
SECONDARY FLOW IN AXIAL COMPRESSORS

ROBERT CHARLES DEAN, JR.

S.B., S.M., Massachusetts Institute of Technology

(1949)

SUBMITTED IN PARTIAL FULFTILFENT
OF THE REQUIREMETS FOR THE
DEGREE OF DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE
June, 1954

OF TECHNOLOGY

Signature of Author.... . ...... ...-.......-. ..... ..........
Department of MechanicaLrgir-qrtpg, May 17, 1954

Certified by...

i Supervisor

Accepted by ..................
Chairman, Dep mental Committeeon Graduate Students

I



·�It·

:") M. 

-) i X

i t-
1, W- I



Gas Turbine Laboratory
Mass. Inst. of Tech.
Cambridge 39, Mass.
May 17, 1954

Professor J. P. Den Hartog
Chairman, Committee on Graduate Students
Mechanical Engineering Department
Massachusetts Institute of Technology
Cambridge, Massachusetts

Dear Professor Den Hartog:

A thesis entitled "Secondary Flow in Axial Compressors" is
hereby submitted in partial fulfillment of the requirements for
the degree of Doctor of Science at the Massachusetts Institute of
Technology.

Very truly yours,

Robert Charles Dean, Jr.
Assistant Professor of
Mechanical Engineering

RCD:mep

fA,8



Acknowledgments

The author is grateful to his thesis supervisor, Professor

Edward S. Taylor, for his continuous guidance and inspiration

during the course of this work.

The sponsorship of the General Electric Company, the

Westinghouse Electric Corporation and the Office of Naval Re-

search enabled the research program in three-dimensional flow

from which has come the incentive and information necessary to

this investigation.

The course of the analytical treatment was influenced

beneficially by the teaching and advice of Professor Joseph

Bicknell of the Aeronautical Engineering Department.

Without the extensive assistance of my wife, who supplied

the patience and encouragement; of Miss Margaret Tefft, who

carried out the computations; of Miss Maxine Phinney who created

the final thesis form, and of Mr. George Mellor who checked the

if analytical work, this thesis would have been impossible.

To all these people and the others who contributed in-

directly, the author is indebted.



ABSTRACT

SECONDARY FLOW IN AXIAL COMPRESSORS

ROBERT C. DEAN, JR.

(Submitted to the Department of Mechanical Engineering
on May 17, 1954, in partial fulfillment of the require-
ments for the degree of Doctor of Science in Mechanical
Engineering)

The subject of secondary flow in axial compressors is treated
by a review of previous experience and the analysis of simplified
models of the wall boundary-layer flow in turning passages.

From the experimental data re-evaluated and correlated, a
physical model is constructed of secondary flow, tip clearance,
relative wall motion and wall boundary-layer separation phenomena.
A tentative qualitative theory of the influence of tip clearance
on boundary-layer behavior is proposed. It is speculated that
controlled tip clearance might improve the performance of axial
compressors.

The problem of boundary-layer skewing in blade channels
is treated analytically. Approximate relations are derived relating
boundary-layer behavior to blade-row geometry and flow configuration.

The influence of streamwise pressure stresses upon boundary-
layer streamline patterns is demonstrated by an approximate theory.
The magnitude of the effects in the vicinity of the boundary indi-
cates the necessity of the inclusion of such stresses in any
analysis attempting to predict separation tendencies.

Integral momentum relations are derived for a quasi-two-di-
mensional laminar boundary-layer flow to demonstrate the importance
of shear stresses. The relations are applied to a flow model and
numerical results obtained which qualitatively agree with experi-
mental measurements.

Thesis Supervisor: Edward S. Taylor
Title: Professor of Aircraft Engines
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Io Introduction

Today, most turbomachines are designed with the tacit assump-

tion that the actual flow behaves in a manner predicted largely

from two-dimensional analysis. Experience demonstrates that this

model is not in great error and that, in this way, useful machines

can be designed. However, there is a growing demand for optimum

performance, particularly from axial compressors and turbines for

aircraft propulsion and steam turbines for power generation. Per-

fection of such equipment requires a knowledge and control of the

actual flow through the machine under all operating conditionso

While the three-dimensional flow patterns are complicated and

analytically elusive, major progress is presently being achieved by

several investigating groups.

In axial compressors the most obvious measured deviations of

the actual three-dimensional flow from the ideal two-dimensional

model are as follows:

1) There is rapid peaking or distortion along the flow

path of an axial velocity profile initially nearly uniform with

radius.

2) The overall pressure ratio and work input measure

less than the values computed from two-dimensional analyses unless

an experience factor" is included. This situation is especially

noticeable in multi-stage machines.

3) The peak pressure ratio a stage achieves before

stalling is of smaller magnitude when the stage operates as part

of a multi-stage machine than when it functions alone.
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The effects above are of sufficient magnitude to be of interest

to the designer; they not only impair performance, but they reduce

the accuracy of design prediction.

Velocity profile degeneration in compressors, a typical example

of which is illustrated in Figure 1, is probably responsible for

reduced performance in the high pressure stages, partially explain-

ing item 2 above.

The rapidity with which the velocity profile degenerates suggests

that wall friction alone cannot be responsible. Several other phe-

nomena may produce similar effects. Among these phenomena may be:

1) Secondary flow.

2) Lack of radial equilibrium and resulting radial flows.

3) Boundary-layer instability in a centrifugal force field.

4) Overall boundary-layer thickening in a diffusion

process.

5) Increased dissipation due to the shear flows arising

near the blade extremities.

6) Reduction in stagnation pressure rise at the rotor

extremities due to flow distortion.

7) Stall or boundary-layer separation near the blade

extremities.

8) Local shocks arising from flow distortion.

Some of the phenomena listed above contribute direct and/or

indirect influences. The occurrence of one or more events may be

responsible for the initiation of others. The flow patterns are

extremely complex; they must, therefore, be examined in great detail 
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Mathematical description of an appropriate model of the flow phe-

nomenon is usually difficult while the solution of the complete

flow equations is presently impossible. This three-dimensional

flow represents the most general problem of fluid mechanics includ-

ing consideration of pressure, viscous and turbulent forces acting

on a three-dimensional, dissipative, compressible-flow pattern. In

the absence of analytical solution, experimental data and semi-

quantitative interpretation serve as our only guides.

FS
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Secondary Flow Phenomena in Axial Compressors

In the mechanism of secondary flow, we find one of the larger

deviations of the actual flow from the idealized two-dimensional

flow model. For this reason, the Gas Turbine Laboratory has con-

centrated particularly on this phenomenon over the last few years.

Recently, some additional factors have come under investigation.

Definition of Secondary Flow

The meaning of the term "secondary flow" depends primarily

on he who defines it. Taking advantage of this precedent, "second-

ary flow" will be defined, herein, as any measurable flow velo-

cities and displacements which can be directly attributed to the

presence of a stagnation pressure gradient in a stream which under-

goes a change in direction. The mechanism which gives birth to

the stagnation pressure gradient is not considered a part of the

secondary flow phenomena, although there is evidence of mutual

interaction between the two inside the turning passage.

The mechanism of secondary flow can be revealed in the follow-

ing manner: Consider a two-dimensional stream approaching a bend in

a channel. Take cylindrical coordinates, as shown in Figure 2.

po= Co4st4)rOAMOOW-5 0,-- '~
COV57~Ys9AO7l

Figure 2
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To simplify the treatment assume 0po/br - O at inlet to the bend

as shown. Under this assumption, the Bernoulli surfaces (po = const.)

will intersect with the plane of the inlet cross section as straight

lines perpendicular to the z direction. Now, if the fluid velocity

along the streamlines, u, varies in the z-direction, which is the

general result of a stagnation pressure variation, the radial cen-

trifugal pressure gradient in the bend must also vary in the z-direc-

tion. The pressure gradient normal to a streamline is expressed by:

ap u2

where R is the radius of curvature of the streamline. At the en-

trance to the bend, the streamlines turn primarily in the (r,g)

plane of the bend. The simplifying assumption may then be employed

that R r and ab- .

The variable radial stream pressure gradient, a , will pro-

duce pressure gradients in the z-direction inside the bend (i.e., ),

as shown in Figure 3, driving the fluid into opposite rotation at

top and bottom walls.

Figure 3

i
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The development of secondary flow may be described crudely,

but more graphically, as follows. The main body of the flow

establishes a pressure gradient in the r-direction = p 

where R is the radius of curvature of the streamlines and V the

"main stream" velocity. The boundary layer fluid travels at lower

velocity. If it did travel on streamlines of the same radius of

curvature as those in the main flow, its radial acceleration could

not match the radial pressure forces established by the bulk of the

flow. Solve this problem the boundary fluid must, so it travels

on streamlines of smaller curvature with a consequent increase in

radial acceleration, in an attempt to match the imposed radial

pressure force. Boundary layer fluid in this manner turns faster

than the main stream and soon reaches the inner wallo

The resulting streamline displacements can be imagined if the

secondary circulation is superimposed on the two-dimensional bend

flow. (Figure ).

The local rate of change along streamlines of the secondary

vorticity is expressed by Hawthorne's equation (Ref. 1) for a steady

flow of an incompressible, inviscid fluid without body forces.

_____ ) I *5in4
~~v~~~ V~u) PI= - {V~~u) l(la)

or integrating along a streamline:

where the terms are defined in Figure 4.
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?g7<~ afFcl

Figure 4 SegwAf

V = velocity vector, magnitude u

(po/p) = gradient of p/p

Po = stagnation pressure

p = stream density

= vorticity vector

g = vorticity component tangent to streamline

q = vorticity component normal to streamline

R = streamline radius of curvature

0 = angle between principle normal to streamline and normal to Ber-

noulli surface

Examination of equations (la, lb) teaches that there will be a

component of the vorticity gradient in the direction of the velocity

vector if 0d , 1 (/p) l O, R o . If the last two condi-

tions are met, it follows that secondary flow will always develop

in a curved channel unless the streamlines happen to be geodesics

(i.e., 0 = 0) on the Bernoulli surfaces.
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A stagnation pressure gradient most commonly arises from vis-

cous shear near a solid flow boundary. Fluid friction, in this

manner, is indirectly responsible for secondary flow; however,

comparison of inviscid analysis with the experiments discussed

below shows that the stagnation pressure gradient, not viscosity,

largely controls the development of secondary flow in regions re-

moved from the walls.

The secondary velocities and consequent fluid displacement

cause the low energy boundary-layer fluid on the plane walls of

the bend to flow toward the inside wall, accumulating there after

a large angle of turn. The amount of fluid displacement, of course,

increases with the turning angle of the bend. These displacements

will be treated in greater detail below.

Most analytical attacks to date have solved equation (1), or

equivalent expressions, by assuming that the Bernoulli surfaces do

not rotate or rotate without warping. Such treatment is fairly

successful in a circular pipe where the boundary conditions are

favorable to the latter assumption. In rectangular passages, this

assumption does not prevent reasonable accuracy in predicting

secondary flow velocities after small turns, but is untenable for

calculating the flow pattern in turns of large angle.

Before a discussion of the influence of secondary flow in

turbomachinery, the data of Eichenberger (4), Van Le (5), and

Toline and Watson (11) will be presented offering the reader a

physical interpretation of the phenomenon based on experimental

measurements.
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Secondary Flow in a Rectangular Bend

H. P. Eichenberger's investigation of secondary flow in a con-

stant area bend was carried out under the sponsorship of the Office

of Naval Research; his results are reported fully in Reference (1)o

The purpose of this fundamental investigation was to reveal,

by experiment and analysis, the nature of secondary flow in a

simple channel which roughly approximated fluid machinery passages.

Here, we are primarily concerned with his experimental data.

Two series of tests were performed, one set employing water

with velocities from 0.1 to 1.3 ft/sec., the other set employing

air flowing at velocities from 100 - 200 ft/sec. The Reynolds nm-

ot -r - -C; or sua - 'I t __ I, rfl 7 _r 3 - -o,+ r _ 5 h-
UI.-r v'la.Lu.LUL. Wab c UOr. L.Ly IrOIL ( x LU- TO aOUT u ( LIU ,'e

entry velocity profile to the bend was that of fully-developed tur-

bulent flow, The bend was of square section 8" x 8" with an inside

radius of 24". A well-rounded nozzle led from the room into a 2"

long (i.e., about 30 hydraulic diameters ) 8x 8 pipe, preceding

the 90 bend; a 40" straight section followed the bend preceding

discharge to the fan.

Flow directions, stagnation- and stream-pressures were measured

over six cross sections: 2 8" before the bend, 0, 30 °, 600, 900

and 28" after the bend.

A comparison of the water flow data taken at Reynolds number

of 7000 with that of air taken at Reynolds number of 720,000 demon-

strated insignificant difference between the flow patterns at

similar positions in the bend. This observation is not surprising

since the flow was turbulent in all cases.
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Stagnation pressure contours and flow directions from the air

tests are presented in Figures 6, 7a, 7b, and 7o

The interpretation of these contour maps is not an obvious

process. The fact that the stagnation pressure along a given cir-

cular arc (r,z) varies with the turning angle can be the result

of two distinct phenomena--fluid displacement and irreversible

t. ~~mromannfil ntrhnnn WlKnln·t Be n;+thot mbnh~r;2m r.711 ?OnTrDo7r+
iU=JcClv jlaL( C o Q C . ULC; UIL=W11 Wj.LL L. v.LUV L;ULJ

lead to misinterpretation. However, since fluid with a relative

stagnation pressure defect ( - P )/
2V (where V is the bulk

mean velocity, p0o a mass weighted average stagnation pressure, and

p0 the local stagnation pressure) approaching a value of 100% enters

the turn near the confining walls, large distortions of the Ber-

noulli surfaces (i.e., large changes in the stagnation pressure

defect along a circular arc) are most likely to be due to fluid

displacement. Momentum exchange by viscous shear forces and tur-

bulent mixing can either raise or lower the stagnation pressure

along a streamline, but the change is usually of the order of a

few percent and cannot be responsible entirely for the large Ber-

noulli surface distortions evident in Figure 6. Thus, we are

safest'if we describe the Bernoulli surface distortion as a result

of fluid displacement, remembering that the picture must be some-

what modified to account for dissipation. It is most certainly

erroneous to describe the stagnation pressure controus or dif-

ferences between the contours at a given cross section plane from

those in the inlet plane, as loss contours, although the terms

energy defect or stagnation pressure defect are acceptable.
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Accounting for regions of low stagnation pressure as losses and

consequent neglect of three-dimensional displacement has led to

considerable confusion in this field, has produced erroneous con-

clusions and has hindered a physical understanding of the phe-

nomena.

Certainly, the determination of true loss contours (i.e.,

variation of stagnation pressure along streamlines) would be of

essential value to secure an understanding of the importance of

tar;Qt"tl nrv tr +rhjl-n+. s a.reoaa h R:t-rrsrc: n> a ;a4cr=n.+n san

methods by which it may be reduced.

Carter (18), by use of a streamline tracing technique,

measured dissipation along streamlines; his values, however, seem

high which may be due to an inherent uncertainty in his method of

the order of magnitude of the measured dissipation. Saome of his

results show no increase in stagnation pressure along any stream-

line traversing a diffusing passage. It will be shown later that

such increases are mandatory. The importance of an understanding

of dissipation in a three-dimensional flow is concentrating serious

effort on the problem

With the above comments in mind, let us return to Figure 6

and build a qualitative physical interpretation of that flow. In-

spection of equation (1) shows that the magnitude of the component

of the stagnation pressure gradient perpendicular to the principal

normal of the streamline (i.e.,JV (2)| sin 0) controls the rate

of development of secondary vorticity along the streamline.

At entrance to the bend, the principal normals of the stream-

lines are parallel to the r-direction. Then, only the z component
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of the local stagnation pressure gradient will give rise to second-

ary vorticityo The boundary layer existing on the curved walls of

the bend will not develop secondary circulation as long as the

streamlines turn in the plane of the bend. The fluid on the plane

walls experiences a growth of secondary vorticity increasing in

rate as increases on approach to wallrate as z increases on approach to wall.

Figure 8

The resulting distribution of secondary vorticity initiates

secondary fluid motion toward the inside of the bend on the plane

walls. This flow may be observed in the underturning angle plots

of Figure 7.

The drift to, and accumulation at, the inner wall of low

velocity fluid forces the main stream, high-energy fluid to move

toward outer regions of the plane walls filling the regions evacuated

by the boundary layer. Viscous friction brought into action by the

high velocity gradients at these parts of the wall develope more

boundary layer fluid and the process continues. It is this removal
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of the original boundary layer and growth of new, which is partially

responsible for the losses credited to secondary flowo

The production of the kinetic energy of secondary flow re-

quires little energy from the main stream. Eichenberger (4),

Van Le (5) and others have shown, by integration over the flow at

exit from a bend or cascade. that the kinetic energy of secondary

flow and the potential loss from complete dissipation of the second-

ary velocities amounts to only 0.2% and lolO of the total kinetic

energy of the entering stream for a 240 and 900 turn, respectively.

In contrast, the total dissipation credited to the bend amounts to

5% and 25% of the entering kinetic energy for respectively a 240

and 90° turn.

The inward flow and -production of new boundary layer con-

tinues as the angle of turn increases. At 600 bend angle a signi-

ficant accumulation of low energy fluid is apparent at the inside

of the bend. At 90° turning angle, the low energy accumulation

penetrates well into the stream. After the bend, the secondary

circulation persists until dissipated even though the driving pres-

sure forces are no longer acting; the distortion increases with

distance downstream. At a location 28" after the bend the flow had

turned virtually inside out.

Figure 9 plots mass averaged stream entropy at 'various

cross sections against distance along the bend. Inside the bend, a

large increase in the rate of change of streamn entropy

is apparent compared to the initial rate in the straight pipeo The

rate of dissipation continues high even after the bend. Inversion
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of the flow pattern and the resulting high shear gradients at the
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Figure 9

wall as well as mixing of the accumulated low-energy fluid with the

main flow are responsible for the high rate of dissipation continu-

ing after the bend.

A theory of secondary circulation in a constant area bend was

developed by Eichenberger which accurately predicts the distribution

of secondary velocities after a turn of about 30°. With larger turns,

typical of turbines, the flow pattern can be seen to grow too con-

fused to allow mathematical treatment,

Secondary Flow in a Rectilinear Cascade

The next logical extension of the bend study, to approximate

more exactly the flow passages of a turbomachine p was investigation

of the development and influence of secondary flow in a rectilinear

--,,DPE ,c

"
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cascade. Nguyen Van Le (5), employing the MIT Gas Turbine Labora-

tory low-speed cascade wind tunnel, investigated secondary flow in

a cascade of axial compressor blading under the sponsorship of the

General Electric Company and the Westinghouse Electric Corporation.

The wind tunnel has a cross section of 16" x 22". Fourteen

straight blades of 3-inch chord, 16" span and pitch-chord ratio of

0.77 were fitted with a 400 air inlet angle and 240 turning angle.

An infinite cascade was approximated by applying boundary layer

suction to the side walls. A splitter wall was fitted to the blades,

as shown in Figure 10, which allowed the wall to be adjusted rela-

tip n astptinnnrv rw f srfapc t.ans an thp bhadr vleldinra t.Ihe

variation of blade surface pressure distribution with distance from

the wall. Boundary layer shape and thickness were governed by the

length and roughness of the splitter wall.

The entering velocity was about 130 fps with a blade-chord

Reynolds number of 2 x 105 . The cascade discharged directly into

the room, facilitating the use of traversing probes to determine

stagnation and stream pressure, underturning and spanwise deviation

angles. Special probes were developed which could resolve the flow

pattern with sufficient accuracy even in the high velocity gradients

of the blade wakes.

Stagnation pressure contours for a series of (y,z) planes

are presented in Figure 13. The location of the traversing planes

is illustrated in Figure 11.

Fluid displacement toward the suction surface is evident;

the phenomena resembles that of the constant area bend except that

i
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the displacements are larger for a given turning angle. This ob-

servation is to be expected since the flow in the cascade proceeded

against an adverse pressure gradient which forced low energy fluid

to escape more rapidly down the blade suction surface (i.e., the

inside of the bend.) A residual secondary circulation can be noted

between planes G and H.

Figure 12 presents the measured variation of stream pressure

downstream of the cascade; the data was taken in the x-direction at

blade midspan and the center of the channel. The locations of the

planes of Figure 11 are noted. It should be remembered that the

cascade discharged directly into the atmosphere.

Figure 14 illustrates pressure distributions around the

blades at various distances from the wall. Two facts should be

noted: First, that the pressure distribution on the pressure side

of the blade does not change significantly on approach to the wall,

while the pressure distribution of the suction surface is markedly

altered. This observation can easily be explained by the observed

secondary displacement of high energy fluid toward the wall on the

pressure surface and the counter displacement of considerable low

energy fluid onto the suction surface. Secondly, it is important

to note that the net pressure force on the blade does not diminish

to zero at the wall even though the fluid velocity must be zero at

the wall. This observation is also to be expected since the tip is

bounded by the wall in this case, allowing a pressure difference to

be maintained between the two sides of the blade. The problem of a

turbomachine blade immersed in a boundary layer is dissimilar to

that of a finite wing unless the tip clearance becomes very large.

I.
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Theory

Van Le has developed a linearized theory yielding secondary

flow velocities downstream of a small turning angle bend conduct-

ing an incompressible, inviscid fluid. The theory predicts with

considerable accuracy the measured deviation angles, and therefore

the secondary flow velocities, in the x-y plane at discharge.

However, this theory cannot yield fluid displacement since it

as-sumes that the Bernoulli surfaces remain flat and parallel to

the x-y plane. That this assumption is only a rough approximation

of the actual flow conditions is obvious from inspection of Figure

13. It can be seen that the Bernoulli surfaces rotate on the order

of 300 in the regions of secondary flow when the fluid traverses a

240 turning angle cascade.

By the very nature of an inviscid analysis, the stream-wise

I. ~~- - -I% pressure gradient i.e., the cascade pressure rise) must be neglected

in a diffusing cascade. Since fluid initially near the wall enters

the cascade with very small velocity and the main flow largely con-

trols the cascade pressure rise, the low energy fluid must undergo

an increase in its stagnation pressure to pass successfully through

the diffusing channel. The essential energizing action normally

occurs, in a real fluid, by momentum exchange (viscous and turbulent)

with the main flow. In an inviscid, non-turbulent stream such

momentum exchange is impossible; thus, some fluid close to the wall

must flow backwards in violation of the assumed upstream boundary

conditions. Indefinite accumulation of fluid in the blade passage

violates the continuity condition. For these reasons, the inviscid

.,
I
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treatment of a diffusing cascade must be indeterminate unless the

pressure rise is neglected or a finite velocity is allowed at the

wall.

With only tentative knowledge of the importance of viscous

forces and turbulent momentum exchange in the secondary flow phe-

nomena, the possibility of a significant analytical attack on this

problem is dubious at present.

Extension of the "Simple" Models

Until 1952 only the mechanism of secondary flow in simple

passages was under investigation in the Gas Turbine Laboratory.

With tentative understanding of that flow, some attention was

directed toward other significant effects which may alter or even

completely mask secondary flow patterns in a machine. Important

additional considerations are:

h 1i) End-leakage between blade end and walL.

2) Passage of a moving wall over the blade end.

3) Distortion of the flow field relative to the succeed-

s _M7 h~~tin p hlade rnw-

4) Behavior of displaced fluid in a centrifugal force

field,

5) Relative rotation of the fluid in a rotor passage.

6) Displacement of rotor blade boundary layers toward the

blade tip. This action arises because the blade bound-

ary layer fluid travels with a higher whirl velocity

than that of the main stream. The boundary layer

fluid is not, therefore, in radial equilibrium with

the pressure field established by the bulk of the flow.

77
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7) Influence of blades of non-uniform lift upon a three-

dimensional flow pattern.

Several of these phenomena can be investigated in the recti-

linear cascade; however, no final conclusions can be drawn concern-

ing interaction except by use of a rotating cascade. End clearance

and the influence of a moving wall were investigated by Lt Cmdr.

Toline and Lt. Watson during 1952-53.

A single-stage, axial compressor has also been constructed and

is now in operation under the sponsorship of the Office of Naval

Research. It serves as a rotating cascade useful for penetration

into the --general thre-e-dimnsional flow-phenomena involving all of

the parameters listed above.

Cascade with Moving Wall and End Clearance

The end-clearance and moving-wall investigations were carried

out in the low-speed cascade wind tunnel with a set of nine blades

of 2.8-inch chord, pitch-chord ratio of 1.0, span of 16", with 40

air inlet angle and 260 of turning-. The profiles were NACA four-

digit seripes haes iannlip t a ircl r amh 'hrr lie - Flow

velocity and Reynolds number were comparable to Van Les tests.

End clearance was adjusted from 0 to 5/16~ (i.e., 0 to 114 %

of the chord). The boundary layer was generated on the tunnel wall;

it was about 1" thickness of the shape shown in Figure 22.

A sanding belt, driven by two high-speed motors, served ad-

mirably as a moving wall (Fig. 16). The belt develops a suction

between its back surface and a ground steel backing-plate; air

lubrication develops above a surface speed of 50 ft/sec which floats

I __CD-~ - · r-- -_6` ' V1XVU __ U _ -- _ UIUL mr u ru u . __L r L-
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the belt free of the backing-plate. In this manner, a very flat

moving surface of adjustable roughness can be driven at high velo-

city with moderate power consumption.

Toline and Watson's investigation was of a preliminary nature;

data particularly lacking are flow conditions with various inlet

boundary-layer conditions and various values of the flow parameter

Cx/u(where cx is the air velocity perpendicular to the plane of the

cascade and u the blade speed). Tests were conducted with one

boundary layer and a c /u of 0.87; further tests are reported in

References (36) and (38).

Stagnation pressure, underturning angle, and spanwise deviation

angle were measured at a (y-z)plane 1/2-chord length behind the

trailing edges. Figure 17.

These data were plotted as contours of stagnation pressure,

underturning angle and spanwise deviation angle on three plots after

the manner of Van Le. Use of these plots requires considerable

mental agility; superposition of three parameters at many points in

a two-dimensional plane is required to form a mental picture of the

flow, The difficulty of this process has led to misinterpretation

of the data. In order to aid in comprehension, a vector plotting

method was developed. Steel needles are thrust into a balsa (y-z)

plane at each measuring point. The inclination of a needle indicates

the local flow direction; its length, the magnitude of the local

velocity. Circulation, secondary flow, blade wakes--all of the com-

plicated flow pattern becomes visible.

Three comparable sets of data are presented in Figure 18.
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Set A illustrates in greater detail than previously the flow

pattern with no end clearance and a stationary wall. The complete

flow field at a position 1/2-chord length behind the blade trailing

edges may be reconstructed from the stagnation pressure, underturn-

ing angle and spanwise deviation angle plots. Further discussion

of the flow pattern issuing from a "Simple M cascade is in order at

this time.

A careful study of Figure 18A yields the following signifi-

cant observations.

1) Secondary circulation was developed in the cascade

and appears as an overturning of the flow close to

the wall with a slight underturning at the exterior

of the boundary layer. The flow proceeds toward the

wall on the blade pressure surface and away from the

wall on the suction surface. This pattern is to be

expected from the previous consideration of the

development of secondary vorticity.

2) Secondary circulation resulted in a displacement of

boundary layer fluid toward the suction side of the

passage. A marked thickening of the wall suction

surface boundary layer results accompanied by a thin-

ning of the wall pressure surface boundary layer.

(Figure 22).

3) While not immediately evident in Figure 18A, an

average thickening of the entire wall boundary layer

results from the cascade pressure rise. This thickening
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is evident in Figure 22 p-lott~ed frmL Figure 18A.

4) Blade wakes are readily identified; a slight dis-

placement of the wakes toward the suction side of

the passage near the wall is evident. 'Underturning

of the fluid discharged close to the wall immediately

off the pressure side of the blade may be observedo

5) Vorticity shed from the blade in the direction of

the flow is evident in the boundary layer, wake

region. The spanwise deviation angle plot shows the

resulting shearing flow in the blade wakes near -the

wall. The wake pattern may be synthesized, as shown

in Figure 19o

I

1

i1
.
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X 23av11tvcl O

Figure )

Probably the most serious consequence of secondary flow is

the marked boundary layer thickening in the wall-suction surface

r
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corner. In any real flow, with the stream velocity equal to zero at

a bounding wall, some fluid must enter a diffusing cascade with a

stagnation pressure lower than the final downstream pressure. Fig. 200

Figure 20

The deficient fluid cannot flow through the diffusion process un-

less the main stream energizes it by viscous or turbulent momentum

exchange. If these energizing forces do not exert sufficient action,

the deficient fluid will not successfully negotiate the pressure rise

and must flow backwards. Such behavior is commonly termed 'stall~",

in this particular case "wall stall", or end stall". In case the

energizing forces act sufficiently, a rise in stagnation pressure

will be noted along interior streamlines with a decrease appearing

in the exterior regions of the boundary layer and adjacent fluid

of the main stream.

The maximum increase in stagnation pressure is found at the

wall. The fluid in this region will rise in stagnation pressure in

i
I

i,

I
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an amount equal to the stream pressure rise through the diffusing

passage or,

d__ _ C4
H/ 62 - P*t =

L'Igurt'e cJL

While the energizing action may successfully carry the low-energy

fluid against the pressure rise, this desirable result is not

achieved without a sacrifice.

A part of the main flow initially lying outside the original

boundary layer is de-energized and becomes a part of the final bound-

ary layer. The velocity profile of the thickened boundary layer

degenerates and the flow approaches separation as is indicated by an

increase in the magnitude of the shape factor H Should this bound-

ary layer now face an additional pressure rise, its depreciated con-

dition will hinder further energizing action by the main stream;

separation will be more likely than before the original pressure

rise.

Returning to the cascade passage, inspection of Figure 22

demonstrates a severe deterioration of the wall suction surface

I
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boundary layer. This deterioration is partially due to the cas-

cade pressure rise but is augmented greatly by the accumulation

of wall boundary layer fluid in this corner. A large tangential

variation of the displacement thickness, momentum thickness and

shape factor of the boundary layer was observed. Now, if this flow

is forced to traverse a still larger pressure rise--say, due to an

increase in incidence angle at cascade inlet--then one would expect

the flow to separate and travel backwards in the wall-suction cor-

ner. Conversely, it can be anticipated that this flow would

occurs if the boundary layer were in some way prevented from accu-

mulating in this corner.

In this discussion the words separation", "stall" and back-

flow" have been freely employed. However, one must use care in

defining such breakdowns. The event we are concerned with in

speaking of separation is a disturbance in the boundary layer of

such a magnitude that it seriously alters the main flow. For

example, boundary layers are often greatly disturbed at local spots

on the wings of aircraft even under normal flight conditions.

These local disturbances are not usually called stall. It is the

point at which the disturbances affect the main flow to such an

extent that the wings can no longer lift the craft that we say

stall has occurred. Similarly, the definition of the onset of

stall or separation in a turbomachine is a subjective matter; the

seriousness of the effect of boundary layer disturbances on the

state of the main flow can only be evaluated in terms of overall

machine performance. The best we can do in a general investigation

i
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is to describe flow geometry as exactly as possible and leave

the evaluation of the quality of the flow to 'the practitioner.

In all our measurements we have always observed a region of

reversed flow on the wall as illustrated in Figure 24, Such flow

reversal probably occurs in all diffusing cascades and even in

regions of unfavorable pressure gradient and thick boundary layers

in accelerating cascades. As boundary layer conditions become

more degenerate and as the unfavorable pressure gradients in-

crease, the extent of this region of reversed flow will increase,

penetrating more deeply the main stream and involving a greater

quantity of fluid. Figure 23 presents a stagnation pressure plot

of the discharge from a diffusing cascade. Undoubtedly anyone

would describe this passage as stalled".

It was noted above that a region of underturned fluid if found

in the proximity of the wake close to the wall. At first, this

observation seems anomalous in comparison to the trong secondary

overturning of the mass of the boundary-layer fluid. As was noted

before in conjunction with Figure 14, little change in pressure-

surface pressure distribution was measured on approach to the wall,

while the suction surface pressures fell off markedly. Although

pressure measurements could not be continued to the trailing edge,

a steep stream pressure gradient apparently existed between uction

and pressure surface at the trailing edge near the wallo Carbon-

black boundary-layer patterns (Figure 24) indicated that flow

separation can account for the lower stream pressure of the suction

surface discharge in comparison to the fluid streaming from the
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other side of the blade. The low pressure in this region can, in

turn, account for the expansion and underturning of the pressure

surface discharge. This sequence of events is schematically re-

presented below.

The accumulation of wall boundary-layer fluid in the wall-

suction corner and consequent flow separation will lead to in-

creased dissipation in the passage as well as higher mixing losses

downstream in comparison to a tangentially uniform boundary layer.

After discharge from the blade row the distorted pattern from each

passage must mix to a tangentially uniform stream in an analogous

manner to the dissipation of the blade wakes. Coupled with these

duction of new boundary layer in the passage wall-pressure sur-

face corner as the original boundary layer evacuates this region

allowing high energy fluid to come in close proximity to the wall.

j
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End-Clearance and a Moving Wall

To study the influence of end-clearance, Figure 18B presents

data with 1/8" or 4.5% chord end-clearance and a stationary wall.

The data of Set C resulted with 1/8" end-clearance and a wall

moving from passage suction to pressure side, as in a compressor,

at a velocity equal to the mid-span stream velocity.

Study of Figure 18 reveals that each of the modifications

significantly altered the flow pattern at exit from the cascade.

Consider the flow phenomena resulting from end-clearance. Two

limiting patterns with variable clearance must be, first, the

pattern already observed with zero clearance and, second, when the

clearance becomes very large, that of a finite wing.

{>jT~ _c ___cal__ OSh. U +,IO LJ. .LJ.L LLU. 1 - l-h, AWb T.- - 1 1 rLA

blade as the clearance, the blade loading or the wall speed (of

a compressor) are increased. Extending the behavior of a finite

wing to this case would indicate that this leakage flow serves

to unload the blade end producing larger adverse spanwise pres-

sure gradients on the blade end surfaces. It would be anticipated

from this view that end-leakage augments secondary flow, further

deteriorating flow conditions on the suction surface and encourag-

ing flow separation there.

In opposition to this view, it is proposed here that this

model may be erroneous and that end-leakage may actually delay

the "stall" of compressor passages. The strongest supporting

evidence for this statement is found by comparison of Figures

18A, and C. In Figures 18B and C the action of end-leakage
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and a moving wall prevented the accumulating boundary-layer fluid

from reaching the suction surface of the blade end. Relatively

high energy fluid washes the end suction surface in comparison to

the cascade with no end-clearance.

The diversion of accumulated boundary layer fluid from the

suction surface may be explained in the following manner. The

relatively high energy, end-leakage flow passes over the blade

end and is discharged from the slit "nozzle" parallel to the wall

at an angle between the cascade inlet and outlet angles. The high

energy leakage flow penetrates toward the pressure side of the

passage. At the same time, secondary flow is continuously drift-

ing the original boundary layer fluid toward the passage suction

side. Somewhere these counter flows must meet and oppose one an-

other with a result that the low-energy secondary flow turns down-

ward into the passage. The original boundary layer is turned back

on itself and forms a discrete core or eddy of low-energy fluid

removed from the blade suction surface. That the boundary-layer

fluid is rapidly driven from the wall is indicated by spanwise

deviation angles approaching -60° in Figure 18B. A schematic re-

presentation of this process is shown in Figure 25.

The action of the leakage flow may be likened to a scraper

moving along the wall pushing the boundary layer ahead of it,

diverting the secondary flow of boundary-layer fluid under it and

out into the stream. A strong shear band between the leakage

flow and the secondary flow can be observed in the underturning

angle plots of Figures 18B and C.

i
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The folded accumulation of boundary layer fluid which, to be

sure, contains some residual secondary circulation, has oftent been described as a discrete vortex.

Figures 18C show the flow pattern with the same end-clearance

as before but now with a wall moving at mid-span velocity in the

direction of the end-leakage. Note that the wall in this case

is a contour of 100 relative stagnation pressure. The pattern

is much the same as before except that the energizing action of

the wall motion increases the tangential velocity and amount of

leakage flow, thus injecting it at an angle closer to the tangen-

tial direction. As would be expected, the leakage flow penetrates

further across the passage, stripping the accumulating low-energy

fluid from the wall closer to the pressure side of the passage.

Once again, the strong shear band between the leakage flow and.

low energy core is clearly apparent. A layer of fluid, moving

with the wall, separates the secondary flow from the wall driving

it downward into the stream, Figure 26. A still higher wall velo-

city should force the accumulation of boundary-layer fluid still
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closer to the pressure side of the passage. This action probably

explains the "scraping effect" of wall motion. a term employed by

some investigators to describe similar data. But, it should 'be

noted, it was the end-leakage and fluid moving with the wall, not

the blade, which scraped the wall of its boundary layer. There

appeared no flow on the pressure surface directed away from the

wall as would be expected if the blades "scraped" the boundary

layer.

Before continuing, it may be of some value to speculate fur-

ther upon the nature of end-leakage and wall motion in compressors

and turbines.

Certainly, if the end-clearance becomes large in a compressor,

the flow pattern will approach that of a finite wing with dele-

terious effect on suction surface conditions. The relation be-

tween suction surface end-stall, end-clearance and velocity of

wall motion can be investigated by experiment. An analytical
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attack may also be expected to yield useful information. Experi-

mental removal of the stator shrouds in multi-stage compressors

might also shed light on the action of end-leakage.

The discussion above does not include leakage under shroud

sealing rings. Such leakage will usually re-enter the main stream

normal to the flow thereby seriously harming the boundary layer.

When considering leakage results for axial compressors, one must

carefully examine the geometry of the leakage paths.

While we as yet have tested no accelerating (i.e., turbine)

cascades, some predictions might be made from our previous re-

sults concerning the probable flow patterns.

Two important characteristics separate the three-dimensional

flow phenomena of compressors and turbines. First, the turning

angles of turbine passages are usually much larger than those of

compressors. This fact leads to the anticipation of greater

secondary vorticity development through turbine passages. However,

the overall acceleration of the stream undoubtedly restricts

fluid displacement to a smaller magnitude than in the compressor.

Secondly, the wall motion in a turbine rotor proceeds from passage

pressure to suction side thus augmenting secondary flowo

The exhaust flow from accelerating cascades of 450 turning

angle has been observed by smoke tracing in Ref. 24 and by pressure

measurements for a 90 accelerating elbow in Ref. 31. The dis-

charge patterns near the wall were similar to the pattern observed

by Eichenberger in the constant area bend at 90° turning angle.

The accumulated boundary-layer fluid enters the main stream off

-32



the suction surface. This penetration and the residual secondary

circulation may be of sufficient extent to form a vortex of the

discarded boundary layer fluid. This accumulation has been

termed a "passage vortex"; its outstanding characteristic seems

to be low energy rather than strong vorticity, but it may produce

serious disturbances in the succeeding blade rows°

The action of secondary flow, especially when augmented by

7£|1 1 mo+.rn da+.rdrrsffos flow~ la-n7P-irlit.;nn fn .hP h71:R l ?All+fn

surface and apparently leads to very low velocities or back-

flow on the rear suction surface of even an accelerating passageo

Secondary flow and the presence of adverse pressure gradients in

this region can explain dirt marks on the wall and rear blade-end

suction surface which usually indicate separation. While strong

secondary flows lead to boundary layer separation, higher passage

losses, and increased mixing losses downstream of a turbine blade

row, they do serve to dump the wall boundary layer into the main

stream, vigorously mixing the flow and preserving more uniform,

more nearly design conditions, approaching the succeeding rotor.

It is dubious, therefore, whether secondary flow is disadvanL-

tageous in a turbine or a compressor.

The need for more penetrating measurements of these phenomena

is evident. Detailed measurements inside, as well as behind,

accelerating and decelerating cascades are underway with varying

Cx/u, tip clearance and boundary layer shape and thickness.

Methods of determining local losses within the cascade and in the

mixing region downstream are under investigation. The izifluence

of secondary flow on boundary layer behavior and separation of



the boundary layer from blade surface and wall is under investi-

gation with varying pressure rises through a passage.

The Influence of Three-Dimensional Flow in Axial Compressors

The ultimate purpose motivating these investigations of three-

dimensional flow is the desire for a better understanding of the

flow through fluid machinery. Deeper understanding will be de-

cisive for further improvement of turbomachinery.
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cannot offer all the insight necessary for the conception of

optimum equipment. As compressors of higher pressure ratio per

stage, greater flow velocity and improved efficiency are attempted

or when one desires to further improve the efficiency of turbines,

the two-dimensional model is inadequate to reveal the true flow

pattern and all of the inherent design limits. Further, the

simple two-dimensional model offers few avenues toward perfection,

while even a qualitative understanding of the actual flow opens

many pathways toward improvement.

Let us now examine some of the consequences of three-dimen-

sional flow and possible improvements revealed by the previous

niiniItna t ive dc3nri t ior)n f t.h vrious nhnm n i hp r- hP ntire

subject may be conveniently split into two parts, passage phe-

nomena and machine phenomena. The two parts, however, are not

completely independent.

Passage Phenomena

The influence of an initial boundary layer and the resulting

secondary circulation in a turning passage has been discussed.
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The action may be summarized as follows. A wall boundary layer

and the deleterious influence of secondary flow are responsible

for "end-stall" at the extremities of compressor and turbine

blading. If the boundary layer can be restricted in growth or

removed, end-stall should be delayed or even eliminated entirely.

However, if a boundary layer is unavoidable, a control of second-

ary displacement in the passage should delay end-stall. End-

stall increases flow distortion and losses at the blade extremi-

ties. Secondary displacement exposes the wall to high velocity

fluid increasing annulus drag and decreasing the machine effi-

ciency.

To this point only rectilinear cascades have been under dis-

cussion. The presence of a centrifugal acceleration field in the

whirling flow of a curvilinear blade row introduces significant,

additional forces. Accompanying the centrifugal acceleration

field are the centrifugal pressure gradients which are largely

produced by the main stream. If low velocity fluid is displaced

toward the axis of rotation from the outer casing, the main stream

pressure gradient tends to increase the displacement. The bound-

ary layer on the concave casing has but one stable distribution,

spread uniformly on the wall. It follows then that a slight

radial flow due to secondary circulation or end-leakage may be

amplified and seriously alter the stream pattern on the entire

blade surface as well as the pattern of the main flow. Evidence

of such inward radial flow is found in Refs. 21, 22, and 32.

At the hub casing the situation is reversed; the main stream
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pressure gradients tend to return displaced low velocity fluid to

a tangentially uniform pattern.

The behavior of a boundary layer in a centrifugal pressure

field can explain the observation that a stall at the outer casing

of an axial machine often will influence detrimentally the entire

flow passage while a stall at the inner casing produces a relatively

smaller effect. These considerations also lead to the prediction

that any pattern of distortion, such as stall propagation, will

show greater stability upon the inner casing than upon the outer.

Especial consideration must be given to the three-dimensional

flow through rotors. The flow pattern is influenced by secondary

circulation; the centrifugal force ield governs boundary-layer

stability on the casings and greatly affects the direction of

boundary-layer flow on the blade surfaces. In addition, the rela-

tive rotation of the fluid in the rotor passages, end leakage, the

influence of a moving wall, and the fact that the relative inlet

flow varies in time and space all offer the possibility of signi-

ficant distortion.

The relative flow in a rotor presents a far more difficult

problem than that of a stator. This problem has received little

attention in the past. It is difficult, at this time, to predict

the orders of magnitude of the various phenomena, much more so, to

determine how they combine to produce the actual flow through a

given rotor.

Stall propagation is suspected to play a decisive role in the

failure of compressor blading. The propagation of this disturbance

I/
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depends upon the successive stall of blade passages. Since passages

appear to stall first in the wall-suction surface corner and since

secondary flow partially determines the incidence at which end-stall

will occur, it seems reasonable that the stall propagation phenomena

and secondary flow may be interrelated. An understanding of second-

ary flow should aid the investigation of stall propagation.

Machine Phenomena

End-stall in a blade passage has been designated arbitrarily

as a passage phenomena although such behavior must produce pertur-

bations along the entire flow path. Considerations, such as this,

point to the necessity of evaluating any local stream distortion

by examination of its influence along the entire flow path. The

behavior of one blade row can deleteriously alter the performance

of several succeeding rows. Also, it should be realized that the

distortion generated in any blade row is largely a function of the

extent of the distortion at inlet to that row. Thus poor behavior

of the predecessors figuratively sets a bad example for the suc-

cessors.

Except in the case of stall, the mere presence of a boundary

layer is probably the most serious flow perturbation in turbo-

machines. The low velocity of the fluid in the proximity of the

casings causes the flow field relative to any blade row, after the

first, to be distorted in direction. The overturning due to second-

ary flows produce additional but less significant relative angular

distortion. Figure 27 illustrates these effects.
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C = Design velocity and outlet angle
C' = Design velocity and underturned discharge
C" = Reduced outlet velocity and design outlet angle

Ai' = Change in relative inlet angle to (2) due to variation between
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Ai" = Change in relative inlet angle to (2) due to variation from
C to C"

Blade row (2) moves relative to (1) at speed U in direction shown.

Influence of Blade Row Discharge Perturbations on the
Flow Relative to the Succeeding Blade Row.

Figure 27

The influence of a boundary layer streaming from a compressor

stator passage will increase incidence on the rotor blades due to

reduced velocity and secondary overturning. The magnitude of the
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free stream value in comparison to the reduction of absolute velo-

city in the boundary layer.

The increased incidence at rotor tip and root with the usual
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velocity diagram will yield an increased change in tangential velo-

city across the rotor in these regions and consequently more work,

and more stagnation enthalpy rise per unit mass of fluid. The

consequence of this additional work, at first glance, would be an

energizing of the boundary layer, a reduction in its thickness and

a flattening of the velocity profile.

Since the stream pressure in the boundary layer is largely

4 -nnt.'rn 1iPt hv th.H mnin f w An -inrnQs in vPlnrif.v i'r n th hnlind-

ary layer, a flattening of the velocity profile, must be a result

of increased stagnation pressure in the proximity of the casing.

Even though a relatively larger rise in stagnation enthalpy must

occur at the blade extremities, one cannot per se anticipate a

relatively larger increase in stagnation pressure. The stagnation

enthalpy rise and the stagnation pressure rise are related by the

efficiency (i.e., degree of irreversibility) of the work process.

Now, it is well known that the efficiency or dissipation of a

blade row is a function of incidence angle, a particularly strong

function if incidence angles greater than + or -5 are established.

The rapidity of the rate of change of blade row efficiency at

larger incidences is due to boundary layer separation and shocks.

The severity of the depreciation of efficiency with increasing

incidence is accentuated at increasing Mach number. Since the

relative inlet angle to the rotor approaches 90 at the wall,

large variations of incidence may be expected in the boundary

layer.

One must inevitably conclude from these considerations that

the self-energizing action of a boundary layer in passage throughi
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the rotor will not be completely realized. The decrease in blade

efficiency will hinder an advantageous stagnation pressure rise

close to the wall; the boundary layer may not be significantly

energized. This conclusion is supported by the peaking tendency

of the axial velocity profile in multi-stage compressors as shown

in Figure 1 and by the "work done" or other experience factors which

must be applied to predict the reduced useful work of an actual

compressor from the two-dimensional calculations.

The mechanism described above can easily account for the rapid

thickening of the boundary layers on compressor casings.

In compressors, advantages might be gained by eliminating or

dumping the casing boundary layers. Nevertheless, the author is

now of the opinion that the boundary layers in compressors cannot

be dumped by secondary circulation without bringing about severe

end-stall and still lower compressor efficiency. There is the pos-

sibility, however, that the presence of end-leakage and a moving

wall in a compressor or some clever blade end modification might

allow dumping without encouraging end-stall. The tendence of any

fluid displaced from the outer casing to quickly seek the inner

casing must be remembered in considering the nossibilitv of strin-

ping the boundary layers from the concave casing. A reduction in

boundary layer on the concave surface might make conditions suf-

ficiently poorer on the convex casing to once again produce an

overall reduction in performance.

To this point, in the present discussion, a uniform boundary

layer has been treated. Further consideration of a tangentially
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skewed discharge boundary-layer pattern is in order. It has been

demonstrated previously that the boundary-layer thickness may vary

by a factor of 4 to 1 in the tangential direction behind a com-

pressor stator. This flow pattern will result in a stream which

rc-ac. .T*;+h C;mjo hoz~h ftrr nr+~.4 Al vn-lr-rAlr -1-4- gz+4-4 + +a
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rotor. As this unsteady flow passes through the rotor an average

amount of work is done. It is problematical how the average work
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tangentially uniform. This effect awaits analytical treatment

since it probably would be difficult to measure experimentally.

Above has been discussed the detrimental influence of a dis-

torted three-dimensional flow pattern upon axial compressor per-

formance. One more point of interest lies in the anomaly between

the large flow distortions measured by Eichenberger in the simple

bend and the relatively minor distortion measured in turbomachinery.

One must exercise caution in extrapolating the simple bend

or cascade data to multi-stage machines. Other large disturbing

phenomena besides secondary flow have been mentioned. In addition,

the fluid passes successively through rotors and stators. The

relative motion alters the flow pattern; it will chop up and

largely disperse any configuration established in a single blade

row. The influence of secondary flow through any multi-stage

machine is very complicated; it is not understood at all clearly

at present. However, we can predict favorable characteristics of

multi-stage turbomachines, such as the relative motion, which may

be largely responsible for their successful operation in view of

all the large distorting forces acting on the fluid.
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There is one configuration utilized in axial compressors which,

in light of the previous data, should produce large secondary flow

effects. This is the tandem stator in which two or three blade

rows, all turning in the same direction, are placed together. The

secondary distortion produced in one blade row will be directly

magnified by the next since no relative motion chops the pattern.

The resulting large-scale boundary-layer disturbance probably

explains ne poor performance aellverea oy suCn Dladlng.

Control of Secondary Flow

It seems possible that the extremities of blades could be

twisted to accept the relative flow angle of boundary-layer fluid

if the flow conditions are predictable in design and if the bound-

ary layer is tangentially uniform. The advantages of such modi-

fications have been realized in the past; the design of end-modi-

fications has been attempted. Seemingly desirable alterations

have usually failed to improve, or have even reduced, machine

performance. These results may be due to the fact that the bound-

ary-layer conditions were not accurately predicted or that the

tangentially skewed boundary layer cannot be treated as a smooth

boundary layer of "equivalent" thickness. Also, the simple modi-

fication, underturning the stator ends to reduce the relative

rotor incidence, actually encourages secondary flow in the stator

·and. therefore. a more severelv distorrd s At.n-r' inrnsorP nz..rn

The advantage of controlling secondary flow to prevent end-stall

in compressors has been mentioned, but in the above considerations

lies another advantage of secondary flow control applicable to

A
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both compressors and turbines. If the skewing of the discharge

boundary layer can be prevented, attempts to modify the rotor

tips to accept the higher incidences in the boundary layer may

be more successful. Should this be the case, more stagnation

pressure rise possibly could be obtained at compressor rotor ex-

tremities thus energizing the boundary layer. While an attempt

to repair a badly damaged velocity profile in one stage would

surely lead to failure, it is possible that slight increases in

work at the walls in each stage might prevent degeneration.

It has been definitely established that control of secondary

flow can be achieved through simple blade-end modifications. (Ref.40)

Slight control of secondary flow plus increased work in the boundary-

layer region may produce a flow through multi-stage compressors

free of the detrimental peaking behavior. If this result can

be accomplished, the ability of the designer to predict machine

performance accurately will be enhanced. In addition, higher

efficiencies can be expected by operating the entire length of

the blades at optimum conditions. By a delay of end-stall, a

higher pressure rise per blade row should be feasible. The

surge line of a compressor should move to lower mass flows, under

these ideal conditions, thereby widening the operating region of

the machine.

r
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II. The Boundary Layer Problem

In Section I of this work, experimental data was presented

which has led to a qualitative model of boundary-layer behavior

in rectilinear, stationary, diffusing cascades.

Only through exhaustive experimentation could sufficient

experimental data be gathered to reveal the important parameters

governing three-dimensional boundary-layer behavior in such

simple passages. Te variables manipulated should include all

the cascade geometry in addition to the characteristics of the

approaching flow. Because an effort of many years' duration is

just now beginning to produce a complete understanding of two-

dimensional cascade performance, a generalized three-dimensional

investigation can be predicted to require vast expenditures of

time, effort and money. It is worthwhile, therefore, to run

selected experiments as a guide toward the development of appro-

priate analytical models, to devise analyses of these models

aimed toward revelation of the important parameters and then to

test the analysis with as broad a spectrum of experiments as ps-

sible.

Such an attack has been followed in this investigation with

the exception that conclusive tests of the theory have not been

completed yet.

Three analyses are reported herein, based on three approxi-

mate models of different degrees of refinement. The purpose of

these analyses is common to all--to reveal the physical parameters

governing the state of the three-dimensional boundary layer. The

i
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relationship between the state of the boundary layer and the onset

of separation is still more difficult to determine analytically and

is only discussed in general terms.

The General Problem

Given an inlet flow to a blade row of specified geometry,

one desires to determine the flow in the passage and the configu-

ration of the discharged stream. Several analyses are available

in the literature (3, 4, 5, 10, 26, 33) which predict secondary

flow velocities downstream of a blade row and one which predicts

fluid displacements (34). However, all neglect viscosity and

turbulence. Cases with a positive streamwise pressure gradient

may not be treated unless a substantial velocity is assumed at

the wall to allow any sort of solution. The necessary assumption

of finite wall velocity or the neglect of pressure gradients ap-

parently does not invalidate the solution for secondary velocities

in regions removed from the wall. However, all these solutions

break down deep in the boundary layer, that is, in the very regions

where flow geometry determines the onset of separation.

A three-dimensional, momentum analysis presented in Section V

is aimed at prediction of flow conditions deep in the boundary

layer. To include viscous, turbulent and streamwise pressure

stresses, a model must be constructed which compromises the analysis

of secondary flow in the outer regions of the boundary layer. How-

ever, since the purpose is to study conditions leading to separation,

this deficiency is not serious.

A less elaborate analysis of secondary flow is included in
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Section IV which neglects viscous and turbulent shear stresses,

but which includes all pressure stresses. This analysis is an

attempt to produce analytical expressions and, through them,

reveal important parameters. The common solutions of secondary

flow patterns require relaxation or other numerical methods to

arrive at a solution. Unless results are correlated from many

calculations, little physical understanding is gained. Thus,

even an inexact analytical expression should aid in an under-

standing of the problem.

To relate macroscopic boundary-layer behavior to passage

and flow parameters, an analysis neglecting streamwise pressure

gradients follows.

I



III. Bernoulli Surface Rotation, Boundary-Layer Thickening and
Discharged Vorticity

Hawthorne's equation, expressing the rate of change of

secondary vorticity along streamlines, is as follows;

Xln I f)3 2 /V P°/ ca (1)

or integrating along streamlines;

/ I / /, P s/i 
.4 )--J Aj / V 1 -(2)

where terms are defined in Figure 4, Section I. This equation

results from an application of Newton's laws to an incompressible,

inviscid fluid steadily moving without body forces.

Supposedly, if one can neglect viscous and turbulent

stresses and if one knew the path of the streamlines, the second-

ary vorticity could be calculated at each point. Or still

better, one can apply this result in a stepwise manner and deter-

mine the streamline trajectories and secondary vorticity simul-

taneously, This latter attack has been undertaken by Ehrich and

Detra and is reported in Reference 34. However, the analysis is

still numerical; it does not readily reveal the governing physi-

cal parameters. A simpler model is required if one is to obtain

analytical results.

The following model is employed here:

1) Streamlines are assumed to flow along sheets of

constant stagnation pressure or Bernoulli sur-

faces.

2) The Bernoulli surfaces approach the turning pas-

sage parallel to the plane wall.

i
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3) In transit through the passage, the Bernoulli sur-

faces rotate in such a manner that their inter-

sections with a cross section of the bend remain

straight lines.
I,

4) Each Bernoulli surface rotates at an angular velo-

city calculated from Eqn. 1 which varies along

the passage but which is based on the inlet stag-

p0nation pressure gradient 7 (-) at the appropriate
P

distance from the wall.

5) All the streamlines are assumed to follow the cur-

rsfilt: _-P +h +-11 -0 .bn Q - en-- s --4-; - Lone
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The fluid is assumed inviscid, non-turbulent, in-

compressible in the absence of body forces and in

steady flow.

6) The streamwise pressure gradient is neglected. The

stream pressure gradient normal to the wall is

taken as zero; in other words, all pressure changes

are produced by the two-dimensional main flow.

4

Figure 29
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Because it is assumed that the Bernoulli surfaces rotate

in a simple manner and that changes in the variables R, 7 pO/p

and u are negligible, it is possible to integrate eqn. 14 for the

angle of rotation of any Bernoulli surface. The vorticity compon-

ent in the direction of the streamline will then be equal approxi-

mately to twice the angular velocity, , of the intersection line.

Equation 1 in this case may be written as:

d ( (2)

We have assumed the stream pressure constant along any line

normal to the wall and that the stagnation pressure varies only

in this direction, accordingly:

/ (S I+ TZ/ =us (3)
If is the angle through which the streamline has turned, and

ds = rdg, then:

dt -d dt d (4)
Therefore, eqn. 2 may be expressed as:

de 4e ( e ()

This equation is identical, except for the constant, to that

of the simple pendulum.

'The first integration of eqn. 5 proceeds directly after mul-

tiplying both sides by d/dQ:

~ /dS z_ f) l Z d/I O(/ (6)

Integrating:

(d 2 (I \Z (am 2)C, /-Cos)

But, in our model (d0/dG)1 = 0 and 01 = c/2, so

d' - c C ' (7)
j ~ ~ d :LUd~'"
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We can predict that d/dG will be negative. Selecting the negative

value and separating, the second integration follows:

(8)

The right term is an elliptic integral which cannot be expressed

in terms of simple functions but can be evaluated by series expan-

sion. To facilitate such a solution, the angle between the

Bernoulli surface and the plane of the bend is employed instead

of 0.

Figure 350

Since 0 = 90 + , cos 0 = - sin and do = d7, then:

!'~~ Cudj_ = 2 -j (9)

Since -6 will always be less than zero and cannot exceed

-90° without invalidating the model, the sin (--) always will

be positive and the square root real.

Now let us approximate sin (-Z) by a double series

t
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expansion.

L7 3 1 ) (10)
Since (--6) will usually be less than one radian over most of a

compressor passage, we need only employ the first two terms.

Accordingly, /

2 2F 237 2 (11)
which can be expanded by the binomial theorem.

/21

Again, terms may be eliminated and only the first term retained

as an approximation. The integral then becomes

(15)

Or

_ lut du)/Ss / _Sa (14)

But, 0l = O and G1 = O, so

- d (15)

which is the same result that would be obtained by substituting

Z for and assuming cos 'o= 1 before the first integration of

eqn. 5. The above derivation, on the other hand, allows us to

evaluate the error in the various approximations.

For circular arc blades of small turning angle, R--c/6,

where c is the blade chord ande the total turning angle. If 

is the boundary layer geometrical thickness, then the total

angular rotation of the Bernoulli surfaces through the blade pas-

sage becomes

_ 46/r( d/a (16)

L*:~ ~ ~ ~ ~~~7 -l~
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Assuming an exponential velocity profile:
(- i/

equation 16 becomes:

12 Be c)jS7s j(17)

It can be seen from eqn. 17, for a given turning angle ,

profile shape n and boundary layer thickness 6/C, that the rota-

tion of the Bernoulli surfaces increases on approach to the wall.

Likewise, at a given position in the boundary layer z/6, the rota-

tion increases as the boundary layer becomes thinner. This

latter result can explain the violent secondary flows observed

in turbine nozzle passages even when the inlet boundary layer is

vanishingly thin.

As a test of the validity of eqns. 16 and 17 for small

turning angle passages with relatively thin boundary layers,

Bernoulli surface rotation is calculated for the compressor cas-

cade investigated by Van Le (Reference 5). Figure 13, Section I,

presents measured Bernoulli surface configuration at the cascade

discharge. The average slope of each Bernoulli surface was es-

timated graphically; these estimates are plotted in Figure 31.

Approximation of the average slope of the Bernoulli surface be-

comes increasingly difficult on approach to the wall.

The Bernoulli surface rotation was calculated first from

_1_ /C _ 3 - 1 du I
eqnso L, tailng E as c/c an. aeterml.ning - dz or eachn er-

noulli surface from the shape of the inlet velocity profile

shown in Figure 14, Section Io

Second,, an exponential velocity profile was fitted to the

measured inlet boundary layero While the fit was only approximate,

4
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a value of n = 10 produced the best representation. For this ex-

ponent, ' 2 was calculated as a function of z/5 from eqn. 17

and plotted in Figure 31.

Both equations predict correct orders of magnitude and

trends through most of the boundary layer. The discrepancy in

the outer region of the boundary layer is due, undoubtedly, to

the three-dimensional nature of the boundary constraint. Fluid

suffering a large y displacement close to the wall accumulates

in the wall-suction corner after evacuating the wall-pressure

corner. These large mass transfers deep in the boundary layer

force the main stream away from the wall on the suction side and

toward the wall on the pressure side of the passage, thus pro-

ducing a sizable rotation in fluid possessing a small stagnation

pressure gradient. The analysis above cannot take this effect

into account.

Close to the wall, the boundary constraint hinders rotation

of the Bernoulli surfaces and causes them to bend. Fluid fric-

tion also retards the development of strong, secondary circula-

tion near the wall.

The experiments of Van Le which produced the data employed

in this comparison were not designed to yield accurate boundary

layer velocity profiles or even an accurate and detailed pattern

of the Bernoulli surfaces. Significant discrepancies can arise

between the theory and data from this source. To better test

this analysis, more appropriate measurements could be undertaken.

It follows, that the lack of close agreement between theory

j



and data is not surprising. The agreement is sufficiently close,

however, to tentatively accept ens. 16 and 17 as expressive of

the relationship between boundary layer skewing and the parameters

describing the turning passage and approaching flow.

The analysis will not predict the pattern of the discharged

Bernoulli surfaces, except for their slope, since motion of the

secondary flow toward the suction side sweeps the Bernoulli sur-

faces in that direction at an increasing rate on approach to the

wall. The wall constraint also forces Bernoulli surfaces in the

vicinity of the wall to assume a bent configuration. This be-

havior is of course not predicted by eqn. 18. However, at the

outer edge of the boundary layer, secondary velocities parallel

to the wall are small; the Bernoulli surfaces remain essentially

flat, and thus appear to rotate about the center of the passage.

This simple behavior allows us to make further use of eqn. 17

to predict overall boundary-layer thickness as a function of the

distance across the passage.

From the assumed geometry of rotation, the z-deflection of

a streamline is A z = y ', where y is measured from mid-passage.

The maximum and minimum z-deflections of the streamlines on any

Bernoulli surface are given by:

(z )ax, - + (18)

where s is the blade pitch.

A value for A6 at the center of the original boundary layer

(z/5 = 0.5) is chosen as indicative of the average skewing of the

boundary layer. The change in boundary-layer thickness Z 5 then

I
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can be expressed by:

a _ 6 - / dt // ) (19)
or for an exponential profile: 

6 -_ * (20)

Examination of eqns. 19 and 20 reveals that, for a given

velocity profile shape, a reduction in tangential skewing can

be obtained by reducing the turning angle and the pitch-chord

ratio and increasing the relative boundary-layer thickness. The

characteristics of this equation should be remembered whenever

one considers the flow through blade rows which receive a thin

boundary layer. The nature of the secondary boundary-layer

thickening might partially explain poor behavior of inlet guide

vanes in axial compressors. It would be interesting to examine

wal.l b1 nllndar-v-1 nvr nnfi mrn.ti nn tii rrrihnrr frronm n'h hlade

rows. An experimental study of boundary-layer behavior in a

diffusing passage with varying inlet boundary-layer thickness is

planned.

Finally, as an example of the magnitude of secondary bound-

iV_ I -L.t_ -V I 4±.LIk t LLL- - - - I _wL J C _ AOLLL V u -1 V 
ary-layLr llc. e arlrg1 cobslu-r a yplcal compressor Duaae row

with 6= 250, s/c = 1 and a flow approaching with n = 7 and

5/c = 0.25. The percentage thickening of the boundary layer on

the suction side of the passage amounts to 50{ according to eqn.20.

Vorticity Distribution at Discharge

In order to arrive at a vorticity distribution at cascade

discharge, eqn. 15 is converted to relate the angle to flow and

cascade geometry.

.,i
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2This expression may be place d in e 2, giving:

This expression may be placed in eqn 2 giving:

?// Q 1/ //X//oJ-- "'(?( 3' d''?s.de d-
e22

Or

Cg u // , C -1 2 o
de d6:Co/1F 0)d X R

Expanding the cosine in series:

Lo/ =Zde /- /C (
Integrating:

-, _ da / // 0)

'E8:F2 ~,

All series terms beyond the first will be neglected for small

turning angle passages. Since 0=O, 9= ,=- - , we get:

Further, it may be shown from Ref. 35 that

Vx2 = o

(26)

(27)

for a steady, incompressible, inviscid flow. For the model in

use:

/xv/= /M2/= /V Z ua (28)

a vector perpendicular to the original Bernoulli surface by de-

finition. The variable r1 is the resultant vorticity vector at

inlet which is parallel to the wall and normal to the streamline.

The discharge vorticity then becomes:

2S=-Z, E (29)

which is a special case of the result derived by Squire and

Winter (5). To facilitate appreciation of the relation, eqn.26,

it is put in the terms employed previously:

(3o)
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(21)

(22)

(23)

(24)

(25)

Idu -Z"'-' / C/a42-4: - -?,e C'
4

( Iall12, - 2
j· ~6
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Or assuming an exponential profile:

zuC

Thus, for a given profile shape n(> 1) and a given position in

the boundary layer z/, 2 increases directly as 6 and inversely

as the boundary layer thickness. It follows, that one should

expect the strength of a vortex formed in a large turning-angle

passage to increase as the inlet boundary layer becomes thinner

or as the turning angle increases. Compressor inlet guide vanes

probably shed discrete passage vortices, as do turbine nozzles,

since the inlet boundary layer usually is very thin.

t

I
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IV. Boundary-Layer Stream-Line Trajectories

As mentioned previously, all secondary-flow solutions to date

have neglected streamwise pressure gradients, No one has claimed

that the error so introduced is negligible, only that inclusion of

this pressure gradient makes the conventional equations difficult

to solve. The analysis that follows takes an approximate model

which, with some simplification of the boundary-layer equations,

allows a solution including all pressure stresses. Viscous and

turbulent stresses are neglected. If this neglect is not serious

throughout most of the boundary layer, the results should demon-

strate the influence of pressure changes along the stream.

The Model

Assumptions:

1) The flow is incompressible, inviscid, non-turbulent,

and steady.

2) The streamlines of the boundary layer and main flow

proceed on flat sheets parallel to the lower plane

wall of the bend. This assumption implies that the

pressure gradient normal to the wall is zero (i.e.,

the main flow determines all pressures).

3) The main flow travels between concentric walls and

all its streamlines rotate about the center of

curvature of the passage. At each angular position

the radial distribution of velocity in the bulk of

the fluid is that of a free vortex. Each level of

the boundary layer is assumed to enter the bend with

a free-vortex, radial-velocity distribution.
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4) The curved walls of the passage are assumed to exert

no constraint on the radial motion of the boundary-

layer fluid. The outer and inner walls can be con-

sidered as a line source and a line sink, respectively,

supplying or withdrawing fluid at a rate sufficient

to eliminate wall interference. In an actual passage,

if the secondary flow does not become too violent,

fluid from the outer wall boundary layer descends

this wall into the outer edge of the plane wall

boundary layer, while fluid displaced to the inner

curved wall apparently escapes without difficulty

into the boundary layer of that wall. (See Eichen-

berger's data, Figure 6 , Section I.) These obser-

vations suggest that this assumption should be fairly

accurate or a real L fula in regions removea rrom ne

curved walls of a passage with less than 40 ° of turn-

ing.

5) The pressure gradient is imposed on the bulk of the

flow by divergence or convergence of the upper wall

or by mass removal or addition through that wallo

i This upper wall is assumed to be far removed from

the lower plane wall under consideration. The imposed

tangential pressure gradient g is assumed to be only

a 1·rl+4on, P Ae 4;lle
I C6L LUJL o U.LVJA UJ -L OA.LrLUZ .
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I . . (

Figure 32

The Main Flow

From assumption 3;:

(32)

Assumption 1 assures that the stagnation pressure of the main

flow remains constant,

o pO= , +° Z -- ¢onstan~ (33)
The tangential equation of motion of the main flow in this case

can be written as:

V// c/ dU / s 43U+

where U, V, W are the tangential, radial and normal (to wall) velo-

city components, respectively. Since the streamlines proceed on

circular arcs of radius r parallel to the plane wall, V = W = O.

Then we have,
A / i )/Jz ,' 

. i- (35)

The same equation would result from differentiation of eqn.33.

I
i
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For the radial direction,

-T ~ ~ ,,' _ O V
,i V'L tg4= (56)

But

/_ dlJ _ dz_
3~ -C) dr C z

so

- -

Taking the partial derivative of eqn. 37 with respect to and

changing the order of integration on the right gives:
\7, r I r \ esv } } 

kP~ d62 - P (&r9 dX~( ) (38)

Inserting eqn. 35 into eqn. 38:

Bt we hv ss- = (r) (s9)
But. we have assumed ~o = f(r), so:

d (H )z+(/ )(40)

Integrating and letting C 1 be the constant of integration,

(41)

To determine the velocity distribution, we can write the partial

differential, eqn. 35, as:

Z d V _ z 0 C,(42)

Integrating eqn. 42 with respect to :

j z= +ar ) (43)
But from eqn. 32, (Ur)2 = f(g), so

0 J{()= ~ (44)

Inserting eqn. 44 into eqn. 41,

~(U2 - ~c--__ -- (45)

At = O, U = U 1 and Ulr = K1, making C2 = (Ulr)2 = K1
2 . Finally,

the main stream velocity distribution results in the form:

t/-"l-~~~~~PI~~ 2)d(46)
k- pr~~~~~~~-7-4
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where C1 is determined by a specified value of at a given radius.

It is useful to note that for this model, ifz p is the stream pres-

sure change along any streamline of the main flow from the initial

conditions to a line at = and, if we define the pressure coef-

ficient Cp as

Cp ID2 =(47)

where U1 is the initial velocity on a given streamline, then Cp is

only a function of . This is true since $ = constant at a given

radius and

4 p O C (48)

From eqn. 47, since (Ulr)2 = K 1,

_ __ _) _k, _ (49)

The Boundary Layer

Assumptions 1 and 2 assure, for the boundary layer, that the

stagnation pressure will be constant along boundary-layer stream-

lines although the constant will vary with z or,

;oD _ I (= /y p > =/ -(50)

where po' is the stagnation pressure, p the stream pressure, and

u, v and w the tangential, radial and normal velocity components,

all at a given point in the boundary layer. p ' is the initial
01

value of the stagnation pressure for the streamline passing through

that point.

At this stage, it is worthwhile to note that this model, by

ignoring viscous and turbulent stresses, will suffer a collapse

of the analysis for fluid close to the wall in a diffusing passage.

This difficulty is discussed in Section I; this difficulty also

LLi
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casts doubt on any boundary-layer analysis which ignores the shear

stresses. However, we are seeking the effect of a pressure gra-

dient on streamline trajectories so, later on, we shall neglect

the fluid close to the wall and only apply the analysis to fluid

which initially possesses enough velocity to negotiate, unaided,

IJ] Sra4 n rro:lwrL ·rr as T l&c4inn f t= h~L Qt.Jre. Uri res

rise to a three-dimensional equation, perhaps insoluble, but in

any event undoubtedly requiring numerical solution, thus, losing

its value here. A momentum-control surface analysis is more ap-

propriate for this task; such an attack is presented in the next

Section.

To proceed, the dynamic, continuity and condition of irro-

tationality equations are written with the normal velocity w and

the normal pressure gradient 6- equal to zero, as follows:

UOr -d a / d (1
Te ~ZT - de(51)

\i;-' -i / d'J oE6t=-(52)

[ ~- X -9V-t r=< (continuity) (53)

-'- 0 (irrotationality) (54)

The absence of all shear stresses implies the condition of two-

dimensional irrotationality in all planes of flow parallel to the

wall.

Now, we further assume that

a·C gauofsoroooeevl(55)

a good assumption if the secondary flow does not become too violent.

iI
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Then from eqn. 54

EOu~~~~~ .d~ Ux,_~~ c(56)

Integrating with respect to r

| u*= k 7(Ge) (57)

Inserting eqn. 56 into eqn. 51, we get

caz_ _ z &?p f5

Since is the same in all parts of the boundary layer as in the
Since stream is th same in all partsion of the boundary layer as in the

main stream by assumption 2, insertion of eqn. 41 into eqn. 58 and

integration with respect to gives

(59)

But, by eqn. 57, (ur)2 = f(G), so

hZ/(,= (7 (60)

and eqn. 59 becomes:

LC22= - ;Rr 'rue (61)

But at a = O, u = U1 and Ulr = kl so,

(a f= k,j- 2 , e C(62)
or,

- z~~ / sort ~~~~~~(63)

which is a form analogous to the distribution of the main stream

velocity, eqn. 46.

Consideration of eqns. 58 and 41 shows v equal to a con-

stant at a given radius. It follows that

a1- 2 d 4TG (.64)

R'l. p aL = 'n T - , a .n enn. 4 h-iornmP.q
de -- ( 2 -- - -

(MAL -,) = - 6 co (65)
Now, let us find the value of ul for which '2 = 0 at the end of a

4
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given dimensionless pressure rise Cp. Setting 2 = 0, it can be

seen that this analysis is valid only if

j $ = (66)

This limit, in combination with the inlet velocity profile, deter-

mines the depth into the boundary layer which can be treated by

this model. This depth is a constant with radius at = 0 since

Cp is independent of radius and

(67)

will be constant at a given z level.

To proceed, eqn. 5 is inserted into eqn. 52 and the result

combined with eqn. 37 by assumption 2, giving:

,dlr uZ uoit e s dS t (I (68)

rdQ
Now, since the flow is steady and u = dt

tr g= d ' '8-0 - (69)

then,

dg_ = /? =/in u r ~ d r a (70)
de - de C - dw (g ee tztdJ

Inserting eqn. 70 into eqn. 68, with r = f(@) only, gives

od- r Cd1r Z /) = 0 (= 71)
This equation is non-linear and must be linearized by assuming

| 2 = to be soluble. Since d = r , this neglect probably

will not introduce significant errors if the secondary flow is not

violent (i.e., if v u or if the boundary layer streamlines do

not diverge by large angles from the direction of the main stream).

S~n,-raS; n 71 +hIn hernme-

c/-z = /"()= o (72)

which is soluble provided u does not diminish to zero along the

path of integration.
iI
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Inserting eqns. 46 and 6 for U and u, we get.

lietting

81~- 441 z i =f4Z) D--/ vZ4= S(74)

equation 73 finally takes the form,

On any plane of flow B and D are constants so we can integrate
On any plane of flow B and D are constants, so we can integrate

eqn. 74 for the trace of a streamline. The equation, in its general

form,cannot be integrated directly, but if D = 0 (i.e., . = 0), the

solution for the constant pressure case is readily obtained.

The Constant Pressure Case

= ; _- WE~ (76)

This equation has two solutions depending on the sign of B (i.e.,

whether ( U) 1 is greater than or less than 1. The case for U less
u

than 1 will be described later and alies when the bintldarv laver

fills the passage).

For B 0:

= Z/, ; + c co,5 , -'s (77)

|0-le- ccJ 2G-C/ 2 S'G2 ) (78)

The initial conditions for this model are at = O r = r,

a = a,. Inserting these in eqns. 77 and 78 determines

l=, -2 o), B 7Zan °C¢ (79)

si = cos52 7 ( -2 ,7Za4 ae. I x', 9 (80)

gt<7(= -i, ye 5vm IS-ACr tCO5B ) (81)
Ii
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For B O: /

-/6o
de

With the same initial conditions as previously,

Then eqns. 82 andv 8 become,

Then eqns. 82 and 83 become,

,~j; o -)Xvt8/s/s/6J

Or,

(82)

(83)

(84)

(85)

(86)

d/2 /a/f . // 'ia

goof= -- J 43/Szf2X/B/iS + far~v cos/7 /2/) '(87)

-I-= " /z/ + / 8/g $a,,CO /~1 (89)

At present, the only data available to test the validity of

this constant pressure analysis is that of Eichenberger (Fig. 7,

Section 1); however, more appropriate measurements are in progress.

Eichenberger's bend flow does not fit this model too well because,

in all his experiments, the boundary layer filled the entire chan-

nel. The boundary layer, therefore, was by no means thin compared

to the dimensions of the apparatus. It is not valid in this case

6p
to assume that ; = 0; nevertheless, it is interesting to note that

no variation in stream pressure could be measured in the z-direction

across the flow (4). A further difficulty arises from assuming

that the flow outside the boundary layer establishes the pressures

,.I

I

I

i
i

-1
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throughout the fluid. In Eichenberger's case, there is no "outside"

to the boundary layer. To circumvent this difficulty in a test of

this analysis, it will be assumed that the pressures of the entire

flow are a function of the bulk mean velocity U.

The 'flow investigated by Eichenberger to test his theory (4)

will be employed here. A triangular velocity profile was fed into

the bend. Both comparisons were effected at 30° bend angle along a

z-line at the mean radius of the bend.

From the measured inlet stagnation pressure map, shown in

Figure 33, was calculated and tabulated as a function of z * At

a number of arbitrary z values, eqns. 81 and 89 (depending on the

sign of B = (-)l - 1) were utilized to calculate a at 30° bend angle.
Ii~n of B - U

Then, determining the magnitude o the resultant veIocity vector

from Eichenberger's measurements of stagnation pressure over the

30 ° cross section, Figure 34, the radial secondary component v of

the velocity vector was calculated at each of the chosen z-positions.

The results are plotted in Figure 35 which shows, in addition to the

measured data, the results of EichenbergerTs theoretical calculations.

Figure 35 demonstrates that this analysis predicts orders of

magnitudes and trends of the secondary flow quite well. The three-

dimensional nature of the flow, resulting primarily from the very

*For this case, Eichenberger does not state in his report (4) the
value of the reference pressure against which he measured stagna-
tion pressures or the value of the stream pressure at each cross
section. However, these values were stated for a different inlet
velocity profile. It was assumed, here, that the measurements were
made against the same reference pressure and that the stream pressure
variation along the bend was identical in each case. This assumption
can lead to error in converting Figures 33 and 34 to the velocity
profiles necessary for this analysis. Such error may be responsible,
in part, for the lack of close agreement between the results of eqn.80
and eqn. 88 and the experimental data.

I
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thick boundary layer, probably is responsible for most of the dis-

crepancy in regions removed from the wall. One might account for

the discrepancies, particularly in the regions close to the wall,

by the neglect of shear stresses in the analysis. However, Eichen-

berger's inviscid theory fits the data better than the present

analysis indicating the falsity of this explanation.

Another potential source of discrepancy is due to the fact

that the calculations were based on flow conditions at 0° bend angle.

The secondary flow was assumed to commence at this point. But, in-

spection of Figure 7a, Section I, reveals an established secondary

flow at 00 bend angle. This observation is not surprising since any

subsonic flow will commence its adjustment from a linear pattern to

a curvilinear pattern ahead of the turning passage. For this reason

the calculations should be based on flow conditions several channel

widths upstream of the 00 section. Neither this data nor flow

angles at 00° were available, preventing the use of the proper inlet

conditions.

Finally, it is interesting to note that the angular deviation

ca predicted by eqns. 81 and 89 is not a function of radius. The

measured data in Eichenberger's bend (Figures 7a, b, c Section I)

agrees with this resuilt even t Q0 timrnin nClr. n roinn nf

the plane wall removed from the curved walls.

The General Case

If D is not zero, eqn. 75 must be solved by series approxima-

tion. The method of Frobenius (39) is employed here. The general

form of a second-order differential equation can be taken as:

s,- / =o (90): ~ c~)i7E

ii

-"-'· �-- -"·-· /V VUINLLIYI �IU�C�LII -LY ·LU�--LV�I·W W·l
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Then R, P and Q are expressed in series,

P(o) = Poe P. E * p~E~,, ·
!in) = Qo f Q, + 0~. v , , o

Comparing eqn. 89 with eqn. 74 shows:

R = / S-£,= o a = o Aeo) ~= ( DeD 4, I.R.= (o =o
(~ auo

CQn= ED
The series expansion for Q(G) only converges if DOg1, but

this is the same restriction as that on the original equation 75.

Next, we assume that r can be represented as

/1= @AB 52 t (91)

Substituting eqn. 91 into eqn. 90 yields two possible values f or

s (0,1) both of which lead to unique solutions.

For s = 1, a recurrence formula is obtained determining An = Nn

as functions of a constant N. Since Q1 = 0, N1 is zero. We then

get as one particular solution:

For s O, another recurrence formula is obtained relating(92)

For s = 0, another recurrence formula is obtained relating

An = Mn as functions of a constant M 0. M1 is arbitrary and taken

equal to zero. We then get another particular solution.
coI

-_a AI, 3 . O -)e -_
These two particular solutions are added together to give the general

solution as:

.d
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-7' 'Wn ~~t i- Mfnt~ ;I'L (94)

The initial conditions are: at = 0, r = rl and (dr)1 = rl tan cl.

Then Mo = rl and No = rl tanol. So finally we discover that,

/= Of E - A)e

In case D = 0, eqn. 95 reduces to 81 or 89 depending on the

sign of B.

If terms through 4 are retained when tan al = 0 (Nn = 0,

therefore all Nn = ) and B O. eqn. 95 becomes:

r_ o Bj 6 3X ( 96(96 )

fatov ="~p~ - t-gzE//7 e,,aR f Aids .3f Z(97)

The first term in the bracket is that of the constant ressure

case . It can be seen that a positive pressure gradient (D >0)

increases the angular deviation a between boundary layer streamlines

and those of the main stream. Conversely, if the pressure gradient

is negative, the angular deviation is reduced. The magnitude of the

change in tan a depends on the relative magnitude of B1/2sin B1/20

and B DG2 -(3 + 2 D). For a given = , and a given pressure

gradient, the effect of the streamwise pressure stresses increases

on approach to the wall. The following example demonstrates this

behavior in a diffusing cascade. The validity of the theory is

tested also by comparison against experimental data.

L'I
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The underturning angle (-a) is plotted in Figure 36 as measured

along a z-line at mid-passage discharge of the cascade investigated

by Toline and Watson (11), Figure 18A, Section I. The blade row

had 40 ° inlet- and 14° outlet-angle; the pitch-chord ratio was 1;

the chord 2.8" and the aspect ratio equal to 5.7. The inlet bound--

ary-layer thickness was about /c = 0.36 with the measured velocity

profile shown in Figure 22, Section I. The pressure coefficient,

calculated from the flow geometry, is C = 0.3. The pressure rise
p

was assumed to be linear.

At selected z-positions,B was calculated from the inlet velo-

city profile; D was computed likewise from C and the velocity pro-

file. These values were entered into 97 and a 2 calculated at dis-

charge. The results are plotted in Figure 36. The calculations

break down when D >l. Also shown are the angles computed for an

imaginary cascade with the same turning angle but no pressure rise.

This curve, in comparison with that for Cp = 0.3, illustrates the

influence of the streamwise pressure stresses.

Comparison of the curves of Figure 36 shows that the analysis

did not predict orders of magnitude well for this case. The trends

of the calculated curve are correct except that they do not show

underturning as measured in the outer regions of the boundary layer.

The presence of underturned fluid can be anticipated from eqn. 1,

Section I and indicates that the pressure varies normal to the wall.

The discrepancies also are due in part to the thickness of the

boundary layer which is by no means small at inlet compared to the

passage width and thickens as it moves against the pressure rise.
y
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The measured angles, plotted in Figure 36, were taken 1/2-

chord behind the passage discharge. They may not be representative

of conditions in the discharge plane, however, this is the only

data available. In addition, it only can be concluded that absence

of shear stresses must lead to considerable error for reasons

previously discussed. Finally, the two-dimensional model of the

main flow is only a rough approximation of the actual pressure

field.

Conclusion

None of the data available is strictly suitable to test this

theory because the boundary layers in each case were relatively

thick. In contrast, turbomachine boundary layers are usually

relatively thin. More appropriate measurements are now in pro-

gress in the Gas Turbine Laboratory. The agreement in the cases

cited is sufficient, nevertheless, to tentatively accept this

theory as an indication of the influence of streamwise pressure

stresses. All the stresses of a non-turbulent stream are included

in analysis of the next Section but, unfortunately, analytical

results can not be obtained.
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V. Secondary Flow in a Laminar Boundary Layer

As yet, a model capable of yielding analytical results and in-

cluding both pressure and shear stresses has not been devised. The

necessities of evaluating the relative importance of wall shear

stresses upon a secondary flow pattern and, more important, of

understanding the manner in which secondary flow affects the

tendency of the boundary layer to separate, have encouraged the

following momentum analysis of a laminar boundary layer on the plane

wall of a turning passage. It is anticipated that as this research

continues, the analysis can be extended to include turbulent flow,

at least in an approximate manner. The manual computation of the

present simplified case is laborious, but one such effort is

justifiable to study the analysis and evaluate the potential of a

similar machine computation of more exact analogs of actual flows.

An extended machine computation with correlation of the results

might eventually reveal the physical parameters governing actual

flow patterns.

In this Section, a derivation of the momentum equations for a

fnnr n h 1 - --- t-4 -o-1-C MU-- T -04 - e 1+mfA
2ZLUILL .l LUW LO U1U LWUCt .Ib I.. .Llrl. I ll* a st=r.e-Lt=b MPPruxu±LU1w.LVi eJ.t=l

Polhausen is made for the velocity profiles. Finally, the equations

are simplified by the adoption of a model similar to that of

Section IV. It is on this model, fitted to a cascade we have ex-

perimentally investigated, that the stepwise calculations are

effected.

The Momentum Analysis of Plane Laminar Flow

At the onset several assumptions are made to simplify this
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treatment.

1) The boundary layer flow is assumed to proceed on a

plane wall and to be thin relative to the dimensions

of the passage.

2) Interference effects of the curved walls of the pas-

sage on the boundary layer are assumed negligible

(see Section IV).

3) The pressure gradient normal to the plane wall 

is assumed zero. In other words, the behavior of

the main flow outside the thin boundary layer

governs all pressures.

4) The main flow is assumed to be two-dimensional

(i.e., to proceed on plane sheets parallel to the

plane wall). However, a small velocity component

in the main flow normal to the wall is allowable to

accommodate boundary layer growth or diminution.

Radial velocity components, V, in the main flow are

assumed to be absent or negligible.

5) The only shear force included is that on the plane

wall itself. The shear stress on the top of the con-

trol surface is made zero; the shear stresses on the

two curved and two plane surfaces normal to the wall

are assumed to nullify each other.

6) The fluid is in incompressible, non-turbulent, steady

flow. The main flow is assumed potential, but not so

the boundary layer.
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The implications of these six assumptions demonstrate this

so-called "general" analysis not to be completely general after all.

An arbitrary control surface is described in cylindrical coor-

dinates (r, , z) which is formed by two radial plane surfaces and

two concentric cylindrical surfaces normal to the plane wall. The

cover of the control surface is the warped interface between the

boundary layer and the main flow lying at a variable distance 

from the plane wall.

THE CONTROL SURFACE

(The tangential and radial shear stresses are taken in the

conventional manner, positive in the negative and r di-

rection, respectively).

Figure 37

Fluid may enter all the surfaces of the control volume except

the plane bottom wall. The velocity of the main flow is U in the

tangential direction; a function of r and but not of z. The

velocity components of the boundary layer are u, v and w, functions

EL-
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of r, and z. The boundary layer thickness and pressure p are

functions of r and . The shear stress on the plane wall is broken

into two components Zipz and rz in the -G and -r directions,
0 O

respectively.

The continuity and two momentum equations, one in the - and

the other in the r-direction, are derived by considering mass and

momentum flux, pressure and shear stresses acting on each surface.

The three resulting equations could equally well be derived by in-

tegrating the Navier-Stokes and continuity equations simplified, in

this case, by the usual boundary-layer assumptions (41). The momen-

tum analysis is rather laborious; fortunately, there is no reason

to repeat it here since anyone who can understand this discussion

could derive the equations given as much time as it took the

author. Also, the results may be checked readily by integration

of the familiar boundary-layer equations.

The tangential momentum equation,after combination with the

continuity equation to eliminate the normal velocity component at

the top of the control volume, appears as:

2d~C~ 2 ]

6CZ zoos a d6 _ J~c'd5 J = ° (98)

where:

= boundary layer thickness

3* = boundary layer momentum thickness
D/

H = */b* = boundary layer shape factor

b* = boundary layer displacement thickness
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r = z/6

U' = U/U

v ' = v/U

The radial momentum equation appears as:

/v dl
*, d1/2 t ( o/2 r dd ) fn

,U2a U~P 6z ~d ' t o

/t o 2r A, W / -i 7 P-2 /L-

Ic /U r ~v~CY"I/J

-0 , ''d + jdo (99)

The Velocity Profile Assumption

M- -- 1-4-,skt fhga --- 4r-l --rr9P-- --rrAiskhl: in nnn nSf na
LU =Vlu e t UL±LnLe coJn l sra.rc V.la6LVU .I.L r ,L. yro CIU ;y

which are functions of the shape of the velocity profile, f-our-term

series approximations are adopted to represent the tangential and

radial velocity profiles. The constants of the series are evaluated

by the boundary conditions among which lie the two wall shear

st.resses thli rlating wa11 shear t nrnfile sha.ni- 
TPhis rlatinn

is supportable for laminar flow, but is untenable for turbulent

flows. This analysis also implies that behavior of the fluid at

a point in the flow is only a function of conditions at that point

and not of the previous history of the fluid. That this implica-

tion can be disasterous is obvious if one does not know whether

transition has occurred or not. The entire behavior of the fluid

is strongly affected if, in its past history, the flow became

turbulent.

A

YV YY V) V I·I 1 *1-·- C 'UI I IU- -rVLII L .· 1II PI- LII



Proceeding with the laminar case, the two series for the

velocity profiles are:

e/7iZ 97h3 J 4 (101)

No constant terms appear in either since both u' and v' must be

zero at y = 0.

Eight boundary conditions are required. Six of them are:

--= r~ _-2 7r'_ ,- 60 -- - --
- - - - ,/- - - -. J - .1 V - % -- /

The remaining two boundary conditions come from the three,

point boundary-layer equations which can be written after eliminat.-

ing terms of small order of magnitude:

a t2 + r v ds zrd + 0/ar = dsZZ (lo)

F / i_ ( de 7L =r 7 sdzz (104)

-o (105)

At z = 0, u = v = = 0, so

C)I d 2=62 d (106)
da / r _ /U ___
| dr-~ = 2 ot (107)

Now, combining these eight boundary conditions with this series

profiles gives:

w-her Fe)+2 G(f) (108)

2P: _ Q"42 ((109)

where

i,5K?)_ ?AZ zZetaC ~~~110)
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f)= z 5d6/ (112)

(112)

These profile shape approximations yield single parameter

profiles for both u' and v'. For u', the magnitude of 2\ governs

size and shape of the velocity profile by varying the proportion

of the G function added to the F. However, for v', the parameter

changes only the magnitude of the profile. The maximum value

of v' always occurs at = 0.3, an unfortunate restriction that

will be discussed further at the end of this Section.

The functions F and G are tabulated in Ref. (42). Figure

38 from this reference illustrates F and G as well as u' profiles

for different values of \ .

Inspection of eqns. 112 and 113 reveals that the radial pro-

file parameter 0 can be related through the main stream behavior

to the tangential profile parameter . We can express, there-

fore, the momentum equations as functions of /1 and main stream

behavior only. This simplification saves a sizable amount of com-

putation effort.

Combining eqns. 112 and 113,

, 4 /"U (t/ -I14)

Next, all the variables in eqns. 98 and 99 must be evaluated in

terms of / and . A tabulation follows:

| ~e- ( Ct(j4 G t ( 44=o) (115)I

I
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(117)

(118)
S - 1/Ps&' FZ72

(119)

!~~~~~~I-------I

,,/~2 1 5 11

' 7 /Oo/ (122)

^ /n = z (123)

- ?. (124)

'dr/J, e = __ (125)

/ $/ ( 2 1 bi )c-=r/o + A/ (126)

d '/r /9W.Z*, d? _· I e (127)

+l d a j/ = 2/ 17 ) a d/2 (128)

Inspection of eqn. 115 shows that z when A = -12. Normally
Ozo

one would specify\ = -12 as "separation" but, in a three-dimen-

sional flow, this specification may be trivial. (See the dis-

cussion of Section I on this point). If/~ >+ 12, u' will be

greater than 1.0 somewhere in the boundary layer in violation of

the second law of thermodynamics. For this case, then, A/ must not

i
Ii

9
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exceed +12, but no reasonable restriction can be placed as a lower

limit except that u' must not be less than -1 for the same reason.

To avoid values of lv'I greater than 1, the absolute magnitude

_ ~~ . . n rO 1. mn tt : ~~_r _ ozn r Ao
of Z5 must not exceed )O.4q The term separa.on cn aruly ut=-

scribe the radial flow when rrzo = 0 (i.e., t = O) since this is

the normal condition in a linear flow.

Proceeding, eqns. 115 through 128 are substituted into eqns.

98 and 99. Then 114 is employed to eliminate . After a great

deal of algebraic reduction, the following forms of the two mo-

mentum equations appear.

Tangential:

1.2a- - S% 9 #2 2 A 3 9
/ig6 _ 7Z/ d 2z /

?_6 z)sK8+Zs_3 f(33_~)f&fi_)=O (129)

Radial:

A 4g3A )· s SZ /3 -_z )

22! -7_ zZ , I 3 7
, 5 ( , r 4 ~y -z 1 , -W T 5 ,, t v r _ !5-r -

jI (. ,~- 4zB) 2- ¢ '5 - ·5½ x)-o °(130)

where

U U2 (132)

/ CO 2 

CE -d4,e (133)

D 9- 2- (134)

i

i
i
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and

Equations 129 and 10 can be solved simultaneously.

Equations 129 and 130 can be solved simultaneously.

50o c)O z2CRB7i3A459 

76~ F.,/ gE C_2D-+F4~~,·~,F,,2 ZC7^
- 9r -, 1B 

where

3= + (73Oo n39 Z/

Fs- -+f ( f )9- W 5/9

= 37 all-5o 5izpe8uif i2 ha

Equation 157 allows a simpler oolution f a, if / has

calculated, than solving explicitly for . Equation 137 is put

in the skeleton form,

d i cu -'S / 7 k 3 5 -7 z IC

where
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(135)

(136)

2

(137)

(138)

(139

(140)

been

/2 6~47C'z 2D NZ-

A

(142)

o= / 2 (145)

i
f

4

i

I

i
I

8ilZ z~~6 -,i- r /9 ' ;
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L2 =- A(+A) (144)

25 A ef d5 · Z A)(145)

In computing the conversion of a rectilinear flow to a curvi-

linear flow, rectangular coordinates facilitate the calculation.

Equations (137) and (142) may be transformed to:

4069 7 9 d = /_3) T

|. ?Bfs ,f(., ,y ? f A '(146)

-(; Si, -ZD/J--5 (147)

where

A, / dOZ D'- i A/Vz-/~ ~, = 'TTA ,~8' ve ed' 

._ / 2dU , / IU (148)

Considerable effort was required to bring the original equa-

tions 'down to eqnso 137 and 142. Many algebraic errors were found

in the one-hundred and three pages of the original hand written

derivation, but the author believes these equations are corr&ct

since they reduce to the special case that follows. The special

case was derived independently from eqns. 98 and 990 In the re-

duction of the general case to the special case, all the functions

of I and the functions A through E of the general solution remain

I

i
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finite eliminating the possibility of errors hidden in terms which

might have been multiplied by zero and thus disappear in the reductionO

Conclusion of General Case

The "t general equations 137 and 142 could be applied to any

flow where the original assumptions are valid° The analysis could

be made still more universal if restrictions on the main flow were

relaxed. In the pending turbulent analysis, only the restriction

that the main flow must be quasi- two-dimensional will be imposed.

Practical consideration of the numerical computation utilizing

these equations will be discussed below.

The Special Case

To study qualitatively the characteristics of this momentum

analysis, further restrictions were placed upon the main flow. The

model is as follows:

1) The main flow enters a passage with concentric curved

walls in a free-vortex radial velocity distributiono

The main flow streamlines are concentric, at all times

with the center of curvature of the passage.

2) The streamwise pressure gradient 6 is constant at

any radius and is imposed by convergence or divergence

of, or mass transfer through, a wall far removed from

the plane wall under study.

Under these assumptions and those at the beginning of this

Section, the main flow will behave exactly as described in Section

IV. The distribution of the main flow velocity, eqno 46, Section

IV, is repeated.

u_ / t z 2 19 i4(9)
./14
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2 2
where K 1

= Ur and C1 is ag r

Equations 137 and 142 may now be simplified if the functions

A through E are evaluated from eqn. 149

A= -ZQ B =- Z 2
1.1 C=--D=_ Q2, = -2~z

where:

Q= / dfOuz de

We then get as a result for this case

(150)

(151)

Q5o06 9
60.

2- Z,279

/3- )
.2)

(152)

and

2 // 153.2,f ", - 3:"
Or in skeleton form:

w80- = e = /

where

, = /2(44 )

(154)

(155)

(156)

And,

6Atg=
jT (157)

where

7L

(2 -
k.46A

l7e9
25- '

// 2 2)

The function Q can be related to the pressure coefficient Cp and

passage geometry, It was shown in Section IV, for this same main

flow pattern, eqn.

C'/P
-- K,2

49, that:

2

(158)

(159)

- q 2:Q 6A J-G'
/o 3(z
/. 94 1

-
jTh 

./Ied -n Z~~,7~~.
- Qfi

24

- cp(q" -/- qz
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where C1 = ~ r2, K1 = Ulr and E is the turning angle at which

the main stream has achieved a dimensionless pressure rise Cpo Com-

bining the definition of Q, eqn. 151, with the definition of C1,

we get

9~~~~~~~~~~= CE"~ ~(161)

Substituting for U 2 in eqn. 161 the relation 149 gives:

0 Q sg,/cz (162)

Substituting eqn. 160 into eqn. 162 produces,

= ) , (.163)_ {_/_ - )

Q is a function of , the cascade turning angle and pressure rise

only.

The pertinent eqns. 154 and 157 re- functions of/,r and e

only. The profile parameter A may be evaluated by stepwise cal-

culation through the bend, thus determining the u' velocity profile

as a function of r and .

The v' profile is determined rom the- relation between A

and , eqn. 136, in combination with definitions 150 and eqn. 1635.

From these steps we get,

-= = 2A (6/cF-)9 (164)

'Finally, the bomundary layer thickness -- can be determined

from the definition of/A or . Taking , eqn. 112, and 

from eqno 149 gives as,

=-- -__ (1.65)

Substituting eqn. 161,

-4e, (166)
.,2_ ~~Q

4

/ r Ir .- r r



Then eliminating Q by eqn. 163,

{ = -2g/C - 3 @) (C~t )(167)

or

-9 (168)

Finally,

Thus, the relative' b'oundary-layer thickness, compared to the dis-

tance the main flow has traveled from the inlet cross section, is

a function of , the channel geometry and pressure rise, and the

length Reynolds number based on the arc length to inlet. The

thickness will never be imaginary because the signs of and

Cp are always opposite and Cp can never be greater--than +1.

The solution is defined by the above considerations except

that inlet conditions must be specified.

Inlet Specif ications

A free vortex flow configuration for the main stream has

been assumed in this special case. Any inlet conditions must con-

form to this pattern or eqnso 154 and 157 will not fit the flow.

Within this restriction, we are free to chose A = f(r) at

G = O, with one exception that we cannot make = 0 along the

0 = 0 line.

If = 0, the equations for and , or and are

inconsistent in the general and special case unless or a equal

zero. The rate of change of in the direction normal to the

main flow goes to infinity when A approaches zero. If there are

no errors in this derivation, the cause of such inconsistency is
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probably that power series velocity profiles cannot be assumed when

the boundary layer approaches zero thickness. Equation 112 demon-

strates that 6 will be zero if \ is zero unless ( = O.

In choosing a N distribution at inlet, one must keep in

mind that the sign of \ must always agree with the sign of 6

according to eqn. 112. This condition assures that the sign of

the curvature of the velocity profile at the wall will agree with

Cue sl6U I lte: PIbU.ZL- 6.LSLULtLeIL' M U4. leUUU uy IU.UC UUUUIUM-.y

layer equations 103 and 106. If \ is negative the velocity pro-

file will have an inflection point, if is positive it will not.

For this model, W is negative everywhere whence comes the con-

dition that ?A must be negative everywheere in the bend. The

initial conditions actually introduced, in the computations that

follow, are arbitrary. Three values of ?h were assumed at = 0,

r = ri. They are 7\= -0.5, \ = -6, \ = -12 and were selected

to cover the range of permissible inlet boundary layer conditions.

When X at 0 = 0, r = r i is greater than about -1.1,- is

negative decreasing % across the passage to r = r . When X is

less than about -1.1, is positive and / Increases across

the passage to r = ro, but does not reach zero before the outside

radius is attained even when A at = 0, r = ri is equal to -12o

It would be desirable in the study of this simplified model

to introduce a more realistic flow into the bend than the arbitrary

pattern chosen above. Any subsonic flow approaching a turning

passage will commence a redistribution of its pattern well up-

stream of the passage inlet. Such redistribution undoubtedly will
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initiate secondary, boundary layer flows. Local variations in the

main stream velocity and streamline pattern will cause alterations

in the boundary-layer thickness and velocity profile. The boundary

layer will arrive at the turning passage, therefore, with signi-

ficant alterations in character. For this reason, it is dangerous

to neglect the actions preceding the turning passage, particularly

since the behavior of the boundary fluid in the passage depends

strongly on its character at the inlet plane,

An attempt was made to devise a simple model of the approach

flow which would condition the boundary layer in a somewhat real-

istic manner. The first model assumed that the flow converted

from a uniform, parallel pattern to the free-vortex pattern at

bend entrance in a distance of one bend width (ro - ri) upstream.

Changes in velocity were assumed to be linear. It results from

this assumption, that the flow which approaches close to the inner

wall of the bend is subject to an acceleration while flow approach-

ing close to the outer wall is decelerated. At the inlet plane of

the bend,the model flow, defined previously, commences with the

assumption of decelerating flow everywhere. The welding of the

two models together thus introduces a discontinuity in tangential

velocity gradient. Equation 112 shows that there will result a

discontinuity in the profile parameter A ; the rate or change or'

i\ becomes infinite at Q = O and no solution is possible. An

attempt was made to circumvent the discontinuity by matching the

boundary layer thickness calculated for each model from eqns. 112

and 148, but meaningless values for were produced.

A better model of the approach flow, which allows matching

....



of the velocity gradients of the bend model and the approach flow

model, can be devised by assuming a power series for the velocity

distribution in the conversion region ahead of the turning passage.

The conversion from a uniform pattern is assumed again to

occur in a distance of one bend width ahead of the inlet plane.

The free-vortex flow at the inlet of the bend model is tied to the

linear flow through continuity.

8 (V (

-10 -

IL

Figure 39

whence,

(170)

A power series is assumed for U between positions 0 and lo

wherea U '* Ux' Cx' = 'd /(y) (171)

where U' U and x = ri The boundary conditions on 171 are~

At x' = 0 U' = 1 and = - 0 (172)

-94-
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At x' = (o - 1) U' = U (eqno 170) and

Fro Ie1, e 11) (173)
dX' - Uo (~ e - o

From eqn. 160, eqn. 173 becomes:

do 1·X (174)

Substituting eqn. 170 into 174 and setting r equal to (y + ri)

at = 0, we get

|,'= _ / - / ) (175)

Since U' is constant with y' at position zero, f(y) in eqno 171

must be a constanto

If these boundary conditions are combined with eqn. 171, the

velocity distribution for the main flow in the conversion section

appears as:

?.., .: pf-z ,,, ,
C/= / + (/-

~~/6 9 z /(176)

where R = (o - 1).
Equation 176 can be partially differentiated with respect to

Equation 176 can be partially differentiated with respect to

x' and y' and the necessary derivatives obtained to evaluate the

functions A' through d' of definition 148o These functions then

allow stepwise integration of eqns. 146 and 147 yielding A as a
r

function of y' at x' = ( - 1) (ie., 9 = 0) The calculations
ri

are laborious and have not been carried out as yeto

With an untested analysis there is always the possibility

that A may exceed +12 invalidating the entire analysis. Should

this be the case, another approach model would have to be devisedo

A still better approach and one worth the most serious consid-

eration in this laminar analysis would employ a potential solution



for the flow through a cascade or in a bend to determine behavior

of the main flow not only ahead of the passage, but inside as wello

The general equation 137 and 142 would be employed over the entire

field.

Whether this extensive calculation will be effected or not

depends primarily upon the success of a forthcoming attack on the

turbulent boundary layero

The Bend Model

To allow some test of this analysis, a bend model was selected

which approximately fits a cascade for which boundary-layer data

is available. Of course, the fit is not exact since the cascade

passages are formed by airfoils; the width of the passage changes

along its length, and the walls are not concentrico The most

questionable factor in the fit is that the model does not satis-

fy the Kutta condition at discharge. Therefore, the pressure

fields of the model and cascade ae essentially different. Ex-

perimental measurements of boundary-layer behavior in a variable

area bend would be better approximated by this model, but such

data is not available as yet.

In spite of these serious discrepancies, a bend model was

selected which had the same turning angle and a constant width

equal to the mean passage width of the cascade The cascade

blades had circular arc camber lines, thus the mean lines of the

cascade passage and the model passage correspond. The fit and

pertinent dimensions are shown in Figure 40

Calculations for the Bend Flow Model

I Starting from one of the arbitrary assumptions of at

- I
-



-97-

Sotsz
Dorr

o- 1.48"

Figure 40

g = O, r = ri, eqns. 154 through 159 and 163 were employed to

stepwise compute A as a function of r and G. The variation of

was computed along arcs at ro rm and ri

At angular positions of G = 0, 130 and 260, the variation of

% was determined as a function of radius. The values so obtaine,

are plotted in Figure 41 and 42. The lines of incipient backflow

are shown in Figure 4.

The local values of \ and of , from eqn. 164, were

utilized to determine the local velocity profiles from eqns. 108

d
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through 11. The local boundary-layer thickness was determined

as a function of r and 0 from eqn. 169o In addition, the local

values of the tangential momentum thickness *, the tangential dis-

placement thickness 8* and the tangential shape factor H were com-

puted respectively from eqns. 118, 117 and the definition of

H = . The values of , 6*, * and H are plotted in Figures

44, 45 and 46.

The velocity profiles are plotted as functions of in

Figure 47, as functions of r in Figure 48 and isometrically as

functions of r and in Figure 49,

Computation

A brief discussion of the computation procedure is in order.

At first glance, it would seem that poor accuracy or no solution

at all would be obtained from the boundary layer momentum equa-

tions. They contain subtractive constants as large as 73,000;

the resulting values of /A must be determined to the first de-

cimal place for reasonable accuracyo Normally, this would be an

impossible situation except for the fact that all the numbers in

the equations are exact values. No terms were rounded off in the

derivations. Therefore, the required accuracy may be achieved

by carrying six places in computation.

Aside from the fact that manipulation of the general equations

is extremely tedious--the values of the functions F through F6
and~rr~~~~~~~~ ~ 6ht

ara v vuu or" cca n ew o x -%acne CUUlMPU-

tations proceed without difficulty. At each point z and -

(or ~, and t) are determined from the local value of A . Then
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a small step in , r, x or yt is taken and a new value of ~ com-

puted by multiplying the slope of\ by the step.

These equations are of a "propagation" ' type where all values

depend on the initial conditions and the behavior of the main

stream velocity Uo Boundary conditions cannot be placed on the

boundary layer flow except at the inlet and through the indirect

effects of boundary conditions imposed on the main flow. This fact

is the underlying reason for assumption 2, at the beginning of

this Section, which allows us to ignore wall interference and

eliminates the necessity of specifying boundary conditions at the

curved walls of the passage.

II
I
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Conclusion of the Momentum Analysis

At this point it is appropriate to discuss the inherent re-

strictions placed upon this analysis by the velocity-profile assump-

tions of eqns. 100 and 101. It has been demonstrated in linear

laminar flow that the Pohausen profile approximation employed

herein does lead to significant results in the prediction of bound-

ary-layer behavior. In this analysis, the tangential velocity

profile approximation is probably still in ordero However, the

radial velocity profile approximation undoubtedly compromises the

results.

Consider boundary-layer separation In a linear decelerating

flow, the accumulation of low energy fluid close to the wall in-

creases until backflow commences and the boundary layer is said to

be "separated". On the other hand, in a curvilinear flow the low

enerag fluid close to the wall is subject to radial forces roughlv

proportional to the square of the fluid velocity. The radial force

field tends to sweep low energy fluid toward the center of rotation

of the flow pattern. Fluid with the lowest velocity will be sub-

ject to the highest radial accelerations. This action tends to re-

move low energy fluid from one region of the flow and transport it

to another. The action is analoaous to an imapinarv intprnal

boundary-layer suction or injection.

Now, it is very important to the flow, as it approaches separa-

tion, just which part of the boundary layer is removed or, in the

opposite case, just what energy level is possessed by the fluid

radially injected into the local boundary layer.
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The radial velocity profiles, determined by eqno 109, have a

fixed shape and vary only in magnitude. The peak of the profile

always occurs at a position z/5 = 0.3. The profile shape was de-

termined by boundary conditions at the wall and outer edge of the

boundary layer; the shape between these limits is rather arbitraryo

If the peak of the radial profile occurred closer to the wall,

backflow should be further delayed in some localities and encouraged

in others, since the low-energy fluid close to the wall would

undergo more vigorous radial transporto

It can be seen from these considerations that the radial velo-

city profile should be specified more strictly in any three-dimen-

sional boundary-layer analysis that attempts to predict the flow

in greater detail than merely the determination of the average

properties (i.e., displacement thickness, momentum thickness and

shape factor). To determine the radial pattern more exactly, we

must impose another condition somewhere inside the boundary layer.

A realistic choice of this condition demands a prediction of the

dynamics of the internal boundary-layer flow. But this detailed

prior knowledge is exactly that which we wish to avoid in a momentum

analysis. To predict the radial flow, one must know the solution

to the problem, while a significant solution requires some prior

knowledge of the radial flow pattern. Thus, we have a hen and egg

problem. Two attacks seem possible to evaluate the significance

of this effect.

An arbitrary specification can be introduced for the z-position

of the radial velocity peak. For a given flow, discrete solutions
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can be effected for several peak positions. The results of these

calculations should demonstrate the sensitivity of the flow to this

variab le.

Another possible attack involves a very difficult iteration pro-

cess which might lead to an exact solution within the original assump-

tions. The boundary layer would be treated first by the momentum

integral relations developed herein. Then, the resulting configura-

tion may be sliced into thin layers by cuts parallel to the wall.

Utilizing the shear stress distribution from the velocity profile

of the integral solution, the flow in each slice of the boundary

layer may be recomputed. Now the slices may be pasted back together

giving new velocity profiles throughout the boundary layer. These

profiles could then be approximated by more extensive series than

employed here and injected back into the integral momentum relations.

The process may be repeated until not only the entire boundary layer,

but also arbitrarily thin slices thereof, obey the equations of

motion.

While the process imagined above might lead to excellent results,

laminar flow is so rare in turbomachinery that such a major effort

is not warranted,

The assumption of various arbitrary radial peak positions

appears to be the most satisfactory method of studying this im-

portant restriction.

Inspection of Figures 43 through 49 reveals that the boundary

layer of the free-vortex model behaves in a manner similar to the

measured behavior of the cascade of Figure 22 in Section I. The

I
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shape factor of the boundary layer increases most rapidly near the

convex wall of the passage. The variation of shape factor with

radius is, on the other hand, much more gradual than that of the

cascade discharge. Essential differences between the pressure

field and boundary-layer thickness of model and actual passage are

important factors. The fact that the cascade flow was turbulent is

a serious inconsistency. Wall interference effects are unobtainable

due to the lack of compatibility between model and cascade. Results

from a flow better suited to this model are forthcoming. In spite

of all these anomalies, it is significant that the model does pre-

dict behavior at least qualitatively similar to an actual flow.

The line indicating the onset of back flow in Figure 4 compares

favorably with the actual carbon-black traces of Figure 24, in

Section I.

As a last comparison, the underturning angle was computed for

the model from the tangential and radial velocity profiles of

Figures 47, 48 and 49 at mid-passage discharges. These flow angles

are plotted in Figure 50 which also shows the results of the analy-

sis of Section IV.presented in Figure 36 of that Section. Figure 50

illustrates graphically the effect of viscous stresses deep in the

boundary layer. Where the inviscid analysis predicts large negative

underturning angles at the wall, the momentum analysis predicts an

underturning angle of zero*.

It should be remembered that the viscous curve of Figure 50 is

*The carbon-black diagram, Figure 24, Section I, indicates finite
underturning angles at the wall. Nevertheless, since some fluid
motion is required to distribute the carbon black and since the
velocity at the wall is zero, the carbon-black pattern must be re-
presentative of flow deep in the boundary layer but not actually on
the wall.
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subject to the same criticisms leveled against the radial velocity

profile approximation. The shape of the underturning angle curve

is no better than the profile assumption.

In conclusion, it may be stated that while this analysis is only

approximate, it does demonstrate, as intended, the importance of

viscous stresses and, by implication, of turbulent stresses in

governing the streamline pattern and condition of the flow deep in

a boundary layer suffering secondary flow effects.

7I



VI. Closure and Suggestions for Further Research

As stated at the commencement of these three analyses, an

initial exploration of the influence of pressure and shear stresses

upon the behavior of a secondary-flow pattern has been effected.

Many more restrictions and failures of the analysis result than

clear answers to any problem. It is anticipated, however, that the

experience obtained in this work will be a valuable guide in further

treatment of the general boundary-layer problem. Whether solutions

capable of predicting boundary-layer behavior in turbomachine pas-

sages ever will be effected or not is questionable. Treatment of

turbulent flow presents more pitfalls today than those encountered

herein. Also, the actual three -dimensional nature of turbomachine

flow with strong radial currents and the effect of such patterns on

the boundary layer may require treatments of such complexity that

the problem will be ignored until empirical results show obvious

avenues toward perfection.

Suggestions for Continued Investigation

As a result of this work, the following suggestions for continued

investigation are in order:

1. Data should be obtained on a simple secondary-flow

pattern within thin shear flows to test the validity of this quasi-

two-dimensional attack. Wall interference effects should be investi-

gated to determine if the neglect of such are critical to an analysis.

2. The momentum integral treatment should be extended, in

as enlightened manner as possible, to turbulent flowo If turbulent

analysis appears promising, calculations are suggested employing
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the measured or potential pressure distributions through actual

blade rows. Correlation of calculated results should demonstrate

the influence of passage geometry.

3. Employing the approximate relations obtained herein,

the entire specialized subject of secondary flow in thin boundary

layers should be related to turbomachine behavior and the other

significant disturbing effects.

4. If analysis is possible and the influences of the

flows treated herein are significant, improved blade-row config-

urations should be tested in cascade and in rotating machines.

Only a significant improvement in machine performance can justify

any concern with these matters 
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