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Abstract

I have found a new method for investigating energy level statistics that allows sta-
tistically significant results to be obtained for much smaller numbers of energy levels
than is normally needed. This was made possible by my discovery that the Brody
distribution is the Weibul distribution for which the Anderson-Darling statistic is
applicable. This new method allowed me to investigate the energy level statistics
in the stadium billiard in the region between G.O.E. and Poisson statistics where I
found statistically significant deviations from the Brody distribution for very small
quantum number n. Lastly, I have tentatively found a simple relation between the
Lyapunov exponent and the Brody distribution parameter.
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Chapter 1

Background

1.1 Introduction and Goals

Quantum chaos is the study of chaos in quantum mechanics that is like that of classical

systems[16]. The Riemann zeta function is the best example I know: it is seemingly

unpredictable and analytically smooth. The stadium billiard is two half circles of

radius r joined by two parallel straight lines of length 2a; it is another quantum

chaotic system, please see fig. 1-1. In it, the chaos is seen in the energy levels.

For example, the nodal patterns of many of the wave functions are chaotic[20]. The

stadium billiard is also interesting because the analogous classical system is chaotic

for all non-zero aspect ratio(-y = ). In the classical case, the billiard is chaotic,

because the trajectory of a ball bouncing inside the stadium is unpredictable.

The most simple question of the relationship between the regular y = 0 and the

Figure 1-1: The stadium billiard
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chaotic y 0 is how small does -y need to be to to feel the presence of the regular

region? This is the main goal of my thesis.

The succeeding sections of this chapter will be devoted to a few concepts. It will, I

believe, enable the reader unfamiliar with the complexities of what I am undertaking

to be conversant with some things the typical graduate student in physics may not

have encountered; and thus, be able to judge the second chapter, my contribution.

1.2 Energy Levels

My thesis is primarily about the statistics of energy levels, so, I thought, it might be

fitting to introduce this subject first. My treatment in this section is mainly based

on an excellent introduction to the topic of quantum chaos[16]. First, we have some

list of energies for a system, written in the form of a staircase N(E) = E, O(E - E,)

where O is the step function and the spectral density d(E) = E, 6(E - En). For an

ergodic system, the cumulative energy levels of a system is approximately equal to

the area times the total phase space below that energy divided by the phase space

unit cell d . An ergodic system is one whose trajectories in phase space are dense.

For the stadium billiard, the phase space is rp2 = 27rmEmax,but, as we are solving

the Schrodinger equation, 2 7rmEmax = rh 2k2a. Taking what we have just learned

about ergodic systems, of which the stadium certainly is one, N = Aka, setting the

area to be a constant. The constant 4 + r has been chosen to compare with a previous

work[17].

Weyl's formula gives the next better approximation to the next order in k:N(k) =

Ak 2 + P where P is the perimeter of the boundary. Further information is entirely

dependent on the topology of the situation and is not at all trivial to calculate. Papers

published in the last two years have solved this problem theoretically, but have only

been tested against one of the two possible cases[1][27].

From a knowledge of the step function, one then calculates the distance to the

nearest neighbor. If one looks at the ensemble of nearest neighbor distances, one

can calculate a probability distribution P(x)dx of finding two levels a distance dx
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apart. A simple example of this would occur for the harmonic oscillator, where the

probability distribution would just be a delta function. Another related measure is

called the spectral distribution Q(x)dx which is the probability of finding an energy

level within a distance dx of any given level. The completely random energy level

distribution with average density 1 would have Q(x) equal to one as the probability of

finding an energy level at any distance is completely independent of any other energy

level. P and Q are related by P(x) = Q(x)exp[- f dx'Q(x')].

For a random system of average density one, a Poisson spacing is found. An inte-

grable system is one for which there are other constants of motion besides the energy.

A completely integrable system would be a system that one could find a canonical

transformation of the Hamiltonian to reduce half the coordinates to constants except

time like Hamilton-Jacobi theory from classical mechanics. Integrable systems are

found to have Poisson spacing of the energy levels which is quite surprising.

For many time-reversal invariant systems, the Gaussian Orthogonal Ensemble

applies. The G.O.E. is just the canonical ensemble for the velocity distribution for

particles in a gas

exp[-A ,jk(hjk) 2 - B Ej Hjj - c] Hn<n dHt1

with one important difference, B = 0. The main result of the theory is contained

in finding P that applies to many nuclear systems. There is no known closed form

that has a simple expression, but many use Wigner's surmise P(x) - xe 4 It is

within a few percent of the exact result; this is sufficient for most purposes as most

data are in the form of crude histograms.

An important question is how these systems fluctuate from the average spacing

of energy levels. This question be approached by considering "unfolding" of the

energy spectrum[7]. Before one considers fluctuations, it would be nice to only look

at the fluctuating part in a universal way. For N(E) being the number of energy

levels found equal to or below the energy E, N(E) = Naverage(E) + Nfluctuating(E),

one wants to compare the fluctuation patterns of different parts of the system whose

corresponding average behaviors are not the same. One maps the energies Ei -+ xi by

xi = Naverage(Ei). What this accomplishes is that the sequence xi has on the average
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a constant mean spacing of one which can be easily seen

Na,,(E) = f E pE'dE' = f dx' = x = Nav(x)

where p is the density of energy levels. An example of the unfolding of an energy

staircase would be the unfluctuating case of Ek = k 2 (kA/'). Here, one transforms

Nay(E) = VfE) = k = Xk to get a sequence of equally spaced points, a "picket

fence".

The Brody distribution interpolates between Poisson statistics and the Wigner

surmise[11]. This statistic for the nearest neighbor spacing is

P,(AE) = A(AE)Wexp(-a(AE)l+w

where A = (1 + w)a and lx = [r(2)]l+ '. w is found by fitting the data by least

squares. For Poisson, G.O.E. and Wigner's surmise, the values for w are 0, 0.953, and

1, respectively. For generic data, A is just a parameter that fit the data. In particular,

for fitting a generic histogram, one must multiply the probability distribution by

some constant to fit the data: this implies that we can effectively throw out this

constant.This is the two-parameter Weibul distribution
k ()ke-()k

The Weibul distribution is normally encountered in failure analysis. In a later

section, I hope to show why writing the distribution in a form familiar to a mathe-

matician is useful.

1.3 Ergodicity

This section tries to show the place of K-flows in the spectrum of statistical mechanics.

In appendix A, there will be enough mathematical details for the interested reader

to be able to understand the concept of a K-flow in a rigorous mathematical sense.

I have not included it here, so as not to impair the clarity of the essential concepts.

The papers in the literature about K-flows are either cryptic or are in Russian, so I

thought the appendix useful.

In the microcanonical distribution from elementary statistical mechanics, the en-

tire system can be represented as a point in phase space that is a function of time.
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The motion of the system in phase space remains on a surface of constant energy. If

there are other constants of motion beside the energy, the motion of the system in

phase space will be confined to some part of the energy surface. If there are no other

constants, the system will pass arbitrarily close to an arbitrary point on the surface

if given a long enough time.

Two uncoupled harmonic oscillators provide an example of both these situations[4].

The Hamiltonian for the system is H = (p2 + Wl2q2) + (p2 + Wcql) As they are un-

coupled, they can each be considered separately, as eliminating the time will clearly

show. If the ratio of the frequencies is rational, the path of the system in phase

space will be some closed curve with a finite number of self-intersections. The energy

surface is thus partitioned into areas visited by the closed curve and those not so

visited. Now, if the ratio is not rational, the curve of their trajectories will not

be periodic, it will completely fill the torus representing the phase space of the

two-osciilator system. This is what it means to be ergodic. In more mathemati-

cal terms, if you prefer, one could say if we represent the system by S(t) in phase

space, limt,,, f rdt'g(S(t') = dS[(S)-E]g(S) [24]-t t ~~f dS[I-(S)-E]

The ergodic theorem is actually due to Birkhoff. It says that given a dynamical

function d(x) integrable over the phase space, if the space cannot be decomposed into

two invariant regions different from measure zero or one, then

i)d(x) is constant almost everywhere

ii)d(x) =< d >

Metric indecomposability expresses the fact that no trajectory can be confined to

some portion of phase space. I should note that the phase space is here defined as

anything that we can define an invariant measure on. The latter of the two properties

expresses the fact that almost every trajectory spends an equal proportion of its time

in equal regions everywhere in phase space. The importance of the theorem is also

due to the latter property, because, often, it is much easier to calculate the space

average than the time average.

A mixing system is experienced in our everyday lives. It means what we might

think it would: it describes a system that gets mixed up. Take for example, making
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chocolate milk. We take a two substances milk and chocolate and after mixing the two

we find them in the proportions equal to the proportions of them unmixed everywhere

we care to look. In terms of phase space, the system can be said to spread throughout

the entire phase space. Two points in proximity to one another in phase space may

move apart, or they might not. In relation to an ergodic system, we are no longer

confined to a surface that we will cover in phase space, but to the entire space. A

small error in measurement can propagate in time and introduce large enough errors

so that long time predictions are impossible. Given two compact regions of the phase

space A(t), B(t), and the measure , limt,,ool (A ( t ) ( ) ) = /t(A(O)). It is clear that

something that is mixing must be ergodic. Just consider the case of an invariant A

and let B=A, plugging into the equation, we get that /(A) = /M(A)2 so that pi(A)

must be equal zero or one. Hence the system is ergodic. Ergodicity does not, on the

other hand, imply mixing.

A K-system is a mixing system with the property that most orbits from points

close together separate, on average, exponentially with time. The system is governed

by casual equations of motion, but the time evolution of a generic point in phase

space is so irregular, it may seem random [10]. The entropy defined relative to a

finite partition is the entropy summed over each of the partitions. Normally, one

thinks of S = - -i P(Ai)logP(Ai); here we are saying that one chooses what the sets

A are, so instead of S we have S(A). A K-system is one for which the entropy relative

to any finite partition is positive.

The Kolmogorov-Sinai entropy is the maximum of S(A) taken over all finite parti-

tions. K-systems, thus, have a positive K-S entropy. The K-S entropy is an intrinsic

quantity associated with the dynamical system considered as a whole at a given en-

ergy. It is related to the mean rate of exponential separation of orbits.

A system with the B-property has the property that any finite partition gives the

K-S entropy. Clearly, if the K-S is the maximum over all partitions, then all partitions

in this case have the same entropy.

I would like to note that the statistical mechanics we studied is based on the

following idea by Boltzmann: the infinite time average of a microscopic quantity
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is the corresponding macroscopic property. This can only be true for systems in

equilibrium, where the macroscopic quantities are stationary. This is rather weak,

because the time evolution is of primal importance in any area of macroscopic physics.

The mixing system provides something that is a little better in this regard.

If one considers the ensemble average as the a priori concept that defines a macro-

scopic function, then statistical mechanics is predicated on firmer ground. At some

time an ensemble is constructed. If the system is of the mixing type, the ensemble

will eventually spread to cover the energy surface uniformly and come to thermal

equilibrium.

1.4 Singular Value Decomposition

Another topic that may be unknown to the average graduate student physicist is a

mathematical method for solving equations. This method is useful when one has

matrices A * x - b when b is very singular. My treatment here is based on two

excellent books on the subject, and, though brief, provides, I hope, a good enough

summary for one to accept its legitimacy[18][25].

Given a matrix Am,n with q = min m, n, there exists three matrices: Um,m and

Vn,n both unitary and TWm,n diagonal with elements wi,i > wi+l,i+l for all i < q. These

diagonal elements are called the singular values; they are interesting because they are

the non-negative square roots of the q largest eigenvalues of either AA* or A*A. The

remaining eigenvalues of AA* and A*A, if any, are zero.

As a computational device, the way singular value decomposition works uses the

fact that A can be broken up into three matrices. For the wj, it is likely that some

are very small but non-zero. In such a case, direct solution may lead to a poor

approximation to b due to the large components of A. In such cases, it is very often

better to just set the small wj to zero. This means that one can throw away a

combination of equations that are so small that they are corrupted by roundoff error.

It normally pulls the solution vector away towards infinity, compounding the roundoff

error and making the overall solution poorer.
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There is some subspace of b that x can be mapped by A onto. Now if b is in the

range of A, then replace w7- 1 by 0 if w)j is 0 and

= VW-1UTb

If b is not in the range of A, one can find the closest possible x in the least squares

sense. Similarly to the direct solution, zeroing of the small wj usually leads to a

better approximation of b.

1.5 Empirical Distribution Function

In order to test whether the statistics that I think should be the correct one, most

physicists would do a chi-squared fit of the nearest neighbor energy differences his-

togram to the probability distribution. In this case, I don't believe that it is such

a good idea. My data has between 20 and 200 points in it; the partition for a 0.05

confidence level would have at most 12 cells based on the estimate with M cells and

n observations M = 2ns [23]. This leads to some averaging of data and consequent

loss of information. The tests I want to use do no such averaging, and, as such, no

information is lost by making bins.

To test the Weibul distribution with empirical distribution function statistics(E.D.F.),

one first transforms it into the extreme-value distribution[28], by the transformation

i = -logXi for observations Xi. The cdf becomes F(y) = exp(-exp(- (Y-)) where

0 = 1/m and X = -log . Now, arrange the Yi in ascending order.

There are two parameters to be estimated. This is done by iteratively solving for

0 by

= Ej - Ej Yjexp(- ) / Ej exp(- -t)

n 0 0

and then solving for X using

= -log[j exp(- )].

I then make a transformation of Zi = F(Xi) for the cdf F. The set Z should now

be uniformly distributed. In the case of the extremal distribution it takes on the form

F(X) = exp[-expX-]. For exponential distributions, the best statistic for a wide

variety of situations is the Anderson-Darling statistic A2 which I can use to obtain a
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confidence level.

Now, as this is a relatively sophisticated statistic, I am free to take full advantage

of its power and deal with small groups of energy levels and still statistically significant

data. I have used this to my advantage, using only about twenty points for a variety

of cases.

1.6 Review of Stadium Literature

The history of the stadium billiard is over twenty years long. Research was initially

generated with the proof by Bunimovich that the stadium was a B-system[13]. His

proof was accomplished by considering boundary shapes for a general class of billiards

which do not contain any dispersing components. In this case, dispersing means that

trajectories diverge. It was also assumed that the billiard had at least one focus, as

it had previously been proved that polygonal shapes which do not have any focusing

components have zero entropy. It was further assumed that the focusing part of the

boundary would have a constant curvature.

The border, therefore, could be made up of straight segments and segments from

a circle with the interior of the circle pointing toward the interior of the billiard.

The proof itself basically considers successive reflections of bundles of trajectories to

prove the B-property. A bundle contracts after reflection from a circular section and

then expands in such a way that timing of later focusing is impossible to know, thus

proving the system to be stochastic. The fact that these objects have the B-property

relatively easily led to the proof of the K-property [12]

These papers by Bunimovich are so famous that often a simple example of the

kind of objects included in his paper, the stadium, is called the Bunimovich stadium,

because of all the interest these papers generated. The papers are of such importance

because the K-property implies that the object has positive entropy. The B-property

implies that this entropy is constant almost everywhere. The people who investigated

the Lyapunov exponent(a measure of entropy) incorrectly thought ergodicity implied

the Lyapunov exponent was constant[5].
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Figure 1-2: Maximal Lyapunov exponent vs. aspect ratio

The first numerical investigation of the billiard computed the maximal Lyapunov

exponent as a function of the aspect ratio(y = r) of the stadium[5]. Please consider

fig. 1-2. The maximal Lyapunov exponent was calculated by

limt_,oolnldTt(e)lI where T - xt

is the flow alor.g the tangent space. It measures the mean rate of exponential

divergence for the bundle of trajectories passing through the point x. If it is positive,

the system can be considered chaotic, because even extremely close initial conditions

will show an exponential divergence of trajectories. This means that trajectories

beginning closer than can be resolved will eventually lead to different trajectories; it

will be impossible to predict the full trajectory from its initial conditions. The fact

that the maximal Lyapunov exponent is constant for a given aspect ratio serves as a

key point of comparison.

There was a conjecture that Gaussian orthogonal ensemble statistics should be

seen in a classically chaotic system[16]. The stadium, which is stochastic for all non-

zero aspect ratio, seemed to be a natural choice to test this hypothesis. In a landmark

paper that strengthened the near universality of G.O.E. statistics, the cases of aspect

ratio 0 and 1 were investigated[20] and G.O.E. statistic were precisely found for aspect

ratio 1. Please acquaint yourself with figs. 1-3 and 1-4.

These figures show N(AE)vs.AE where N is the probability to be within a certain

energy distance of a specified level. In the circular case(aspect ratio 0), the spacings

behave like a Poisson distribution. This is to be expected, because the energy levels

should just be the zeroes of the Bessel functions.

The explicit connection between the billiard and G.O.E. statistics was not made
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Figure 1-3: N for aspect ratio 0
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until a little later[9]. The data and the G.O.E. curve were compared using the Dyson-

Mehta statistic(A3), the probability distribution, the variance, the skewness, and the

kurtosis. The Dyson-Mehta statistic measures the long range correlations in energy

levels and is defined as the local average of the mean square deviation of the spectral

staircase E (E - En) from the straight line fitted to an energy range corresponding

to L mean level spacings. All the tests fit G.O.E.

The original paper that showed G.O.E. statistics in the stadium only considered

the odd-odd symmetry states. There should be four symmetry classes as the stadium

is invariant about two axes. All four classes were shown to follow G.O.E. statistics[9].

The symmetry that most closely followed the overall statistics was the odd-odd sym-

metry class. Later papers almost invariably only consider the odd-odd states, for they

seem to be representative of the whole spectrum. The number of energy levels con-

sidered in the paper that considered all four symmetry classes was 800 per symmetry

class, so that the statistics generated would be considered valid. The G.O.E. predic-

tion was found in all statistics measured. In the same year, another article found the

same situation with a different K-system billiard[8], thus, reaffirming the universality

of G.O.E. statistics. Later examples were found that ended these thoughts of univer-

sality. One such example is a billiard on a surface of constant negative curvature [3]

where there can be near degeneracies in small samples. If G.O.E. were applicable,

this would be highly unusual.

A kind of regular wave function of the billiard is often called a "whispering gallery"

orbit, because it remains localized near the edge. These were explained by consider-

ing it a "scar" of an unstable periodic orbit[30]. There was an explanation of both

the quantum and classical systems and a comparison of the results[14]. They showed

that there was a very strong agreement between the predictions of classical and quan-

tum mechanics for states in the stadium other than the vertically directed unstable

periodic orbits. There were alto similarities between the asymptotic limit of the ex-

pectation values and the rate at which those values were reached. This implies that

the quantum- classical correspondence will only break down in infinite time.

In what was later an important Ph.D thesis in this field, the cases of aspect
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Figure 1-5: An example of a regular orbit

ratio 0 and 1 were closely investigated[21]. It established the use of a particular

computational method that left some 1 percent of the eigenvalues erroneous and

ipercent of the eigenvalues missed. A new more foolproof technique was called for

and was found[17]. The author of this technique told me it can be troublesome as it

has trouble with dealing with energy levels that are close together. His method was

used in my thesis and I did have trouble gathering data, but was able to get results

after some tribulation. I had to closely examine the predicted Nweeyi to see if I had

missed a level to get some idea where the missed level was and reinvestigate the area

closely to find it.

Both the level clustering and irregular wave functions with uniform distributions

of nodal lines had been predicted[6] for aspect ratio greater than zero. This uniform

distribution of lines is an indication of an isotropic distribution of wavevectors. This

fact was taken up in the computer program I have used.

The other regular wave functions were localized states correspond to classical

motion of almost perpendicular reflections from the straight part of the stadium

and to the pseudo-regular states that appear diamond shaped and localized near the

boundary[291. Please consider fig. 1-5117]. These regular states had a relatively simple

explanation. I n the time frame of one of the coordinates, the other can be considered

constant. This means that the Schrodinger equation can be solved by considering the

following Hamiltonian: H =- )22 d2 + V(y) where v(y) = 0 or oo for IYI < yo or

yI > yo respectively. yo =R for lxl < O and /iR2 -(Ix I-a) for a < IxIl < a+ R The

system has solutions qO = -- sin(Z + 1). These results were verified by others

who considered the propagation of an initially localized Gaussian in the stadium[ 14].
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The semi-classical trajectories were allowed to propagate in time and it was found

that the quantum mechanical and semi-classical systems agreed[30] with a surprising

accuracy. The exact quantum mechanical auto-correlation function was compared

to that of the semi-classical approximation and every detail was captured.The semi-

classical approximation to the Green's function failed along certain trajectories. In

particular, for the case of striking the point of intersection between the straight edge

and the circular part of the stadium, a fold would develop in the trajectories. This

fold would invalidate the use of the semi-classical Green's function.

Eventually, one would hope that enough interest would be generated for someone

to find a physical system that could test all the numerical work that had been done.

Such a test was performed nearly twenty years after the first numerical work on

the stadium was published[15]. The experimenters found frequencies in a microwave

cavity made from superconducting niobium held at very low temperatures. For a flat

enough microwave resonator, Maxwell's equations reduce to the Schrodinger equation

of a free particle except at the boundary. If the boundary is superconducting, then

the waves bounce off the stadium as if they encountered an infinite potential which

gives the desired boundary conditions. In this case, the frequency that one could

determine if one has another known frequency nearby is at worst Af = 10-5 f. This

high quality value means it is very likely no levels were missed.

If one considers the trajectories where the wavefunction bounces between one wall

and the next, one can calculate the cumulative level density by considering the semi-

classical propagator of the orbits that do not leave the rectangular section of the

boundary. If Nbounc e is the number of bouncing ball orbits, N - Nweyl, the result is

Nbounce = )- aV/ co= m- cos[2mkr- 3]. The experimenters found excellent

agreement with the experimental calculation of 1060 eigenmodes and that predicted

by their semi-classical calculation.

The case that they considered was for aspect ratio 1.8. They followed the Brody

distribution in considering N(AE)vs. AE and found that it did not follow G.O.E.

statistics. The fit is not far off, with the Brody parameter being 0.82 i 0.07.

The last paper relevant to the stadium that I have chosen to relate to the reader,
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is one that has the odd-odd symmetry calculation of the effect of multiple bounces on

the semi-classical Green's function[27]. The semi-classical Green's function is only an

integral away from the semi-classical level density. They also considered such things

as unstable periodic orbits. The contribution of isolated unstable periodic orbits was

similar in form to the oscillatory contributions to the bouncing ball orbits. Finally,

they considered the family of neutral periodic orbits whose orbits are almost closed,

or "whispering gallery" orbits. The contribution to all these things in the Dyson-

Mehta statistic was compared to the data for microwave stadium and was in good

agreement. The already published cases of aspect ratio 1 and 0 were not compared:

the case of 0 is a completely degenerate case, as there should be no bouncing ball

orbits which are due to reflections off the straight part of the stadium. A similar

paper was done on the full stadium[1].

A recent paper examining the virtual paths inside a mirror cabinet made in the

shape of a stadium is amusing. The virtual image boundaries for other mirror cabi-

nets known to possess non-chaotic dynamics are smooth for all orders, while for the

stadium, they seem to be fractal in nature[19].

18



Chapter 2

Method and Results

2.1 Method

I would like to solve the Schrodinger equation for the stadium billiard: (V 2 + k2 ) = 0

where the solution vanishes on the boundary of the stadium.

The solutions of the equation are obviously of the form of plane waves which

trivially solve the equation[17]. I form a basis of odd-odd states so that

I = E c sin(k.,nx)sin(ky,nY)

where kl,n = kcosOn, ky,n = ksinn, and On is the angle between an arbitrarily

chosen wavevector k and the wavevector of the plane wave. This angle is then sowly

increased in equal increments until it returns to itself(as 2 = 0). I choose the odd-odd

states so that I can compare with what little has been published before in this area

and because this symmetry seems to most closely follow the statistics of the overall

case. I temporarily assume that for a chosen value of k, a solution exists.

Now, if a solution exists, it should be zero on the boundary. For N plane waves, I

can force N points to be whatever I choose. So, I choose N-1 points to be zero on the

boundary and 1 point to be one inside. The point inside normalizes the wave function.

The points along the boundary are chosen to be equally spaced along the outer edge.

The interior point is randomly chosen to be somewhere within the stadium. I can

consider this to be N equations with N unknowns: I can think of it as Tx = b, where

qI is the values along the points, b is zero everywhere except one entry of one and x
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are the coefficients to be determined. As this is quite singular, I use singular value

decomposition to determine x; Gauss-Jordan elimination would never find the answer.

Now, I find the tension of the function by equally spacing five times the number of

points, evaluating the square of i at each point, and adding the results. The tension

should exhibit deep minima when I am close to a real eigenvalue of the Schrodinger

equation.

In this way, I should be able to create a list of the energy levels for specified values

of 7 = R/L. I can then find the statistics of the energy levels and compare it to the

already published values of the Lyapunov exponents for the function.

I have modified a version of the program Heller used[17]. The modified program

is contained in appendix B as it is possible that it will prove useful for future work.

It is necessary to check the vicinity of local minima and shallow minima for points

that one might have missed. This can be accomplished by looking at the difference

of N - Nwey. When it drifts to definitely negative and stays there, the program has

missed a level. I would like to note that Heller does not include the possibility of

evanescent waves in the stadium. In this context, an evanescent wave is of the form

of a hyperbolic sine. This could occur by k2 = k + k2 if one or the other of k or

ky were imaginary. In a personal communication with me, he assured me that they

were not necessary to form a complete basis for the stadium.

2.2 Results

The first and most basic result is that of whether there are local minima of the tension.

Local minima are necessary to find the energy eigenvalues. In a paper using the same

area and aspect ratio, one of the energy levels listed is 119.389[17], please consider

fig.2-1 which shows a local minimum for the tension at the stated place.

I thought it might be interesting to look at the tension for a large scale so please

consider fig.2-2.

It is relatively clear where the local minima are which contain the energy levels.

Once I have a list of the energy levels, I need to know whether they have different
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Local minimum in the tension exactly as found in Heller 1991

0 5 10
aspect ratio 1, k=119.38 + 10A-3 x

Figure 2-1: Local minimum of the tension

Local minima for aspect ratio one over a complete k

Figure 2-2: Local minima of the tension over a larger scale
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unfolding deviation

0
nth energy level in this region of the spectrum N data - N weyl

Figure 2-3: Unfolding of my data

average spacing for different parts of the energy spectrum. If they do, they need to

be "unfolded". I have plotted both Nwey and my data on the left and the difference

between my data and Neyl on the right. Please see fig. 2-3. As we can see the Weyl

curve is straight so that the levels do not need to be unfolded. The oscillation of the

difference is to be expected; the negative drift can only mean that I have missed some

levels. Normally care must be taken so that a level is not missed, but in this case I

could not find the missing levels. I think the reason for missing some levels is that the

solutions have become so complex that my basis does not cover them. To test this

hypothesis, I have attempted to find the energy levels in a much higher energy band

and found that I could find only about 10 percent of of the theoretical number of

levels. I thought that for high energies the "bouncing ball" orbits which are localized

between the straight sections of the stadium would be the only ones I could find. This

makes perfect sense, because about 10 percent of the levels have this regularity [16].

So, this case of y = 1 and quantum number n = 3047 is suspect, because if I have

missed N levels, then 2N spacings are wrong. This argues for taking a much smaller

amount of levels, say 20, looking at this deviation, and being sure that no levels were
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Figure 2-4: High energy band for aspect ratio one

missed. I wanted to verify a previous paper's results[20], so I have looked at another

case of over a hundred levels. In all other cases, the amount of levels has been quite

small and I have accepted the statistical uncertainty that a small number of levels

entails. This approach is completely new to physicists. Normally, one needs on the

order of three hundred levels to calculate statistics. I have found a way where you

need less than fifty and can clearly show all deviations from the fit. I have shown that

drawing histograms is not necessary to do, because it is possible to exactly compare

the fit to the data.

Once I have the energy levels, I apply the iterative algorithm to obtain the nec-

essary curve fit. Once I have the curve fit, I apply the E.D.F. statistics to find the

confidence level of the fit. Now, my data should be linear for the fit, because the

data should now be uniform. For the curve found, please see below 2-4 where I have

plotted the c.d.f. F(yi) vs. i.

Similarly one can see that the Brody distribution fits for a lower energy band

2-5 that substantially reproduces that found in an early paper on the stadium[20].

This reproduction gives weight to my results, because it reproduces a previous result.
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Figure 2-5: Low energy band for aspect ratio one

Moreover, the fit is clearly quite linear, so it is quite good.

Below, can be seen a smooth curve of the very low quantum number cases for the

fit to the Brody distribution see fig. 2-6. In this case y = 0.01. This rather strongly

implies that the Brody distribution does not fit the curve at all; another distribution

that fits the data. This curve also occurs in the other low quantum number case

which strengthens the idea that another distribution describes the system.

For all the data calculated so far, please see the data below.

gamma n levels w significance

1 3047 241 0.88 0.9

1 405 112 0.95 0.95

0.1 380 32 0.71 0.9

0.1 30 16 0.91 0.75

0.01 30 16 0.73 0.75

0.001 340 16 0.43 0.9
The results of this table are plotted on the graph below 2-7. There are two

interesting things to this plot. The first is that it is at y = .1 the state is already
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5 10
ordered energy difference

Figure 2-6: New distribution for low quantum numbers

10-2 10
-1

aspect ratio

Figure 2-7: Goal of my hesis
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mixed towards the Poisson distribution. This, of course, makes sense, because at

y = 0, the Brody distribution should have parameter 0. The second thing is the

rather low confidence levels for the low quantum number cases which suggests another

distribution may be the applicable one.

I have found a tentative functional relation between the Lyapunov exponent A and

the Brody parameter w of A log(w) - -0.05. This constant, I feel pretty confident,

should be a function of the quantum number n, the energy eigenvalue number. This

relationship does not hold for the low quantum number points, but, then, it does not

seem appropriate if a different distribution is operating.

In conclusion, I have discovered a method that makes doing energy level statistics

calculations quite a bit easier, because much less energy levels are needed. If there are

many levels, a higher precision is obtained, because there is no lumping together of

spacings. I have more than doubled the numerically investigated cases of the stadium.

In so doing, I have been able to characterize to some extent the transition to chaos

in the stadium billiard. I have found that for small quantum numbers, the energy

level spacings do not seem to follow the Brody distribution. Lastly, I have found a

tentative scaling law that relates the Brody parameter to the Lyapunov exponent,

something that has never been done for any system before.
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Appendix A

K-flows

I propose to give a lot of definitions to build up the machinery until I can define a K-

flow. After each definition, I have endeavored to give an example. I have endeavored

to structure this section by following the rule that the human mind likes to structure

itself by considering about a half a dozen things at once[22]. I have borrowed heavily

from two works for this section [26][2].

A.1 a - algebra

A ring R is a family of sets that has the following properties: if A and BeR, then

i) AUB E R

ii) A-B e R.

An example of a ring is the collection of open sets inside a circle of radius one

including the null set.

A a-albegra is also a family of sets A that has these properties:

i)The null set is in A

ii)A is closed under complementation.

iii) A, nld, 2, ... U_°=AnEA.

The smallest a-algebra that contains all open sets in Rd is the collection of all

Borel sets. A set B is called a Borel set if it can be obtained by a countable number

of unions, intersections, or complements of open sets. The previous example is not a
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a-algebra. The union of open sets of radius l cleazly is the entire circle including

the boundary, but this is not inside the circle.

A.2 measure space

Given a ring 1Z, 0 is a set function defined on 7? if (VAER)q(A) is an extended real.

The extended reals are the real numbers with +oo added. is non-negative if the

number is always non-negative. X is additive if An B = 0 = q0(A U B) = q0(A) + q(B).

q is countably additive if Ai n Aj = O(i 7 j) =>. q(U 1=l) = En=l (An). Now, a non-

negative countably additive set function is a measure. An example of a measure is

the distance between points in Rd.

Given a set M, if a a-ring of subsets M of M exists and a there is a measure 

on M, M is called a measure space. An example of a measure space M could be the

set of all positive integers. M would be the collection of all subsets of M, commonly

called the power set of M. For any A ML(A) is just the number of elements of A.

A.3 abstract dynamical system

First, it is important to understand that with regard to abstract dynamical systems, it

is not measure spaces that are important, but equivalence classes of measure spaces.

For example, consider A and B e B and we define an equivalence relation. A =

B(modO) if 1 (A U B - A n B) = 0. The equivalence class of the empty set includes

all sets of measure zero. The quotient of B under this equivalence relation is written

as B(modO). Now given a measure space (M, IL), completely defines B(modO).

A homomorphism(mod 0) is a mapping : M -+ M' for two measure spaces

(M, ) and (M', At') if it has the following properties:

i) for 0, a set a measure 0, 0 is defined on M - 0

ii)0' = M' - (M - 0) has measure zero(A set that has measure zero is just what

it sounds like /u(0) = 0). This means that 0(M) = M' except for a measure zero

subset of M'
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iii)[O-1(A)] = p'[A'] for a representative of every equivalence class of B. This

means that is measure preserving.

If both the mappings 0 and 0-1 are homomorphisms(mod 0) and M is the same

as Ml', then is called an automorphism(mod 0). An abstract dynamical system (M,

/L, t) is a measure space (M, ) with a group t of automorphisms(mod 0) on this

space. t depends measurably on t.

A.4 K-System

If we consider the algrebra of all the measurable sets in a measure space. A subalgebra

A of measureable sets is a subset of this algebra vhich both contains M and is a -

algebra itself.

An abstract dynamical system (M,,O) is called a K-system if there exists a sub-

algebra A that satisfies for any t > 0: i) A C OA ii) the algebra of sets of measure

0 or 1 is equal to the largest subalgebra which belongs to every tA iii)the smallest

subalgebra that contains every tA is the complete algebra.
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Appendix B

Modified version of Heller's

program

PROGRAM STADIUM

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION A(190,180),W(180) ,V(180,180),B(190),X(180),XOLD(180)

DIMENSION U(190,180),R(190) ,XX(190),YY(190)

DIMENSION XK(180),YK(180),INIT(2)

CZI=(0.,1.)

PI = 3.1415926535897932384626433832795D0

10

c Ej Heller's plane wave basis for the stadium

c uses least squares singular value decomp. Odd-odd only.

c see "numerical recipies" for more on the svd routines if

c stability or accuracy seems a problem. (svd can be tuned

c with the w(i) criterion).

c There are N basis plane waves of wavevector mag. TK

c and the wavefnc'n is set to zero at M places, M>N on the boundary

M=190

N=180

NP=180 20

MP=190
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NPLOT=300

NP=180

XL=1.DO

TOL=1.D-4

TENEW = 0.

TENOL1=0.

TENOL2=0.

NP2=150

c XL is the length of the straight section

c TK is the wavevector magnitude

666 TK=1.

NCOUNT=1

OPEN(30, FILE= 'Half', STATUS = 'OLD')

TKINC=O.

NINC=2

IMAN=0

c must balance wavevect. mag. with # basis fcns.

c TK too small is too unstable, too big pemits leakage.

30

40

C # BNDRY PTS, # BASIS FCNS, TK,XL, ISQ(2 GIVES PSI-SQUARED)'

READ(30,*) M,N,TK,XL,ISQ

C 'TKINC, NINC, NPLOT,TOL'

READ(30,*) TKINC,NINC,TOL

c apportion points between the straight sections

c and the quarter circle

INIT(1)=((4+pi)/(l+pi))**(0.5)

c radius of the circle

INIT(2)=.25*INIT(1)

c length of the straight section

NTOP=NINT(INIT(2)*(M*INIT(2)/(1.57*INIT(1)+INIT(2))))+2

NCIRC=M-NTOP

C COORDINATES OF THE POINTS TO BE SET TO ZERO

DO I=1,NTOP
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XX(I) = INIT(2)*(I-.5)/NTOP

YY(I) =INIT(1)

END DO 60

DO I=1,NCIRC

XX(NTOP+I)= INIT(1)*DSIN((I-.5)*PI/NCIRC/2) + INIT(2)

YY(NTOP+I)= INIT(1)*DCOS((I-.5)*PI/NCIRC/2)

END DO

544 CONTINUE

NCOUNT=NCOUNT+1

IF(NCOUNT.GT.NINC) then 70

GO TO 77

END IF

IF(TK.EQ.0.) GO TO 77

C THE BASIS SET WAVEVECTORS

TK=TK+TKINC

DO I=1,N

XK(I) = TK* DCOS((I-.5)*PI/N/2)

YK(I) = TK* DSIN((I-.5)*PI/N/2)

END DO 80

c set up the linear equations. ax=b. b is zero vector except for

c last element. these equations are setting the wavefcn to zero on

c the boundary, except the last one, (i=mp), which sets the wavefcn

c to 0.1 at xs,ys

C

DO I=1,M-1

DO J=1,N

A(I,J) = DSIN(XK(J)*XX(I))*DSIN(YK(J)*YY(I))

U(I,J)=A(I,J) 90

END DO

END DO
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XS=.325

YS=.43245

DO J=1,N

A(M,J) = DSIN(XK(J)*XS)*DSIN(YK(J)*YS)

U(M,J)=A(M,J)

END DO 100

c use singular value decomposition

CALL SVDCMP(U,M,N,MP,NP,W,V)

WMAX=O.

DO J=1,N

IF(W(J).GT.WMAX)WMAX=W(J)

END DO

c !!!!cutoff criterion here for W's!!!! 1.e-4 is conservative. 110

555 FORMAT(8E12.3)

DET=1.

WMIN=WMAX*TOL

DO J=1,N

IF(W(J).LT.WMIN) W(J)=O.

END DO

DO K=1,M

B(K) = O.DO

END DO 120

B(M)=.l

c these are the singular value matrix w's

c test the solution vector x on the original matrix:

CALL SVBKSB(U,W,V,M,N,MP,NP,B,X)

DO I=1,M

R(I)=O.
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DO K=1,N 130

R(I)=R(I) + A(I,K)*X(K)

END DO

END DO

RR=O.

DO I=1,M-1

RR=RR+R(I)**2

END DO

RR=RR+(R(M)-.1)**2

C write(9,*) 'quality ',rr

c check the value of the wavefcn where it was not 140

c set to zero.

TR=O.

DO J=1,N

TR=TR+X(J)*DSIN(XK (J)*XX(M))*DSIN(YK(J)*YY(M))

END DO

c check the sum squared of nctest+ntttest points on the

c boundary. ideally, this should be zero but never will be.

NTTEST=NTOP*4

NCTEST=NCIRC*4 150

TEST=O.

DO I=1,NTTEST

XTEST = INIT(2)*(I-.5)/NTTEST

YTEST =INIT(1)

TT=O.

DO L=1,N

TT=TT + X(L)*DSIN(XK(L)*XTEST)*DSIN(YK(L)*YTEST)

END DO

TEST = TEST+TT**2

END DO 160

DO I=1,NCTEST

XTEST= INIT(1)*DSIN((I-.5)*PI/NCTEST/2) + INIT(2)

YTEST-= INIT(1)*DCOS((I-.5)*PI/NCTEST/2)

TT=O.
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DO L=1,N

TT=TT + X(L)*DSIN(XK(L)*XTEST)*DSIN(YK(L)*YTEST)

END DO

TEST = TEST+TT**2

END DO 170

WRITE(30,*) TK,TEST

c form matrix of wavefunction values

GO TO 544

77 CONTINUE

END

SUBROUTINE SVBKSB(U,W,V,M,N,MP,NP,B,X)

IMPLICIT REAL*8 (A-H,O-Z) 180

PARAMETER (NMAX=190)

DIMENSION U(MP,NP),W(NP) ,V(NP,NP),B(MP),X(NP),TMP(NMAX)

DO 12 J=1,N

S=O.

IF(W(J).NE.0.)THEN

DO 11 I=1,M

S=S+U(I,J)*B(I)

11 CONTINUE

S=S/W(J) 190

ENDIF

TMP(J)=S

12 CONTINUE

DO 14 J=1,N

S=0.

DO 13 JJ=1,N

S=S+V(J,JJ)*TMP(JJ)

13 CONTINUE

X(J)=S

14 CONTINUE 200

RETURN
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END

SUBROUTINE SVDCMP(A,M,N,MP,NP,W,V)

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER (NMAX=190)

DIMENSION A(MP,NP),W(NP),V(NP,NP),RV1 (NMAX)

G=0.0 210

SCALE=0.0

ANORM=0.0

DO 25 I=1,N

L=I+1

RV1 (I)=SCALE*G

G=0.0

S=0.0

SCALE=0.0

IF (I.LE.M) THEN

DO 11 K=I,M 220

SCALE=SCALE+DABS(A(K,I))

11 CONTINUE

IF (SCALE.NE.0.0) THEN

DO 12 K=I,M

A(K,I)=A(K,I)/SCALE

S=S+A(K,I)*A(K,I)

12 CONTINUE

F=A(I,I)

G=-SIGN(DSQRT(S),F)

H=F*G-S 230

A(I,I)=F-G

IF (I.NE.N) THEN

DO 15 J=L,N

S=0.O

DO 13 K=I,M

S=S+A(K,I)*A(K,J)

13 CONTINUE
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F=S/H

DO 14 K=I,M

A(K,J)=A(K,J)+F*A(K,I) 240

14 CONTINUE

i5 CONTINUE

ENDIF

DO 16 K= I,M

A(K ')=SCALE*A(K,I)

16 CONTINUE

ENDIF

ENDIF

W(I)=SCALE *G

G=0.0 250

S=O.O

SCALE=0.0

IF ((I.LE.M).AND.(I.NE.N)) THEN

DO 17 K=L,N

SCALE=SCALE+DABS(A(I,K))

17 CONTINUE

IF (SCALE.NE.O.0) THEN

DO 18 K=L,N

A(I,K)=A(I,K)/SCALE

S=S+A(I,K)*A(I,K) 260

18 CONTINUE

F=A(I,L)

G= -SIGN(DSQRT(S) ,F)

H=F*G-S

A(I,L)=F-G

DO 19 K=L,N

RV1 (K)=A(I,K)/H

19 CONTINUE

IF (I.NE.M) THEN

DO 23 J=L,M 270

S=O.O

DO 21 K=L,N

S=S+A(J,K)*A(I,K)
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21 CONTINUE

DO 22 K=L,N

A(J,K)=A(J,K)+S*RV1(K)

22 CONTINUE

23 CONTINUE

ENDIF

DO 24 K=L,N 280

A(I,K)=SCALE*A(I,K)

24 CONTINUE

ENDIF

ENDIF

ANORM=MAX(ANORM,(DABS(W(I))+DABS(RV1 (I))))

25 CONTINUE

DO 32 I=N,1,-1

IF (I.LT.N) THEN

IF (G.NE.O.0) THEN

DO 26 J=L,N 290

V(J,I)=(A(I,J)/A(I,L))/G

26 CONTINUE

DO 29 J=L,N

S=O.O

DO 27 K=L,N

S=S+A(I,K)*V(K,J)

27 CONTINUE

DO 28 K=L,N

V(K,J)=V(K,J)+S*V(K,I)

28 CONTINUE 300

29 CONTINUE

ENDIF

DO 31 J=L,N

V(I,J)=O.O

V(J,I)=O.O

31 CONTINUE

ENDIF

V(I,I)=1.0

G=RV1 (I)
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L=I 310

32 CONTINUE

DO 39 I=N,1,-1

L=I+l

G=W(I)

IF (I.LT.N) THEN

DO 33 J=L,N

A(I,J)=O.O

33 CONTINUE

ENDIF

IF (G.NE.0.0) THEN 320

G=1.0/G

IF (I.NE.N) THEN

DO 36 J=L,N

S-O.O

DO 34 K=L,M

S=S+A(K,I)*A(K,J)

34 CONTINUE

F=(S/A(I,I))*G

DO 35 K=I,M

A(K,J)=A(K,J)+F*A(K,I) 330

35 CONTINUE

36 CONTINUE

ENDIF

DO 37 J=I,M

A(J,I)=A(J,I)*G

37 CONTINUE

ELSE

DO 38 J= I,M

A(J,I)=O.O

38 CONTINUE 340

ENDIF

A(I,I)=A(I,I)+1 .0

39 CONTINUE

DO 49 K=N,1,-1

DO 48 ITS=1,30
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DO 41 L=K,1,-1

NM=L-1

IF ((DABS(RV1(L))+ANORM).EQ.ANORM) GO TO 2

IF ((DABS(W(NM))+ANORM).EQ.ANORM) GO TO 1

41 CONTINUE 350

1 C=O.O

S=1.0

DO 43 I=L,K

F=S*RV1(I)

IF ((DABS(F)+ANORM).NE.ANORM) THEN

G=W(I)

H=DSQRT(F*F+G*G)

W(I)=H

H=1.0/H

C= (G*H) 360

S=-(F*H)

DO 42 J=1,M

Y=A(J,NM)

Z=A(J,I)

A(J,NM)=(Y*C)+(Z*S)

A(J,I)=-(Y*S)+(Z*C)

42 CONTINUE

ENDIF

43 CONTINUE

2 Z=W(K) 370

IF (L.EQ.K) THEN

IF (Z.LT.O.0) THEN

W(K)=-Z

DO 44 J=1,N

V(J,K)=-V(J,K)

44 CONTINUE

ENDIF

GO TO 3

ENDIF

IF (ITS.EQ.30) PAUSE 'No convergence in 30 iterations' 380

X=W(L)
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NM=K-1

Y=W(NM)

G=RV1(NM)

H=RV1(K)

F=((Y-Z)*(Y+Z)+(G-H)*(G+H))/(2.0 *H*Y)

G=DSQRT(F*F+1.0)

F=((X-Z)*(X+Z)+H*((Y/(F+SIGN(G,F)))-H))/X

C=1.0

S=1.0 390

DO 47 J=L,NM

I=J+1

G=RV1(I)

Y=W(I)

H=S*G

G=C*G

Z=DSQRT(F*F+H*H)

RV1(J)=Z

C=F/Z

S=H/Z 400

F= (X*C)+(G*S)

G=-(X*S)+(G*C)

H=Y*S

Y=Y*C

DO 45 NM=1,N

X=V(NM,J)

Z=V(NM,I)

V(NM,J)= (X*C)+(Z*S)

V(NM,I)=-(X*S)+(Z*C)

45 CONTINUE 410

Z=DSQRT(F*F+H*H)

W(J)=Z

IF (Z.NE.O.0) THEN

Z=1./Z

C=F*Z

S=H*Z

ENDIF
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F= (C*G)+(S*Y)

X=-(S*G)+(C*Y)

DO 46 NM=1,M 420

Y=A(NM,J)

Z=A(NM,I)

A(NM,J)= (Y*C)+(Z*S)

A(NM,I)=-(Y*S)+(Z*C)

46 CONTINUE

47 CONTINUE

RV1(L)=O.O

RV1(K)=F

W(K)=X

48 CONTINUE 430

3 CONTINUE

49 CONTINUE

RETURN

END

DOUBLE PRECISION FUNCTION RAN1(IDUM)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION R(97)

PARAMETER (Ml=259200,IA1=7141,IC1=54773,RM1=3.8580247E-6) 440

PARAMETER (M2=134456,IA2=8121,IC2=28411,RM2=7.4373773E-6)

PARAMETER (M3=243000,IA3=4561,IC3=51349)

DATA IFF /0/

IF (IDUM.LT.0.OR.IFF.EQ.0) THEN

IFF=1

IX1=MOD(IC1-IDUM,M1)

IX1=MOD(IA1*IX1+IC1,M1)

IX2=MOD(IX1,M2)

IX1=MOD(IA1*IXl+IC1,M1))

IX3=MOD(IX1,M3) 450

DO 11 J=1,97

IX=MOD(IA1*IX1+IC1,M1)

IX2=MOD (IA2*IX2+IC2,M2)
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R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1

11 CONTINUE

IDUM=l

ENDIF

IX1=MOD(IAI*IX1+IC1,M1)

IX2=MOD(IA2*IX2+IC2,M2)

IX3=MOD(IA3*IX3+IC3,M3) 460

J=1+(97*IX3)/M3

IF(J.GT.97.OR.J.LT.1)PAUSE

RAN1=R(J)

R(J)=(FLOAT(IX1) +FLOAT(IX2)*RM2)*RM1

RETURN

END
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