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Abstract

Chapter 1 This chapter locks at a dynamic panel data model with
fixed effects. Estimating the model with GMM is consistent but suffers
from small sample bias. We apply Helmert’s transformation to the model,
assume that error terms and nuisance parameters are homoskedastic and
independent across observations and of one another, and utilize the GMM
bias calculation of Newey & Smith (2001). This leads to a closed form
expression for the GMM bias applied to AR(1) model.

Chapter 2 This chapter develops specification tests for quantile re-
gression under various data types. We consider what happens to the
quantile regression estimator under local and global misspecification and
design specification tests that handle a wide range of data types. We
consider how to carry out such tests in practice and present Monte Carlo
results to show the effectiveness of such tests.

Chapter 3 Through a Taylor expansion, We compute the bias of a
general GMM model where the weighting matrix A of the moment condi-
tions g(z, #) is left unspecified, except for some general conditions. Our
bias results are compared to those of Newey and West (2003}. An impor-
tant case of GMM estimation with a general weighting matrix 4 is when
A is a function of a vector of parameters with fixed dimension. Arel-
lano’s IVE estimator is an example of this type of estimator - we consider
the bias properties of Arellano’s IVE estimator in the AR(1) setting and
compare them to our results from Chapter 1.
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Part I
Small Sample GMM Bias in the
AR(1) Model

1 Introduction

Consider the dynamic panel model with fixed effects:

yz‘,t=0fyi,t—1+77i+'ui,ta t:27"'3T1 ""=177N

For large n, fixed T', Nickell (1981) showed that the standard fixed effects MLE
suffers from the incidental parameter problem, which leads to inconsistency.
To avoid the inconsistency of MLE, the literature has focused on applying
GMM to first differences. In carrying out GMM, Ahn & Schmidt (1995) and
Hahn (1999) have shown that the orthogonality of the lagged levels with the
1st differences provides the largest source of information.

The problem is that even though GMM is consistent, the estimator suffers
from substantial finite sample bias (Alonso-Borrego & Arellano (1996)), which
leads to inference problems. Our goal will be to find a closed-form expression
for this bias and to understand how the bias grows with T. This problem is
more approachable by first applying Helmert’s Transformation.

Arellano & Bover (1995) note that the efficiency of the resultant GMM is not
affected whether we use first differencing or Helmert’s Transformation. This
transformation is also used in Hahn, Hausman, and Kuersteiner (2002), where
a second-order approach was taken to compute the bias as a function of the
data. The resulting bias formula was used to construct a bias-corrected GMM
estimator.

Our paper takes a different approach at the bias calculation. Qur derivation
of the bias will follow from Newey & Smith (2001). They give a general form of
the bias of GMM that can be applied to the AR(1) panel data model. We will
assume that error terms and nuisance parameters are homoskedastic and inde-
pendent across observations and of one-another. This yields a simplification of
the part of GMM bias which grows with the number of moment restrictions.
Using this simplification, we will compute a closed-form expression of the bias
as a function of the underlying parameters. The resulting bias calculation will



be used to construct a bias-corrected GMM estimator.

2 GMM Bias

We consider a standard GMM model with a fixed number of moment restric-
tions. Let z;, (¢ = 1,...,n) be i.i.d. observations on a data vector z. Let 3 be
a K X1 parameter vector and let our moment conditions be given by g(z, 8), a
JX1 vector. At the true parameter 3y, we require that g(z, 8y) = 0.

The two-step GMM estimator of Hansen (1982) is given by:

Bemm = argmingd(BYQ(B) " ¢(5) (1)

where Q(8) = (1/n) Y2, 9:(8)g:(8)’ and f = argmingg(8)W 14(8), where
W is an initial weighting matrix.

Newey and Smith (2003) derive stochastic expansions for this two-step GMM
estimator. Under identification and regularity assumptions, as well as condi-
tions on the initial weighting matrix W, they find the asymptotic bias of GMM
to be given by:

Bias(ﬁGMM) = B;+ Bg+ Bqg+ Bw

By = H(—a+ E[G;Hg]}/n

BG = —EE[G?;'PQZ‘]/TL

Bq = HE[9:.9,/ Pgi]/n

Bw = HY L, Qp(Hw — HYej/n

where H = ¥G'Q™!, Hy = (GWIG)'GW-!, G = E(G), P=0"! —
Q*IGZG’Q”, ﬁﬁ; = E[a{gl(ﬁg)gi(ﬂo)’}/a,ﬁ]}, r= (GIQ"IG)_I, and a is an
m-vector such that;

a; =tr(Y  E[0%9,;(80)/0898))/2, i=1,....m

Newey and Smith (2003) give interesting interpretations of the various parts
of the bias. By is the asymptotic bias for a GMM estimator with the optimal
linear combination G’Q2~1g(z,3). Bg arises from estimating G = E(G,). This
is zero if 7; is constant, but is generally non-zero if there is endogeneity. Bq
arises from estimating 2; this is zero if the third moments are zero, but is
generally non-zero. By arises from the choice of W, the first step weighting
matrix. It is zero if W is a scalar multiple of 2.



We will apply this bias calculation to the AR(1) model, assuming that the
error terms and nuisance parameters are homoskedastic and independent across
observations and of one-another. We next present the AR(1) model.

3 The AR(1) Model

Consider the dynamic panel data model with fixed effects:

Vit = 0Yip—1 +Mitvge, t=1,...,nt=2..,T (2)

We make the following assumptions;

Assumption 1 E(v; ;) =0V i#jort#s Elqn)=0Vis#£]
Assumption 2 E(nu;) =0V 4,5t

Assumption 3 Var(v;;) = ¢? V i,t, Var(y,) = 0’,2, Y 4.

That is to say, v;; and 7, are independent across ¢,t, are independent of one
ancther, and each has constant variance.

GMM estimation is based on the orthogonality of the observations and some
function of the error terms. The usual way to achieve this is through the first-
difference form of the model.

Applying first-differences, we are able to exclude the 7; term:

(Yit — Yie—1) = (Yig—1 — Yig—2) + {(Viz — Vig—1)

The transformed error terms v; ;—v; ;) are independent of y; s for s =0,...,{—
2 and GMM is based on this orthogonality:

E(yis—1(vit —vig—1)) =0, s<t, t=2,---,T-1

Instead of first-differencing, we follow the work of Arellano and Bover (1995)
and apply Helmert’s Transformation. This will greatly simplify the calcula-
tion of the GMM hias. The efficiency of the resultant GMM estimator is the
same whether first-differencing or Helmert’s Transformation is used. Applying
Helmert’s transformation to the observations, we have:




., ( 1 i v ) . T ¢
Yo =Ce | Uit — = ik | t= A1
T tszl T—t+1

This transformation gives:

T-1
. 1 .
Yir = @y ('yi,t—l ~ T3 > yi,k) gy (3)

k=t
Allowing z; = y:—1, Eq. (2) can be written as:

* * *
Yir = QTy + U3,
If the v;; are uncorrelated across time, then the transformed errors v}, will

retain this property: F (UZtUz‘*,t—f—j) =0 for 7 # 0. This implies £ (U;‘]tyi,s_l) =
0 for s < ¢, allowing us to use ¥;1,...,¥:¢—1 as instruments.

HHEK(2001) show that, with the homoskedasticity assumption on the Vig,
the GMM estimator based on this orthogonality is actually a linear combination
of the 2SLS estimators BQSLS’l,. . ,BQSLS’T_I, where B2SLS,~£ is the 2518 of
on z;. Since 25LS is subject to substantial finite sample bias, it is reasonable

to believe that our GMM estimator will have the same deficiency.

4 Closed-Form Bias for AR(1) Model

The computation of the bias will involve a number of steps. In Section 4.1, the
general form of GMM bias for the AR(1) model will be given. In Section 4.2,
the moment conditions will be addressed. Section 4.3 will address computation
of the GMM weighting matrix 27!, Sections 4.4 and 4.5 will focus on com-
puting the two parts of the bias, (E(G(a))Q1E(G;(2))) ! and E(GIQ1g,),
respectively. Section 4.6 will put all the pieces together to give a closed form
expression for GMM bias for the AR(1) model.

4.1 General GMM Bias for AR(1)

We wish to apply the GMM bias results of Newey and West (2003) to the
AR(1) model.

Lemma 1 Consider our AR(1) model under assumptions 1-3. The finite sam-
ple GMM bias which grows with the number of moment restrictions is:




BIAS = —(E(Gi(a))Q IE(Gi(a)) *E(GIY ) /n, where
at = E(g(a)g (@)
Gi(e) = Fala)

Proof: See Appendix A 1

Our goal in the following sections will be to compute the two components of the
bias (E(Gi(a))Q E(Gi())) ™" and E(G{1g,) for the AR(1) model under
Assumptions 1-3. This will give us an understanding of how tGMM bias is

growing with the number of moment restrictions.

4.2 Moment Conditions

Helmert’s Transformation has given us the orthogonality conditions needed to
conduct GMM. For each of the transformed equations, we have ¢t — 1 lagged
values of y that we can use as instruments. The moment conditions are:
E (U;‘,tyi,s_l) =0fors <¢ t=2--,T -1, where ¢}, = y}, — ax};. De-
fine 4t = (Vi Wiz i) and g3 = ¥} 141¥:¢- Then our moment conditions are
given by E(g;(a)) = 0 where the vector g;(a) = (9i1%2 " gir_y) is (T_22(T71)
X 1.

4.3 Computing Q@' = E (g, (a) g; (cu)')_1

We begin with the definition of the cross product of the g;’s: Let F} = g; {@) g; (@)’
and f; (a,b) = [Fi]a,b- Note that @ = E(F;). We will first solve for 2 and then
invert the matrix.

4.3.1 Solving for O

We must solve E (f; (a,b)) for various a,b. The following definition will allow
us to solve E (f; (a,b)) under three cases.

a,b are in the same family if j(a) = j(b). To simplify notation, let

2

2 o,
P= 5 4= o
Theorem 1 We have the following results:

o Ifa=1b, then E[fi(a,a)] = c*(p+q)

10



¢ Ifa #bbuta andb arein the same family, then E[fi(a,b)} = o2 (alb=%lp 4 ¢)

o Ifa#band a and b are in different families, then E (fi(a,b)] =0

Proof: See Appendix A.3.

Theorem 1 gives us the following representation of , which is a block di-
agonal matrix:

t—1

p+gq ap+q  oPp+q - atlptg

A -0 ap+q  p+qg  optq - ap+g

Li=| : . , ¢é/:oz o’pt+q  oaptqg  ptg - o' Fptg
0 - Ap_, txt : : : . :

o' lp+q o Pp+q o' Bpt+g - peg

4.3.2 Computing Q!

We can rewrite Ay as A, = o2 (pM; + ger€}), where ¢; is a t x 1 column of 1’s
and Mg is a ¢ x t matrix. To invert {);, we must first invert the A; matrices.
"This requires an application of the partitioned matrix inverse formula (Linear
Statistical Inference by Rao). The formula states that if B is a nonsingular
matrix and U, V' are column vectors, then

(B Y

VI -1 — -1
(B+UV)" =5 14 V'B-1U

Theorem 2 Applying the partitioned matriz inverse formula gives us the fol-
lowing representation of Qi_l:

A;l ]

- - - l

Qilz : s Atlzg—i(Ntfhth)vt
0 - A,

2

o
ht = (ﬁﬂ_—jﬂ2+ﬂ% t+12TQu ) Vi

—a 1

1 -
Ny = (1-0?), N2=( a)’ R = (1+a)?, Rz—(l 1).Fo'rt23:

11




1 - 0 0 1 l-a - l—« 1

—a 1+a? —a - 0 l—a (1-0)® -+ (1-a)? 1-a
Ny = : | Re= : : f :

0 i —a 1+4+a? —a l-a (1-a)? -~ (1-0a)? 1-«

0 0 — 1 1 l—a¢  1-—a 1

Proof: See Appendix A.4.

With Q-1 computed, we can concentrate on computing the two parts of the
bias: E(Gi171g;) and (E(Gi(a))Q ' E(Gs(a))) L.

4.4 Computation of E(G/Qg,)

This part of the computation is by far the most intensive. Recall gi¢ = v: t.41 Ot
where vf;,; is the error term in the transformed equation (Eq. 2), § =

( Yi, 1 Yi2 Yit Y, Gi(a) = zd;gz‘(a)- Then we have:
r ? i !
Gi(a) = ( i Gia o Giroa )

Gy = —¢ [yi,t == Ez:tlﬂ yi,k] Gt

We are now able to write E (G2 1g;) = 23;_12 E (GéAt_Igt). The right-hand
side term separates into parts, given in Theorem 1 (Apppendix B.1). The
expectations are taken in Theorem 2 (Apppendix B.2). Theorem 2 gives the
final closed-form expression for E (G} gi-).

Theorem 3

T-2
E(Gi07g) =) Bla,o,T,t) x Term(t)
t=1
Blo,0,T,t) = — [L+al " Ha(T —t — 1) = (T —1)]] / [0*(L — ) (1 + a)(T ~ )(T — t — 1)]
20’,2](1(1 —d?) -1 —a)? t=1
Term(t) = [oh(1+0)%+20%02a(l —a?)—o*(1—a)’(1- 20)] / 202+ 0%(1 - )] t=2

[04C(a,t) + 002D (a,t) + o3E(e,t)] / [02(1 — ) + o5 (t(1 — &) + 20)] t >3

Cleyt) = (1 —a)*(1—t(1-a?))
Dia,t) = (1-a)[(1-)2af{ef + a2 —2) — 1 —t({(1 - o?) + 2a(l + a) — 1)] + 1 + 30
E{a,t) = (1+o)[(1-a)5-3t+ 20871 + da(t — 2)] + 20]

12




Proof: See Appendix A.7.

4.5 Solving for & = E(Gi(a)YQ™ E(G(a))) !

Using Q7! and E(G,) (Lemma 4, Appendix C.1), we have a closed-form ex-
pression for ¥i:

Theorem 4 Plugging in for Q! and E(G;(c)) (Lemma 3 - See Appendiz A. 8)
gives:

(1+a 1—af-t 1° o2 o, (t—1) B
(ZT*t—l[ (l—a)(T—t)} (02(1—a)+a,?[t(l—a)+2a]>)

Proof: See Appendix A.9.

4.6 The Bias

Combining ¥ and E(G/Q71g,), we have:

BIAS = ~SE(G!Q ™ 1g)) /n (4)

-1
— (4 T-2 _T- 1-a7-t ]2 240, (t=1)
Xo= (Zt:l T [1 - (1_a)(:rut)] (az(1—5)+an'[t(1a)+:5])>

T2
E(Gi'g:) = Bla,0,T,t) x Term(t)

t=1
B(a,0,T,t) == [1+ o # Ha(T -t — 1) = (T = 8)]] / [0*(1 = )*(A + a)(T — £)(T — ¢ — 1)]
20%&(1 -a?) - 0?1 - ) t=1
Term(t) = [0;1}(1 +a)? + 2020204(1 —a?) —o¥1 - )1 - 2a)] / [20% +oi(l—a)] t=2
[0'C(a,t) + 0%02D(a, t) + 02 E(a,1)] / [0*(1 — @) + oa(t(l—a)+20)] t>3

Cla,t) = (1—a)’(1-t(1-0o?))
Dia,t) = (1—a)[(1-a)2a(cf +at=2 —2) -1 —t(t t(1-0®)+2a(l+a)—1)]+1+ 3q]
E(a,t) = (1+a)[(1-a)5—3t+2a"1 +4a(t - 2)] + 20

13




5 Monte Carlo

Equation (3) gives us a closed form calculation for the bias of GMM under a
dynamic panel data model with fixed effects. Using R, we have constructed a
function GMMBIAS which takes a,a%,aQ,n, and T as its arguments.

With ¢, = 0 = 1, Table 1 tabulates both the actual bias approximated
by 10000 Monte Carlo runs and the bias predicted by Second-Order Theory -
these results are taken directly from HHK, Table 1. Our own calculations for
the bias are calculated in R using the function GMMBIAS, and are included
in Table 1.

Of course, when carrying out GMM estimation for the dynamic panel data
model with fixed effects, a will not be known and af, and o2 are generally
unknown. HHK uses an estimator of the Second-Order Bias to create a bias
corrected estimator, dpecz. In the same way, we can construct an estimator &
by plugging in estimates for the unknowns in our own bias calculator:

&z = doum — GMMBIAS(6any, 62,670, T)

In computing &poy, HHK ran a Monte Carlo with 5000 iterations. We ran
a separate Monte Carlo with 5000 iterations and have included our results with
theirs in Table 2.

As we saw in Table 1, our calculation of the bias is poor for values of o close
to 1. In running a Monte Carlo with 5000 iterations, there will be a handful of
iterations where GMM will estimate « as close to 1 even when it is not. Those
particular estimates, when run through GMMBIAS, will lead to an extremely
hiased &z.

Table 2 does not include the mean of &z for the 5000 iterations. Instead, we
have included two variants: &z trunc, and &z meq- 6.7 trune throws out the max-
imum 100 and minimum 100 &z estimators and then takes the mean. & Z,med
simply looks at the median &z among the 5000 estimators. Both methods are
meant to minimize the impact of extreme estimators stemming from a GMM
estimate of o close to 1.

In the last two columns of Table 2, two other variants of &z are included:
&% trunc 80d Gz meq. These estimators are computed with a% and o2 assumed
known and set to 1. There does seem to be some improvement in our esti-
mator with the variances assumed known, but the empirical evidence is not
overwhelming,

14



6 Conclusion

The focus of the research here was to find an expression for the part of GMM
bias that grows with the number of moment restrictions in the AR(1) model.
Applying Helmert’s transformation to the panel data model, and making sim-
plifying assumptions on co-variance of the error terms (Assumptions 1-3) al-
lows us to find such an expression. Section 4.6 presents the GMM bias which
is easily programmable, and therefore, applicable. We have constructed an es-
timator ¢z which carries out GMM as a first step, estimates the bias based on
the first-order GMM calculation, and yields a bias-corrected estimator in the
second-step. The estimator does not do as well as g BC2, but there is hope that
this can be improved by including the parts of the bias which do not grow with
the number of moment restrictions.

15



Part 11
Specification Test Processes for
Quantile Regression

1 Introduction

This paper is concerned with providing simple, attractive tests - both compu-
tationally and theoretically - with regards to the validity of quantile regression
models as global descriptions of the conditional distribution.

Quantile regression models allow us to focus on local slices of the conditional
distribution and isolate factors that influence particular quantiles without im-
posing the restriction that these factors affect other quantiles in the same way.

Section 2 will present various data types which will be covered by our speci-
fication tests. Section 3 will consider what happens to quantile regression under
misspecification. Section 4 will outline specification tests. Monte Carlo results
will be presented in Section 5.

2 Data Types

2.1 Quantile Regression Specification

Our target is the conditional quantile model of the dependent real variable
Y given covariates X in R?, Qy|x. Qyx is the inverse of the conditional
distribution function Fyx:

Qyx(T) = inf{v: Fyx(v) 2 7}

therefore Qy|x is a complete description of the stochastic relation of ¥ to X.

The linear model of Qyx is of fundamental importance, convenience, con-
ceptual appeal and computational simplicity, incorporating the classical linear
model and linear location-scale models as special cases,

Qyx (1) = X'B(7),

or, equivalently, in terms of a random coefficient’s model,
Y =Qyix(U) = X'8(U),

16




where U ~ Uniform(0,1) and independent of X. And, indeed, such a model
is central to a substantial number of empirical studies. Nonlinear models have
also been used but we shall focus only on the analysis of the linear model
with no endogeniety. (Incorporating endogeneity is straightforward in GMM
framework provided there are instruments Z that are independent of the error
U, correlated with the endogenous variables X).

This paper focuses on determining whether X’3(-) is an accurate description
of Qy|x - this is a goodness-of-fit problem. The tests offered here apply to a
wide range of data types encountered in empirical research. The next section
presents some basic reference models.

2.2 The Data Models

We will design tests to cover the following general data types. The 4 mod-
els given here (M1,M2a,M2b,M3,) are intended to cover a wide variety of
applications.

2.2.1 iid Data
Model 1 (M1) {W; = (¥}, X;),t <n} is an i.i.d. triangular sequence.

iid sampling is a general mechanism that applies to a variety of situations.

2.2.2 Panel Data Models with Random Effects

Panel data consists of cross-section and time dimensions. The cross-section
dimension of the panel is indexed by ¢ < ng and the time dimension by i< Jd,
with the total number of observations denoted as n. We assume that ng — oo
and J is fixed.

The notion of “time” is defined broadly. E.g., in twins studies, i may denote
the twin pair, and “time” j denotes 1 or 2. In education studies, where it is
important to account for peer effects, i may denote a particular class or group
under consideration and j may denote a pupil in this class,

Models of panel data with random effects incorporate dependence across
the “time” dimension in order to correctly conduct inference. For example,

17




consider a mean regression model:

}/1'_7 =v; + X;JOL + 81}ja

E(EU + ’Ui) =0, (1)

where &;;,v; are independent of X;;, &; are i.i.d. across ¢ and 4, and v; are
ii.d. across 4. The random effect v; induces stochastic dependence of the errors
&;j+wv; across j, for a given i. Note that v; is introduced in a way that does not
change the main structural part of the model — the conditional mean function
'

We next describe a simple model of random effects for quantile regression.
This model captures the dependence of response about the individual 4, without
affecting the conditional quantile function Qv,yixy-

Model 2 (M2a) For an unspecified function ®

Yij = Qyvix,;(Uy), Ui = ®(vi, &),

(2)
Uy k3 U(0,1) conditional on {X;;,7 =1,..J},

v; are independent across i, &£; are independent across ¢ and j. For W, =
{(Yiy, X45),3 < T}, {W;,i < mp}isaniid. triangular sequence, and {V;, X;,t <
n} is a stationary triangular sequence.

Here, v; is the “random effect” that reflects an interdependence of data
about “individual” i. M2a easily nests the mean regression model (1). Indeed,
denoting by I the distribution function of v, + &,,

Qvix(T) = X'a+ F(7),
Uiy = F(v; + &),

By taking e.g. U;; = F(vis + voi - £j), vi = (v15,v2:) one generates even more
complicated random effects forms. The factors v; influence location and scale
of individual errors &, = F *1(Uij). One can proceed with further examples to
show that M2a is capable of capturing a wide variety of dependence.

M2a leads to a simple variance of estimators of Qy|x, since it implies that
the “errors” 1(Y;; < Qyx,, (7)) = 1(U;; < 7) are mutually correlated across
j with a constant correlation 7(7), and uncorrelated across . Parameter r(7)
has interesting structural meanings as well.
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2.2.3 Panel Data with General Dependence

More general models for panel data were developed. Sce, for example MaCurdy
(1982), (2001). Many of them intend to capture various forms of temporal
dependence in the error structure. To this end, consider the model

Model 3 (M2b)

Yy = Qv x, (Vi)
Us; is independent of X;;.

3)

For a given i, (Uy;, X;;) are possibly dependent but stationary across j (This
is to simplify notation). For a given j, (U;;, X,;) are assumed to be independent
across ¢. Furthermore, write Wy = {W; = {(¥};, Xy;),7 < J},i < n}. Note
that by construction, {W;} is an i.i.d sequence and {Y:, X;} is stationary. This
assumption is often made in the applied regression analysis of panel data (see
MaCurdy, 2001)!. Clearly such a model nests M2a as a special case.

2.2.4 Weakly Dependent Data

Denoting W; = (Y3, X;), sequence {W}}, is assumed to satisfy a certain weak-
dependence condition, called strong mixing (see Doukhan (1994) for definition).
Mixing insures that once two events are separated far enough in time, they are
almost independent.

Model 4 (M3) Suppose for every n, we observe {W;,1 <t < n}, a chain in
the sequence {W,} defined on probability space (2, Fn, Pp). Let .7-‘,1{7" be the o
-algebra generated by {W;,l <t < m}, and define the corresponding o-mixing
sequence by
a(k) = limsupsup |P,(AN B) — P,(A)P.(B)|,
n A,B

where A and B vary over the o-fields F;*°! and Fat%, respectively. {W;} is
said to be a-mixing or strong mixing if a{(k) — 0 as k& — 0.

Such data sequences lend themselves to stochastic limit laws under condi-
tions mentioned in the appendix. The class of mixing processes is fairly broad.

!Typically, the data (such as wages) are differenced to obtain stable series.
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For example, ARMA and GARCH processes with continuously distributed sta-
tionary innovations and bounded variances are strongly mixing (with geomet-
rically decaying coefficients) (Doukhan, 1994). It is possible to go beyond these
mixing results to the degree the key stochastic limit laws hold, as posed in the
appendix.

3 Quantile Regression under Misspecification

Section 3.1 discusses the quantile regression estimator of Koenker and Bassett
(1978). Section 3.2 presents the assumptions we need to obtain large sample
results of Section 3.3. In Section 3.3, we show an asymptotic Gaussianity of
the regression quantile coefficient process (,@(‘r), TE [e,1—¢]).

3.1 The Quantile Estimator

For simplicity, the data {W; = (¥;, X;)}/L, will be treated as an ergodic station-
ary sequence defined on the complete probability space (Q, F, P). Ep denotes
the expectation with respect to P, and E, denotes the expectation with respect
to the empirical measure: E,f = % Yor.1 f(W:). The set of quantile indices of
interest is given by 7 = [¢,1 — €], € € (0,1/2).

This paper focuses on the quantile regression estimator of Koenker and Bas-
sett (1978), which minimizes the asymmetric least absolute deviation criterion:

A(r) € argmin Enp, (Y - X'B), (4)
Bem?

where
pr(w) = (7 — 1{u < 0))u.

B(’r) could he interpreted as an analog estimator. Under stated conditions, 3
converges in probability to 3(7) such that

B(r) = argmin Epp, (Y — X'f), (5)
Bekd

if the latter is uniquely defined. The true conditional quantile function Qvix
satisfies an analogous condition

Qy|x € argming Epp (Y — f(X)), (6)

where the minimum is taken over the set of the measurable functions of X.
Thus X’3(7) is a convenient approximation of Qy|x, and 3(7) is the estimate
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of the parameters of this approximation. The convenience ranges from such
practical considerations a8 computability to a number of useful equivariance

and robustness properties; 25 studied In Koenker and Bassett {(1978).

3.2 Assumptions

(Yy, Xe) 15 2 gtationarys ergodic triangular sequence on the probability space
(Qn,Fn,Pn). Define Excf = Wy o BP F(Y, Xi)- The parameter Ba{r) 18
defined to solve the equation

Ep, (oY — X' Ba()X =0

for each m, where @ {u) = (r — 1 < 0)). Under conditions M and L (see
Agsumption 1 pelow), this 18 equivalent to B (T) solving the population Preé-
diction problem: Balm) = argming, erd Ep prY — X'3). BT denotes the
solution under measure M, equivalently denoted here as Po. Index 7 pelongs
to T = (61 _¢), fore> 0

Outer /inner probabihties P*, P and stochastic equicontinuity are as in
VanDerVaart. We will say that the process {l = va(),1 € £} 18 stochasticolly
equi-continudus (s.e) in goo(L) i Ve > 0 and n>0.30 > 0:

lim supPr ( sup \onll) ~ w1 > n) <€
p(

T —oc 1,1)<8

for some semi-metric g o0 L, st (£ p) s totally bounded.

Assumption 1
M) Uniformly in ™ > n,, as well a8 ™= o0
(1) BrdT) uniquely solves Epncp.r(Y*X’ﬁ)X =0, 8T € interior ©, YT € T,
O is compuct set ofRd, Bn(T) 18 continuous in T 07 T (um'formly inn)
(i) Xt 18 supported on X, a compact set in RY, Var(X) i positive definite.
(i) frix (y) 18 wniformiy continuous and bounded in Y, and Fri=l2 B(r)) > 0
uniformly m T andz € X
(iv) P,‘;”], the low of (Ye, Xes < m) under P,, s comtiguous o M.

(L) For ol uniformly m 0 pounded measurable maps (X, Y) ha(X,Y),

\,fﬁ(Enhn«Ehn) Ly N{O, Vaalitmy ) wET Vg, P = 1iTPnco Varuly/nEnhal
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(E) vn[E 1Y < X'8)g(X) — Ep, 1(Y < X'Bg(X)] is s.e. miC(OxG). X €
G, where G s a collection of test functions.

M is the basic model setup. Assumption L requires applicability of CLTs
and LLNs. E is easy to verify in applications. The class of functions G is used
to form the over-identifying restrictions that serve as basis for the specification
tests. All examples given here are considered to satisfy E.

3.3 Quantile Regression Large Sample Properties

Theorem 1 ( Gaussianity of 3,(-)) Under conditions (M) (L) (E), in£>°(T)

v (Bal) = Ba()) = 2(),
where z(-) i a Gaussian process with covariance function
wa(r, ') = V(U(n), (7)),
with I(7) = J; (1), (Y — X'8(r)) X, Jo(7) = Ep, frix (X'Ba(r)) X X'.

Proof: See Appendix B.1.

The theorem requires an availability of suitable CLT and LLN, and a simple
equicentinuity condition, which is extremely easy to verify in all applications
which we consider. Hence it has a very wide applicability.

Theorem 1 holds under local or global misspecification. Suppose that the
data is iid. Then, the asymptoic variance is:

w(r,7) = SN En XX o (Y — X'B(r)2J ()

If it further happens that either 1) Qyx(7) = X'8(r) P- a.s. (correct specifi-
cation) or 2) We have local misspecification (see equation (7) below), then:

woz(7,7') = Iy T En X X 7(1 = 1) J7 (7).

It is common practice to report a consistent estimate of J;!(+)EXXr(1 —
7)J71(7) as an estimate of the asymptotic variance of ,@(T) Unfortunately, it
is typically the case that

[EvXX'p:(Y - X'B(7)?], # [EnXXT(1 - 7))
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Therefore, the common practice may incorrectly state the variance of the es-
timator under (large) misspecification. Moreover, the pivotal re-sampling ap-
proaches that use an incorrect estimate of variance may provide invalid confi-
dence intervals.

Limit variance under local misspecification. Under the regularity
conditions posed, consider a sequence of models where

Qyix(r) = X'0(r) + ¢(X,7)/Vn, Pa - as. (7)

such that PT[L”], describing the law of the sequence {W;,1 < t < n}, is contiguous
to a probability measure P under which Qyx(T) = X{B(r). Additionally,
assume /1 (0, (1) — B(7)) — co(-), uniformly in 7, where co(-) is a fixed con-
tinuous function.

Then the variance operator simplifies to
wox(7,7) = Vp(lo(7), lo (7)),

where lo(7) = Ji;' (Ner (Y ~ X'B(1)X, Joz(7) = Esfyx(X'B(r))X X', AL
though asymptotically /n(8.(t) — Bn(7)) is centered at zero, it is the case
that

VA(Ba() = B()) = eo(-) + zo(),
where zg(-) is the centered Gaussian process with covariance function wy, (7, 7').

Limit variance in panel models. For the case of the global misspecifi-
cation, covariance w,(7,7’) takes the following form in the panel data model
M2b (and M2a):

J
w, (T, =J (T){EI: (L T)llJ )’)

=1
+ Z [Bactis (r)ban (') + Eﬁ,zlk(T')z”(r)']] }Jz ().
k>3
For the case of local misspecification, replace l;;(1) = ¢, (Vi — Xi8:.(7)) X,
by pr (Y — X'8(7))Xy5, and J71(7) by J52 (7).
In the locally misspecified case, for M2a it is further the case:

17

g
wo, (7, 7)) =Jg .t (T){ Z |:{min(‘r,7") ~77'}Ep(Xi; X};)

i=1

+ {p(r,7) — v’} Z [EPXUX1L + EpXuX] ]] } Joz ('),

k>F
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where for 7 # 7'
plr,7) = BTy € 7) - LUy < 7).

o(7,7") could be estimated by computing sample covariances between 1(Y;, <
Xi3Bn(7)) and 1(Yi; < X[, 5n(7)).
If the panel is unbalanced (i.e. for a given 4, § < J; < K), insert J; in place

of J and put limn, cony ' in front of {-}.

1<ng

3.4 On the Need for Specification Tests

The above discussion provides a strong motivation for specification tests that
have power against \/n alternatives. They are needed to construct models that
can be thought of as locally misspecified in the usual Pitman sense. Pitman
and Le Cam proximity notions or statistical experiments formalize the concept
of small misspecification and allow the decision-maker to proceed using his
model as local to the true one. Therefore, (1) if the conditional quantile model
is locally misspecified, then it is in the proximity of a genuine quantile model;
(2) Local misspecification simplifies variance operators and rationalizes the
otherwise unrobust conventional inference; (3) Model reduction hypotheses are
often considered, e.g. in Koenker and Xiao (2000), assuming that the model
is correctly specified; such inference is validated also when the misspecification
of the model is v/ local.

4 Specification or Goodness-of-Fit Tests

4.1 'Tests Based on Instrumental Variables

By Theorem 1, under correct specification or global misspecification, fin(‘r)
converges uniformly in 7 in probability to the 8,(7) that solves the equation

Ep, o (Y —X'B,{7))- X =0, for each 7 in 7.
The hypothesis of correct specification,
Ho: Qy\x(7) = X'B,(), for each 7 in T, with prob. P, 1,
is equivalent to the condition

Ep o Y = X'8,(7))-Z =0, for each 7 in 7, (8)
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for any measurable function Z = g(X). Indeed, (8) will not hold for some
g9(X), if X'3,(7) differs from Qy|x (7| X) with positive probability for some .
Since we assumed that Qy | x(7) is a strictly monotone continuous function of
T, PY <uX] -1 =0iff Qyx (7} = v P-as. Thus, under the alternative
to Ho, Var(P[Y < X'B8,(7)|X] —7) > 0 for some 7. Hence for Z = P[Y <
X'B(MNX] =7, BEer(Y — X'8,(7))Z = Var(Z) £ 0, for some .

Therefore, a basic specification test can examine the validity of (8) by con-
sidering the finite sample approximation of (8):

i(7,9) = Eppr (Y — X/ﬁn(T))g(X)i

for a collection of test functions g(X'). These test functions g should be carefully
chosen to reveal that P[Y < X'3,(7)|X] # 7, when Hj fails. The discussion
of this choice is postponed until we get through the basic material.

Next consider a very simple statistic that will be a basic building block
for more complex statistics that examine the approximating ability of quantile
models:

S(r,9) = nji(r, gy W (r, 9)2(r, g),

where W (7,g) is chosen to yield a standard distribution under Hy. Given
regularity conditions posed later, under Hy,

Vaii(r, g) ~2 N(0,9(r, g)).

Choose W (7, g) T Q7 (7,¢), so that under Hy

S(7,9) <, X3, k= rank Q(r,g),
for a given T and g. This leads to a critical region of the form {5‘(7’, g) > ¢},
where ¢ is the 1 — a-th quantile of the X% variable. For a given quantile index
T, this is the simplest form of a goodness-of fit test.

Three degrees of complexity will be added to this basic formulation. First,
we wish to examine whether (8) is valid for all 7 in 7, which demands a
Kolmogorov-Smirnov (or Cramer-von-Misses) formulation of the test statistic.
For instance,

sup S’(’r, g)-
TeT

Second, the choice of g will be addressed in two different manners, allowing g
to vary among finite and infinite collections of functions G, leading to statistics
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such as

sup 5‘(7’, g).
T€T ,g€Q

The following three sections introduce the formal assumptions, formulate
the statistics of the above kind, and describe their sampling theory and simple
computational methods. The last subsection introduces a method of estimat-
ing the critical values for the tests using subsample bootstrap,and studies the
properties of the resulting test.

4.2 General Specification Tests.

First, we consider cases when the number of test functions ¢ is fixed - i.e., when
the number of test functions is small relative to the sample size.

4.2.1 Finite Number of Test Functions g.

Denote by g a function that maps g : X — R*. If we have several vector valued
tunctions gm,m < h, they can be arranged into one function G = (gy,7 < h).
We call
SE(ShwhfeT)
the specification test process. S is a stochastic process or function in £°°(7), the

metric space of bounded functions, equipped with the sup metric. Similarly,
we call

fp=( irg).7eT)

the score process; i also takes its values in £°°(7). To avoid measurability

problems caused by the discontinuities in the sample paths of /i, and S, we use

stochastic convergence in the sense of Hoffman-Jorgenson (See Vandervaart).
Define

1(7,9) = Eppr(Y — X' Ba(1))g(X).

In reference to the general hypothesis Hy, consider the following null, alterna-
tive, and local alternative hypotheses

Hy:u(r,g) =0, VreT,Vgeg
H,:u(r,g)#0, IreT,Igcg
Ha, - p(r,9) =n(r,9)/vn, vreT.
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n(7,g) is a continuous function of 7. Generally, Hp is less general than Hy in
the sense that Hy C Hp, but rejection of Hy entails rejection of Hy. By picking
a suitable g, it is possible to insure equivalence, as discussed later.

We focus on the Kolmogorov-Smirnov test statistic of the form:

KS,= sup S(7,9),
reT,g€C

but any other test statistics, which are continuocus functionals f : (T v Ry
s.t. £(s) = 0iff s = 0, are allowed, particularly the Cramer-Von-Misses test.
Since we are primarily interested in KS statistics, and for brevity sake, we
restrict attention to the cases when f has the property: flas+B—asf(s)] < cf3,
for scalars o, 3,¢ > 0.

The following theorem states the behaviour of the test process S that de-
termines that of sup..7 5(7, g) and other functionals f(.S). We also define an
important process

S(1,9) = n(i(r,9) — u(r, 9)) W(7,9) (is(7, g) — (7, 9)) ,

S = {3(7’, 9}, W = {W(T, g)}. We will need the statistic S(T,g) later when
we discuss hootstrapping. This statistic will mimic the null behaviour of S,
even when the null is false,

Theorem 2 Suppose W (-) 2 W(.), W(r, 9) is uniformly p.d.
1. Under conditions M L F and H,, in ¢*(T x G)

\/Hﬂ:>£0+7}7
S=> Sew=(8+n) W-(So+7),

£o is @ zero-mean P-Brownian Bridge with covariance function: wou(r, ;7. ¢'") =
Ve (jog (), Jog (7)), where joy(r) = (¥ — Qyix(m) - [0(X) - Jog(r)Ig2(r)X]
Jog(7) = Ep fy1x (Qvix (7)g(X) X', Jou(T) = Er fyix (Quvx (T)X X', where Qyx (1) =
X'B(r) P-a.s.

2. Under conditions M L E and H,, in £%°(T x G), %5’ LN p-Wep

8= 8= () W-(8),

!

€ s a zero-mean P-Brownian Bridge with covariance f-n: wulr. g,7,¢") =
Vi (]g (T)ajg’(‘r’))) where jg(T) = qu»(Y—X'ﬂn(T))-[g(X) - JQ(T)JJI(T)X] y ']9 (7—)
By fyix (X'Bu(r))g(X)X’.  Under Hy,,, ¢ 2 &.
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Proof: See Appendix B.2.

By the continuous mapping theorem, a trivial corollary of this theorem is
that the KS test is consistent and has power against /n alternatives.

4.2.2 Choosing g? Large Number of Functions g

In order to approximate Hp with Hp, one needs to increase the number of
functions with the sample size. Potentially, this is a caveat since we assumed
so far that the number of test functions g in G is fixed relative ta the sample
size . However, if the class of functions G has good complexity properties,
Theorem 2 will remain valid. Indeed, if the functional class

(iy £ X'8u(m)e(X), TeT, g€}

is Donsker, Theorem 2 will apply. Thus we need a class of functions G that is
both Donsker and is able to reveal that P(Y < X'8,(7)|X) # 7.

The search for such functions leads to the remarkable work of Bierens (1990),
Sithicombe and White (1998), and Bierens and Ploberger (1997). Particularly,
consider

G ={ge(z) =w(g®(z)), (€&}

where w is an analytic function, except a polynomial, = is an bounded subset of
Euclidian space with positive Lebesgue measure, e.g. (0, 1)¢, and & is bounded
bijective mapping. Allowed w(:) include exp(-}, cos(-), sin(-}, and others.

Lemma 1 Assume condition M. Let ' = U,c7Z(7r)" have Lebesgue mea-
sure zero and is nowhere dense in Z. Then, under Hy, E(1(Y < X'B.(7)) —
Twe(X) =0 for all € € E,V7 € T otherwise, E(1(Y < X'Bp (1))~ Twe(X) =
0forallé e Z(r) V1 eT.

For a fixed T and Z(7), this is a result of Bierens (1990) and Stinchcombe and
White (1998), upon changing notation. To show that = = Ure7=(7)" satisfies
the above properties, in any nonempty open ball in 7 x Z, there is & ¢ Z(7')
which implies that there exits a small open neigborhood A of (¢, 7') of positive
Lebesgue measure s .t. for all (¢£,7) € N, E(L(Y < X'Bn(7)) — n)we(X) # 0.
This is by the uniform continuity of E(1(Y < X'8,(7)) — T)we(X) in £ and 7
in7 x =
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A drastic conclusion of this is that, in principle, we could randomly pick
one test function and have a consistent test, as in Bierens (1990}. Obviously,
such a test may not have good power in smaller samples. This also leaves a
researcher too much flexibility that can be enjoyed for the sake of “snooping,”
le. searching for a test that “accepts” the desired hypothesis. A good test
should prevent such a possibility. These considerations lead to Kolmogorav-
Smirnov and Cramer-Von Misses type tests or their approximations. Thus, we
need a theory that explicitly accounts for the large number of test functions.

Theorem 3 Assume n(7,g) is uniformly continuous in £%°(T x G). Then
under conditions (M), (L), (E), Theorem 2 holds for the case when G is possibly
infinite.

Proof: See Appendix B.3.

It also makes sense to include the functions in G that may increase the
finite sample power of the test. The finite set of polynomials of X is one such
example.

4.3 Resampling the Specification Tests

Here we demonstrate how one can obtain the critical values of the subsam-
ple bootstrap (see Politis et. al (1998)). This method overcomes the Durbin
problem.

The basic idea is to use a mimicking process, which is &, to correctly mimic
the distribution of the actual test process S under the null, when the actual
model is in the 1/4/n neighborhood of the null model. The subsampling boot-
strap is used to estimate the distribution of S to construct the critical value.
This critical value leads to the test of correct size and entails no loss of power
and does not require estimating non-parametric nuisance parameters {the com-
mon drawbacks of Khamaladization). Under large deviations (greater than
1/y/n) of the model from the null model, S no longer correctly mimics the
distribution of S under the null, but the critical value remains bounded while
S tends to infinity, insuring consistency of the test.

"The particular resampling method employed here is the subsampling boot-
strap. This method has several advantages — both conceptual and theoretical,
as has been recently emphasized in Sakov and Bickel(2000) for another version
of the sub-sample bootstrap (“m out of n").
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The basic idea of the subsample bootstrap is to approximate the sampling
distribution of a statistic based on the values of the statistic computed over
smaller subsets of the data . After suitable normalization, recomputed values
of the statistic are used to approximate the sampling distribution.

Now we operate with the data models M1 - M3 introduced in section 2.
For all these data models, we have defined “units” of data {Wi,t < n} that
suitably combine one or several pairs of (¥, X;). In particular, for panel models
M2a -M2b, they are combined in the way to make {W;} an ii.d. sequence.
For the basic i.i.d model M1 and stationary time series model M3, there is no
re-combining: W; = (Y3, X;).

For cases when {W,} is i.i.d., the test statistic is computed over all sub-
samples of size b; the number of such subsets B,, which we index by 1, is “n
choose ¥”. Tor cases when {W,} is stationary, the statistic is computed only
over B, = n — b+ 1 subsets of size b of the form {W,..., Wiipb—1}. To save
computational time, one can compute the statistic over a smaller number of
subsets (or bootstrap draws), as long as B, — o0 as n — co. (See section 2.5
in Politis et al.).

Denote by 6, the statistic f (3), computed over the whole sample; and by
Bs,n,i the statistic computed over the i-th subset of data, using 7, = b in place
of n:

~

Snpi(7,9) = 15 (Mapi(7,9)) W(T, 9) (MapilT,9)),
Mebi(T)9) = (finb: (1, 9) — (7, 9))
Let
Gr(z, P) = Probp{f(8) < z},
Hy(z, P) = Probp{f(5) < z}.
From Theorem 2-3, Hy(z, P) converges in law to Ho(z) under Hq and H, {x)

under Hur. Ho(z) and H,(z) differ if the test has power, as in the case of the
KS test.

Also we note from Theorem 2-3 that G, (-, P) converges in distribution to
G(-), where G(-) = Ho(-) under Hy and under H,;. Therefore, we need to
consistently approximate G, (-, P) in order to approximate Hy(-), at least un-

der local alternatives. The subsample bootstrap accomplishes this. Estimate
Gn(z, P) by

Bn
Grpl(z) = B.' S by, < )
=1

30



Using this estimated sampling distribution, the critical value for the test is
obtained as the 1 — a-th quantile of G, 5(-):

cnp(l — @) = G4 (1 - a).

Finally, the size o test rejects Hy if f(S’) > cnp(l — a).
The following theorem shows that this test will have the same power as a
test where the critical value is known.

Theorem 4 For models M1-MS3, under the conditions of Theorems 1-3 and
assumptions (M), (L), (E), as b/n — 0,b — co,n — o0, B, — oo,

(i) Under Hy, if H is continuous at Hy (1 — a)-
tap(l —a) = HyY1 - )
Probp(£(5) > enp(1 —a)) — a.
(it) under H,, the test is consistent when £(S) is KS or CM and
enp(l—a) 25 G671 — o)
Probp, (£(5) > cap(l — @) - 1.
(4i) Under Hy,, if Ha(z) is continuous at Hy'(1 — a),
cnp(l —a) &5 Hy'(1 - a)
Probp, (£(5) > cap(l — a)) — Probp(f(Sx) > Hy (1 — ).

(iv) Ho(x), Ha(z) and G(z) are absolutely continuous when the covariance
UNCEIONS wyy,, wyup i Theorem 2 are nondegenerate.
n

Proof: See Appendix B.4.

Thus the KS test with the sub-sampled critical value is consistent, asymp-
totically unbiased, and has the same power as the KS test with the known
critical value.
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5 Monte Carlo

It is both impractical and infeasible to compute suprc7 4e¢S(7, g). Therefore,
we compute S (7, 9) over grids 7y,, G,. Our Monte Carlo looks at three model
specifications:

e Modell V=X +Xo0+4 - +Xp+e
e Model 2 Y =X1+ X2+ + X} +e
e Model 3 Y = sin(X1)sin{Xs)...sin(Xy)e.

In all three models, € and X;,j =1,...,k are N(0, I,z,,). For each model,
we run a Monte Carlo for § sets of parameters (see Table 1). For each set of
parameters, we have 500 realizations. For each realization, we draw r = n/5
sub-samples, each of size b = n/3. In all cases, the set of functions g consists
of (cos{X'y1),...,co8(X'¢y)), where oy, h =1,...,d is a vector consisting of
k independent U(0,1) draws. We consider 7 € T =(.1,.3, 5,.7,.9).

Each realization consists of the following steps:

e Wedraw X;,7=1,...,k and ¢, and create Y as specified by the model.
W={XY}

e We calculate A(T)Vr € T. We compute 5}, = sup,e75(7), where S(r) =
n(TYWi(r), with W = I.

e We draw r sub-samples, each of size b, from W. For each of the r sub-
samples, we calculate 3(7),Vr € 7. We compute 5(7), = b(a(r), —
(7)Y W (a(7)r = (7)), with W = I. The set of statistics {&(r)., T €
T,vr}is used to construct the critical values for fs-

Table 3 tabulates how often our full-sample statistic is rejected in the 500
realizations under the null hypothesis Qyx(7) = X'3(r). We see higher re-
jection levels for Models 2-3 over Model 1. This is precisely what we expect
as Model 1 has the correct formulation Qy x(7) = X'8(r). We also find the
rejection levels increasing with n, k across models.

6 Conclusion

We have developed a means of testing the specification of quantile regression,
under the null hypothesis that the true model is a linear location-scale model.
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The specification tests designed handle a wide range of data types - we have
considered the simple case of i.i.d. in our Monte Carlo example. Our Monte
Carlo gives a step-by-step procedure for carrying out a specification test in
practice, and finds that our test does well at rejecting models which diverge
from the Qyx(7) = X'3(7) formulation.
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Part IIT

Bias of GMM with a General
Moment Weighting Matrix

1 Introduction

GMM estimation is a popular method of estimation due to its consistency and
well-defined notion of optimality. However, the GMM estimator suffers from
substantial finite sample bias (Alonso-Borrego & Arellano (1996)). The exact
form of this bias is calculated in Newey and Smith (2003).

We focus on computing the bias of GMM estimation when the vector of
moment conditions is weighted by a matrix A which is unspecified, except for
some general conditions. The bias is computed by taking a higher-order Taylor
expansion of the moment conditions. We show that the GMM bias depends on
the influence function \il(Z ) of A, and that one means of reducing the bias is
to restrict A. We use our results to look at some alternative GMM estimators
which fit into our framework. One such estimator is Arellanc’s IVE estimator
(Arellano (2003)).

Arellano’s IVE estimator is designed for dynamic panel data with fixed
effects. The bias of GMM in this setting has been recently studied. Hahn,
Hausman, and Kuersteiner (2002) computed the bias of GMM in this setting
using a second order approach. Chapter 1 also looked at GMM bias in this
setting.

Arellano’s IVE estimator differs from the standard GMM estimator con-
sidered in Hahn, Hausman, and Kuersteiner (2002) and in Chapter 1. Both
estimators will have similar robustness properties for fixed T and large N. How-
ever, the IVE estimator is immune to the asymptotic biases that result when
T is not fixed. We will look at the bias of Arellano’s IVE estimator and show
that, as T grows, it does better than the standard GMM estimator.

2 The GMM Model and its Bias

Consider a standard GMM model with a fixed number of moment restrictions.
Let z; (i =1,...,n) be iid. observations on a data vector z. Let 3 be a KX1
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parameter vector and let our moment conditions be given by g(z,53), a JX1
vector. At the true parameter Gy, we require that g(z, Gp) = 0.
The two-step GMM estimator of Hansen (1982) is given by:

Aomm = argmingd(8)'Q(8) ™ §(8) (1)

where Q(8) = (1/n) 0, ¢:(8)g:(B) and 3 = argmingg(B)W~14(3), where
W is an initial weighting matrix.

Recall the results of Newey and Smith (2003) introduced in Part 1, Section
2. They are included here again for convenience. Newey and Smith derived
stochastic expansions for this two-step GMM estimator. Under identification
and regularity assumptions, as well as conditions on the initial weighting matrix
W, they find the asymptotic bias of GMM to be given by:

Bias(Bcym) = Br+ Be+ B+ Bw

By = H(-a+ E[G;Hg])/n

BG = —ZE[GZ’PQZ]/’Q

Bq = HE[g:9/Pgl/n

Bw = HY S (Hy — H)ej/n

where H = $Q'Q7, Hy = (W)W, G = E(G;), P = Q7! —
Q‘lGEG’Qfl, Qg] =F [a{gi(ﬁo)gi(ﬁo)’}/aﬁj], X = (G’ﬂﬁlc)*l, and a is an
m-vector such that:

a; = tr(y_ E {6%9;5(50)/0886'1)/2, j=1,-..,m

By is the asymptotic bias for a GMM estimator with the optimal linear com-
bination G’ 1g(z, 3). Bg arises from estimating G = E(G;). This is zero
if G; 1s constant, but is generally non-zero if there is endogeneity. By, arises
from estimating €2; this is zero if the third moments are zero, but is generally
non-zero. By arises from the choice of W, the first step weighting matrix. It
is zero if W is a scalar multiple of Q.

3 GMM With a General Weight Matrix

The first order condition for the GMM estimator introduced above is given by:
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> GilBerna) /' UB) " §(Bornr) = 0 @)
i=1

The Gcarm estimator can then be thought of as the vector B that solves
[0 Gi(8)/n(B)™3(8) = 0. Here, [YT, Gu(8)/n}O(3) is a KX.J ma-
trix that provides optimal weights for the §(3) moment vector.

What if we consider a more general K X.J matrix? Suppose A is K X.J such
that A=A+ 1 LS (&) + Op(n™), E(4(2)) = 0. Then we have a GMM
estimator &gprar which is the « vector that satisfies AQ(Q) = 0. Now we can
see that the GMM estimator defined in Eq.(1) is a special case of this GMM
estimator. Setting 4 = G’/ ! gives us Gamm = Bani.

Definition 1 Given a set of moment conditions §(8) = L S°7 | o(z;, 3) with
E(g(z;,580)) = 0, let ,8 be chosen such that Ag(3) = for some matnx A
satisfying A = A + 1 L5 1 w{z) + Op(n1), E(¥(z)) = 0. Then 3 is the

A-GMM estimator of s.

Note that the definition does not exclude A from depending on . Indeed, for
the two-step GMM estimator discussed above, this is exactly the case. We will
be interested in the case where A depends on a parameter ¢ of fixed dimension,
as in the following example:

Example 1 Let A = A(6), where 8 has a fixed dimension. Suppose

- 1< 1
9_90+ﬁ;51+op(n ), E(8)=0

Then A = A(d) = A() + 25228 — 65) + O,(n~!). This in turn implies
'l,b(zi) oA 90)6 .

4 Bias of General Moment Weighting GMM

We compute the bias of the GMM estimator with general moment wighting
matrix A taking a Taylor Expansion of the moment conditions Aﬁ(@) =0. We
require a few preliminary assumptions.

Assumption 1 (a) 5y € B is the unique solution to E[g(z, 8)] = 0; (b) B is
compact; (c) g(z,B) is continuous at each 3 € B with probability one.
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Assumption 2 There ezists an A and () such that A = A+ LS v(z)+
Op(n™t) with E(¢(z)) = 0.

Let Baarar be the vector 3 that sets AQ(,@) = (. The regularity and identifica-
tion assumptions in Assumption 1 guarantee that ,éGMM is consistent.

Theorem 1 Under Assumptions 1 and 2, let Bopn solve Ag(z, B)=0 and
let

o Bi=Bj0+ A+ 0p(nY), where Aj = L7 X,
. \i’(Z) = % ?:1 1/)(:51-)
* 3(8) =137 9(2:,8)

Then our GMM estimator has the following bias:
k
E(Born—0) = = | E((2)5(5)) - BUZ)G(5)Q) - ABG(E)Q) - S m|

% = [AG(5)] Y, H, = E(A:AGH(B0)Q) Q= TA§(6o)

Proof: See Appendix C.1.

We are able to see how the formula in Theorem 1 relates to the bias results
of Newey and Smith (2003) given in Section 2. First recall that their results
are based on the two-step GMM estimator. For their calculations, we have
A=COB) ! and A =GQ!, where G = (327, Gi(Bannr)/n). We can now
view ¥(Z) as the influence function for GO, Plugging in A = G’Q~1 shows
that our third term is just B;. Bg comes from both the first and second terms.

The portion of the bias given by —[AG(8)] 1 E(¥(Z)§(5)) in Theorem
1 is represented by —[E(G;(a))Q 1E(G;(a))] " E(G.Q¢;)/n in Newey and
Smith. This is precisely the term which we applied to the AR(1) setting in
Part 1 of this thesis, and for which we obtained a closed-form solution as a
function of the underlying parameters of the model. We now look at its (more
general) counterpart given by —[AG(5o)] " E(¥(Z)§(5)).

Consider the E(@(Z)g(ﬂo)) term. This depends on ¥(Z), the influence
function of A. In Example 1, we saw that U(Z) = %gl)ﬁ if A depends on a
parameter of fixed dimension with influence function A. In the next example,
we will continue with this assumption on A and show a means of simplifying
the bias calculation.
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Example 2 Let A = A(§), where 6 has a fixed dimension. If 0 is JX1, then

(from Ex. 1), ¢¥(z) = Ej:l BAG?D d;;. Suppose our data Z is i.i.d.

E(¥(2)(50)) E (330 %(z)« £ 57 9(zi, )
= (1/n)? im1 BE(W(2:)9(z:. 80)) + (1/n)% 32 1 B(¥(2:)9(2x, Bo))

0

= (1/n)? 3%, E( }‘Tzl a’ééf“@‘g(zé,ﬁo))
(1/n)? 370y 327y 25 E(6159(24, Bo))
= (1/n) S0y 30 Ed 7552 g(=, Bo))

Studying the behavior of g4 9_0) ¢; will give us an understanding of how the bias
9.7

grows with T. We will carry out this exercise by looking at the Arellano IVE
Estimator.

5 Arellano’s IVE Estimator

One estimator which fits in well with our framework is Arellano’s projection-
restricted IVE Estimator (Arellano (2003)) for dynamic panel data models.
In Section 5.1, we show that the estimator has a A that is a function of a
parameter of fixed dimension. We also look at form the instrument takes in
the AR(1) model. In Section 5.2, we apply the results of Example 2 to find the
rate at which the Arellano IVE estimator grows with T in the AR(1) setting.

5.1 The Estimator

In dynamic panel data models, the GMM estimator takes on the following form:

-1
4= (zzm') S
[ t [ t

GMM sets Ay’ = zf’flt where II; is an OLS estimate. Arellano’s IVE estimator
sets hy' = z/'TI;(5) where % is a pseudo-maximum likelihood (PML) estimate.

The drawback of GMM here is especially acute when T and N both tend
to infinity and the right-hand side variables are endogenous. In that case, the
GMM bias is of order T/N. When T is fixed and N is large, both GMM and
Arellano’s IVE estimator are consistent under the same assumptions. However,
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when T is not fixed, Arellano’s IVE estimator is immune to asymptotic biases
because the number of first-stage coefficients does not increase with T,

Arellano’s IVE GMM estimator requires the construction of an auxiliary
VAR model for the instruments. It is this auxiliary model which leads to
the PML estimates of the components of 4. We will consider Arellano’s IVE
estimator is in the framework of our GMM estimator with general weighting
matrix 4. We will look specifically at the special case of an AR(1) model with
a strictly stationary auxiliary model.

Example 3 Consider the dynamic panel data model:

y¢t=17;,t_15+'fh'+€n t=1,....T; 1=1,...,N

Then Arellano’s IVE estimator is a GMM estimator with weighting matrix A
and moments g(Z, 3) defined below:

A M) -Tr(®)),  §B8) = 137 gz, 8),
Oe(d) = (WG m@)  9(z,8) = (eazl’ eql"y
eir = (v — 4P z o= (za )

N T ¢ 1/2 1
Y = T _t+1 Yt — m(ya‘,tﬂ + - wr)

In Example 3, we do not specify the exact functional form of the ] coeflicients
or the dimension of 4. Both of these are determined by the assumptions we
make in the auxiliary VAR model. General formulas are found in Appendix
B of Arellano (2003). We will look at the specific case of an AR(1) model
with individual effects, and assume that the auxiliary VAR model is strictly
stationary. The model is given by:

Yit = Y; -1 + (1 - CY)}Ui + vt (3)
E(vit|yio, ya1, - - yi6-1) =0

Let yj; be defined as in Example 3 and let Ti = Yig—1. Then we have:

* * *
Yir = T, + Uy

The instrument is given by hy = E(a%|yt™).
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Lemma 1 Consider the AR(1) Model in Eq.(3). Assume that the auziliary
VAR model is strictly stationary. Then the Arellano IVE estimator’s instru-
ment tokes the following form:

h(yi ) = o [1 S (1—79:-’)} [Yit—1 me (Y te)] t>1
mo(yl,7) = [p+o(l — o)y / [1+6(1 - o?)] t=1

- ptg[(1-a) TiT] vist(1—a?)y
mt—l(y'tg la’Y) = 1[+¢[(t—1)(ll—o;)2+1—02] 0] t>2

¢=02/0% p=FE(u), ui =4 — Wis1,

v=(e, 6, 1), &= (rEmg)2

Proof: Sce Arellano (2003), Apppendix B.

The assumptions of a strictly stationarity auxiliary model need not be true.
The coefficients should therefore be understood as pseudo true values for which
we use the notation ¢ = (a, f,m). Our instrument is then h;(y!~!

v, e). As can
H * 1, t—1
be seen in Lemma 1, E(z}|y

;~") is a linear combination of yi~1,

5.2 Bias of Arellano IVE Estimator

In Example 2, we showed that when A depends on a parameter vector of fixed
dimension,

n J

E(H(2)5(80)) = (1/n)* 3 3 B(6,5(0A(80)/06;)g(2:, )

=1 =1

For the Arellano IVE estimator, the order of E(¥(Z)§(8)) is determined by
the order at which Y_7_; E(3:;(0A(80)/08;)9(z:, Bo)) grows with T.
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Theorem 2 Consider Arellano IVE estimator for the AR(1) model. Let § =
(a, f,m) where (a, f,m) are the pseudo-parameters defined in Section 5.1, and
let AJ- = Y%, d; be the influence function of 8;. Then we have the following
result:

E(¥(2)§(60)) < Op(VT)

Proof: See Appendix C.2.

We can compare this to our bias results in Part 1. There we showed that
the GMM estimator for the AR(1) model has:

T-2
E(Galg) = Z B(a,o0,T,t) * Term(t)
=1
where Term(t) = Op(t) and B(a,0,T,t) ~ [1 + o =HT — 8)]/(T - t)2. Com-
bining the two terms and summing over ¢ yields:

E (G2 g:) = Op(T)

Arellano’s estimator is immune to asymptotic biases because it does not have
first-stage coefficients increasing with 7". By studying the influence function of
Arellano’s IVE estimator, we have shown E (G2~ !g;) is growing at a smaller
rate than its GMM counterpart which simply sets the instrument fLT;t’ = zf-'l:[t
where I, is an OLS estimate.

6 Conclusion

Bias calculations for standard GMM models, such as Hansen'’s (1982) two-step
estimator, have already been covered in the literature. We have looked at the
bias of a general GMM model where the weighting matrix A of the moment con-
ditions g(z, 3) is left unspecified, except for some general conditions. Through
a Taylor expansion, we have computed the bias of this GMM estimator and
have compared it to the results of Newey and West (2003). An important case
of GMM estimation with a general weighting matrix A is when A is a function
of a vector of parameters of fixed dimension, A = A(é), in which case the or-
der of the bias depends on the influence function for §. One example of such
an estimator is Arellano’s IVE estimator. We considered this estimator’s bias
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properties and found that it does better than the standard GMM estimator as

T grows.
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Technical Appendix

A Chapter 1 Appendix

Al Lemmal

Consider our AR(1) model under assumptions 1-3. The finite sample GMM

bias which grows with the number of moment restrictions is:

(demm — ) = —(E(G’i(a))'ﬂ‘lE(G@-(a)))—lE(Ggﬂ_lg’i)/n, where
Q! = E(gi(a)g (C‘f)’)_l
Gi(a) = o)

Proof: We make use of the bias calculation of Newey and Smith (2003):

Bias(,@GMM) = B;+ Bg + Ba + Bw

B; = H(—a+E[Gng1-])/n

Bg = -XE[G{/Pg]/n

Ba = HE[gigi'Pag]/n

Bw = HY Qp(Hw — HYej/n

where H = £G'Q71, Hy = (GW1G)'\¢'W-1, G = E(G), P = Q1 -
QGRG0 O, = E[0{0:(B0)9:(B0)'}/08;], & = (G"Q Gy~ L.

By is the asymptotic bias for GMM with the optimal linear combination
G'Q1g(z, B) - it will not grow with the number of moment restrictions. For
our AR(1) model with Assumptions 1-3, we have symmetry, third moments
equal to 0, and a weight matrix W that is a scalar multiple of 2. From Newey
and Smith (2003), this implies Bg = By = 0. This leaves us with:

Bg = —SE [G/Q71g] /n— DE [G/Q7'GTE Qg /n

The second term on the RHS also fails to grow with the number of moment
restrictions, yielding the desired result.

A.2 Lemma 2

‘We have the following two results:
* fila,b) = fi{a) f: (b)
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o fi(z) = 1Yee [j(i-1)/2): Where j = j(x) where
jz)e I st _—1+\2/m <jx) < i‘@

Proof: We require a means of choosing the appropriate j for a given z
such that f; (z) = V1Y e[ -1)/2)- Define the mapping ¥ from z to j by
U:N-N:

Psi(1) = 1 Psi(2) = 2 Psid) = 3 Psi(7) = 4
Psi(3) = 2 Psi(b) = 3 Psi(8) = 4

Psi{6) = 3 Psi(9) = 4

Psi(10) = 4

For each 7, define X (j) = {z : Psi(z) = j}. We have maz(X(j)) =7(7 +1)/2
and min(X (7)) == j(5 — 1)/2 — 1. For each = € X(j), 3('7—2_12 <z< w, we
wish to solve for j in terms of x. Completing the squares for both expressions

- 1y2_ 1Y2 .
involving j gives: @—j—éu <z < (2—”—{1%—1, We can now solve algebraically

for J —1+\2/1+81 S](:E) < 1+\/21+81

A.3 Theorem 1
o If a = b, then E[fi(a,a)] = c*(p+q)
e Ifa # bbut o and b are in the same family, then E [f:(a, b)] = o2 (alb_”|p +q)

e If o # b and a and b are in different families, then E [f;(e,b)] = 0

Proof: We make use of Lemma 2. We consider three cases in the next three
sections: a, b in the same family with ¢ = b (case 1), a, b in the same family
with a # b (case 2), and a, b in different families (case 3).

A.3.1 Case 1: a=b
Let a=b. Defined=a—[j(5 —1) /2].
Elfi(a,a)] = E [’L’;,?Hy?,d] =o’E [yf,ar]

The first equality follows from 7 + 1 > d and independence of the v,z j+1 terms.
The second equality follows from
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2
T T
x 1 2
E(u,) = &y (E (v} 1) + T—;-12 1)23 (( Z Uz,k) ) o L (Ui,j+1 Z Ui,k))
k=j+2 k=j+2

 T-i-17], 1 ‘ )

= T [a +(T _ (T—-—j—1)a O]
T-j—1[ T—j ] _
T—35 |T

(4)

Expanding y, ¢, we can write:
Yir = QU1+ 1+ Uip

Q+ta+®+- )+ (v +ov+--)

Yig = 105t R0 Vit—k
2
yiz,d = (TZZE) + 2heo azk’ugﬁk + cross — terms
o2 2
E [yzd] = = T e
= q+p
E[fi(a,a)] = o*(p+q)

A.3.2 Case 2: a+#£b,j(a) =j(b)

Let a # b. WLOG, take o < b. We have assumed that a, 5 are still in the same
family. Define d(a) = a — [3(a) (j(a) - 1) /2], d(b) = b — i(b) (3(b) — 1) /2,
d=d(b) — d(a) = b~ a. Then we have:

Elfi(a,b)] = E v 190 Vidp)
= o’F (94, d(a) Vi da )
= o°E [yi,a’.(a) (ab_”'yi,dl + (1 fat-+ a“"“"l) n+ v terms)]

. 1 — alb—al
= o [“b E (yf,d(a)) + (‘Tf—*—) E (4i,400)™) + E (Ysa(a) - vi te?"mS)}

24

Solving out E (y; 4(a)7), we have:
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E (Yiamm) = E[m (a1 + %+ via@)]
= E (%) +aE (yid@e-1m) +0

= (l+a+--)E()

l—-«a

Plugging in for E (y; 4,7:), E (yf’dl), and setting E (14, - s terms) = 0, we

have:
2 2 _ ~lt—al o2
2 | Jb—a In o l-a U
7 |a ((1—(1)2+1—a2)+( l-«a -«

ot (a'b_‘”'p + q)

E[fi{a,b)]

A.3.3 Case 3: a+# b, j(a) # j(b)

Let a # b. WLOG, take a < b. We now assume that a,b are in different
families. Define d{a) = a — [j(a) (j(a) — 1) /2], d(b} = b — [ (b) ((P) — 1) /2],
d = d(b) — d(a). Then we have:

E[fia,b)] = E[vzj(a)ﬂvzj(b)+1yi,d(a)yi,d(b)]

= E (“Zj(bm) E [”f,j(a)+1yi’d(“)y“"d(b)]
=0

This follows from 5(b) > j(a) and j(b) > d(b). This second inequality is
easy to see:

3(b)
7(b)

d(b) <=
b—[5(b) (5(0) = 1) /2] &=
0 &=

3(6)° +J(b) ~ 22
. 14T+ 8z
7(b) —

This last inequality holds by definition of j(b).

vV IV IV

IV
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A.4 Theorem 2

Applying the partitioned matrix inverse formula gives us the following repre-
sentation of L.

1
Qlt=1 o AT s S (N Ryt
o ... Afl'z

2

[

1 - 11
N1=(1—a2), N2=( O:), R1=(1+a)2, R2=(1 1).F07‘t23,

i —a 0 0 1 l-a ++ l1-u« 1
—a 14+ —a - 0 l—-a 1-a)? - (1-a)? 1-«

Ny = : : ; Ry = : : : :
0 - =-—a l+o? —a l—a (1-q)? - (1-a) 1-a

0 0 — 1 1 l—-a -+ l—-« 1

Proof: We can rewrite A; as A; = o2 (pM; + qese}), where e, is a t x 1
column of 1’s and M is defined by:

1 e o .. o]
o 1 o2
Mi=1land M; = o? o 1 @ | g
a"'_l ai—Q a’L—3 1
Inverting M, gives Mfl =1, A’Iz_l = 1_1a': ( —la _1a ), and for t > 3,
1 — 0 - 0
1 —a 1+ o? —a - 0
_1 _ :
M= 1 — a? . . :
0 o —a 1+ —a
0 e 0 — 1
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To invert A¢, we apply the partitioned mairix inverse formula (Linear Sta-
tistical Inference by Rao). The formula states that if B is a nonsingular matrix
and U, V are column vectors, then

B-U) (V'B7Y)
1+ VB 1U

For our problem, At_1 = ;lg (pM; + qete’t)gl. Applying the formula with
B =pM, U = qe;, and V = e; gives:

(B+mm4=B*—(

A iz (Mt_l/p— (M, /p)ger) (EéMtl/P))

1+e (A/Iz_l/P) qet
_ 1 (Mtl /) () (esz)

o? (p+qe} M 'er)/p

Al = 1= Mt—l_q(Mz_letf) (QEJIWFI)
p+qeiM; ey

To simplify this solution, let N; = (1 — &®)M; . This gives:

o 12 _ oo 9(1/1—a?)” (eer) (V)
Ag = o (Nt/(l (84 ) o+ q(l/(l — az))eéNtet )
1 1 g {(Nye) (e Ny)
Al = gt (Nt op(1— 032; + ;e;j\’tet)

1
-1 _ = _ q ’
A ot (Nt (p(l —a?)+ qegNgEt) (Neew) (etNt))

Expanding {Nyet) (etN:), we have:

1 l-a¢ - 11—« 1
l-a (1-a)? -~ (1-a)? 1-a
(Niee) (etVi) = (1 - a)? : : : E t>3
l-a (1-e)? -~ (1-a)?® 1-«a
1 l-a - 1-a 1
R,
2 1 .
Fort=1,2, we have R; = (1+«)° and Ry = N We can now write:
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At = L (Ve (1= 0 (b ) Be)

ge, Nrer
Solving for e,Nye, gives

eeNey = 2(1—a)+ (t—2)(1 —a)?

1 1 3!
n _ —_
A; L~ — — | R
c ¢ n t 11—«

A.5 Solving for F (Gif171g;): Part 1

E (G tg;) ZE (G147 g:)

%(%Q)Ll [h1(1+a)2~—(1—a) ] t=
E(GiA ) = % {B12E(D12) + (2a + Bap) E(Da22)} t=2

LA { By E(D1t) + B E(Dyt) + Bat E(D3t) + Byt E(Dy) + Bs: E(Ds)} t>3

Blt = ht — 1 Bgt = th Bgt = ht(l — a)2 — (1 + az) B4t = 2& B5t = ht(l — Ot)z

Di = vy (0 — 2 X0 myk (vi +v7)

Dy = iy (m _T_—t_ZL t+1 Yk ) (yige)

Da = vy (e — 705 Ek t+1 Uk ) Simn Ui

Dy = vy (\ve— T~t 1Zk =t+1 Yk Zk:lykyk‘rl

Dyt = vfp (we— 7= Zk:tﬂ Yk ) 2k IS

L =~ (10 (14 b))

Proof: Our goal is to find an expression for F (G{A;lgt) fort=1,...,T-2.
‘We will solve this in parts. Writing out G;At_lgt, we have:

-1 _ 1 T-1 ~rA—1~
GiA ‘g = —Vi4 1041 [y:—mZk:m yk] TA
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Working out §,A; 4 gives:

AT = LGN — hedi Radl)

Working out the two parts 7, Ny and 4, B; g, gives:

yf(l - oz)2 t=1
GNGe = v¥+u3 — 20 t=
iyl 4+ (1+0?) S 2yk 20‘22;11 YkYk+1 t>3
ﬁu+aﬂ t=1
H Ry = y1 + yg + 2192 t=2
i+ u7 + 2010+ 201 — o)y + u) Tisp v + (1 —a)2(ilpm)? £23

Letting (Zk zyk) Zk 2yk+Zg#ka 3 Y;Yk, we have:

vi[(1—a)?— h(1 + a)?] t=1
GiINe — BeR)Ge = (47 +93) (1 — ha) — 2niy2(a + ha) t=2
@2 + y2)(1 — he) — 2heyrye — 20 42 Yiviert
—h(1—a)? J#k Zk_ 2 Y5k
+[(1+a) he(l — )2 b w2 t>3

Plugging in gives us the following expression for F (GQA; 1g,_;):
E (v3 [n — ris D02 0] o8) (M1 +@)? = (1 - a)?] t=1

{B12E(Dh2) + (20 + Ba2)E(Da2)} t=2
Hl {BltE(Dlt) + BQtE(DQt) + BStE(DSt) + B4tE(D4t) + B5tE D5t } t>3

23 s

E(G’At gt) =

0

where B;;, D are:

Biy=h—1 By =2ht By = ht(l - O()z — (] +a2) By = 2a Byg = ht(l - Of)2
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D = viy (9t — r== Yo t+1yk (47 +97)

Dy = ’U;‘+1 Yt — 7= t IZk —t1 Yk (ylyt)

D3y = vy (ye— 7= = 1Ek =t+1 Yk i_zlz vi

Dy = vy (ye— g 10 t+1yk Y YkykL
Dsy = v (v — 7 lzk 1Yk ) Do izk S i Vsl

We can simplify our calculations by introducing a term L.

a? —t—
= =Ty [(1 — o~ 1) (1 + —j(T—t—%)(l—a

Other than the F(D;;) parts, we also require F (v§ [yl T_ Zk o yk] 3/1)

E (UE [3/1 T_ Zk 2 yk] yf) = E(Uz?h) Uzyl Zk =2 yk)
0
E(vsylys) = c0®E(y})
E(vylys) = co’E(y)(a— 153)
E(uyiyr—1) = co’E(y}) (aT—g — sl +a+
U 4
coo? 2 2
E (UE [yl o Zk 2 yk] ) = —(1_02)(,1,_2)[(151)2 + 15421 [(1
= (EHr,

Plugging back in for t = 1 gives the desired result.

A.6 Solving for E(G{171¢,): Part 2

Solving for the various E(D,;) parts gives:

« B(Dw) = (2 L,
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o B(Dy) =o'~ (2¥0) 1,

Ct+1

o E(Dy) = (t—2) (m) L

Ct41

« B(Dy) = (t 1) (25) L,

Cr1
o B(Dsi) = (2/eern) (1251 - 3) - 1251 — o ~Y)]p + E9E2g) L,

Proof: We will calculate E(D;) for i = 1,2,3,4 in the next four sections.

A.6.1 E(Du)

E(Dw) = B [vi (ve— 7oy Ticha ve) (7 +42)]
= B(D}) +E(D}) - (1/(T -t - 1)) [E(D}) + E(DL)]

where D{t is given by:

1 _ % 2 3 _ x 2 T-1
Dy = vy Dy, = vipu1 E%:tl Yk

2 * 3 4 __ % 2 =L, 2
DYy = vin v Diy = vi v Dk Ui

By the independence between v{,; and v, we have:
* E(D},) =0
o B(D})=0

E(D3,) will require some calculation:
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E(Diit) =

E(U?Hy%ytﬂ) =

E(U:Hy%yw?) =

E(viyiyr-1) =
4

E(D%t) -

E(v iy + vl i yess + - + vl i)
0+ E(viviye) + Buf 1 viyee) + -+ E(v; yiyr—1)

T
1 E [(Ut+1 - ﬁ Ej:t+2 Uk)y%ytﬂ]

Ct41 E(Ut+1y%yt+l) - T_‘—]i‘-i—l E(vt+2yfyt+1 =+ ’Ut+3y%yt+1 + .. ),

0 by independence across time
— —1
el (yf [atyl t(l+at+-- o+, akvt+1"“} ”f+1)
cir1 B(yiviy)
ct410°E(yi)

2 2
er10° [y + 151

(YD) [(’Ut+1 - T%—l 2;—{;“2 L'k)y%yHZ]

414 B(ver1viyesn) — 7T__1T1E(Ut+2yfyt+2)}

ctr1 L B@i[o®y + (1 — o) + vign + awryaJvess) — T_—lt_iazE(yi?)}
Ct+1 OZUQE(”!/%) - 7:1{:70'2E(y%)}

a2 2
Ct+1"2[(1—1)2 + %z e — iy

2 R L N
Ct+10-2['(%._)2+ﬁ5] (C!T % 2_T—}:—1[1+a+”'+0‘7‘ t 3])

4

Ct+10

2 2 02 i
I-a [(151)2 + 27l [(1 —aT 1) (1 4+ mra)) - 1]

E(Dj{,) will require a similar calculation. We first make the following two
assumptions: E(v3) = E(n}) =0 VY i,t. Now we solve for E(D%):
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* T-1
E(D‘llt) = E(Uzﬂytz k=t yzZ)
= BE(vivp) +E(viviviag) + -+ E(viavivt 1)
0

E(“:-;-lytzytzﬂ) = B (U:+1yz2 [y + 1m0 + ”Ut+1]2)
E (viqvileyf + n2 + vl + 20w + 20mve01 + 205041))
20E (v} 193 ver1) + B(vi yfvi ) +0
2ac, 1 B(vEyd) + e B(ud v
20ce 1102 E(YE) + i1 E(vyy) E(uF)
——rt

I

0
= 2004102 ([ + S0 o*u i)

3
= 2ac10? E((lj—‘ﬂ)g) + 3% ok E(@d ) + E(crossterms)
—_— ——

0 0

E(U?Hytzytzﬂ) = k£ (Ut*ﬂyg [@Pys + 7 + oy + vpqo + aut+1]2)
= E(vipila'y? + 1+ )07 + vf e + a®vf; + 20%ymi(1 + )
+20%yve g -+ 28y g1+ 201+ a)mivess + 2(1 + a)omurg + 20w 1vg40])
= \E(vﬁwfv&ﬁ + o B} i) + 208 B(ufyivera) + QQBE(U?HH?UHQ

All four terms are 0 from E(v})=0,E(y3)=0
* 2
+2c P(Ut-!-lyt Vi41Us+2)

~
0byindependenceof vy y1 ,vi42

= 0

E(U:Jrly?y%—l) =0
s I

E(Dilt) = 0

Plugging in E(D},) = E(D%,) = E(D},) =0, and E(D3,) into E(Dy;), we

have:
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02 o2 o2 Tt 1
E(Dy) = —(1—2)&:—1) [(173)2 + 112] [(1 —aT—t=1y(1 + m) - 1]

- (% L,
A.6.2 E(Dy)
E(Dy) = E (”fﬂ [L’t - Tj:—q Zf;tlﬂ yk} (yl'!;t))
= (1~ =) BOfassf) 7oy S0y Boisayiven)
T—i—1 “t+01y13’r T T 2ot+1 LV ileln
g = oyt (et ol )+ Y8 ok
yT—l' - ;lT—zyl +A+a+- o+l + i abup_y g

The only parts of theterm ysysr g {k > 0} that will matter
arethe vg i yy {k > 0} terms.

wyr1 = oty + (other stuff)
E(U;+1ylytyt+2) at_16t+1E(y%Ut2g1)
2

Yel42 oLy (o iy + vrya) + (other stuf f)
E(viveuea) = o lei{aB(uivl,) — mr E(sivdio)}
a. 2
= ot lepgo? [(1—J§..—)r + ﬁ!} (@ — r=i=y)
_ o2 2 i et
Bofnyeyr-1) = o leao® [(1—_3,—)5 + ﬁf} 27?2 - Al + o+ +aT779)
y s
E(DQt) = O.’t_lE(Dlt)
= ot (2H) 1,
141
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A6.3 E(Dy)

E(D3)

E(v}qyt+193)

E(vf+1yt+1y§)

E(v?+1yt+1y§_1)

-1

By 22:12 vi)
t_

E(U::+1yt+2 Zk:Q y}%)

E(U;ﬂyT—l 22;12 y?ﬁ)

4

E(Dst)

E (”t*+1 [y TT Zk t yk} Zk Zyk)

E(Ut*ﬂytzyg)”r_lt 1 (Ut+1 [Zk =t yk} S ka>
fo=2

0

Tt 1 t T (Ut+1yt Zyk) T_”_t E(Ut+1 [Zk =t+1 ?Jk Ek 2yk)

"

0
1 T-1 t—1 2
= (“t*+1 [ k=t+1 yk] k=2 yk)

E(vly oy + 0+ v ]y3)

E(U:+1Ut+1y‘22)
ci+102E(y3)

ce4102E(y3)

(t = 2)err30° E(y3)
(t = Deer10? E() o — =]

(t — 2)¢t+102E(y‘2?) [QT—t—2 _ T;-lt-f__l(l Yot ot aTAtQS)}

4

(t = 2)E(Dy)
(t-2) (+) L,
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A8.4 E(Dg)

E(Dgy)

E (v2‘+1yt+1 Yot ykyk+l)
E(y1y2)

E(ys—1ut)

t—1
E{v %2 D p—1 Ykl

E E“Z“Hytﬂ Sy ykyki-l;

1
E (U:+1yT—1 Z;::l ’ykyk+1)

E(ymi)
4

E(Dyy)

I

E (u;+1 (

t—1

== S yk) Yot ykyk+1)

E ”t+1ytzykyk+l) T 1 t i (%4-1 [Zk =t yk] 22;11 ykyk+1)

"

—TTE(
t—1

~71F (U§+1yt > ?JkykJrl)

k=1

-

0

cer1 B0y Th0) vktiesn)
Ct+1J2E(Z§c_=11 UkVk+1)

E(ozy% +y1m + yive)
aE(y}) + E(yim)

aE(y?) + E(y1m)

(t - Dew1o?[aE(y?) + B(yim))]

[Zk =t+1 yk] Zk 1ykyk+1>

(t — Derpro? [QE(LU )+ E{yim)|(a ﬁ)
(t - 1)ct+102[aT_t_2 — —lt—l(l S+ aT—t—S)]
x(aE(yi) + B(yimi))
2
1—6_-"5 Vi, t
4
O:(t - I)E(Dlt)
crr102(t—1 2 i
— ) [1%7&] [(1 — oY1 ) 1]
(t-1) (222) L,
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A.6.5 E(Ds)

E(Ds) = B(viy (waf?zi’-:ﬂyk) ok L vive)

T-1 t—1
= UtﬂytZZnyk TTo1 t 1Bl [Zkzt yk} Ej;ék D k=2 YjYk)

2k k=2
0
1 * T-1
= -1 B0 [Ek:t+1 yk] Yk 2ok Yi¥E) — 1o Ut-{-l%ZZyjyk
Gk k=2
0
-1
B(UF 1Y Dogpn Dhea Yikk) = C:+1E(Ut+1 ZJ#LZk 5 Ysk)

[l

Ct+10 E(Z,fklzkzz Yilk)
200+10°E(Y 5ok YiUk)
= 204102 (E(yz Sissye) + Elys Y me) + -+ E(yt—wﬁ—l))

Il

E(yt—2yt-1) = E(yi-2(ayi-2+m))
aF(yr—2) + E(y—om)
alp+q)+ (1 —a)g
ap+q

E(yt-3(yi-2 + y7—1) = E(yw-3(oye—z + m)) + E(y—s(@®y—a + (1 + a)n;))
ol + a)E(ye—3) + (2 + @) E(ye—3m:)
a(l+a)p+q)+2+a)(l-a)

= all+o)p+2q

U 4

E(ys Zk 41 yk) = ’1_

Summing up, we have:

(1—o*1"p+ (t—1-5)q

B(ufyert Tip Tichvive) = 2ec0? (1506 = 3) - 125(1 — ot 1))+ E22)

We can write in the other terms now:
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B(oiayere Y Tichuim) = 2e10” (2516 = 8) = 25(1 — ot p 1+ 32
_ 1
(&= 7==y)

E(fyr—1 Dy TispUtn) = 2000102 (£330 = 3) - 1250 — ot Hp+ D)

(ol "2 — A _(1+a+. . +aT 3

Putting the pieces together, we have:

B(Ds) = (2feeen) (1251~ 3) - 1251 - ot + 2
A.7 Theorem 3

T-2

E (G;Q‘lgi) = Z B(e,0,T,t) * Term(t)
t=1
Bloyo, Tty = -1+t " (T -t - 1) = (T =8)]] / [*(1 —)* A+ ) (T = t)(T - t — 1)]
20’%&(1 —a?)—o%(1—a)? t=1
Term(t) = [af](l +a)? 4 20‘20%&(1 —a?) —ol(1 - ) (1-20a)]/ [20?27 +oi(l—a)] t=2

[*C (e t) + o202 D (e, t) + opE (e, )] / [0%(1 — @) + 02(t(1 — @) + 20)] ¢t >3

Cla,t) = (1—a)*(1—¢t(l —a?))
Do, t) (1-0a) [(1-a)2a(a® + a2 = 2) — 1 —t(t{1 — o) + 2a(1 + a) — 1)] + 1 + 30
E(o,t) = (1+a)[(1-a)6—3t+2a""! +4alt - 2)] + 20]

Proof: Combining Sections A.5 and A.6 gives:

T2
E (G0 1g) = E(GA ' g)
t=1

BiL [m(l+a)-(1-a)?] t=1

E(GiAT g) = ERLLy(Bio + (20 + Baa)] t=2
;]ELt {[Bit + Buo'' + By (t —2)] (p+q) + Ba(t — 1) (ap+q) + BsiBeg: }
Jor t >3
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Biy=hi—1 By;=2h By =h(l1-a)—(1+a?) By =2a By= he(l — )2
Bei = 2( o [(t-3) <= (1 atYp+ (t—s)zgt—mq>

he = ag/l[oaz + 07 ((t -2+ ﬁ)}

Plugging in everywhere for the B;;, j = 1,...,6 gives the following {somewhat
simplified) representation of E (G} A; 1 g;):

£P—-';,[Qﬁ[hl(1+01)2—(1—c«)2} t=1
E(GA7Yg) = Wglazp, | oq 1) t=2

L (p[hté'(a, £) + E(a, t)] + qlhe D(a, £) + F(a, t)]) t>3

ht = U'Tz]/ [Uz—f—U% ((t—2)+%)]
2 _t—
L = _(175(7"4) [(1 —al 1) (1 + (T—t—i)(]—a)) o 1]
Cla,t) = t(l—a?)—142(at a2 fa—1) Elet) = 1—t(1-a?)
Da,t) = 1420514 (1 —a)2(t —2)2 Flat) = 1—t(1-a)?—2a(l -a)

~

We can simplify the expression further by plugging in for L, h;, C(a,t),
D(a,t),E(a, t),F(a,t) and solving. Some algebra gives us the final form.

A.8 Lemma 3

E(Gi(a)) = (r1é1 -- - rp_afip_q), where

d’t — (at—l . 1)f

C UZ _
r = —goarareenl(T - 81 - o) = (1 -]
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Proof:

E(Gy) = E(Gu- - Giyra)
E(Ga) = —CnE ([y“ o = I yik] ﬁu)

E(yuti) = E (yavit Vielit - - ygt)l
= E(a'p+tq - ptq)

T . _ - '
E(Zkﬂlﬂ yikyit) = F (yil Zf=t1+1 Yik " Yat Zfﬂlﬂ yik)
4
= E (1%5(1 —aT Y (T—t—1)q - 21— a
ot 1p+g ot 1p
o' p+g o' ?p q
) _ . a(lﬁaT_‘_l .
FE(Gy) = —Cq1 : - WEL) : -
alp+q ap q
pt+gq D q
at-1
a2
_ (1_ T—t-1
= —C11p (1 - (‘}Tt%ml))
a
1
= rt&t
where &;, T+ are.
&= (toay
2
T4 = — (1_0‘)2(‘11':;‘;(7“4_1) (T -t){1-a)—(1 —al]
E(Gl(a)) = (T‘1&1 e TT_Q&T_Q)
A.9 Theorem 4
Plugging in for ;! and E(G;(a)) (Lemma 3) gives:
o +a,(t —1)

(14w =2 7y 1-al~t 1?
L= (ZT—t—1[1‘(1a)(Tt)} (02(
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Proof:

-2 9y 4—1= \_
( ?:1 thagAt &) !

o4(T—t) 1ot ]
=) (T—t=T) [1 (l—a)(T—t)]

& Nydty — hydel Ry

(1—a?) vt
(1+a)? vt

(1-—a?) — h(l+a)? Wt

(1+a)(1 - @) (i

o {1-a)+o,[t{1-a)+20]

¢

o2 4o,(t—1)

(1+a T-2 T- 1—aT—t
1: ) ( t=1 Tftjl [1 - (1—03(T_t)
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B Chapter 2 Appendix

Preliminary Definitions For a measurable map (z,y,8) — f(y,z,8), define
maps

n
0 Enf(Y,X,6)= =3 (¥, X:,0),

t=1

8 Gaf(Y,X,6) = % S (F(Y5, X0,8) — Ep, £(Y, X, 0))
t=1

B.1 Proof of Theorem 1
Define the process Z,, = {\/ﬁ[,én(f) = Bp(m), T € N}

1. Show consistency Zn(-)/\/n 2, 0. For some B, Bn(7) maximizes

Qu(r. ) = B [prY = X'B) = po(¥ - X')] 75, (5)
Qu(7,8) = Bp [oeY ~ X'8) = po(¥ - X'9)].

uniformly in (7,8) € 7 x ©. Pointwise convergence is by L, since (r, 8) —
pr(Y = X'B) — p-(Y — X'3) is bounded, and uniform convergence follows, since
this map is linear in 7 and Lipshitz in 3 (uniformly in ¥, in X ¢ X, and in 7).

The following extends Amemiya’s (1973) proof for nonlinear estimators to
the process case. For any € > 0, wp — 1, uniformly in 7 € T

® Qu(7.8a(7)) = Qn(r, (7)), by definition,

b QOO<T1 Bﬂ(r)) > QH(T! 371(7)) - E/21 by (5):

hd Qn(T:ﬂ(T)) > Qm(Tv 6{7-)) - 5/27 by (5)
Therefore, wp — 1,

Qus(7, Bu(7)) > Qulr, Bu(r)) = €/2 2 Qu (7, B(r)) ~ €/2 > Qua(r, B(T)) — ¢.

Let {B(7),7 € (T)} be a collection of balls radius §/2, each centered at B8(r).
Then

€= :Ielg_ Qoo(ﬁ(T)) - sup )Qm(,ﬁn(T))J >0,

OnCcO\B(r
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by assumption M (i) (put T = oc). It now follows wp — 1, uniformly in 7

Qm(B(T)) = Qoo(ﬁ(T))_Qoo(ﬁ(T))+ sup Qoo(ﬁn(T)) = sup )QOO(.Bn(T))'

Bn€O\B(7) BnE€O\B(r

Thus wp — 1, sup, <7 [|3a(7) — B(r)l £ 4, for any § > 0.

Using similar steps, we can show sup, .7 [|8.(7) — (1) < €, as T — oo, for
any € > 0, exploiting that 3(7) maximizes Qn(,ﬁ’) = FE. Q.(8).

S0 sup, 7 16 (7) — B 5 0, sup,eq 1B (7) — Gu(7) 250 W

2. Next show asymptotic gaussianity of Z,. First, by the computational prop-
erties of ﬁn(r), forall T € 7, cf. [7]

Baor[Y ~ X'Ba(r)]X = O (n71) (6)
Second,
(1.8) = Guigr [Y = X'Bo(7)] X is s.e. over @ x T (7)
by assumption E and linearity in 7, which implies that
T Gapr [Y — X'80(7)] X is s.e. over T (8)
by assumption and continuity of 7 -~ 8,(7). (7) and uniform consistency give
CoprlY = X'Bu(TX = Coor[Y — X'Ba(7)]X + 0ps(1), uniformly in 7. (9)
Third, by M and uniform consistency, uniformly in 7
EenprlY = X'B1X | gmpr) = Je(1)(Bnl7) = Ba(7)) + 0pe (sup | Bn(r) — Ba(7)]})
T (10
Sinee the LHS of (6) = n~/2(lhs of(9) + lhs of(11)), we have uniformly in T
O(T™1) = Jo(7)(Balr) — Ba(7)) + Op*(fgg 18a(T) — Ba (7)) an
+ 072G [or (Y = X'Ba(7)X] 4 0pe (n™1/2),

Since mineig (J;(7)) > A, uniformly in 7 and n > n, by M, for some A > 0,

Y

= sup
-

T (D Balr) = Ba(1)) + 0 (sup () = BulD)I)]| (12)
2 (A= op (1)) - 5up 1fin(r) ~ (),
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where A > (. By (8) and condition L
G, [or(Y = X'Ba(1)X]| = v(r) in £2°(T), (13)

where v is a P-Brownian Bridge with covariance function w, (7, 7') = Var (k(7), k(7))
where k(1) = ¢ (Y —X'8(7)) X Therefore, the left-hand side of (12) is O (n"1/2)
hence

H

V(Ba(T) = Ba(7)) = T U TG [0r(Y = X'Ba(7)] + 0p (1)

= J7H7) - v(7) in £°(T). (14)

by (11) and (13). B

B.2 Proof of Theorem 2

A special case of Theorem 3. W

B.3 Proof of Theorem 3
Write
(r,9) = VAEn [ (Y — X'u(r)g(X)

= VnEp,[er(Y - X'8)9(X)] 5_p. () (15)
+VnGr [pr(Y — X'BYa(X) 54, ) -

We have uniformly in {(3,7) : |8 — B(7)|| < 8,7 € T} for 6, | 0

Ep, [or(Y = X'8)9(X)] = Ep [frix(X'8(r))g(X)X'] (8 — Ba(7)) 0 (5,)
(16)

By assumption E and linearity in 7, /nG, [, (Y — X'B)g(X)] is s.e. in £°(7 x
© x G). Therefore, uniformly in 7

VG [or(Y = X'0)9(X)) gy = VG [pr(Y = X'Ba(r))g(X)] + 03 (1).
a7
uniformly in 7. Combining terms,
i(r,9) = ViiEn [0r(Y = X'n(r))g(X)]
= Ep [fyix(X'BE)GX)X] VA (Balr) = (7)) + 05 (1) (18)
+VnGn [ (Y — X'Ba(m))9(X)] + 0 (1)
Substituting the right-hand side of (14) into (18), conclude. B
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B.4 Proof of Theorem 4

The second part of the proof follows the arguments of PRW (1999), Theorem
2.6.1, 3.5.1. The first has to deal with the presence of estimated centering.

I. To prove (i), (ii), define Gnp(z) as Gnp(z) when f(r,g) = p(r,9),
W(r,9) = W(r,g) (i.e. case with the known centering ). Crp(x) is a U-
statistic of degree b, with EpG 4(z) = Gy(z, P) = P(f, < z). PRW (1999),
cf. proofs of Theorem 2.2.1, Theorem 3.2.1, for dependent data, show that
Gn,b( ) = N (z). Next note that

Gnol) = Bz S 1[¢([ W12 00(mss = )+ mili = M) < 2],

i<B,

Gp) = Bz 3 1[f(||W 20 G~ )|[)) < 2]

t<Bn
Collect three facts: fact 1, uniformly in ¢
2
P L R R )] A
— —2 <3,
||W 2(re{finps — 1) + To(pt — #))”2

where

An = sup maxeig (W_I/Z(T,Q)W(T,g)w_l/z),
T,9€LXG

An = sup maxeig (W‘I/Z(T,Q)W(T,g)ﬁ/_l/g).
'r,_qeﬁxg

by inequality 10. on p.460 in Amemiya (1985).

Fact 2 is trivial:

- 2 . X 2 . 2
W2 oG =) 4o 0) |, < |72 ot = )|+ 72— )

Fact 3 is, by the assumed properties of f need to
heck
1[f(“Wl/2(”b(lln,b,i - #)“z) <lzw) ﬂnwn)] <1 f(HWUQ(Tb(/:‘mb,i — )+l — ﬁ))lli) < z] e

< [ < 2

n

where I, = max(\,, 1/},) and u, = min(X,, 1/A,), and v, and w,, are defined
below.
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Noting that the error of estimation vanishes by Theorem 2 and 3

wn = supb|W(r, 9)(i(r, ) — (7, 9) |, = bOHIOHT ™) 250
.9

v, = max [[u, — 1), |i, — 1]] -2 0
so that with probability tending to one 1(E,) = 1, where E,{vn,w, < 8} for
any 0 > 0.
II. Thus, for small enough € > 0, there is § > 0, so that by Fact 3:

Cp(z — 1(Ep) < Crp(x)1(En) < Caplz +e)

So that with probability tending to one: Cn,b(m —€) < C:’nvb(z) < Gmb(:c + ¢€).
for any € > 0. Hence if  + ¢ and T — € are continuity points of G(z), then
Grp(z + ) P Gz —¢), for ¢ = ¢, —¢, implies Gz — ¢) — € < Grp(z) <
G(z+¢€)+ewp. — 1. Let € —» 0 and 6(¢) — 0, so that = + ¢ are continuity
points of G(z). Hence Gnp(z) £2, G(z). Finally, note that z = G~'(z) is
assurmed a continuity point.

Moreover, the convergence of quantiles implies the convergence of distribu-
tion functions at all continuity points.

I11. Now G(x) = Hy(z) under Hp, so that (i) and (ii) follow. To prove (iii),
note that by (i): ¢, (1 — ) 2, H (1 - o). Contiguity of {P,[In]} to {PI"}
forces that cnp(1 - @) =% Hy'(1 — a)

(iv) follows from Davydov's Theorem. B




C Chapter 3 Appendix

C.1 Taylor Expansion of A3

‘We make the following assumptions:

o g(F) = q A is chosen as to set Aj(Z, B) = 0, where A is KXJ, (Z,5)
is JX1, fis KX1, Z is our data 73, ..., Z,.

« A=A+ ITL () + Op(n ), B((2)) =0, ¥(2) = 1 31, ¥(=)
* §(B) =231 (2, B)
. Bj = ;0 —l—]\j + Op(nﬁl), where f\j = %22;1 ks

Then our GMM estimator has the following bias:
k
E(fomum—B) = - T | B(¥(2)4(60) — E(H(Z)G(50)Q) — AE(G(B0)Q) — g Y =y,

£=[4G(5)]7",  Hi=E(MAG(A)RQ)  Q=ZTAy(5)
Proof:
We will make use of the following notation:
o U =130 v(z)
(8) = Aa(8)
o M= —[AG(fo)]

o>

o (3, is the " component of G
o G(Bo) = §'(Bo), where §'(fo) = 2 |5_p,

e Gi(B) = 3—%&@, where ; is the i** component of 3

We now carry out a Taylor Expansion of AQ(B) around Ay:
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Ag(B)
0
Ag(o) + AG(50)(8 ~ o) + 3 Ty (Bi — io) AG;(80)(B — Bo) + op(n 1)
Ag(fo) + [AG(Bo) — AG(5o)|(8 — o) + AC(Bo)(5 — Bo)
3355 (B — Bio)AGI(B0)(B — Bo) + 0p(n7Y)
Ag(0) + [AG (o) — AG(B0))(A — fo)
+2 325 (Bi — BoYAG(B0) (8 — Ao) + 0p(n~Y)

[—AG(Bo)] (8 — o)

Let M = [—=AG(3)]"". Then,

t1 t2
—— -

(B-080) = MAGB)+M[AG(5) — AC(B)(B — Fo)
k
+M % Z (8 — Bio) AG,(5o)(B — Ba) +op(n~1)

[ 7
“~

t3

Let us replace the bias terms on the RHS :

(B=po) = MAG(Bo) + MIAG(Bo) — AG(50)]M[Ag(B0) + t2 + 13 + 0p(n~1)]
+ 55 (B~ Bio) AG(Bo) MIAG(B0) + 12 + 83+ op(n1)] + 0p(n 1)

ot2 is Op(n) — [AG(Ao) — AG(Bo)IM %12 is o,(n~1)
ot2 is Op(n™) - (B; — Bio) AG,(Bo) M # 12 is 0p(n~1)
ot3 is Op(n~1) — [AG(Bo) — AG(Bo)|M * 3 is 0,(n™1)
ot3 is Op(n~1) — (B; — Bio) AG(B0) M % t3 is 0y(n~1)

(B—6o) = MAY(B) + MIAG(By) ~ AG(50)}M Aj(Bo)
+2 38 (B — Bio) AG(Bo) MAG(B0) + 0p(n1)

oA =A+U(Z) +o0,(n71), U(Z) is Op(n1/2)
*§(fo) is Op(n~1/?)
e AG(By) — AG(B) is Op(n=1/2)

o(3; — Bin) is Op(n=1/2)
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(B—pBo) = MA§(Bo) + M[AG(Bs) — AG(Bo)]M(A + Op(n™/2))5(50)
+3 307 (Bi = Bn)(A + Op(n=2)) G (B0) M (A + Op(n~1/2))g(flo) + 0p(n 1)
= MAg(Bo) + M[AG(8o) — AG(Bo)) M Ag(5o)
+A 57 (8 — Bio) AG,(Bo)M Ag(fo) + op(n™")

Expand the 1% and 2™ terms

(B—Bo) = MAG(Bo) + MH(2)3(B0) + MAG(50) M Ad(Bo) — MAG(Bo)M Ag(B0)
+4L 35 (B — Bi0) AG/(80) M Ag( o) + op(n™")

Plug in A= A+ ¥(Z) + op(n™ "),
Recall M = [—AG(8)] ! — MAG(B) = -1

MAG(Bo) + MU(Z)g(Bo) + M(A + ¥(2))G(5o) M Ad(Bo) + M AG(Bo)

+Y 55 (Bi — Pio)AG,(Bo) M AG(fo) + op(n)
= 2MAH(Bo) + MY (Z)§(Ba) + MAG(B) M Ag(Bo) + MU (Z)G(Bo) M Ag(i0)
+Y S (B — Bi0) AG(Bo) M AG(Fo) + op(n~")

(3~ Bo)

1l

olil(?) anf;l (o) are Op(n_}/z), G(Bo) = G(B) + Op(n=1/?)
— U(Z)G(Bo) M AG(Bo) = W (Z)G(B) M AG(Bo)

'(f;z‘ — fio) = Ay + 0, (n1) )
*Ai and §(fo) are Op(n~'72), Gi{fo) = G;(fo) + Op(n~1/2)
— (B; — Bi0) AG,(Bo) M AG(Bo) = A AG,(Bo) M A§(5o)

(B=pn) = 2MAG(Bo) + MU(Z2)§(fo) + MAG(30) MAG(Bo) + ME(Z)G(50) M Ag(fo)
+ 2 YF A AG(B0) M AG (o) + 0p(n )
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Taking expectaions, we have :

B(3 = o) = 2MAE((f) + ME(L(2)3(fo) + MAE(G(50) M AG(Bo))
+ME(¥(Z)G(G0)MAG(B0)) + 2 327 E(AiAG;(50) M AG(fo))
E(3(80)) =0
e MAG(Go)) = (3 — Bo) + Op(n~1). Let Q = M Ad{5o))
E(B~fo) = ME(¥(2)§(50)) + MAE(G(50)Q)

)a(5
+ME(#(Z)G(8)Q) + X4 TN B(A,AC,(50)Q)

And our formula for the bias of GMM with general weighting matrix A is given
by:

BB ~f) = -[AGE)] " [BHZ)5(50) + ABE(5)Q) + EF(Z)C(H0)Q) + 2 TF )]
Hy = E(ALAG(6)Q) , @ = —[AG(50)]~'Ad(5)

C.2 Theorem 2

Consider Arellano IVE estimator for the AR(1) model. Let § = (a, f,m)
where (o, f,m) are the pseudo-parameters defined in Section 5.1, and let Aj =
31 6i; be the influence function of #;. Then we have the following result:

E(¥(2)3(B0)) < Ox(VT)

Proof: Recall from Example 2 that when A depends on a parameter 8 of fixed
dimension, we have:

Lo ® I aA(e0
E@(2)3(60) = (1/n)2 33 B8, 2280 o0, )
i=1 j=1
where A; = Y7, §,; is the influence function of ;. For the Alellano IVE
estimator, j = 3,8 = a,8; = f,f3 = m. Consider calculating ( 2 gz, Bo).
It would seem from Example 1 that such a calculation would requlre an ex-
pression for A in terms of the 7] coeflicients. In fact, we can simplify the work
involved by noting that % g = %‘?i and
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t—1
Ag’l Z ht y 9 'U,w,?_UhETG 'Uzt = y.it afﬁ:t and Tyt = Yit—1

This implies:

h(yimh8) = o [1 - ﬁ( Tor )] [yie-—1 = mea (v 0)] t>1
m+f[(1—a) Pty Uzs+(1—a2)yi0]
1+ fl(t—1)(1-e)?+1—a]

me—1(yi1, ], theta) = t>2

where u;; = 35 — ay; s—1. Differentiating our instruments with respect to the
parameters, we obtain:

Bht/aa = ct(OSt/Ba)[yi,t_l - mtfl] — qSt(Bmt_l/aa)
aht/(’)f = —CgSg(amt_l/af)
6ht/6m = —ctSt(amt_l/Bm)

As t — 00, we have:

* M1 — lzmt—roo(l/t) Zz;]{') Yis = Et('yit)-
To see this, first note that:

22;11 U = Y1+ (1—a) 23;21 Yis — QY4
Plugging in and taking the limit yields the desired result.

e Since m;_; does not depend on the parameters (a, f,m} as t — oo, we
will have Omy_;/86; — 0 as t — oo.

These results imply 0h,/0f — 0 and 8h,/Om — 0 as t — oo. Also, for large
To and ¢ > Ty, we have

Zaht;_ZRt

t=Th t=Tp

Yit—1 — ]-/t Zyu} Vit
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where Iy = ¢; [alT_at %;T t] Indeed, this result is justified as T — oo

even if we did not consider ¢ > Ty, since B; ~ 0 for small £. We now have:

(04/0a)g = T, Be [virr — (1/0) Db o] o3

E|[(19A/00)9)"] = LL; RIE [(yn A Obys oyzs)zvif]
=~ Op(T)

Since 8h/8f — 0 and Shy/8m — 0 as t — oo, we have

E [([aA/aaj]gif] <Ou(T), 5=1,2,3

This implies:

|El6:5(0A/00,)g:]| < 1/ B(62)E[(194/965]9:)?) < Op(v'T)

which in turn gives:

E(¥(Z)g(60)) < Op(VT)
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Tables

Table 1: Bias Calculations

Actual Actual | 2nd Order 2nd Order Our Our
T n @ Bias % Bias Bias % Bias Bias % Bias
5 100 0.1 ] -0.016 -16.00 -0.018 -17.71 | -0.015 -15.38
10 100 0.1 | -0.014 -14.26 -0.016 -15.78 | -0.018 -18.00
5 500 0.1 | -0.004 -3.72 -0.004 -3.54 | -0.003 -3.08
10 500 0.1 | -0.003 -3.20 -0.003 -3.16 | -0.004 -3.60
5 100 0.3 | -0.028 -9.23 -0.032 -10.60 | -0.0186 -b.17
10 100 0.3 | -0.021 -7.11 -0.024 -8.13 | -0.026 -8.71
5 500 0.3 -0.006 -2.08 -0.006 -2.12 | -0.003 -1.03
10 500 0.3 | -0.003 -1.58 -0.005 -1.63 | -0.005 -1.74
5 100 05 ] -0.052 -10.32 -0.060 -12.09 0.024 4.90
10 100 0.5 | -0.034 -6.78 -0.040 -8.00 | -0.036 -7.22
5 500 05| -0.011 -2.29 -0.012 -2.42 0.005 0.98
10 500 0.5 | -0.008 -1.51 -0.008 -1.60 | -0.007 -1.44
5 100 0.8 | -0.224 -28.06 -0.302 -37.81 3.500 437.48
10 100 08| -0.108 -13.53 -0.152 -18.98 | 0.402 50.26
5 500 0.8 -0.056 -7.02 -0.060 -7.56 | 0.700 87.50
10 500 0.8 | -0.027 -3.44 -0.030 -3.80 | 0.080 10.05
5 100 0.9 | -0.455 -50.56 -1.068 -118.64 | 57.675 6408.32
10 100 0.9 | -0.220 -24.47 -0.474 -52.66 8.888 987.54
5 500 0.9 | -0.184 -20.48 -0.214 -23.73 | 11.535 1281.66
10 500 0.9 | -0.078 -8.64 -0.095 -10.53 1.778 197.51

The GMM Bias is based on 10000 Monte Carlo Runs from HHEK. The sec-
ond Order Bias calculations are also from HHEK, Table 1. We see that our
calculations of the bias are poor for values of « close to 1.
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Table 2: % Bias of dgprar, pce, and az

HHK Monte Carlo Our Monte Carlo 7q,0 known
5000 Runs 5000 Runs
T n o | demm Apc2 | GoMM  @Ztrune  @Zmed | OZtrunc  8Zmed
5 100 0.1 | -14.96 0.25 | -20.48 11.13 10.16 -5.93 -7.70
10 100 0.1} -14.06 -0.77 | -15.88 8.17 7.84 1.55 1.17
5 500 0.1 -3.68 -0.38 -2.72 3.46 4.10 0.33 0.94
10 500 0.1 -3.15 -0.16 -3.15 1.69 1.62 0.46 0.40
5 100 0.3 -8.86 -0.47 | -10.97 -0.51 0.04 -6.82 -5.45
10 100 0.3 -7.06 -0.66 -7.78 4.03 4.28 0.61 0.39
5 500 03 -2.03 -0.16 -1.99 -0.17 -0.54 -1.03 -1.39
10 500 0.3 -1.58 -0.10 -1.78 0.39 0.51 -0.04 -0.12
) 100 0.5 | -10.05 -1.14 | -10.25 -23.54 -24.15 -23.76 -16.60
10 100 0.5 -6.76 -0.93 -6.96 3.19 3.53 -0.08 0.26
3] 500 0.5 -2.25 -0.15 -2.06 -5.45 -5.61 -3.26 -3.04
10 500 0.5 -1.53 -0.11 -1.39 0.56 0.59 0.05 0.09
5 100 0.8 | -27.56 -11.33 | -16.11 -218.33  -157.11 -1157.99 -45.66
10 100 0.8 | -13.45 -4.55 -8.53 -6.73 -6.22 -7.91 -5.83
5 300 0.8 -6.98 -0.72 -3.00 -50.91 -48.68 -34.01 -18.93
10 500 0.8 -3.48 -0.37 -1.68 -2.20 -2.18 -1.80 -1.63
5 100 0.9 -50.22 -42.10 | -49.53 -3425.12 -1007.76 | -3836.30 -72.01
10 100 0.9 | -24.27 -15.82 | -19.39  -372.45 -230.11 -155.13 -31.22
5 500 0.9 | -20.50 -6.23 | -13.089 -7686.80 -1298.08 | -94924.19 -62.53
10 500 0.9 -8.74 -2.02 -470  -220.46 -188.10 -207.22  -50.82

@7 trunc 15 the mean of 4800 4z estimates {the lowest 100 and highest 100
are thrown out).

42 med 18 computed by simply looking at the median of the 5000 Gz values.

@7 trunc i computed in the same way as 4z trune, €XCept we assume 0,0
are known and set to 1.

G7,med is computed in the same way as Gz med, €Xcept we assume o,,0
are known and set to L.
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Table 3: Rejection Levels under Models 1-3

Model 1 Model 2 Model 3

Sig. Level Sig. Level Sig. Level
k n d]020 010 005 001020 010 005 001|020 0.10 005 0.01
3 100 3033 016 008 0.03|0.76 057 044 024|059 032 (.16 0.06
3 200 3,036 017 0.09 003087 0.77 065 D42 | 079 058 0.35 0.08
4 100 3 (046 023 012 0.04|092 0.82 067 048|073 048 029 0.11
4 200 3056 030 020 006|098 096 091 080|086 066 047 0.18
3 100 5030 014 007 001|077 056 041 021|061 0.34 018 0.06
3 200 5 (034 014 005 0.02]|093 082 071 046|0.84 058 0.32 0.09
4 100 5048 025 014 0.05|095 0.87 074 051|071 044 028 0.10
4 200 5052 027 014 0.05 (099 099 096 089|089 072 049 0.17

The rejection levels are based on 500 Monte Carlo runs. The table shows how

often our test rejects the null of a linear location-scale model, under the three

models. We see higher rejection levels under model 2 and model 3, as we would

expect. We also see the rejection levels for all three models increasing with n, k.
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