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ABSTRACT
SECONDARY FLOW IN AXTAL COMPRESSCRS
ROBERT C. DEAN, JR.

(Submitted to the Department of Mechanical Engineering
on May 17, 1954, in partial fulfillment of the require-
ments for the degree of Doctor of Science in Mechanical
Engineering)

The subject of secondary flow in axial compressors is treated
by a review of previous experience and the analysis of simplified
models of the wall boundary-layer flow in turning passages.

From the experimental data re-evaluated and correlated, a
physical model is constructed of secondary flow, tip clearance,
relative wall motion and wall boundary-layer separation phenomena.
A tentative qualitative theory of the influence of tip clearance
on boundary-layer behavior is proposed. It is speculated that
controlled tip clearance might improve the performance of axial
compressors .

The problem of boundary-layer skewing in blade channels
is treated analytically. Approximate relations are derived relating
boundary-layer behavior to blade-row geometry and flow configuration.

- The influence of streamwise pressure stresses upon boundary-
layer streamline patterns is demonstrated by an approximate theory.
The magnitude of the effects in the vicinity of the boundery indi-
cates the necessity of the inclusion of such stresses in any
analysis attempting to predict separation tendencies.

Integral momentum relations are derived for a quasi-two-di-
mensional laminar boundary-layer flow to demonstrate the importance
of shear stresses. The relations are applied to a flow model and
numerical results obtained which gualitatively agree with experi-
mental measurements.

Thesis Supervisor: Edward S. Taylor
Title: Professor of Aircraft Engines
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I. Introduction

Today, most turbomachines are designed with the tacit assump-
tion that the actual flow behaves in a manner predicted largely
from two-dimensional analysis. Experience demonstrates that this
model ié not in great error and that, in this way, useful machines
can be designed. However, there is a growing demand for optimum
performance, particularly from axial compressors and turbines for
aircraft propulsion and steam turbines for power generation. Per-
fection of such equipment requires a knowledge and control of the
actual flow through the machine under all operating conditions.

While the three-dimensional flow patterns are éomplicated and
analytically elusive, major progress is presently being achieved by
several investigating groups.

In axial compressors the most obvious measured deviations of
the actual three-dimensional flow from the ideal two-dimensional
model are as follows:

1) There is rapid peaking or distortion along the flow
path of an axial velocity profile initially nearly uniform with
radius.

2) The overall pressure ratio and work input measure
less than the values computed from two-dimensional analyses unless
an "experience factor" is included. This situation is especially
noticeable in multi-stage machines.

3) The peak pressure ratio a stage achieves before
stalling is of smaller magnitude when the stage operates as part

of a multi-stage machine than when it functions alone.
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The effects above are of sufficient magnitude to be of interest
to the designer; they not only impair performance, but they reduce
the accuracy of design prediction.

Velocity profile degeneration in compressors, a typical example
of which'is illustrated in Figure 1, is probably responsible for
reduced performance in the high pressure stages, partially explain-
ing item 2 above.

The rapidity with which the velocity profile degenerates suggests
that wall friction alone cannot be responsible. Several other phe-
nomena. may produce similar effects. Among these phenomensa may be:

1) Secondary flow.

2) lack of radial eguilibrium and resulting radial flows.

3) Boundary-layer instability in a centrifugal force field.

L) oOverall boundary-layer thickening in a diffusion
process.

5) Increased dissipation due to the shear flows arising
near the blade extremities.

6) Reduction in stagnation pressure rise at the rotor
extremities due to flow distortion.

7) Stall or boundary-layer separation near the blade
extremities.

8) Local shocks arising from flow distortion.

Some of the phenomena. listed above contribute direct and/or
indirect influences. The occurrence of one or more events may be
reéponsible for the initiation of others. The flow patterns are

extremely complex; they must, therefore, be examined in great detail .
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Mathematical description of an appropriate model of the flow phe-
nomenon is usually difficult while the solution of the complete
flow equations is presently impossible. This three-dimensional
flow represents the most general problem of fluid mechanics includ-
ing consideration of pressure, viscous and turbulent forces acting
on a three-dimensional, dissipative, compressible-flow pattern. 1In
the absence of analytical solution, experimental data and semi-

quantitative interpretation serve as our only guides.
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Secondary Flow Phenomena in Axial Compressors

In the mechanism of secondary flow, we find one of the larger
deviations of the actual flow from the idealized two-dimensional
flow model. For this reason, the Gas Turbine Laboratory has con-
centratéd particularly on this phenomenon over the last few years.
Recently, some additional factors have come under investigation.

Definition of Secondary Flow

The meaning of the term "secondary flow" depends primarily
on he who defines it. Taking advantage of this precedent, "second-
ary flow" will be defined, herein, as any measurable flow velo-
cities and displacements which can be directly attributed to the
presence of a stagnation pressure gradient in a stream which under-
goes a change in direction. The mechanism which gives birth to
the stagnation pressure gradient is not considered a part of the
secondary flow phenomena, although there 1s evidence of mutual
interaction between the two inside the turning passage.

The mechanism of secondary flow can be revealed in the follow-
ing manner: Consider a two-dimensional stream approaching a bend in

a channel. Take cylindrical coordinates, as shown in Figure 2.

’/P-f:ﬁblﬂbﬁf'/7
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To simplify the treatment assume Bpo/ar = 0 at inlet to the bend

as shown. Under this assumption, the Bernoulll surfaces (pO = const.)
will intersect with the plane of the inlet cross section as straight
lines perpendicular to the z direction. Now, if the fluid velocity
along the streamlines, u, varies in the z-direction, which is the
general result of a stagnation pressure variation, the radial cen-
trifugal pressure gradient in the bend must also vary in the z-direc-

tion. The pressure gradient normal to a streamline is expressed by:

@ _ u?
3n T PR

vhere R is the radius of curvature of the streamline. At the en-
trance to the bend, the streamlines turn primerily in the (r,®)
plane of the bend. The simplifying assumption may then be employed
that R=r and g}%z%— .

The variable radial stream pressure gradient, g%-, will pro-
duce pressure gradients in the z-direction inside the bend (i,e,,gg-),
8s shown in Figure 3, driving the fluid into opposite rotation at

top and bottom walls.




The development of seAcenda.ry flow may be described crudely,
but more graphically, as follows. The main body of the flow
establishes a pressure gradient in the r-direction %g— =p gﬁ
where R is the radius of curvature of the streamlines and V the
"main stream" velocity. The boundary layer fluid travels at lower
velocity. If it did travel on streamlines of the same radius of
curvature as those in the main flow, its radial acceleration could
not match the radial pressure forces established by the bulk of the
flow. Solve this problem the boundary fluid must, so it travels
on streamlines of smaller curvature with a consequent increase in
radial acceleration, in an attempt to match the imposed radial
pressure force. Boundary layer fluid in this manner turns faster
than the main stream and soon reaches the inner wall.

The resulting streamline displacements can be imagined if the
secondary circulation is superimposed on the two-dimensional bend
flow. (Figure 3).

The local rate of change along streamlines of the secondary
vorticity is expressed by Hawthorne's equation (Ref. 1) for a steady

flow of an incompressible, inviscid fluid without body forces.

e
v‘v(_gm):_le(ﬁ)‘ 5“&43 (1a)

or integrating a.longz"a streamline:
_ | , Po
A(é) = -2 f Tz V(?s)
\

where the terms are defined in Figure 4.

S\Véb As
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V = velocity vector, magnitude u
WV (p./p) = gradient of p_/p
po = gtagnation pressure
= stream density

= vorticity vector

p
Q2

‘g = vorticity component tangent toc streamline

1 = vorticity component normal to streamline

R = streamline radius of curvature

§ = angle between principle normal to streamline and normal to Ber-

noulll surface
Examination of equa.tions {la, 1b) teaches that there will be a

component ‘of the vorticity gradien‘b in the direction of the velocity
vector if 0L @< =, IV(pO/p)l £#0, R # . If the last two condi-
tions are met, it follows that secondary flow will always develop

in a curved channel unless the streamlines happen to be geodesics

(i.e., ¢ = 0) on the Bernoulli surfaces.



A stagnation pressure gradient most commonly arises from vis-
cous shear near a solid flow boundary. Fluid friction, in this
manner, is indirectly responsible for secondary flow; however,
comparison of inviscid analysis with the experiments discussed
below shows that the stagnation pressure gradient, not viscosity,
largely controls the development of secondary flow in regions re-
moved from the walls.

The secondary velocities and consequent fluid displacement
cause the low energy boundary-layer fluid on the plane walls of
the bend to flow toward the inside wall, accumulating there after
a large angle of turn. The amount of fluid displacement, of course,
increases with the turning angle of the bend. These displacements
will be treated in greater detail below.

Most analytical attacks to date have solved equation (1), or
equivalent expressions, by assuming that the Bernoulli surfaces do
not rotate or rotate without warping. Such treatment is fairly
successful in a circular pipe where the boundary conditions are
favorable to the latter assumption. In rectangular passages, this
assumption does not prevent reasonable accuracy in predicting
secondary flow velocities after small turns, but is untenable for
calculating the flow pattern in turns of large angle.

' Before a discussion of the influence of secondary flow in
turbomachinery, the data of Eichenberger (4), Van Le (5), and
Toline and Watson (11) will be presented offering the reader a
phyéical interpretation of the phenomenon based on experimental

measurements.



Secondary Flow in a Rectangular Bend

H. P. Eichenberger's investigation of secondary flow in a con-
stant area bend was carried out under the sponsorship of the Office
of Naval Research; his results are reported fully in Reference (l).

The purpose of this fundamental investigation was to reveal,
by experiment and analysis, the nature of secondary flow in a
simple channel which roughly approximated fluid machinery passages.
Here, we are primsrily concerned with his experimental data.

Two series of tests were performed, one set employing water
with velocities from 0.1 to 1.3 ft/sec,, the other set employing
air flowing at velocities from 100 - 200 ft/sec. The Reynolds num-

3 %o about 7 x 10°. The

ber variation was accordingly from 7 x 10
entry velocity profile to the bend was that of fully-developed tur-
bulent flow. The bend was of square section 8" x 8" with an inside
radius of 24", A well-rounded nozzle led from the room into a 20!
long (i.e., about 30 hydraulic diameters ) 8"x 8" pipe, preceding
the 90° bend; a 40" straight section followed the bend preceding
discharge to the fan.

Flow directions, stagnation- and stream-pressures were measured
over six cross sections: 28" before the bend, 0°, 30°, 60°, 90°
and 28" after the bend.

A comﬁarison of‘the water flow data taken at Reynolds number
of 7000 with that of air takén at Reynolds number of 720,000 demon-
strated insignificant difference between the flow patterns at
similar positions in the bend. This observation is not surprising

since the flow was turbuient in all cases.
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Stagnation pressure contours and flow directions from the air
, tests are presented in Figures 6, Ta, Tb, and Tc.

The interpretation of these contour maps is not an obvious
process . The fact that the stagnation pressure along a given cir-
! cular arc {(r,z) varies with the turning angle © can be the result
of two distinct phenomena--fluid displacement and irreversible
} momentum exchange. Neglect of either mechanism will inevitably
lead to misinterpretation. However, since fluid with a relative
stagnation pressure defect (5;'- po)/ ¢=VZ (where V is the bulk
mean veloecity, 5;' a mass weighted average stagnation pressure, and
P, the local stagnation pressure) approaching a value of 100% enters
the turn near the confining walls, large distortions of the Ber-
noulli surfaces (i.e., large changes in the stagnation pressure
defect along a circular arc) are most likely to be due to fluid
displacement. Momentum exchange by viscous shear forces and tur-
bulent mixing can either raise or lower the stagnation pressure
along a streamline, but the change is usually of the order of a
few percent and cannot be responsible entirely for the large Ber-
noulli surface distortions evident in Figure 6. Thus, we are
safest’ if we describe the Bernoulli surface distortion as a result
of fluid displacement, remembering that the picture must be some-~
what modified to accéunt for dissipation. It is most certainly
erronebus-to describe the stagnation pressure controus, or d4if-
ferences between the contours at a given cross section plane from
those in the inlet plane, as loss contours, although the terms

energy defect or stagnation pressure defect are acceptable.




Accounting for regions of low stagnation pressure as losses and
consequent neglect of three-dimensicnal displacement has led to
considerable confusion in this field, has produced erronecus con-
clusions and has hindered a physical understanding of the phe-
nomena. .

Certainly, the determination of true loss contours (i.e.,

variation of stagnation pressure along streamlines) would be of

essential value to secure an understanding of the importance of
viscous or turbulent stresses, the sources of dissipation and
methods by which it may be reduced.

Carter (18), by use of a streamline tracing technique,
measured dissipation along streamlines; his values, however, seem
high which may be due to an inherent uncertainty in his method of
the order of magnitude of the measured dissipation. Some of his
results show no increase in stagnation pressure along any stream-
line traversing a diffusing passage. It will be shown later that
such increases are mandatory. The importance of an understanding
of dissipation in a three-dimensional flow is concentrating serious
effort on the problem

With the above comments in mind, let us return to Figure 6
and build a qualitative physical interpretation of that flow. In-
spection of equatioh (1) shows that the magnitude of the component
of the sﬁagnation pressure gradient perpendicular to the principal
normal of the stresmline (i,e,,'§7(§?§‘ sin #) controls the rate
of development of secondary vorticity along the streamline.

At entrance to the‘bend, the principal normals of the stream-

lines are parallel to the r-direction. Then, only the z component
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of the local stagnation pressure gradient will give rise to second-
ary vorticity. The boundary layer existing on the curved walls of
the bend will not develop secondary circulation as long as the
streamlines turn in the plane of the bend. The fluid on the plane
walls e#periences a growth of secondary vorticity increasing in

op
rate as 552 increases on approach to wall.

Figure 8

The resulting distribution of secondary vorticity initiates
secondary fluid motion towerd the inside of the bend on the plane
walls. This flow may be observed in the underturning angle plots
of Figufe T.

The drift to, and accumulation at, the inner wall of low
velocity fluid forces the main stream, high-energy fluid to move
toward outer regions of the plane walls filling the regions evacuated
by the boundary layer. Viscous friction brought into action by the
high velocity gradients at these parts of the wall developes more

boundary layer fluid and the process continues. It is this removal
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of the original boundary layer and growth of new, which is partially
responsible for the losses credited to secondary flow.

The production of the kinetic energy of secondary flow re-
quires little energy fram the main stream. Eichenberger (4),

Van Le (5) and others have shown, by integration over the flow at
exit from a bend or cascade, that the kinetic energy of secondary
fIow and the potential loss from complete dissipation of the second-
ary velocities amounts to only 0.2% and 1.0% of the total kinetic
energy of the entering stream for a 24° and 90O turn, respectively.
In contrast, the total dissipation credited to the bend amounts to
5% and 25% of the entering kinetic energy for respectively a oy
and 90O turn.

The inward flow and Ppreoduction of new boundary layer con-
tinues as the angle of turn increases. At 600 bend angle a signi-
ficant accumulation of low energy fluid is apparent at the inside
of the bend. At 90o turning angle, the low energy accumulation
penetrates well into the stream. After the bend, the secondary
circulation persists until dissipated even though the driving pres-
sure forces are no longer acting; the distortion increases with
distance downstream. At a location 28" after the bend the flow had
turned virtually inside out.

Figure 9 plots mass averaged stream entropy ab various
cross sections against distanée along the bend. Inside the bend, a
large increase in the rate of change of stream entropy
is apparent compared to the initial fate in the gtraight pipe. The

rate of dissipation contiﬁues high even after the bend. Imversion
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‘ of the flow pattern and the resuiting high shear gradients at the
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wall as well as mixing of the accumulated low-energy fluid with the
main flow are responsible for the high rate of dissipation continu-
ing after the bend.

A theory of secondary circulation in a constant area bend was

; developed by Eichenberger which accurately predicts the distribution
of secondary velocities after a turn of about 500. With larger turns,
typical of turbines, the flow pattern can be seen to grow too con-
fused to allow mathematical treatment.

Secondary Flow in a Rectilinear Cascade

The next logical extension of the bend study, to approximate
more exactly the flow passages of a turbomachine, was investigation

of the development and influence of secondary flow in a rectilinear
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cascade. Nguyen Van Le (5), employing the MIT Gas Turbine Labora-
tory low-speed cascade wind tunnel, investigated secondary flow in
a cascade of axial compressor blading under the sponsorship of the
General Electric Company and the Westinghouse Electric Corporation.

fhe wind tunnel has a cross section of 16" x 22". Fourteen
straight blades of 3-inch chord, 16" span and pitch-chord ratio of
0.77 were fitted with a 40° air inlet angle and 24° turning angle.
An infinite cascade was approximated by applying boundary layer
suction to the side walls. A splitter wall was fitted to the blades,
as shown in Figure 10, which allowed the wall to be adjusted rela-
tive to a stationary row of surface taps on the blade yielding the
variation of blade surface pressure distribution with distance from
the wall. Boundary layer shape and thickness were governed by the
length and roughness of the splitter wall.

The entering velocity was about 130 fps with a blade-chord
Reynolds number of 2 x 105. The cascade discharged directly into
the room, facilitating the use of traversing probes to determine
stagnation and stream pressure, underturning and spanwise deviation
angles. ©Special probes were developed which could resolve the flow
pattern with sufficient accuracy even in the high velocity gradients
of the blade wakes.

Stagnation pressure contours for a series of (y,z) planes
are presenﬁed in Figure 13. The location of the traversing planes
is illustrated in Figure 11.

Fluid displacement toward the suction surface is evident;

the phenomena resembles that of the constant area bend except that



FIGgure 10
SCHEMRTIC OF SPLITTER~
PLBTE FIiTTEeD 70 CRSCAL £

<

TRAVERSING
z PLANES
1] @
B a .82 ___ | 5
§ w
3y °
{ E
: ]
H - -. 91
s <«
? =° -~ .81
i
i 2 § ~.48 |
! S _.a»
. - --06
£ 8 124
: DISTANCE FROM
3 .‘_ .48 BLADE ENDS {WALL)
j :
{ e 94
4
}

X z
(Chord = 3.0", Pitch = 2.3", Dimensions in Inches)

Figure 11  LOCATION OF TRAVERSING PLANES

—

Q33 =

032 yd

P-P3
2 y2
280 £2) p = local stream pressure |
) P.= stream pressure ahead of cascade
fo%.1] R V,= mid-span velocity upstrem! pf cagcade
/
/
F G H
aso i l I
o | o2 - o4 0.6 0.8 .o
Trailing Edge X
g= Distance Downstream of Cascade

(Location of Traversing Planes. F, G, H is noted.
Data Taken Along Axis X, Normal to Plane of Cascade).

Figure 12 VARIATION IN STREAM PRESSURE DOWNSTREAM OF CASCADE AT BLADE MID-SPAN




pmHnH.o¢m eT3uy Futuang'®
HAVOSYD ¥OSSHHEAWOD V NI

ey

aoo¢ eT23uy
w6 U3dueTt,.g paoydf.g2 yoatd epeld)
NOILVINOYIO AMVANOOHES 40 INANJIOTIHARG ©T oInItd
WBeJIISUMOD

f

*

©) anvd

4 3Invd

*
,,
=

00/:‘\

99 2

€5 6.
AN
2
A——>
~ N 3INvd
f/l llllll%\\-nlk
(1] —_—

R R e )

edvssed

meegqsdn




~16~

the displacements are larger for a given turning angle. This cob-
servation is to be expected since the flow in the cascade proceeded
against an adverse pressure gradient which forced low energy fluid
to escape more rapidly down the blade suction surface (i.e., the
inside 6f the bend.) A residual secondary circulation can be noted
between planes G and H.

FPigure 12 presents the measured variation of stream pressure
downstream of the cascade; the data was taken in the x-direction at
blade midspan and the center of the channel. The locations of the
planes of Figure 1l are noted. It should be remembered that the
cascade discharged directly into the atmosphere.

Figure 14 illustrates pressure distributions around the
blades at various distances froﬁ the wall. Two facts should be
noted: First, that the pressure distribution on the pressure side
of the blade does not change significantly on approach to the wall,
while the pressure distribution of the suction surface is markedly
altered. This observation can easily be explained by the observed
secondary displacement of high energy fluid toward the wall on the
pressure surface and the counter displacement of considerable low
energy fluid onto the suction sﬁrface. Secondly, it is important
to note that the net pressure force on the blade does not diminish
to zero at the wall even though the fluid velocity must be zero at
the wall. This observation is also to be expected since the tip is
bounded by the wall in this case, allowing a pressure difference to
be maintained between the two sides of the blade. The problem of a
turbomachine blade immersed in a boundary layer is dissimilar to

that of a finite wing unless the tip clearance becames very large.
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Theory

Van Le has developed a linearized theory yielding secondary
flow velocities downstream of a small turning angle bend conduct-
ing an ;ncompressible, inviscid fluid. The theory predicts with
considerable accuracy the measured deviation angles, and therefore
the secondary flow velocities, in the x-y plane at discharge.
However, this theory cannot yield fluid displacement since it
gssumes that the Bernoulll surfaces remain flat and parallel to
the x-y plane. That this assumption is only a rough approximation
of the actual flow conditions is obvious from inspection of Figure
13, It can be seen that the Bernoulll surfaces rotate on the order
of 300 in the regions of secondary flow when the fluid traverses a
24° turning angle cascade.

By the very nature of an inviscid analysis, the stream-wise
pressure gradient (i.e., the cascade pressure rise) must be neglected
in a diffusing cascade. Since fluid initially near the wall enters
the cascade with very small velocity and the main flow largely con-
trols the cascade pressure rise, the low energy fluid must undergo
an increase in its stagnation pressure to pass successfully through
the diffusing channel. The essential energizing action normally
occurs, in a real fluid, by momentum exchange (viscous and turbulent)
with the main flow. In an inviscid, non-turbulent stream such |
momentum exchange is impossible; thus, some fluid close to the wall
must flow backwards in violation of the assumed upstream boundary
conditions. Indefinite accumulation of fluid in the blade passage

violates the continuity condition. For these reasons, the inviscid
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treatment of a diffusing cascade must be indeterminate unless the
pressure rise is neglected or a finite velocity is allowed at the
wall.

With only tentative knowledge of the importance of viscous
forces and turbulent momentum exchange in the secondary flow phe-
nomena, the possibility of a significant analytical attack on this
problem is dubious at present.

Extension of the "Simple" Models

Until 1952 only the mechanism of secondary flow in simple
passages was under investigation in the Gas Turbine Laboratory.
With tentative understanding of that flow, some attention was
directed toward other significant effects which may alter or even
completely mask secondary flow patterns in a machine. Important
additional considerations are:

1) End-leakage between blade end and wall.

2) Passage of a moving wall over the blade end.

3) Distortion of the flow field relative to the succeed-
ing blade row.

4) Behavior of displaced fluid in a centrifugal force
field.

5) Relative rotation of the fluid in a rotor passage.

6) Displacement of rotor blade boundary layers toward the
blade tip. This action arises because the blade bound-
ary layer fluid travels with a higher whirl velocity
than that of the main stream. The boundary layer
fluid is ndt, therefore, in radial equilibrium with

the pressure field established by the bulk of the flow.



T

e

FIGURE 1 &6 YIEW OF CASCADE SHOWING MOVING WALL MECHINISM

L2 ore Aforron T
> a —~—— ///
V4 i
yavd !
%/ | i /S
! Y | 7/ | )
J
4
d ¥
i 7
d
J
0
s

X2 D SLAA
NP/ LD S

AE=UNDER TURNING FHGLE
T =OPAN WISE DEVIATION SNGLE

FIGURE 17
CHBSCROE NOMENCLET URE



-19-

7} Influence of blades of non-uniform lift upon a three-
dimensional flow pattern.

Several of these phenomena can be investigabed in the recti-
linear cascade; however, no final conclusions can be drawn concern-
ing inte?action except by use of a rotating cascade. ZEnd clearance
and the influence of a moving wall were investigated by Lt.Cmdr.
Toline and Lt. Watson during 1952-53.

A single-stage, axial compressor has also been constructed and
is now in operation under the sponsorship of the Office of Naval
Research. It serves as a rotating cascade useful for penetration
into the-general three-dimensional flow phenomena involving all of
the parameters listed above.

Cascade with Moving Wall and End Clearance

The end-clearance and moving-wall investigations were carried
out in the low-speed cascade wind tunnel with a set of nine blades
of 2.8-inch chord, pitch-chord ratio of 1.0, span of 16", with 40°
air inlet angle and 26° of turning. The profiles were NACA four-
digit series shapes applied to a circular arc camber line. Flow
velocity and Reynolds number were comparable to Van Le's tests.

End clearance was adjusted from O to 5/16" (i.e., O to 11.4%
of the chord). The boundary layer was generated on the tunnel wall;
it was about 1" thickness of the shape shown in Figure 22.

A sanding belt, driven by two high-speed motors, served ad-
mirably as a moving wall (Fig. 16). The belt develops a suction
between its back surface and a ground steel backing-plate; air

lubrication develops above a surface speed of 50 f£4/sec which floats
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the belt free of the backing-plate. In this manner, a very flat
moving surface of adjustable roughness can be driven at high velo-
city with moderate power consumption.

Tpline and Watson's investigation was of a preliminary nature;
data particularly lacking are flow conditions with various inlet
boundary-layer conditions and various values of the flow parameter
cx/u(where c, is the air velocity perpendicular to the plane of the
cascade and u the blade speed). Tests were conducted with one
boundary layer and a cx/u of 0.87; further tests are reported in
References (36) and (38).

Stagnation pressure, underturning angle, and spanwise deviation
angle were measured at a (y-z)plane 1/2-chord length behind the
trailing edges. Figure 17.

These data were plotted as contours of stagnation pressure,
underturning angle and spanwise deviation angle on three plots after
the manner of Van Le. Use of these plots requires considerable
mental agility; superposition of three parameters at many points in
a two-dimensional plane is required to form a mental picture of the
flow. The difficulty of this process has led to misinterpretation
of the data. In order to aid in comprehension, a vector plotting
method was developed. Steel needles are thrust into a balsa (y-z)
plane at each measuring point. The inclination of a needle indicates
the local flow direction; ité length, the magnitude of the local
velocity. Circulation, secondary flow, blade wakes--all of the com-
plicated flow pattern becomes visible.

Three comparable sets of data are presented in Figure 18.
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Set A illustrates in greater detail than previocusly the flow
pattern with no end clearance and a stationary wall. The camplete
flow field at a position 1/2-chord length behind the blade trailing
edges may be reconstructed from the stagnation pressure, underturn-
ing angle and spanwise deviation angle plots. Further discussion
of the flow pattern issuing from a "Simple" cascade is in order at
this time.

A careful study of Figure 18A yields the following signifi-
cant observations.

1) Secondary circulation was developed in the cascade
and appears as an overturning of the flow close to
the wall with a slight underturning at the exterior
of the boundary layer. The flow proceeds toward the
wall on the blade pressure surface and away from the
wali on the suction surface. This pattern is to be
expected from the previous consideration of thg
development of secondary vorticity.

2) Secondary circulation resulted in a displacement of
boundary lgyer fluid toward the suction side of the
passage. A marked thickening of the wall suction
surface boundary layer results accompanied by a thin-
ning of the wall pressure surface boundary layer.
(Figure 22).

3) While not immediately evident in Figure 18A, an
average thickening of the entire wall boundary layer

results from the cascade pressure rise. This thickening
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is evident in Figure 22 plotted from Figure 18A.

L} Blade wakes are readily identified; a slight dis-
placement of the wakes toward the suction side of
the passage near the wall 1s evident. Underturning

i of the fluid discharged close to the wall immediately

off the pressure side of the blade may be observed.
i 5) Vorticity shed from the blade in the direction of
| the flow is evident in the boundary layer, wake

region. The spanwise deviation angle plot shows the

— v

resuliing shearing flow in the blade wakes near the

% wall. The wake pattern may be synthesized, as shown

in Figure 19.
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Probably the most sericus comnsequence of secondary flow is

the marked boundary layer thickening in the wall-suction surface
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corner. In any real flow, with the stream velocity equal to zero at
a bounding wall, some fluid must enter a diffusing cascade with a

stagnation pressure lower than the final downstream pressure., Fig. 20.
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The deficient fluid cannot flow through the diffusion process un-

less the main stream energizes it by viscous or turbulent momentum

exchange. If these energizing forces do not exert sufficient action,

the deficient fluid will not successfully negotiate the pressure rise
ﬁ and must flow backwards. Such behavior is commonly termed "stall®,
in thisvparticular case "wall stall”, or "end stall”. 1In case the

energizing forces act sufficiently, a rise in stagnation pressure

———,

will be noted along interior streamlines with a decrease appearing
in the exterior regions of the boundary layer and adjacent fluid

of the main stream.

The maximum increase in stagnation pressure is found at the

wall. The fluid in this region will rise in stagnation pressure in
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an amount equal to the stream pressure rise through the diffusing

passage or,
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While the energizing action may successfully carry the low-energy

Figure 21

fluid against the pressure rise, this desirable result is not
achieved without a sacrifice.

A part of the main flow initially lying outside the original
boundary layer is de-energized and becomes a part of the final bound-
ary layer. The velocity profile of the thickepned boundary layer
degenerates and the flow approaches separation as is indicated by an
increase in the magnitude of the shape factor H. Should this bound-
ary layer now face an additional pressure rise, its depreciated con-
dition will hinder further energizing action by the main stream;
separation‘will be more likely than before the original pressure
rise.

Returning to the cascade passage, inspection of Figure 22

demonstrates a severe deterioration of the wall suction surface
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boundary layer. This deterioration is partially duve to the cas-
cade pressure rise but 1s augmented greatly by the accumulation

of wall boundary layer fluid in this corner. A large tangential
variation of the displacement thickness, momentum thickness and
shape factor of the boundary layer was observed. Now, if this flow
is forced to traverse a still larger pressure rise--say, due to an
increase in incidence angle at cascade inlet--then one would expect
the flow to separate and travel backwards in the wall-suction cor-
ner. Conversely, it can be anticipated that this flow would
successfully negotiate a larger pressure rise before backflow
occurs if the boundary layer were in some way prevented from accu-
mulating in this corner.

In this discussion the words "separation”, "stall" and back-
flow" have been freely employed. However, one must use care in
defining such breakdowns. The event we are concerned with in
speaking of separation is a disturbance in the boundary layer of
such a magnitude that it seriously alters the main flow. For
exsmple, boundary 1ayefs are often greatly disturbed at local spots
on the wings of aircraft even under normal flight conditions.

These lpcal disturbances are not usually called stall. It is the
point at which the disturbances affect the main flow to such an
extent that the wings can no longer lift the craft that we say
stall has occurred. Similarly, the definition of the onset of
stall or separation in a turbomachine is a subjective matter; the
seriousness of the effect of boundary layer disturbances on the
state of the main flow can only be evaluated in terms of overall

machine performance. The best we can do in a general investigation
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is to describe flow geometry as exactly as possible and leave
the evaluation of the guality of the flow to the practitioner.

In all our measurements, we have always observed a region of
reversed flow on the wall as illustrated in Figure 24. Such flow
reversal probably occurs in all diffusing cascades and even in
regions of unfavorable pressure gradient and thick boundary layers
in accelerating cascades. As boundary layer conditions become
more degenerate and as the unfavorable pressure gradients in-
crease, the extent of this region of reversed flow will increase,
penetrating more deeply the main stream and involving a greater
quantity of fluid. Figure 23 presents a stagnation pressure plot
of the discharge from a diffusing cascade. Undoubtedly anycne
would describe this passage as "stalled”.

It was noted above that a region of underturned fluid if found
in the proximity of the wake close to the wall. At first, this
observation seems anomalous in comparison to the strong secondary
overturning of the mass of the boundary-layer fluid. As was noted
before in conjunction with Figure 14, little change in pressure-
surface pressure distribution was measured on approach to the wall,
while the suction surface pressures fell off markedly. Although
pressure measurements could not be continued to the trailing edge,
a steep stream pressure gradient apparently existed between suction
and preséure surface at the'trailing edge near the wall. Carbon-
black boundary-layer patterns {Figure 24} indicated that £low
separation can account for the lower stream pressure of the suction

surface discharge in compariscn to the fluid streaming from the
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f other side of the blade. The low pressure in this region can, in
turn, account for the expansion and underturning of the pressure
surface discharge. This sequence of events is schematically re-

presented below.

T e o i e,

N
)
)

The accumulation of wall boundary-layer fluid in the wall-

{ suction corner and consequent flow separation will lead to in-
creased dissipation in the passage as well as higher mixing losses
downstream in comparison to a tangentially uniform boundary layer.
After discharge from the blade row the distorted pattern from each
passage must mix to a tangentially uniform stream in an analogous
manner to the dissipation of the blade wakes. Coupled with these
J losses is an increased passage dissipation arising from the pro-
duction of new boundary layer in the passage wall-pressure sur-
face corner as the original boundary layer evacuates this region

allowing high energy fluid to come in close proximity to the wall.
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End~Clearance and a Moving Wall

To study the influence of end-clearance, Figure 18B presents
data with 1/8" or 4.5% chord end-clearance and a stationsry wall.
The data of Set C resulted with 1/8" end-clearance and a wsll
moving from passage suction to pressure side, as in a compressor,
at a velocity equal to the mid-span stream velocity.

Study of Figure 18 reveals that each of the modifications
significantly altered the flow pattern at exit from the cascade.
Consider the flow phenomena resulting from end-clearance. Two
limiting patterns with variable clearance must be, first, the
pattern already observed with zero clearance and, second, when the
clearance becomes very large, that of a finite wing.

Progressively greater amounts of fluid leak between wall and
blade as the clearance, the blade loading or the wall speed {of
a compressor) are increased. Extending the behavior of a finite
wing to this case would indicate that this leakage flow serves
to unload the blade end producing larger adverse spanwise pres-
sure gradients on the blade end surfaces. It would be anticipated
from this view that end-leakage augments secondary flow, further
deteriorating flow conditions on the suction surface and encourag-
ing flow separation there.

In opposition to this view, it is proposed here that this
model maj be erroneous and that end-leakage may actually delay
the "stall" of compressor passages. The strongest supporting
evidence for this statement is found by comparison of Figures

184, B and C. In Figures 18B and C the action of end-leakage
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and a moving wall prevented the accumulating boundary-layer fluid
from reaching the suction surface of the blade end. Relatively
high energy fluid washes the end suction surface in comparison to
the cascade with no end-clearance.

Tﬁe diversion of accumulated boundary layer fluid from the
suction surface may be explained in the following manner. The
relatively high energy, end-leakage flow passes over the blade
end and is discharged from the slit "nozzle" parallel to the wall
at an angle between the cascade inlet and outlet angles. The high
energy leakage flow penetrates toward the pressure side of the
passage. At the same time, secondary flow is continuously drift-
ing the original boundary layer fluid toward the passage suction
side. Somewhere these counter flows must meet and oppose one an-
other with a result that the low-energy secondary flow turns down-
ward into the passage. The original boundary layer is turned back
on itself and forms a discrete core or eddy of low-energy fluid
removed from the blade suction surface. That the boundary-layer
fluid is rapidly driven from the wall is indicated by spanwise
deviation angles approaching —600 in Figure 18B. A schematic re-
presentation of this process is shown in Figure 25.

The action of the leakage flow may be likened to a scraper
moving along the wall pushing the boundary layer ahead of it,
divertiné the secondary flow of boundary-layer fluid under it and
out into the stream. A strong shear band between the leakage
flow and the secondary flow can be observed in the underturning

angle plots of Figures 18B and C.
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Figure 25

The folded accumulation of boundary iayer fluid which, to be
sure, contains some residual secondary circulation, has often
been described as a discrete vortex.

Figures 18C show the flow pattern with the same end-clearance
as before but now with a wall moving at mid-span velocity in the
direction of the end-leakage. Note that the wall in this case
is a contour of 100% relative stagnation pressure. The pattern
is much the same as before except that the energizing action of
the wall motion increases the tangential velocity and amount of
leakage flow, thus injecting it at an angle closer to the tangen-
tial direction. As would be expected, the leakage flow penetrates
further across the passage, stripping the accumulating low-energy
fluid from the wall closer to the pressure side of the passage.
Once again, the strong shear band between the leakage flow and
low*energy core is clearly apparent. A layer of fluid, moving
with the wall, separates the secondary flow from the wall driving
it downward into the stream, Figure 26. A still higher wall velo-

city should force the accumulation of boundary-layer fluid still
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closer to the pressure side of the passage. This action probably
explains the "scraping effect” of wall motion, a term employed by
some investigators to describe similar data. But, it should be
noted, it was the end-leakage and fluid moving with the wall, not
the blade, which scraped the wall of its boundary layer. There
appeared no flow on the pressure surface directed away from the
wall as would be expected if the blades “scraped" the boundary
layer.

Before continuing, it may be of some value to speculate fur-
ther upon the nature of end-leakage and wall motion in compressors
and turbines.

Certéinly, if the end-clearance becomes large in a compressor,
the flow pattern will approach that of a finite wing with dele-
terious effect on suction surface conditions. The relation be-
tween suction surface end-stall, end-clearance and velocity of

wall motion can be investigated by experiment. An analytical



e RO o e, 1 8 s e o 4wt 20

attack may also be expected to yield useful information. Experi-
mental removal of the stator shrouds in multi-stage compressors
might also shed light on the action of end-leakage.

?he discussion above does not include leakage under shroud
sealing rings. Such leakage will usually re-enter the main stream
normal to the flow thereby seriocusly harming the boundary layer.
When considering leakage results for axial compressors, one must
carefully examine the gecmetry of the leakage paths.

While we as yet have tested no accelerating (i.e., turbine)
cascades, some predictions might be made from our previous re-
sults concerning the probable flow patterns.

Two important characteristics separate the three-dimensional
flow phenomena of compressors and turbines. First, the turning
angles of turbine passages are usually much larger than those of
compressors. This fact leads to the anticipation of greater
secondary vorticity development through turbine passages. However,
the overall acceleration of the stream undoubtedly restricts
fluid displacement to a smaller magnitude than in the compressor.
Secondly, the wall motion in a turbine rotor proceeds from passage
presBure to suction side thus augmenting secondary flow.

The exhaust flow from accelerating cascades of MSO turning
angle has been observed by smoke tracing in Ref. 24 and hy vressure
measurements for a 900-accélerating elbow in Ref. 31. 'The dis-
charge patterns near the wall were similar to the pattern observed
by Eichenberger in the constant area bend at 900 turning angle.

The accumulated boundary-layer fluid enters the main stream off



the suction surface. This penetration and the residual secondary
ecirculation may be of sufficient extent to form a veorfex of the
discarded boundary layer fluid. This accumulation has been
termed a "passage vortex”; its outstanding characteristic seems
to bé low energy rather than strong vorticity, but it may produce
serious disturbances in the succeeding blade rows.

The action of secondary flow, especially when augmented by
wall motion, deteriorates flow conditions on the blade suction
surface and apparently leads to very low velocities or bhack-
flow on the rear suction surface of even an accelerating passage.
Secondary flow and the presence of adverse pressure gradients in
this region can explain dirt marks on the wall and rear blade-end
suction surface which usually indicate separation. While strong
secondary flows lead to boundary layer separation, higher passage
losses, and increased mixing losses downstream of a turbine blade
row, they do serve to dump the wall boundary layer into the main
stream, vigorously mixing the flow and preserving more uniform,
more nearly design conditions, approaching the succeeding rotor.
It is dubious, therefore, whether secondary flow is disadvan-
tageous in a turbine or a compressor.

The need for more penetrating measurements of these phenomena
is evident. Detailed measurements inside, as well as bekind,
acceleréting and decelerating cascades are underway with varying
Cx/u, tip clearance and boundary layer shape and thickness.
Methods of determining local losses within the cascade and in the
mixing region downstream are under investigation. The influence

of secondary flow on boundary layer behavior and separation of
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the boundary layer from blade surface and wall is under investi-
gation with varying pressure rises through a passage.

The Influence of Three-Dimensicnal Flow in Axial Compressors

The ultimate purpose motivating these investigations of three-
dimensional flow is the desire for a better understanding of the
flow through fluid machinery. Deeper understanding will be de-
cisive for further improvement of turbomachinery.

The present two-dimensional methods of analysis and design
cannot offer all the insight necessary for the conception of
optimum egquipment. As compressors of higher pressure ratio per
stage, greater flow velocity and improved efficiency are attempted
or when one desires to further improve the efficiency of turbines,
the two-dimensional model is inadequate to reveal the true flow
pattern and all of the inherent design limits. Further, the
simple two-dimensional model offers few avenues toward perfection,
while even a qualitative understanding of the actual flow opens
many pathways toward improvement.

Let us now examine some of the consequences of three-dimen-
sional flow and possible improvements revealed by the previous
qualitative description of the various phenomena. The entire
subject may be conveniently split into two parts, passage phe-
nomena and machine phenomena. The two parts, however, are not
completely independent.

Pagsage Phenomena

The influence of an initial boundary layer and the resulting

secondary circulation in a turning passage has been discussed.
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The action may be summarized ag follows. A wall boundary layer
and the deleterious influence of secondary flow are responsible
for "end-stall" at the extremities of compressor and turbine
blading. If the boundary layer can be restricted in growth or
removed, end-stall should be delayed or even eliminated entirely.
However, if a boundary layer is unavoidable, a control of second-
ary displacement in the passage should delay end-stall. End-
stall increases flow distortion and losses at the blade extremi-
ties. Secondary displacement exposes the wall to high velocity
fluid increasing annulus drag and decreasing the machine effi-
ciency.

To this point only rectilinear cascades have been under dis-
cussion. The presence of a centrifugal acceleration field in the
whirling flow of a curvilinear blade row introduces significant,
additional forces. Accompanying the centrifugal acceleration
field are the centrifugal pressure gradients which are largely
produced by the main stream. If low velocity fluid is displaced
toward the axis of rotation from the outer casing, the main stream
pressure"gradient tends to increase the displacement. The bound-
ary layer on the concave casing has but one stable distribution,
spread uniformly on the wall. It follows then that a slight
radial flow due to secondary circulation or end-leakage may be
amplified and seriously alfer the stream pattern on the entire
blade surface as well as the pattern of the main flow. Evidence
of such inward radial flow is found in Refs. 21, 22, and 32.

At the hub casing the situwation 1s reversed; the main stream
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it pressure gradients tend to return displaced low velocity fluid to
a tangentially uniform pattern.

The behavior of a boundary layer in a centrifugal pressure
field can explain the observation that a stall at the outer casing
of an éxial machine often will influence detrimentally the entire
flow passage while a stall at the inner casing produces a relatively
smaller effect. These considerations also lead to the prediction
that any pattern of distortion, such as stall propagation, will

show grester stability upon the inner casing than upon the outer.

Especial consideration must be given to the three-dimensional
flow through rotors. The flow pattern is influenced by secondary
circulation; the centrifugal force field governs boundary-layer
stability on the casings and greatly affects the direction of
boundary-layer flow on the blade surfaces. In addition, the rela-
tive rotation of the fluid in the rotor passages, end leakage, the
influence of a moving wall, and the fact that the relative inlet
flow varies in time and space all offer the possibility of signi-
ficant distortion.

The relative flow in a rotor presents a far more difficult
problem than that of a stator. This problem has received little
attention in the past. It is difficult, at this time, to predict
the orders of magnitude of the various phenomena, much more so, to
i determine how they combine to produce the actual flow through a
given rotor.

Stall propagation is suspected to play a decisive role in the

failure of compressor blading. The propagation of this disturbance
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depends upon the successive stall of blade passages. Since passages
appear to stall first in the wall-suction surface corner and since
secondary flow partially determines the incidence at which end-stall
will occur, it seems reasonable that the stall propagation phenomena
and secondary flow may be interrelated. An understanding of second-
ary flow should aid the investigation of stall propagation.

Machine Phenomena

End-stall in a blade passage has been designated arbitrarily
as a passage phenomena although such behavior must produce pertur-
bations along the entire flow path. Consideratiomns, such as this,
point to the necessity of evaluating any local stream distortion
by examination of its influence along the entire flow path. The
behavior of one blade row can deleteriously alter the performance
of several succeeding rows. Also, it should be realized that the
distortion generated in any blade row is largely a function of the
extent of the distortion at inlet to that row. Thus poor behavior
of the predecessors figuratively sets a bad example for the suc-
cessors.

Except in the case of stall, the mere presence of a boundary
layer is probably the most serious flow perturbation in turbo-
machines. The low velocity of the fluid in the proximity of the
casings causes the flow field relative to any blade row, after the
first, to be distorted in difection. The overturning due to second-
ary flows produce additional but less significant relative angular

distortion. Figure 27 illustrates these effects.
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C = Design velocity and outlet angle
C' = Design velocity and underturned discharge

C" = Reduced outlet velocity and design outlet angle
Ai' = Change in relative inlet angle to (2) due to variation between
; _ vector C and C*
Ai" = Change in relative inlet angle to (2) due to variation from

C to C"

Blade row (2) moves relative to (1) at speed U in direction shown.

) Influence of Blade Row Discharge Perturbations on the
Flow Relative to the Succeeding Blade Row.

Figure 27

The influence of a boundary layer streaming from a compressor
stator passage will increase incidence on the rotor blades due to
reduced velocity and secondary overturning. The magnitude of the

i relative boundary-layer velocity is considerably closer to the

free stream value in comparison to the reduction of absolute velo-
city in the boundary layer.

The increased incidence at rotor tip and root with the usual
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veloclty diagram will yield an increased change in tangential velo-
city across the rotor in these regions and consequently more work,
and more stagnation enthalpy rise per unit mass of fluid. The
consequence of this additional work, at first glance, would be an
energizing of the boundary layer, a reduction in its thickness and
a flattening of the velocity profile.

Since the stream pressure in the boundary layer is largely
controlled by the main flow, an increase in velocity in the bound-
ary layer, a flattening of the velocity profile, must be a result
of increased stagnation pressure in the proximity of the casing.
Even though a relatively larger rise in stagnation enthalpy must
occur at the blade extremities, one cannot per se anticipate a
relatively larger increase in stagnation pressure. The stagnation
enthalpy rise and the stagnation pressure rise are related by the
efficiency (i.e., degree of irreversibility) of the work process.
Now, it is well known that the efficiency or dissipation of a
blade row is a function of incidence angle, a particularly strong
function if incidence angles greater than + or —50 are established.
The rapidity of the rate of change of blade row efficiency at
larger incidences is due to boundary layer separation and shocks.
The severity of the depreciation of efficiency with increasing
incidence is accentuated at increasing Mach number. Since the
relative inlet angle to the rotor approaches 900 at the wall,
large variations of incidence may be expected in the boundary
layer.

Cne must inevitably conclude from these considerations that

the self-energizing action of a boundary layer in passage through
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the rotor will not be completely realized. The decrease in blade
efficiency will hinder an advantageous stagnation pressure rise
close to the wall; the boundary layer may not be significantly
energized. This conclusion is supported by the peaking tendency

of the axial veloecity profile in multi-stage compressors as shown

in Figure 1 and by the "work done” or other experience factors which
must be applied to predict the reduced useful work of an actual
compressor from the two-dimensional calculations.

The mechanism described above can eagily account for the rapid
thickening of the boundary layers on compressor casings.

In compressors, advantages might be gained by eliminating or
dumping the casing boundary layers. Nevertheless, the author is
now of the opinion that the boundary layers in compressors cannot
be dumped by secondary circulation without bringing about severe
end-stall and still lower compressor efficiency. There is the pos-
sibility, however, that the presence of end-leakage and a mbving
wall in a compressor or some ciever blade end modification might
allow dumping without encouraging end-stall. The tendence of any
fluid displaced from the outer casing to quickly seek the inner
casing must be remembered in considering the possibility of strip-
ping the boundary layers from the concave casing. A reduction in
boundary layer on the concave surface might make conditions suf-
ficiently poorer on the con&ex casing to once again produce an
overall reduction in performance.

To this point, in the present discussion, a uniform boundary

layer has been treated. Further consideration of a tangentially
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skewed discharge boundary-layer pattern is in order. It has been
demonstrated previously that the boundary-layer thickness may vary
by a factor of 4 to 1 in the tangential direction behind a com-
pressor stator. This flow pattern will result in a stream which
varies with time both in direction and velocity relative to the
rotor. As this unsteady flow passes through the rotor an average
amount of work is done. It 1s problematical how the average work
compares to that which would be done if the boundary layer were
tangentially uniform. This effect awaits analytical treatment
since it probably would be difficult to measure experimentally.
Above has been discussed the detrimental influence of a dis-
torted three-dimensional flow pattern upon axial ecompressor per-
formance. One more point of interest lies in the anomaly between
the large flow distortions measured by Eichenberger in the simple
bend and the relatively minor distortion measured in turbomachinery.
One must eﬁercise caution in extrapolating the simple bend
or cascade data to multi-stage machines. Other large disturbing
phenomena, besides secondary flow have been mentioned. In addition,
the fluid passes successively through rotofs and stators. The
relative motion alters the flow pattern; it will chop up and
largely disperse any configuration esﬁablished in a single blade
row. The influencé of secondary flow through any multi-stage
machine-is very complicated; it is not understood at all clearly
at present. However, we can predict favorable characteristics of
multi-stage turbomachines, such as the relative motion, which may
be largely responsible>for their successful operation in view of

all the large distorting forces acting on the fluid.
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There is one configuration utilized in axial compressors which,
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in light of the previous data, should produce large secondary flow
effects. This is the tandem stator in which two or three blade
rows, all turning in the same direction, are placed together. The
secondary distortion produced in one blade row will be directly
magnified by the next since no relative motion chops the pattern.
The resulting large-scale boundary-layer disturbance probably

explains the poor performance delivered by such blading.

! Control of Secondary Flow

It seems possible that‘the extremities of blades could be
twisted to accept the relative flow angle of boundary-layer fluid
if the flow conditions are predictable in design and if the bound-
ary layer is tangentially uniform. The advantages of such modi-
fications have been realized in the past; the design of eﬁd—modi—
fications has been attempted. Seemingly desirable alterations
have usually failed to improve, or have even reduced, machine
performance. Theée regsults may be due to the fact that the bound-
ary-layer conditions were not accurately predicted or that the

tangentially skewed boundary layer cannot be treated as a smooth

boundary layer of "equivalent" thickness. Also, the simple modi-
fication, underturning the stator ends to reduce the relative
rotor incidence, actually encourages secondary flow in the stator

‘and, therefore, a more severely distorted stator discharge pattern.

+ dar—

The advantage of controlling secondary flow to prevent end-stall

in compressors has been mentioned, but in the above considerations

lies another advantage of secondary flow control applicable to
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both compressors and turbines. If the skewing of the discharge
boundary layer can be prevented, attempts to modify the rotor
tips to accept the higher incidences in the boundary layer may
be more successful. Should this be the case, more stagnation
pressﬁre'rise possibly could be obtained at compressor rotor ex-
tremities thus energizing the boundary layer. While an attempt
to repair a badly damaged velocity profile in one stage would
surely lead to failure, it is possible that slight increases in
work at the walls in each stage might prevent degeneration.

It has been definitely established that control of secondary
flow can be achieved through simple blade-end modifications. (Ref.40Q)
Slight control of secondary flow plus increased work in the boundary-
layer region may produce a flow through multi-stage compressors
free of the detrimental peaking behavior. If this result can
be accomplished, the ability of the designer to predict machine
performance accurately will be enhanced. 1In addition, higher
efficiencies can be expected by operating the entire length of
the blades at optimum conditions. By a delay of end-stall, a
higher pressure rise per blade row should be feasible. The
surge line of a compressor should move to lower mass flows, under
these ideal conditions, thereby widening the operating region of

the machine.
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f I1I. The Boundary layer Problem

; In Section I of this work, experimental data was presented
| which has led to a qualitative model of boundary-layer behavior
% in rectilinear, stationary, diffusing cascades.

l Only through exhaustive experimentation could sufficient

I experimental data be gathered to reveal the important parameters
governing three-dimensional boundary-layer behavior in such
simple passages. The variables manipulated should include all

, the cascade geometry in addition to the characteristics of the

approaching flow. Because an effort of many years' duration is

Just now beginning to produce a complete understanding of two-

dimensional cascade performance, a generalized three-dimensional
investigation can be predicted to require vast expenditures of
time, effort and money. It is worthwhile, therefore, to run
selected experiments as a guide toward the development of appro-
priate analytical models, to devise analyses of these models
aimed toward revelation of the important parameters and then to
test the analysis with as broad a spectrum of experiments as pas-
sible.

Such an attack has been followed in this investigation with
the exception that conclusive tests of the theory have not been
completed yet.

3 Three analyses are reéorted herein, based on three approxi-
mate models of different degrees of refinement. The purpose of

these analyses i1s common to all--to reveal the physical parameters

governing the state of the three-dimensional boundary layer. The
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relationship between the state of the boundary layer and the onset
of separation is still more difficult to determine analytically and
is only discussed in general terms.

The General Problem

Given an inlet flow to a blade row of specified geometry,
one desires to determine the flow in the passage and the configu-
ration of the discharged stream. Several analyses are available
in the literature (3, 4, 5, 10, 26, 33) which predict secondary
flow velocities downstream of a blade row and one which predicts
fluid displacements (34). However, all neglect viscosity and
turbulence. Cases with a positive streamwise pressure gradient
may not be treated unless a substantial velocity is assumed at
the wall to allow any sort of solution. The necessary assumption
of finite wall velocity or the neglect of pressure gradients ap-
parently does not invalidate the solution for secondary velocities
in regions removed from the wall. However, all these solutions
break down deep in the boundary layer, that is, in the very regions
where flow geometry determines the onset of separation.

A three-dimensional, momentum analysis presented in Section V
is aimed at prediction of flow conditions deep in the boundary
layer. To include viscous, turbulent and streamwise pressure
stresses, a model must be constructed which compromises the analysis
of secondéry flow in the outer regions of the boundary layer. How-
ever, since the purpose is to study conditions leading to separation,
this deficiency is not serious.

A less elaborate analysis of secondary flow is included in
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Section IV which neglects viscous and turbulent shear stresses,
but which includes all pressure stresses. This analysis 1s an
attempt to produce analytical expressions and, through them,
; reveal important parameters. The common solutions of secondary
1 flow batterns require relaxation or other numerical methods to
i arrive at a solution. Unless results are correlated from many
4 calculations, little physical understanding is gained. Thus,
even an inexact analytical expression should aid in an under-
standing of the problem.
To relate macroscopic boundary-layer behavior to passage
and flow parameters, an analysis neglecting streamwise pressure

gradients follows.
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IIT. Bernoulli Surface Rotation, Boundary-Layer Thickening and
Discharged Vorticity '

Hawthorne's equation, expressing the rate of change of

secondary vorticity along streamlines, is as follows;
‘ f 2 // F%// J»V7¢f
8 = mee——— — ema———— l
VA(‘L) @/ R R (1)

or integrating along streamlines;

4lf)=-2 )t v 2| 222 @

where terms are defined in Figure h, Section I. This equation
results from an application of Newton's laws to an incompressible,
inviscid fluid steadily moving without body forces.

Supposedly, if one can neglect viscous and turbulent
stresses and if one knew the path of the streamlines, the second-
ary vorticity could be calculated at each point. Or still
better, one can apply this result in a stepwise manner and deter-
mine the streamline trajectories and secondary vorticity simul-
taneously. This latter attack has been undertaken by Ehrich and
Detra and is reported in Reference 34. However, the analysis is
8till numerical; it does not readily reveal the governing physi-
cal parameters. A simpler model is required if one is to obtain
analyfical results.

The following model is employed here:

1) Streamlines are assumed to flow along sheets of
constant stagnation pressure or Bernoulli sur-
faces.

2) The Bernoulli surfaces approach the turning pas-

sage parallel to the plane wall.
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3)

4)

5)

6)

48

In transit through the passage, the Bernoulli sur-
faces rotate in such a manner that their inter-
gections with a cross section of the bend remain
straight lines.

Each Bernoulli surface rotates at an angular velo-
city calculated from Egn. 1 which varies along

the passage but which is based on the inlet stag-
nation pressure gradient \/ (;9) at the appropriate
distance from the wall.

All the streamlines are assumed to follow the cur-
vature of the walls, here taken as concentric arcs.
The fluid is assumed inviscid, non~turbulent, in-
compressible in the absence of body forces and in
steady flow.

The streamwise pressure gradient is neglected. The
stream pressure gradient normal to the wall is
taken as zero; in other words, all pressure changes

are produced by the two-dimensional main flow.

|SveFRCE

Figure 29
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Because it is assumed that the Bernoulli surfaces rotate
in a simple manner and that changes in the variables R, po/p
and u are negligible, it is possible to integrate eqn. 14 for the
angle of rotation of any Bernoulli surface. The vorticity compon-
ent in the direction of the streamline will then be equal approxi-
mately to twice the angular velocity, w, of the intersection line.
Equation 1 in this case may be written as:
_c_f_(i).._oi(___zw .2 /V(_@)/W (2
slw/= g5 wz/V {5/ TR )
We have assumed the stream pressure constant along any line
normal to the wall and that the stagnation pressure varies only
in this direction, accordingly:
Jy )= (L) L), S )
y2 dz\ P 7T Z oz
If © is the angle through which the streamline has turned, and

ds = rdo, then:

W = qué __j? ds _ “ cﬂﬁ

JdEt T~ dSIE T £de )
Therefore, eqn. 2 may be expressed as:
o ,€ U
o=~ (£S5 ) md ©)

This equation is identical, except for the constant, to that
of the simple pendulum.
'The first integration of eqn. 5 proceeds directly after mul-
tiplying both sides by d@/de:
%G8 )= (22 5%) & (cosg) ©
Je u Jd2_/ de
Integrating:

BLf —(G) = (4R )(Cosg - cosd)

But, in our model (d¢/d@)1 0 and @, = /2, so

"\/2’2 cosg | (M
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We can predict that d¢/d® will be negative. Selecting the negative

velue and separsating, the second integration follows:

2 _/ ré
J/Cy%; - :ié? EZQ‘ ) _nggiual- (8)
/ “ Cfif '/ (2295.¢£)2

i The right term is an elliptic integral which cannot be expressed
in terms of simple functions but can be evaluated by series expan-

sion. To facilitate such a solution, the angle J between the

r——

Bernoulli surface and the plane of the bend is employed instead

of @.
§
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Figure 30
Since § =90 +%, cos § = - sin ¥ and df = ¥, then:
, 2
| e I o). | LB ©
X e oE Y VS

Since ¥ will always be less than zero and cannot exceed
—90O without invalidating the model, the sin (-7} always will

be positive and the square root real.

Now let us approximate i/ sin (-2} by a double series
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expansion.

)=o) G CPT . (10)

Since (-7) will usually be less than one radian over most of a
compressor passage, we need only employ the first two terms.
Accordingly, -

/:5//7(—3)/“ // ) - & 3’)3/ (11)

which can be expanded by the binomial theorem
Z Z,,. 12
finen]F= Lottt 2, o)k @
Again, terms may be eliminated and only the first term retained

as an approximation. The integral then becomes

(‘Z_/e%)é(g'@/) =//’?j—f/o/(—z) (13)
(2224 folo-0,)=z gt (o]

But, ¥, =0 and 6; =0, so

(5% )e

2 UL dg
which is the same result that would be obtained by substituting
J for @ and assuming cos & = 1 before the first integration of
eqn. 5. The above derivation, on the other hand, allows us to
evaluate the error in the various approximations.

For circular arc blades of small turning angle, R=c/& ,
where ¢ is the blade chord and & the total turning angle. If 3
is the boundary layer geometrical thickness, then the total
angular rotation of the Bernoulli surfaces through the blade pas-

sage becomes

%= -5(5s7 7 )% / do,;‘;é e



-52-

Assuming an exponential velocity profile:
Lo (2
equatéén 16 bigomegz
D/,g=-’—€(~—~/-)(—/‘) (17)
2n \§/c/\Z/8

It can be seen from eqn. 17, for a given turning anglecf-,
profile shape n and boundary layer thickness 8/C, that the rota-
tion of the Bernoulli surfaces increases on approach to the wall.
Likewise, at a given position in the boundary layer z/&, the rota-
tion increases as the boundary layer becomes thinner. This
latter result can explain the violent secondary flows observed
in turbine nozzle passages even when the inlet boundary layer is
vanishingly thin.

As a test of the validity of egns. 16 and 17 for small
turning angle passages with relatively thin boundary layers,
Bernoulli surface rotation is calculated for the compressor cas-
cade investigated by Van Le (Reference 5). Figure 13, Section I,
presents measured Bernoulli surface configuration at the cascade
discharge. The average slope of each Bernoulli surface was es-
timated graphically; these estimates are plotted in Figure 31.
Approximation of the average slope of the Bernoulli surface be-
comes increasingly difficult on approach to the wall.

The Bernoulli surface rotation was calculated first from
eqns. 16, taking R as c/éf and determining %—%2- for each Ber-
noulli surface from the shape of the inlet velocity profile
shown in Figure 14, Section I.

Second, an exponential velocity profile was fitted to the

measured inlet boundary layer. While the fit was only approximate,
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a value of n = 10 produced the best representation. For this ex-
ponent, T » was calculated as a function of z/5 from egn. 17
and plotted in Pigure 31.

‘Both equations predict correct orders of magnitude and
trends through most of the boundary layer. The discrepancy in
the outer region of the boundary layer is due, undoubtedly, to
the three-dimensional nature of the boundary constraint. Fluid
suffering a large y displacement close to the wall accumulates
in the wall-suction corner after evacuating the wall-pressure
corner. These large mass transfers deep in the boundary layer
force the main stream away from the wall on the suction side and
toward the wall on the pressure side of the passage, thus pro-
ducing a sizable rotation in fluid possessing a small stagnation
pressure gradient. The analysis above cannot take this effect
into account.

Close to the wall, the boundary constraint hinders rotation
of the Bernoulli surfaces and causes them to bend. Fluid fric-
tion also retards the development of strong, secondary circula-
tion near the wall.

" The experiments of Van Le which produced the data employed
in this comparison were not designed to yield accurate boundary
layer velocity profiles or even an accurate and detailed pattern
of the ﬁernoulli surfaces. §Significant discrepancies can arise
between the theory and data from this source. To better test
this analysis, more appropriate meagsurements could be undertaken.

It follows, that the lack of close agreement between theory
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and data is not surprising. The agreement is sufficiently close,
however, to tentatively accept edns. 16 and 17 as expressive of
the relationship between boundary layer skewing and the parameters
describing the turning passage and approaching flow.

‘The analysis will not predict the pattern of the discharged
Bernoulli surfaces, except for their slope, since motion of the
secondary flow toward the suction side sweeps the Bernoulli sur-
faces in that direction at an increasing rate on approach to the
wall. The wall constraint also forces Bernoculll surfaces in the
vicinity of the wall to assume a bent configuration. This be-
havior is of course not predicted by eqn. 18. However, at the
outer edge of the boundary layer, secondary velocities parallel
to the wall are small; the Bernoulli surfaces remain essentially
flat, and thus appear to rotate about the center of the passage.
This simple behavior allows us to make further use of egn. 17
to predict overall boundary-layer thickness ag a function of the
distance across the passage.

From the assumed gecmetry of rotation, the z-deflection of
a. streamline is Az = yA ¥, where y is measured from mid-passage.
The maximum and minimum z-deflections of the streamlines on any

Bernoulli surface are given by:

AZ __+5/5‘

Z Jmakx. = . 55— AF (18)
5 Veiddd] Z
where s is the blade pitch.

A value for A7 at the center of the original boundary layer
(z/® = 0.5) is chosen as indicative of the average skewing of the

boundary layer. The change in boundary-layer thickness A & then



e+ ey

can be expressed by:

45 _+ £ /575 ‘2/__/__ dup
s  — 4 /c)(“c‘) U d2/5 /Z= p &5 (19)
. . =) ’
or for an exponential profile:

] < -2
=15 (ENE) S

Examination of egns. 19 and 20 reveals that, for a given

U —

B

velocity profile shape, a reduction in tangential skewing can
be obtained by reducing the turning angle and the pitch-chord
ratio and increasing the relative boundary-layer thickness. The

characteristics of this equation should be remembered whenever

st e e S _p— o

one considers the flow through blade rows which receive a thin

l boundary layer. The nature of the secondary boundary-layer

{ thickening might partially explain poor behavior of inlet guide
vanes in axial compressors. It would be interesting to examine

wall boundary-layer configurations discharged from such blade

rows. An experimental study of boundary-layer behavior in a

diffusing passage with varying inlet boundary-layer thickness is

planned.

Finally, as an example of the magnitude of secondary bound-
ary-layer thickening, consider a typical compressor blade row
with<f= 250, s/c = 1, and a flow approaching with n = 7 and
S/C = 0.25. The percentage thickening of the boundary layer on

the suction side of the passage amounts to 50% according to eqn.20.

Vorticity Distribution at Discharge

In order to arrive at a vorticity distribution at cascade

discharge, eqn. 15 is converted to relate the angle § to flow and

cascade geometry.
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This expression may be placed in eqn. 2, giving:

J§ _ o/cc 77 / / du | o2
R EE N [F - F )G )E)

d
o’_g = (O‘S/ @/c (% /CZ:% 5 (29)

Expanding the cosine in series:

of
gf‘ Zd“// //5/6) //o?g/g 527‘ (24)

Integrating:

&
52_5: _20% )z// u {in“é/ 725)

All series terms beyond the first will be neglected for small

Or

turning angle passages. Sincef,’—'o‘, Q/-TOJ‘@Z;'f , we get:

So=-22% & (26)
Further, it may be shown from Ref. 35 that

Vk 2 = V7 75 (e7)
for a steady, incompressible, inviscid flow. For the model in
use:

Jxi2)=Jun/ = /V//- w g (28)

a vector perpendicular to the original Bernoulli surface by de-
finition. The variable 7, is the resultant vorticity vector at
inlet which is parallel to the wall and normal to the streamline.

The discharge vorticity then becomes:

jz.?—fff, E (29)

which is a special case of the result derived by Squire and
Winter (3). To facilitate appreciation of the relation, egn.26,

it is put in the terms employed previocusly:
f _ 2 SSU Y P (30}
L7 5 lde/s
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Or assuming an expopential profile:
| A—1 c__ (1)
Sn (Z/8)0 "

Thus, for a given profile shape n(>1) and a given position in

the boundary layer z/S, 5'2 increases directly as CF and inversely
as the boundary layer thickness. It follows, that one should
expect the strength of a vortex formed in a large turning-angle
passage to increase as the inlet boundary layer becomes thinner

or as the turning angle increases. Compressor inlet guide vanes
probably shed discrete passage vortices, as do turbine nozzles,

since the inlet boundary layer usually is very thin.
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IV. Boundary-layer Stream-Line TraJjectories

As mentioned previously, all secondary-flow solutions to date
have neglected streamwise pressure gradients. No one has claimed
that the error so introduced 1s negligible, only that inclusion of
this p?essure gradient makes the conventional equations difficult
to solve, The analysis that follows takes an approximate model
which, with some simplification of the boundary-layer equations,
allows a solution including all pressure stresses. Viscous and
turbulent stresses are neglected. If this neglect is not serious
throughout most of the boundary layer, the results should demon-
strate the influence of pressure changes along the stream.

The Model

Assumptions:

1) The flow is incompressible, inviscid, non-turbulent,
and steady.

2) The streamlines of the boundary layer and main flow
proceed on flat sheets parallel to the lower plane
wall of the bend. This assumption implies that the
pressure gradient normal to the wall is zero (i.e.,
the main flow determines all pressures).

3) The main flow travels between concentric walls and
all its streamlines rotate about the center of
curvature of the passage. At each angular position
the radial distribution of velocity in the bulk of
the fluid is that of a free vortex. Each level of
the boundary layer is assumed to enter the bend with

a free-vortex, radial-velocity distribution.
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L} The curved walls of the passage are assumed to exert
no constraint on the radial motion of the boundary-
layer fluid. The outer and inner walls can be con-
sidered as a line source and a line sink, respectively,
supplying or withdrawing fluid at a rate sufficient
to eliminate wall interference. In an actual passage,

{ if the secondary flow does not become too violent,

fluid from the outer wall boundary layer descends

this wall into the outer edge of the plane wall
boundary layer, while fluid displaced to the inner
curved wall apparently escapes without difficulty
into the boundsry layer of that wall. (See Eichen-
berger's data, Figure 6 , Section I.) These obser-

vations suggest that this assumption should be fairly

accurate for a real fluid in regions removed from the
curved walls of a passage with less than hOO of turn-
ing.

‘ 5) The pressure gradient is imposed on the bulk of the
flow by divergence or convergence of the upper wall

or by mass removal or addition through that wall.

i This upper wall is assumed to be far removed from

the lower plane wall under consideration. The imposed
tangential preséure gradient g% is assumed to be only

) a function of radius.
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Figure 32

The Main Flow

From assumption 3:

Ur = K =]£(6) | (32)

Assumption 1 assures that the stagnation pressure of the main

flow remains constant,

Po= P+ 4 U? = constant (33)

The tangential equation of motion of the main flow in this case

can be written as:

W, U, U, P o
FtFIerVF WG == 5 &

vhere U, V, W are the tangential, radial end normal (to wall) velo-
city components, respectively. 8ince the streamlines proceed on
circular arcs of radius r parallel to the plane wall, V =W = 0.

Then we have,

LIV _ 1 9P
Z o6 - 7~ J6 (35)

The same equation would result from differentiation of egn.33.
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For the radial direction,
VAL Y W ) oP
Ftroe T Gt E T T e or (%9)
But
IV _ I _,
Je ~ dr“ 72
80
UZ /&P (37)
2 Ir
Taking the partial derivative of eqn. 37 with respect to © and
changing the order of integration on the right gives:
LU _ 4 D A / 2%
F a2~ o g8 lor/)= o dr () (28)
Inserting eqn. 35 into eqn 58
2 JP -
,,J«- a— (39)

But, we have assumed $& p = f(r),

/ 55)=- ( | (ko)

Integrating and letting Cl be the constant of integration,
d/j - O (%1)
(=) »2

To determine the velocity distribution, we can write the partial

differential, egqn. 35, as:

U 2 G

L - = (42)

JE P h2
Integrating eqn. 42 with respect to ©:

Z_ _ 268

Vo= — Z52 + f(r) (43)
But from egn. 32, (Ur)? = £(8), so

J///*)= —% (L)
Inserting eqn. 44 into egn. 41,

2 2C 6
(Ur)? = Cy - = (45)

At 6 =0, U = U; and Usr = K., making C» = (U;r)® = K,%. Finally,

the main stream velocity distribution results in the form:
Ji= ()2~ 2¢ 6
= / /49/°'3

(k6)
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where C, is determined by a specified value of g%-at a given radius.
It is useful to note that for this model, ifAp is the stream pres-
sure change along any streamline of the main flow from the initial
conditions to a line at 6 =& and, if we define the pressure coef -

ficient Cp as

,o
Cp= 57 (7
z2PY
where U, is the initial velocity on a given streamline, then Cp is
only a function of ©. This is true since g%-: constant at a given

radius and

4p= Lo=58 (16)
From eqn. 47, since (Ulr) = Ky,
_ G6 _ 24 (49)
6= o = i

The Boundary Layer

Assumptions 1 and 2 assure, for the boundary layer, that the
stagnation pressure will be constant along boundary-layer stream-
lines although the constant will vary with z or,

R =pr L (Unrviuw?)=p, = f(2) (50)
where po' is the stagnation pressure, p the stream pressure, and
u, v and w the tangential, radial and normal velocity components,
all atla given point in the boundary layer. Po; is the initial
value of the stagnation pressure for the streamline passing through
that point.

At this stage, it is worthwhile to note that this model, by
ignoring viscous and turbulent stresses, will suffer a caollapse
of the analysis for fluid close to the wall in a diffusing passage.

This difficulty is discussed in Section I; this difficulty also
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cagts doubt on any boundary-layer analysis which ignores the shear
stresses. However, we are seeking the effect of a pressure gra-
dient on streamline trajectories so, later on, we shall neglect
the fluid close to the wall and only apply the analysis to fluid
which iﬁitially possesses enough velocity to negotiate, unaided,
the given pressure rise. Inclusion of the shear stresses gives
rise to a three-dimensional equation, perhaps insoluble, but in
any event undoubtedly requiring numerical solution, thus, losing
its value here. A momentum-control surface analysis is more ap-
propriate for this task; such an attack is presented in the next
Section.

To proceed, the dynamic, continuity and condition of irro-
tationality equationg are written with the normal velocity w and

the normal pressure gradient gg-equal to zero, as follows:

g%+%gé¢v§%:_;%%i (51)
7/; j‘/g # 5;2}- ;\-{::O (continuity) (53)
—pi ETéVV — ;’% —_ 74-4: ©  (irrotationality) ' (54)

The absence of all shear stresses implies the condition of two-
dimensional irrotationality in all planes of flow parallel to the
wall.

Now, we further assume that

Y o Jt
J6 < In | (53)

a good assumption if the secondary flow does not become too violent.



-6l -

Then from egn. 54
o L (56)

or T T 7
Integrating with respect tor
Ur=t = f) (57)
Inserting egn. 56 into egn. 51, we get
duz_ _ 2 9P (58)
08 ~ J6
Since 5—% is the same in all parts of the boundary layer as in the

main stream by assumption 2, insertion of eqﬁ. 41 into egn. 58 and

integration with respect to 9 gives

2 A
ur= #£(r) 5 5 (59)
But, by eqn. 57, (ur)2 = £(@), so

PA) = G (60

and eqn. 59 becomes;:

- S 2 Co
4= Fem B AR N
But at © = 0, u = U, and U;r = k; so,
(ur)?= £ °— /—f— Ce (62)
or,
<
< 2 _ < &
U= U, g (63)

which is a form analogous to the distribution of the main stream
velocity, eqn. 46.
2
Consideration of eqns. 58 and 41 shows gg— equal to a con-

stant at a given radius. It follows that

duz=— £ 2L 4o (64)
But %A © =Cp %Ula so egn. 64 becomes ,
(U 1) = — (2 Co (65

Now, let us find the value of u; for which vz = O at the end of a
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given dimensionless pressure rise Cp. Setting Uz = O, it can be
seen that this analysis is valid only if

(&)= Co (66)
This limit, in combination with the inlet velocity profile, deter-
mines fhe depth into the boundary layer which can be treated by
this model. This depth is a constant with radius at @ = O since
Cp is independent of radius and

(7] = ar . (67)

Uy U r A,

will be constant at a given z level.

To proceed, eqn. 53 is inserted into egn. 52 and the result

combined with eqn. 37 by assumption 2, giving:

doar v* wdd__ Lyl (69

~ . o co————

Now, since the flow is steady and u = E%%
= aUn = _¢_£ b ()
- Sd8 dt T h e 9
then,
oS ()= LT, d” 2 12 (10)

Z=s5(FB)=F ot F T — 5 (35
Inserting eqn. 70 1nto eqn. 68, with r = £(0) only, gives

of2r
This equation is non-linear and must be linearized by assuming
(dr 2 = 0 to be soluble. Since dr =T Y this neglect probably

de’ -~ de u’
will not introduce significant errors if the secondary flow is not
violent (i.e., if v«<<u or if the boundary layer streamlines do

not diverge by large angles from the direction of the main stream).

Equation 71 then becomes

Z 2_//2
o= (=0 i

which is soluble provided u does not diminish to zero along the

path of integration.



Inserting egns. 46 and 63 for U and u , we get.
let {; Ry (?%?ié)’&—'/ /}7::<j

| ae ——ZCG/p,é,‘ZJ

ing

Bz (§)~/=fl) D=Z= flz) ™

equation 73 finally takes the form,

(73)

Tt (75e )=0 g

On any plane of flow B and D are constants, so we can integrate
eqn. T4 for the trace of a streamline. The equation, in its general
form,cannot be integrated directly, but if D = 0 (i.e., gg-: 0), the

solution for the constant pressure case is readily obtained.

The Constant Pressure Case

a3y _ _ 6
O_/_é[}“___ A, (76)

This equation has two solutions depending on the sign of B (i.e.,

whether (g)l is greater than or less than 1. The case for g- less
than 1 will be described later and applies when the boundary layer

f£ills the passage).

For B> O:

‘ /
r=Combte +cosB7e (77
_O/b = 5* ((, cos Bre —C, J//?B*@) (78)

The initial conditions for this model are at 6 =0, r =1r,,

a =q,. Inserting these 1n egns. T7 and 78 determines

G=t =8 "'(C/’“) B dan e, (19)
Therefore f
0 = cosB76 £ (5 z#amx/ )5/05‘9 (80)

' 4
tanee = — L (BEsin 8EO—tans, cos 576) (&)
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For B O: /23*1 ,
f= Ge © s (‘419'/5/‘_ (82)
/ /B/2e ~/B8/%
F-/pf (Ge' TS geTe) (83)
With thg same initial conditions as previously,
G=5bt(1+/6/*ane ) (84)
Wi
G=%h (/=18 "Fanx) (85)

Then eqns. 82 and 83 become,

b —I8e) JaTtin. /IS 1B/
L= @ RTC) B S j’”“"é 1) e

/ / % ‘
?) 16/% ;16'%), g/ 5 -/a/k
#a "‘7{l /,gé/ //é / @/ /%Mﬁ/,:@nmé/ﬁ/ Lo @ -
or,

/ - /
F-= cosh/8/%6 +/B) Fans, st /617 (88)

Fand = 7/42 /ﬂ/’{ 51k 812 1 Fana, cosh 16)% ) (89)

At present, the only data available to test the validity of
this constant pressure analysis is that of Eichenberger (Fig. T,
Section 1); however, more appropriate measurements are in progress.
Eichenberger's bend flow does not fit this model too well because,
in all his experiments, the boundary layer filled the entire chan-
nel. The boundary layer, therefore, was by no means thin compared
to the dﬁngnsions of the apparatus. It is not valid in this case
to assume that g% = 0; neverﬁheless, it is interesting to note that
no variation in stream pressure could be measured in the z-direction
across the flow (4). A further difficulty arises from assuming

that the flow outside the boundary layer establishes the pressures
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throughout the fluid. In Eichenberger's case, there is no "outside"
to the boundary layer. To circumvent this difficulty in a test of
this analysis, it will be assumed that the pressures of the entire
flow are a function of the bulk meen velocity U.

The flow investigated by Eichenberger to test his theory (4)
will be employed here. A triangular velocity profile was fed into
the bend. Both comparisons were effected at 500 bend angle along a
z-line at the mean radius of the bend.

From the measured inlet stagnation pressure map, shown in
Figure 33, g: was calculated and tabulated as a function of z .¥ At
a number of arbitrary z values, egqns. 81 and 89 (depending on the
sign of B = (2512— 1) were utilized to calculate a at 20° bend angle.
Then, determining the magnitude of the resultant velocity vector
from Eichenberger's measurements of stagnation pressure over the
500 cross section, Figure 34, the radial secondary component v of
the velocity vector was calculated at each of the chosen z-positions.
The results are plotted in Figure 35 which shows, in addition to the
measured data, the results of Eichenberger's theoretical calculations.

Figure 35 demonstrates that this analysis predicts orders of
magnitudes and trends of the secondary flow quite well. The three-

dimensional nature of the flow, resulting primarily from the very

- - - - -

¥For this case, Eichenberger does not state in his report (4) the
value of the reference pressure against which he measured stagna-
tion pressures or the value of the stream pressure at each cross
section. However, these values were stated for a different inlet
velocity profile. It was assumed, here, that the measurements were
made against the same reference pressure and that the stream pressure
variation along the bend was identical in each case. This assumption
can lead to error in converting Figures 33 and 34 to the velocity
profiles necessary for this analysis. Such error may be responsible,
in part, for the lack of close agreement between the results of eqn.80
and eqn. 88 and the experimental data.
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thick boundary layer, probably is responsible for most of the dis-
crepancy in regions removed from the wall. One might account for
the discrepancies, particularly in the regions close to the wall,
by the neglect of shear stresses in the analysis. However, Eichen-
berger's inviscid theory fits the data better than the present
analysis indicating the falsity of this explanation.

Another potential source of discrepancy is due to the fact
that the calculations were based on flow conditions at OO bend angle.
The secondary flow was assumed to commence at this point. But, in-
spection of Figure Ta, Section I, reveals an established secondary
flow at 0O bend angle. This observation is not surprising since any
subsonic flow will commence its adjustment from a linear pattern to
a curvilinear pattern ahead of the turning passage. For this reason
the calculations should be based on flow conditions several channel
widths upstream of the 0o section. Neither this data nor flow
angles at 0° were available, preventing the use of the proper inlet
conditions.

Finally, it is interesting to note that the angular deviation
o prédicted by egns. 81 and 89 is not a function of radius. The
measured data in Eichenberger's bend (Figures Ta, b, c Section I)
agrees with this result, even at 900 turning angle, in regions of
the plane wall removed from the curved walls.

The Genersl Case

If D is not zero, eqn. 75 must be solved by series approxima-
tion. The method of Frobenius (39) is employed here. The general

form of a second-order differential equation can be taken as:

R(0)22 + & Py + 2. Q) r=o (50)
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Then R, P and Q are expressed in series,

R(G)=Ror R/ G +R,E%+ ¢ «

AB)=F.r F & + Z2O% -

RUE) =Qo+CHE + GLE*# oo
Comparing eqn. 89 with eqn. T4 shows:

Kle)=/ Ae)=0 Q) ='§z-/755é'-

o=/ B=h=2 e=/2=0 Q(O)= B(O%+0&%+ DSt .)

e:,@:caeﬂ:o QO::O

Gn= BD"™%

The series expansion for Q(6) only converges if D6 <1, but
this is the same restriction as that on the original equation 75.

Next, we asigme that r can be represented as

p=0°2 Hno” (51)
7=0
Substituting eqn. 91 into egn. 90 yields two possible values for
s (0,1) both of which lead to unique solutions.

For s = 1, a recurrence formula is obtained determining An = Nn
as functions of a constant NO. Since Q; = 0, N; is zero. We then
get as one particular solution: P

/= e//% +‘2 (/7(/74-/) ZLDJ— V)" / 92

For s = 0, another recurrence formula is obtained relating
An = Mn as functions of a constant Mo' M, is arbitrary and taken
equal to zero. We then get another partlcular solution.

/= Mo'?“é/m‘é@ M/?-J')QO (93)
These two particular solutions are added together to give the general

solution as:
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r_ 2 NS, ah
,; " Ofé / /7//7 /):jézp M ‘ZJ/)Q -+
B -2 Y.
/V"e""é/ n(/yf/)‘g‘DJ /%\/)6 (9k)

The initial conditions are: at @ = 0, r = r; and ( )1 = r; tan ;.

Then M) =1 and N =13 tano(;. So finally we discover that,

od

FeltZ ,/W-/),ga /%J)e +

2=
J=2 . "t/
Gana,)o hé/ﬁﬂ/ﬁw j—iz_ ), ﬂ_J)g (95)

In case D = 0, eqn. 95 reduces to 81 or 89 depending on the

sign of B.
L
If terms through 6 are retained when tan @ = 0 (NO =0,

therefore all N = 0) and B> 0, eqn. 95 becomes:

7’/‘: 60552‘9 ‘509//+ De/ (96)

Fano = - /525//7 Bo 1 BDs 509 ﬂ?%z&e)/ (97)

The first term in the bracket is that of the constant oressure
case . It can be seen that a positive pressure gradient (D >0)
increases the angular deviation @ between boundary layer streamlines
and those of the main stream. Conversely, if the pressure gradient
is negative, the angular deviation is reduced. The magnitude of the
change 1in tan @ depends on the relative magnitude of Bl/zsin Bl/ee
and é—B D6Z (3 + 2 D). For a given 6 = £ , and a given pressure
gradient, the effect of the streamwise pressure stresses increases
on approach to the wall. The following example demonstrates this
bghavior in a diffusing cascade. The validity of the theory is

tested also by comparison against experimental data.
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The underturning angle (=) is plotted in Figure 36 as measured
along a z-line at mid-passage discharge of the cascade investigated
by Toline and Watson ( 11), Figure 18A, Section I. The blade row
had hoolinlet- and 14° outlet-angle; the pitch-chord ratio was 1;
the chord 2.8" and the aspect ratio equal to 5.7. The inlet bound--
ary-layer thickness was about 8/c = 0.36 with the measured velocity
profile shown in Figure 22, Section I. The pressure coefficient,
calculated from the flow geometry, is Cp = 0.3, The pressure rise
was assumed to be linear.

At selected z-positions,B was calculated from the inlet velo-
city profile; D was computed likewise from CP and the velocity pro-
file. These values were entered into 97 and q, calculated at dis-
charge. The results are plotted in Figure 36. The calculations
break down when DE>1. Also shown are the angles computed for an
imaginary cascade with the same turning angle but no pressure rise.
This curve, in comparison with that for Cp = 0.3, illustrates the
influence of the streamwise pressure stresses.

Comparison of the curves of Figure 36 shows that the analysis
did not predict orders of magnitude well for this case. The trends
of the calculated curve are correct except that they do not show
underturning as measured in the outer regions of the boundary layer.
The presence of underturﬁed fluid can bé anticipated from eqn. 1,
Section I énd indicates that ﬁhe pPressure varies normal to the wall.
The discrepancies also are due in part to the thickness of the
boundary layer which is by no means small at inlet compared to the

pagsage width and thickens as it moves against the pressure rise.
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The measured angles, plotted in Figure 36, were taken 1/2-
chord behind the passage discharge. They may not be representative
of conditioné in the discharge plane, however, this is the only
data available. In addition, it only can be concluded that absence
of shear‘stresses must lead to considerable error for reasons
previously discussed. Finally, the two-dimensional model of the
main flow is only a rough approximation of the actual pressure
field.

Conclusion

None of the data available is strictly suitable to test this
theory because the boundary layers in each case were relatively
thick. 1In contrast, turbomachine boundary layers are usually
relatively thin. More appropriate measurements are now in pro-
gress in the Gas Turbine Laboratory. The agreement in the cases
cited is sufficient, nevertheless, to tentatively accept this
theory as an indication of the influence of streamwise pressure
stresses. All the stresges of a non-turbulent stream are included
in analysis of the next Section but, unfortunately, analiytical

results can not be obtained.
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V. Secondary Flow in a Laminar Boundary Layer

As yet, a model capable of yielding analytical results and in-
cluding both pressure and shear stresses has not been devised. The
necessities of evaluating the relative importance of wall shear
stresses upon a secondary flow pattern and, more important, of
understanding the manner in which secondary flow affects the
tendency of the boundary layer to separate, have encouraged the
following momentum analysis of é laminar boundary layer on the ﬁlane
wall of a turning passage. It is anticipated that as this research
continues, the analysis can be extended to include turbulent flow,
at least in an approximate manner. The manual computation of the
present gimplified case is laborious, but one such effort is
Jjustifiable to study the analysis and evaluate the potential of a
similar machine computation of more exact analogs of actual flows.

An extended machine computation with correlation of the results
might eventually reveal the physical parameters governing actual
flow patterns.

In this Section, a derivation of the momentum equations for a
laminar flow is undertaken first. Then a series approximation after
Polhausen is made for the velocity profiles. Finally, the equations
are simplified by the adoption of a model similar to that of
Section IV. It is on this model, fitted to a cascade we have ex-
perimentaliy investigated, that the stepwise calculations are
effected.

The Momentum Analysis of Plane Laminar Flow

At the onset geveral assumptions are made to simplify this
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treatment.

1)

2)

3)

4)

5)

6)

..']'7 -

The boundary layer flow is assumed to proceed on a
plane wall and to be thin relative to the aimensions
of the passage.

Interference effects of the curved walls of the pas-
sage on the boundary layer are assumed negligible
(see Section IV).

The pressure gradient normal to the plane wal. g%

is assumed zerco. In other words, the behavior of
the main flow outside the thin boundary layer
governs all pressures.

The main flow is assumed to be two-dimensicnal

(i.e., to proceed on plane sheets parallel to the
plane wall). However, a small velocity component

in the main flow normal to the wall is allowable to
accommodate boundary layer growth or diminution.
Radial velocity components, V, in the main flow are
assumed to be absent or negligible.

The only shear force included is that on the plane
wall itself. The shear stress on the top of the con-
trol surface is made zero; the shear stresses on the
two curved and two plane surfaces normal to the wall
are assumed to nullify each other.

The fluid is in incompressible, non-turbulent, steady
flow. The main flow is assumed potential, but not sc

the boundary layer.
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The implications of these six assumptions demonstrate this
so-called "general" analysis not to be completely general after all.

An arbitrary control surface is described in cylindrical coor-
dinates (r, ©, z) which is formed by two radial plane surfaces and
two conéentric cylindrical surfaces normal to the plane wall. The
cover of the control surface is the warped interface between the
boundary layer and the main flow lying at a variable distance O

from the plane wall.

‘S_““?'RF ACE

et

ONSNE WALL

THE CONTROL SURFACE

(The tangential and radial shear stresses are taken in the
conventional manner, positive in the negative © and r di-
rection, respectively).

Figure 37
Fluid may enter all the surfaces of the control volume except
the plane bottom wall. The velocity of the main flow is U in the
tangential direction; a function of r and © but not of z. The

velocity components of the boundary layer are u, v and w, functions
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of r, 8 and z. The boundary layer thickness & and pressure p are
functions of r and ©. The shear stress on the plane wall is broken

into two components Z:Bz and.z;z in the -0 and -r directions,
o o}

respectively.

Tﬁe continuity and two momentum equations, one in the 6- and
the other in the r-direction, are derived by considering mass and
momentum flux, pressure and shear stresses acting on each surface.
The three resulting equations could equally well be derived by in-
tegrating the Navier-Stokes and continuity equations simplified, in
this case, by the usual boundary-layer assumptions (41). The momen-
tum analysis is rather laborious; fortunately, there is no reason
to repeat it here since anyone who can understand this discussion
could derive the equations given as much time as it took the
author. Also, the results may be checked readily by integraticn
of the familiar boundary-layer equations.

The tangential momentum equation,after combination with the
continuity equation to eliminate the normal velocity component at

the top of the control volume, appears as:

é*
b op 2 I 7 IS o pI5)S/
ro’e / ) FU?J6 5/0652"“577 & )7‘3/:""’“—0);{

S
*ﬂ’*zf/affa)(g /“”’0/7) o (98)

where:

(o4
L]

boundary layer thickness

% = boundéyy layer momentum thickness

5 [wr-a)dy

o% =
H = 0%/5% = boundary layer shape factor
5% = boundary layer displacement thickness
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5% = 5/(/- ’)o/;z

p* = 5/’/7/'(/— ")y
1 =12/3

u' = u/u

v = v/U

The radial momentum equation appears as:

L in?__ f‘dl&?c _/r SZZZZ n 0%5 %_/;)///Z/,/ié/

2Y* S U?P v dr 5 or
o / CJC/Z / CJE; ,
& /”’" 7~(256 * 5 56 /“W/f

/
- 5% a’ﬂ/"a/? + /L( '30/? =0 (99)
A )

The Velocity Profile Assumption

To evaluate the control surface variables in eqns. 98 and 99
which are functions of the shape of the velocity profile, four-term
series approximations are adopted to represent the tangential and
radial velocity profiles. The constants of the series are evaluated
by the boundary conditiocns among which lie the two wall shear
stresses, thus relating wall shear to profile shape. This relation
is supportable for laminar flow, but is untenable for turbulent
flows. This analysis also implies that behavior of the fluid at
a point in the flow is only a function of conditions at that point
and not of the previous history of the fluid. That this implica-
tion can Be disasterous is obvious if one does not know whether
transition has occurred or not. The entire behavior of the fluid
is strongly affected if, in its past history, the flow became

turbulent.
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Proceeding with the laminar case, the two series for the

velocity profiles are:
= ap+bprrcyirdp? (100)

V/=' €7+f72+ﬁ73+/774 ‘ (101)
No constant terms appear in-either since both u' and v' must be
zero at y = 0.

Eight boundary conditions are required. Six of them are:

?7: 1o] W' =o Z/’1=‘g

7=/ a’-'/,o,,Z ,j};ﬁ—o U= o,;);f o)j;fo (102)

The remaining two boundary conditions come from the three,

point boundary-layer equations which can be written after eliminat-

ing terms of small order of magnitude:

UV, U ou , ,\pot Ju / dp 5y d%u

e +"d9 'U“dk-#w'o,z ——;O—Fd—é'f-l)g-é—z (103)
_ur U v d Jdv- __ 1 3P, N
Pt r et VR rWSE = F gk V55 (o
9P

*—%— =0 (105)

At z =0, u=v =w =0, 80

U 8% dp

Ip:~ ulr 96 (106)
ﬂ,— ____52 ..d_e ’ (1.0
dpr” ul Fp 0

Now, combining these eight boundary conditions with this series
profiles gives: 7
w= Flp)+2 Gn) (108)
e 2Gy) (109)
where

7/7)= 7(2—272% f’) (110)
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Gpy= =L (p-7) ’ (112)

. &%V
A= Dp d&
- 2 U
7= 55 (113)

(112)

These profile shape approximations yield single parameter
profiles for both u' and v'. For u', the magnitude of A governs
size and shape of the velocity profile by varying the proportion
of the G function added to the F. However, for v', the parameter
¥ changes only the magnitude of the profile. The maximum value
of v' always occurs at 1 = 0.3, an unfortunate restriction that
will be discussed further at the end of this Section.

The functions F and G are tabulated in Ref. (42). Figure
38 from this reference illustrates F and G as well as u' profiles
for different values of A .

Inspection of egqns. 112 and 115 reveals that the radial pro-
file parameter Z can be related through the main stream behavior
to the tangential profile parameter ;R . We can express, there-
fore, the momentum equations as functions of A and main stream
behavior only. This simplification saves a sizable amount of com-
putation effort.

Combining egns. 112 and 113,

Z=_Ap(UU)(éQ‘4 (11%)

dr/ide/
Next, all the variables in eqns. 98 and 99 must be evaluated in

terms of A and I . A tabulation follows:

L5l B (Zaz u(32), ) (s
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/222005" 2?(27‘2'(::/‘1(92%“0) (116)
§:= ,2 -2 ~ (117)
Bidg,
Jde T (925" Jo72) Je (119)
/“,"/’Z:E/‘/%“Z\” (120)
/ao? %u<wéﬁ4 4%2+2O (121)
/’”’/O/? 725 (122)
/ v /20/? g 74772 (123)

/ V= 55 5B (124
700“‘%/7=-’;25%2§)% (125)
/24'#2/7= 5 /éf-i +2) (126)

, 2/3
de/Zé/!fo/f ?072/( Z 7‘2) e+zde (127)
d/ un'dy = 9072/(2/37‘2)& Ly O)_A/ (128)

Inspection of eqn. ‘115 shows that Zezio when A = -12. Normally
one would specify)\ = -12 as "separation" but, in a three-dimen-
sional flow, this specification may be trivial. (See the dis-
cussion of Section I on this poimt). IfA>+ 12, u' will be
greater than 1.0 somewhere in the boundary layer in violation of

the second law of thermodynemics. For this case, then, A must not
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exceed +12, but no reascnable restriction can be placed as a lower
limit except that u' must not be less than -1 for the same reason.
To avoid values of \vfl greater than 1, the absolute magnitude
of ¥ must not exceed 58.4. The term "separation” can hardly de-
scribe the radial flow when Zrz =0 (i.e., B = 0) since this is
the normal condition in a linear flow.

Proceeding, egns. 115 through 128 are substituted into egns.
98 and 99. Then 114 is employed to eliminate T . After a great
deal of algebraic reduction, the following forms of the two mo-
mentum equations appear.

Tangential:
2664 72 5 ,2) IA , AR o
/9(/ 5 5 A *':fvaf)‘sﬁ§ f"jélég(@??h':EA,)ET7T
—(7072 — %% + ih2r 2 23) A2+ ;fzi-g/%ﬂ- 72)
ArB)2 2
CRG 2) AP o Syt Gra)eo o

Radial:

A /639 o) 4
2 (5 A) K 40022 (572~ 220~ 2° )

#L(742+8) -2+ E 2 (%—37‘/7)/7(- £)= %B@/

P ~2 2/, 5
AR B i )0 oo
where
_ /2
A= U/'z" zeuz (20
= _/ [
B= 0Zor (132)
Y, |
C* Stge Jear 059
./ %
D= £ 5%, (158
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2
£ = —0/— 5—)}% (135)
and
I= Ar ZB (136)

Equations 129 and 130 can be solved simultaneously.
069 p A
Sor RS = BA- 2*5//47¢/z3f5)—%5§ﬁ3

Z 2 |
PRI TG -20) SR R G

where

7 = _g (75080 - €7 3 — 2252 =2
= - z g /_j. ) (139
Fo=—72(Zr2)77-52) (14)

= 7 5584 -
fe = 7 (97-57 ) (222288 - 822 5 + £ 22) -
141
oA

Equation 137 allows a simpler solution for gﬂ , if 6 has been
calculated, than solving explicitly for %12_-\ . Equation 137 is put

in the skeleton form,

o , 2 2
AP g5 == /«73 @jg + /f; G5 ———3_1/7#2»‘5)#22/(
CA?_ 2D c3 2 phfp 2
~Ge(552-55 )-5 E‘*/ﬁ%)é} (142)
where

Go= (ror2— 2L ) — 22) (113)
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Ga= N /‘%—i-/-)\) (1k4)
G = 522%45 L8925 4 £ 9@) (145)

In computing the conversion of a rectilinear flow to a curvi-
linear flow, rectangular coordinates facilitate the calculation.

Equations (137) and (142) may be transformed to:

406? /47/ IA _ @ ) /23 )\2(5)2 ;\J A

LA L+ Py /Q.J_Z’ 20/ (146)

AE'GD =06, S+ (5)°G, —E N (6% X BC

—§4 z( 20’ 5 A2E’ (147)
where
1 Y2 ’-._LO)ZU
7= % dx D= U Jx2
/ 2 / 2
8= 02;;0 £/=-0—5-94-£ (1)
/ Qg{ _ 2 o/
<= ST % A= Tz)é' 23

Considerable effort was required to bring the original equa-
tions down to eqns. 137 and 142. Many algebraic errors were found
in the one-hundred and three pages of the original hand written
defivatiqn, but the suthor believes these equations are correct
since they reduce to the spécial case that follows. The special
case was derived independently from eqns. 98 and 99. In the re-
duction of the general case to the special case, all the functions

of A and the functions A through E of the general solution remain
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finite eliminating the possibility of errors hidden in terms which
might have been multiplied by zero and thus disappear in the reduction.

Conclusion of General Case

The “general” equations 137 and 142 could be applied to any
flow whére the original assumptions are valid. The analysis could
be made still more universal if restrictions on the main flow were
relaxed. In the pending turbulent analysis, only the restriction
that the main flow must be quasi- two-dimensional will be imposed.

Practical consideration of the numerical computation utilizing
these equations will be discussed below.

The Special Case

To study qualitatively the characteristics of this momentum
analysis, further restrictions were placed upon the main flow. The
model is as follows:

1) The main flow enters a passage with concentric curved
walls in a free-vortex radial velocity distribution.
The main flow streamlines are concentric, at all times,
with the center of curvature of the passage.

2) The streamwise pressure gradient gg-is constant at
any radius and is imposed by convergence or divergence
of, or mass transfer through, a wall far removed from
the plane wall under study.

Under these assumptions and those at the bheginning of this
Section, the main flow will behave exactly as described in Section
IV. The distribution of the main flow velocity, egn. 46, Section

v, is repeated

//(z 2('9) | (149)
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where K, = U;r and C, is gg-rao

Equations 137 and 142 may now be simplified if the functions

A through E are evaluated from eqn. 149.

/9=—2Q,5=—72) (=——,—i—)D:—-Q2)E_= 7?2 {150)
where:
Q= =5 puz gg— (151)
We then get as a result for this case
_06? 2/~%342 , 2/977 /9 ~z_ &
Q5= QB+ 4T 5 2%~ 5 29)
/ 2
92 Kif ;\) (152)
and

oA _ ) 4
ArSr =-QUEEF2) 56— O1E L2 L4 K s

Or in skeleton form:

@)
2032 = £Q (159)
where
73
5—-/— ;27424“’772—/7%—-5/’13) (155)
2
//404/:\ Kﬁ A (156)
And,
)\r\g—%-:_(p /G,gg QG.) (157)
where
G, = “?1‘ A O (159)

Gy = / 2222 .2769 //2 )

The function Q can be related to the pressure coefficient Cp and

(159)

passage geometry. It was shown in Section IV, for this same main
flow pattern, eqn. 49, that:
Cp = 2652 v {160}
PK, |
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where C; = %g— ra, Kiy = Uyr and & 1is the turning angle at which
the main stream has achieved a dimensionless pressure rise Cp. Com-
bining the definition of Q, eqn. 151, with the definition of C;,

we get

= |
Q“ p/(//_.)z (161)

Substituting for UZ in eqn. 161 the relation 149 gives:

Q= /
PRAC, 2O
Substituting eqn: 160 inmto egn. 162 produces,

Q='2L /5—75;2—_9) (163)

Q is a function of @, the cascade turning angle and pressure rise

(162)

only.

The pertinent egns. 154 and 157 sre functions of A,r and ©
only. The profile parameter A may be evaluated by stepwise cal-
culation through the bend, thus determining the u' velocity profile
as a function of r and 6.

The v' profile is determined from the relation between A
and Y , eqn. 136, in combination with definitions 150 and egn. 163.

From these steps we get,

T= é =ZA (f/C/:-9) (16%)

Finally, the boundary layer thickness  can be determined

from the definition of A or ¥ . Taking )\ , eqn. 112, and gg

from egn. 149 gives B as,

é’ 2_—-_ -%QLS ' (165)
/
Substituting eqn. 161,

/ﬁ;}z"%ﬁ%) (166)
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Then eliminating Q by eqn. 163,

() =-2aCtep-0)(7) (16

Fof'=21(5E-)(5s ) e

Finally,

: 7 -Z
=2 (S -1) (Rey,o )2 (169)

Thus, the relative boundary-layer thickness, compared to the dis-

or

tance thé main flow has traveled from the inlet cross section, is
& function of A , the channel geometry and pressure rise, and the
length Reynolds number based on the arc length to inlet. The
thickness ® will never be imaginary because the signs of A and
Cp are always opposite and Cp can never be greater than +l.

The solution is defined by the above considerations except
that inlet conditions must be specified.

Inlet Specifications

A free vortex flow configuration for the main stream has
been assumed in this special case. Any inlet conditions must con-
form to this pattern or eqns. 154 and 157 will not fit the flow.

Within this restriction, we are free to chose A = f(r) at

©
1

= 0, with one exception that we cannot meke A =0 along the

(o]
il

0 line.
AN, - A I gg
IfA = 0, the equations for ga-and 5S¢’ °F Sﬁéand > are
. U
inconsistent in the general and special case unlesgs 36 °r gg-equal
zero. The rate of change of ;\ in the direction normal to the
main flow goes to infinity when /\ approaches zero. If there are

no errors in this derivation, the cause of such inconsistency is
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probably that power series velocity profiles cannot be assumed when
the boundary layer %pproaches zero thickness. Equation 112 demon-
strates that & will be zero if ;\ is zero unless gg-: 0.
In choosing a ‘A distribution at inlet, one must keep in
mind that the sign of A must always agree with the sign of gg
according to eqn. 112. This condition assures that the sign of
the curvature of the velocity profile at the wall will agree with
the sign of the pressure gradient as demanded by the boundary
layer equations 103 and 106. If N is negative the velocity pro-
file will have an inflection point, if /\ is positive it will not.
For this model, gg-is negative everywhere whence comes the con-
dition thab?\ must be negative everywheere in the bend. The
initial conditions actually introduced, in the computations that
follow, are arbitrary. Three values of A\ were assumed at 6 = O,
r =r,. They are N=-0.5, A = -6, N\ = -12 and were selected
to cover the range of permissible inlet boundary layer conditions.
When A\ at 6 =0, r = r, is greater than about -1.1,—" is
negative decreasing 7& across the passage tor = ry- When A is
less than about -1.1, g%>is positive and ;X .ncreases across
the passage tor = ro, but does not reach zero before the outside
radius is attained even when A at 6 =0, r = r, is equal to -12.
It would be desirable in the study of this simplified model
to introduce a more realistic flow into the bend than the arbitrary
pattern chogsen above. Any subsonic flow approaching a turning
passage will commence a redistribution of its pattern well up-

stream of the passage inlet. Such redistribution undoubtedly will
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initiate secondary, boundary layer flows. Local variations in the
main stream velocity and streamline pattern will ecause alterations
in the boundary-layer thickness and velocity profile. The boundary
layer will arrive at the turning passage, therefore, with signi-
ficant alterations in character. For this reason, it is dangerous
to neglect the actions preceding the turning passage, particularly
since the behavior of the boundary fluid in the passage depends
strongly on its character at the inlet plane.

An attempt was made to devise a simple model of the approach
flow which would condition the boundary layer in a somewhat real-
igstic manner. The first model assumed that the flow converted
from a uniform, parallel pattern to the free-vortex pattern at
bend entrance in a distance of one bend widthv(ro - ri) upstream.
Changes in velocity were assumed to be linear. It results from
this assumption, that the flow which approaches close to the inner
wall of the bend is subject to an acceleration while flow approach-
ing close to the outer wall is decelerated. At the inlet plane of
the bend,the model flow, defined previously, commences with the
assumption of decelerating flow everywhere. The welding of the
two models together thus introduces a discontinuity in tangential
velocity gradient. Eguation 112 shows that there will result a
discontinuity in the profile parameter ﬂkg the rate of change of

A becomeé infinite at 6 = O and no solution is possible. An
attempt was made to circumvent the discontinuity by matching the
boundary layer thickness calculated for each model from eqns. 112
and 148, but meaningless values for A were produced.

A bvetter model qf the approach flow, which allows matching
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of the velocity gradients of the bend modei and the approach flow
model, can be devised by assuming a power series for the velocity
distribution in the conversion region ahead of the turning passage.
The conversion from a uniform pattern is assumed again to
occur in a distance of one bend width ahead of the inlet plane.

The free-vortex £IOW'at the inlet of the bend model is tied to the

linear flow through continuity.

Figure 39
whence,
(170)
A power series is assumed for U between positions O end 1.
2
U=arbx'+Cx 4k +//yJ (171)
vhere U' = g—- and x' = %— . The boundary conditions on 17l are:
i

At x' =0 U'=land 5 =0 (172)
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o
At x' = (—— -1) U' =U! (eqn. 170) and
U’ e / ) (173)
X! =0
From eqn. 160, eqgn. 173 becomes:
/
L (e 174
=z U¢ (274
Substituting eqn. 170 into 174 and setting r equal to (y + ri)
at @ = 0, ve get
Vg
o', 1 (7 =!) (175)

I 2y ) e Fo e
Since U' is constant with y' at position zero, f£(y) in eam. 171
must be a constant.

If these boundary conditions are combined with egn. 171, the
velocity distribution for the main flow in the conversion section

appears as:

= 1+ 25 0- ){ {yf/)ﬂﬁff"/)/ 4/*/%?

x'?
B (7% /)2 R 2 (RF7) (176)

r
where R = (;9-- 1).
i

Equation 176 can be partially differentiated with respect to
x' and y' and the necessary derivatives obtained to evaluate the
functions A' through d' of definition 148. These functions then
allow stepwise integration of eqns. 146 and 147 yielding A as a
function of y' at x' = (;f—- 1) (i.e., ® = 0). The calculations
are laborious and have not been carried out as yet.

With an untested analysis there is always the possibility
that A may exceed +12 invalidating the entire analysis. Should
this be the case, another approach model would have to be devised.

A still better approach and one worth the most serious consid-

eration in this laminar analysis would employ a potential solution
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for the flow through a cascade or in a bend to determine behavior
of the main flow not only ahead of the passage, but inside as well.
The general equation 137 and 142 would be employed over the entire
field.

Whether this extensive calculation will be effected or not
depends primarily upon the success of a forthcoming attack on the
turbulent boundary layer.

The Bend Model

To allow some test of this analysis, a bend model was selected
which approximately fits a cascade for which boundary-layer data
is available. Of course, the fit is not exact since the cascade
passages are formed by airfoils; the width of the passage changes
along its length, and the walls are not concentric. The most
questionable factor in the fit is that the model does not satis-
fy the Kutta condition at discharge. Therefore, the pressure
fields of the model and cascade are egsentially different. Ex-
perimental measurements of boundary-layer behavior in a variable
area bend would be better approximated by this model, but such
data is not available as yet.

In spite of these serious discrepancies, a bend model was
selected which had the same turning angle and a constant width
equal to the mean passagé width of the cascade. The cascade
blades had circular arc cambér lines, thus the mean lines of the
cascade passage and the model passage correspond. The fit and
pertinent dimensions are shown in Figure 40.

Calculations for the Bend Flow Model

Starting from one of the arbitrary assumptions of N at
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r: =4<q8“

b= 7.48"

°

SOLID LINES OUTtineE MopeL
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Figure 40

=0, r =r,, eqs. 154 through 159 and 163 were employed to
stepwise compute A as a function of r and ©. The variation of
was cc@puted along arcs at Tor Ty and r. _

At angular positions of © = 0, 13° and 26°, the variation of
)\ was determined as a function of radius. The values so obtained
are plotted in Figure 41 and 42. The lines of inmcipient beckflow
are shown in Figure 43.

The local values of /A and of ¥ , from eqn. 164, were

utilized to determine the local velocity profiles from egns. 108
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through 111. The local boundary-layer thickness & was determined
as a function of r and © from egn. 169. In addition, the local
values of the tangential momentum thickness ©%, the tangential dis-
pPlacement thickness 3% and the tangential shape factor H were com-

puted respectively from egns. 118, 117 and the definition of

H= g;-. The values of &, %, 6% and H are plotted in Figures
Lk, 45 and k46,

The velocity profiles are plotted as functions of @ in
Figure 47, as functions of r in Figure 48 and isometrically as
functions of r and © in Figure 49,

Computation

A brief discussion of the computation procedure is in order.
At first glance, it would seem that poor accuracy or no solution
at all would be obtained from the boundary layer momentum equa-
tions. They contain subtractive constants as large as 73,000;
the resulting values of /\ must be determined to the first de-
cimal place for reasonable accuracy., Normally, this would be an
impossible situation except for the fact that all the numbers in
the equations are exact values. No terms were rounded off in the
derivations. Therefore, the required accuracy may be achieved
by carrying six places in computation.

Asi@e from the fact that manipulation of the general equations
is extremely tedious--the vaiues of the functions F5 through F6

and G5 through G5 must be calculated for each new A --the compu-

, , .. OA I
tationg proceed without §1fficultya At each point 5§-and St
o) oA .
(or 5%; and 551) are determined from the local value of A . Then
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a small step in @, r, x' or y' is taken and a new value of A com-
puted by multiplying the slope of A by the step.

These equations are of a “"propagation” type where all values
depend,on the initial conditions and the behavior of the main
stream velocity U. Boundary conditions cannot be placed on the
boundary layer flow except at the inlet and through the indirect
effects of boundary conditions imposed on the main flow. This fact
is the underlying reason for assumption 2, at the beginning of
this Section, which allows us to ignore wall interference and
eliminates the necessity of specifying boundary conditions at the

curved walls of the passage.
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Conclusion of the Momentum Analysis

At this point it is appropriate to discuss the inherent re-
strictiéns placed upon this analysis by the velocity-profile assump-
tions of egns. 100 and 101. It has been demonstrated in linear
laminar flow thaf the Polhausen profile approximation employed
herein does lead to significant results in the prediction of bound-
ary-layer behavior. In this analysis, the tangential velocity
profile approximation is probably still in order. However, the
radial velocity profile approximation undoubtedly compromises the
results.

Conside; boundary-layer separation. In a linear decelerating
flow, the accumulation of low energy fluid close to the wall in-
creases until backflow commences and the boundary layer is said to
be "separated". On the other hand, in a curvilinear flow the low
energy fluid close to the wall is subject to radial forces roughly
proportional to the square of the fluid velocity. The radial force
field tends to sweep low energy fluid toward the center of rotation
of the flow pattern. Fluid with the lowest velocity will be sub-
Jeet to the highest radial accelerations. This action tends to re-
move low energy fluid from one region of the flow and transport it
to another. The action is analogous to an imaginary internal
boundary-layer suction or injection.

Now, it is very importanf to the flow, as it approaches separa-
tion, just which part of the boundary layer is removed or, in the
opposite case, just what energy level is possessed by the fluid

radially injected into the local boundary layer.
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The radial velocity profiles, determined by eqn. 109, have a
fixed shape and vary only in magnitude. The peak of the profile
always occurs at a position z/B = 0.35. The profile shape was de-
termined by boundary éonditions at the wall and outer edge of the
boundary layer; the shape between these limits is rather arbitrary.
If the peak of the radial profile occurred closer to the wall,
backflow should be further delayed in some localities and encouraged
in others, since the low-energy fluid close to the wall would
undergo more vigorous radial transport.

It can be seen from these considerations that the radial velo-
city profile should be specified more strictly in any three-dimen-
sional boundary-layer analysis that attempts to predict the flow
in greater detail than merely the determination of the average
properties (i.e., displacement thickness, momentum thickness and
shape factor). To determine the radial pattern more exactly, we
must impose another condition somewhere inside the boundary layer.
A realistic choice of this condition demands a prediction of the
dynamics of the internal boundary-layer flow. DBut this detailed
prior knowledge is exactly thet which we wish to avoid in a momentum
analysis. To predict the radial flow, one must know the solution
to the problem, while a significant solution requires some prior
knowledge‘of the radial flow pattern. Thus, we have a hen and egg
problem. Two attacks seem pbssible to evaluate the significance
of this effect.

An arbitrary specification can be introduced for the z-position

of the radial velocity peak. For a given flow, discrete solutions
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can be effected for several peak positions. The results of these
calculations should demonstrate the sensitivity of the flow to this
variable.

Another possible'attack involves a very difficult iteration pro-

cess which might lead to an exact solution within the original assump-

‘tions. The boundary layer would be treated first by the momentum

integral relations developed herein. Then, the resulting configura-
tion may be sliced into thin layers by cuts parallel to the wall.
Utilizing the shear stress distribution from the velocity profile

of the integral solution, the flow in each slice of the boundary
layer may be reccmputed. Now the slices may be pasted back together
giving new velocity profiles throughout the boundary layer. These
profiles could then be approximated by more extensive series than
employed here and injected back into the integral momentum relations.
The process may be repeated until not only the entire boundary layer,
but also arbitrarily thin slices thereof, obey the equations of
motion.

While the process imagined above might lead to excellent results,
laminar flow is so rare in turbomachinery that such a major effort
is not warranted.

The assumption of various arbitrary radial peak positions
appears to be the most satisfactory method of studying this im-
portant restriction. |

Inspection of Figures 43 through 49 reveals that the boundary
layer of the free-vortex model behaves in a manner similar to the

measured behavior of the cascade of Figure 22 in Section I. The
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shape factor of the boundary layer increases most rapidly near the
convex wall of the passage. The variation of shape factor with
radius is, on the other hand, much more gradual than that of the

cascade discharge. Essential differences between the pressure

' field and boundary-layer thickness of model and actual passage are

important factors. The fact that the cascade flow was turbulent is
a gserious inconsistency. Wall interference effects are unobtainable
due to the lack of compatibility between model and cascade. Results
from a flow better suited to this model are forthcoming. In spite
of all these anomalies, it is significant that the model does pre-
dict behavior at least qualitatively similar to an actual flow.

The line indicating the onset of back flow in Figure 43 compares
favorably with the actual carbon-black traces of Figure 24, in
Section I.

As a last comparison, the underturning angle wes computed for
the model from the tangentiel and radial velbcity profiles of
Figures 47, 48 and 49 at mid-passage discharges. These flow angles
are plotted in Figure 50 which also shows the results of the analy-
sis of Section IV.presented in Figure 36 of that Section. Figure 50
illustrapes graphically the effect of viscous stresses deep in the
boundary layer. Where the inviscid analysis predicts large negative
underturning angles at the wall, the momentum anslysis predicts an
underturning angle of zero¥*.

It should be remembered that the viscous curve of Figure 50 is

- an e - -

*The carbon-black diagram, Figure 24, Section I, indicates finite
underturning engles at the wall. Nevertheless, since some fluid
motion is required to distribute the carbon black and since the
velocity at the wall is zero, the carbon-black pattern must be re-
presentative of flow deep in the boundary layer but not actually on
the wall.
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subject to the same criticisms leveled against the radial velocity
profile approximation. The shape of the underturning angle curve
is no better than the profile assumption.

In conclusion, it may be stated that while this analysis is only
approximate, it does demonstrate, as intended, the importance of
viscous stresses and, by implication, of turbulent stresses in
governing the streamline pattern and condition of the flow deep in

a boundary layer suffering secondary flow effects.
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VI. Closure and Suggestions for Further Research

As stated at the commencement of these three analyses, an
initial exploration of the influence of pressure and shear stresses
upon the behavior of a secondary-flow pattern has been effected.
Many more restrictions and failures of the analysis result than
clear answers to any problem. It is anticipated, however, that the
experience obtained in this work will be a valuable guide in further
treatment of the general boundary-layer problem. Whether solutions
capable of predicting boundary-layer behavior in turbomachine pas-
sages ever will be effected or not is questionable. Treatment of
turbulent flow presents more pitfalls today than those encountered
herein. Also, the actual three-dimensional nature of turbomachine
flow with strong radial currents and the effect of such patterns on
the boundary layer may require treatments of such complexity that
the problem will be ignored until empirical results show obvious
avenues toward perfection.

Suggestions for Continued Investigation

As a result of this work, the following suggestions for continued
investigation are in order:

1. Data should be obtained on a simple secondary-flow
pattern within thin shear flows to test the validity of this quasi-
two-dimensipnal attack. Wall interference effects should be investi-
gated to determine if the negiect of such are critical to an analysis.

2. The momentum integral treatment should be extended, in
as enlightened manner as possible, to turbulent flow. If turbulent

analysis appears promising, calculations are suggested employing
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the measured or potential pressure distributions through actual
blade rows. Correlation of calculated results should demonstrate
the influence of passage geometry.

5. Employing the approximate relations obtained herein,
the entire specialized subject of secondary flow in thin boundary
layers should be related to turbomachine behavior and the other
significant disturbing effects.

4. If analysis is possible and the influences of the
flows treated herein are significant, improved blade-row config-
urations should be tested in cascade and in rotating machines.
Only a significant improvement in machine performance can justify

any concern with these matters.
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