current and observed no coupling of lower-order modes at the

threshold current.

3.2 Longitudinal Modes

From this section onwards, we investigate the stability of the static potential well

distorted equilibrium. The Vlasov equation 2.68 for the particle distribution '(7, 6, t)

is given by
ai, dr O' d5 a,

+ dt a + dt s = 0 . (3.2)Tt dt T7 dt 06

The single particle dynamics are (Eqs. 2.12 and 2.13)

dT
dT - q, (3.3)dt
d6 - T 1

-- = - -- F(7). (3.4)dt I EoTo )

Substituting Eqs. 3.3 and 3.4 into Eq. 3.2 yields

67 w2o O F(r) Ob = 0. (3.5)
at - 7a + 7 a0 EoTo as0

In order to understand the mode structure clearly, we will investigate Eq. 3.5 in

increasing complexity. First, we consider Eq. 3.5 without the wake field

-at _ L + a O
t _ 

+--- -= 0. (3.6)at~ T 77d
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In the polar coordinates,

7 = rcosi ,

6 = r sin, (3.7)
UsO

the Vlasov equation takes the much simpler form

+i i° = 0. (3.8)

The equilibrium. or the time-independent solution of the Vlasov equation must not

depend on o:

o0 = !o0(r). (3.9)

From the arguments in Sec. 2.3, we know that

0'o(r) = 2 e exp 2(3.10)
2?.7u7o 0 ? J80/

The time-dependent solutions of the Vlasov equation, known as coherent svn-

chrotron modes are

i = Rl(r)exp(ilQ - it). (3.11)

Substituting Eq. 3.11 into the Vlasov equation in the polar coordinate Eq. 3.8, we

get the eigenvalues:

Q(l) = lpso (3.12)

Here I is any integer.

In conclusion, we have the longitudinal modes of the system. Their frequencies

are multiples of the synchrotron frequency wo. For a particular synchrotron mode

Q(') = lSwo, the distribution is

4 = Rl(r) exp(il - ilwot). (3.13)

Since we did not include the wakefield, the internal structure of each synchrotron

mode is degenerate. Thus the eigenfunction RI(r) is arbitrary.
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3.3 Sacherer Equation

In this section, we will start to consider the effect of the wake field on the equilibrium

by investigating the Vlasov equation perturbatively:

V' = 'o + 1 + .. (3.14)

The zero'th order Vlasov equation is:

U;4a lo
q , 06

Fo(T) 0 0
ET- = 0.
EoTo a

(3.15)

Here the subscript 0 denotes a zero'th order quantity. In this section, we will only

keep the linear order terms in the zero'th order wake force:

FO(T) = F0 (0)+ d-7 + o(T 2 ). (3.16)

Substituting Eq. 3.16 into Eq. 3.15, it is evident that all the wake field effects can be

incorporated into an incoherent frequency shift,

2 24[1 17 dFo
so S ETow' d0o

(3.17)

and a shift of the center of the bunch:

T T = T -- To, (3.18)

o= q -l Fo(O).
EoTow,

(3.19)

Thus the zero'th order solution of the Vlasov equation, i.e. the equilibrium distribu-

tion, is still given by Eq. 3.10 with the shifted synchrotron frequency ws to replacing

WsO and the center of the bunch shifted to To0 (T - 7'):

1' 22T -~lQo(rI) = 2 7 exp 2 2
27K07 0 71 Or72

(3.20)
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It is interesting to note that this linear dependence of the shift of the center of the

bunch on the bunch current has been clearly identified in the experiment of Wilson

described in Sec. 3.1 (see Fig. 3.1).

Now consider the first order Vlasov equation:

00, - ' [0, 2/Fo() 1 Fi _ _) __ o
at 5q a +E 0 02 12 [a -F(= 0. (3.21)

at a7 rl EoToos 05 EoTo 0'

Using the linearized zero'th order wake force approximation, we have

a0" q a~1 +2 4/,i F (T') 0/'0
l_ $ -+ a F1 ('') a- - 0. (3.22)

at ar' -05 EoT o

Note we have shifted the zero point of the arrival time to the center of the bunch by

using 7'. Change now into the polar coordinates

T = r cos 

6 = r sin6. (3.23)
u-s

Note the difference between Eq. 3.7 and Eq. 3.23. In Eq. 3.7, corresponding to the

case of zero bunch current, the center of the polar coordinate is chosen to be the

same as the position of the synchronous electron. In Eq. 3.23, corresponding to

the more general case of non-zero bunch current, we have shifted the center of the

polar coordinate to the center of the bunch, which is different from the position of

the synchronous electron when the bunch current is not zero. 1We have also used the

shifted synchrotron frequency w, in Eq. 3.23. Equation 3.22 can be further simplified:

0¥! a F1 (:T') a /,0
at sa = 0. (3.24)

at 0 EoTo 0O

where 7' and 6 are to be regarded as functions of (r, ). Next, Fourier expand A in

terms of the synchrotron modes:

in = E RI(r) exp(ilo - it). (3.25)
I=-'X!
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This is always possible since t'i must be periodic in 0 with period 27r. We have used

I as the summation index in anticipation that it actually is the longitudinal mode

index discussed in Sec. 3.2 in the limit of weak beam intensities.

Substituting Eq. 3.25 into Eq. 3.24 yields

-iZ(Q
1'

I- l'w)RI (r) exp(il'¢) - sin (r)
EOTOW)S

x J dw (w)exp(iwr')Z(w) = 0. (3.26)

Here p is the Fourier transform of the density

2-i exp(-iwT')pi ( T).
2w (3.27)

Multiply Eq. 3.26 by exp(-ilp) and integrate over 0 from 0 to 27r, using the integral

identity

do exp(-ilo + i~r cos p) sin X = -i 1l-J(wr), (3.28)

to obtain the eigenvalues equations

- 1,uw8)Ri(r) + ,e () l (0(r) = .-i(~ ,,,,,i, - )+ £0o,, r I

1 = 0, +1, ±2,. (3.29)

In Eq. 3.29, J(x) is the Bessel function. We will need to express pI(w) in terms of

the longitudinal synchrotron modes:

1 = d 2 exp(-iw)pl(r)

2w Jd

2rc dJ

T d6exp(

rdr exp(-iwr cos ) E R1, exp(il')

i -' 0i rdrRi,(r)J,(wr).1 l,
77 if
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Substituting Eq. 3.30 into Eq. 3.29, we have

( - l,)R(r) = -iE 2 ol r E f'dr'

x il' Rl,(rt) I dwZ ( )Jt(wr)Jl,(wr'). (3.31)

Given the impedance Z and the initial distribution ¥'o, we can in principle solve this

eigenvalue problem to get the eigenvalues and eigenfunctions. We can calculate the

bunch lengthening threshold by determine the bunch current such that the system first

has complex eigenvalues. Many researchers have used this formalism to investigate the

bunch lengthening instability. The coupling of two adjacent (higher) modes was first

proposed by Sacherer [28]. However, the required strong impedances at frequencies

well beyond the vacuum chamber cutoff made the model unconvincing. The theory of

the coupling of the dipole mode (I = 1) with its mirror image ( = -1) was published

a few years later [45, 46]. This eliminated the requirement for large impedances

at very high frequencies, but the comparison of predictions for the threshold with

measurements at SPEAR were unsatisfactory. Chao and Gareyte [13] developed a

scaling theory for the bunch length and energy spread. Their qualitative result fits

experiment well. However, their theory does not predict the threshold.

The most important objections to any theory based on the coupling of two low

order synchrotron modes come from experiments. Both the experiment by P. Wilson

et al. [8] and the more recent experiment by L. Rivkin et al. [33] did not observe mode

coupling at the bunch lengthening threshold. For example, in Fig. 3.2, the frequency

of the dipole mode and half the frequency of the quadrupole mode are plotted as a

function of the number of particles in the SLC damping ring. These two modes are

well-separated at the threshold N=1.5x10 1 . Our numerical simulations also seem

to suggest this conclusion (see Ch. 4). Based on this, we will abandon the coupling

of synchrotron modes in search for the instability mechanism and try to find the

instability within a single synchrotron mode.
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Figure 3.2: The longitudinal dipole and half the quadrupole mode frequencies as
functions of beam intensity. Bunch lengthening threshold is at N = 1.5 x 101°. (from
Rivkin et al., 1988.)
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Neglecting the coupling of different synchrotron modes. Eq. 3.31 simplifies to:

(Q - w)R,(r) = E ( ) r'dr'Gj(r,r')RI(r').
EoTo r I (3.32)

This is the Sacherer equation [29]. Here the kernel

G,(r,r') = dwImZ(w)J,(wr)J,(wr') (3.33)

is real and symmetric and is determined by the imaginary part of the impedance

Z(w). In the next section, we will show that this equation only has real eigenvalues.

3.4 Stability of the Single Mode Sacherer Equa-
tion

We begin by examining the slightly generalized eigenvalue problem:

QR(r) = J drfi(r)f2 (r')G(r, r')R(r'). (3.34)

We will assume that G(r, r') is real and symmetric and all other quantities are real.

Define

F(r) = R(r)/fi(r). (3.35)

the eigenvalue problem changes into:

QF(r) = I dr'tw(r')G(r, r')F(r'). (3.36)

w(r) is the weight function and is given by

w(r) = f(r)f 2 (r). (3.37)

Usually w(r) is a positive function. Define the inner product for the Hilbert space

spanned by the eigenfunctions of the Eq. 3.36 as

(u, ) = drw(r)u(r)v(r), (3.38)
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Consider the right hand side of Eq. 3.36 as the action of integral operator op acting

on the function F(r):

IopF(r) = J dr'w(r')G(r, r')F(r'). (3.39)

We can prove that the operator Iop is symmetric, i.e.

(u, Iopv) = (Iopu, v). (3.40)

Since

(u, Iopv) = J drw(r)u(r)Iopv(r)

= Jdrw(r)u(r) dr'w(r')G(r,r')v(r')

= Jdrdr'w(r)w(r')u(r)v(r')G(r, r')

=J drdr'w(r)w(r')u(r')t(r)G(r', r),

and since G(r, r') is symmetric, we find

(uI opv) = J drdr'w(r)w(r')u(r')tv(r)G(r, r')

= J dri(r) [J dr'w(r')G(rr')(ru(r')] v(r)

= I drw(r)Iopu(r)v(r) = (Iopu,v). (3.41)

The operator Iop is also real, and thus it only has real eigenvalues.

We conclude that the single mode Sacherer equation 3.32 only has real eigenvalues.

All synchrotron modes will always be stable. In order to explain the bunch lengthening

instability within the single mode framework, we need to look for new instability

mechanism.
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3.5 Improved Sacherer Equation, Part 1.

Left out in our derivation of the single mode Sacherer equation 3.32 were nonlinear

terms in the zero'th order wake force. This is a poor approximation, as seen in

Fig. 3.3, where the zero'th order wake force and the equilibrium bunch shape are

plotted for a bunch current near threshold. It is clear from Fig. 3.3 that the bunch

experiences significant nonlinearity of the wake force.

NWhen the nonlinearity of the wakefield is included, the arguments following Eq. 3.16

are no longer valid. Substitution of Eq. 3.16 with full nonlinearity into Eq. 3.15 shows

that the effect of the wake field on the equilibrium can not be fully described by the

synchrotron frequency shift and the shift of the center of the bunch. Although the

distribution in the energy spread is still Gaussian in the static potential well theory

(i.e. below threshold), the arrival time distribution p(T) is distorted from a Gaussian.

Transforming to polar coordinates, the equilibrium distribution will, in general, be a

function of both r and : d'o(r, 6).

Fourier expanding ,'o(r, 0) in the o variable gives

~l'o(r, &) = fo(r) + f(r) cos 0 + f 2 (r) cos 20 + . (3.42)

Since 6 x sin and ¥'o is an even function of 6, there are no sin n0 terms in the

expansion Eq. 3.42.

HWihen the current I = 0, we only get a -independent term: fo(r) = o(r). This

will lead us to the real and symmetric operator (which is proportional to the current),

found in the single mode Sacherer equation. When the current is not zero, we get

fi(r), f 2 (r), etc. These terms are proportional to the current and they introduce

asymmetric perturbations to the Sacherer equation which are proportional to the

square of the current. Thus. we anticipate deriving a new, improved, Sacherer-like
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Figure 3.3: Nonlinearity of static wake force from calculations based on SPEAR II

data. Bunch current is at the threshold current of 45mA. (a) Density profile p(T).

(b) Static wake force Fo(r) (given by Eq. 2.66).
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equation of the form

(Q~ - s)Rj(r) = I x symmetric operator on RI

+ j2 x asymmetric operator on Rl. (3.43)

An equation in the form of 3.43 has the property: When the current I is small, the

symmetric operator dominates and the system has only real eigenvalues, and when I

reaches some critical value, the asymmetric perturbations are big enough to push the

eigenvalues into the complex plane. For currents greater than this critical current,

the sstem is unstable.

3.6 Parameterization of the Equilibrium

\Ne will now investigate the formalisms of the previous section in greater detail and

develop an efficient computational algorithm for the computation of the threshold

current.

In principle, we need to know all the functions f,(r), n = 1,... oc, in the Fourier

expansion of the equilibrium Eq. 3.42. In order to develop a fast numerical scheme

for studying the bunch lengthening instability, we need to truncate the series at as

small n as possible. In this problem, we use the cummulant expansion technique to

systematically truncate the series.

For an arbitrary distribution p(T), consider its generating function

+oo 
n

X2 X3 4

f(X) = E < n >= 1 + < r > +- < 2 > +T < 3 > + < 4 > +"
n=O n! T134!

(3.44)

Here < a > denotes the average by the distribution function p(r):

< a >= J dTp(T)a(r). (3.45)
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< T > is usually called the Oth order moment of the distribution p(r). The cummu-

lant expansion for the generating function is defined by:

X2 X3 X4

g(x) = logf(x) = log (1 +x > < r > + .< T > +7 < r >+

X2 X3 X4

= 1 + X < > + < 2 > + < T 3 > + < 4
>c '''. (3.46)

Here < rn >c is the n'th order cummulant for the distribution p. Performing the

Taylor expansion in Eq. 3.46 and equating terms of the same order in x gives the

relationship between the ordinary moments and the cummulant moments:

< >=< >c, (3.47)

< 72 >c=< T2 > - < > (3.48)

< K 3 >c=< 73 > -3 < 7 > < 7 > - < 7 > (3.49)

< T 4 >c=< 4 > -- 3 < 2 > _-4 < >< T>3 c -6 < > 2 < T2 >c - < 7 >4 ,

(3.50)

with the extension to higher-order moments straightforward. Note that a = < 2 >

is the standard deviation, 71 =< 3 > /3 is the skewness and y2 =< 74 >c /° 4 is

the excess of the distribution.

Our strategy for the construction of the truncation is the following: First, we

develop a numerical solver for the Haissinski equation 2.78. Due to the causality of

the wake, this turns out to be relatively easy and the required computation time is

very short. Second, after obtaining the distribution p(r) numerically, we evaluate

the average < r >, standard deviation a!, skewness y1 and excess y72. In principle,

we can keep arbitrarily high order moments. But we will show later that for the

SPEAR parameters, it is a sufficiently good approximation to keep the first four

lowest order cummulants. Third, we need to construct an analytical functional form

of the distribution p from these four cummulants. This is the task we describe below.
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Consider

f(ik) 1,) >=] J drp(r) exp(ikr).
n=O

The distribution p(r) can be found by the inverse Fourier transformation:

p(T) = J 2 exp(-ikr)f(ik)

p() =dkexp(-ikr) exp (g(ik))P(7) 27

Jdk
= 2 exp

27r
-i'k7

+ +c (ik)n

n!n=1

< Tn >)

exp (-i'(T-

\+ (= exp E
n>3

k232 + O (ik)n
< >) - - + E <

'" n>3

Here,

D

is a differential operator and

n(7) = d exp -iTk7 -
k2a2)

2)

1
: ~cr exp

- 27w 7(22 (3.54)

is a normal distribution centered at the origin with standard deviation of a.

In conclusion,

p(T) = exp
n>3

)n(7- < 7 >). (3.55)

Now we are ready to start our truncation procedure: Keep only the skewness and

excess moments in Eq. 3.55 and, since both the skewness and excess moments are

proportional to the current, we can linearize with respect to them. Then

p(7T) [1
713 D3

6
24 D] n,(7- < 7 >). (3.56)
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(3.51)

Tn >c

n(T- < T >).

9

(3.52)

(3.53)

< n >'

< n > -D)
n.



Generally, differentiation j times with respect to of the normal distribution, n(r),

results in a j'th order polynomial Pj(r) multiplied by the distribution n(r) itself:

DJn(T) = Pj(r)n(r).

We find

p(r) [1 -1 3
- -P 3 (') +6

'Y2ap4 ()

24 

(3.57)

] n(r'). (3.58)

Here r' = r- < r >. Substituting the explicit form of the polynomial P2 and P4 into

Eq. 3.58 gives the desired expression for the distribution function p(r) in terms of the

first four moments of a cummulant expansion.

p(r) - [1 + -6 + 3)] n(')

There are a few properties of this approximate distribution Eq. 3.59 that are worth

noting. First,

I + ' 3 3 )
6 3 o7

+ 2 T 4

24 ha
12 )-6 + 3 n(r')C.2 ,,

(7Tt4 7T2
dT' -- 6 +

0A 7 2
3) n(r').

It is easy to verify the integral in Eq. 3.60 is zero, so that

J drp(7) = 1,

and the approximate distribution Eq. 3.59 satisfies the normalization condition.

Second, since the center of the distribution is defined by

J dTp(r)r =<

=< > + d'

> + dp(r)rT

( - -3-) n(T'),
O(3 07

and the integral in Eq. 3.62 is again zero, we conclude that neither skewness nor

excess will change the center of the distribution.
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(3.59)

I dp(r)

(3.60)

(3.61)

(3.62)

= I+ 7
24 1

- 3- 
01



Third, consider the variance of the distribution,

dTp(r)r ' = a + d' (-4 - 6T2 + 3 ) n(r') (3.63)

Since the integral on the right hand side of Eq. 3.63 is once again zero, the variance

is not affected by the skewness and excess moments.

Finally, we want to graphically compare the distribution given numerically by

the Haissinski equation 2.86 with the distribution given by Eq. 3.59 with the same

lowest four cummulants: < >, , 71 and ''2 WeVe use the SPEAR II parameters

with a bunch energy of 3GeV. In Fig. 3.4, the bunch current is 25mA. The solid line

is the distribution given by the numerical solution of the Haissinski equation and

the dashed line is the approximate distribution given by Eq. 3.59. We can hardly

tell the difference between the two. In Fig. 3.4, we plot the wake field energy loss

per turn. Since it is the convolution of the wake function and the distribution, the

difference between two distributions has been further reduced. In Fig. 3.5, the current

is at the threshold value of 45mA. Although the difference between the approximate

distribution and the numerical distribution is getting bigger, it is still less than 5

percent. We conclude that it is a reasonable to use only the lowest four cummulants in

our approximation of the equilibrium. For other cases, we might need to include higher

order moments, and the principles and procedures of this section can be extended

straightforwardly.

3.7 Determination of f(r)

Since we have the analytic form of the equilibrium in the Eq. 3.59, we are in a

position to determine the functions f(r). Substituting Eq. 3.59 into Eq. 2.77 gives

the approximate equilibrium distribution function:

i,, 62 72\
ii'O (r,) d= exp- - - I

27wU60 2uo0 2o, 
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.45

.41

.35

.36

.;6

.15

.16

.85
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(b)

Figure 3.4: SPEAR II data with bunch current 20mA. Solid lines are computed from
Haissinski equation 2.86. Dashed lines are from our approximate distribution 3.60.
(a) Density profile p(r). (b) Static wake force Fo(T) (given by Eq. 2.66).
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Figure 3.5: SPEAR II data with bunch current 45mA. Solid lines are computed from

Haissinski equation 2.86. Dashed lines are from our approximate distribution 3.60.

(a) Density profile p(r). (b) Static wake force Fo(r) (given by Eq. 2.66).
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X + ' (3 T
6 cr

Y2 i/ 4

24 aT
4

rT2

-6-
a

+ 3)].

Transforming into the polar coordinates

T = r cos ,

5 = rsin ,
Ws

results in

¢o(r, ) = ?bo(r)

[>l+ y1 r 3 r
6 O' 

cos )
r2

0 -6 2 cs 2
01

Here ryo(r) is given by Eq. 3.20:

V'o(r) = 27r-- exp / w2 r2

2 172 2 ,'

Next substitute the trigonometric identities

1 1
cos = + -cos 29

2

1

(3.66)

(3.67)

(3.68)

1

cos3 = - os 4 + - cos 36,
4 4

3 1 1
cos4 = + - cos 2 + cos 4,

2 8

into Eq. 3.65, and regroup terms so that the constant term is fo(r), the coefficient of

cos o is f(r), the coefficient of cos 20 is f 2 (r), etc. Then

fo(r) = ¢O(r) 2 + 1) (3.69)

(3.70)

(3.71)

(3.72)

1+8 (8
[ Y8 s0,4

fi(r) = 22/,, (r) 4-)
8 W3 -

f2(r) = o'( (r)48 Or4

'Y1 3
f3(r)= -o(r)-,

24 a33

73

(3.64)

+ 3)] (3.65)+ ar4 COS4

_ , r 



192 t"0((3.73)f4(r) = 192O(r) 4- (3. '3)

Substituting Eqs. 3.69- 3.73 into Eq. 3.42 gives the equilibrium distribution in terms

of cummulants calculated from Haissinski equation 2.86. The next section shows how

to study Vlasov equation with this equilibrium.

3.8 Improved Sacherer Equation, Part 2.

In Sec. 3.5, we demonstrated that the nonlinearity of the wake field will distort the

equilibrium density from its Gaussian shape, and that this, in turn, will result in

asymmetric corrections to the Sacherer equation. We also showed that the symmetric

operator in the Sacherer equation is proportional to the current and the asymmetric

operator correction terms are proportional to the square of the current. So we expect

the asynmmetric terms will push the eigenvalues of the system into complex plane

when the current reaches some threshold value. In the previous two sections, we de-

veloped an efficient way to approximate the non-Gaussian equilibrium by cummulant

expansions. With only four parameters, the center of the bunch, < >. the bunch

length, arr, the skewness, yi and the excess, %^2, we can approximate the potential

well distorted bunch shape very accurately even when the bunch current is close to

the threshold value. With this approximation, we can obtain the analytic form of the

equilibrium distribution. In this section, the results of the previous sections are used

to derive our complete improved Sacherer Equation.

We start from the first order Vlasov equation 3.21:

ani'1 a l +2 rFo(r) aU F,()at;& " 2 r7Fo(sOT) &Li (T) (3.74)qb-- E,, Tow = a E T 37

Changing the zero point of the arrival time T to the center of the bunch:

T = T- < >, (3.75)
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- 6 rat d7/
FF(T') p0o

ETo a0.
EoTo aS (3.76)

Here f (r') is given by

?7Fo(T')
f(T') = T'+ < > 

EoTowso
(3.77)

We have retained all the nonlinear terms in the wake force. Next, define the shifted

synchrotron frequency by

and write the first order Vlaso equation as

and write the first order Vlasov equation as

OTl'
Ws , l

7 - + g(r')0$ y7/

(3.78)

(3.79)
F1(r') 0dao

=0.
EoTo 

Here

g(T) = 2[

2 r/ 2

'7 L V so !
Introduce the polar coordinates

(3.80)

T = r Cos O,

= r sin o,

and the Vlasov equation reduces to

+ as + g(7) a at ao ds
F1 (r') 0 o

EoTo 0.
EoTo as

The first two terms in Eq. 3.81 are familiar. They are the Vlasov equation in

polar coordinates when the bunch current is zero, or when the wake field is neglected.

The time dependence in these two terms can be easily factored away if we assume

the system is in the I synchrotron mode:

V,1= E
I'=-r

Rp,(r) exp(il'9 - it),

75

gives

(3.81)

(3.82)

"O f(7') '
71 06

2 
Lrlr.!3·

7,+ < > qF r',
E'oTowsO

W,



then after projection into the synchrotron mode, the contributions from the first

two terms are:

- i(Q - lwu)RI(r). (3.83)

The third and the fourth terms are the direct result of the wake field. We will

investigate them in detail. From the expression for g(T'), we can break the third term

into

(3.84)g(rT')l =A+B+C,g(~) a

with
.2

B --w 20° - r - l
B= SO (1-,20)T '6

Fo( TI') l1
EoTo d'

and

(3.85)

(3.86)

(3.87)

To proceed further, we need the relationship between the partial derivatives with

respect to the polar coordinate variables r and to the partial derivatives with respect

to the rectangular coordinates r' and :

__ _ (aL'1

W, ar
0si '1 cos )

sin + + , a(? r 

Substituting the synchrotron mode decomposition of '1i (Eq. 3.25) into Eq. 3.88 gives

ws '1/'1 _

71 a5
+00 +oE R 1 (r)
Z R',(r)exp(il'o) sin 0 + ---- exp(

1'=--o l-
1 =--00

il')il' cos , (3.89)

where we suppressed the factor exp(-iQt) which is common to all terms in the first

order Vlasov equation 3.21. So that

2 +00

A4 = 5° < r >[ Rl,(r)exp(il'o)sin +
t= - C,

. (3.90)
I7

76

(3.88)

$" RI, (r)C e~~xp(71'O)z-' os ~



Next we need to decompose this term into its I'th synchrotron mode,

Al = | doexp(-il)A.1/
Noting that

2 I d&exp(i(l'- )&)sin 
2 r

do exp (i(l' - I + $) -1 Jdexp (i(l' -l- 1)&)

z
= [- - '-1+1],2

21 doexp(i(l' )- )cos $

I - I / d6 fxp ~l'- I
do exp (i(l'- I + 1)) + I d exp(i(l' -

= 1i
=1 [6'--1i + ''-i+1],

2

- R 1_l(r) + (I - 1 )Rtl (--r) + (I + 1) R I+ l ( r) ][/R+l (r)
There is no contribution to Al from the I synchrotron mode. Since we will neglect

the contributions from the neighboring modes, we have

A41 = 0, (3.95)

in our improved Sacherer equation.

From Eq. 3.89,

rRl,(r) exp(il'0) sin 20
2

- 2 ) 1 R,(r)exp(il')il'cos2 .
L sO I'=-oO

W,
.gs tUsin (1

Using the integral identity

2 / doexp(i(l'- l)O)sin2
27r

77

(3.91)

and

(3.92)

=11

we obtain

2

2 s

(3.93)

(3.94)

(3.96)

1 1

2z 2r I

2
W, LA)S

+00

E
P=-00



1 J d exp (i(I'
2i.27rI

Idoexp (i(
i

= [6d'-1-2 - '-1+2],
9

and

21 do exp(i(l' - )) cos 2

exp ( 1 + cos 2

1
2

4 I J d-exp(i(l'- + 2))+ 42

1 1
= -6l + - [6-z+2 + 61'-I-2].
2 4

we can decompose the term B into its l'th snchrotron mode:

B = Jdtpexp(-ilo)B2 7

2
= sO 

4 ,w3

2

C rR0
2 1 1-2 1

WSO/

-,; ) [(I + 2)RI+2(r) + (I2
-'J +O

- 2)RI_2(r)] (3.99)

Neglecting the contributions from the neighboring synchrotron modes gives

Z s (2( (3.100)2 I 1Rw)
,U ,,2,,

Using

Fo(T') = \e 2 Lo , dr"po(T")W(T" - r')

= Jd fJ dwo((w)Z.(w) exp (i'

and Eq. 3.89, we find

C _ TowNe d&wo(w)Z(w) exp(i v r cos )C = Eo~~owS

R',(r) exp(il') sin ( +
L'=-o

RI( r) exp(il',)il'
r
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(3.97)

(3.98)

2 s

(3.101)

cos j (3.102)

21 7 if - - 2 ')9

ddoxp ji1l1 - - 0)

W2

2 `
WSO 

2

IRI(r)+ i :" 
4 eL~ (

+ o,,

E



In deriving Eq. 3.101, we have used the definition of the longitudinal impedance given

in Ch. 2,

Z(w) = L+ d 'e i (T r'), (3.103)

and the Fourier transformation of the equilibrium density function po given by

o(W) = • eW-iT'po(I). (3.104)

In order to decompose the term C into its l'th synchrotron mode, we need the integral

identities

JdoI:- exp (i(
27

' - )o + ir cos ) sin = -i l- l - r)
;.r

and

- exp (i(l' - l)0 + iwr cos ¢) cos 6 = -i-" +lJl,(wr).

Here J is the Bessel function. With Eqs. 3.105 and 3.106, we find

Ct = I doexp(-il,)C

EoT- owj d p o()Z()
EoTow.,ds (,)(,

x - E
-

=-00

Rl,(r)i - l'Jl ( r) +
LwLr

+ R,,(r) Itilr
I'=-_0

(wr)]
1'

(3.107)

Once again we neglect the contributions from neighboring modes and arrive at

CIEq w 1 d (o(,)Z ) Ri(r). (a
Eo To, d, r

Finally we are left with the last term of Eq. 3.81. Since

62
¢'o oc exp(- 2 )Po(r), (3

aTo 6
=- 2-o.UU 6 0

(3.110)
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(3.105)

(3.106)

then

.108)

.109)



This leads us to

F1(i-') 6

EoTo 70 Vo 
(3.111), Eo F (T)r sin c'o.

From Eq. 3.42,
+co

'o(r, 5) = yE fn(r) cos n,
n=O

we have
+oo

rsin()o = rfo(r) sin + E rfn(r) sin cos no
n=1

= rfo(r) sin 0 + E 7fn(r) [sin(n + 1)3 - sin(n - 1)]
n=1

+o

- -a 2 gn(r) sin n.
n=l

Here the functions gn(r) are related to the functions f(r) by

g9(r)

gn(r)

r

(f2(r)- 2fo(r)) 
r

22(fn+l()-,fnl(r)) n > *)

(3.112)

(3.113)

(3.114)

(3.115)

On the other hand, proceeding as in Eq. 3.101, we have

F(Tr') = Ne2 J dwt(w)Z(w) exp(iwr cos O).

The last term in the first order Vlasov equation 3.21 then becomes:

F,(T') 0l'o

EoTo 
re2 J dwjPl(W)Z(.) exp(iwr cos Q) 6 n(r)sil o.

o: s Eo To n=1

(3.116)

(3.117)

In order to decompose this term into its l'th synchrotron mode, we must evaluate the

integral

- exp(-ilO + iwr cos o) sin n~o
27rn

= 2 - exp (-i(l- n) + iwr Cos )

= -il -nJln(wr)

- -exp(-i(l+n)>+ AiWrCOS 6)

- -i +nJl+n(wr) (3.118)2i

s80

F (') a,o
EoTo 



and express Pl(w) in terms of the longitudinal synchrotron modes given by Eq. 3.30:

pl () = 5 i--
q if

I +O

0
(3.119)

Then

2' I d exp(-il) (-

dw i i" r'dr'RI(r')J(wr')Z(w)
11

+00

x g(r)
n=1

2 il-J-n(wr) - ijl+Jn(wr)) .TZ 21i

Neglecting the contributions from neighboring synchrotron modes result in

21 Jd/exp(-il) ( Eo T o

iNe2 +00

2iEoToE gn(r) r'dr'G (, r')R 1 (r').

Here Gln)(r, r') is given by

G(n)(r,r') = dwZ(w) (Jl_,(wr) - (-1) Jl+(wr)) J(wr').

It will be particularly illuminating to calculate the n = 1 term. Using the following

recursion relation for the Bessel functions:

Jl_(wr) + Jl+l(wr) = 21Jl(jr),Lor
(3.123)

we can simplify

G(1) (r, r) =21 d ()Jl((r)Jl(wr')

21 r dwImZ(w) J(wr)J,(wr') = 21GI(r, r').
r 1r

(3.124)

Also noting that

1 (r) = 2 (f2(r) - 2fo(r))
2u2

r4 r2

24a,4 ,2a2 
1)] (3.125)
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(3.120)

(3.121)

(3.122)

r'dr'RI, (r') J1, (wr').

F, (7) d19 0

Eo To 96

= EoTo 

(2 8"' [+Y



we find that the n = 1 term in Eq. 3.121 can be written as

NE-o Io 2 () 1 + -24 - + 1) r'dr'G,(r,r')R(r'). (3.126)
-ETo o,2 8 244 2u o, J

Comparing this with Eq. 3.32, we see that they are identical if -y2 = 0 in Eq. 3.126.

Thus the n = 1 term is proportional to the bunch current and alone would yield a

generalized Sacherer equation (with a correction from the excess 72 0).

It is instructive to examine terms with n > 2 under the assumption that the wake

field is linear. In this case the equilibrium bunch shape will be fully described by a

Gaussian distribution. Thus the equilibrium distribution function in the phase space

0o(6, T) depends only on r. In this limit we can expect

fi(r) = f 2 (r) = .- '= 0. (3.127)

From the relation between functions gn(r) and f(r),

r
gn(r) = (fn+l(r) -f-l(r)), (3.128)

we know that f(r) = 0. n > 2 implies

g2(r) = g3(r) = .. = 0. (3.129)

All terms g,(r) with n > 2 vanish if we neglect the nonlinearity of the wake. They are

the direct result of the corrections introduced by the nonlinearity of the wake force.

From the above discussions, it is clear that these terms are the desired correction

terms to the the original Sacherer equation.

Combining Eqs. 3.95, 3.100, 3.108 and 3.121 gives the improved Sacherer equation:

(Q - lw,)RI(r)

=- 1-° - 2) Rl(r)

-i EiNe 2 J (lZ( r)
EoTowjI dw o (w)Z (w) RI(r)

82



Ne2 +oo (3.130)
+ g- 00 r'dr' )(rr')R(r'). (3.130)

Eq. 3.130 is a significant result of this thesis. It gives, for the first time, an equation

for an uncoupled synchrotron mode which includes the contributions from the static

nonlinear wake force and predicts instability at a threshold current.

In the Sec. 3.4, we proved that since GI(r,r') is real and symmetric, and we

can always absorb the remaining asymmetric parts gl(r)r' into a redefined weight

function. This will lead to a real and symmetric Sacherer operator. The eigenvalues

of this operator must all be real. Of interest here are the correction terms to the real

and symmetric Sacherer operator given by the improved Sacherer equation 3.130.

Although G()(r, r') is real, it is apparently asymmetric with respect to the variables

r and r'. And we cannot use the same weight function redefinition technique to

eliminate this asymmetry. We can conclude that in general, the correction terms

are asymmetric real operators. Another important difference between the Sacherer

operator and the asymmetric perturbations is their dependence on the current. As

we have just shown in Eq. 3.125, gl(r) is equal to 0(r)/r as the current approaches

zero. So the Sacherer operator is proportional to the current. Since g2(r), g3 (r),

etc are zero when the nonlinearity of the wake is negligible, or when the current is

zero, they are proportional to the current. Thus the asymmetric perturbation terms

are proportional to the square of the current. This leads us to the mechanism of

the single mode bunch lengthening instability: When the current is small, the real

and symmetric Sacherer operator dominates. The system has only real eigenvalues.

When the current reaches a threshold value, the asymmetric perturbations driven by

nonlinearity in the wake force start to push the eigenvalues of the system into the

complex plane and the bunch exhibits the bunch lengthening instability.
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3.9 Frequency Shift of the Synchrotron Modes

Before we discuss the numerical solution of the improved Sacherer equation, we can

get some physical insight by studying its behavior when the current is small (much less

that the critical current). For this purpose, we will neglect all the terms proportional

to the square of the current in Eq. 3.130, namely all the asymmetric perturbation

terms. In this limit, the improved Sacherer equation becomes

(Q - lw=)Rl(r)

=_____ J1- 2 R
2 s WsO 

i]EN¢T2w J dq,'o(w)z(w) r Rl(r)
EoTow ri

Eo T rr

In order to obtain an analytic solution, we choose a simplified model for the equilib-

rium distribution for the i0,o.

lo0 if r> ,
) = { 0 ifr <.

This distribution is called the water-bag model [29, 13]. Any perturbation on a water-

bag beam will have to occur around the edge of the bag, i.e., around r = ~. As a

result, all Rl's are 6-functions, i.e.

Rl(r) = 6(r- .). (3.132)

This result also follows from Eq. 3.131 by inspection if we note that

= 6(r - (3.133)

Having obtained the eigenfunctions given by the equation 3.132, Eq. 3.131 reduces to

an algebraic equation that determine the frequency for the l'th coherent synchrotron
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mode:

( - Iw,) = 9O i 7 V2|dwo(:)Z(w)Jd(wr)
XT EoTow, 

- 7r.N2EoTo I d i,, mZ:() ). (3.134)

In deriving Eq. 3.134, we have substituted the the kernel Gl(r,r') by its explicit

expression given by Eq. 3.33. To proceed further, we need to calculate the o().

1po(w) =1 2e po(r) = dre d o

= ;2 j rdr J = 72 j rdrJo(wr). (3.135)

Using the integral identity for the Bessel function.

I dxx'Jn-(x) = xJn(x), (3.136)

we obtain
1

(w) = G Tw J1 (M). (3.137)

With po(w) given by Eq. 3.137, Eq. 3.134 simplifies to

- lwso = 2 w- + d (J() - J2()) (3.138)
2 w, Eo T0 .', w -:

This formula gives an explicit expression for the frequency shifts of different syn-

chrotron modes. Since we have neglected all the terms proportional to the square of

the current, we expect this formula to work well only when the current is small.

When I = 1, Eq. 3.138 has a particularly simple form:

I 2 L2
Q - Iwo = O (3.139)

2 w5

Since ws is very close to wo when the current is small, we can neglect the right hand

side of Eq. 3.139. This leads us to,

Q() ~2: wso. (3.140)
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Namely, the frequency of the dipole mode remains fixed as the current increases.

This phenomenon has been verified experimentally. Results from our multiparticle

multiperiod tracking simulation, which we will discuss in detail in Ch. 5, verify the

same conclusion. In fact, our simulations show that the frequency of the dipole mode

stays fixed even as the current is reaching its threshold value.

The absence of a frequency shift for the dipole mode can be easily understood

physically. The dipole mode oscillation corresponds to the particle bunch sliding as

a whole, together with its potential well deformation. Since we have neglected the

nonlinearity of the RF bucket, the bunch slides up and down on an RF voltage with a

constant slope. Therefore the coherent synchrotron frequency, which is proportional

to the square root of this slope, remains unchanged, and is independent of the bunch

distribution.

While shifts of I = 1 mode are not observed, tune spreads associated with this

and other synchrotron modes have been seen both in the experiments and in the sim-

ulations when the bunch current approaches threshold. The source of these spreads

has been omitted when we made the assumption of the water-bag equilibrium distri-

bution. By using the water-bag distribution, we limited ourselves to a delta function

perturbation. This restriction forces the degeneracy of radial modes (modes in the

r variable) within a particular synchrotron mode. In the next section, we will use

the equilibrium distribution given by the Haissinski equation and develop a numer-

ical algorithm to solve the improved Sacherer equation, and thereby obtain the full

spectrum of the radial modes.
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3.10 A Numerical Algorithm for the Improved
Sacherer Equation

In this section we develop a numerical algorithm to solve the eigenvalue problem

presented by the improved Sacherer equation 3.130. In the process, we will identify

two important parameters for the bunch-lengthening instability.

We will first demonstrate the whole process of discretization through the simpler

case of Sacherer equation given by Eq. 3.32. For the improved Sacherer equation, the

discretization procedure is identical.

The Sacherer equation is

(Q - ,)RI(r) = E IV r J r' dr'G(r, r')RI(r').Eo To r I
(3.141)

Since
r 2

i~O(r) = ~/2 exp(- 22)'

we can rewrite the Sacherer equation in the form

(3.142)

I)Rt(r) = -2 .. 2EOToo 2
3nLgu~U

2 J r r'
-d-GI(r, r')R (r').

Introduce a dimensionless parameter

and Sacherer equation becomes

(-RQ x = 7Nc 2 _2
( - l)RI(x) = - i-l,

;)s 2WTwC2ETl

Introduce the normalized quantities

7Ne2R

27rwEo Too'2 '
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r

a.
(3.144)

X12

'GI(x-o,, 'o)RI(x').1 
(3.145)

.2() 
RI(x) = 2F-r(x), (3.146)

(3.147)

W,



A (- (3.148)
Ws

so that Sacherer equation simplifies to

2 JRwAF(x) =- d 9 e-T2 I/d. R~: ( )Jl~w~x)Jl~ax')]Fl(')(3.149)

Finally, changing variable once again,

X2

Y = 2' (3.150)

yields a dimensionless Sacherer equation:

AFI(y) =- dy'e-Y[/dw IT Z(w) J1(caF2y)J(wo 2y')]F(y'). (3.151)
Rw

In order to solve this integral operator eigenvalue problem, we need to approximate

it by a matrix eigenvalue problem. Thus, we need to approximate the integral with

respect to y' by a summation. We will use Gauss-Laguerre quadruture technique for

this purpose.

We will not go into the details of the Gauss-Laguerre quadruture. The analysis

here follows well-known methods. In particular, the readers can consult Numerical

Recipes [47]. The technique shows that, if we choose the weight function to be

w(y) = e-Yy, (3.152)

where is a non-negative integer, then the following approximation of an integral by

a summation is valid:
r+0 N

aIf dyw(y)f(y) wjf (yj). (3.153)
j=1

Here the Gauss-Laguerre abscissas yj and weights wj can be obtained numerically [47].

With the help of the Gauss-Laguerre quadruture, the integral in Eq. 3.151 reduces

to the summation:

AF,(y) = - I[Jd z Rw ()J(w Vy)J(w 2yi)]F(yJ). (3.154)
j YRw
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If we set y = Yi, we have succeed transforming the eigenvalue problem with integral

operator into a regular eigenvalue problem:

AF(yi) = E ',F(y,),

with the matrix elements given by

Kit = - W
Yj

dw ()IzwRw illwa·2yi)Jj(Luow2yj).

(3.155)

(3.156)

The same discretization procedure can be used on the improved Sacherer equa-

tion 3.130. The only difference is that we obtain a new matrix element Kij:

Kij = [1
- Yi + )] Ki

- Yi W-J wRe()
V Y!Y} I R

(J-2 I:(w 2y,) - J+ 2(wo 2y)) Jl(woa 2 yj)

7 2 WiWi, f ReZ(o)
24V yty} T d R

- 4y) 2 t /
V Y Y 1

(J 4(wo. 2Yi) - Jj 4 (u2Yi))

ImZ(w)dw R

J (wa 2 yj)

(J- 3(L. 2 Yi) + J1 3 (LTy) J(w;a 2y3)

Y2 iww \/I7cT f ImZ(W)
_ V2yiyj1 i d R ) 2Jy5(w'fy) + J+ 5 (woU j( y)

192 V yy 1 I R

+a2 Jdw2rO() Im Z(w) Jl(wo-V ) i
+ I f ~2~)0(~) R Wv~ O *; j

Here, po(w) is the Fourier transformation of the parameterized equilibrium distribu-

tion of particle density given by Eq. 3.59:

() = J exp(-iwTr')po(r')(LO) 27rL~2

= J d exp(-iwr')-i [1+E 1I( r L/37
6 j3 r)

1 W2a2
-exp(- )2w 2

= (l+ i 7a33
24 )

1 W2a2
r exp(- )'2w 2
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02

(i d 5

u dw)

(3.157)

+ Y

8 6 Y

+ -Y' Y1 .

4 3

64 (Y2

SY^2 7 /4

+ 4o + 3 J-fc~-exp(_ a

6 o, dwz
- 3 i d

24Y
a adw



and the frequency of the l'th synchrotron mode Q is related to the eigenvalue A by

_ -2 A + -(- -). (3.158)
Os0 a2 a aO

It is rather obvious that the matrix elements Kij are completely determined by

parameter wra and yl and y2. 71 and Y2 are determined by the equilibrium particle

density, which in turn is given by the Haissinski equation 2.86. Since the Haissin-

ski equation is determined by two parameters, w,ra and , there are, for the case

of a broadband resonator wake, only two parameters in our analysis of the bunch

lengthening instability. This observation is very important in our analysis of the

bunch lengthening instability. In Ch. 5, we will determine the critical coupling ~ as

a function of Lr7r.

From Eq. 3.147, the threshold peak current Ip is given by

Nie (27r)3 vE2 oro'
I = = (- -r 3o . (3.159)

Thus, at fixed tune v, and momentum compaction , the threshold peak current

increases with a decrease in either the ring impedance, ring circumference or an

increase in bunch energy.
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Chapter 4

Multiparticle Tracking Simulation

With the advance of computational technology, simulations have become important

tools in studying accelerator physics. In this thesis, an efficient multiparticle, mul-

tiperiod tracking simulation code is developed to investigate the bunch lengthening

instability. The motivation is to verify the new instability mechanism presented in

the previous chapter, in particular the determination of the critical current based

on the instability analysis of the improved Sacherer equation. Unlike other areas in

experimental physics, there are only very small sets of experimental results on the

bunch lengthening instability. This is mostly due to the fact that many of the impor-

tant parameters in the bunch lengthening instability are machine parameters, which

are difficult to change. Furthermore, there are numerous factors present in the exper-

imental results, which makes it hard to identify the core mechanism underlying the

bunch lengthening instability. By using Monte Carlo simulations, we can control the

factor (i.e., the physics) to be included and thereby pinpoint the key physics which

determines the onset of the bunch lengthening instability.

In Sec. 4.1, we investigate the single particle longitudinal dynamics discussed in

Ch. 2. We focus on the stability of the iteration given by Eqs. 2.6 and 2.7. In Sec. 4.2,

we discuss a particle's trajectory in longitudinal phase space. It is a tilted ellipse

rather than a circle as previously assumed. This observation has led to a new quiet
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loading scheme. In Sec. 4.3, we describe how to incorporate the radiation damping

and quantum emission into the longitudinal single particle dynamics. In Sec. 4.4,

we include wake fields in our multiparticle simulation code. We discuss two fast

algorithms to compute the wake force experienced by each macroparticle. In Sec. 4.5,

we point out that the wake used in our multiparticle simulation is a local wake, while,

in contrast, the wake is distributed all around the the real ring. The impact of the

localized wake on the equilibrium bunch shape can have very different from that of a

distributed wake. In order to simulate the ring, we employ a multiperiod multiparticle

simulation, which distributes the wake over many periods. Finally, in Sec. 4.6, we

introduce several new diagnostics into our multiparticle multiperiod simulation code.

These new diagnostics are more powerful than most of the widely-used diagnostics.

4.1 Discrete Longitudinal Dynamics Revisited

The discrete longitudinal dynamics for a single particle are given by Eq. 2.6,

Tn+l = n - tEn+i, (4.1)Eo
6En+ = bE,- Vcos(s)warf-rn. (4.2)

A natural question arises: Why should one use E+l rather than En in Eq. 4.1? If

we review the physical arguments leading to Eq. 2.6, it seems that the difference

between the two are very small: both of them provide an approximation to the real

synchrotron oscillation dynamics, and it is hard to tell which one is better. But, from

the perspective of the stability analysis, the difference is huge.

First, consider

,1TTn+1 = r- SE, (4.3)
n- 6E n - CEo

6E,+ = E, -eT 'cos(,);,fn. (4.4)
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The stability of the iteration depends on the eigenvalues of the transfer matrix [48]:

= -eV Co5(§s).rf 1Eo ) (4.5)

The eigenvalues of the 2 x 2 matrix M are given by

A2 - TrMA + det M = 0. (4.6)

Since Tr M = 2, one has

2 - 2A + det M = 0. (4.7)

Furthermore,
d To

detl = 1 -Te V cos(O,)wrf > 1. (4.8)132Eo

if the synchrotron phase is in the range of < , < r. As explained in Sec. 2.1, this

is the desired range of the synchrotron phase (from the consideration of the stability

of the longitudinal oscillation). Thus, with the iteration given by Eqs. 4.3 and 4.4,

we have

l2 = det M > 1. (4.9)

The iteration is unstable.

Next, we investigate the iteration in Eqs. 2.6 and 2.7:

. To
,n+l = T, - 0 E,E+, (4.10)

En+l = bEn-eVcos(s)wrfTn. (4.11)

Substituting the second equation into the first one, we have

Tn+ = (1 + 77ToeVs(Os)wrf) Tn- 6E , (4.12)

bEn+ = 6En - eVcos()w,f/rn. (4.13)

In this case, the transfer matrix is given by

Ne o () W)f E Eo) (4.14)
-eV cos(O,)wf 1
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Its determinant is

det N = 1, (4.15)

and trace is

TrN = 2 + eV cos(O,)wf < 2, (4.16)
Eo

for the desired range of the synchrotron phase, < < 7r. From the eigenvalue

equation:

A2 - TrNA + det A' = 0, (4.17)

since (TrN) 2 -4 < 0, we can conclude that its eigenvalues are imaginary. Furthermore,

since

lA12 = det N = 1, (4.18)

the iteration given by Eqs. 2.6 and 2.7 is stable. This is the reason that Eqs. 2.6

and 2.7 are used in the single particle longitudinal dynamics.

4.2 Tilted Ellipse and Quiet Loading

In this section, we study the particle trajectory in the longitudinal phase space. Since

the iteration given by Eqs. 2.6 and 2.7 is similar to the particle's transverse linear

motion, we follow the results there to derive the equation for the particle's trajectory.

A useful reference on this subject can be found in the summer school lecture notes

by D.A. Edwards and 'M.J. Syphers [49]. In their notes, the transfer matrix is given

by

TAl = ( c a sin sin¢ ) (4.19)
-( Ct sin cos + a sin t;

The particle trajectory is completely determined by the two parameters a and b. y

is related to them by

1 + a 2

? 3^ (4.20)
33
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Let's compute these parameters from the transfer matrix for the longitudinal dy-

namics. Comparing the trace of the matrix TMI with that of the transfer matrix N

gives
cTo

cos 4 = 1 + -eVcos(Os)wr.
2Eo

(4.21)

Introducing the synchrotron tune,

(4.22)
WsO

sO =-
Wo

from Eq. 2.11, gives

2 rosO = -TeV COos()Wrf.

Thus, we obtain the phase advance:

cos v, = 1- 1(27rVso)2.
2

d is determined by equating TA11 2 = N 12:

rTo 1
a=

Eo sinu 

By equating TA12 1 to N21, we find

(4.23)

(4.24)

(4.25)

(4.26)
eV COs(O0s)Wrf

sin 

Finally, from

TA1, - TMiV22 = NV11 - ,V22,

Tn
2a sin = eV cos(s,)Wrf =

Eo

27r2v 2

Ca = -sin ,
sin !

The trajectory given by the transfer matrix T.M1 is an ellipse. Its equation is given

by [49]:

yT + a76E + (5E) 2 = constant. (4.30)
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(4.27)

-(2ro, 0)2 . (4.28)

(4.29)



Substituting the parameters we just calculated,

CV COs(Os),rf r 2 _ (2rVso)2T6E - o (6E)2 = constant. (4.31)
Eo

It is illuminating to normalize r and bE by the natural bunch length ao and the

natural energy spread oo. Since they are related by

ao rTo
co 2ro (4.32)aTEO 27rvsOE

Eq. 4.31 can be simplified to

(-) + 27ros0-- + ( = constant. (4.33)
(leo O' o

This is an ellipse that is tilted 45 degrees. One example is shown in Figure 4.1. The

ratio of its major axis to its minor axis is 1 + 7rvo. Since for most of the electron

storage rings synchrotron tune is usually very small (less than 0.1), there is only small

difference between the tilted ellipse and a circle, which was previously considered to

be the particle's trajectory in the phase space.

However, there is an important application of this small effect in the particle

loading for our multiparticle multiperiod simulation code. Most simulation codes

for bunch lengthening load the macroparticles around a circle. This introduces an

artificial dipole motion which does not correspond to the longitudinal dynamics of

a real bunch. By loading macroparticles along the ellipse, we eliminate this loading

noise. This is clearly demonstrated in Fig. 4.2.

4.3 Radiation Damping and Quantum Emission

4.3.1 Preliminaries

Synchrotron radiation is the dominant factor in the design of high-energy electron

synchrotron and is the primary obstacle to building circular electron accelerators at
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Figure 4.1: The longitudinal phase space trajectory of a particle is a tilted ellipse.
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Figure 4.2: Results from our multiparticle simulation. (a) Mode amplitude without
quiet loading. (b) With quiet loading. Note that the quiet loading reduces noise by
a factor of 7.
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energies exceeding 100-GeV. It has also brought about the spectacular success of syn-

chrotron light sources. In this section, we look at two counter-balancing effects of

synchrotron radiation: Classical synchrotron radiation provides damping to the lon-

gitudinal phase space and the quantum nature of the synchrotron radiation provides

diffusion in the phase space. The balance between these two aspects of synchrotron

radiation gives rise to the equilibrium bunch shape. We mentioned these above in

the discussion on the static potential well distortion (Sec. 2.3). There it was treated

phenomenologically by introducing a diffusion term in the Vlasov equation. Here we

will start microscopically and try to incorporate these effects into the iteration given

by Eqs. 2.6 and 2.7

As is well known from classical electrodynamics [39], electrons radiate when they

accelerate or decelerate. For a highly relativistic electron, the most significant syn-

chrotron radiation comes from the components of acceleration that are perpendicular

to the electron's velocity. In the circular accelerator, this is simply the bending ac-

celeration, or the centripetal acceleration given by

C2

a =-. (4.34)
P

Here we assume the electron is moving close to the speed of the light. As a result,

the power of synchrotron radiation is [39]:

2 e2a2 2 e2 c 4

:33c3 p 4p5

The total energy loss of an electron in one revolution is:

f I(E)=Jd~l rP 1U(E) = dtP dstP = C dsP= E 4 R < >, (4.36)

where

C (c = 8.85 x 10 - 5 meters/GeV - 3 , (4.37)
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and the square of the curvature 1/p is averaged over the circumference 2,.R of the

ring:
1 1 1

< >= 2 dRsp27rR P2'
(4.38)

From Eq. 2.71, we need dU/dE in order to calculate the radiation damping time.

Since

U(E) = dtP(E) = dsdP(E), (4.39)

not only dP/dE contributes to the dU/dE; dt/ds also has contribution. This is due

to the momentum dispersion. When the electron's energy is differs slightly from that

of the design particle's energy E0, it will travel along a slightly different trajectory.

The radius of curvature of an electron with energy Eo + 3E is different from that of

the design particle's by the small amount:

xp = D E
x o

(4.40)

For ds traversed by the design particle, the off-energy electron will move

Thus, w

Substituting Eq. 4.42 into Eq. 4.39 yields

tU(E) =1 i
C

dl(E)
dE

Since

dsP(E)(1 +

= dsdP(E) +

E

100

dl = +xp ds.
P

(4.41)

dt 1 dl 1
ds c ds c

D6E

P Eo
(4.42)

and

D P

Eo
(4.43)

D P

P Eo
(4.44)

(4.45)



where B is the magnetic field, we have

P c E2B2 ,

and

In the last equality,

Eq. 4.44, gives

dU
d.

dP P P dB P P dB dx
dE = 2 + B dE + B dx dE

P PdB D
= 2 + 2dB D (4.47)

F B dx Eo'

we have used Eq. 4.40. Finally, substitution of Eq. 4.47 into

(E) = ds2P PdB D D P
E) Eo 1d(2- + -- )

E -o I B d E pEO

2U(Eo) (1 +4.48)
E 1+ ),(4.48)

Eo 2

where

The radiation damping

a = cU(Eo) DP(Eo)(- + B d 

time is thus

1 1 dU <P>

t = 2 TodEE=Eo = 2Eo+ ). (4.50)

If the results of the preceding discussion were the end of the subject, we could

design an electron storage ring in which the longitudinal phase space is damped, and

the longitudinal emittance shrinks to zero. But such is not the case. The radiation

process proceeds through the emission of discrete quanta, and the fluctuations in this

random process excite synchrotron oscillations.

To see how this excitation comes about, let us suppose that a particle travels on

its synchrotron orbit and emits a photon of energy . The position of the particle

doesn't change, so it suddenly finds itself starting a synchrotron oscillation with an

initial energy offset -e. Because of the random character of the photon emission, syn-

chrotron radiation contributes a constant term to the growth of the emittance. This
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can be understood by first considering a linear synchrotron oscillation in a stationary

bucket without radiation damping:

bE = Acos(wsot + A), (4.51)

sq = -A ( h w )sin(wot + A). (4.52)

Here the amplitude of oscillation is

A2 = (6E) 2 + hWo° (65;)2 (4.53)

and h is equal to wrf/w'0. Suppose at time t = t,. the energy E = Eo + 6E of the

electron is suddenly decreased by amount due to the emission of a quanta, the

synchrotron oscillation is now given by

6E = A cos(wot + A) - cos[wso(t - t,)], (4.54)

65=-A( woE sin(wot + A) - E ( hw ) sin[wso(t - t)]. (4.55)

The new amplitude is

A2 = (SE)2 + hoEO) ((6)2 = A 2 + e2 - 2Aecos(wot, + A). (4.56)

Since the radiation of the quanta can be assumed to occur with equal probability at

any time, A is a random number with equal probability taking values from 0 to 27r.

Averaging with respect to A yields

< A 2 >=< A 2- A 2 >=< 2 >. (4.57)

If we denote n(e)dc to be the number of photons emitted between energy and e + be

per unit time, we have
d < A2 >

dt = QE, (4.58)

with

0 =55 22(h)2 7
QE = dn(e)e2 -ec c (4.59)

T4 v/3- 2r p 2R'
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A good derivation of the expression for QE can be found in the paper by J. Schwinger [50].

Including longitudinal radiation damping, the longitudinal phase space area oc-

cupied by the beam evolves according to

d < A2> 2
dt QE- < A 2 >. (4.60)

The first term is the constant term contributing to the growth of the longitudinal

emittance and the second term is the damping term which will reduce the emittance

to zero. Equilibrium energy spread is obtained by balancing these two effects. Setting

d < A 2 > /dt = 0 yields the equilibrium energy spread:

< A 2 > QEt,
O'CO = 2 = (4.61)2 4

4.3.2 Implementation of Radiation Damping and Quantum
Emission

Finally, let us consider how to incorporate the effect of the quantum emission into

the iteration given by Eqs. 2.6 and 2.7. For a macroscopically measurable change of

the energy due to synchrotron radiation, there are many quanta involved:

e(t) = E ie- (t - t )/tr cos[wo(t - ti)] (4.62)

Here t are randomly distributed, and the summation is over all the quanta contribut-

ing to the change of energy by . According to the central limit theorem [51], the

distribution of is a Gaussian distribution:

1 ~2

p(= exp(- 2 (4.63)O r)= <, o 2-2o

Thus, we get the iteration equations for the longitudinal synchrotron oscillation which

have incorporated the effect of the radiation damping and the energy fluctuation due

to the quantum nature of the radiation:

Tn+l = Tn - 6En+ (4.64)
E o

bEn+ = bEn - eVos()wr 1rfTrn - -To En + 2 eo R(n). (4.65)
tr tr
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Here R(n) is a Gaussian distributed random number with mean 0 and standard

deviation 1.

In the next chapter, we will discuss simulation results based upon these equations.

With an arbitrary initial phase space distribution, we run the simulation for a few

damping times. The asymptotic distribution in phase space becomes a normal distri-

bution with energy spread given by oo and the bunch length aO related to the energy

spread by

--o 0'0' (4.66)
WSOEo

4.4 Full Equations for the Multiparticle Simula-
tion

In this section, we add the wake field into Eq. 4.65 and derive the complete equations

for the multiparticle simulation for the bunch lengthening instability.

Typically, there are many billions of electrons in a bunch, and it is computationally

impractical to simulate such a large number of particles. One approximation is to

represent many electrons by a single macroparticle. By considering only the dynamics

of these macroparticles, we significantly reduce the number of the degrees of freedom

in our system. Since the bunch lengthening instability is related to the low-frequency

collective motion of the electrons in the bunch, we do not expect problems from this

truncation of the degrees of freedom in our approximation. Should we consider modes

of order of the total number of macroparticles, our truncation approximation breaks

down.

The motion in phase space of each of the macroparticles is given by:

rn+l(m) = n(m) - oEn+l(m), (4.67)
Eo

En+,,i(m) = 6En(m) -V cos(0s)wrfTn(m)

2To_ 2ToE -
- 6E (m) - E

t, ~tD
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+2ao tR(n, m) + V'(m). (4.68)

In these equations m = 1 ... , Al specifies the macroparticle number, and the argu-

ment n specifies the number of revolutions the particles have made in the storage

ring. Eqs. 4.67 and 4.68 are the central equations in the existing multiparticle track-

ing simulation codes [8, 19, 54, 55, 56] Compared with Eq. 4.65, we note a new term

that characterizes the effect of Robinson damping [10]. Since motions of the center

of the bunch, or dipole oscillations are damped by Robinson damping, we expect the

damping term to be proportional to the center of the bunch 6E,. The damping times

tD are taken from measurements. The wake field term, V(m). gives the wake force

on the macroparticle m from all particles which precede it in the bunch:

V'(m) = Ne Lo dr'p(r')W(rT' - r). (4.69)

Ne2 Lo
= E W(tj-tm). (4.70)

j(t > tm)

Whenever the longitudinal impedance of the ring can be approximated by a resonator

impedance, the wake function is given by:

fOo 0 if t < 0, (4.71)
W(t)Lo = 0= exp(-vt)(cos Qt - sin Qt) if t > 0.

This wake function provides us with a special algorithm for computing the wake field

term V(m) given by Eq. 4.70. To see this. rewrite the non-zero part of the wake

function as:

W(t)Lo = Cexp(-vt) cos(Qt + A), for t > 0, (4.72)

with C and A given by
wR v 2

C= Q 1 -- (4.73)

and

A = arctan Q. (4.74)
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Furthermore, the wake function can be written as:

W(t)Lo = Im Cexp(-vt + it + i), for t > 0. (4.75)

With this result, the wake field computation can proceed in the following way. First,

arrange the arrival times of the macroparticles, Tm, m = 1,..., M, into an ascending

array, with later elements of the array corresponding to the particles which arrive

earlier. The purpose of this arrangement is to take advantage of the causality of the

wake function: W(t) vanishes when t < 0. For a particular macroparticle m, we need

only calculate the wake fields left behind from all those macroparticles with m' > m.

Quick Sort is an excellent algorithm to sort any array into an orderly array. For large

Al, on average, it is the fastest known sorting algorithm [52].

Next, with At = tm+l - tin, we can easily calculate the wake from the (m + 1)'th

macroparticle by computing

CW = C exp(-vAt + iQAt + iA), (4.76)

and the wake is the imaginary part of CW. The wake from the (m + 2)'th macropar-

ticle can be found by using Atl = t+2 - t+l, and noting'

[w(tm+ 2 - tm)Lo = Im exp (-v(At + At1) + i(At + Atl) + iA)

= Im exp(-vAt1 + iQAt l )CW. (4.77)

The calculation of the wake including the (m + 2)'th macroparticle is thus reduced

to multiplying the complex wake CW by the complex number

exp(-vAtl + iAtl),

and then taking the imaginary part. The wake from other macroparticles can be

calculated similarly. This procedure has the important advantage that it can be used

to calculate the wake from previous turns without keeping track of the actual arrival
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time of a particle. This technique is very useful for the coupled-bunch instability. For

the bunch lengthening instability, the relevant impedance is broadband impedance of

the ring. After one turn, the wake corresponding to the broadband impedance has

decayed to a negligible level and the bunch lengthening instability is mostly a single-

turn effect. In the case of a single turn wake, this technique does not improve the

computation speed much when compared with the brute force method of summing

the wakes together.

The most time consuming part of the multiparticle simulation is the wake field

calculation. For each macroparticle m, we must compute the wakes left behind by

all the particles ahead of it, and this calculation must be repeated for for all the

macroparticles. The number of computations relating to the wake field is thus pro-

portional to M 2. Since we need to increase M to distinguish the noise from the real

collective motion (noise amplitude goes down with M as 1/VM/ while the amplitude

of a collective mode does not change much with respect to M), the M 2 dependence

will increase our computation times significantly. Fortunately, a simple observation

saves us from this problem. Instead of computing the wake by the summation, or

Eq. 4.70, we compute it by integration, or Eq. 4.69:

V,(m) = N e2L0 jo dr'p(r')W(r' - 7,(m)). (4.78)

To calculate p(r) at each turn we simply bin the macroparticles in r, without smooth-

ing, and count on the use of a very large number of macroparticles to give us a suffi-

ciently smooth distribution. The number of computations for the integral of Eq. 4.78

is then proportional to the number of bins we use. Repeating this procedure for all

the macroparticles results in the computation being proportional to the product of

the number of bins and the number of macroparticles. Since the number of bins is

fixed, this method will have a great advantage when we need to increase the number

of macroparticles much more than the number of bins.
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4.5 Localized Wake and Multiperiod Simulation

As pointed out in Sec. 2.2.4, the bunch lengthening instability is typically modeled by

a ring broadband impedance. The major sources of the wake force, i.e., the vacuum

beam pipe, bellows, etc., are distributed throughout the ring. This distributed wake

is the model used in Ch. 3 when we developed the analytical theory of the bunch

lengthening instability. On the other hand, existing multiparticle tracking simulation

codes [8, 19, 54, 55, 56] always treat the wake force as working at one point in a ring.

It is natural to wonder under what circumstances modeling a distributed wake by a

localized wake leads to an accurate description of the bunch lengthening instability.

In App. A, we show that these two methods can give very different results. For

example, in the case of a localized constant wake function, the energy spread of the

bunch increases with the bunch current and the mixing between the energy deviation

and the arrival time also increases with the bunch current. From Sec. 2.3, we know

that under a distributed wake, the equilibrium energy spread does not depend on the

current and there is no mixing between the energy deviation and the arrival time.

Until the present work, the importance of localized vs. distributed wakes in the

multiparticle simulation has not been appreciated. We have solved the problem of

modeling the distributed wake with a localized wake breaking the iteration given by

Eqs. 4.67 and 4.68 into many periods. This is done straightforwardly by replacing

To with To/N, eV with eV/lN and V (m) with V ;(m)/.-. Here, N3 is the number

of periods within one revolution. In this way the wake field induced voltage drop is

only one Ns'th of its value without the introduction of multiperiods. The resulting

equations for the multiparticle multiperiod bunch lengthening simulation is given by:

Tn+I(m) = Tn(m) - 77E b6En+I(m), (4.79)

1
6E,+i(m,) = 6E(m) - -eV cos(o,)wrer,(m)

N.
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2To 2T
-Nt E(m) - 6En

NAst, NstD

To V,(m) (4.80)

It is obvious that as the number of periods N, increases, the multiparticle mul-

tiperiod code simulates the distributed wake force more accurately. But how many

periods are enough? From our experience with the multiparticle multiperiod simula-

tion, we choose the number of periods N, in the following way. We count the number

of iterations in which the wake field kick exceeds ten percent of the natural energy

spread. If the count is less than one percent of the total number of iterations, N, is

accepted. Otherwise we increase N8 until the count is less than one percent of the

total number of iterations.

4.6 Diagnostics

The most common diagnostic tool in existing multiparticle simulation codes, including

ours, is the temporal evolution of the center of the bunch, bunch length, center of the

energy deviation, and energy spread. Numerically, we evaluate

M

< >=M (m), (4.81)

an = M E [r,(m) < >]2, (4.82)
m1 M

< SEn >= - E E(m)), (4.83)

n = E [SEn(m)- < En >]. (4.84)

Here, the summation over m is a sum over macroparticles. When the tracking code

is run with many periods, these quantities are sampled at one particular period each

full revolution in the ring. This corresponds to the fact that bunch length, energy

spread and phase shift are observed experimentally at a fixed location in the ring.
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In any simulation run, we track the bunch revolution four damping times. We

start to sample the above four quantities for the length of one damping time after the

initial three damping times. The numerical value for the center of the bunch, bunch

length, center of the energy deviation and energy spread are obtained by averaging

< 7, >, an, < 6E, > and oa2 over all the data points gathered over one damping

time.

The amplitude of the Fast Fourier Transformation (FFT) of < r, >, o2, < bEn >

and ar2, serve as an important diagnostic for identifying low order coherent syn-

chrotron modes and determining that these modes are not coupled at the threshold

currents.

In our multiparticle multiperiod simulation code, we have sample five additional

quantities at each turn compared with the existing codes:

1 .
< * >= - Z [(m)] I (4.85)

1 M<mTn >= I- Z [rn(rn)3 4, (4.86)

< *E > M [En(m)]4, (4.87)
m=l

< En >= [bEn,(m)], (4.87)
m=l

< 5 4 >= ( [ z( m)] 4 (.88)

and
1 M

corrm = -1 > [7n(n)- < n, >] [6E n(m)-< bEn >1. (4.89)

Using the relationship between the cummulant moments and the ordinary moments

given by Eq. 3.49 and 3.50, we have:

< Tr >c=-< Tn > -3 < Tn > n- < Tn > , (4.90)

<r >c=<n > - -4 < n >< >c -6 < > a - < n >, (4.91)

< En >=< En >-3 < En > 2- < En >3, (4.92)
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< E 4 >c=< E 4 > -3o4.- 4 < E, >< 6E,3 >, -6 < 6E, >2 a2-< E >4

(4.93)

Averaging all these quantities over one damping time yields 71, 2 for the distribution

in r; , Y72 for the distribution in 6E; and corr for the mixing between r and E. We

can thus make detailed comparison between simulation and theory.

The turbulent threshold is determined in the following way: Since the equilibrium

distribution in r is given by the theory of the potential well distortion, we can compute

< >, , 71 and Y2 from the numerical solution of the Haissinski equation and

compare them with the values obtained from the simulation. This serves as a first

test of simulation and theory. We expect differences to arise at or near the turbulent

threshold. The most sensitive measure of nearness to the threshold is the distribution

at 6E. According to the potential well distortion theory, a, must be constant, and

mY = 2 = corr = 0 below the turbulent threshold. Thus we must find only the

current at which 2, 2~, and corr become non-zero.
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Chapter 5

Comparison of Theory,
Experiment and Simulation

In this chapter, we present the results from the instability analysis based on the

improved Sacherer equation 3.130 and the multiparticle multiperiod simulation, and

compare them with the experimental results of Wilson et al. [8] and Brandt et al. [36].

Most of the results are based on the parameters of SPEAR II given by Table 5.1.

There are two primary motivations for choosing the SPEAR II data [8, 55] as a

benchmark for our theoretical and numerical study. One is that the impedances

and the bunch lengthening measurements on SPEAR II are the most comprehensive,

and data are readily available. The second one results from the scaling behavior of

the bunch lengthening instability. In Sec. 3.10, we noted that there are only two

parameters, namely wra and , which need to be specified to determine the turbulent

threshold. Therefore, whether we use the SPEAR II parameter set or other parameter

sets is not important; wra and are the only relevant parameters for the bunch

lengthening instability. In Sec. 5.2, we also compare the instability analysis with the

experimental results from LEP.
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ring circumference

bending radius

RF frequency

beam energy

peak RF voltage

momentum compaction

eta

synchrotron tune

energy loss per turn

revolution period

radiation damping time

natural bunch length

natural energy spread

Robinson damping time

Lo

P

fri

Eo

V

To

t,

to

tD

234m

12.7m

358.54Mhz

3GeV

2.9 MeV

0.0418

0.0418

0.042

0.564MeV

0.78#s

3.91ms

2.59cm

2.1Mev

0.6/I(mA)

Table 5.1: SPEAR II parameters.
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5.1 Simulation Results

1024 macroparticles were tracked using Eqs. 4.79 and 4.80 to calculate the longitudinal

phase space motion. The initial distributions in both arrival time and energy deviation

were bivariate normal distributions with bunch length and energy spread equal to their

natural values. After running three damping times, we start the diagnostic process

(see Sec. 4.6) for one damping time.

On each turn we calculate the four lower cummulant moments of the distributions.

By averaging over the last damping time, we obtain the average properties of the

distribution: center of the bunch < T >, bunch length o, skewness Yl and excess 72-

In Fig. 5.1, we plot the center of the bunch and bunch length as a function of current.

The solid lines are computed from the potential well distortion theory. The dotted

lines are simulation results. We can identify 45mA as the threshold current, since

this is where the sold lines and dotted lines start to diverge. In Fig. 5.2, we plot 7yl

and 72 as a function of current. We can still identify 45mA as the threshold current,

although the difference in ^yl is not obvious.

From Fig. 5.3 to Fig. 5.5. the center of the bunch vs. turn number n, bunch

length vs. turn number n and their Fast Fourier Transforms (FFT) are plotted for a

current I=15mA, well-below the threshold. Fig. 5.3(a) shows the FFT amplitude of

< 7, > vs. n. Fig. 5.3(b) is the logarithm of this amplitude. The excitation of several

synchrotron modes is apparent. As expected. the dipole mode is the strongest. In

Fig. 5.4(a), the FFT amplitude of o2 vs. n is plotted. In Fig. 5.4(b), its logarithm

is plotted. In this case, the quadrupole mode is stronger than the dipole mode. In

Fig. 5.5, both rn and o, are plotted for one damping time.

From Fig. 5.6 to Fig. 5.8, simulation results are plotted for the 50mA bunch

current. In Fig. 5.6(a), the FFT amplitude of < r > vs. n is plotted. Fig. 5.6(b)

plots the logarithm of this amplitude. The tune spread of the dipole mode is apparent.
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Compared with Fig. 5.3, it is clear that the frequency of the center of the dipole mode

remains unchanged. This is exactly what is proved in Sec. 3.9. Although there is some

overlap between sidebands of the dipole mode and quadrupole mode, the centers of

these two modes remain widely separated. Fig. 5.7(a) is the FFT amplitude of a,2 vs.

n, and Fig. 5.7(b) is its logarithm. In Fig. 5.8, both rn and a2 vs. n are plotted for

one damping time. Compared with Fig. 5.5, Fig. 5.8 are noisier. This is due to the

strong excitation of dipole and quadrupole modes.

In conclusion, our multiparticle multiperiod tracking simulation has identified the

turbulent threshold of 45mA. At this current, the dipole mode and quadrupole mode

are still widely separated. Thus we see no indication of mode coupling, which was

previously considered as a likely cause of the instability.

The turbulent threshold measured from SPEAR II by Wilson et. al. [8] for the

3GeV beam energy is 20mA. It is significantly lower than the 45mA threshold found

with our simulation. We attribute this discrepancy to details of the model used for the

wake field. Indeed, Siemann [55] used the impedance calculated from the loss factor

measurement at SPEAR II rather than a broadband resonator impedance (which only

approximates the real wake), and obtained a threshold from his simulation that agreed

with the experiment. The purpose of our multiparticle multiperiod simulation code is

to test our new explanation of the mechanism for the bunch lengthening instability,

and not to directly simulate SPEAR II.

It would be very useful if we could identify the dependence of the collective mode

amplitude on M, the number of macroparticles. We expect the scaling to be 1//lJi

below the threshold current and independent of M when the mode becomes unstable.

Unfortunately, detailed scaling studies are computationally prohibitive, but are of

interest for the future.
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5.2 Comparison of the Improved Sacherer Equa-
tion with Experiments and Numerical Stud-
ies

In Sec. 3.10, we developed a numerical algorithm to analyze the instability threshold

of the improved Sacherer equation. By discretizing in r, we transform the improved

Sacherer equation into an eigenvalue problem of an asymmetric real matrix. The in-

stability threshold corresponds to the bunch current at which the matrix starts to have

complex eigenvalues. We use the powerful and efficient Gauss-Laguerre scheme [47]

for discretization. Our instability analysis for the onset of bunch lengthening with

1 = 1, Nd = 5 predicts that the dipole mode becomes unstable around 50mA. (Here

Nd is the number of points used for the discretization.) Increasing Nd to 40 does

not change the conclusion. The quadrupole mode is predicted to become unstable

at slightly higher current: 52mA. All these results are in good agreement with our

multiparticle multiperiod tracking simulation.

Since the instability threshold is determined by two dimensionless scaling param-

eters: wa and , we have also run our instability code to determine the critical

coupling c as a function of wr. Using a full-scale numerical Vlasov analysis, Oide

and Yokoya [34] also calculated jc(wcr). In Fig. 5.9, we compare our results (dashed

line) with that of Oide and Yokoya (solid line). We only plots our result for wra less

than 0.7. In this range, results from both methods are in good agreement.

When wr is larger than 0.7, our instability code is not useful. The reason is due

to the our parameterization scheme which uses the four lowest-order cummulants to

approximate the real equilibrium particle density. Fig. 5.10 shows a typical case with

a,or = 0.8. In Fig. 5.10, the solid line is from the solution of the Haissinski equation

and the dashed line is from our four-parameter cummulant expansion. It is clear

that the parameterization scheme needs to be improved. Developing an improved
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parameterization scheme including the region wra > 0.7 is left to future study.

In summary, the bunch lengthening threshold calculation based on the instability

analysis of the improved Sacherer equation is seen to work well for short bunches and

impedances described by a single broadband resonator.

Brandt and Hofmann [36] measured the bunch lengthening instability at LEP.

They found that the dipole mode becomes unstable first at a threshold current

of 0.1mA. With a 1.4GHz ring broadband impedance, they inferred a longitudinal

impedance Z/n of 0.4Q from the measured frequency shift of the quadrupole mode.

The equilibrium bunch length is 1cm, wroa is 0.29. This is a short bunch and our

theory should work well. Our instability analysis identifies the dipole mode to be the

first unstable synchrotron mode with threhold current of 0.113mA. Once again, the

instability analysis agrees with the experimental results.
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Figure 5.1: (a) < > as a function of current, (b) as a function of current. Solid
lines are computed from the Haissinski equation 2.86, dashed lines are simulation
results. At I=45mA, solid lines and dotted lines start to diverge.
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Figure 5.2: (a) y1 as a function of current, (b) y2 as a function of current. Solid lines
are computed from Haissinski equation 2.86, dashed lines are simulation results. At
I=45mA, solid lines and dotted lines start to diverge.
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Figure 5.3: (a) FFT amplitude of < Tr >. (b) Logarithm of the FFT amplitude.
Bunch current is 15mA (well-below threshold). Clear peaks are seen at the first few
synchrotron harmonics f/fo = Ivo. Here I = 1,2,...; v,0 = 0.042.
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Figure 5.4: (a) FFT amplitude of a'. (b) Logarithm of the FFT amplitude. Bunch
current is 15mA (well-below threshold). Clear peaks are seen at the first few syn-
chrotron harmonics f/fo = Ivo. Here = 1,2,...; vso = 0.042.
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Figure 5.5: (a) Center of bunch vs. turn number. (b) Bunch length squared vs. turn
number. Bunch current is 15mA (well below threshold).
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Figure 5.6: (a) FFT amplitude of < Tr >. (b) Logarithm of the FFT amplitude.
Bunch current is 50mA (slightly above threshold). Note that (1) The dipole and
quadrupole mode are clearly separated. (2) The frequency of the dipole mode is not
shifted. (3) Higher and broader peaks compared to the 15mA case seen in Fig. 5.3
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Figure 5.7: (a) FFT amplitude of oa. (b) Logarithm of the FFT amplitude. Bunch
current is 50mA (slightly above threshold). Note that (1) The dipole and quadrupole
mode are clearly separated. (2) The frequency of the dipole mode is not shifted. (3)
Higher and broader peaks compared to the 15mA case seen in Fig. 5.4
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Figure 5.8: (a) Center of bunch vs. turn number. (b) Bunch length square vs. turn
number. Bunch current is 50mA (slightly above threshold). Compared with 15mA
case seen in Fig. 5.5, signals are noisier due to the strong excitation of dipole and
quadrupole modes.
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Figure 5.9: Critical coupling (c vs. w,ra. Dashed line is obtained from our theory for
wro < 0.7, solid line is obtained by Oide and Yokoya [34].
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Chapter 6

Summary

In this thesis, an instability mechanism for turbulent bunch lengthening has been

identified. Traditionally, the bunch lengthening instability has been explained by

the coupling of two adjacent synchrotron modes. However, both simulation and

experimental results exclude the possibility of the coupling of lower-order synchrotron

modes. Coupling of higher-order synchrotron modes is unlikely since it requires strong

impedances at frequencies well beyond the vacuum chamber cutoff. Starting from the

assumption that the instability of an uncoupled synchrotron mode is sufficient to drive

the turbulent bunch lengthening, we have found that a critical role is played by the

nonlinearity of the static wake force. Without the nonlinearity of the static wake

force, the Sacherer equation does not have an unstable eigenmode. We show that the

nonlinearity of the static wake force distorts the equilibrium density from its Gaussian

shape, and derive an improved Sacherer equation which includes asymmetric terms

proportional to the square of the current. This improved Sacherer equation is unstable

when the bunch current reaches a threshold value.

This is the most important result of this thesis, and is presented in Sec. 3.5. The

successful prediction of the turbulent threshold requires an accurate parameterization

of the equilibrium distribution, given by the Haissinski equation 2.78. We use the

cummulant expansion technique for this purpose. By using only four lowest order
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cummulants, we are able to approximate the equilibrium distribution to great accu-

racy for short bunches. This greatly reduces the number of correction terms needed

for the instability analysis.

In order to verify the theoretical predictions based on the instability analysis of

the improved Sacherer equation, we developed a multiparticle multiperiod simulation

code. We have three improvements over the existing multiparticle tracking code:

(1) We point out that the trajectory given by the iteration equations of longitudinal

synchrotron motion is a tilted ellipse, rather than a circle as previously assumed. By

loading the particles along the ellipses, we eliminate a source of loading noise. (2)

Since the equilibrium distribution for a bunch under the influence of a localized wake

is drastically different from that of a distributed wake, we distribute the wake force

into many periods in our multiparticle simulation code. We use a counter in our code

to make sure that we have used an optimal number of periods for any simulation run.

(3) We have introduced new diagnostics into our multiparticle multiperiod simulation

code. These new diagnostics verify our new understanding of the importance of

nonlinearity in the bunch lengthening instability.

Instability analysis based on the improved Sacherer equation gives a threshold

current very close to the simulation result and identifies the same unstable mode as

seen in the experiment. The threshold scaling parameter (c as a function of Wra

determined by the improved Sacherer equation agrees very well with the results from

the numerical multimode Vlasov treatment of Oide and Yokoya [34]. Future work

includes extending the comparison to other rings and impedances, taking into account

the nonlinearity of the RF bucket, and devising a good parameterization scheme for

long bunches.
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Appendix A

Equlibrium Bunch Shape for a
Localized Wake

The bunch lengthening instability is driven by the beam broadband impedance. The

major sources of the corresponding wake force are distributed throughout the ring.

This is the reason that we focus exclusively on the distributed wake in our analyti-

cal theory of the bunch lengthening instability. Although the multiparticle tracking

simulation employs the localized wake, we try to break it up into many periods to

approximate the distributed nature of the wake. In this appendix, we discuss the

equilibrium phase space distribution for a localized wake. For the sake of analytical

tractability, we consider a constant wake. We will discover that the equilibrium phase

space distribution for a localized wake has very different characteristics from that of

a distributed wake given by the potential well distortion theory of Sec. 2.3. This

appendix presents a clear and simplified derivation of many of the results previously

obtained by Hirata [35].

A.1 Synchrotron Oscillation

First, let's consider the iteration for the synchrotron oscillation:

x 2 cosA sinA \ A ( xl 
Vx 2) -sinAO cos X2) (A.)
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where, compared to the same iteration given by Eq. 2.6 and Eq. 2.7, we lhave changed

the notation: here x1 = Tr/a 0 and x2 = 6E/cso. We have also ignored the effect of a

tilted ellipse as described by Eq. 4.33.

With

U cos A sincos ) ' (A.2)
\-sin AO cos i\

the iteration equations for the center of the bunch are:

< xi >= Uj < xj >, for i = 1,2. (A.3)

We have used < xi > to denote the average of xi with respect to the particle phase

space distribution, namely, the center of the bunch in both coordinates. To obtain

the fixed point of the center of the bunch, x and x2, we solve

x ( cosAO sin A (A.4)
x0= ) -sinAO cosA xO '(

and find the fixed point:

xi =0, fori=1,2. (A.5)

Next, consider the second-order moment

aij =< xixj > - < xi >< xj > . (A.6)

The iteration equations for aij are given by

I II I/
o'j =< X j > -< XXj >

= UilUjm (< XiXj > - < Xi >< Xj >) = UilcTlm(U T )mj. (A.7)

In matrix notation,

a' = UaUT, (A.8)

where UT is the transpose of U. The fixed point for the second-order moment, 0a is

given by

a° = UUaU T, (A.9)

131



or, equivalently

a1U = U&0. (A.10)

One solution is

X1= ( °)(A.11)

This is the usual solution where the bunch length is a,0, the energy spread is o0 and

there is no mixing between the two coordinates (i.e., ro and auo are not coupled by

the synchrotron oscillation in the linear RF bucket.)

A.2 Radiation Damping and Energy Fluctuation

In the absence of any synchrotron motion in the RF bucket, the radiation damping

and the energy fluctuation due to the quantum nature of the synchrotron radiation

can be described by the following iteration:

X = xl, (A.12)

= x 2 + v1- 2R. (A.13)

Here R is a Gaussian random number with mean 0 and variance 1, and ¢ is given by

2To
= exp(--). (A.14)

to

In most storage rings, the radiation damping time is much longer than the revolution

time, to > To. Expanding Eq. A.13 to first order with respect to the small quantity

To/to recovers the "old" damping and the energy fluctuation term in Eq. 4.65.

Averaging Eq. A.12 and Eq. A.13 gives iteration equations for the the center of

the bunch:

< x' >=< x1 >, (A.15)

< 2x' >= < 2 >. (A.16)
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The fixed point for the center of the bunch is found from

00 00

x1 =X1 I

00 = t 00
2 -iX2 

Since < 1, the fixed point for the center of the bunch is:

(A.17)

(A.18)

(A.19)x = arbitrary,

x =O.2 (A.20)

Next, consider the iteration equations for the second-order moments aij. For all,

we have

11 =< X1 > -- < >2=< Xl2 > < X1 >2= 01- (A.21)

For al2 = a 21, the result is

a 12 =< XlX 2 > - < X1 >< X2 >=< 1 + O1 R)

= (< XX2 > - < 1 >< 2 >) = T 12 .

And finally, for a22 ,

'22= <2 - < X2a 22 =< 2 > - XI2 > =< + 1. R) > _-2 < X2 > 2

= 2 < X2 > +1 - 2 _ 2 < x2 > 2= 222 + 1 - 2.

In sunmmary,

all- = ll,

a 12 = 12,

022 = 2
22 + 1 -2

The fixed point for the second order moment is given by

o00 = ll,
11 11,
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(A.23)

(A.24)

(A.25)

(A.26)
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(A.28)

r o = 2aco + 1 2. (A.29)

The fixed point is given by

all = arbitrary, (A.30)

U10 = 0, (A.31)

oar = 1. (A.32)

Radiation damping and quantum emission determine the equilibrium energy spread

oo. Without the synchrotron oscillation, there is no coupling between the arrival

time and the energy deviation. Thus, the bunch length can be arbitrary.

A.3 The Wake Field and the Full Iteration

We first examine the iteration equations for an idealized constant wake,

W(t) = { t
if t < 0,
if t > 0.

(A.33)

(A.34)

From Eqs. 2.6 and 2.7,

X = X1,

x1 2 Ne2 LoWoj+cd (x +y)
x 2 = x22 - odyp(xl + y).

0'eo
(A.35)

The iteration equations for the center of the bunch are

(A.36)

< 2 >=< x 2> Ne2 Lo W oo + dy < p(xl + y) >.
o¢o 0

(A.37)

Using an integral identity (which we will prove in the last section of this appendix,)

0+ °•0dy < p(xl + y) >= (A.38)
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the iteration equations for the center of the bunch become

< Xl >=< xl >, (A.39)

< x2 >=< x2 > -g. (A.40)

Here, g is defined by
Ne2LoURo

g 2 (A.41)

Instead of finding the fixed point of the center of the bunch under the wake field

alone, now consider the fixed point for the complete iteration. The complete iteration

equations are given by:

< xi > (Radiation) -< x' > (Wake) -< x'' > (Oscillation) -< x >.

(A.42)

The radiation contribution to the iteration is given by Eqs. A.15 and A.16; The wake

field contribution to the iteration is given by Eq. A.39 and A.40 and the oscillation

contribution to the iteration is given by Eq. A.3. Combining these yields

< x1 l > cosiAO sin ( < >
< x 2 > -sin A cosA < <x 2 >-g

The fixed point is found by setting

< 1X >=< xl >, (A.44)

< x'2 >=< 2 > (A.45)

Simple algebraic manipulations yield

g
x(1 + )tan ' (A.46)

2 ( + (A.47)

Note that x is the fixed point for the center of the bunch and x is the fixed

point for the center of the energy deviation. While Eq. A.46 may still be consistent
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with the results of the theory of potential well distortion, Eq. A.47 definitely is not.

According to the potential well distortion theory of Sec. 2.3, the wake force does

not have any effect on the bunch distribution in the energy deviation. The center of

the energy deviation should always equal to zero, rather than be proportional to the

bunch current as given by Eq. A.47. This shows that the equilibrium phase space

distribution from distributed wakes and localized wakes are qualitatively different.

Next, we study the iteration for the second order moments aij under a constant

wake. One easily finds

a =< X 2> - < X >2=< X > -< X1 >2 all,011 11 ,1 (A.48)

and, after a little algebra,

1 2 =< X1X2
> - < X1 >< X2 >

=< XlX2 > --N2LoWo + dy < xlp(x + y) >
0cO

N e2 LoWo +00
< >< x2 > +-Ne 2L < XI > dy < p(xi 

Ofo
Ne2 LoWo f+oo

-= a 2 - ]10 -- dy < (x 1- < x >)p(x1 + y)

Using another integral identity proved in the last section of this ap

|o+j dy < (- < xl >)p(xl + y) >= 2 

Ipendix,

(A.49)

(A.50)

we obtain

I gIar1
a1 2 - a1 2 (A.51)

Finally,

a22 =< x 2 > - < >2

2 2Ne 2 LoWo +00
=< z2 > 2Ne2LoWo + dy < 2 p(x + ) >

+ (cLoW 0 2 0dyp(x + y)) > - < x 2 >2
0.cO/
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2Ne 2L o'o
2Ne2 Loqllo <x2 > dy < p(xl + y)>

.o l

2Ne2LoWo 1+0(TeZd<EO )yPi + y) )
O'Cot2 s 2Ne2LoWo 1+ dy < (X2- < X2 >)P(Xl +) >

+( Ne LoWoo i dyp(i + y))> g2
Using two identities from the last section of the appendix,

<+00

gives

dy(x 2 - < X2 >)P(Xl + Y) >= X

2 902 a2 12
0'22 = 22 9 

Thus,

The full iteration equations

!
1 1 = 11,

O12 - 12 a

- 29.12 1 2
022 = 0'2 2 - + 39 

for the second-order moments oij are:

.ij(Radiation) -+ a'ij(Wake) ) o(Oscillation) ' '"

<(o00dyp(xi + )) >= 3

The radiation contribution to the iteration is given by Eqs. A.24, A.25 and A.26; the

wake field contribution to the iteration is given by Eqs. A.56, A.57 and A.58; and the

oscillation contribution to the iteration is given by Eq. A.8. These are the central

results of this appendix. While they have been previously obtained by Hirata [35],

our derivations are simpler and more straightforward.
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(A.53)
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(A.55)

(A.56)

(A.57)
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The fixed points for the second-order moments are given by equation:

'= (A.60)ij = 'ij

After a lengthy calculations, we get

~i= -ag + V/1 + (a2 + b)g (A.61)

cr22 = 1 + bg2, (A.62)

°12 = v~(1 + ¢) (A.63)

Here,
1

a (1 + )tanAX' (A.64)

r( + ) - 6A
b = 3r( + )(1 - 2) (A.65)

In Fig. A.1, we have plotted normalized bunch length a/, normalized energy

spread VA-/, and normalized correlation coefficient 1/vf as a function of g, which is

proportional to the bunch current. The result is very different from the particle phase

space distribution for the case of a distributed wake given by the theory of potential

well distortion. According to the theory of potential well distortion, only the bunch

length depends on the current. Energy spread does not depend on the current and is

always equal to the value given by balancing the radiation damping and the quantum

fluctuation of the synchrotron radiation. For a constant localized wake, Fig A.1 tells

a different story. The energy spread increases monotonically as the bunch current

increases, as does the mixing in the phase space between the arrival time and the

energy deviation.

It is illuminating to see the transition from a localized wake to a distributed wake.

In the multiparticle multiperiod tracking simulation discussed in Ch. 4, we break the

iteration into many periods. We expect that as we increase the number of periods,

we recover the result of a distributed wake. If we denote by n. the number of periods
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1.5

1.0

0.5

n
0 1 2 3 4 5 6 '

Figure A.1: Normalized bunch length /'a/oo, normalized energy spread /'a/aO
and the arrival time energy deviation mixing aVra// vi-a as functions of the strength
of the wake force. The abscissa is labeled in units of 10- 3 . (from Hirata, 1987.)
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into which a constant wake is divided, all of the results in this appendix are still valid

under the substitutions:

AO AO/N,, (A.66)

(A.67)

g - g/N,. (A.68)

As N, approaches infinity, we find:

lim x = g9 (A.69)
N,-oo A

lim X = 0. (A.70)
Ns -oo

Eq. A.70 is exactly what is expected from the theory of potential well distortion:

The wake field does not have any influence on the bunch's distribution in the energy

deviation. Eq. A.69 also agrees with the result of the potential well distortion when

the bunch current is small. The restriction that the bunch current must be small

comes from the the assumption we used to derive the iteration equations for the

second order moments. We assume that the particle distribution in the phase space

is always a bivariate normal distribution. Obviously this assumption is only valid

when the bunch current is small. As shown in Sec. 3.6, higher moments can not be

neglected when the bunch current is large. The assumption that the particle phase

space distribution is always a bivariate normal distribution is critical for the several

integral identities we have used (those derived in the last section of this appendix).

Now consider the limit of the second-order moments:

lim a = -A + V1Y+ A, (A.71)

lim a2 = 1, (A.72)
N, 2 -

lim 0r = 0. (A.73)
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Here

A= 2\ -9(A.74)

Equations A.72 and A.73 agree with the theory of potential well distortion: Energy

spread does not depend on the bunch current and is equal to its natural value. There

is also no mixing between the arrival time and the energy deviation. Eq. A.71 agrees

with the result of the potential well distortion. It can be shown that when we assume

a normal distribution in the arrival time and neglect all of the higher-order moments,

the Haissinski equation 2.86 will reduce to an algebraic equation for the bunch length.

The solution for the equation is identical to Eq. A.71.

The analysis of this appendix gives us a strong foundation for the introduction of

periods in the multiparticle simulation. Most of the earlier works [19, 53, 54, 55, 56] on

bunch lengthening simulations did not consider the possible differences of a localized

wake and a distributed wake. As we demonstrate in this appendix for the case of a

constant wake, the differences are significant as long as the differences between two

wakes are significant. Our analyses also suggest that by using many periods, we can

simulate a distributed wake by distributing a localized wake into may periods. When

the wake field kicks are small in each period, the simulation results are very close to

the results of a distributed wake. This is exactly the criterion we used to pick an

optimal N. for our multiparticle multiperiod simulations.

We have not discussed the stability of the fixed point under the full iteration. It

turns out that the equilibrium bunch length in electron storage rings with localized

wake can have a cusp-catastrophe behavior. Contrary to the results of the conven-

tional theory for a distributed wake force, the system becomes bistable and exhibits

hysteresis in some region of the parameter space. Interested readers can find a good

discussion on this subject in reference [58].

In the last section of this appendix, we will outline the procedures to prove several
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integral identities which have been used to derive the iteration equations for the center

of the bunch and the second-order moments.

A.4 Some Integral Identities

We assume that the particle's phase space distribution is a bivariate normal distribu-

tion with the following second-order moments:

111a =
a 2 1

0a1 2

a02 2

(A.75)

The bivariate normal distribution can be explicitly written as

1
+(x1, 2) = I exp (-(x- < , >)(a-')ij(Xj-- < Xj

The p(x1 ) is given by

p(Fz1 /d52(11) dnt)= 1p(xl) = dx 20,(x,x 2 ) = - exp
71'0.11ex ( (X1- < 1 >

2oa1 1

)2\ 

IO

Now we are ready to prove the following integral identity:

I1 = - dy < p(x+ y) >

1 +

dx dyexpo~~

dy < exp (

(x- < X1 >)2

2all

(z + y- < X1 >)2

2o0.1 )
(X + y- < X1 >)2

2all

Performing the double integral, we obtain

I= 

Other integral identities can be proved similarly.
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1

27r(l1
(A.78)

(A.79)
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Appendix B

List of Important Symbols

c: speed of light in vacuum
e: positron charge
r : arrival time deviation
6E: energy deviation
a0: natural bunch length (s)
a: bunch length (s)
aOo: natural energy spread
a,: energy spread
N: number of particles in a bunch
Eo: bunch energy
Lo: ring circumference
To revolution time
wo: angular revolution frequency
I: average bunch current (= Ne/To)
p: bending radius
ff RF frequency
V: peak RF voltage
~b~ synchrotron phase
7r/: momentum compaction factor
v,0: unperturbed synchrotron tune
WoS: unperturbed synchrotron frequency (= vo0wO)
vs: synchrotron tune
ws: synchrotron frequency (= vwo)
W(t): longitudinal wake field
Z(w): longitudinal impedance
w,: resonator frequency
R: shunt impedance

dimensionless coupling constant
tr: radiation damping time
tD: Robinson damping time
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