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Building Load Control and Optimization

By

Hai-Yun Helen Xing

Submitted to the Department of Architecture on January 9, 2004
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Building Technology

Abstract

Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and
curtail peak demand. This research focuses on load control by improving the operations in existing
building HVAC (Heating, Ventilating and Air-Conditioning) systems and by aggregating individual loads
based on optimization studies. Emphasis is placed on electricity rates and climate data in California,
where electricity costs have been of particular concern. The optimization problem in this research is
multi-objective in the sense that we aim to reduce building load while maintaining an acceptable level of
comfort.

The first part of this research focuses on optimizing controls in a single building. A simple three-zone
VAV system model is built in EnergyPlus (E+). The cost function structures and the potential difficulties
associated with simulation-based optimization are discussed. Discontinuity and nonlinearity are of major
concern. Two optimization algorithms are tested and applied to a variety of problems: Direct Search
(DS) and Genetic Algorithms (GA). An E+ simulation based GA optimization environment is developed
in Matlab. DS is found to be efficient with small problems in this research, while GA works in almost
any situation with the price of intensive computation. A few operations guidelines are proposed.

The second part of this research presents three ways of optimizing load control in an aggregation pool:
Enumeration, multi-GA and model-based nonlinear optimization. Enumeration relies on expert rules to
find a small set of feasible solutions through automated E+ simulations and search exhaustively for the
optimal solution. Multi-GA solves the aggregation problem in the Matlab GA environment with
sequential E+ simulations as the function evaluator. Because simulation-based optimization is very
computationally intensive in handling multiple buildings, the model-based approach develops for each
aggregation participant a time series model and several regression models to predict individual load
profiles under load control. It then applies an interior-point-method-based commercial solver LOQO to
these simplified building models. This system is fast and easy to scale up. Certain precision is lost due to
modeling simplifications, but the results are still satisfactory for practice purposes.

Overall, load aggregation offers load diversification opportunities among participants and improves the
aggregated load profile. Load shedding later individual load profiles in a way that enhances the
aggregation performance.

Thesis Supervisor: Prof. Leslie Norford
Title: Professor of Building Technology
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CHAPTER ONE

INTRODUCTION

1.1 Background

This thesis work was spurred by the recent energy issues in California, where high peak demand and lack

of supply growth created electricity shortages and resulted in high cost and economic inefficiency in

2001. In summer months in California, air conditioning (AC) accounts for 29% of the peak demand with

residential AC load contributing 14% and commercial AC load 15% [Ilic 2002]. A variety of solutions

have been proposed to reduce the overall electricity consumption and curtail peak demand [Norford 1991,

Keeney et al. 1996, Braun et al. 2001]. Our research focuses on the load control by improving the

operations in the existing building HVAC (Heating, Ventilating and Air-Conditioning) systems and by

aggregating the individual loads based on optimization studies. The optimization problem in this research

is multi-objective in the sense that we aim to reduce building electricity consumption while maintaining

an acceptable service level - a reasonably comfortable indoor environment.

Electric load aggregation is considered an effective means of maximizing savings and mitigating risks in

today's emerging power markets. Load aggregation is the process by which individual energy users band

together in an alliance to secure more competitive prices than they might otherwise receive working

independently. Aggregation can be accomplished through a simple pooling arrangement or through the

formation of clusters where individual contracts are negotiated between the suppliers and each member of

the aggregate group. Load aggregation has the following benefits: 1) increased buying power lowers per

unit cost for pool members; 2) load diversity among multiple facilities improves load factors, which leads

to a smaller demand charge; 3) load aggregation reduces transaction costs and creates economies of scale;

4) a facility may be able to realize significant savings by acquiring a portfolio of energy products that

meets its anticipated needs more efficiently than a full-requirements contract. The candidate buildings do

not have to be physically close, and being on the same utility bill with demand charge applied is enough.

A natural question faced by load aggregators is which buildings should go into the aggregation pool. A

load aggregator should choose a variety of individual profiles and take advantage of diversification to

make aggregation effective. Our research answers this question in a proactive way by allowing load

shedding in individual buildings. Based on the improved individual profiles, we explore the cooperation

nature between buildings aggregated. By changing building operations temporarily, load shedding offers

opportunities to reduce and/or shift peak demand. For example, one building has a much larger peak



demand than another, it might help to curtail the chiller load of the smaller-load building at the time when

the larger-load building reaches its peak, so that the coincident peak is reduced. The "cushion" effect of

building thermal mass on indoor thermal environment and human beings' adaptability to varying thermal

environment allow load to be shifted to a different time without degrading service level.

A building electric load consists mainly of the electricity consumed by lighting, equipment, and HVAC.

Cutting equipment electricity use might cause building malfunction and therefore would not be

considered a viable cost-saving approach in this research. Lighting control is straightforward, as the

optimal strategy in summer would always be to keep the lowest acceptable lighting level to minimize

cooling load. This work focuses on controlling HVAC electricity use. We will explore several major

operation changes such as increasing thermostat set points and shutting down chillers temporarily and

will look at the optimal ways of determining these parameters. We choose those control variables that are

easy for building operators to change and have good load shedding potential.

1.2 Research overview

In this section we give a brief introduction to what this research intends to accomplish. Related literature

will be reviewed in the next section. The entire thesis is to answer one central question - on a short-term

basis, e.g. a day or even several hours, how a building operator should control the operations of the target

building(s) to minimize energy cost. It could be a building or a group of buildings if aggregation is

available. Several key questions are as follows.

e What load control strategies can be implemented?

A variety of load control approaches and their performance are reviewed. Load control scheduling is

often a companion problem. Comparison between strategies will be made in Chapters 2-4 with load

control implanted to a specific VAV model in this research.

* What optimization algorithms and/or systems are used?

We will review optimization algorithms used in previous building optimization research, their global

convergence and computational intensity, ways of handling the multi-objective aspect of the problem,

and ease of integration with simulation.

e How are building dynamics represented?

Optimization requires an objective function evaluator - a load model for a building system. It is

implemented in two ways in this research: full-scale simulation using EnergyPlus and a simplified

load model. A variety of simulation models, including full-scale packages, statistical approximations



and those in between, are reviewed and compared regarding accuracy, computational intensity and

ease of integration with optimization.

e How is the aggregation aspect of the multi-building problem captured?

Direct load control research in electrical engineering is reviewed as it deals with a certain type of load

control with multiple participants involved. Several optimization schemes are also discussed to

handle aggregation.

It is to be noted that most of the examples in this thesis minimize the peak demand. This, as we will

argue late in this research, is mathematically equivalent to minimizing the energy cost in terms of

optimization problem structure. Although these two may produce different optimization results, the

difference is only a matter of implementation decided by the pricing vector or rate structure used, as the

analysis is identical.

1.3 Literature review

This section reviews previous research addressing the key questions raised in Section 1.2: simulation,

optimization, load control strategies and aggregation concerns. We try to address them separately, but

most load control research projects cover more than one aspect and therefore only the most important one

is emphasized.

1.3.1 Simulation

A big portion of our research relies on building simulation to handle the complex building and plant

dynamics. A simulator is essentially a function evaluator in many optimization systems. Three types of

simulation are common in research: full-scale simulation package, simplified models, and statistics-based

simulation.

a) Full-scale simulator

EnergyPlus, DOE2 and BLAST are examples of full-scale system simulation packages. They cover a

wide range of building systems and components, take detailed system description and produce a large

number of energy and comfort outputs. Writing modeling script can be quite laborious if started from the

beginning, but with knowledge of the software and understanding of the building system, the process does

not require sophisticated physics-based modeling skills.



DOE-2 and BLAST are two building energy simulation programs widely used and supported by the US

government for more than 20 years. The main difference between the programs is the load calculation

method - DOE-2 uses a room weighting factor approach while BLAST uses a heat balance approach.

A new energy simulation program, EnergyPlus [Crawley et al. 2001] [EnergyPlus 2003] is built on

BLAST and DOE-2 but with a better modular program structure. The major improvement in EnergyPlus

over previous energy simulation programs is an integrated (simultaneous loads and systems) simulation

for accurate temperature and comfort prediction, rather than taking a sequential approach as in DOE2. In

detail, the process in EnergyPlus is referred to as a Predictor-Corrector process. Loads calculated (by a

heat balance engine) at a user-specified time step (15-minute default) are passed to the building systems

simulation modules at the same time step. The building systems simulation module, with a variable time

step (down to seconds if necessary), calculates heating and cooling system and plant and electrical system

response. Feedback from the building systems simulation module to loads not met is reflected in the next

time step of the load calculations in adjusted space temperatures and humidity if necessary. As a

comparison, the sequential approach in DOE2 uses a room weighting factor and calculates the zone

conditions and determines all heating/cooling loads at all time steps; this information is fed to the air

handling simulation to determine system response, and that response does not affect zone conditions;

similarly the system information is passed to the plant simulation without feedback. This sequential

technique works well when the system response is a well-defined function of the zone temperature.

However, in most cases, the system capacity also depends on outside conditions and/or other parameters

of the conditioned space. EnergyPlus realizes the fully integrated simulation of loads, systems, and plant

through the building systems simulation manager, which makes the simulation modular and extensible.

For the heat and mass balance simulation, the hardwired 'template' systems (VAV, Constant Volume

Reheat, etc.) of DOE-2 and BLAST are replaced in EnergyPlus by user-configurable heating and cooling

equipment components formerly within the template. This gives users much more flexibility in matching

their simulation to the actual system configurations. EnergyPlus [Crawley et al. 2001] allows users to

evaluate realistic system controls, moisture adsorption and desorption in building elements, radiant

heating and cooling systems, and interzone air flow - little of which can be simulated well before.

A full-scale simulation package can be plugged in the optimization process, but the full-scale simulator

would make the process time-consuming and data processing complex. Such a simulator considers many

design and operation aspects, and certain parameters we are particularly interested in are likely be buried

in overwhelming details. Although we can post-process the simulation results as we will do late in this



research, this approach provides no direct relation to and insight on how those parameters affect load

control.

b) Statistical simulator

Statistical function approximation is a widely-used approach to represent the nonlinear building

dynamics. A variety of artificial neural networks (ANNs) and time series models have been used in load

prediction and control research.

0 ANNs

ANNs take advantage of the highly nonlinear properties of their architecture and are able to replicate

precisely a variety of dynamics given appropriate training. Large amount of experimental or simulation

data are required to train ANNs. Although able to represent complex nonlinearity, ANNs give little

insight into the system physics.

[Narendra and Parthasarathy 1990] introduces in detail the concepts of using ANNs to identify and

control a dynamic system and demonstrates them using several examples. The paper emphasizes models

for both identification and control. Static and dynamic back-propagation methods for the adjustment of

parameters are discussed. Multilayer and recurrent networks are compared and shown to be closely

related, so that they can be studied in a unified fashion. Based on this, the concept of generalized neural

networks is presented with four system setups, so that most nonlinear dynamic systems can be generated.

Eleven examples based on different plant models are presented to show how the identification and control

can be done for nonlinear dynamic systems using neural networks. Of these examples, the identification

and/or control results are compared with those of the reference models. The comparison shows that

neural networks perform well.

The concept of a general regression neural network (GRNN) is presented in [Specht 1991] as an

innovative algorithm of neural network training. GRNN is a memory-based network that provides

estimates of continuous variables and converges to the underlying (linear or nonlinear) regression surface.

GRNN is a one-pass learning algorithm with a highly parallel structure. Compared to the back-

propagation (BP) algorithm, GRNN is more computationally efficient. In many cases, BP tends to take a

large number of iterations to converge to the desired solution. A similar one-pass neural network learning

algorithm is the probabilistic neural network (PNN) [Specht 1990]. It is an alternative to BP in

classification problems.



A few tools for system identification and control with neural networks have been developed. If used

properly, these tools can potentially make an application problem easier. Some examples of general

purpose software that might be applied to system identification and, to a very limited extent, control

system design are NeuralWorks Professional II/PLUS from NeuralWare Inc. [Neuralworks 2003], the

Neural Network Toolbox for MATLAB from The MatchWorks Inc. [Mathworks 2003], and

NeuroSolutions from NeuroDimension Inc. [Neurosolutions 2003].

In recent years, a wide range of HVAC applications have found neural networks useful. An ANN model

[Anstett and Kreider 1993] is used to predict energy use in a complex institutional building without the

need for a data acquisition system. The normal predications were done using a formula that was given by

a previously developed energy management system using linear regression and other statistical measures.

The motivations of incorporating neural networks into the system are 1) to improve the predictive

performance; and 2) to provide adaptability to changes in the building's use and energy plant

configuration by taking advantage of the fact that ANN can be developed to update automatically their

learned knowledge over time. Ten independent variables are used as inputs, including times, schedule of

operations, and air/water temperatures. Four dependent variables, neural network outputs, are usages of

steam, electric, natural gas and water. BP is applied as the training algorithm. Several configurations and

different parameters are studied and compared. The results show that ANNs are useful for predicting

energy consumption in buildings even with no data acquisition system present.

[Curtis et al. 1993] discusses the results from a computer simulation that used ANNs for predictive

control of a hot water coil used to warm an air stream. The coil model itself is a neural network that has

been trained on actual data and mimics the nonlinearities of the coil well. Normal PID control of this

process has not been very successful, since the controller, feedback, and auxiliary inputs vary across a

wide range of values. Based on the system modeled by a well-trained ANN, the predictive control

performances are compared between a conventional PID controller and two types of ANN controllers:

FANN (future ANN) and IANN (integrated ANN). IANN takes the RMS error over the predicting

windows and uses that in the back propagation, but FANN only looks at a single error at some point in the

future. The results show that both FANN and IANN have the potential to outperform the standard PID

algorithm. Overall, this research shows that neural networks can be used for adaptive and predictive

control of a building systems process. The controller is adaptive in the sense that the output of the

network used to model the process reflects the changing operating environment, and it is predictive

because it examines the future effect of the current controller action.



As an alternative to the BP algorithm and a promising method with computational efficiency and

simplicity to implement, GRNN and its applications in HVAC process identification and control have

been explored. A local HVAC control example of a heating coil [Ahmed et al. 1996] is chosen to test the

GRNN's effectiveness. A control topology combining feedforward and feedback algorithms is chosen to

demonstrate the principle of GRNN and to discuss the role of GRNN in identifying and controlling

HVAC control processes. By using this combination topology, the majority of the control signal can be

generated from the feedforward block such that the feedback block only deals with a small steady-state

error. As a result, the control speed is improved in tracking the set point change. The feedforward

component employs a GRNN for HVAC system identification and control, while the feedback component

provides a control signal to offset any steady-state error. The GRNN is used to capture the static

characteristics for both valves/dampers and coils. Both simulated and experimental characteristics are

used as identification as well test data for the GRNN. The GRNN captures the characteristics well and

due to its simplicity exhibits promise for implementation in real controllers. The combined topology

algorithm uses GRNN to identify static characteristics and then subsequently uses those in a feedforward

controller to generate control signals.

A related research project [Ahmed 1998] compares the combined control topology with the feedback

controller for laboratory HVAC applications. The comparison is made for the pressure control sequences

commonly found in a laboratory with a VAV system. The control sequence for pressure is developed and

a simulation model is built. Simulated results are then presented for the combined, feedforward only, and

conventional feedback control approaches. The results indicate that the combined approach performs

better than the feedback approach over widely varying operating conditions and different damper

characteristics. The combined approach is stable and eliminates all steady-state errors.

To build the load model in our research, ANN could be constructed with previous states, e.g. zone

temperature, controls, e.g. chiller status and thermostat set points, and current outdoor temperature and

solar radiation as inputs and new states and energy performance as outputs. It can be trained offline by

feeding the network simulation or experimental data. A large amount of data will be needed, which is a

disadvantage. A neural network model can be hooked up with the optimizer fairly easily. An automatic

training process with updated data is desirable.

0 Time series

Gross [1987] gives a thorough and thoughtful review of the short-term load forecasting, which is the

prediction of the system load over an interval ranging from one hour to one week. The paper discusses



the nature of the load and the different factors, including economic, time, weather and random effects,

influencing its behavior. A detailed classification of the types of load modeling and forecasting

techniques is presented. It reviews the peak load models and the load shape models. The latter is

categorized into two basic classes: times of day, e.g. spectral decomposition models, and dynamic

models, e.g. ARMA and state-space models. Dynamic models represent the stochastically correlated

nature of the load process, meaning that the load is not only a function of the time of day, but also of its

most recent behavior, as well weather and random inputs. [Papalexopoulos et al. 1990] presented a solid

example of a linear regression-based model for short-term load forecasts. Its innovations include

modeling holiday effects using binary variables, modeling temperature using heating and cooling degree

functions and robust parameter estimation using weighted least-squares linear regression techniques.

The ASHRAE Application Handbook [1995] reviews some of load forecasting models specifically for

buildings. MacArthur et al. [1989] presented a load profile predication algorithm that regresses the

current power consumption to its past values and the time series of exogenous variables such as

temperatures. The algorithm uses a series of recursive least-squares estimators with each having a sample

time of one day, so that accurate predications are not limited to one sample time, e.g., an hour, and load

profiles for at least a 24-hour period can be obtained. A very simple algorithm for forecasting either

cooling or electrical requirements that does not use the 24-hour regressor was presented by Seem et al.

[1989] and then further developed and validated by Seem and Braun [1991]. In [Seem and Braun 1991]

the average time-of-day and time-of-week trends are modeled using a lookup table with time of day and

type of day as the deterministic input variables. Entries in the table are updated using an exponentially

weighted moving-average (EWMA) model. Furthermore, the forecasts are corrected through an

improved peak load based on a correlation between peak demand and maximum daily temperature

forecasts. Residuals are modeled using an auto-regressive moving average (ARMA) model.

Armstrong [2004] develops a transfer function model predicting the conductive cooling load. Together

with the time series data of solar radiation, convective heat transfer and outdoor temperatures, and

empirical models for chillers, the model relates the detailed dynamic heat transfer process to the plant

power consumption.

c) Simplified models

Simplified models fall between full-scale simulation and statistical models. They consist of approximate

functional relations for components and systems under study, which makes them more computationally



efficient than full-scale simulation while providing a fair amount of insight into the energy balance and

transfer processes.

For chilled water systems that do not have significant thermal storage, a component-based nonlinear

algorithm [Braun 1989a] was developed to optimize the system over continuous control variables. This

constrained nonlinear procedure was then used as a simulation tool for investigating the optimal system

performance. In this nonlinear optimization process, the operating cost and the output of each component

in a chilled water system were approximated using a quadratic and linear form respectively. Results of

this algorithm led to the development of a simpler system-based methodology for near-optimal control

that is simple enough for on-line implementation.

In load control research, the transfer function plays an important role in simplified models. A simulation

environment is described in [Braun et al. 2001] in which an inverse modeling approach is taken. The

inverse model is based on a transfer function and uses measured data to 'learn' system behavior and

provide relatively accurate site-specific performance predictions. Component (fan and chiller) power

models are quadratic functions of flow or temperature variables.

A model used and validated by Morris [1994] is used to enrich a simulation tool [Keeney and Braun

1996] to develop and evaluate control simplifications and strategies. Keeney et al. set up a simulation

environment by using the multi-zone building energy analysis subroutine of the dynamic simulation

program TRNSYS [Klein et al. 1990] and the empirical functions developed by Braun [Braun 1989.1] for

modeling cooling plant power consumption.

An inverse model [Braun 2001] was used to explore the effect of different building thermal mass control

strategies on the energy cost. Models are built to represent the behavior of the building, cooling plant,

and air distribution system. The transfer functions are used to predict sensible cooling requirements for

the building. Empirical or regression results are used for power consumption. Particularly the plant

power model is obtained statistically by regressing the power to a polynomial of chilled water

temperature, ambient wet bulb temperature and their squares. Several thermal mass control heuristics

with different set point adjustments are compared using this tool.

Armstrong [2004] developed a transfer function based discrete-time, linear and time-invariant system to

characterize envelope thermal response, improved the model to preserve its physical feasibility, and

estimated the updated model using a nonlinear least squares method. Internal loads are exogenous



variables. The chiller power is characterized by an empirical relation [Ng 1999], and is a function of the

cooling load, which bridges the zone temperatures to the power consumption. Certain optimization

processes can be applied.

[Wright and Farmani 2001] optimized simultaneously a building's fabric, the size of HVAC system, and

the HVAC system supervisor control strategies using a genetic algorithm. A single zone lumped

capacitance model was used to represent the thermal response of the zone, while the HVAC system

performance has been simulated using steady component models.

[Constantopoulos et al. 1991] came up with a real-time consumer control scheme for space conditioning

under spot electricity pricing. The key assumptions made in building the simulation model are: 1) single

conditioned space - neglect circulation effects and assume uniform inside temperature and humidity; 2)

lumped model - the shell, the air mass and the other contents of the space have a combined thermal mass;

3) no independent thermal storage is coupled to the main heating or cooling equipment - assume a single

piece of equipment; 4) neglect humidity control and focus on temperature control alone; 5) neglect the

cycling effect of the thermostat.

d) What simulation approach to use?

The first question is what the precise goals of the simulations. We need a model that has both dynamic

building modeling and plant modeling. We need to take into consideration the plant component part-load

performance which is important for load control. We need to be able to vary parameters such as

temperature set point, supply air temperature, chilled water temperature, and chiller and fan status on an

hourly basis for studying a variety of load control strategies. A full-scale simulation package like

EnergyPlus offers all these, and therefore becomes our choice. Later in this research, we have built our

own simplified model which preserves several important modeling aspects.

1.3.2 Optimization and load control

As the difference in [Morris et al. 1994] and [Conniff 1991] indicates, whether or not a control strategy is

optimized has tremendous impact on the energy performance. This section is categorized by the

optimization methods used in load control and related problems. As a more general field, optimal control

is reviewed briefly first. Then attention is turned to the optimal control problems in the building industry

and the ways optimization approaches have been applied. A variety of optimization methods have been

applied in building control problems and only a few major ones are studied and discussed here: linear and

non-linear optimization (LP & NLP), dynamic programming (DP), linear-quadratic optimal control (LQ)



and genetic algorithm (GA). As an indispensable part of optimal control research, different simulation

techniques are also reviewed and the integration of simulation and optimization is emphasized. Some

references, although not directly related to building industry, are discussed as well because they help

understand the methodologies useful to the load control research. Comments are made during the

discussion to relate the reference to the load control problem.

a) Optimal Control in general

From the point of view of control theories, optimal control is one particular branch of modem control that

sets out to provide analytical designs of a specially appealing type. The system under optimal control not

only satisfies the desirable constraints associated with classical control, but it is supposed to be the best

possible system of a particular type.

From the point of view of mathematics, optimal control problems are among the most difficult of

optimization problems with equality constraints in terms of differential/difference equations and various

boundary conditions, while inequality constraints may involve boundary conditions, entire trajectories,

and controls [Sage 1977]. The two major theoretical bases in the theory of optimal control are dynamic

programming by Bellman and the minimum principle by Pontryagin. The dynamic programming

approach is a natural fit for developing the basic relations in the discrete-time optimal control, whereas

the minimum principle approach is more suitable for the continuous-time domain. Unfortunately, often

times we have to face in complex engineering systems the problem of finding a global optimum for a non-

linear optimization problem, which is algorithmically and computationally difficult. In practice,

heuristic-based algorithms, such as genetic algorithm (GA), and direct search methods, such as the

Hooke-Jeeves algorithm, are widely used due to their practical efficiency and ease of implement.

From the point of view of research in building industry, the term "optimal control" has been used rather

loosely when referring to the control of building operations. Two major methods have been widely used.

One is to follow the strict definition of optimal control by proposing optimization algorithms to minimize

the cost function. For example, Keeney and Braun [1996] defined the cost as a combination of energy

cost and penalized human comfort and minimized it by using the complex method, which is a direct

search method that generates a shape in the control variable space that always encloses the minimum

point. The other is to conduct extensive simulations with different parameter combinations; the

comparison among those simulations indicates the optimal one, which is, to be precise, a suboptimal

solution. For example, Henze et al. [1997] developed a simulation environment to investigate a wide



range of key parameters influencing the system's operating cost. The optimal control strategy to

minimize the total electricity cost was validated based on the simulation results.

b) Linear and Non-Linear Programming

Two methodologies [Braun 1989a] were presented for determining the optimal control settings for chilled

water systems that do not have significant thermal storage. A component-based nonlinear optimization

algorithm was developed to optimize the system over continuous control variables. This constrained

nonlinear optimization procedure was then used as a simulation tool for investigating the optimal system

performance by optimizing over the feasible combinations of discrete controls. In this nonlinear

optimization process, the operating cost and the output of each component in a chilled water system were

approximated using a quadratic and linear form respectively. Nonlinear output, linear and nonlinear

equality constraints, and inequality constraints were handled using LP or NLP techniques. Results of this

algorithm led to the development of a simpler system-based methodology for near-optimal control that is

simple enough for on-line implementation. The system approach involves correlating the overall system

power consumption with a single function that allows for rapid determination of optimal control variables

and requires measurement of only total power over a range of conditions. The estimating coefficients of

this empirical system model involved regression on the results of the component-based optimization

algorithm as a simulation tool. The system cost function led to a set of linear control laws for the

continuous control variables. Separate control laws are required for each feasible combination of discrete

controls. The number of controls in the system approach is greatly reduced compared to the component

approach. With these models, general guidelines for near-optimal performance are developed. Braun's

model optimized a snapshot of the plant, and thermal mass played no role in the analysis. Therefore, the

results are time-invariant and can be applied to any time spot.

In another closely related work [Braun 1989b], the component-based optimization methodology

developed in [Braun 1989a] was utilized as a tool for investigating chilled water systems under optimal

control. With this tool, general guidelines for near-optimal performance are developed. These guidelines

were incorporated in the system-based near-optimal control methodology, but they are also important to

plant engineers for improved control practices. The important uncontrolled variables that affect system

performance and optimal control settings are identified. Results and conclusions concerning both control

and design under optimal control of chilled water systems are presented.

Braun [1990] studied the dynamic building control, dynamic adjustment of the indoor temperature set

points in order to minimize overall operating costs by applying dynamic optimization techniques to



computer simulations of buildings and equipment. He pointed out that the optimization became

complicated by the discontinuities associated with the different modes of operations. These modes

include mechanical cooling with minimum outside air, mechanical cooling with 100% outside air and free

cooling. The approach taken discretized the cost function and applied a non-smooth optimization

algorithm to determine the set of controls that minimize the sum of costs over the specified time.

Determining dynamic optimal cooling control strategies that utilize building thermal mass is formulated

as an optimization problem [Keeney and Braun 1996] with zone setting points as controls and a

combination of energy cost and penalized human comfort as the cost. The complex method, an extension

of the simplex method to constrained optimization problems, is used to solve this optimization problem

over a 24-hour horizon. Based on detailed optimization, two simplified approaches are proposed for on-

line implementations, where one approach takes two constant zone sensible precooling rates and the other

applies a constant cooling rate for a given amount of time prior to building occupancy. With much less

control variables, these two approaches successfully reduced the computation requirements for

developing optimal strategies. Through the component-model-based simulation, these two approaches

were tested with about 1000 different combinations of building, plant and weather. They achieved 95%

and 97%, respectively, of the optimal savings relative to conventional control. These simplifications

therefore could be used in the development of an on-line controller. In this work, zone set points are the

only control, which makes the analysis and optimization easier. In general, developing cooling control

strategies which utilize the thermal mass of a building is a formidable optimization problem, especially

when on-line implementation is a consideration.

c) Dynamic Programming

Dynamic programming is used [Henze 1997] in determining the optimal control strategies for thermal

energy storage systems and a predictive optimal controller for thermal storage systems is developed and

simulated. An optimal storage charging and discharging strategy is planned at every time step over a

fixed look-ahead time window utilizing newly available information. The certainty equivalence principle

is used, which fixes the weather and internal gains at their expected values, to make it easier to solve the

DP problem. Closed-loop optimization is employed, which means only the first control is executed at

each time step although at each time step the optimization is conducted over the entire planning horizon

using appropriate algorithms. The predictive optimal controller is compared to three conventional control

heuristics: chiller-priority control, constant-proportion control and storage-priority control. The optimal

controller was found to have a significant performance benefit over the conventional controls in the

presence of complex rate structures. Compared to the load control problem, the thermal storage control



problem is not very complex in the sense that the system equations and the cost-to-go functions have

explicit formulas and fewer controls.

Rossi and Braun [1996] used dynamic programming to obtain optimal service schedules and costs for

cleaning the condensers and evaporators of air-conditioning equipment. Cost is defined as a combination

of operating cost, human comfort, safety, and environmental criteria. The overall optimization problem is

formulated in nested loops using key operating parameters. The innermost loop solves for optimal set of

time stages between service tasks using DP. The next loop solves for total number of services in a service

cycle using the golden section method by Rao. The outermost loop exhaustively searches for the duration

of the service cycle and the time stage of the first service task. In addition, minimum operating costs are

compared with regular service intervals (representative of current practice) and a strategy where service is

only performed when a constraint is violated (e.g., a comfort reduction). It is found that optimal service

scheduling reduced lifetime operating costs by as much as a factor of two over regular service intervals,

and by 50% when compared to constrained only service. For practical implementation, a simple near-

optimal algorithm for estimating optimal service scheduling is developed that does not require on-line

forecasting or numerical optimization and is easily implemented within a microcontroller. Over the wide

range of cases tested, the near-optimal algorithm gives operating costs that were within 1% of optimal.

A multi-criteria model is described [D'Cruz and Radford 1987] for assisting designers in the choice of

form and construction of parallel-piped open plan office buildings at the schematic design stage of

building design. The model considers four performance criteria: thermal load, daylight availability,

planning efficiency, and capital cost. Pareto-optimal dynamic programming optimization is employed.

The model's form and implementation and some typical results are described.

It is worth mentioning that dynamic programming is widely used in the field of operations management

(OM). An optimal inventory purchasing policy is determined [Tsitsiklis 1998] with the DP cost-to-go

approximated in neuro-dynamic programming (NDP), a method that uses neural nets to approximate the

cost-to-go based on the features properly extracted in advance. NDP type of methodologies could

possibly be applied in the load control problem. However, the systems in operations management

scenarios are often less complex than most mechanical systems, so problem setup and computation would

be more difficult in the load control scenario.



d) Linear-Quadratic Optimal Control

A problem with linear systems and quadratic cost is defined as a linear-quadratic (LQ) problem. The

optimal controls can be obtained analytically, which is well known as the Riccati equation [Bertsekas

2000]. Linear and quadratic approximations are valid in many cases in building load research, and LQ is

expected to be fairly useful. However, LQ has not been widely used, possibly due to the complexity in

the real systems. Hopefully, research that focuses on solving LQ problems using nontraditional and more

flexible methods such as neural nets [Lan 1990] and genetic algorithm [Michalewicz 1992] would help

improve the situation.

e) Genetic Algorithm

[Wright and Farmani 2001] provided a brief introduction to the major optimization algorithms used in the

"whole building optimization" problem. It first described several notable characteristics of the issue:

problem variables are a mixture of integer and continuous variables; the problem has non-linear inequality

and equality constraints; and the objective functions can be discontinuous. The authors reviewed

previous work and suggested that neither traditional gradient-based methods nor direct search methods

are effective for the whole building optimization problem. A genetic algorithm was recommended and

used.

A PC-based supervisory controller is developed [Gibson 1997] for a building's energy management and

control system to optimize cooling equipment operation. The system provides decision support to

determine when to operate central cooling equipment to minimize costs under real-time pricing or

conventional time-of-use electric rates. An artificial neural network is used to model the dynamic

behaviors of the building and energy equipment while an evolutionary-based search routine, a genetic

algorithm is used for optimization. In the GA-based operation schedule planning, Gibson used the bits of

the chromosome to represent the status of the cooling equipment in 24 hours. Each chromosome is an

operating schedule individual in a "population" of many possible operating schedules. The GA searches

for optimal schedule by employing certain techniques of reproduction, crossover and mutation. The

ANN-based modeling uses the current external stimuli (outdoor temperature, equipment status, etc.) in

conjunction with the previous state of the building to predict the current state of the building. It provides

a basic profile of building cooling needs against which each of the individual plans can be evaluated. The

GA initializes and updates the control population. The ANN predicts for each individual its

corresponding load and cost performances and evaluates the fitness which will be sent back to GA. The

GA and ANN together form the planning module in this supervisory controller software. A prototype

system is installed and operating at a high school in southern California to control a thermal energy



storage system: a conventional screw-type chiller, and a gas-fired, engine-driven chiller. Some lessons

were learned during the controller development, and insights were gained in the practical application of

both GA and ANN. Examples are how to balance the global optimum and the curse of computation in

GA and how to maintain the accuracy of the ANN by applying a neural network monitor, which addresses

the relationship between ANN accuracy and the optimization process itself.

Chow [2001] derivd an ANN model of a direct-fired double-effect absorption chiller system. In the paper

is discussed the concept of integrating neural network and genetic algorithm in the system optimal control

in achieving the final goal of minimizing the operation cost. It is pointed out that to obtain a well

matched but reasonably simple ANN configuration of the system model, a systematic search on the

family of architecture is mandatory. Testing should be well monitored and cross-validated. Adequate

representation of test data is a prerequisite for a successful outcome.

Wright and Farmani [2001] simultaneously optimized the building's fabric constructions, the size of

heating, ventilating and air-conditioning systems, and the HVAC system supervisory control strategy in

order to account automatically for the thermal coupling between these building elements. The problem

formulation is described in terms of the optimization problem variables, the design constraints, and the

design objective functions. The optimization problem is solved using a GA search method. The

conclusion is that the GA is able to find a feasible solution, and it exhibits an exponential convergence on

a solution. The solutions obtained are near-optimal, the lack of final convergence being related to

variables having a secondary effect on the energy cost objective function. Further research is required to

investigate methods for improving the handling of equality constraints and to reduce the number of

control variables (which will also improve the robustness of the algorithm).

Wright and Loosemore [2001] investigated the application of a multi-objective genetic algorithm

(MOGA) in the search for a non-dominated (Pareto) set of solutions to the building design problems.

Compared to the progressive approach that generates the trade-off curve by assigning different weights

and repeating the optimization, MOGA employs the Pareto-ranking scheme to form the fitness of each

solution and complete pay-off characteristic in one optimization of the building design. Constraint

functions are aggregated by a normalized sum of their violations to form a single design criterion. The

results indicate that the MOGA is able to identify the trade-off characteristic between daily energy cost

and zone thermal comfort, and that between capital cost and energy cost. The MOGA exhibits fast

progress towards the Pareto optimal solutions.



f) Control Heuristics in Building Industry

Engineering heuristics have been a major component in the current building control practice. Developed

based on local optimization, system simplification, estimation and experiences, heuristics perform fairly

well in many scenarios. The ASHRAE Applications Handbook [1999 chapter 40] describes in detail the

control heuristics that have been widely used in operating HVAC systems and components, including

cooling tower fan control, chiller water reset with fixed- and variable-speed pumping, sequencing and

loading of multiple chillers, strategies for air-handling units, strategies for building zone temperature set

points and control of thermal energy storage systems. Control heuristics could be used as a starting point

in an optimization scheme. In addition, a heuristic type of suboptimal control is often desired as an

extension from optimal control for on-line implementation purposes.

1.3.3 More load control strategies

Night cooling has shown in practice its cost-effectiveness for buildings with reasonably heavy thermal

mass. In summer time, building thermal mass is cooled at night through natural or mechanical

ventilation, stores cool energy, and discharges it the next day. Previous simulations and experiments have

shown that significant operating savings and peak load reduction can be realized through night cooling.

Braun [2001] used an inverse model to represent the behavior of the building, cooling plant, and air

distribution system and evaluated several building thermal mass-based control strategies, including a

variety of pre-cooling schedules at night and discharge processes next day, at five locations with different

weather and rate structures. The best strategy turned out to be the maximum discharge, which results in

an average a 40% reduction in total cooling costs as compared to the conventional night set-up control.

Braun [2001] developed a tool that allows evaluation of thermal mass control strategies using HVAC

utility costs as the baseline for comparison. Based on weather and solar inputs, as well as occupancy and

internal gains schedules and utility rates, the evaluation tool predicts the total HVAC utility cost for a

specified control strategy. Intelligent thermal mass control strategies can then be identified in a

simulation environment using this analysis tool. The model was validated using the field-site data and

applied in five cities across the country. The effects on the cooling load and energy cost of different

control strategies, locations, utility rates and climates are evaluated using this simulation tool.

Rabl and Norford [1991] studied the load control strategy of subcooling a building a few degrees below

its normal thermostat set-point during the preceding night, and controlling the warm-up and stored energy

release through the thermostats to maximize the benefit. Several thermostat control strategies,



distinguished by their knowledge of the building dynamics, are described and simulated using a data-

based dynamic model.

Keeney and Braun [1996] proposed a simplified version of the thermal-mass-based optimal control

problem, by examining optimal cooling results covering a wide range of buildings, cooling plants,

weather, utility rates, and internal gains. Two simplified approaches are based on two-variable

approximations to the precooling portion of the day, and a set of comfort-based rules when the building is

occupied. Those two variables are two constant zone sensible cooling rates in one approach and a

constant cooling rate and a precooling time period in the other. The simplified strategy achieved 95% and

97% of the optimal savings relative to the conventional control.

Haves and Gu [2001] simulated several load-shedding scenarios in EnergyPlus and came up with

guidelines for the building operators in commercial office buildings to reduce peak electricity demand by

limiting buildings' HVAC operation. They describe the demand reduction and the increase in discomfort

over time that can be expected from increasing temperature set points. They also give examples that

demand reduction can be achieved by reducing fan capacity and increasing supply air temperature and

chilled water temperature. The guidance is aimed at large buildings with built-up HVAC systems and

chilled water plants, and applies to California and similar climates where humidity control is not a

significant problem.

1.3.4 Scheduling issues

Two questions need to be answered to conduct load shedding: first, when load shedding should happen

and for how long, which is more of a scheduling problem; second, what value the load shedding

parameter should take.

[Jorge et al. 2000] presented a multi-objective decision support model which allows the consideration of

the main concerns that have an important role in load management (LM): minimize peak demand as

perceived by the distribution network dispatch center; maximize utility profit corresponding to the energy

services delivered by the controlled loads; and maximize quality of service in the context of LM. [Hsu

and Su 1991] used dynamic programming in developing an optimization technique to reach the optimal

direct load control (DLC) dispatch strategy and system generation schedule. Similarly, [Chen et.al. 1995]

used DP to study the optimal direct load control pattern which is defined by interruption starting time,

maximum-interruption-time, minimum-connection-time, payback energy and payback ratio.



[Kurucz et al. 1996] developed a linear programming (LP) model to optimize the amount of system peak

load reduction through scheduling of control periods in commercial/industrial and residential load control

programs at Florida Power and Light Company. The LP model can be used to determine both long and

short-term control scheduling strategies and for planning the number of customers who should be enrolled

in each program. Results of applying the model to a forecasted late 1990s summer peak day load shape

are presented. It is concluded that LP solutions provide a relatively inexpensive and powerful approach to

planning and scheduling load control. Also, it is not necessary to model completely general scheduling of

control periods in order to obtain near best solutions to peak load reduction. Another related paper [Chen

et al. 1995] that also focused on the scheduling part of load control used DP to study the optimal direct

load control pattern which is defined by interruption starting time, maximum-interruption-time,

minimum-connection-time, and payback energy and payback ratio.

[Effler et al. 1992] dealt with the procedures for energy import optimization based on the results of a load

forecast program for the control center of the Pfalzwerke AG. Special emphasis is put on load

management and the investigations for modeling the load behavior depending on season, day type and

temperature.

1.4 Problem description

Our load control problem is a multi-objective optimal control one involving complex system (building

and plant) dynamics and engineering constraints. It has two stages as follows.

First, optimize controls in a single building to minimize the cost, where the cost is the combination of

electricity cost and penalized human comfort. Identify important load shedding strategies through

parametric studies and propose guidance for building operators to shed the building load appropriately.

The emphasis of our work is on short-term load control strategies that a building operator can

easily implement. The intent in general is to curtail service in order to control costs. While

building operators are familiar with possible set point adjustments for their plants and may be

making them, it is important for them to have a basis for choosing among them and selecting the

magnitude of adjustment. For example, adjusting supply-air temperature on a VAV plant may

increase energy costs until service is curtailed. Turning off or restricting the output of a chiller

may reduce service and costs for a short period, but may lead to a load (and cost) spike if service

is restored while peak charges are still in effect.



Some issues we explore are: What characteristics does the building optimization cost function

have? What are the important load shedding strategies for a specific building? How to connect a

building simulator with an optimizer? What algorithms are efficient in solving building

optimization given the specific cost function and constraints? We answer these questions through

a large number of EnergyPlus simulations and simulation-based optimization.

There has been extensive work in the single building area. This research distinguishes itself in

the following ways: 1) it applies a variety of optimization methods to EnergyPlus. The analysis

framework is simple and potentially useful for practitioners; 2) as a new and powerful simulation

tool, EnergyPlus offers great flexibility in studying building operations and controls. Some of the

things such as scheduling cannot be fully accomplished by other tools. We look into a variety of

issues by taking advantage of new functionalities of the software.

Second, optimize the load aggregation with multiple buildings by applying suitable controls to

aggregation participants and matching their load profiles. Set up the structure of the overall optimization

process. Build the underlying math model for the central optimizer and a statistical unit simulator for

single building dynamics. Solve the optimization problem efficiently.

An optimization scheme is to be developed for building load aggregation. A brute-force

algorithm supported by EnergyPlus simulations is less desirable for the multi-building case due to

the size of the problem. Our experience with EnergyPlus in the single-building research suggests

we stay away from full-scale simulation in the multi-building case for the following reasons: 1) it

is too computationally intensive to manipulate a number of EnergyPlus models; 2) too much

complexity from individual buildings would bury the system level dynamics and prevent us from

gaining insight; 3) data from full-scale simulation tend to be nonlinear and discontinuous, which

makes it difficult to solve the problem using nonlinear optimization algorithms . The idea is to

separate simulation and optimization, as we will discuss in Chapter 5, where individual simulator

serves as the building block of the optimization process. The optimization process looks at a

group of such profiles and decides what to do at the macro level.

A generic math formulation of the problem is given in Eqn 1.1, which minimizes the total

electricity cost:
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Where,

W, Electricity consumption by building i at time t, i = 1,..., N, t =1,...,24

PPD, Predicted Percentage Dissatisfied values in building i at time t

R, Electricity rate at time t

D Demand charge rate

u , Control variables, ucit continuous variables, and udj ,discrete variables

xi , State variables

f Building i dynamics determining electricity consumption at hour t

g1  Building i dynamics determining thermal comfort i is at hour t

We also need to look at the non-technical side of the load control issue because the energy market and

energy policy play important roles in practice. With the utility market moving toward deregulation and

information technology more advanced, opportunities and challenges emerge in designing an efficient and

healthy deregulation system, communicating with the market and making informed decisions. It is also

interesting to look at the increasingly complex energy-based financial instruments and how they might

affect the market.

Overall, Chapter 2 is devoted to parametric studies that concern load shedding and control in a single

building. Comparison between different strategies helps understand VAV system dynamics. Important

operations parameters are identified and chosen to participate in an optimization process in Chapter 3 to

optimize the load control strategies. Chapter 4 explores load control when multiple buildings are

involved through two simplified approaches: educated enumeration and sequential-GA. Chapter 5 solves

the multi-building optimization problem. A time-series linear model is used to simplify the building

dynamics, on which a nonlinear algorithm is applied to capture the aggregation structure.
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CHAPTER TWO

SINGLE BUILDING PROBLEM: LOAD CONTROL IN A SIMPLE VAV SYSTEM

In this chapter, we study load control opportunities in a single building through EnergyPlus-based

simulation. A simple VAV system is used as the base model, and a variety of load shedding and control

strategies are explored. The purposes of conducting single building research are as follows: 1) gain a

thorough understanding of building dynamics and a mechanical system's partial load performance which

is key to some load shedding strategies; 2) optimize load control in a single building's framework; and 3)

prepare at the individual level for the multi-building problem. We first introduce in detail the building

model used through the entire research, and test the model. Several load control strategies including night

cooling are examined thorough parametric studies to identify important ones to this building. As a follow

up, two optimization schemes are applied to load controls in the next Chapter.

2.1 Model description

0 Building

The base model used in this research is a simple three-zone VAV system', which is located on a top floor

of a commercial building with a gross area 126m2 . The system has no ground contact (all floors are

"partitions"), and three zones are connected by inter-zone partitions. The roof is exposed to the outdoor

environment. All of the zones are air-conditioned with the same temperature set point, and the middle

zone has a south-facing window that is l0m2 . Figure 2.1 shows the floor plan. The external walls are

common brick with a R-value of roughly 0.14. The floor is eight-inch concrete with a R-value of 0.12.

The roof is two-inch concrete and its insulation layer has a R-value of 0.58. The estimated time constant

is 44 hours for the walls and floor and 3 hours for the roof. Using the ASHRAE light, medium and heavy

standards for room envelope construction [ASHRAE handbook 1997], this building is about the medium

construction type. The window area is rather small in this building and the solar effect does not

dominate. The internal loads including people, equipment, and lighting are about 13kW, roughly 0.1 kW/

m2, and run at a typical-commercial-building schedule, meaning large load and operation differences exist

between day time when the building is occupied 8am - 5pm and nighttime and weekends when the

1 This model is based on one named vavsingleductreheat.idf in the free-downloaded EnergyPlus software package.
We changed the model in a variety of ways including equipment sizing and chiller sequencing, control schedules,
added an outside air system and disabled the reheat system. The EnergyPlus input file of the base model can be
found in AppendixA. 1. More changes will be made later to make available a variety of building systems for load
aggregation research.



building is empty, and between weekdays and weekends. The load pattern schedule will be changed later

in this research to come up with a model with less commercial load pattern.

North
Zone

Middle East
Zone Zone

6 6

Figure 2.1 Floor plan of the three-zone VAV system

0 Air-handling system

The building is served by a VAV air-handling system with a design supply airflow of 1.3 m3/s. A dry-

bulb temperature-controlled economizer is used for air-to-air heat recovery and is set at the return air

temperature when night cooling is available or turned off other times. The air handling system operates

normally from 8am to 5pm weekdays only.

Variable-speed Fan

Constant-speed Pump
Constant-speed Pump

Figure 2.2 Plant layout of the three-zone VA V system
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System

Exhaust air

Zone Mixer Zone Splitter

Figure 2.3 Air loop of the three-zone VAV system

The mechanical system is shown in Figure 2.2. It is a variable air volume system with a single air loop.

The occupied hours are 8am - 5pm and unoccupied hours otherwise. The original system has purchased

heating supply and runs all year. We focus only on the summer. To be energy efficient, the system has

no reheat supply. The cooling set point is 24'C while occupied and 30'C otherwise. Fans and coils are

scheduled to be unavailable during unoccupied hours. The air loop consists of a fan and cooling coil.

The fresh air is supplied by an outside air system 2, as shown in Figure2.3. In the plant, the cooling loop

is served by a 35kW electrical chiller and purchased cooling.3 A variable-speed fan, constant-speed

chilled water and condensed water pumps, and single-speed cooling tower fans are used in the system.

From April 1 through September 30, the system runs in the summer operations condition, and winter

condition with the remainder of a year.

Operation schedules are controllable and supervisory controls are adjustable. Set point managers are used

to schedule supply air temperatures and mix OA (outside air) ratio. Fan and cooling coils are controlled

2 The original model has no outside air system. We added one for purposes of studying a real building and
implementing night cooling. See Appendix A.2 for the E+ code.
3 In the original model, the cooling loop is served by a big chiller, a little chiller and purchased cooling, and priority-
based controls determine which piece of equipment to be turned on to meet the demand. It is changed for simplicity
purposes. The new capacity is chosen by design.



separately, so that we can implement fan-based night cooling or chiller-based night cooling. The reheat

system is controlled in a way that it is always off at night time no matter which load control strategy is

taken. The minimal outside air is controlled through min OA schedules under which system shuts down

outside air at night for conventional night set-up but intakes as much fresh air as possible with night

cooling available. All the schedules can be adjusted on an hourly basis.

Our research focuses on summer conditions. We simulate several typical summer days using San

Francisco and Los Angeles weather data, and compare the average performance between two locations.

Table 2.1 has more details about this three-zone VAV system we use.

Table 2.1 Basic building model

Building

and

Zones

Construction

and

insulation

materials

Three zones, top floor commercial building, gross area 126 m"

East and middle zones: 3 people and 3kW equipment

North zone: 4 people and 4kW equipment

C4 - 4 in common brick ext walls - R value 0.14 mZK/W, 1922 kg/m3, 0.84kJ/kgK

C10 - 8in concrete floor slab - R value 0.12 m2 K/W , 2242 kg/m3, 0.84kJ/kgK

C12 - 2in concrete roof - R value 0.03m2 K/W, 2242 kg/m3, 0.84kJ/kgK

C6 - 8in clay tile partitions - R value 0.36 m2K/W, 1121kg/m3, 0.84kJ/kgK

B5 -lin dense insulation - R value 0.58 m2KIW

Other insulations include membrane, stucco, gyp board etc.

Plant Chiller: electric chiller, nominal capacity of 35kW, COP 3.0,

and HVAC minimal load ratio 0.15, optimal load ratio 0.65

extra cooling resource: purchased cooling

Fan: variable-speed drive, 600Pa and 1.3 m3/s design flow

Pump: chilled water and condensed water pumps, constant-speed drive

300kPa and 0.0011 m3/s rated flow

Cooling tower: single speed, 1kW fan

i



2.2 Model test

As previously noted, the three-zone model described in the previous section originates from an

EnergyPlus example model that comes with the software package. A few changes concerning plant

equipment, air loop and schedules were made to make the model the right one for this research. Both the

original model and our modified one, the base model, run smoothly and produce reasonable results.

Because the base model and a few variations will be used extensively in our research, we consider it

necessary to validate the model. We cannot and are not going to conduct the model validation in the

traditional sense by using experimental data. Instead we will check the model to make sure it makes

sense in physics. Details are as follows:

" Energy balance and mass balance are maintained for components and the system

o Chilled water and condensed water loops separately

o Chiller as a whole

o Air loop heat and mass involving outside air system and cooling coil

o Convective heat transfer vs. cooling provided on a real-time basis

o Cooling load itemization

o Building as a whole and load calculation vs. simulation results

o Cooling demand and supply match on a daily basis

o Energy flow in the entire system

* Component physics maintained

o All physical parameters (temperatures, flow rates, thermal comfort et al.) take reasonable

value considering equipment constraints

o Components behave the way intended and part-load performance looks correct

o Check components for the trend in power consumption with at different capacities

o Transition between components is smooth and the system is reasonable (partially checked

in balance)

" Input-output relation straight

o Extreme condition tests

o For those theoretically or empirically known relations, check if the simulation results

meet the expected trends

o Check model performance with different weather and internal loads

After going through all these checking and debugging procedures, the likelihood that the model has

physical modeling errors is fairly small, although not perfectly guaranteed. In fact, some EnergyPlus



bugs and hidden modeling errors are identified later. What we have done above is to guarantee a relative

correctness, meaning that the model by itself is correct in physics, but whether or not the model produces

the similar results to those from measurements in the real building is less critical, because 1) we are

conducting this research on a relative platform and the most important thing is the model is consistent in

itself, so we can compare different load control strategies; 2) experiment-based validation is less viable.

Real buildings are generally too complex for research purposes, but it is difficult to build an experimental

chamber with its own complete plant system.

2.3 EnergyPlus Parametric Studies Part I: Basic VAV system dynamics

EnergyPlus parametric studies are carried out to see how the building system responds to changes of basic

operation parameters such as thermostat setting points, supply air and chilled water temperatures. In this

section, we simply run simulations with one parameter varying at a time.

2.3.1 Thermostat set points

The original thermostats are set at 24'C for occupied hours and 30'C for unoccupied hours. Here we vary

the occupied-time thermostat from 21 to 30'C with 1C time step on a typical summer day in Los

Angeles to see how the thermostat set point affects the energy performance. Figures 2.4a, b, c and d show

the daytime average fan power, chiller power, total power, and PPD values. There is no need to consider

the unoccupied hours when system is off. It will be a totally different case if night cooling is available,

which will be addressed late in this chapter.

Increasing the thermostat decreases monotonically all the power consumptions and reduces the service

level. It has a large impact on both fan power and chiller power, which is due to the reduction in cooling

demand. The marginal energy benefit shrinks with the further increase of the thermostat set point while

thermal comfort keeps deteriorating. Therefore, increasing thermostats can only be a load control strategy

within a certain level, which is a function of the building system and service level requirement.

The simple analysis here adopts new thermostat set points for the entire day, which is seldom the case in

practice. In further parametric studies and optimization analysis late in this research, we will focus on

thermostat set point change with a short-term, e.g. several-hour, horizon, where scheduling load shedding

and reducing the setback peak will make the analysis more interesting.
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2.3.2 Supply air temperature, chilled water temperature and fan capacity reduction

The rationale behind varying the combination of supply air temperature, chilled water temperature and

fan static pressure rise is as follows. In a VAV system, increasing the supply air temperature pushes up

the fan power if the indoor air temperature remains the same. If the chilled water temperature can be

increased accordingly, it will lead to better chiller efficiency and produce some savings. Two scenarios

can happen.

" If we can shed the fan capacity, the fan power increase can be mitigated. Together with the savings

from more favorable chiller working conditions under higher average chilled water temperatures, this

strategy is likely to produce pure savings.

* If we cannot shed the fan capacity, the energy saving potential depends on the relative change

between chiller power decrease and fan power increase. In most cases, it has to wait until the fan gets

saturated and the fan power remains constant after.

The original supply air temperatures are set at 13'C for the entire day 24 hours. We run the simulation

with the supply air temperature (Ts) varying from 10'C to 26'C with a 2'C step, and chilled water

temperature (Tch) taking values of 6.67, 8, 10 and 12 on a typical summer day in LA. The changes apply

to all 10 working hours.

Figure 2.5 shows how combinations of Tch and Ts affect the average chiller and fan power and PPD.

Indoor air temperatures are kept at 24'C until the supply fan is saturated due to the increasing supply air

temperature. We see a clear trend of chiller power decrease and fan power increase with the increase of

Ts and the impact of varying Tch is not as important. Combining the total power and PPD plots, we see

that power savings have to come with the price of severe comfort violation. The increase in fan power

outweighs the savings in chiller power. This continues to be so until the fan gets saturated, around 16'C

in this case, where we start seeing total power savings but the indoor temperatures are higher and PPD

values have reached 60%. This rules out the possibility of relying on increasing Ts and Tch alone as a

load control strategy.

To further improve the energy performance, we allow the fan capacity to change, which can be

implemented by reducing the static pressure set point of the fan or the maximum speed. Figure 2.6

compares the full fan capacity with a 25% capacity reduction: Figure 2.6a shows that the fan power

reduction helps reduce the average chiller power, which might be due to the fact that less fan heat is

released to the air stream and therefore processed by the chiller. Figure 2.6b indicates a large fan power



drop by a 25% fan capacity reduction. Later in this research, we will quantify the impact of the short-

term fan capacity reduction based on a few representative days in summer. Figure 2.7 compares the

chiller and fan power consumptions with a full fan capacity and with a 75% fan capacity at different

supply air temperature and chilled water temperature combinations. The fan capacity reduction leads to

savings in fan power in all four cases, but the chiller power savings are more obvious when both supply

air and chilled water temperatures are higher.
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Figure 2.5 Total, chiller and fan power, and PPD vary with the combination of Ts (supply air

temperature) and Tch (chilled water temperature) with fan capacity stays full and thermostats remain at

24'C before the comfort is degraded
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2.3.3 Economizer set point

There is an economizer installed in our model, and we can control the fresh air intake by setting the

economizer temperature. In previous two cases, the economizer was turned off so that we could focus on

the impact of other parameters. In cases where natural ventilation is involved, the economizer will be set

such that the system can take full advantage of free cooling. We now look at how the economizer

temperature set point affects the energy performance. The base case is that the economizer is set at the

return air temperature, 24*C, which is expected to be the most energy efficient as it maximizes the use of

outdoor air. In other cases, the economizer temperature varies from 24 to 160C. System remains off at

night and all free cooling takes place during the day. Figure 2.8a) shows the impact of economizer on a

rather cool day June 9 when the highest temperature is 20*C and the lowest is 150C, the economizer

performs the best with a set point of 24*C, which corresponds to the least chiller power. All the set points

above 20*C perform equally well and take full advantage of fresh air. When the set point drops below

15'C, free cooling no longer comes in and mechanical cooling takes over. On a cool day like June 9, free

cooling contributes more than 30% to the total cooling need. Figure 2.8b) shows the chiller power at

different economizer set points on a warm day July 14 when the highest temperature is 23'C and the

lowest is 18'C. In this case, operators should set the economizer no smaller than 23*C to capture the free

cooling benefit, which is about 13%. In both cases, fan power remains unchanged, as the total airflow

rate is the same. Therefore, varying economizer set point according to weather can be an easy way of

saving energy for operators.
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Figure 2.8 Chiller power vary with economizer set point on a) June 9(left) and b) July 14 (right) in LA



2.4 EnergyPlus Parametric Studies part II: short-term load shedding

We studied in part I the basic dynamics of a VAV system through parametric studies and identified the

importance of certain operation parameters. More simulations are done in this section and the energy

performance is quantified with the focus on the savings potential of short-term, e.g. several hours, load

shedding. In reality, we can only afford sacrificing some comfort for a short period of time. In this

section, we apply load shedding to hours 14-17, a four-hour period in the afternoon, and aim at reducing

the peak demand and/or overall energy consumption. It is to be noticed that these two goals could yield

different results, which depends on the specific load profiles and rate structures.

Because we choose the last four working hours as our load control period, any load-control-caused

setback recovery wouldn't become the system load. However, the heat accumulated during the shedding

period could be only partially dissipated by conduction through envelope at night, and what is left might

lead to an early morning power pick-up. Because the convergence of the EnergyPlus simulation is on a

single-day basis, this morning pick-up effect can be seen in some of our results. All the simulation in this

research has a horizon of a day. During the parametric studies, we apply load shedding to six

representative days in summer and present the average as the final savings value.

We look at three set-point related load control strategies in LA and SF: increasing thermostat set points,

reducing supply fan capacity and increasing thermostat set points, and increasing both supply air

temperatures and chilled water temperatures while reducing the fan capacity. All the adjustments are

made during 14-17, last four working hours, except that the fan capacity reduction applies to a whole day.

We also look at the effect of turning chiller off for an hour during the day. The impact of load shedding

schedules is also explored.

The hourly power and PPD profiles in Figures 2.9 a) and b) show the potential demand reductions and

decrease in service level. No load setback recovery takes place because the load control is applied in the

last four work hours, which, however, corresponds to slightly higher power in the morning. Figures 2.10

a) and b) are the average daytime chiller and total power reductions for LA and SF. For thermostat-based

load control, a 2'C thermostat increase in hours 13-17 leads to an average power reduction of 2.8 W/m 2 in

LA and 1.7 W/m2 in SF, and a demand reduction 4 of 8 W/m 2 in LA and 4.8W/m 2 in SF; a 4'C increase

4 Here we only look at the demand reduction within the control period of hours 13-17. Note that the new peak might
be shifted to 12noon by applying load shedding to hours 13-17. Doing so, we produce demand reduction similar to
Haves [2001] did, and two research projects are comparable.



corresponds to 4.4 W/m 2 average power savings in LA and 2.4 W/m2 in SF, and a demand reduction of 11

W/m2 in LA and 7 W/m2 in SF. Haves [2001] reported a 5W/m2 demand reduction for a 2 degree set-

point change for a prototype office building in California, and 9.3 W/m 2 demand reduction for a 4 degree

set-point change. According to Figures 2.9b, daily peak PPD reaches 50% with a 4'C increase and below

40% with a 2'C increase. Figure 2. 10a) shows the total demand reductions in LA and SF and the

contributions by chiller, which is the major source of the power reduction with thermostat set points

increases. Thermostat-based load shedding works better in LA than SF because the base load in SF is

rather small due to the mild weather and savings from load shedding are relatively less dramatic.

Fan capacity reduction by itself is a fairly effective load shedding method. In practice, fan often times

runs at below full capacity. The very left bars in Figure 2.11 shows the shedding performance of

controlling fan capacity. With 25% capacity reduction only, we see 1 W/m2 average power savings in LA

and 0.6 W/m2 in SF, and a demand reduction of 1.4 W/m2 in LA and 1 W/m 2 in SF; 50% fan capacity

reduction alone leads to 2 W/m 2 average power saving in LA and 1.4 W/m2 in SF, and a demand

reduction of 2.8 W/m2 in LA and 1.8 W/m2 in SF. It does little harm to the service level as the indoor air

temperature is maintained at 24'C. Combining fan capacity reduction with thermostat increase is more

effective, as shown by the rest of Figure 2.11. A 25% fan capacity reduction along with a 4'C thermostat

increase lead to an average power savings of 4.6 W/m2 in LA and 2.5 W/m in SF, and a demand

reduction of 11.8 W/m2 in LA and 7.5 W/m2 in SF. A 50% reduction together with a 4'C thermostat

increase produces an average power savings of 4.8 W/n in LA and 2.8 W/m2 in SF, and a demand

reduction of 12.4 W/m in LA and 8 W/M2 in SF. Haves [2001] reported a 4.5 - 6.5 W/m2 demand

reduction for a 20% supply fan capacity reduction. The fan static pressure rise in Haves' research is

about twice of that in our system. Therefore, discrepancies between two sets of results are expected when

fan capacity reduction plays a role. The service level degradation is similar to that in the previous case,

shown in Figure 2.9, where only thermostats are adjusted. Shedding fan capacity helps reduce the power

profile and has little impact on the service level. We want to point out that the relative benefit of

improving thermostat set points and shedding fan capacity is smaller than the sum of implementing them

alone. The reason is that a VAV system will cut the flow rate to respond a thermostat set point increase.

Shedding fan capacity with a smaller flow rate leads less energy savings than with a larger flow rate.

However, the absolute energy performance is still improved as we combine these two. A 4'C

temperature increase alone leads to an 11 W/m2 demand reduction and a combination of 4'C and 25% fan

capacity reduction to 11.8W/m2
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Figure 2.12 gives the hourly load and PPD profiles corresponding to different combinations of supply air

and chilled water temperatures and fan capacity reduction. In all shedding cases, those hours during and

after shedding are seeing reduction, but the early morning pick-up can be a problem for systems without

night cooling available when chilled water temperature is pushed too high, for example Tch of 12'C. In

addition, the combination of Ts = 20'C, Tch = 10'C and 25% fan capacity reduction performs worse than

Ts = 13'C, Tch =10'C and 25% fan capacity reduction, which is because the fan does not saturate until

20'C, and further increase will lead to energy savings and cause severe comfort problems. This is

consistent with our findings before about the relationship between total power and supply air temperature.

We conclude that there is an optimal combination of Ts and Tch, and simple parametric studies usually

find a sub-optimum.

Haves [2001] suggested that a combination of supply air temperature increase and chilled water

temperature increase during peak hours will bring in more demand reduction, and reported 7 - 9 W/m 2

savings by raising supply air temperature by 3C and chilled water temperature by 4'C while reducing fan

capacity by 20% for four hours in the afternoon. We also got substantial demand reduction by taking the

similar short-term load control approach, but the average savings is still small, shown in Figure 2.13. For

a 2'C supply air temperature increase and 2.3'C chilled water temperature increase, plus a 25% fan

capacity reduction, we see about 1 W/m2 average power savings in both LA and SF, and a demand

reduction of 7.6 W/m2 in LA and 4.5 W/m2 in SF. The base case in Figure 2.13 has a supply air

temperature of 13'C, a chilled water temperature of 6.7'C and full fan capacity. From the power

breakdowns, we see that the savings in chiller power was partially cancelled out and in some cases

overweighed by the fan power increase. The supply air temperature was not high enough to saturate the

fan. Further shedding fan capacity might help if permitted. Overall, there are more savings in LA than in

SF, which we believe due to the differences in base loads. The mild weather in SF leads to a low base

load, and further reduction is therefore less helpful.
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Figures 2.12 Hourly power (top) and PPD (bottom) profiles on August 10, LA for different combinations
of supply air temperature increase and chilled water temperature increase, and fan capacity reduction
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Table 2.2 compares the demand reduction results in this research with Haves' results [2001] for different

types of load shedding strategies in a few locations in California. The two sets of research are

comparable because they both study commercial VAV systems in similar climates by taking similar load

shedding approaches, and the peak loads per unit area are also close. The discrepancies are a function of

the specific buildings under study.

Table 2.2 Demand reduction vs. Load shedding strategies

Load shedding measures Our results Haves' results Implementation

Demand reduction (W/m2) (W/m 2)

Increase thermostat set points LA - 11.7 9.3 Network-addressable

by 4C SF ~ 7 thermostat controller

Increase thermostats by 4'C and LA - 11.8 11- 12 Adjust max speed or

reduce fan capacity by 25% SF ~ 7.5 static pressure rise

Increase supply air and chilled Alternative if
LA ~7.6 7 -9

water temperatures by 3C while SF ~ 4.5 thermostats are

shedding fan capacity by 20% difficult to control

Norford et al. [2002] used a simplified analytical model the impact of changing thermostat, supply air

temperatures and lighting on demand reduction and zone temperature for different internal load levels.

Haves and Gu [2001] did a similar analysis in EnergyPlus for several cities in California and suggested

some operation guidelines. Both pointed out VAV systems have more flexibility over CV systems in

generating energy savings through load shedding. The exact amount of savings depends on the building

thermal properties, load characteristics and the load shedding strategies applied.

We want to point out that often times it is the implementation issue associated with a load shedding

strategy that determines whether it can be used. As our parametric studies show, increasing thermostats is

very efficient and the analysis is simple. In order to implement it in a large commercial building, the zone

temperature controllers need to be digital and network-addressable. It would be too difficult to adjust

thermostats manually. If the zone temperature controllers are not network-addressable, load can be shed

by reducing the air handling unit fan capacity, either on its own or while increasing the supply air

temperature and chilled water temperatures. This partially motivates our looking at a variety of load

shedding strategies. In the next several chapters, we assume thermostats can be adjusted easily.



In all the previous studies, we pre-specified the load shedding schedules, such as how long each period

should be and when load shedding should start. In practice, however, scheduling itself is an important

issue and needs to be determined through optimization. In this section, we illustrate the importance of the

load shedding scheduling by simply comparing several thermostat set point-based cases with different

schedules. It is worth in the future looking into the scheduling problem in detail and in a systematic

fashion, and making suggestions on how building operators should time load shedding strategies based on

rate structures, buildings, mechanical systems used, occupants' preferences, weather, and the shedding

strategies to be applied.

With only thermostat set points as control variables, we look at the impact of shedding duration and

starting time, with results shown in Figures 2.14 and 2.15. The base case, where thermostats are set at

24'C and no load shedding available, is compared with other three cases: 1) thermostats are set to 28'C

for hours 13-16, 2) 280C for hours 14-17, and 3) 28 0C for hours 13-14. The comparison between 1) and

2) looks at when load shedding should start, and 1) and 3) looks at how long load shedding should last.

Figure 2.14 compares the daytime average power consumption and the peak demand between these cases,

and Figure 2.15 shows the corresponding hourly power and PPD profiles.

Because the building load goes down substantially after hour 18, a thermostat increase during hour 14-17

avoids the load setback recovery spike, although the overall power curve is pushed up for the next day,

reflected in the increase early morning power. However, a similar 4-hour 40C thermostat increase which

happens two hours earlier incurs large load set-back recovery, which leads to a 1.3 W/m2 average demand

increase and a 12 W/m2 peak demand increase compared to load shedding that takes place during hours

14-17. Therefore, the well-timed hour 14-17 load shedding offers demand charge advantage, giving the

same the service level reduction. Compared to the base case, the load shedding case during hours 13-14

doesn't really offer any benefit: almost the same total consumption and the increased peak demand. This

is because the load set-back recovery outweighs savings, which shows the importance of choosing the

shedding period. The scheduling problem will get more complicated if the occupancy and a few

operations schedules are subject to change.



Figure 2.14 Daytime average power consumption (left) and peak power (right) with different scheduling

durations and starting times under thermostat-based load control
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Figures 2.15 Hourly power profile (top) and PPD profile (bottom) with different

scheduling durations and starting times under thermostat-based load control
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Chiller power is a big portion of the entire mechanical system energy consumption, 50-70% in this three-

zone VAV case. Naturally, we'd like to turn off chillers during peak hours to cut peak demand and

hopefully total power consumption, provided doing so wouldn't unduly hurt thermal comfort. In this

three-zone VAV case, we compared the following cases: 1) chiller is on the whole time; 2) chiller off 15-

16; and 3) chiller off 16-17. The simulation is done to three types of thermal masses on six individual

summer days in LA, and averaged results are presented below.

Figure 2.16 shows the occupied-time average load and PPD for three chiller control strategies and three

types of thermal mass. lmass is the base case and 2mass and 3mass represent that the thermal mass is

doubled and tripled. We simply double and triple the density of major construction materials and the

system size remains the same. The details can be found in the material object description of the

EnergyPlus model given in Appendix 1.2. As expected, turning chiller off leads to big energy savings

associated with the much worse comfort condition. The peak demand chart in Figure 2.16 shows that

high thermal mass is more tolerant of the temporary shut-off of the chiller, and setup recovery is smaller

than that with low thermal mass; however, it is also more difficult for heat accumulated during the

shedding period to dissipate over night when the system is off. The bottom graph in Figure 2.17 indicates

that with the same chiller shedding strategy, high thermal mass leads to higher early day power

consumption, although this doesn't affect the daily peak. We plot the hourly load and PPD curves for the

3mass scenario on a summer day in LA, as shown in Top and Middle of Figure 2.17. Even with the

highest thermal mass, a 3mass model, the hour(s) when chiller is off corresponds to a PPD of 70-90%.

Therefore, turning the chiller off for an hour is not acceptable in this system on a summer hot day.

50 m on ----

* hr16 off
ohr17 off

E

0
0.

1mass 2mass 3mass
time (hrs)

Figure 2.16 Occupied-time average power consumption and PPDfor three chiller cases (always on, off

during hour 15-16, and off during hrs 16-17) with three different types of thermal mass (1,2, and 3mass)

on summer typical days (average of six summer days)
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We use EnergyPlus version 1.1.0 in this research, and did not find a way to turn the chiller off for less

than an hour. The most recent version of EnergyPlus 1.1.1 that came out when this thesis was prepared

can schedule chillers on a time scale that is less than an hour. This would be an immediate next step of

research because turning chiller off for a short period of time could offer good energy saving potential

without hurting comfort much. Turning off chiller temporarily might be a more appropriate choice if the

building thermal mass is cooled over night. In addition, increasing the thermostat set point and/or

shedding supply fan capacity when chiller is off might also help.

2.5 Another load control strategy - night cooling

Previous load control strategies only concern the peak-load related hours in the afternoon. It will help to

work on the entire next day's profile and take advantage of free cooling at night. We approach load

control through night cooling in this section through parametric studies, and will come back to the same

problem through an optimization approach in next chapter. We compare two night cooling schemes:

mechanical ventilation - running fan at night and use the free cooling resource, and mechanical cooling -

running chiller at night, for different thermal mass types and weather conditions. Scheduling night

cooling to improve the load control performance is in the center of the discussion.

The base model described in section 2.1 remains in use, in which the system is turned off at night and the

economizer is off. For fan-based night cooling, we allow fan starting time and discharge process, e.g.

early morning thermostat set points, to change while keeping economizer set point at 24'C. For chiller-

based night cooling, we allow chiller starting time and discharge process to change while keeping

economizer off. The thermal mass in the base case is doubled and tripled and impact of thermal mass on

night cooling performance is compared. Two weather types, LA and Austin, are compared as well

regarding the night-cooling-based load control. Generally, night cooling benefits from large diurnal

temperature differences, so its performance varies from day to day. Acknowledging this, we conduct

parametric studies on the same single day for simplification purposes, and day to day differences are

ignored.

Some of the following scheduling aspects in fan-based and chiller-based night cooling have been studied

before [Braun 2001, Norford 1991]. We look at them through VBA-automated parametric studies:

e Thermostat setting points during the night cooling time

For fan-based night cooling, our strategy is to maximize the use of free cooling. Whenever the

outside air temperature is below inside, the economizer is open to full, assuming that humidity is



not a problem. Therefore, the nighttime thermostat set points have no impact on fan-based night

cooling. For chiller-based night cooling, nighttime thermostat set points work the same way as

daytime set points

Thermostat set points early during the day

These set points control the warm-up period and the way the stored energy is released, and affects

the energy performance the entire next day. We define a set of early morning thermostat set points

as a discharge process. Figure 2.18 examines the impact of discharge process on fan-based night

cooling, and Figure 2.19 does so for chiller-based night cooling. The discharge process affects both

in the same way. It would be ideal if we could track thermal mass temperatures and make operation

decisions accordingly, but it is still difficult to implement this in EnergyPlus currently.

The names of the discharge processes in Figure 2.18.a and 2.19.a are borrowed from Braun's work [2001]

which also compares the performance of these processes. Fast Linear and Slow Linear describe how

thermostats change gradually, at different paces, from 18'C at night to 24'C after the day starts.

Maximum discharge means thermostat set points turn to normal, e.g. 240C or 25'C, right after the day

starts and stay constant in the rest of the day. We add one more case named Until Peak which is to keep

the temperature set points low until the peak is reached or very close. It starts at 22'C , increases to 23'C

in an hour, remains flat until 3pm and goes up to 24'C. In both figures, Slow Linear and Fast Linear both

cause load spikes early during the day due to the low temperature set points, and Slow Linear corresponds

to a higher spike. The early spikes are partially paid off later during the day, but the late-day load

reduction is fairly small. Until Peak has a flat power profile with the lowest peak of all the scenarios.

Figures 2.18.b and 2.19.b have the constant day thermostat set points of 24'C as the base case, and the

power differences are shown on the charts. Until Peak is the most efficient with close to a 7W/ m2 peak

reduction and similar total energy consumption to that in the base case. Maximum Charge to 250C is also

good and sees both peak and total load reduction. But unlike other four cases where the space is not

heated up because the temperature set points are lower than in the base case, Maximum Charge to 250C

corresponds to an about 6% PPD increase in both fan-based and chiller-based cases.

Overall, reduction in early morning temperature set points helps reduce the afternoon peak but not the

total load, and comfort is little affected. Keeping thermostat set points low before peak is very efficient:

the thermal mass discharge process is controlled such that energy stored through night cooling carries

throughout the day and helps reduce the peak. This shows the benefit of looking at the day as a whole.

The disadvantage is that most time of the day is probably cold and less comfortable for some occupants.



Figure 2.18.a) Load profiles of night cooling by mechanical ventilation with

discharge processes, night cooling fan starts midnight with nighttime thermostat

set points of 18C, and chiller starts 8am, August 8, LA
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Figure 2.19.a) Load profiles of chiller-based night cooling, with different discharge

processes in the early morning, and chiller starts at 4am with a nighttime thermostat

set point of 18C, August 8, LA

3

5 -1 fast inear s near 24C eak

0 -3

-5 * peak diff
* avg diff

-7

Figure2.19.b) Peak load and average load difference from the base case

due to chiller-based night cooling with different discharge processes
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0 Night cooling start time

No matter which approach taken to night cooling, fan-based or chiller-based, when to start night cooling

is a question. Early start can always help reduce the day peak load, but is likely to consume too much

energy overall. We need a balance between getting enough low-cost cooling resource stored in thermal

mass over night for next day use and consuming reasonable amount of energy over. Figure 2.20 is the

parametric study results for fan-based night cooling, and Figure 2.21 for chiller-based. A rigorous

optimization process will be set up in the next chapter.

Figure 2.20.a and Figure 2.21.a are power profiles with different fan and chiller starting times. Figure

2.20.b and Figure 2.21.b show the power and PPD difference between different night cooling start times

and the base case, which is no night cooling at all. All cases have the same thermostat set points. From

Figures 2.20, we see that for a fan-based night cooling strategy, early starting of the fan helps reduce the

peak load and flatten the peak period and lower the maximum PPD and average PPD values. But early

starting of the fan leads to the most energy use overall. It is a trade-off between getting enough energy

stored and using less energy to run the fan at night. We need to figure out when the thermal mass gets

fully charged. Starting the chiller early has a similar impact, according to Figure 2.21, but the chiller-

based night cooling has more dramatic power and PPD impact.

It is clear that scheduling night cooling is an optimization problem with the peak load and PPD and the

total load as conflicting goals. We can unite them under a total energy cost given a certain rate structure,

which will be part of the next chapter.

The impact of weather and location on determining whether night cooling helps and which night cooling

strategy is better is examined in Figure 2.22, where the chiller starts at 4am, fan starts at midnight and

everything else remains the same. No night cooling, fan-base, and chiller-based night cooling strategies

are applied to the same building in LA and Austin. LA has a high of 29'C, low 19'C and average of

23'C, while Austin has a high of 34'C, low 23 0C and average of 28'C. In LA, chiller starting at 4am is

almost equivalent to starting fan at midnight in terms of peak load and comfort but at the price of more

total power consumption. However, in Austin, fan-based night cooling is less attractive as the outside

temperature stays above the thermostat set point most of the time. Chiller-based night cooling reduces

peak load and improves the overall load profile.

We also look at the impact of thermal mass combined with weather on the night cooling performance. In

Figure 2.23, we simulate three types of thermal mass: Imass, 2mass, and 3mass. 2mass and 3mass have



been defined before. For each thermal mass, we conduct three cases: traditional night set-up, fan-based

night cooling and chiller-based night cooling. In the fan-based night cooling, we turn off the chiller at

night and use mechanical ventilation with an economizer set point of 24'C from 12a to 7a. In the chiller-

based night cooling, we turn the chiller on at 4am with the nighttime thermostat set point of 18'C, and let

it run through the end of the working day. All the cases have the same indoor control target of 24'C

during the occupied time. Figure 2.23 shows the results of three mass types, three strategies and two

locations. Shown are power differences; the base cases for all charts are no night cooling and Imass, with

their figures at the bottom left corner of each chart. In LA, fan-based night cooling shows an advantage

over chiller-based in term of peak load at higher thermal mass. In Austin, chiller-based constantly

outperforms fan-based. Given the schedule used, chilled-based night cooling always consumes more total

power than fan-based. 3mass chiller-based night cooling in LA has a higher peak than that of 2mass,

which is due to the shift of peak from late afternoon to early morning pick up when the chiller starts at

4am. If we increase the night-time temperature set points from 18 to 20'C, the peaks shift back to around

4pm and 3mass has a smaller peak demand than 2mass. The 3mass case has the best daytime power

profile due to the higher mass. For LA, with the same chiller schedule, 2mass outperforms 3mass in both

peak and total load, which seems to contradict our expectation of better night cooling performance of

higher thermal mass. It is only because chiller-related power is big enough to shift the daily peak and

therefore leads us to a different problem. Which strategy and parameter combination is better depends on

the rate structure, which could be Time of Use (TOU) energy charge, or demand charge plus flat rates or

demand charge plus TOU energy charge. The load control strategy that gives the minimal total cost is the

one should be used in operations.
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Figure 2.20.a) Load profiles of night cooling by mechanical ventilation with different

fan starting times with nighttime thermostat set points of 18C, chiller starts at 8am and

a maximum discharge to 24 0C, August 8, LA
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Figure 2.20.b) Summary of night cooling by mechanical ventilation with different fan starting times

with nighttime thermostat set points of 18C and a maximum discharge to 240 C, 8/8, IA
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Figure 2.21.a) Load profiles of night cooling by running chiller at night with a nighttime

thermostat set point of 180C, for different chiller starting times, thermostats maximum

discharge to 24'C, August 8, LA
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Figure 2.21.b) Summary of night cooling by chiller-based night cooling with different

chiller starting times and a maximum discharge to 24'C, August 8, LA

Left: daily average load and peak load; Right: work time average PPD and peak PPD
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Figure 2.22 power profiles of no night cooling, chiller-based with chiller on at 4am and

fan-based night cooling with fan on at midnight, nighttime thermostat set point 18 C,

daytime maximum discharge 24, August 8, LA and Austin
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There are a few other factors that affect the night cooling performance as well, for example, the

economizer set point in fan-based night cooling. In our studies, we set it to 24'C, which in most cases

equals the indoor thermostat set point, so we already took great advantage of free cooling and further

studies wouldn't be essential. Internal load patterns also affect night cooling, but the load pattern for a

given building is assumed to be fixed throughout this research for simplification purposes. Table 2.3

summarizes briefly the night cooling parametric studies with several examples.

Table 2.3 Night cooling parametric studies summery

LA Peak load reduction Average load increase

(W/m2) (W/m2)

Fan starts at midnight and early morning
4 -9 0 -2.5

thermostats remain low

Chiller starts at 4am and early morning
1 -7 0.5 -2.3

thermostats remain low

Double thermal mass in either fan-based
3-5 0.5

or chiller-based night cooling

2.6 Single-building parametric study summary

Some preliminary operation guidelines are suggested based on extensive EnergyPlus simulations. Several

load shedding strategies are proved to be applicable to this VAV system. The most efficient load

shedding method is to increase thermostats and reduce fan capacity at the same time. A 4'C increase in

four-hour afternoon thermostats and a 25% supply fan capacity reduction corresponded to 4.8W/ m2

average power savings and 11.8 W/ m2 peak demand reduction for this particular building in LA.

Increasing thermostats alone is efficient as well. Increasing supply air temperatures and chilled water

temperatures helps little, unless supply air temperatures are allowed to increase until the supply fan gets

saturated, which, however, would hurt the service level much. Increasing supply air temperatures and

chilled water temperatures by 4'C, together with a 25% fan capacity reduction, produces an average

power savings of 1-2W/ m2 and a peak demand reduction around 6 W/m 2. The duration of the load

shedding period and when to start have impact on energy savings. Both fan-based night cooling and

chiller-based night cooling are studied regarding the schedules and discharge processes. Both approach

take advantage of thermal mass and help reduce the peak load of next day. Fan-based night cooling is

shown to be more energy efficient for this model in LA. Starting fan early leads to 4 - 9 W/ m2 peak load

reduction for this three-zone VAV system in LA, around 10% savings. Chiller-based night cooling has



better peak-load reduction performance in Austin, about 12% savings. Which night cooling approach to

use largely depends on weather, mechanical system availability and the building under study. A more

general load-control scheduling problem is to be studied in next chapter with the help of an optimizer.

If thermostat set points can be easily adjusted, building operators should choose to increase thermostats

for short term load shedding. Otherwise, reducing fan capacity is an efficient alternative. We

recommend night cooling if the plant and/or fan are programmable and whenever weather permits.

Those buildings with high thermal mass should take full advantage of it: if outdoor temperatures at night

are low, use fan-based night cooling; if outdoor temperatures at night are fairly high but the chiller has

more than one stage, run the chiller with partial capacity at night; if the chiller consumes too much

electricity at night and the consumption outweighs the benefit, thermostat set point adjustment may be

made for a period of time during the day. Other options include shedding fan capacity reduction if

possible and turning off the chiller for a short period of time. High mass would help maintain comfort.

Those buildings with light thermal mass have fewer options. Running fan or chiller at night may end up

consuming more energy. Turning chiller off during the day might incur severe comfort problems. A

modest adjustment of thermostat set point may still work. Fan capacity reduction is always an option if

the system has the extra capacity to be shed. There are still things operators can do: if outdoor

temperatures are low at night and during the day, leave windows open and create some cross ventilation if

possible; if the building has large windows, shade during the day; if the humidity is low, a small indoor

fountain would help reduce the temperature. Passive measures like these are not the target of this

research, but operators are encouraged to use them as they cost little and can be quite efficient.

Load shedding generally work better in LA than in San Francisco. The mild weather in summer time in

SF makes load shedding less helpful. We also point out that this three-zone VAV system is not among

the most sensitive ones to load shedding strategies. It is important to identify buildings that are more

appropriate for load shedding. Put another way, what kind of properties in terms of construction, load

and operations does a building need to possess to be responsive to certain types of load shedding

strategies? The load control performance depends on the properties of the building under study.

It is to be noticed that lighting is an independent factor and should be considered separately from HVAC.

The reason is that though light energy increases the cooling load of the HVAC system, the control

strategy for the lighting system remains the same, which is to always keep the lowest level of lighting as



long as doing so will not affect the building's normal functionality. Therefore, lighting is not considered

when we developed the system operation strategies.

The effectiveness of the guidelines proposed in this research heavily relies on a large number of

EnergyPlus simulations. We choose this three-zone VAV model in our research due to its simplicity and

yet completeness as a VAV system. We have done basic testing such as heat and mass balances and

qualitative checking on parameter trends, and fixed a few EnergyPlus problems along the way with the

help of the software package improvement. For example, we had problems with the pump model at early

stage of the research and the problem was fixed in a later version of EnergyPlus. Another thing worth

pointing out is that the current version of EnergyPlus, as of November 2003 when this thesis is prepared,

is imprecise in calculating PMV values. This was observed in our research, as the base case

corresponding to an average daytime PMV of 1. A few EnergyPlus users also reported a deviation of 0.5

at the public mailing list of EnergyPlus maintained by Gard.com. The conversion between PMV and

PPD values is correct and based on Fanger empirical results [EnergyPlus 2003]. Throughout this

research, a PMV of 1.5 or a PPD of 50% is used when comfort is treated as a constraint, with the

understanding that the true system might be cooler. Fortunately, the procedures are designed to carry out

simulation and optimization tasks automatically throughout our research. Therefore a change in the PMV

calculator can be easily adopted and wouldn't hurt the system being developed. Overall, as a complex

software package still under improvement, EnergyPlus is a great help to our research and also a challenge

in the sense that we need to understand and overcome the complexity and potential problems of the

modeling and simulation process. We use the three-zone VAV model throughout this research and make

sure that results are consistent. To explore load shedding opportunities, especially in a multi-building

setting, we need a variety of buildings models that have reasonably good responses to load shedding. It is

not realistic to build them all from scratch. Therefore, those models used in a multi-building setting are

derived from the base three-zone VAV model and differences lie in thermal mass or internal load pattern.



CHAPTER THREE

SINGLE BUILDING PROBLEM: LOAD CONTROL OPTIMIZATION

We have conducted extensive parametric studies and compared the energy and comfort performance

between different load shedding strategies. A natural extension is to find out a way to optimize those load

control parameters. In this chapter, we develop a simulation-based optimization scheme for the single

building problem, and use the framework to study a few strategies. The fact that we rely on simulation

for objective function evaluation makes optimization difficult because simulation-based results provide a

discontinuous search space, and, in addition, our problems are mostly nonlinear. The number of control

variables in the problem is always a constraint. We limit control variables to those found important in

parametric studies to simplify the problem.

Two types of optimization algorithms are used to solve the single building problem: direct search

algorithms (DS) implemented at Lawrence Berkeley National Laboratory (LBNL) as a generic

optimization package GenOpt, and genetic algorithms (GA) implemented in a MATLAB freeware

package GAOT. We will first review these algorithms and then present and compare the optimization

results by applying DS and GA to the single building problem. We also examine the cost function

structure of the single building problem to gain insight into the nature of building optimization. In the

end of this chapter, we propose a hybrid optimization algorithm for single building optimization.

3.1 Direct Search Algorithms and GenOpt

3.1.1 Algorithm reviews

Direct search algorithms (DSs) have been replaced by more sophisticated techniques as numerical

optimization has matured and globalized quasi-Newton methods have been successful. However, as

Lewis [1997] pointed out, direct search methods still persist for three reasons: 1) they work in practice

and the heuristics on which DSs are built remain sound. The convergence has been gradually proved in

recent years [Polak and Wetter 2001] for pattern search methods under certain constraints; 2) Quasi-

Newton methods are not applicable to all nonlinear optimization problems, and DSs have succeeded when

more elaborate approaches failed; 3) DSs can be the method of first recourse. DSs are derivative-free

methods, meaning neither compute nor approximate derivatives, and for unconstrained optimization, they

depend on the objective function only through the relative ranks of a countable set of function values.



DSs can be organized into three basic categories: Pattern Search, Simplex Methods (not the simplex for

linear programming) and Methods with Adaptive Sets of Search Directions. Pattern search methods are

characterized by a series of exploratory moves that consider the behavior of the objective function at a

pattern of points, all of which lie on a rational lattice. The Hooke-Jeeves algorithm is a good example of

pattern search methods. Simplex methods construct a series of simplexes (a simplex is n+ 1 points in an N

-dimensional space) and proceed in the search space by reflecting a simplex through the centroid of one

of the faces, which doesn't depend on derivative information. The Nelder-Mead simplex method has

enjoyed enduring popularity although its robustness has long troubled numerical optimizers. Methods

with Adaptive Sets of Search Directions attempt to accelerate the search by constructing directions

designed to use information about the curvature of the objective obtained during the search. Powell's

method is such an algorithm, and it takes advantage of the previous results to construct a new search

direction - a quasi-derivative.

Overall, DSs remain popular because of their simplicity, flexibility, and reliability. We use this type of

method as the first course in the building optimization problem, and will compare it with Genetic

Algorithms later in this research.

3.1.2 GenOpt

To optimize building control using simulation programs such as EnergyPlus, we should be able to 1)

modify the control variables in the input file and read the objective value from the output file

automatically and continuously; 2) start simulation automatically; 3) keep improving the objective

function toward the optimum. GenOpt, a generic optimization software package developed by the

Simulation Research Group at LBNL, meets these requirements. GenOpt is designed to minimize the

objective function that is calculated by an external simulation program. Several direct search methods,

including Hooke-Jeeves and Nelder-Mead-O'Neil, were implemented in its algorithm library.

Besides having implemented several direct search methods, GenOpt provides a good interface to connect

simulation and optimization. GenOpt allows any text-based simulation programs to be used, and it does

all the data management work. Users only need to define the related parameters and inform GenOpt by

defining initialization, command, and configuration files. In case users wish to use their own

optimization algorithms, they need only to focus on the mathematics, and GenOpt takes care of data

communication. Figure 3.1 shows the GenOpt schemes: a) is the overall scheme with the focus on the

simulation setup and b) more on the optimization side. Details of how GenOpt works can be found in the

GenOpt documentation [GenOpt Manual 2002]. The characteristics of GenOpt discussed so far



motivated its use in our building load control problem, especially in single buildings. Later in this chapter

we will illustrate the process via a single building optimization example.

The Hooke-Jeeves algorithm [GenOpt 2002] is one of the direct search algorithms implemented in

GenOpt, and is the one used in this research. It generates steps along the valley of the objective function.

The algorithm requires neither the gradient of the objective function nor a line search. The original

Hooke-Jeeves algorithm solves the unconstrained problem. It was modified to solve the box-constrained

problem in GenOpt by redefining the objective function. The algorithm can be divided into 1) an initial

exploration, 2) a basic iteration, and 3) a step size reduction. Steps 1) and 2) make use of so-called

exploratory moves in order to get local information about the direction in which the function decreases.

At each resulting base point, a sequence of orthogonal exploratory moves is made. The algorithm updates

the base point once a small change in the objective function is found or reduces the search step otherwise.

Unfortunately, the cost functions evaluated in EnergyPlus and other simulation programs such as

TRNSYS and DOE-2 are 1) nonlinear, which is difficult to deal with by a local optimizer; and 2)

discontinuous with respect to the design parameter, although the discontinuities could be small. The

problem gets worse when the structure of the objective function gets more complex, e.g. the combination

of total energy consumption and thermal comfort. To prevent from getting stuck in local optima, which is

the common problem for direct search methods and most nonlinear optimization algorithms, we can

conduct several rounds of optimization with different initial guesses and pick the best local optimum as a

global suboptimum. An alternative is to implement global-convergence oriented (but not guaranteed)

algorithms such as Genetic Algorithms (GAs) in the GenOpt framework. At the time this thesis was

being written, GenOpt at LBNL released a new version with several global optimization algorithms

implemented, including several global heuristic optimization algorithms that can be used to solve

optimization problems with continuous and/or discrete independent variables, and a GA-based optimizer

was also under development.

GenOpt provides a generic simulation-based optimization framework and automates lots of data

processing work related to text-based simulators. It also has several optimization algorithms included.

We are most interested in the data management framework GenOpt has and will take advantage of that in

our work. We will also be using the direct search algorithms implemented in GenOpt for the single

building problem.
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A detailed description of Hooke-Jeeves and other local-search algorithms implemented in GenOpt, and

the general structure of GenOpt package can be found in the GenOpt manual [GenOpt 2002].

3.2 Genetic Algorithms and GAOT

3.2.1 Algorithm review

Genetic algorithms (GAs) have been reviewed in Chapter 1 as a general optimization technique. They

were inspired by the natural evolution of species. They have been studied in the last twenty years as an

evolutionary computation method along with simulated annealing. GAs are executed as a series of steps,

called generations. They start with a population with a certain number of individuals, different states in

the search space. In each generation, the individuals are evaluated with the fittest reproducing and

continuing the next generations through fitness-based selection. The reproduction phase also introduces

new individuals by applying genetic operators such as crossover and mutation to the current generation.

A variety of genetic operators have been developed [Michalewicz 1992] to tackle certain aspects of

different problems. The selection and/or invention of genetic operators are problem-specific and heavily

depend on experience. As the process continues, the population converges to better individuals, which

gives a higher likelihood of achieving global optimum.

3.2.2 GAOT: A GA Matlab toolbox

Genetic Algorithm Optimization Toolbox (GAOT) is a Matlab toolbox which implements simulated

evolution in the Matlab environment using both binary and real representations [GAOT paper]. Ordered

base representation has also been added to the toolbox. The implementation is flexible in the genetic

operators, selection functions, termination functions as well as the evaluation functions that can be used.

The toolbox was developed at the North Carolina State University and can be downloaded for free at

http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/.

To use GAOT, users need to provide an evaluation function and several key parameters such as crossover

and mutation probabilities, population size, and number of generations. Coding modifications are needed

if evaluation is done by a simulation package, such as EnergyPlus, instead of an explicit function. In this

research, Matlab is connected with EnergyPlus so that Matlab can modify EnergyPlus inputs as needed

and start EnergyPlus runs within Matlab. The simulation results are post-processed in VBA for specific

requirements of the cost function, e.g. certain rate structure, peak load or total load, and the final output is

read in by Matlab as a fitness value for further optimization use. The scheme of this simulation-based GA

is given in Figure 3.3, and the evaluation code myepeval.m is given in Appendix B. 1. The Matlab-based

GA framework is capable of dealing with 1) both single and multiple buildings; 2) different load control



strategies including thermostat control and night cooling; 3) a variety of objective functions and rate

structures.

GAOT provides binary, real values and order-based representations, and a variety of selection functions

and crossover and mutation operators for different representations. The real-value presentation is chosen

in our problems as it matches the problem structure well, and is fairly computationally efficient

[Michalewicz 1992].

In the following two sections, single building controls are optimized using GenOpt and GAOT

respectively and with EnergyPlus as the evaluation function in both cases.

Initialize population

Evaluate the current
generation for fitness

I
Selection based on fitness

Crossover and mutation

Check the new generation to
avoid repetitive calculation

EnergyPlus Simulation

FVBA post-procesn

No

4' Yes
Optimal solution

Figure 3.3 EnergyPlus-based GAOT scheme



3.3 Cost Function Structure

When dealing with an optimization problem, it is very helpful to have some sense of the search space we

work on, although in most cases we can only learn limited characteristics of the cost function instead of

the whole picture. If function evaluation is based on simulation, the cost function tends to have continuity

issues, which makes optimization difficult. Furthermore, power consumption, especially when peak

demand is involved, is a nonlinear function of operation parameters. To understand better the

discontinuity and nonlinearity, we examine in this section cost function structures by visualizing the cost

function surface over two randomly chosen control variables. To do so, we simply mesh the search space

and compute for each grid point the cost function value, and there is no optimization involved. GenOpt

provides such an algorithm named EqnMesh, which is used together with our VBA post-processor in

computing the cost function surfaces. All the cases presented only have two control variables for

visualization purposes. We enumerate 960 grid points over [22, 28] and find the best solution as the

optimum. The GenOpt command file for EquMesh can be found in Appendix B.2.

Figure 3.4 illustrates the cost function surface when the total daily power is optimized over the thermostat

set points in hour 16 and 17. The z-axis represents the total load while x and y stand for two thermostat

set points. This is a monotonic case, as expected, since without comfort penalty, increasing thermostat set

points will always reduce the total power. The variation in total power is rather mild because we are

looking at the impact of two-hour thermostat set points on a whole day performance.

Figure 3.5 shows how the comfort level, measured by PPD, varies with the hour 16 and 17 thermostat set

points. Similar to the total load case, PPD is also monotonic when two thermostat set points vary

between 22'C and 28'C. Generally, 24'C is considered a comfortable set point for office buildings, but

whether it leads to the lowest PMV and PPD values depends on other comfort-related factors such as

clothes and activities. It could be the case that 22'C is more comfortable to occupants in this building

than 24. In addition, the fact that EnergyPlus PMV calculations have been off by about 0.5, as previously

noted, might play a role. Because we aim at load reduction, any temperatures lower than 24'C are of less

interest and concern.

When peak load alone is to be minimized, the cost function structure has a different picture. As shown in

Figure 3.6, starting from (22, 22) the peak load keeps dropping with the increase of thermostats and stops

at (24.4, 24.2), a point in the middle of the field. Further increase of the thermostat will actually increase

the peak. We explain why using Figure 3.7: three power profiles correspond to three sets of hour 16 and



17 thermostat set points: line 1 is the base case (24, 24), line 2 is the global minimum (24.3, 24.2) and line

3 is a reference case (28, 28). Line 3 indeed sheds hour 16 and 17 power consumption, but the peak shifts

to hour 15 from hour 16 after a modest increase of hour 16 and 17 temperature set points, and further

increase would actually increase the new peak because more heat will be accumulated in the system.

Since the system is turned off at hour 18, heat accumulated over night pushes up the power curve the next

day. Therefore, the peak of (28, 28) at hour 14 on an inflated curve ends up higher than the peak of (24.3,

24.2) at hour 16 on a curve that is almost identical to the original one. This simple example shows that

maximization complicates the minimization problem structure. We need to keep this in mind as many

cases of our research have peak demand as part of or the whole cost function.

The cost function surface becomes more complex when both energy and comfort are taken into

consideration. Figure 3.8 shows a weighted sum of total load and PPD varies with hour 16 and 17

thermostat set points. The surface has a clear, though not smooth, trend leading to the global minimum.

But there are several "dips," local optima, on the surface. The optimizer might be trapped in one of those

dips if starting the search from somewhere close to the border. In any case, getting to the global

minimum is not guaranteed.

The examples we discussed here are all simple, but the point is clear that building load control problems

can be discontinuous, nonlinear and have local optima. The complexity caused by these factors when the

problem scales up, e.g. a ten-variable peak demand optimization problem, will become more challenging.

We will illustrate how this affects the optimization results in the next two sections through two

algorithms: Direct Search (DS) and Genetic Algorithms (GA). If, however, the problem is due to the

existence of spurious local optima caused by simulation discontinuities, we need to refine our simulation

models and try to eliminate those spurious local optima. We experienced spurious local optima at an

early stage of our research. Increasing the hourly timestep in EnergyPlus simulation helps in some cases.

The problem is improved in more recent versions of EnergyPlus.
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peak load varies with Ti16,17 thermostats, Austin 8/8
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aggr cost (weight of 6) varies with Ti16,17 thermostats, Austin 8/8
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Figures 3.8 Surface of a cost function of aggregated cost (total load + weight * PPD) varies with
hrl6, hrl 7 thermostat set points - a more complicated cost function structure with local optima

3.4 Single Building Optimization Using Direct Search and EnergyPlus

We first study a simple case with the total energy consumption as the cost function and thermostat set

points as control variables. Since we know the optimal solutions for the total load case, by doing so we

aim at testing the algorithm and tuning the computation parameters. We then look at two more

complicated cases with the cost function being peak demand and comfort-penalized energy consumption,

respectively.

3.4.1 Simple cases with Direct Search

We continue to use the three-zone VAV system with the economizer off. Hours 14, 15, 16 and 17

thermostat set points are varied between 22'C and 28'C to minimize the total daily load without comfort

constraint. We expect to see all four control variables end up at 28'C. Figure 3.9 is the GenOpt interface

which displays the traces of the cost function value and control variable values over time. The downward

line corresponds to the total load while other four upward lines are four temperature set points.

Optimization evolves monotonically and reaches the optimum after 42 EnergyPlus runs. The Hooke-

Jeeves algorithm is used in this case. The results are as expected because the total load is a monotonic

function of daytime temperature set points. The analysis and results should be different if the peak load is

the cost function as the peak load has a highly nonlinear structure.



Figure 3.9 Direct Search in GenOpt optimizes total load over hours 14-17 thermostat set points
between 22 and 28'C with 0.2'C time step and 24'C as initial point, without comfort constraint

As we argued previously, minimizing peak demand is a min max problem, and associated nonlinearity

makes finding the global optimum difficult. With the same model used in the previous case, we optimize

the daily peak demand without comfort constraints over hour 14-17 temperature set points with different

initial points, shown in Table 3.1. Four cases are compared: base, reference, and two other cases as

results of direct search. The reason we list the 28*C case is that without a comfort constraint, we expect

setting afternoon temperatures to the upper bound will lead to good performance, which is the optimum

when the total load serves as the cost function. As we see in the table, this reference case is not optimal.

The peak load has shifted from hour 16 to hour 13, and the large temperature increase in the reference

case pushes up the earlier hours' consumption, although the differences are small. With a search range of

[22, 28], starting at 24'C is worse than starting at 260C. However, if we narrow the search range to [24,

28], starting at 24*C performs equally well as starting at 26'C. In fact, 55.2W/m2 is believed to be the

global optimum in this case. A few things we learned from the table are:

* It is impossible for some complex problems to know the global optimum

" DSs don't handle well problems with discontinuous cost functions. The discontinuity brought in by

simulation programs such as EnergyPlus makes the search stuck in local optima

* The initial point is essential in getting to the global or a good local optimum

* Search range also plays a role in whether a good sub-optimum can be found



One way to get around the dependency on initial points is to conduct optimization with different initial

points and choose the best local optimum. While a global optimum is not guaranteed to be found, this

way gets us a reasonably good sub-optimum and in general a satisfactory one for engineering purposes.

We continue on with the goal of understanding the cost function properties and compare the results of

four cases shown in Table 3.2. These four cases correspond to a base and three different cost functions,

indicated in the first column of the table. The optimal solutions and cost function values are shown in the

rest of the Table. The optimization is done by the Hooke-Jeeves algorithm in GenOpt. By optimal, we

mean the best sub-optimum. The control variables remain hours 14-17 temperature set points with a box

range of [22, 28]. The GenOpt initialization, command and configuration files can be found in Appendix

B.2 and the core VBA code in Appendix B.3. The difference in cost function is handled by the VBA

post-processor.

In each case, the corresponding cost function value is highlighted in bold face. In the case with peak load

as the cost function, the optimization shifts the peak from hour 16 to hour 13 over which the optimization

has no control and reduces the peak from 61 to 55 W/ m2. When minimizing the total load, optimization

sets all four temperatures to the upper bound of 28'C and reduces the total load by 47 Whr/ in 2 . The rate

structure used to calculate the energy cost is shown in Table 3.3. The results show that the rate structure

used favors minimizing the peak load. The power profiles of these cases are shown in Figure 3.10.

Table 3.1 optimize peak load with different start points through Direct Search

starting point variable range end optimum peak load (W/ m2) E+ runs
base 61.3
reference point (28, 28, 28, 28) 57.1
(24, 24, 24, 24) [22 28] (23.7, 24.1, 24.4, 24.3) 60.6 96
(26, 26, 26, 26) [22 28] (24.7, 25.0, 25.1, 25.1) 55.4 93
(24, 24, 24, 24) [24 28] (24.5, 24.8, 25.0, 24.9) 55.3 100

Table 3.3 Example rate structure [pge.com, 2003]
On-peak Part peak Off peak Demand charge
$/kWh $/kWh $/kWh $/kW

Value ($) 0.19 0.11 0.09 6.5
Time (hours) 13-18 7-12, 19-21 22-6 N/A



Table 3.2 optimize different objective functions through Direct Search
Objective Ti hr14 Ti hr15 Ti hr16 Ti hrl7 Peak Total Cost $/ m2 .day
function *C C C 0C Load Load Total Energy Demand

W/ m2 Whr/ m2 cost cost charge

Original 24.0 24.0 24.0 24.0 61.3 520 0.479 0.081 0.398
hr 16

Peak load 24.7 25.0 25.0 25.0 55 500 0.437 0.077 0.360
hr 13

Total load 28.0 28.0 28.0 28.0 57 463 0.440 0.069 0.371
hr 13

Energy cost 24.7 24.8 25.0 24.9 55 502 0.436 0.076 0.360
hr 13

1 3 5 7 9 11 13 15 17 19 21 23

time(hr)

Figure 3.10 Hourly power and PPD profiles of several thermostat-based operation strategies,
optimal under different cost functions set as in Table 3.2, 8/8, LA



3.4.2 Multiple Objective Optimization using Direct Search

We mentioned before that the load control problem is a multi-objective one aiming at reducing electricity

consumption and maintaining a certain service level. Thermal comfort can be treated as a constraint so

that an optimizer only searches within the feasible solution space. An alternative is to penalize the cost

function in the way illustrated in Eqn.3.1 to take thermal comfort into consideration. Such a cost function

is expected to achieve a balance between minimizing energy consumption and maximizing comfort. The

importance of comfort depends on the operator or building occupants' preferences. This preference is

reflected by the penalty coefficient. It helps to provide a Pareto front with varying coefficients so that we

can have a better sense when it is worth sacrificing comfort because the return on load reduction is large.

In this section, we take such a Pareto approach through Direct Search and study further the load control

problem with hour 14-17 temperature set points as control variables.

Cost =Total Load. + Coeff x PPD values, Eqn.3.1

The subscript of "s" on both total load and PPD values means they are standardized values. By

standardizing the data, original magnitude has little impact, and the weighting coefficient can better

represent the trade off. The optimization results are presented in Table 3.4 and the Pareto front is shown

in Figure 3.11. It is clear that the competition between power and comfort has a great impact on the load

shedding decisions. In reality, we can develop for a certain building a trade-off curve like this with more

operating condition points on it. Building operators can decide where to be on this trade-off curve

according to their expectation for energy savings and their knowledge of occupants' comfort preferences.

As the cost function surface in Figure 3.8 and the results in this section show, having comfort as part of

the cost function brings more nonlinearity and likely discontinuity.

Table 3.4 Optimize trade off between energy and comfort through Direct Search

P1 P2 P3 P4 P5

Weight Coeff. 0.1 0.25 0.375 0.5 1

Total load 464 480 504 515 520
(Whr/ in2)

Average PPD 40 35 31 29 28
(%) I

Thermostats in 27.4, 28, 25.6, 26, 24.3, 24.6, 24,24, 24,24,
hrs 14-17 ('C ) 28, 28 26.4, 27.2 24.8, 25.2 24.1, 24.6 24, 24



Figure 3.11 Direct Search finds multi-objective trade-off between power and thermal

comfort by varying thermostat set points during hrs 14, 15, 16, and 17, 8/8, LA

3.4.3 Direct Search's difficulty with discontinuity when the number of variables is large

The number of control variables in previous cases is fairly limited. It is necessary to know how the

optimizer does when the problem scale increases. For example, it might help to plan an entire day's

temperature set points for an optimal profile, corresponding to 10 or 24 variables. When night cooling is

available, we want to know how to control fan or chiller status, depending on whether natural ventilation

or mechanical cooling is used at night, and how to control the discharge process the next morning or all

temperature set points the next day to maximize the use thermal storage of the building mass. Again, we

would have more than 10 control variables. We found that the Hooke-Jeeves algorithm has difficulty

dealing with this - it stops at a local optimum which is very close to the starting point after a limited

number of trials. We know that Hooke-Jeeves doesn't handle discontinuous cost function well. The

damage of discontinuity seems to worsen when the dimension of the problem increases.

3.5 A GA-based optimizer for single-building study

A genetic algorithm is applied to the load control problem. Like DS, GA is derivative-free and must rely

on simulation for function evaluation. Unlike DS, GA moves in the search space in a somewhat random

fashion and therefore has a much better chance of approaching the global optimum. In fact, given enough

time and appropriate parameters, GA can almost always find the global optimum, or more precisely, a

very good suboptimum, as in most cases we do not know and cannot prove what the global optimum is.
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In this section, we start with a test case further explaining the Matlab GA system we use. Then we look at

two cases with more control variables or complex cost function structures.

The parameters for genetic operators, e.g. probability of crossover and mutation rate are determined

through a trial-and-error process. The fact is that as long as these parameters are reasonably appropriate,

GA can always converge and reach a good sub-optimum at least. They are adjusted to speed up the

convergence. The number of total generations to run and the population size are decided based on the

problem scale. For the night cooling case with five control variables, a population of 10 and a generation

of 100 certainly suffice while the similar problem with eleven control variables is better done with a

population of 20. The convergence speed is judged by an optimization/computation ratio, which aims at

achieving the best trade-off between optimization performance and time taken.

This Matlab GA environment uses real-value coding, which means all the control variables are treated as

real numbers. This is perfect for continuous variables such as temperatures but needs special treatment

for discrete variables such as fan status. This will be discussed in 3.5.2 when night cooling is optimized.

Note that genetic operators can be customized for the specific problems. It is worth noting that genetic

operators can be customized for the specific problems.

3.5.1 Simple GA test cases

Again we vary hours 14, 15, 16 and 17 temperature set points to minimize the total daily load, a case we

know the global optimum for and studied using DS in the previous section. Figure 3.12 traces the best

and the average individual in each generation throughout the optimization process. A successful GA run

should show visually that 1) best individual trace stabilizes and 2) the average solution trace

asymptotically approaches the best solution trace, and mathematically, the individuals in the final

generations are close enough in terms of fitness values. It is to be noticed that this GA is designed to

maximize the objective function, so the y-axis can be understood as a constant minus power total load.

Figure 3.13 explains the GA results in the EnergyPlus language by showing the power profile.
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3.5.2 More complicated GA cases

In this section, we look at what temperature set points should be set for the entire day so that the total

electricity cost can be minimized with the specified comfort constraint. No night cooling is involved and

the economizer is off. Therefore only 10 work-time temperature set points need to be optimized. The

total electricity cost consists of demand change and energy cost and is calculated based on the rate

structure in Table 3.3. The feasibility constraint is that PMV values have to be less than 1.5, which

roughly corresponds to a PPD value of 50%. The base case, where all 10 temperatures are set to 24 'C,

and the GA results are compared in Figure 3.14, where a) shows the temperature set point differences, b)

power profiles, and c) PPD plots. It can be seen that the pricing information is reflected in the optimal

results: the optimal GA case takes advantage of thermal mass by setting morning temperatures lower, and

increases the peak time temperatures, so that the peak time power consumption is flattened as much as

possible. The base case costs $0.48/ m2 while the optimal case $0.44/ m2 with the most benefit coming

from the peak reduction.

Figures 3.15 and 3.16 present two night cooling cases that GA helps to improve the performance. We

studied night cooling and associated scheduling issues in Chapter 2 and found that certain combination

discharge processes and fan starting times perform better than others. Here, GA takes one step further

and optimizes the related parameters. Two cost functions are compared: peak demand and an equally

weighted sum of average and peak load (peak + total). In both cases, there are a total of five control

variables: fan starting time and hour 8, 9, 10 and 11 thermostat set points. Instead of treating hourly fan

status binary variables, GA takes fan starting time as a real value number varying between 6pm and 7am.

It is then rounded to the closest integer before putting into EnergyPlus. Matlab GA sets the hourly fan

status as on once the fan starts, and during the normal day cycle 8am to 5pm, the fan is always on. An

important assumption made here, mostly for simplifying implementation purposes, is that once the fan is

turned on, it will stay on until the end of the next day. This is a reasonable assumption for California

weather as late nights and early mornings are colder than indoor temperature set points in most cases.

Figure 3.15 a) compares the daily temperature set points between the base case, the GA optimal case with

peak load as the cost function, and the GA optimal case with a weighted sum of peak and total loads as

cost function. The fan starts at 8am and all temperatures are set to 24'C in the base case; the fan starts at

6pm the day before and morning thermostat set points remain low in the GA case with peak load; and the

GA case with a weighted sum cost function starts the fan at Sam and keeps morning temperatures low as

well. Figure 3.15 b) shows the power profiles of these three cases. The peak load case shifts the overall

peak to the early morning with a large reduction, while the peak + total case manages to reduce the peak a



little bit without incurring too much overall power consumption. Figure 3.15 bottom present the PPD

profiles of these three cases. Overall, different from thermostat-set-point-based load control, night

cooling improves both the energy performance and the comfort condition at the same time. The peak

load case achieves a 9W/ m2 and 14% peak load reduction, while the weight sum case has a 2W/ m2 and

3% peak reduction, and 16Whr/ m2 and 3% total load reduction.

Fan start time and four early morning thermostat set points are optimized in Figure 3.15. As we have

seen in chapter 2 parametric studies, with night cooling available, more savings can be achieved if the day

time temperatures are kept low before the peak is reached. Taking one step further, we will see how

much better we can do if we allow all the day temperature set points to vary along with the night cooling

start time. Put another way, how will the combination of night cooling based and thermostat set point

based load control do? With exactly the same set up, we simply scale the problem by adding six more

control variables for the rest of day temperature set points. We also run for two cases, peak load and the

weighted sum of peak and total loads. Figures 3.16 report the results with the same set up as that in

Figure 3.15. Table 3.5 summarizes three cases in terms of the peak load, total load and the cost. It can

be seen that with peak load as the cost function, we achieve 14W/ n2 peak load reduction but incur an

increase in the total load; while with the weighted sum of peak and average load, we achieve reductions in

both peak and total load. With the rate structure in Table 3.3 applied, we achieve $0.1/ n2 and $0.02/ n2

cost savings respectively. Compared to the savings in Figure 3.15 where only four early morning

temperature set points are adjustable, Figure 3.16 achieves more savings by planning the day as a whole:

5 W/ n2 and 8% in the peak load case and 8 W/ in2 and 13% in the weighted sum case.

Apparently, with the entire day temperature set points changeable, the energy performance in terms of

both peak load reduction and a weighted sum of peak and total consumption is improved. This matches

the results from chapter 2 parametric studies that having more control flexibility improves the efficiency.

Notice that we allow the late afternoon thermostats to change as well, and the system decides to set them

above the base value of 24'C as it offers the direct peak reduction benefit. However, a certain amount of

comfort is sacrificed, with the peak load case having 5% PPD increase and the peak + total load case on

average 12% PPD increase. This is precisely what thermostat-set-point-based load control does to a

system. In the mean time, night cooling still plays an essential role. With fan start time and ten

temperatures, the peak load case achieves a 15W/ M2 and 25% peak reduction, while the peak + total case

corresponds to a 30Whr/m2 and 6% total load reduction and a 10W/n 2 and 17% peak load reduction.
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Table3.5 Performance of the Matlab GA optimal results -fan-based night cooling

base peak peak + total

peak load (W/ m2) 61 47 51
total load (W/ m2) 520 596 491

peak demand ($/m 2) 0.40 0.30 0.33
energy use ($/m2 ) 0.08 0.08 0.07
total cost ($/m 2) 0.48 0.38 0.4

3.6 Algorithm comparison

This chapter focuses on the single building simulation-based optimization. Two derivative-free

algorithms are implemented: direct search algorithms (DS) and genetic algorithms (GA). Compared to

the majority of linear and nonlinear algorithms, DS and GA are both generalists in the sense that in theory

they do not have favorable problem structures on which they perform particularly well. However, we still

observed certain differences between these two when they are applied to building optimization problems.

In Table 3.6, we highlight these differences through three simple test cases. As we can see, DS is more

efficient than GA at small problems, but seems to have difficulty to make progress when the dimension

increases. This is partially because the particular DS method we used, the Hooke-Jeeves algorithm,

assumes continuity in the cost function, and discontinuity might be a bigger concern for simulation-based

optimization at a large scale. GA is truly a generalist but pays a price of intensive computation in almost

any scenario, which is especially intolerable when the problem is small.

Braun [Keeney and Braun 1996] solved an HVAC supervisory control problem with 24 variables using

direct search. However, direct search algorithms were found to be less effective in dealing with 48

variables [Ren 1997]. Wright et al [2001] pointed out the GA's advantage over gradient-based and direct

search algorithms is that GA's relative effectiveness increases with the size of the solution space, which

matches what we found in previous sections. Wright concluded that GA is the best for the whole building

optimization problem that involves a wide range of design, construction and HVAC operations

parameters. In terms of when direct search starts to break down or become less effective, we believe it

depends on the cost function structure, the building under study, and the specific direct search algorithm

implemented. Again, there is no single optimization algorithm that works the best in all scenarios, and it

takes experience and trial-and-error efforts to tune an algorithm for a specific problem. GA is more

general in this sense, but it requires accurate function approximation and more computation.
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3.7 A hybrid algorithm - Future work

As we have seen in previous sections, GA is capable of locating the area in which the global optimum

lies, but its local search performance is not as efficient, reflected by the fast improvement of overall

performance at the beginning generations and slow convergence approaching the end. This is illustrated

through the asymptotic behavior of the GA optimization process, shown in Figure 3.12. In addition, we

observed that direct search tends to get stuck at points close to initial points but still offers modest

improvement. A natural thought is to combine GA with a local search algorithm, such as Hooke-Jeeves

used in this chapter - taking advantage of the GA fast search for the optimal sub-area but avoiding its

slow convergence when the search space becomes small, and taking advantage of the local algorithm's

efficiency for locating a local optimum but avoiding its lack of sense for big directions. Due to time

constraints, we did not implement this idea, but think it is an interesting problem and worth exploring in

future work.



Table3.6 Comparison of GA and DS

Cases E+ simulation runs and Results

DS (Direct Search: Hooke-Jeeves) GA (Genetic Algorithm)

Test case 1 Computation complexity depends on Takes 20 generations and a population

Peak load initial points. Takes 30 - 40 E+ runs. of 10, a total of 200 E+ runs.

varies with hr 16, 17 Converges to global minimum (24.3, Converges to global optimum (24.3,

thermostat set points 4.2) 4.2)
without comfort
constraint

Test case 2 Takes on average 60 E+ runs. Takes 40 generations and a population

Total load of 10, a total of 400 E+ runs

varies with hr 14-17 onverges to the global optimum Converges to the optimum

thermostat set points (28,28,28,28) (28,28,28,28)
without comfort
constraint

Test case 3 Gets stuck at points very close to starting Takes 60 generations and a population

Total load varies with points of 20, a total of 1200 E+ runs

10 working time Mostly cannot deal with 10 variables Gets to a good point (24, 26, 28, 28, 28,
thermostats nd/or problems with complicated cost 28 , 28, 28, 28, 28)

functions

Summary and DS is efficient when the problem size is As a generalized method, GA can make
Comparison small. It fails to deal with discontinuity progress in almost any scenario, but is

at higher dimensions computationally intensive, especially
with small-scale problems



CHAPTER FOUR

SIMULATION-BASED MULTI-BUILDING OPTIMIZATION

Our scope in previous two chapters is limited to single buildings. In this chapter and the next, we will

look at the load control problem involving more than one building, discuss the essential difference that

having multiple participants in the system brings to analysis, and propose three different approaches to

tackling the multi-building problem. Two simulation-based methods will be discussed in this chapter:

engineering-rule based enumeration and a multiple-GA. Throughout this chapter, we illustrate the

aggregation concept through two-building or three-building examples and learn from simple cases before

scaling up the problem. In addition, as we will discuss late in this chapter, there are computation

concerns of applying these two methods to large-scale multi-building problems. A less scale-sensitive

approach will be discussed in the next chapter.

Section 4.1 looks at an enumeration approach, through which the number of feasible EnergyPlus

simulations for each aggregation participant is reduced. The optimal combination of a two-building

problem is found by matching two sets of feasible solutions in Matlab. Section 4.2 takes a GA approach

with the chromosome consisting of control variables from all aggregation participants. EnergyPlus

simulations are run sequentially for all the participants, and the GA evaluation is done at the end of the

simulation. Section 4.3 compares the two simulation-based approaches, discusses their limitations and

points out the need of further research on a more efficient method for the multiple building problem.

Section 4.4 takes a break from the main road of developing computationally efficient aggregation

methods and looks at how the aggregation decisions vary with the size of the aggregation pool at a small

scale.

4.1 Smart Enumeration - A Rule-based Engineering Approach

Reddy and Norford [20021 discussed load aggregation through a portfolio optimization type of approach.

Four different building profiles, office, retail, grocery and school, are combined exhaustively to find the

best aggregation effect. The diurnal load profiles are generated using existing data. No load controls are

applied to any of the participants. Their research examines which buildings are more appropriate to

participate in the aggregation, and the appropriateness is a function of both individual building systems

and correlations between participants. We take one step further in our research and look at how to make a

group of existing buildings more appropriate for aggregation by applying load control to each of them.
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In this section, we take a trial-and-error approach based on a reasonably sized trial set. Instead of solving

directly the optimization problem, Eqn. 1.1, we first run for each building a number of simulations that

cover a wide range of load control possibilities, then match the individual results and search exhaustively

for the best one with a specified cost function. It is impossible to enumerate all load control possibilities,

and we make simplifications according to the load control strategies used.

Following previous chapters, two types of controls are studied. In Section 4.1.1, thermostat set points in

the afternoon hours are increased in each individual building to achieve an overall "optimized" power

profile. Night cooling schedules are the control variables in Section 4.1.2. Both cases study simple two-

building or three-building cases.

We reduce the number of simulations partially by narrowing down the scope of the questions studied.

With the thermostat control, one simplification comes from the fact that we are dealing with commercial

buildings in summer time. The peak takes place somewhere between 1pm and 6pm. Therefore, for short-

term load control with little emphasis on thermal mass, we only need to focus on the afternoon instead of

a 24-hour horizon, which greatly reduces the number of control variables. With the night cooling control

strategy where thermal mass plays an important role, we have one more control variable which is the

night cooling start time.

4.2 Set thermostat set points for multiple buildings by smart enumeration

4.2.1 EnergyPlus models and expert rules

Three types of building models are used through out the multi-building studies. All three building models

are derived from the base VAV model introduced in Chapter 2, with the thermal mass and/or the load

pattern changed. Table 4.1 summarizes the main differences between these models, and a detailed

description about the base model can be found in the Appendix A. 1. The key inputs, including material

thermal properties, supervisory control schedules and load patterns for models in Table4.1 are given in

Appendix C. 1.

For each of three models, we run extensive E+ simulations on the summer day to which the load

aggregation is applied. Thermostats between lpm and 5pm are allowed to vary. Temperature set points

have a maximum hourly change of 3C and a maximum change period of four hours based on possible

schedules: one-hour thermostat change, two-hour, three-hour and four-hour changes including both

consecutive cases and separate ones. Therefore, we have for each building a total of



1+ 3x(C +C + C5 + C)=1+3x(5+10+10+ 5)= 91

simulation cases where each of the three integer temperature increase corresponds to 30 cases and the

base case involves no change. Notice the big assumption we made: the temperature increase is the same

across the load control period regardless of the schedule. Doing so is only to make the analysis simple,

and we understand that it would lead to a sub-optimal solution. The trade-off between accuracy and

computation will be addressed in Section 4.3 when Enumeration and multiple-GA are compared.

Table 4.1 Building model types for aggregation studies

E+ models Thermal mass' West wall Load pattern

Base model original mass No window original: peak in late PM

Model 1 mass 6 m window original: peak in late PM

Model 2 mass 6 m2 window new: peak in early PM

Model 3 2 mass No window original: peak in late PM

All the simulations are done automatically through a data processing engine written the Visual Basic

Application (VBA) for Excel. For each simulation, the hourly electricity consumptions, PMV and PPD

values are computed, processed by the VBA code with certain rate structure applied, and results are

output to a matrix which is further processed in Matlab to search exhaustively the combination with the

best cost function value. A simple Matlab code to do the search can be found in Appendix C.2. We

present the graphical results in the following section.

To summarize what we have done in reducing computation efforts in the following pre-defined expert

rules:

* Run simulations with integer temperature increases and those integers are a good discrete represent of

the search space, e.g. 1, 2 and 3C in this case

* All the hours involved in load shedding experience the same amount of temperature change

* Starting the enumeration from the smallest temperature increase and gradually approach the upper

bound. If a 1 C thermostat setting point increase violates thermal comfort at a certain hour, stop

searching beyond 1C at this hour, and the same to 2'C and 3C increase

e If a short-period shedding scheme violates comfort at certain hours, no need to search a long-period

scheme with the same amount of temperature increase at the same hours

'The definitions for 1/2mass and 2mass are the same as those in Chapter 2 - the densities of main construction
materials for walls, floor and roof are half and double of what it originally is for /2 and 2masss respectively.



* No need to consider a short-term load shedding scheme if a long-term one includes it at the beginning

and hours after remain below the base

* For night cooling, instead of enumerating the possibilities that night cooling could start any hour, we

simulate those starting at 6pm, 8pm, 10pm, midnight, 2am, 4am, and 6am only. Our research results

will show that the computation savings is worth the minor loss of optimality

By violating comfort, we mean the specified PMV or PPD is not satisfied. Here we adopt a single

standard of comfort and keep the working-period PMV values below 1.5. All these rules are implemented

in the VBA engine in Excel to check automatically a solution's feasibility. The size of feasible set is

reduced by 64% for buildings 1 and 2 and by 17% for buildings 1 and 3 with thermostats-based strategies.

Refer to Appendix C.3 for the VBA code and the detailed savings.

4.2.2 Matching results for thermostat set point-based load control

1) Peak demand

Figure 4.1 shows individual load profiles for three models before aggregation, each of which has all

thermostats set at 24'C. Corresponding to the building description in Table 4.1, models 1 and 2 have

lower thermal mass and higher peak load in late afternoon around 4pm and around 1 pm respectively.

Model 3 has the highest thermal mass and the same load pattern as in model 1, and its load curve is rather

flat due to the high thermal mass. The feasible solutions for each of these three are computed. Based on

the expert rules proposed in Section4. 1.1, model 1 and 2 end up only having 32 feasible solutions, which

corresponds to a 65% computation savings, and model 3 has 75 feasible solutions and a 17% savings.

The difference is caused by thermal mass: in building 3, a wide range of temperature increases are

feasible while in buildings 1 and 2 higher increases violate the comfort constraint. The optimal solution

for each pair is found through exhaustive matching. Figures 4.2 to 4.4 are the "optimal" match results for

buildings 1 and 2, 2 and 3, and 1 and 3 respectively, while Figure 4.5 illustrates the match results for

buildings 1, 2 and 3. In Figures 4.2 to 4.5, peak demand is minimized.

In Figure 4.2, the peaks for models 1 and 2 are comparable but they happen at different times, so that the

original aggregated load, represented by the solid line on the top of the figure, fairly flat for most of the

afternoon hours. In the "optimal" match, building 1 lifts temperature set points at hours 13, 14, 15, and

16 by 1C and building 2 increases those at hours 14, 15, 16 and 17 by 10C. This change leads to a peak

load reduction of 5.2%, but the peak remains at hour 13 as any tempt to shed hour 13 load would lead to

an even higher peak load overall. The total load profile is flattened, which makes sense. The high peak

of building 2 at hour 13 is compensated by the reduction of building 1 at this hour, while the load setback
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recovery at hour 17 by building 1 is compensated by load shedding of building 2 at the same time. If we

look at two buildings separately, they both incur a higher peak after aggregation, however, the total peak

is reduced. This is the essence of the aggregation load control: by communicating with each other in the

aggregation pool, individuals take actions that favor a centralized goal. The amount of reduction is a

function of weather, rate structures and specific buildings under study.

Building 3 by itself needs little load shift because its high thermal mass helps maintain the afternoon load

profile flat. However, it is no longer the case when building 3 and 1 are to be aggregated, shown in

Figure 4.3. Building 3 chooses to increase thermostats at hours 14, 15, 16 and 17 by 2'C to help cut the

aggregated peak, and building 1 pushes up thermostats at hours 13, 15, 16 and 17 by 1C accordingly.

This case enjoys a 10.4% peak reduction with the peak shifted from hour 16 to 12. This is a very good

example of how multiple buildings can collaborate to achieve an overall performance increase that cannot

be achieved by individuals alone.

Building 3 also plays a complimentary role in Figure 4.4. Building 2 peaks at hour 13, so building 3

increases hour 13 and 14 temperature set points by 1PC while building 2 pushes up hours 13, 15 and 16 by

1C. After both buildings cut as much as possible, hour 13 is no longer the aggregated peak, and the

small setback recovery of building 3 at hour 15 and 16 is cancelled out by the savings of building 2.

Therefore, the new peak is shifted to hour 12 with 4.8% reduction.

For all three pairs, individuals done worse or just equally well after aggregation than before, but the

aggregated performance is improved. Again, this is because two buildings communicate with each other

during the matching process and decide jointly to shift and/or shed the total peak load.

Aggregation with three buildings is shown in Figure 4.5, where building I increases thermostat set points

at hours 14, 15, 16 and 17 by 10C, building 2 at hours 13, 14, 15 and 16 by 10C, and building 3 at hours

13, 15, 16, 17 by 1C. This leads to a 6.3% peak reduction and the peak is shifted from hour 14 to hour

12. Recall that our criterion for admitting any load control strategy into the feasible set is that PMV less

than 1.5, which corresponds to PPD2 below 50%. Figure 4.6 shows the PPD profiles for the three-

building case. We consider this less comfortable but acceptable. Table 4.2 summarizes three two-

2 The PMV and PPD values provided by the current EnergyPlus version are generally high. In the base case with
indoor air temperatures at 24C, the average PMV is 0.8 and PPD is 20%. Therefore, PPD below 50% is not a bad
service level requirement.
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building cases and one three-building case. In most cases, the new peak at 12pm is a consequence of

applying load control to hours 13-17.

Table 4.2 Summary of simple aggregation cases

Building original peak load peak time new peak load peak time peak load
group (W/ m2 ) (W/ m2 ) reduction

I and 2 135 13 128 13 5.2%
1 and 3 125 16 112 12 10.4%
2 and 3 125 13 119 12 4.8%
1, 2 and 3 190 14 178 12 6.3%

We have seen the potential of peak reduction by applying load control to the aggregation pool. It is

interesting to see how much of this reduction comes from load control and how much from aggregation.

For each of the four cases studied before, we compare the aggregated load control results in Table 4.2

with the results from individual load control. In individual load control, each building minimizes its own

peak before aggregation and there is no communication between participants in the pool. Figure 4.7

shows for buildings 1 and 2, the aggregated load control achieves 2.4% more peak load reduction than the

individual load control does. Notice that in individual load control, both 1 and 2 choose to increase the

temperature set point at their own peak hours. In aggregated load control, building 1 increases the

temperature set point at building 2's peak hour of 1pm while building 2 does the same at building l's

peak hour of 4pm. It is easier to shed load during non-peak hours, which explains why the aggregated

load control achieves more peak reduction as a result of communication between aggregation participants.

Figure 4.8 combines Figures 4.7 and 4.2: there is a 2.8% peak reduction from the base case to the

individual load control, and a 2.4% reduction from the individual load control to the aggregated load

control. Table 4.3 summarizes this comparison for all three two-building cases and one three-building

case. It can be seen that the contribution by aggregation is significant and ranges from 30 to 50% in these

small-scale cases.

When two buildings are identical, aggregation might not help as much. Figure 4.9 aggregates two

identical type-I buildings and Figure 4.10 two identical type-2 buildings. For two type-2 buildings, the

aggregated load control is identical to the individual load control; while for two type-i buildings, the peak

reduction difference is only 0.3%. This is due to the lack of diversification in load profiles and limited

choices in load shedding strategies.

108



Table 4.3 Individual load control vs. aggregated load control

Bldg 1 and 2 Bldg 1 and 3 Bldg 2 and 3 Bldg1,2,3

original total peak load 135 125 125 190

(W/ n2)

Total peak after individuals minimize 131 116 122 184

their peak load (W/ m2)

total peak load with aggregation 128 112 119 178

(W/ in 2 )

Peak load reduction from individual 2.8% 7.5% 2.8% 3.4%

load shedding

Peak load reduction from load-control- 5.2% 10.5% 5% 6.1%

enabled aggregation

Contribution of aggregation to the total 46% 29% 44% 44%

peak load reduction

It is to be noticed that although we minimized the peak energy consumption above, the methodology

would remain the same if the cost function is the total energy cost. We only need to apply a rate structure

to the hourly energy consumption to convert the peak demand problem to a cost-based one. Throughout

this research, we are energy cost-oriented with the recognition that peak demand charge plays an

important role in cost calculation. The majority of our research focuses on the peak demand only, which

is meant to simplify the problem so we can get more insight into the nature of the aggregation. As we

will argue in the next chapter, minimizing peak demand captures the essential mathematical structure of

the problem. The next section looks at the same problem with total energy cost as the cost function

aiming to illustrate the difference in optimal control strategies caused by a cost-based cost function.

2) Rate structure

Based on the information at the PG&E website [pge.com, 2003], we quote the rate structure listed in

Table4.3 for the small commercial building type in California. We apply the rate structure to the feasible

individual simulation results obtained in the previous section and rerun the matching process. We present

in Figures 4.11 to 4.14 three two-building cases and one three-building cases under this rate structure, as a

comparison with peak load oriented counterparts in Figures 4.2-4.5, to learn how rate structures change

the analysis results.
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To explain each of Figures 4.11-4.14 the same way we did to Figures 4.2-4.5, the reasoning would be

more subtle as the cooperation between different buildings is now determined not only by the load

profiles, but by variations in the rate structure. The operations details will not be analyzed here, but we

want to emphasize the differences 1) brought in by considering hourly energy cost on the top of demand

charge and 2) caused by different demand charges. There are two figures in each of Figures 4.11-4.14

where the top one corresponds to a demand charge of $6.5 /kW and the bottom one an extreme case

without demand charge. A general trend is that aggregated power profiles tend to be flat when the peak

demand is $6.5/kW; they tend to have dramatic variation so that the area below the profile, which

represents the total energy use, is minimized when there is no peak demand. Table 4.5 gives the summary

statistics of the load aggregation performance with the rate structure specified in Table 4.4. The savings

are comparable to those in Table 4.2, but the actions taken by these participants are different, depending

on the demand charge applied. For example, for the no demand charge cases in Figures 4.11 to 4.14, the

aggregated peak load is not reduced much, and even increased such as in Figure 4.13. A demand charge

of $6.5/kW leads to similar results as those in the peak load case, which means that a rate structure with a

$6.5/kW encourages peak reduction.

Table 4.6 presents the cost-based aggregation results in the same way as Table 4.3 did to the peak-

demand- sum of individual costs. It compares four cases: the sum of individual costs, the cost of

aggregated load without load control, the sum of individual costs with individual load control, and the

cost of aggregated load with aggregated load control results. Notice that the reference case is the sum of

individual costs in Table 4.6, which says simply adding two buildings together would do better than

calculating cost separately. The case of with buildings 1 and 3 does not see improvement by purely

aggregating loads because two peaks are at the same time. Pure aggregation brings 0-4% cost savings

while individual load control brings in 5-6% savings. Aggregated load control performs the best and

achieves 7-10% savings. Figure 4.15 illustrates the cost savings increases.

Table 4.4 Example rate structure

On-peak Part peak Off peak Demand charge

$/kWh $/kWh $/kWh $/kW

Value ($) 0.19 0.11 0.09 6.5

Time (hours) 13-18 7-12, 19-21 22-6 N/A
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Table 4.5 Summary of simple aggregation cases, cost-based

Part I: demand charge = $6.5/kW

Building Original total cost Ori. peak load New total cost New peak load Total cost
group ($/m2 (W/ m2) / time ($/m2) / time reduction

1 and 2 1.06 135 / hr 13 1.00 128 / hr 13 5.0%

1 and 3 0.98 125 / hr 16 0.88 112 / hr 12 9.7%

2 and 3 0.98 125 / hr 13 0.94 119 / hr 12 4.6%

1,2 and 3 1.49 190 / hr 15 1.41 178 / hr 12 5.7%

Part II: demand charge = $0/kW

Building Original total cost Ori. peak load New total New peak load Total cost
group ($/M2) (W/ m2) / time cost ($/m 2) 2) / time reduction

1 and 2 0.18 135 / hr 13 0.17 130 / hr 16 4.4%

1 and 3 0.17 125 / hr 16 0.15 114 / hr 16 7.3%

2 and 3 0.17 125 / hr 13 0.16 128 / hr 13 7.1%

1,2 and 3 0.26 190 / hr 15 0.24 182 / hr 13 6.2%

Table 4.6 Individual load control vs. aggregation and load control, cost-based

Bldg 1 and 2 Bldg 1 and 3 Bldg 2 and 3 Bldg1,2,3

sum of individual costs ($/m 2) 1.10 0.98 1.01 1.55

cost of aggregated load without load 1.06 0.98 0.98 1.49
control ($/m 2 )

sum of individual costs with individual 1.04 0.92 0.96 1.46
load control ($/m 2 )

cost of aggregated load with 1.00 0.88 0.94 1.41
aggregated load control ($/m 2)

cost reduction from pure aggregation 3.6% 0% 3% 3.9%

cost reduction from individual load 5.5% 6.1% 5% 5.8%
control (peak-reduction-based control)

cost reduction from aggregated load 9.1% 10.2 6.9% 9%
control
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Figure 4.1 Individual load profiles of buildings 1, 2 and 3
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load profiles: before and after load shedding and aggregation
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Figure 4.3 "Optimal" load aggregation between buildings 1 and 3
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Figure 4.4 "Optimal" load aggregation between buildings 2 and 3
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Figure 4.5 "Optimal" load aggregation between buildings 1, 2 and 3
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load profiles: before and after load shedding and aggregation
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Figure 4.9 "Optimal" load aggregation between buildings land 1
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cost-based: load profiles: before and after load shedding and aggregation
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cost-based: load profiles: before and after load shedding and aggregation
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Figure 4.11 "Optimal" load aggregation between buildings 1 and 2, cost-based

Top: demand charge $6.5/kW. Bottom: no demand charge
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cost-based: load profiles: before and after load shedding and aggregation
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Figure 4.12 "Optimal" load aggregation between buildings 1 and 3, cost-based

Top: demand charge $6.5/kW. Bottom: no demand charge
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cost-based: load profiles: before and after load shedding and aggregation
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Figure 4.13 "Optimal" load aggregation between buildings 2 and 3, cost-based

Top: demand charge $6.5/kW. Bottom: no demand charge
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Figure 4.15 cost comparison for two-building and three-building aggregation.

Base case is the sum of individual costs

4.3 Match Results of a Two-Building Case for Night Cooling-Based Load Control

As we discussed and our parametric studies showed in previous chapters, night cooling can help shift and

shed the peak load and improve the overall load profile with comfort maintained at a satisfactory level.

We study in this section the optimal night cooling strategies in a multi-building setting, and learn how the

correlations and interdependence among buildings affect night cooling scheduling. We focus on the fan-

based night cooling performance in Los Angels using models 1 and 2 from Table 4.1. The economizers

in both buildings are turned on. For each of these two models, we run a total of 32 scenarios

corresponding to eight fan start times and four discharge processes, shown in Table 4.7. Detailed

explanations of these terms can be found in Section 2.4, the night cooling parametric studies. We match

the results in Matlab in the way as we did to the thermostat-based aggregation. Of those 1024

combinations, we find the one with the smallest peak load and the one with the lowest total cost by

applying the rate structures in Table 4.4. Table 4.8 gives a summary of these two "optimal" cases,

compared to two other cases: 1) base 1: simply add up two building load profiles without any night

cooling control at all; 2) base2: night cool two buildings individually before adding up their load profiles.

Figure 4.16 shows the difference between the base case and the optimal base with peak load as the cost

function. In the optimal case, both building participants start fans as early as possible, e.g. 6pm in this

case, and keep early morning thermostats low to slow down the discharge of thermal mass. The peak load

is reduced from 135 to 121 W/ m2. Comparison of hourly power consumptions throughout the day shows



that in the base case, night power consumption is zero while day consumption is 1.1 8kWhr/ m2 on this

particular day; in the optimal case, night power is 0.3kWhr/ m2 while day consumption drops to

1. 14kWhr/ in". With night cooling available, power is consumed when it is cheap and the peak is

reduced. The PPD plots in Figure 4.17 indicate significant improvement of comfort by pre-cooling. It

can be seen that minimizing peak load through night cooling improves daytime thermal comfort: the

average PPD down by more than 10%.

Figures 4.18 and 4.19 present the matching results with the objective function being the total electricity

cost: 4.18 corresponds to a $6.5/kW demand charge; demand charges between $3.5 and $6.5/kW give the

same aggregation results, and so do demand charges between $2 and $3.5/kW, although the energy

performance varies from 2 to 3.5 and from 3.5 to 6.5; parts a) to e) in Figure 4.19 show the matching

results with the demand charge varying from $2/kW to zero with $0.5/kW step. We can see that the

impact of the increasing impact of hourly energy cost on the optimal aggregation operations: a demand

charge of $6.5 leads to a similar control strategy to the peak load case in Figure 4.16, and the cases with a

smaller demand charge, for example $1.5/kW in Figure 4.19 (b), pay more attention to the overall energy

use instead of the load timing. In the $6.5/kW case, both fans start at the earliest possible times and early

morning thermostats are chosen to be slow linear - as low as possible. In the $1.5/kW case, fans start late

compared to the peak load case, at 10pm and 8pm respectively, and the discharge process is chosen to be

fast linear to consume less energy during the discharge period. Table 4.9 summarizes differences by the

cost function type. The comfort condition is similar to that in Figure 4.17.

We look at the results in Table 4.9 from a different angle, and the analysis is shown in three parts of Table

4.10 where the aggregated performance is compared to the individual performance without aggregation.

In part I, the combination of buildings 1 and 2 achieves an 11% peak load reduction, which building 1 and

2 can achieve 9% and 11% respectively if they simply act alone according to the "optimized" operating

schedules. The individual savings would be even better if they act based on individual load control

optimization. We drew the similar conclusion in Part II, where the aggregated cost reduction of 7% is

comparable to that of individuals', 5% and 8% respectively. Night cooling offers large energy benefit to

individual buildings already, and the extra contribution by aggregating these individuals is rather small.

Although not significant, aggregating individual loads still helps by offering the pool diversification

opportunities and energy/cost saving potential. We compare in Part III of Table 4.10 four cases: 1) sum

of the individual costs without night cooling; 2) cost of the aggregated load without night cooling; 3) sum

of the individual costs with night cooling applied, and 4) cost of the aggregated load with night cooling
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applied. The fact that 2) is better than 1) and 4) is better than 3) is precisely due to the diversification

provided by aggregation. The aggregation contributions are 4% for base case and 5% for night cooling

case respectively.

Table 4.7 Two EnergyPlus models used for night cooling

E+ models Thermal mass West wall mass Load pattern

Model 1 1/2 mass with glass window peak around 4pm

Model 2 1/2 mass with glass window peak around 1pm

Table 4.8 Night cooling schedules

fan 8am no NC, and NC starts at 6pm, 8pm, 10pm,

fan-based starting time 12am, 2am, 4am and 6am
night cooling Thermostats 24'C fast 250C slow linear
32 scenarios Discharge constant linear 8-1 1am increase

process increase

Table 4.9 Night cooling based load aggregation

cost function original new cost Load control strategies

cost function cost function function fan starting time and discharge

value value reduction processes

peakload 135 120 11%

(W/ m2 ) bldg 1: fan starts 6p, slow linear
bldg 2: fan starts 6p, slow linear

total cost with a 1.06 0.99 7%
peak demand of bldg 1: fan starts 8p, slow linear
$6.5/kW ($/m 2) bldg 2: fan starts 6p, slow linear

total cost with a 0.385 0.380 1%
peak demand of bldg 1: fan starts 10p, fast linear
$1.5/kW ($/m 2 ) bldg 2: fan starts 8p, fast linear
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Table 4.10 Aggregated night cooling details: contribution by individual participants

Part I peak load as cost function

base peak load peak time new peak load peak time peak load
(W/m 2) (W/ in2 ) reduction

sum of 1,2 135 13 121 16 11%

bldg 1 69 16 63 16 9%

bldg 2 74 13 65 13 11%

Part II: total electricity cost as the cost function with demand charge of $6.5/kW

base total cost demand charge new total cost Demand charge total cost
($/m 2.day) / energy cost ($/m.day) / energy cost reduction

sum of 1,2 1.06 0.88/0.18 0.99 0.79/0.2 7%

bldg 1 0.53 0.45 /0.09 0.51 0.41/0.10 5%

bldg 2 0.57 0.48 / 0.09 0.53 0.42 / 0.10 8%

Part III: Itemized contributions

cost of bldg1 cost of sum of cost of bldg1 with NC cost of sum of bldg lwith
+ cost bldg2 bldg1 & bldg2 + cost bldg2 with NC NC & bldg 2 with NC

cost ($/m2) 1.10 1.06 1.04 0.99

reduction 4% 5% 10%

aggregation 4% 5%
contribution
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load profiles: before and after load shedding and aggregation
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Figure 4.17 PPD plots corresponding to "Optimal" load aggregation between
models 1 and 2, peak-load based
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load profiles: before and after load shedding and aggregation
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Figure 4.18 Optimal load aggregation between models 1
$6.5/kW demand charge (same until demand charge drop

NC load profiles of aggregation, demand charge =$2/kW
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Figure 4.19 a) Optimal load aggregation between models 1 and 2 with NC, cost based with
$2/kW demand charge (same until demand charge goes beyond $3.5/kW)
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Figure 4.19b) optimal load aggregation between models 1 and 2 with NC,

cost based with $1.5/kW demand charge
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Figure 4.19c) optimal load aggregation between models 1 and 2 with NC,

cost based with $J/kW demand charge
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NC load profiles of aggregation, demand charge =$0.5/kW
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Figure 4.19d) optimal load aggregation between models 1 and 2 with NC,

cost based with $0.5/kW demand charge
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Figure 4.19e) optimal load aggregation between models 1 and 2 with NC,

cost based with $O/kW demand charge
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4.4 A GA approach to the multi-building problem

The enumeration approach works fairly well, except that the process requires a certain amount of expert

knowledge to set up. To generalize the solution, we can solve the problem by expanding the GA

framework used in the previous single building studies. This section explores how GA works with

multiple buildings and compares the GA performance with that of enumeration. We run EnergyPlus in a

sequential manner with each simulation corresponding to a single building participant, shown in Figure

4.20. The process is illustrated using a two-building example in this section.

Initialize population

>GA fitness evaluation of
the current generation

E+ Simulation of bldg 1

E+ Simulation of bldg 2

4' VBA post-processing two
GA genetic operators to simulation output files
produce next generation

No
end

Yes

Optimal solution

Figure 4.20 Sequential GA process for a two-building aggregation case

Similar to the single GA case, the chromosome in the multi-GA consists of control variables, e.g.

thermostat set points or fan starting time plus early AM temperatures, from multiple buildings that are

being aggregated. The EnergyPlus batch file is modified so that sequential simulations can be done

automatically. At the end of the last EnergyPlus simulation, the VBA post-processing is activated, all the

EnergyPlus simulation results get processed in Excel and sent back to the Matlab GA. The system is

designed to be able to handle any cost function and theoretically any number of individual buildings. The

bottle neck with a large number of participants lies in the computation, not implementation.

For easy comparison purposes, we redo using the multi-GA framework the three thermostat-set-point-

based cases in Table 4.2, and present the results in Table 4.11. Recall that in the enumeration setting, the

maximum thermostat increase is 3C and PMV is limited to below 1.5 for feasible solutions, which is

strictly followed by the multi-GA framework: five afternoon thermostat set points are varied within [24,

27], and results are checked for feasibility to make sure that only those with less than 1.5 PMV values
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survive. This is realized by assigning a very small fitness value to those infeasible solutions that will

have a higher probability being thrown out at the next generation. Recall that the Matlab GA used in this

research does maximization. Table 4.11 shows that GA performs slightly better than enumeration while

taking a lot more EnergyPlus runs. Figure 4.21 plots the traces of best individual and average individual

throughout all the generations. We can see a very good convergence in the end. In addition, it only takes

100 generations to reach the stable solution, although 200 generations have been run. This saving is

considered in Tables 4.9 - 4.12 when the computation intensity is compared between Enumeration and

GA. An E+ simulation takes 5 to 10 seconds. The matching time for Enumeration when there are only

two buildings in aggregation is very short and can be ignored.

Tables 4.12 to 4.14 compare GA with Enumeration for the night cooling two-building aggregation case,

where Table 4.12 minimizes the aggregated peak demand, Table 4.13 minimizes the total electricity cost

with a $6.5/kW demand charge, and Table 4.14 targets the total cost with $1.5/kW demand charge. In all

three cases, fan starting time and early morning thermostats are varied the same way as in the single

building case in Chapter 3. There are several major observations: 1) similar to the thermostat-based load

control case in Table 4.11, GA does perform better, but pays a high price of intensive computation. Take

the peak load case in Table 4.12 as an example: GA takes 17 times more EnergyPlus runs for a mere 1.5%

more peak load reduction, a 17% increase from the Enumeration case; 2) the total cost case with $6.5/kW

demand charge works almost the same way as the peak load case does, which means a $6.5/kW demand

charge is really peak-load control oriented; and 3) the cost reduction is more significant when the demand

charge is higher, as can be seen by comparing Tables 4.13 and 4.14, which is due to the fact that we apply

to daily power profiles the rate structure quoted from the PG&E website and meant for monthly power

usage or even longer horizon. Therefore, the role of hourly energy use is underestimated and the peak

demand ends up having more impact on the results.

With the target of minimizing the aggregated peak load, Figure 4.22 compares the GA results with the no-

night cooling base case in terms of aggregated and individual power profiles, and Figure 4.23 compares

the GA results with the Enumeration results. Both GA and Enumeration recognize that it helps to

consume more power at night and early in the morning in order to bring down the peak in the afternoon,

while GA stretches further in this direction due to the flexibility and therefore achieves more peak load

reduction. The total cost case with a $6.5/kW demand charge has the similar load profiles as those in

Figures 4.22 and 4.23. Figures 4.24 and 4.25 present the case with a $1.5/kW demand charge, where both

GA and Enumeration still decide to turn the fans on at night, but at later times. In addition, they both
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keep the early morning temperatures at a level lower than normal but not as low as that in the peak-load

case, as a compromise between total and peak consumption.

Table 4.11 Optimizing two-building thermostat set points with the Matlab GA

bldg peak peak time peak reduction E+ runs 3  Time(min)

1 and 2 (W/ m 2 ) (W/ m2 )

Base 135 13

Enum 128 13 5.2% 64 12

GA 126 15 6.7% 340 57

bldg peak Peak time peak reduction E+ runs Time (min)

1 and 3 (W/ m 2 ) (W/ m 2 )

Base 125 16

Enum 112 13 10.4% 107 20

GA 111 14 11.2% 536 90

bldg peak Peak time peak reduction E+ runs Time (min)

2 and 3 (W/ m 2 ) (W/ m 2 )

base 125 13

Enum 119 12 4.8% 107 20

GA 118 14 5.6% 514 86

Trace of the Best and the Avg value achieved

0 20 40 60 80 100 120
GA generations

140 160 180 200

Figure 4.21 Traces of the Matlab GA for a two-building aggregation case

3 The numbers of EnergyPlus runs are precise for enumeration, and are approximates for GA runs. We run a large
number of GA generations, cut off where the best solution of GA is asymptotically stable, and use this value as the
necessary simulations by GA.



Table 4.12 Optimizing two-building night cooling schedules with Matlab GA- peak load as cost function

peak peak time peak reduction E+ runs Optimal operations
(W/m 2)

base 137 13 both fans start at 8am
early AM temperature set points: 24'C

Enum 123 15 8.9% 64 both fans start at 6pm
both slow linear 20 / 21 / 22 /23

GA 121 15 10.4% 1163 both fans start at 6pm
20/20/20/ 20, 20/20/20/22

Table 4.13 Optimizing 2-building NC schedules with Matlab GA- total cost with $6.5/kW demand charge

peak total E+
cost cost peak load total load load runs Optimal operations
($/m 2) reduction (W/m2) reduction (Whr/m2) change

base 1.059 135 1177 both fans start at 8a
1pm all 24C

Enum 0.994 6.2% 122 9.3% 1323 18.4% 64 fanI starts at 8am
3pm 20 / 21 / 22 / 23

fan2 starts at 8pm
20 / 21 / 22 / 23

GA 0.988 6.7% 121 10.3% 1315 20.9% 950 fanI starts at 10pm
3pm 22 / 22 / 23 / 23

fan2 starts at 10pm
22 / 23 / 23 / 21

Table 4.14 Optimizing 2-building NC schedules with Matlab GA- total cost with $1.5/kW demand charge

peak total E+
cost cost peak load total load load runs Optimal operations
($/m 2) reduction (W/m 2) reduction (Whr/m2) change

base 0.385 135 1177 both fans start at 8a
1pm all 24'C

Enum 0.380 1.3% 126 6.6% 1323 12.5% 64 fani starts at 8am
3pm 20 / 21 / 22 / 23

fan2 starts at 8pm
20 / 21 / 22 / 23

GA 0.379 1.5% 126 6.6% 1315 11.7% 1212 fanl starts at 10pm
3pm 22 / 22 / 23 / 23

fan2 starts at 10pm
22 / 23 / 23 / 21
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Figure 4.22 Aggregated and individual power profiles for base and GA optimal cases,

two-building fan-based night cooling to minimize the aggregated peak, 8/8, LA

1 3 5 7 9 11 13 15 17 19 21 23
time (hrs)

Figure 4.23 Aggregated and individual power profiles for GA optimal and Enumeration optimal

cases, two-building fan-based night cooling to minimize the aggregated peak, 8/8, LA
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Figure 4.24 Aggregated and individual power profiles for base and the GA optimal cases, two

building fan-based night cooling to minimize the total cost with $1.5 demand charge, 8/8, LA
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Figure 4.25 Aggregated power profiles for base, GA optimal and Enumeration optimal cases,

2bldg fan-based night cooling to minimize the total cost with $1.5 demand charge, 8/8, LA
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4.5 Computation concerns of simulation-based approaches

The computation of the enumeration approach consists of two parts: individual simulation and match.

The matching process simply adds up individual load profiles in Matlab and has little computation

intensity involved when the number of buildings is small. However, its complexity increases

exponentially with the number of individuals. With the simple exhaustive matching, five buildings with

30 feasible solutions each take 3 0A5, about 24 million matches. Although each match only involves

summation and maximization, the number of matches makes it impossible to handle more than five

buildings in a reasonably amount of time. Such a five-building case takes 2.5 hours on a Pentium4

1.8GHz machine, although a four-building case only takes 2 minutes.

Educated enumeration performs better than a generalized optimizer, but requires expert knowledge to set

up. For models and load control strategies concerned in this research, the simulation for individual

buildings in the enumeration approach takes about an hour for a typical summer day. Building operators

can do it off line the night before to come up with strategies for tomorrow if the aggregation scale is

small, say computation can be done in minutes. The system can be used flexibly in practice. For

example, building operators can classify those days with similar weather conditions, so that apply the

same load control strategies to a group of similar days instead of every single day. In all the analysis, we

assume that tomorrow's weather forecast is accurate, which is true in most cases. However, the system is

fast enough to rerun in case there are sudden weather, load or price changes, assuming that those changes

can be forecast couple of hours in advance, which is true in practice.

The enumeration approach is efficient and simple, but its dependence on expert knowledge could be a

problem in order to generalize the approach. For those scenarios we know little about it is difficult to

cover most of the input space by enumerating a limited number of possibilities. Therefore, the best

solution from enumeration and match might not be a good sub-optimum overall.

GA is computationally intensive in almost all the cases, but also generally efficient and can always find a

better operation strategy given enough time. The process is generic and takes little expert knowledge to

set up. The bottleneck is a large number of EnergyPlus simulations are needed for function evaluation.

As a way to reduce computation, Matlab GA saves the computation results throughout all generations to a

lookup table. For every new chromosome, the code searches in this Table first and if this chromosome

has been calculated before, the result is taken and recalculation can be avoided. This saves about 30% -

60% EnergyPlus runs in our Matlab GA studies.
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Notice that with the multi-GA set up, the amount of computation needed increases linearly with the

number of buildings. In reality, GA does slightly better than this due to its advantage of handling large

parameter sets. Two-building aggregation cases take anywhere about an hour and the specific number

depends on the cost function and the convergence requirement. Five-building cases take about 2.5 hours.

Table 4.15 shows the E+ runs taken by two-building cases and five-building cases. Table 4.16 compares

the computation between Enumeration and GA in terms of the total time. Enumeration's exhaustive

search part takes little time in the two-building case but increases exponentially to 2.5 hours in the five-

building case, while GA's computation time increases approximately linearly. Therefore, GA has

advantage when the size of the problem gets large.

Table 4.15 EnergyPlus runs4 taken by multi-GA

Cases 2 buildings 1/ 2 5 buildings 1/1/1/2/2 2 buildings 1/ 3 5 buildings 1/1/1/3/3

E+ runs 340 840 536 1236

Table 4.16 total computation time comparison between Enumeration and multi-GA

Enumeration Multi-GA

E+ run time Matching time Total time Total time (min)
(min) (min) (min)

2bldg 12 (64 E+ runs) <0.1 12 57 (340 E+ runs)
1 and 2

5bldg 12 (64 E+ runs) 150 162 140 (840 E+ runs)
1/1/1/2/2

4.6 Economy of scale

We've looked at several simple aggregation cases involving two or three buildings. It is worth studying

how aggregation efficiency varies as the number of buildings increases. Without any load control,

aggregation still achieves some savings due to the diversification effect, as shown in both thermostat-

based and night-cooling-based strategies early in this chapter. However, the savings from pure

aggregation will approach asymptotically an upper bound as the number of buildings goes up because the

marginal benefit brought to diversification by a new building will drop after some point. Being able to

alter the load profiles through load control could make a difference. We will illustrate the size effect at a

small scale, up to six buildings, using the Enumeration approach. The load control strategy is thermostat-

4 As in Table4. 11, the E+ runs here are the numbers that meet convergence and are chosen after a longer run.
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based with the peak load as the cost function. We continue to use three models in Table 4.2 from Section

4.2, and duplicate those building if necessary. The same Matlab program is used for matching multiple

buildings.

Table 4.17 summarizes the peak load reduction with different building types: by total peak reduction, we

mean the aggregated peak. The average peak reduction is a conceptual number by assuming all

individuals make equal contribution to the total reduction, which is not the case in reality because

different buildings peak at different times. We make the following observations: 1) the more buildings in

the aggregation pool, the more total reduction achieved compared to the base case; 2) the profile mix

plays an important role in determining the aggregation performance.

To focus on the effect of size, we fix the building mix and simply increase the number of buildings in the

pool. Table 4.18 part I shows the aggregation results from one to five buildings, all based on building 1.

The aggregation results in Table 4.18 part II are based on two or three buildings and we simply duplicate

one or more pairs in the pool. In both tables, aggregated load control is compared with individual load

control and the contribution of aggregation is quantified. Notice that the contribution of aggregation

stabilizes as the size increases: 12% peak reduction contributed by aggregation in the one-building case

and 56% in the two-building case with 1 and 3. The reason is that with the limited number of load

profiles, a new building into the pool can only choose to cooperate with others in a limited number of

ways. When the size increases to some point, new buildings start to repeat what old ones do, and the

performance reaches an upper bound.

Figures 4.26 and 4.27 present the aggregation results for a three-building case and a four-building case

respectively. The related two-building case can be found in Figure 4.3. We have the following

observations based on these three cases: 1) the peak reduction potential has been largely exploited even

with three buildings, indicated by the flat control period of the aggregated profile in Figure 4.26. A 4-

building pool flattens the aggregated peak even further; 2) two buildings in an aggregation pool with the

same type tend to behave differently when the size is small, which enhances the aggregation performance.

In reality, we can adjust the control period, e.g. assign different buildings different control periods, and

try to maximize the reduction potential that can be captured by a group of buildings. Notice that the

savings and the scale effect depend on the buildings under study. Load aggregators should choose those

buildings that work well together to create a higher reduction potential.
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Table4.17 Aggregation performance - mix matters

2-bldg 3-bldg 4- bldg 5-bldg
individual model type 1/3 1/3/3 1/1/ 3 1/3/1/3 1/1/1/3 1/1/1/3/3 1/1/1/1/3
toa ak reduction 13.1 17.6 21.7 26.4 26.1 34.9 30.4

10.5% 9.7% 11.2% 10.6% 10.0% 11% 9.2%
average peak reduction 6.6 5.9 7.2 6.6 6.5 7.0 6.1
(W/ m)

1 5.2% 3.2% 3.7% 2.6% 2.5% 2.2% 1.8%

Table4.18 Aggregation performance - economy of scale

Part I: size effect with a limited number of profiles - an extreme case

1bldg 2bldg 3bldg 4bldg 5bldg
building mix 1 1/1 1/1/1 1/1/1/1 1/1/1/1/1

peak reduction from 5.9% 5.9% 5.9% 5.9% 5.9%

individual load control

peak reduction from 5.9% 6.2% 6.7% 6.7% 6.7%

aggregated load control

savings from aggregation 0% 0.3% 0.8% 0.8% 0.8%

contribution of aggregation 0% 5% 12% 12% 12%

Part II: size effect with a limited number of profiles

1/1/1/ 1/2/3/
building mix 1/2 1/2/1/2 2/2/2 1/3 1/3/1/3 1/2/3 1/2/3

peak reduction from 2.8% 2.8% 2.8% 7.4% 7.4% 3.4% 3.4%

individual load control

peak reduction from 5.2% 6.3% 6.3% 10.5% 10.6% 6.1% 6.2%

-aggregated load control

savings from aggregation 2.4% 3.5% 3.5% 3.1% 3.2% 2.7% 2.8%

contribution of aggregation 46% 56% 56% 30% 30% 44% 45%



3-bldg load profiles: before and after load shedding and aggregation
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time (hr)

Figure 4.26 "Optimal" load aggregation between buildings with model types of 1, 1 and 3

4-bldg load profiles: before and after load shedding and aggregation
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Figure4.27 "Optimal" load aggregation between buildings with model types of 1, 1, 3 and 3
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CHAPTER FIVE

A MODEL-BASED NONLINEAR OPTIMIZATION APPROACH

TO THE MULTI-BUILDING PROBLEM

In the previous chapter, we explored the multi-building problem through Enumeration and a multi-GA.

Both approaches involve tens or hundreds of EnergyPlus simulations and the decision-making processes

are slow. One natural development would be separating optimization from simulation, and providing the

optimizer with simplified building dynamics learned from the simulation data. This is expected to

improve the computation efficiency. We will explore such an approach in this chapter by building a time

series model to predict building load profile in the base case. On the top of that, we use linear regression

and model the load reduction and the service degradation due to load shedding. The time series model

and regression models together form the individual load profile prediction model. The multi-building

aggregation is then formulated as a nonlinear optimization problem supported by individual load

prediction models. The problem is modeled in AMPL (A Mathematical Programming Language) and

solved by LOQO [Vanderbei 1997], a nonlinear commercial solver. Optimization results are evaluated

and compared to those from simulation and Enumeration.

5.1 Problem formulation

In this section, we review briefly the general mathematical problem of multi-building optimization. In the

remaining sections, a detailed load predication and optimization process will be presented.

The general problem is to come up with an optimal scheme for a multi-building aggregation pool to

minimize the total electricity cost or peak demand while maintaining a certain comfort level in all the

buildings. We formulate this problem in two ways that are related: 1) treat comfort as a constraint, shown

in Eqn.5.1; 2) treat comfort as part of the cost function by penalizing the violation through a Lagrangian

multiplier, shown in Eqn.5.2. In both formulations, we have represented the hourly power consumptions

and the PPD values in each individual building as functions of the individual system, load control

parameters and time. In theory, these functions are complicated and nonlinear, and are what full-size

simulation software packages such as EnergyPlus try to compute. We will take a simpler approach of

computing hourly power and PPD, which is key to this chapter.
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A mathematically similar problem is presented in Eqn.5.3a where the peak load, instead of the total cost,

is minimized for the same N-building pool. The sum of hourly energy use is a linear' term to this

optimization problem, and taking it out wouldn't change the mathematical nature of the problem.

Although optimizing peak load and optimizing total cost will lead to different results, two problems are

mathematically similar and the peak load problem has already captures the nonlinearity in Eqn.5.1 and

Eqn.5.2, so the method developed for the peak load problem can be applied to the total cost problem

without any extra complexity. This chapter focuses on the peak load problem.

N

min max W , Minmize the peak demand

s.t. Wi = f (x ,,x ,_,,...,u ,,Vi building dynamics

PPD , = g (x ,u , ) PPD ,V i comfort requiremen t Eqn.5.3a

u5_ u cit u,, cE C, Vt, Vi continuous control variables

u * =Oorl, de D,Vt,Vi discrete control variables

The key characteristic of all three formulations is that they are all min max problems: first the program

looks for the peak demand, which is a maximization problem over a 24-hour period on the aggregated

load profile; then minimizes this peak demand over the control variables specified in both Equations.

Min max problems are difficult to solve in general due to the nonlinearity. This min max problem can be

converted to a typical minimization problem by adding a new variable to the original problem, a linear

programming technique, as shown in Eqn.5.3b, where the maximization term is replaced by 24

inequalities in the constraint. Let z = max TW, , and we have

min z Minimize the overall peak or its upper bound
N

s.t. W-,t z,Vt Min Max problem

W , = fi (x1, , xi,, ,...,u ),V i building dynamics Eqn.5.3b

PPD., = g, (xj , ut ),5 PPD , Vi comfort requirement

u_ u , u,, c(E C, Vt, Vi continuous var iables

udj =0or1, de D, Vt, Vi discrete variables

By linear, we mean the hourly energy use term to the cost function, not control variables to the energy use. We
know that building dynamics are nonlinear, which, however, is not a concern at the top level of model structure.



Eqn.5.3b is the model on which this chapter is based. For simplicity, we only implement the thermostat-

based load control strategy. The control variables are hourly thermostat set points, therefore, no discrete

variables will be considered. This, indeed, is a big simplification, as discrete variables need special

treatment during optimization. The next three sections are building blocks: Section 5.2 discusses a time

series model for predicting base load profiles, responsible for one part of W, ; Section 5.3 presents an

approximation model for load reduction due to load shedding, responsible for the other part of W ;

similarly, section 5.4 builds an approximated PMV increase model, responsible for PPDO in Eqn.5.3b.

Section 5.5 brings these three together and solves this simplified multi-building problem via nonlinear

optimization.

5.2 Base load predictor - a time series model

To separate EnergyPlus simulations from optimization, we need a simplified model to capture the

building dynamics. We take the approach of function approximation in this section and build a time

series model by learning from the EnergyPlus simulation data. The reason why we choose time series

models is three-fold: 1) load data can be nicely described by a time series with seasonal patterns; 2) time

series models represent single building dynamics by a small number of parameters, which is important for

the multi-building problem at a large scale; 3) the linearity of time series models make it easy to solve a

nonlinear optimization problem for which the time series model is a constraint. Chapter 1 reviews some

function approximation approaches including artificial neural networks and time series models.

5.2.1 Data preparation

We use the models 1 and 3 from Table 4.1 as two participant types, and will duplicate them when the size

of the pool increases. For each of these two model types, we run EnergyPlus simulation for the entire

summer, from June 1 to August 31, and on each day, we simulate a total of nine scenarios: base without

temperature set point change, four cases with different increase amount: hours 13-17 set point increase by

10C to 4C respectively, and four cases with temperature increase of 2'C and increasing shedding

window length from 1 to 4 hours respectively.

June data are used as the training set and July and August as the testing set. To train the base load model,

the base case data are enough. The rest is for training load reduction model due to thermostat-based load

control.



For simplicity, we take out all the weekend data out of the summer time series and use the weekday only

data for model identification. Throughout this research, all building systems are completely off over the

weekends. Therefore, taking out weekend data points wouldn't lose any information. However, weekend

data are part of the complete time series, and taking them out could possibly distort the embedded

dynamics in this time series and lead to incorrect model identification and poor estimation, especially for

Mondays. However, we argue that this is not a big concern for the model used in this research because

weekday dynamics dominate. In addition, Mondays will be given special treatment in prediction. We

will show late in this chapter that the model based on purely weekday data achieves a satisfying

prediction performance. The time series model only provides a starting point and we have other model

components to further improve the prediction.

Our goal is to predict load profiles using as fewer inputs as possible. During EnergyPlus simulations, we

output hourly total power consumptions (sum of power uses by chillers, fans and pumps), PMV values,

and indoor air temperatures as system responses and hourly outside temperatures and solar radiations on

walls and roof as exogenous features. The internal load patterns remain constant throughout the entire

summer in this study; therefore weather is the only exogenous factor. This is not a very accurate but still

reasonable assumption in reality. Although internal loads are stochastic by nature, they vary with low

standard deviations.

By now, we have hourly simulation data over a total of 66 workdays and are ready to conduct model

identification.

5.2.2 Model identification and estimation

We start model identification by visualizing and analyzing statistically the time series of power

consumptions in SPlus, a statistics software package. We first look at the autocorrelation function (ACF)

plots of the power time series. ACF plots [Box and Jenkins 1976] are a commonly-used tool for checking

randomness in a data set. This randomness is ascertained by computing autocorrelations for data values at

varying time lags. If random, such autocorrelations should be near zero for any and all time-lag

separations. If non-random, then one or more of the autocorrelations will be significantly non-zero. ACF

plots are often used in the model identification stage for autoregressive moving average time series

models, and can be used to access the seasonality (or periodicity) of a data series.
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Figure5. la) shows the autocorrelation coefficient plot of the power time series. The plot strongly

suggests a seasonal pattern in the data with a period of 24 hours, which should be the case because the

building operates periodically on a daily basis. The oscillatory and nondecaying function indicates a

nonstationary process. In order to obtain a stationary process, a number of differencing schemes are

tested, as illustrated in b), c), and d). The one that differences twice with I and 24 as periods, indicated

by d), is finally chosen as it has the least overall autocorrelation. The small-lag autocorrelations, although

not within the specified uncorrelated range, are fairly low. The fact that the differencing scheme of 1 and

24 best describes the data series indicates that the lagged terms by 1 hour, 24 hours, and 25 hours play

important roles in predicting the current hourly power consumption. We understand that weather-related

variables certainly play a role in prediction as well. As the first attempt, we bring in all possible

exogenous variables and conduct a regression over the lagged power terms and these factors to decide the

relative importance of all these inputs.

The exogenous variables here include outdoor temperature and external surface solar incident on each of

the four relevant surfaces: south wall, east wall, west wall and roof. All the lagged terms of these

exogenous variables are also included in this regression. Eqn.5.4 gives the general format of this

regression. Notice that Eqn5.4 is only a symbolic expression of which factors might have impact on the

current power consumption, and it is a linear relationship. The coefficients of all these factors are

determined by regression.

W ~ W1 +W24 +W25 +Tot +SS+SW+SR+SE
+T0 t + SSI + SWI + SR + SE +T., 24 + SS24 + SW24 + SR24 + SE 4  Eqn.5.4

+T,2 +SS 25 +SW 25 + SR 25 + SE 2s

Where,

W Current hourly power consumption

Tou, Current outdoor temperature

SS, SW, SR, SE Current solar incident on South wall, West wall, Roof and East wall respectively

With 12425 1-hour, 24-hour and 25-hour lagged terms of the corresponding parameters

All the data available from the simulation are standardized before put in regression. A generalized linear

model named glm in SPlus is used for regression. A glm model is fit using Iterative Reweighted Least

Squares (IRLS) [SPlus 2001]. The SPlus code is given in Appendix D.l.
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Table 5.1 gives the regression coefficients and their t values for Eqn.5.4. Statistically, variables with

absolute t value greater than 2 are considered significant. However, y1, y24 and y25 are much more

significant than others, although the west all solar incident, SW, might also have some minor impact with

t values slightly greater than 2. Of the three lagged terms, the same hour yesterday has the biggest

impact. Note that although three lagged power terms dominate the prediction and there are no exogenous

factors in the final formulation, it does not mean exogenous variables are not important. In fact, the

lagged terms are results of weather factors acting on the system. These exogenous variables will be used

later to enrich the model.

Table5. 1 Coefficients and t- values - A first cut

Factors Value Std. Error t value

(Intercept) 0.00244 0.00362 0.7

W1 0.73846 0.02513 29.4

W24 1.00619 0.00542 185.6

W25 -0.74007 0.02512 -29.5

Tout -0.00765 0.01159 -0.7

SS 0.00313 0.02889 0.1

SW 0.01574 0.00924 1.7

SR 0.00933 0.02073 0.5

SE -0.00529 0.00797 -0.7

Tout1 0.01799 0.01149 1.6

SS1 0.05267 0.02874 1.8

SW1 -0.02729 0.00856 -3.2

SR1 0.04520 0.02161 2.1

SE1 -0.00500 0.00905 -0.6

Tout24 0.01117 0.01185 0.9

SS24 -0.01891 0.02931 -0.6

SW24 -0.01867 0.00928 -2.0

SR24 -0.00301 0.02136 -0.1

SE24 0.00519 0.00834 0.6

Tout25 -0.01920 0.01164 -1.6

SS25 -0.05092 0.02894 -1.8

SW25 0.02279 0.00855 2.7

SR25 -0.03891 0.02145 -1.8

SE25 0.00699 0.00847 0.8
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Figure 5.2 a) plots the residuals of Table 5.1 and Figure 5.2b) shows the ACF of the regression residuals.

It only serves as a reference as we cannot judge a model's predictability using in-sample (training) data.

However, bad in-sample performance can kill a model without testing it in the testing set. Figure 5.3

plots the residuals on testing data using the model in Table 5.1. The residuals have a mean of 0.1 and a

variance of 2.2, which is fairly good as a starting point of the prediction. Since all the exogenous

variables are less significant at this point, we rerun the regression with only three lagged power terms and

obtain Table 5.2. The lag-only model has better prediction performance. On the testing set, both models

center around zero as they should, but the full-model has a variance of 2.2 and the lag-only model 1.88, a

15% variance reduction. Further analysis is based on Table 5.2.
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The ACF plot in Figure5.2 b) shows a few spikes at non-zero lags, indicating that residuals are not purely

white noise and certain system features have not been captured. To further explain the residuals, we

could build an ARIMA model for the residuals. This approach is typical in time series regression studies.

An alternative is to extract features from the exogenous factors to build a nonlinear regression model for

residuals. Here, we decide to ignore the residuals for now and focus on other aspects to improve the

prediction for simplicity and also for the following reasons: 1) the variance of residuals in testing data

and the autocorrelations between regression residuals are rather low. It would not be too far off without a

residual model; 2) more importantly, the time series analysis did not take into consideration an important

aspect of this problem, which is we don't have hourly updated power data for tomorrow, but our predictor

still tries to predict the power uses at all hours next day. The prediction mechanism used here is basically

a one-step system, meaning that for the next step to be precise, the current step needs to be updated with

the true information instead of estimates. However, we aim at predicting at the end of today tomorrow's

power profile; 24-hour and 25-hour lagged data are available, but one-hour lagged data can only be

predictions. How to improve this one-step model to better predict tomorrow's profile is a far more

important issue than building a residual model based on assumed perfect data.

We have obtained a load profile for tomorrow based on Table5.2. Because we do not have the real-time

one-hour lagged power data, there will be a gap between the predicted and real values. Especially if there

is a large prediction error in the morning, it will be carried on all day and lead to even larger errors later in

the day. There is not much we can do to the time series model due to the information constraint, but extra

information from exogenous variables should help. There could be two approaches to further improve the

prediction: correct the errors and correct the peak.

Eqn.5.5 presents a model to correct tomorrow's prediction errors based on previous prediction errors:

Eqn.5.5 1) is the ideal model consisting of three lagged power terms and a residual term; 2) is the model

used in reality due to unavailability of one-hour lag term; and 3) is the error prediction. This approach is

again another time series modeling problem, as indicated in 3) where f is a time series function

predicting today's prediction errors from yesterday's. To implement this, we need to use two days' real

power consumptions, yesterday and the day before, as initial data and conduct prediction for both

yesterday and today.



W(t)=a1 x W(t -1)+a 2 x W(t - 24)+a3 xW(t - 25)+e(t) 1)

W(t)=d ax W(t -1)+a2 x W(t - 24)+a3 x W(t - 25)+ 8(t) 2) Eqn.5.5

8(t)= f(W(t - 24)-W(t -24)) 3)

Where,

W(t),W(t) - True and estimated power consumption at hour t

W(t - 1), W(t - 1) - True and estimated power consumption at the previous hour

W(t - 24),W(t - 24) - True and estimated values at the same hour on the previous day

W (t - 25) - True power consumption, previous hour previous day

e(t), 8(t) - True and estimated residual at hour t

The error time series analysis in Eqn.5.5 makes statistical sense. Physically, the model says that the

power consumption at the current hour is a function of previous power values and previous prediction

errors. We believe that past power consumptions and errors carry the information about building

dynamics, and past errors have information about the predictor.

This error-correcting model described above is dynamic and complicated. The peak-correcting model

that we will describe below is a static and simpler one. The peak-correcting model takes advantage of

everyday specific exogenous information and models the daily peak load as a function of maximum

temperature and maximum solar incidents on related surfaces. Figure 5.4 shows the relationship between

maximum daily temperatures and peak loads in the summer months in LA. There is clearly an upward

pattern and close to being linear. We have seen the similar trends between peak loads and maximum

solar radiations. The peak loads in the training set are regressed on corresponding maximum

temperatures and south, east, west wall and roof solar radiations. We tried both linear and quadratic

models in SPlus, and found the linear model, Eqn.5.6, has the best performance - the best balance

between the coefficient significance, residual variation and model simplicity. Table 5.3 gives the model's

statistics indicting coefficients of the maximum temperature, south wall and east wall solar incidents are

significant. In reality, the model identification results depend on the specific building under study. We

assume that we have the perfect weather forecast for tomorrow's maximum temperature and solar

radiations. In reality, detailed solar radiation forecast might not be easily obtained and temperature

forecast could be off too. We need to keep in mind these potential constraints.
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peak load varies as maximum daily temperature, LA summer
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Figure5.4 Relationship between peak loads and maximum temperatures in summer, LA

W=X = 1.468 x Tmx +0.032 x SS, + 0.015 x SE., Eqn.5.6

Where, Wma is the peak demand of the day, T., peak temperature, SS., south wall peak solar radiation,

and SE.X east wall solar radiation.

Table5.3 Peak load as afunction of exogenous variables

Factors Value Std. Error t value

(Intercept) 3.913 3.048 1.3

T max 1.468 0.165 8.9

SS max 0.032 0.008 4.3

SW max 0.005 0.004 1.1

SR max -0.007 0.004 -1.6

SE-max 0.015 0.002 5.9

The maximum temperatures have been used to predict peak load for profile adjustment before [Seem and

Braun 1992]. We compare the full model in Table5.3 with the maximum-temperature-based-only model

on the testing set. The model in Table5.3 has a mean of -0.8 and a variance of 2.8, corresponding to a two

standard deviation range of [-4.2, 2.5], while the maximum-temperature-only model has a mean of 3.84

and a variance of 3.20, corresponding to a wider range of [2.6, 10.2]. The full model works better.
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It is to be noticed that we choose the training data set for this model slightly differently. As we only have

one data point for each day, using only June data as the training set is not sufficient to yield a convincing

result. In addition, we observe the following time-sensitive trend throughout the summer: high

temperatures lead to higher peaks more easily in June than in July and August. Therefore we choose half-

month data from June, July and August to form the training set. It is acceptable to distort the time series

in this case because we are looking for a static relationship rather than a dynamic and time-related one.

With the newly estimated peak load, we update the previous prediction from Table 5.2 and scale the

entire power profile to obtain the final base load profile prediction. The prediction performance is

examined on several representative days, shown in Figures 5.5, 5.6 and 5.7. Figure 5.5 emphasizes the

importance of adjusting peak load where the true load profiles, predictions without peak corrections and

predictions with peak corrections are compared. Peak correction helps improve the prediction on most

days, especially on July 27 and August 17. In Figure 5.6, a total of eight days are examined. Figure 5.7

looks at the same hour prediction over a few days in the testing period. Overall, the prediction performs

well. Afternoon hours are predicted better than early morning ones. This is because we scale the entire

curve based on the peak load adjustment which takes place in the afternoon.

7/19 7/27

60 60

E
40 - 40

20 20

0
0 5 10 15 20 0 5 10 15 20

8/16 8/17

60 60-

40 40-

20 20 -

-- simulation
0 prediction without correction 0 - -

0 - prediction with correction 0 5 10 15 20

Figure 5.5 based load profile prediction and peak correction
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Figure5.7 Prediction performance for specific hours over the last 20 days in August

An important reason why the prediction is good is that the data used for both training and testing are from

EnergyPlus simulations and have little noise. In addition, there are no stochastic aspects associated with

our system; notably, the load pattern remains the same throughout the entire summer, which keeps the

load profile shape similar between different days. We expect to see higher errors and degraded

performance with data from the real world.

Although the prediction performance for Mondays is acceptable, we could make it better by giving it

special treatment. For a Monday, a weighted average of predictions by the previous day, which is a

Friday in our data set, and by the previous Monday would give a better prediction. In general, a

prediction considering both the previous day and the day type performs better than either of the single

ones. Day type can be just calendar days such as Monday through Friday. It can also be the classified

groups such as "hot day", "warm day", and "cold day" based on temperatures. A more sophisticated way

is to classify days using an unsupervised classification algorithm, such as the K-means algorithm

[Johnson and Wichern 2002]. A classification algorithm can consider a lot more exogenous variables

other than temperatures.
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Figure 5.8 base load profile prediction improvement based on similar day

For example, the time series prediction for Monday August 7 is based on the previous day which is a

Friday August 4. However, the prediction is less satisfying because in reality there is a weekend between

August 4 and 7 but weekends' impact on Mondays is not considered in the base time series model,

Eqn.5.5. We choose to use a previous Monday July 10 as the equivalent previous day and build the

prediction on the combination of July 10 and August 4. Another reason we choose July 10 is that both

July 10 and August 7 are fairly warm day: the highest is 26.50C on July 10 and 26.7*C on August 7.

Although we developed a model to correct the peak load, it still helps to use a previous day with the

similar temperature range. We present the base prediction and the new similar-day-based prediction in

Figure 5.8: the new prediction based on the combined day is better.

Another nice by-product of classifying and storing a set of typical days is that a profile from this set can

be used as an approximation of another load profile to be predicted, given that they belong to the same

category. A building operator, with weather forecast info, has the approximated load shape available, and

a suboptimal load aggregation can be done based on operation experience.

5.3 Load reduction model

The time series model in section 5.2 provides us a base load profile prediction based on the previous

day's real power profile, but there is nothing in the model that can explain the impact of the load control.



In this section, we will develop a simple model to describe how thermostat-based load shedding distorts

the base load profile. We run the base case, together with four other cases with 1, 2, 3 and 4'C thermostat

increases during hours 13 - 17. The system is off at night and no other load control strategies are applied.

Then we analyze the hourly power difference as a function of thermostat increase and the base load. As

previous analysis showed, increasing thermostat set points in the afternoon will reduce greatly the

shedding-period power consumptions while slightly increasing the power uses at early hours due to the

heat accumulated in the system at night. Figure 5.9 shows the power reduction from the base case for

specific hours 11, 12, 13 and 14 over the entire training set. Hours before 11am gain little power

increases and can be ignored. All the hours during the shedding period have the similar patterns: power

reductions increase with base loads and thermostat increase. Late hours such as 16 and 17 incur more

reduction than early hours such as 13 and 14. Figure5. 10 looks at hour 14 in detail where power

reductions are close to being linear with base loads. Figure5.11 provides a way to observe the

relationship between power reductions and thermostat increases, where five specific hours on a summer

day are presented with different thermostat increase in each case. It can be seen that for different hours,

the impact of thermostat increases is different, but load reductions are an approximately linear function of

the square root of thermostat increases.

Based on the observations, we propose a simple linear load reduction model shown in Eqn.5.7, where

pdiff =bi0 + b (AT) 0 5 + b12 B Eqn.5.7

Where

pdiff Power reduction from the base case

AT Thermostat set point increase

B Base load

We reorganize the training data and make it specific-hour oriented. Hours before noon are affected little,

so we focus on the period of hours 12-17. Recognizing that load reduction potential differs from hour to

hour, training data are regrouped targeting each hour during the period of 12-17. Again, the glm function

in SPlus is used for regression. The process is automated so that multiple hours can be studied easily.

Appendix D. 1 has the SPlus code. Table 5.4 shows the regression results. The first three columns are

regression coefficients and the last column of residual variance says that how much of the training

variance can be explained by the model. A small number is a necessary condition for good predictability.

Table 5.5 gives the two standard deviation range of the model's prediction over the testing set for each of
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hours 12-17. We consider ± 2.2 W/ rn2 is acceptable given that the average load reduction magnitude

over all thermostat increases is 4 W/ m2. It is very difficult to make the load prediction error and the load

reduction error one magnitude less than the load itself. Figure5.12 illustrates the prediction performance

through hour 14 by comparing the prediction and simulation values in the testing set for different

thermostat increase. A perfect prediction would lead to a 45 degree line. The model did fairly well with

large temperature increases, but not as well with a 1 C increase.

Table5.4 SPlus regression results for load reduction model at different hours

Intercept deltaTAO.5 base load residual variance

hour 12 -2.40 0.98 0.04 19.5%

hour 13 19.47 -6.43 -0.42 9.2%

hour 14 17.31 -7.35 -0.31 5.4%

hour 15 16.53 -8.01 -0.26 3.7%

hour 16 14.39 -8.43 -0.20 2.9%

hour 17 12.56 -8.22 -0.16 3.0%

Table5.5 Load reduction model prediction errors in testing data set

testing data

prediction errors

mean - 2*stdev

(W/ M2 )

mean + 2*stdev

(W/ m2

hour 12 -1.2 0.8

hour 13 -2.9 3.5

hour 14 -2.2 2.5

hour 15 -2.0 2.1

hour 16 -2.1 1.9

hour 17 -1.9 1.6

overall -2.2 2.2

159



hour 11

.0-i,

-10

-15'
0 20 40 60

hour 13
0

-10

-15

-20 *.
0 20 40 60

base load (W/m2)

hour 12

-10

-15'
0 20 40 60

hour 14
0

-10

-15

-20
0 20 40 60

base load (W/m2)

Figure5.9 Power difference from the base case at hours 11, 12, 13 and 14

vary with base load and thermostat change
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160

-14-

-16 -

-18 -

* ic
. 2C

- 3C
. 4C

-20
3(



power diff 13-17pm, 6/5

-1-

-2-

E -3 -

-4 -

-5 -

-6 --r
.

e hr1

-7- hrl
- hrl

-8- hrl7

-9 -
1 2 3 4 5

thermostat increase (C)

Figure5.11 Power difference from the base case at hours 13-17 vary with thermostat change,

June 2, a section view of Figure5.10 with fixed base load

deltaT=1 C deltaT=2 C

0 -15 -10 -5 0

deltaT=3 C

0

-5

-10

-15-

-20-
-20 -15 -10 -5

0-

-5-

-10-

-15-

-20-
-20 -15 -10 -5

deltaT=4 C

-20 -15 -10 -5 0
simulated power reduction (W/m2)

Figure5.12 Hour14 power reduction prediction vs. simulation (real values)

0-

-5-

-10

-15-

-2

/ 0S

I,

0

up



Modeling power reductions for a general load control strategy is more complicated than in this specific

thermostat-base case. The key thing is the correlation and interdependence between hours. For example,

if the thermostat set point is increased at hour 14 alone, hour 15 will certainly see a set-back spike, and

hours 16 and 17 will experience a small amount of power increase as well. The challenge is how to

represent the large number of possible schedule combinations, especially when a longer control period is

involved. Integer programming might be used to assign an integer variable to each hour indicating

whether this particular hour incurs a set-back spike. Then we could run regression to find the responding

factor of this specific hour as a function of a variety of inputs. We ignore the set-back issue in this model

by applying the load shedding, regardless the magnitude, to all the afternoon hours. Therefore, the

scheduling modeling is not an issue for this case, but we understand that we are trading optimality for

simplicity: the constraint we apply to the process could cost us optimal or good solutions.

5.4 Comfort model

Similar to load reduction, we will in this section develop a model that describes how thermostat-based

load shedding degrades the service level compared to in the base case. Different from the load models,

we will not develop a full model of predicting base comfort level on an hourly basis throughout the day.

Instead, we will develop a maximum PMV estimate, which, together with an assigned PMV upper bound,

will set an upper bound for the maximum PMV increase. Different from load profiles, PMV values are

determined mostly on the individual hour basis as a function of air and wall temperatures, and scheduling

is of little importance. That is why limiting the maximum PMV is enough to guarantee that the overall

service level is under control. Therefore, the model is to bridge load shedding parameters with PMV

values change.

Correlations between hours are not an issue for PMV modeling. For any hour that is not in the load

shedding period, its PMV value is in line and is not affected by previous PMV changes. For hours during

the shedding period, scheduling matters. For example, a person feels worse in the hour 17 when the

thermostat-based shedding applied to hours 14-17 than at the same hour 17 but with load shedding only

applying to 16-17, given the same temperature set point increase. This scheduling impact is rather subtle

and is not considered explicitly in the current research. But a longer shedding period corresponds to

higher mean radiant temperatures, which is in turn reflected in the PMV increases. Overall, PMV

increases are mainly a function of thermostat set points, provided that thermostat set points can be

maintained at the desired level and indoor air temperatures are under control.
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We continue to use June data as training data set and July and August as the testing data set. We first

look at how PMV increases vary with afternoon hours' thermostat set points increased by 1 to 4'C.

Figure 5.13 shows the PMV changes on June 21 as a function of time and thermostat set point increases;

the shape of the graph is the same for most summer days. Hour12 is used as a reference because load

shedding is applied to hours 13-17 and hour 12 is hardly affected. We assign the same temperature

increase to all five hours. It turned out that the first hour of the load-shedding period has the smallest

PMV increase while hours after incur increasing PMV changes. However, the differences between hours

are not obvious, which makes it possible to ignore the specific hour and build a model for the entire

shedding period as a whole. If we do so, the PMV increase estimate at the beginning of the shedding

period would be overestimated. It is not a concern because overestimating PMV increases guarantees

conservative and feasible results. We put an upper bound of PMV increase on all hours and the service

level is maintained as long as the worst hour with the highest PMV increase is in line. In this sense,

treating all hours as a whole is an over safe design.

Figure 5.14 shows how PMV increases vary with the base load. Data in the training set are regrouped

according to the temperature change over the training period. The PMV increases have little to do with

base loads, except when temperature increases are large and base loads are small, which is a rather small

area and can be ignored.

We regress PMV increases to temperature set point increases according to Eqn.5.8, and the t values of the

coefficients for building 1 are given in the parentheses. Table 5.7 reports the model prediction

performance in the testing set in terms of the residual two-standard deviation range. A change of 0.3 in

PMV is less likely to cause any comfort concern, so the model is sufficient for this case.

APMV, = C, + C x ATRM V 1 = cEqn.5.8

(-14.2) (76.9)

Where, APMV represents the PMV increase and AT the thermostat set point increase

A further look at how maximum PMV values vary with peak loads in Figure 5.15 suggests a strong linear

relationship between the two. We take advantage of this linear relationship and project tomorrow's

maximum PMV based on today's maximum PMV, today's peak load and tomorrow's peak load. Note

that tomorrow's peak load is an estimate from previous load models.
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Figure5.13 PMV difference from the base case at hours 12-17 vary with

thermostat change,6/21
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Figure5.14 PMV differences from the base case at hour 14 vary with base load
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Table5.6 PMV model prediction errors in testing data set

Delta PMV

prediction errors Mean - 2*stdev mean + 2*stdev

deltaT = 1 -0.25 0.15

deltaT = 2 -0.21 0.23

deltaT = 3 -0.19 0.34

deltaT = 4 -0.18 0.47

overall -0.25 0.34

daily max PMV varies with peak load, LA summer

40 45 50 55
peak load (W/m2)

60 65 70

Figure 5.15 Relationship between daytime peak PMV values and peak load in summer, LA

5.5 A nonlinear central optimizer

The previous three sections are devoted to developing building blocks of a simplified building simulator.

Now we are ready to assemble these parts and based on them build a nonlinear optimization solver.

These building blocks, including the base load predictor, the peak load corrector, the load reduction

model and the PMV increase model, are plugged into Eqn.5.3 and we obtain the final model in Eqn.5.9.

All statistical results are written into the code of this mathematical formulation.

Eqn.5.9 is fairly easy for a commercial nonlinear solver to handle. The cost function and most constraints

are linear, and the only nonlinear constraint is quadratic, a "soft" and computationally friendly one. We

1.1-

0.9-
35



code this model in AMPL (A Mathematical Programming Language), which is a platform for

optimization problems with complicated constraints [ampl 2003] and is supported by a variety of linear

and nonlinear solvers such as CPLEX, LOQO and MINOS. Progranmmiing in AMPL helps avoid coding

an optimization algorithm from scratch. One only needs to formulate the problem as Eqn.5.9 does, and

describe the cost function and constraints in APML, similar to Matlab programming.

There are plenty of commercial and/or research packages that can be linked to AMPL and to used in a

certain model. We choose LOQO as the solver for the multi-building problem. LOQO [Vanderbei 1997]

is a system for solving smooth optimization problems. It is based on an infeasible primal-dual interior-

point method applied to a sequence of quadratic approximations to the given problem. The problems can

be linear or nonlinear, convex or nonconvex, constrainted or unconstrained. The only real restriction is

that the functions defining the problem be smooth, which is, they should be twice continuously

differentiable at every point visited by the algorithm. See Appendix D.2 for the AMPL code.

min z total peak load
N

s.t. W|, z,V t together with the cost function to handle a min max problem,
i=1

1| and 1 , - the real and base power use of building i at time t

,(anW,_ + a W -24 + a, 3 W, 25 )x ai linear base load prediction

and peak load correction

+ f((AT ' ,)" ,W Vi,Vt > 2 nonlinear power reduction

dPMV1 = g(zT, ) APMV, Vi,t e [14,17] pmv prediction

and comfort requirement

AT, C [AT, Aigh Vt, Vi thermostat set point range

Eqn.5.9

Where, a is the peak adjustment correction factor for building i, and APMV is the PMV increase target,

determined by the tomorrow's maximum PMV estimate and an assigned PMV upper bound. A target of

PMV less than or equal to 1.5 is used throughout this research and is consistent with all previous studies.

To see how this model-based nonlinear optimizer performs, we first run the program for a single building

without comfort constraints - total demand as the cost function and hour 14-17 thermostat set points as

166



control variables - as a test case. With an all-zero starting point, the AMPL code takes no time to get to

(4, 4, 4, 4), the already-known global optimum for the temperature increases in hours 14-17.

We then run the program for two two-building cases: 1) two identical buildings of model type 1; 2)

buildings 1 and 3. Results are reported in Table 5.7. Enumeration and model-based optimizer lead to

comparable amount of peak load reduction and similar operations in terms of thermostat set point

changes, although load predictions by our model are consistently off by about 10%. Figure 5.16

compares four profiles for the case with two type-I buildings: the sum of two base loads from simulation,

the aggregated load control results by Enumeration, the sum of two predicted base loads, and the sum of

aggregated load control results by the optimizer. The predicted base and aggregated load profiles are off

compared to the simulation and enumeration results, but the differences before and after aggregated load

control are essentially captured.

We move to a case with five buildings in the aggregation pool: four building Is and one building 3. Here

Enumeration experiences some computational difficulties. The exhaustive matching process takes about

2 hours in Matlab, while the model-based optimizer still takes no time to do the computation. For a

commercial solver, several tens of control variables together with linear and quadratic constraints are very

easy to handle and the optimization is very efficient. The savings again are reasonably close: simulation

and Enumeration together produce 9.2% peak reduction while our model is 6.8%, shown in Table 5.7.

Overall, the operations decisions between these two methods are similar, but our model failed to show the

fact that same models in an aggregation pool can act quite differently. All building 1s in our model act

similarly and their thermostats increases are close, but building Is in Enumeration choose to act on

different schedules and therefore achieve more reduction. The nonlinear optimization model needs to be

improved to handle the scheduling aspect better.



Table5.7 Model-based optimizer vs. Enumeration

Peak shift & Peak Final results Computation

(W/ m) Reduction Intensity

bldg1

and Enumeration 125 / hr 16 -> 10.4% bldg1 (0,1,1,1) 123 E+ simulations

bldg3 112 / hr 12 bldg3 (2,2,2,2) Requires simulation every

PMV <= 1.5 time to do aggregation

Model-based 114 / hr 16 -> 8.6% bldg1 (0.5,0.5,0.5,0.5) 460 E+ simulations to

nonlinear solver 104 / hr16 bldg3 (3, 3, 3, 3) prepare training data

PMV <= 1.5 One time only

optimization takes no time

bldgl 1V bldg1 (1,1,1,1),

and Enumeration 137 / hr 16 -> 6.6% 2nd bldg1 (0,1,1,1) 64 E+ simulations

bldg1 128 / hr 16 results very close to those Requires simulation every

with both at (1,1,1,1) time to do aggregation

PMV <= 1.5

460 E+ simulations to

Model-based 128 / hr 16 -> 5.7% both buildings prepare training data

nonlinear solver 121 / hr 16 (0.5, 0.5, 0.6, 0.6) One time only

PMV <= 1.5 optimization takes no time

bldg1 (0,1,1,1)

bldgl Enumeration 330 / hr16 -> 9.2% (1,1,1,1) 123E+ simulations

bldgl 299 / hr 16 (0,1,1,1) takes 2 hours to do

bldgl (0,0,1,1) matching in matlab

bldg3 (2,2,2,2)

Model-based 305/ hr16 -> 6.8% All 4 type-1 buildings 460E+ simulation

nonlinear solver 280 / hr16 (0.6, 0.5, 0.5, 0.5) and optimization takes no time

bldg 3 (2, 2.5, 3, 3)

PMV <= 1.5
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Figure 5.16 Aggregating 2 identical buildings with model type 1

model-based optimizer vs. simulation + Enumeration

We show in Chapter 4 that both multi-GA and Enumeration take hours when the size of the problem

reaches 5. Running an aggregation case with ten buildings would be computationally formidable for both

of them, but the model-based approach remains equally efficient. Table 5.8 shows a few 10-building

cases with different mix based on buildings 1 and 3. All ten cases take little computation. We make the

following observations: 1) the mix of a pool matters. Having equal number of building 3 and building 1

achieves 2% more peak reduction than having nine building 1s and one building 3; 2) individuals play

different roles as a consequence of individual load profiles and thermal mass etc. The pool favors more

building 3s than building 1s. To run the model-based optimizer, we need to have either simulation or

experiment data, from which we can learn and train a unit simulator for each participant following the

procedures developed in this chapter. We only trained models for buildings 1 and 3 in this research. An

immediate next step is to train more models with different load profiles, so we can study the aggregated

load control at a larger scale.

Table 5.8 Aggregation using model-based approach

cases 1 bldgl 3 bldgl 5 bldg1 7 bldgl 9 bldgl

/ 9 bldg3 /7 bldg3 / 5 bldg3 / 3 bldg3 / 1 bldg3

peak . 8.4% 8.6% 8.7% 8.0% 6.5%
reduction
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5.6 Comparison of three approaches to the multi-building problem

To end this chapter, we compare all three approaches developed in this and the last chapters for solving

the multi-building problem. Issues of computation, accuracy, implementation and future research

opportunities of Enumeration, multi-GA and the model-based optimizer are presented in Table 5.9.

Table 5.9 Comparison between three approaches to the multi-building problem

approaches Computation Accuracy Future research Implementation
opportunities

Enumeration Efficient when n is Good. Speed up the Requires expert
small (<= 5) Trade-off between matching process knowledge to form
~ O(Nn ) reducing size of feasible sets

2-bldg cases: 2mins feasible sets and

5-bldg cases: 2.5 - achieving accuracy

8hrs

Multi-GA Intensive in most Good. Code the Requires input files,
cases - O(n) GA search performs chromosome more GA parameters, and
2-bldg cases: 1-5 hrs better than efficiently. function evaluator
5-bldg cases: 2.5 - Enumeration Both binary and
1Ohrs real-value based

Model- Efficient with any Ok. Improve the Train a set of
based size of n ~(i) Simplicity affects prediction models. models using either
optimizer both 2bldg and accuracy, but the Develop a load simulation or

5bldg cases solved improved operations profile classification experimental data,
immediately are achieved and are system and run the

close to being opticaization
optimal program
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CHAPTER SIX

NON-TECHNICAL ASPECTS OF THE LOAD CONTROL PROBLEM

Although we spent most of this thesis developing a technical analysis framework, we understand that

policies, the economic environment, and human behavior play important roles in the energy problem. We

will begin our discussion in this chapter with two disastrous events: the California Energy Crisis in 2000

and the New York Blackout in 2003. Then we briefly discuss non-technical issues with special attention

to current load aggregation practice.

6.1 Energy crisis review

a California Energy Crisis 2000

In summer 2000, with severe weather leading to a huge demand in electricity for air-conditioning, and

with a booming economy leading to fast-increasing use of electricity, California experienced the largest

unplanned blackout of electricity since World War II. Electricity supplies fell to dangerous levels, and

utilities cut power to more than 100,000 homes. From spring 2000 to the beginning of 2001, California's

two biggest utilities spent $12 billion [Holson 2001, Egan 2001] more for power than they collected from

ratepayers, and paid about $4 billion more for electricity in summer 2000 than they did in summer 1999.

Utilities were in danger of bankruptcy, companies put off expansion plans, and residents braced for rate

increases. The search for explanations for where money went reached a fever pitch.

The California power market went through deregulation in the late 1990's, among the first such

experiments in the nation. As part of deregulation, utilities such as PG&E and SCE sold off power plants

to outside power companies such as Duke Energy of Charlotte, N.C., and Reliant Energy of Houston, and

became middlemen [Greenwald 2001]. The intent was to take advantage of plentiful power supply within

and outside of the state through a bidding system to reduce the utilities' expense. Electricity was bought

and sold in the California power exchange, where buyers and sellers bid for electricity to be used the next

day. Demand was matched to supply by a new state agency, the California Independent System Operator.

However, a deregulated market is only partially free - the state did not allow utilities, the new

intermediaries, to enter into long-term purchasing agreements for fear they would be locked into fixed-

price contracts as deregulation market developed and prices dropped. Utilities could only buy power on

the spot (cash) market and were exposed to spot pricing risk. At the beginning of deregulation, the prices

at the spot market were low. The utilities willingly accepted the limitation, as well as a rate freeze with



customers until 2002, which made it impossible to transfer the buying risk to the selling side, or to hedge

the downside risk. Unfortunately, the rapidly increasing demand, lack of generation capacity within the

state, unusual weather, high natural gas prices and environmental restrictions pushed prices to a record

high in mid-2000. The fact that utilities could only buy power at the last minute left California utilities

and Independent System Operator in a desperate position with little negotiating power. In sum, California

dismantled its private power-generating industry without securing adequate power supplies.

Much of the blame went to a few power companies that generate most of the power for California, such as

Reliant Energy, Dynegy and Duke Energy. Whether these power companies manipulated the market and

artificially pushed up the prices was disputed. These companies denied doing so. Houston-based Dynegy

Inc. had one of the best performing stocks in the S&P 500 in 2000 with its shares more than tripling.

Reliant Energy made $90 million in operating income from California alone during the third quarter of

2000 - m6re than twice what the entire subsidiary made in the period the year before [Holson 2001].

Although the companies argued that they faced high natural gas costs to run power plants for California

and did not make much profit in the fourth quarter of 2000, a handful of studies suggested [Joskow 2001]

that these power generators "engaged in behavior to drive prices above competitive levels."

There are many aspects to blame for this crisis. The deregulation plan was a very complicated but flawed

one. Lacking thorough and objective analysis for the future power market, California utilities were not

fully prepared to compete in a more finance-oriented market and did not possess in many situations a

trader's mind which is very necessary. A power surplus in the early 1990's made the utilities hungry for

deregulation, but it turned into a shortage, with the state's booming economy straining both generating

capacity and the natural gas supplies that run many of the power plants. The state's onerous

environmental regulations made it difficult and slow to build new power plants. Adding a few untimely

generator shutdowns and cold, dry weather in the northwest that reduced the supply of hydroelectric

power from that region, and the result was a recipe for a debacle.

Texas started its own power regulation after learning the lessons from California and paid more attention

to designing a better market system. As many sources in Texas pointed out, Texas is different from

California: it has a higher electricity surplus, plenty of natural gas and a diversity of power generations,

and environmental regulations make it easier to build new power plants. After a year of deregulation

implementation, surveys at the end of 2002 [TEC 2003] showed that the deregulation had been so far

moderately successful but many customers were still not convinced that changing providers can bring

much benefit because 1) lack of in-depth knowledge of deregulation and positive perceptions of electric



competition was in their way of making decisions; 2) most customers were satisfied with current power

providers and rates and thought there was little need for competition. For deregulation, there is still a

fairly long way to go in both improving the system and overcoming consumer inertia.

b Power blackout 2003

In August 2003, a massive power outage hit New York and most of New York state as well as other

northeast cities including Toronto, Ottawa, Detroit and Cleveland. The blackout affected a total of 50

million people in the U.S. and Canada, and it took anywhere from two to 16 hours to restore the power

supply for U.S. commercial and residential areas. By researching references [CNN 2003, Gibbs 2003],

we try to understand why this happened and what associated problems are.

The exact reason was difficult to pinpoint, but experts had a fairly good idea why: the electrical system in

the northeast and midwest consists of much capacity to generate power and too few means of moving it

around smoothly. Over the past 10 years, electricity demand has jumped 30%, but transmission capacity

has increased only half that much. Because everything is tied together, too much strain in one place can

cause the whole system to malfunction. There have been a few disastrous blackouts in the past few years

and the transmission system had been improved, but the safety margin built into the system has been

eaten away by lack of investment in modernization.

A combination of market forces, political foot-dragging and the reluctance of residents to welcome high-

voltage lines or towers in their neighborhoods has made it almost impossible to create a transmission

system that can keep up with demand. Energy policy tends to have too much regulation in certain areas

and too little in others: no one was requiring the utilities to upgrade the grid, and utilities were worried

that if they did so voluntarily, they might not be allowed to charge enough to cover their cost. The

government and the energy industry focused more on whether to deregulate or not deregulate. The

blackout crisis looked sure to change the landscape where lawmakers decide on new energy bills.

Environmentalists and industry groups have very different opinions toward this multi-state summertime

blackout. Environmentalists emphasize the importance of homeowners generating their own power,

courtesy of clean, renewable energy sources. Industry officials speak instead about building new nuclear

or conventional power plants or improving existing ones and delivering the power through a modernized

distribution system.
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The blackout helped draw more attention to the idea of "power parks" [Gibbs 2003] -communities or

groups of homes that would generate their own energy courtesy of solar panels, wind turbines, fuel cells

or natural-gas generators. The little clusters could be almost entirely self-sufficient and would have the

freedom to disconnect from the larger network entirely if a regional crash was threatening to knock them

off-line along with the bigger consumers. What has always kept this kind of energy free-lancing from

becoming more than environmentalist daydreaming is that the necessary technologies have remained

unreliable and prohibitively expensive.

Proponents of the policy hope that it will boost energy independence, but not everyone thinks that is a

good idea. Because so much of the American economy is involved in the coal, petroleum and nuclear

industries, walking away from them would set off severe economic dislocation. Many believe that

decentralization will play some role in the energy industry of the future but could well be a minority

player. After the 2003 fiasco, however, attitudes might change and plenty of consumers would be happy

to see the whole system replaced-or at least dramatically improved. What the changes should be and

how to implement them are the challenges.

6.2 Non-technical issues

a. Human behavior

The change of human energy-use behaviors would have a huge impact on building energy performance.

For example, the saving s would be large if occupants shut off lights when lighting is not needed. We

recognize that it may be difficult to implement behavior-related energy saving due to the associated

inconvenience, but we believe it is worthwhile to let end users know the options available and ease of

implementing those. The following measures are from the California Independent Systems Operator's

website [CA ISO 2002]:

* Consider replacing old HVAC systems with new energy-efficient systems

e Install time clocks or setback-programmable thermostats to maximize efficiency

e Install locking covers on thermostats to prevent employee tampering with temperature settings

e Perform scheduled maintenance on units including cleaning condenser coils, replacing air filters

regularly, and checking ducts and pipe insulation for damage

* Clean condenser coils and replace filters regularly

e Install ceiling fans

e Install blinds, or solar screen shades to cool the office

* Install reflective window film or awnings on all south-facing windows
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" Close shades or blinds during early morning and late evening to reduce solar insulation heat gain

* Consider installing an air conditioning economizer to bring in outside air when cool outside

* For optimal energy savings, set thermostats at 78 degrees F for cooling in the summer and 68 degrees

F for heating in the winter

* Install ceiling and wall insulation

* Insulate water heaters and supply pipes

b. Aggregation policy

Aggregation can be a promising business when the aggregator follows the policy, understands the

electricity reconstructing market, and is able to identify potential customers and know them well. We

look at the current situation, policies applied and potential development, and problems through

aggregation cases in Ohio and Massachusetts [Brown 2002] [Alexander 2002]. Both states have opt-out

aggregation which allows a municipality or a local branch of government to aggregate the load of some or

all of its customers within its jurisdiction. The Texas electricity reconstructing site [TEC 2003] also has

some information for aggregation where opt-out is not an option.

In Ohio, aggregation accounts for 85 percent of residential customer switching, 50 percent of commercial

customer switching, 25 percent of industrial customer switching, a 17-percent discount on power prices in

one town in northern Ohio, and discounts of between 1 percent and 15 percent as well as a guarantee of a

"greener" power mix for another aggregated group of more than 300,000 people in northern Ohio.

Ohio's Northeast Public Energy Council (ONPEC) is the nation's largest aggregated group. It took

advantage of the Ohio restructuring law's aggregation provisions by combining not only the load of the

citizens of a single municipality, but the combined load of many municipalities. It is now a buying group

representing 97 cities or townships and more than 300,000 people. Green Mountain Energy serves this

buying group on a six-year contract that offers a single price option at a discount from what customers

would otherwise pay for power. The savings vary from one customer to another, ranging from a high of

15 percent for a few customers to as low as 1 percent for others. Green Mountain's product is guaranteed

to be cleaner than the average Ohio electricity product. It is a combination of 98 percent natural gas and

nuclear and 2 percent alternate sources, such as wind.

In Massachusetts a smaller scale pilot aggregation program has yielded approximately 45,000

participants, discounts of 11 to 22 percent, or $3.50 to $7 per month for an average customer and a set of

green power options available to participants
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An opt-out aggregation is a new concept in power markets and, like any new concept, encounters policy

and others barriers. The efforts in Ohio and Massachusetts have required tremendous patience,

sophistication and dedication on the part of its organizers. Aggregation, in general, requires that

policymakers make what can be controversial decisions about how to manage their competitive power

markets. It does, however, offer a possibility of bringing the benefits of competition to smaller power

users, who thus far have not seen much benefit to choosing a new power provider.

Brown [2002] concluded that the success of aggregation is tied to regulated retail prices, and wholesale

prices remain an important determinant of how successful aggregation can be. Aggregation is likely to be

most successful in higher priced areas, just as retail competition has been more successful in the parts of

the country with the highest electricity rates. Wholesale power markets affect aggregation, just as they

affect any retail power market. Massachusetts' situation demonstrates that rising or volatile wholesale

prices can make it as difficult for a marketer to serve an aggregated group as it can be to serve an

individual customer.

Aggregation can produce savings and can benefit adoption of alternative power sources. Aggregation

appears to have given all participating Ohio customers in the aggregators' jurisdictions at least some

access to competitively determined electricity prices. Price reductions have not been dramatic, although

the benefits to participants in the ONPEC group have been broad, including access to alternative sources.

The Massachusetts program has served as a new way to offer a portfolio of green products to consumers

and to offer a new set of efficiency programs to the consumers.

One question we need to answer is how to choose participants in order that all participants benefit as

much as possible. Porter [1998] pointed out that a company with a good load profile would probably

avoid becoming involved in an aggregation group unless it is aggregating with businesses that have

similarly favorable profiles. To the utility, the most important consideration is when you buy power

rather than how much or at what load factor. For individual participants who pay separately, algorithms

have been developed to allocate savings according to a customer's usage profile and volume. There is

some debate as to whether aggregation - especially aggregation without load-profile preferential

treatment - is a good deal for even the smallest end users.
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c. Market Innovation and advance in financial markets

The power industry is undergoing rapid and significant change with the advent of deregulation. Electric

power marketers have emerged, and consumers can shop around for best suppliers. The industry is

adopting internet-based electronic reservation and trading systems that provide open access to all

transmission services information for all market participants. The ideas of intelligent software agents and

auction services have been explored by some researchers [e2i 1999, Reticular 1999, NYISO 2002]. The

agents communicate and cooperate with each other and their owners to buy and sell electric power on

their behalf. Ideas that have been explored include the dynamics of the electronic marketplace, proper

vehicle for investigating the appropriate agent behaviors, buying and selling strategies and market

algorithms necessary for use in an automated power marketplace.

Electricity is a tradable financial product. Major investment banks and many investment firms are

investing in the energy market and trading electricity and natural gas. Some of them have been quite

profitable. Aggregators are in fact playing a broker role in the sense that they are middlemen between

end users and utilities and they can shop around for the best deal for the customers in the aggregation

pool. More energy-based products and derivatives have been created, which helps expand the energy

market. Through the use of electricity futures, consumers or load aggregators can purchase futures

contracts to offset or hedge power prices for deliveries in advance. By doing so, the energy price

volatility in a deregulated energy market can be mitigated. One of the biggest obstacles in dealing with

the California energy crisis in 2000 is that the regulation policies required electricity only be purchased on

a spot market. The California utilities had no way to avoid the volatility and ended up purchasing from

the power companies at sky-high prices for the next day's use. Other energy-related financial instruments

can help utilities, power companies and eventually end users better achieve their goals.
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CHAPTER SEVEN

CONCLUSIONS

7.1 Research Conclusions

Summary

The entire thesis is devoted to improving building HVAC system operations through a variety of

simulation and optimization methods. Based on extensive EnergyPlus simulations we have proposed

some guidelines that can be applied to practical operations. We have developed a simulation-based

Matlab GA environment and a model-based nonlinear optimization scheme that can be potentially used

by sophisticated operators, and we have illustrated through our research that optimization methods have

good potential in building research. Overall, with peak demand and/or real time pricing applied, we

expect load aggregation to offer diversification opportunities among participants and to improve the

overall load profile, and load shedding to change individual load profiles and enhance the aggregation

performance.

Chapter 2 conducts EnergyPlus parametric studies of load shedding in a single building and compares

different strategies in a VAV system. The simple and efficient load shedding method is to increase

thermostats, which can lead to about 10W/m 2 peak load reduction. An alternative is to reduce fan

capacity and if necessary increase supply air and chilled water temperatures. Temporarily shutting off the

chiller for an hour in this building is infeasible as it leads to severe comfort problems. The duration of the

load shedding period and the start time affect energy savings. Fan-based night cooling is shown to be

more energy efficient than chiller-based for this VAV model in Los Angeles, corresponding to 4-9 W/ m2,

or 10% peak load reduction. Chiller-based night cooling achieves 12% peak-load reduction in Austin,

better than fan-based. Night cooling is recommended if the plant and/or fan are programmable and

whenever weather permits. It is important to identify buildings that are more appropriate for load

shedding.

In Chapter 3, thermostat-based and night-cooling-based load control strategies are optimized for a single

building. Two simulation-based optimization algorithms, Direct Search and Genetic Algorithm, are

implemented and compared regarding their convergence, complexity and accuracy. Optimization studies

in this chapter are highly dependent on the simulation performance. The cost function structure for single

building optimization presents nonlinearity and discontinuity. When few variables are involved and cost

functions are relatively smooth, DS converges faster than GA, but GA has the advantage when the size of
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the problem becomes large. For the particular problem of setting up thermostats for the base model, DS

works well with up to five variables but fails when the size increases to ten. The user-friendly platform of

GenOpt makes it possible for building operators to use it in practice, but it is important to include in the

package global-oriented optimization algorithms such as GA. Being able to handle a variety of cost

functions is also necessary. An EnergyPlus-based Matlab-GA environment is developed, in which we

conduct a variety of GA optimizations in a systematic way.

Chapter 4 shows the effectiveness of load aggregation through two simplified approaches: smart

Enumeration and multi-GA. Smart Enumeration enumerates representative feasible solutions from

EnergyPlus simulation but avoids unnecessary computation and reduces the size of the feasible sets with

the help of expert rules. Multi-GA is an extension of single-building GA, and the function evaluation is a

series of EnergyPlus simulations for all the aggregation participants. Aggregation is applied to a small

pool of two or three buildings to reduce the total peak demand or the total cost. For the specific building

under study, we achieve a peak load reduction of 2 - 14% with thermostats as control variables. This

peak load reduction consists of the reduction from individual load control and from aggregation. The

contribution of the aggregation ranges from 30% to 50% for the two-building and three-building cases.

We see a 27% peak load reduction and approximately 20% cost reduction in a two-building case with fan-

based night cooling enabled. Exact numbers for savings depend on the correlation and interdependence

of the individual participants. For night cooling, individual improvement is huge, and the benefit from

the pure aggregation can be ignored. Enumeration is more efficient at a small scale, but the computation

of the exhaustive search increases exponentially with the size of the pool. Multi-GA has relative

advantage when the problem size becomes large because its computation increases approximately linearly

with the size. For the three building models used, 5 buildings is the break point between Enumeration

and Multi-GA.

Chapter 5 solves the multi-building optimization problem using a model-based approach. A simple time-

series model is used to represent building dynamics, and regression is applied to correct the peak load and

the entire power profile. Two regression models are developed to describe load reduction and comfort

degradation respectively from the base case due to load control. In the end, a nonlinear optimization

scheme brings all these parts together and solves this soft-nonlinear-constraint problem in seconds. For

the peak load optimization, the nonlinear optimizer manages to achieve similar optimal actions as those in

Enumeration and GA, but the base load and savings predictions are off by a certain amount as a price of

the simplicity. For a large number of buildings, the model-based nonlinear optimization method remains

computationally efficient, given that the constraints remain linear or soft nonlinear.
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Key issues

a. EnergyPlus simulations

Most of this thesis is based on EnergyPlus simulation. Therefore, its accuracy, consistency and

computational efficiency are very important to us. As a complex software package still under

development and improvement, EnergyPlus is a great help to our research and also a challenge in the

sense that we need to understand the complexity and overcome the potential problems. To the base VAV

model, we have done basic validation such as heat and mass balances and qualitative checking on

parameter trends. In reality, field test will be desired to further verify the model. We fixed a few

EnergyPlus problems along the way with the help of the EnergyPlus development team [EnergyPlus

Support 2003]. EnergyPlus so far is still a computation engine. We developed a data post-processor in

VBA to handle a variety of cost functions.

b. The building dynamics model in multi-building optimization

Developing building dynamics models is not a new topic. The difficulty here is to come up with a

modeling scheme that can consider both the time dimension at the individual building level and the space

dimension at the aggregation level. Quite a few research results available from references focus on the

time dimension and have great details of a specific system and its components. It is not simple to handle

a number of such models at the same time. On the other hand, aggregation examples are plentiful: load

patch and water heater control in the direct load control field [Chen et al. 1995, Kurucz et al. 1996] and

mean-variance portfolio optimization in the investment community [Markowitz 1952], etc. In these

aggregation examples, individuals are extracted to a static point with several representative properties,

and the individual dynamics are ignored. Timing is key to our research - when the peak shows up in the

aggregated case compared to in the individual cases. We choose the structure of a central optimizer and

time-series based individual simulators and believe it has a good balance in handling both time and space.

Each of the steps is quite simple, but enough to meet the goal discussed above.

c. Which buildings are more appropriate to be aggregated?

Without load control, the aggregation performance is determined by the diversity of individual profiles

and differences between individuals. Diversification guarantees the aggregated profile is flatter than any

individual ones, but large performance discrepancies between individuals might hurt certain individuals'

initiatives of participating in aggregation. With aggregated load control, deciding whether or not a

building is appropriate for aggregation is two-fold: at the individual level, whether the building responds

well to load control and shedding; at the aggregation level, whether this building can cooperate with

others to achieve good overall savings. This thesis focuses on developing an analytic process and



assumes that all the individual participants are given, but choosing the right buildings is a very important

task for a load aggregator in reality.

7.2 Future work

a. Load prediction model as a whole

Currently, the load prediction errors are comparable in magnitude to energy savings. The savings of the

models in this research are moderate due to the specific system, but further improvement with the

prediction is still needed. We simply build today's profile on yesterday or a similar day's, and correct the

predicted profile using an improved peak load. The base load prediction model could incorporate more

physics but still be useful for multi-building optimization. The load reduction model does not consider

the setback recovery situations, and it is an immediate next step.

b. Discrete variables

Being able to deal with discrete variables is key to some load control strategies such as scheduling night

cooling and turning off the chiller for a short period of time, e.g. less than an hour. In addition, discrete

variables can be used to represent different operation modes. For example, we can present different day

types, Monday through Friday, using five 1/0 variables within the same model and require the sum of

these five 1/0 variables to be 1 as a constraint. In this research, we converted the fan status in the night

cooling problem to a continuous variable specifically for California. But we need a more general

approach to deal with discrete variables. It would help to make GA handle both binary and real value

based coding, which can be an immediate research topic. In addition, the nonlinear optimizer cannot deal

with integer variables through the interior point method. Algorithms such as branch-and-bound can be

brought into the framework.

c. Peak demand generalized

In practice, demand charge is applied on a horizon longer than a day, such as a month or a year. We

simplify the analysis by assuming the rate structure applied to a single day. We wish to point out: 1) this

simplification overestimates the peak demand because a monthly rate structure is applied to a day's

profile; 2) the analysis can be generalized to a monthly scale. The peak load pricing research [Raymond

1971] in economics will help this expansion. Peak load pricing deals with the stochastic demand in a

time series fashion.
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d. Sensitivity analysis

Most of this thesis work assumes accuracy in weather and load data. It does not quantify how the results

will change and how robust the analysis is when the inputs, such as outdoor temperature measurement,

change. Sensitivity analysis is critical in practice and is one of the next steps.

A related topic is that whether our results and/or analysis can be generalized to other building types.

Much of our work is based on short-term oriented load shedding strategies, such as thermostat set points.

It might not be appropriate to expand into the situations where mid to long-term load planning is required.

For example, aggregating hotels, offices and grocery stores would have a much longer control period than

in our research. The methods proposed in this research will need to be improved to handle a larger

parameter space.

e. Stochastic factors

Throughout the research, we assume all the factors static in order to focus on the major issue of

aggregation and optimization. However, we recognize that weather, human behavior and equipment use

are all stochastic factors. An ideal solution should have the stochastic aspect in the optimization

framework. We argue that for many commercial buildings, the load patterns are relatively stable over

days and weather forecast, given our setting of predicting a day in advance, is fairly accurate. Therefore,

ignoring the stochastic aspect is acceptable at this point, but further studies incorporating stochastic

factors would be helpful. Stochastic programming [Freund 2002] can be helpful as long as we categorize

the stochastic factors in advance with assigned probability.

183



184



REFERENCES

Ahmed, 0., J.W.Mitchell, and S.A.Klein. 1996. "Application of general regression neural network in HVAC
process identification and control," ASHRAE Transactions, 102(1).

Ahmed, 0., J.W.Mitchell, and S.A.Klein. 1998. "Feedforward-feedback controller using general regression neural
network for laboratory HVAC system: part I - pressure control," ASHRAE Transactions. 104(2).

Alexander, B., 2002. "An analysis of residential energy markets in Georgia, Massachusetts, Ohio, New York and
Texas," National Energy Affordability and Accessibility Project (NEAAP).

AMPL, 2003. http://ampl.com.

Anstett, M., and J.F. Kreider. 1993. "Application of neural networking models to predict energy use," ASHRAE
Transaction, 99(1).

Armstrong, P., 2004. "Robust inverse models for fault detection and optimal thermal control," Ph.D. dissertation.
Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA.

ASHRAE. 1999. Handbook of HVA C Applications. ASHRAE, Atlanta.

Bertsekas, D.P. 2000. Dynamic Programming and Optimal Control, Vol.1. Athena Scientific.

Box, G. and G. Jenkins. 1976. Time Series Analysis: Forecasting and Control. Holden-Day.

Braun, J. S. Klein, W. Beckman, and J. Mitchell. 1989a. "Methodologies for optimal control of chilled water
systems without storage," ASHRAE Transactions. 652-662.

Braun, J. S. Klein, J. Mitchell, and W. Beckman. 1989b. "Applications of optimal control to chilled water systems
without storage," ASHRAE Transactions. 663-675.

Braun, J., K. Montgomery, and N. Chaturvedi. 2001. "Evaluating the performance of building thermal mass control
strategies," Intl. J. of HVAC&R Research. Vol.7, 403-428.

Brown, M., 2002. "An analysis of Opt-Out aggregation in Massachusetts and Ohio," NEAAP, 2002.
http://www.ksg.harvard.edu/hepg/Papers/

CAISO, California Independent System Operator, 2003. http://www.caiso.com/

Chen, J., F. Lee,, and R. Adapa. 1995. "Scheduling direct load control to minimize system operational cost," IEEE
Transactions on Power Systems. Vol.10, No.4.

Chow, T., Z. Lin, C. Song, and G.Zhang. 2001. "Applying neural network and genetic algorithm in chiller system
optimization". Seventh International IBPSA Conference, 1059-1065, Brazil.

CNN, "Major power outage hits New York, other large cities," CNN.com, Aug 2003.

Crawley, D., F. Winkelmann, L. Lawrie, and C. Pedersen. 2001. "EnergyPlus: new capabilities in a whole-building
energy simulation program," Seventh International IBPSA Conference, Brazil.

Conniff, J. 1991. "Strategies for reducing peak air-conditioning loads by using heat storage in the building
structure.," ASHRAE Transactions 97(1): 704-709.

185



Constantopoulos, P., F. Schweppe, and R.C. Larson. 1991. "ESTIA: A real-time computer control scheme for space
conditioning usage under spot electricity pricing," Computers and Operation Research. 18(8) 751-765.

Curtiss, P., J. Kreider, and M. Brandemuehl. 1993. "Adaptive control of HVAC processes using predictive neural
networks," ASHRAE Transactions. 99(1).

D'Cruz, N. and A. Radford. 1987. "A multi-criteria model for building performance and design," Building and
Environment. Vol22, No.3, 167-179.

E2i, Prototype intelligent software agent for trading electricity, Electricity Innovation Institute, 1999.

Egan, T. 2001. "California's panic was moneymaker for energy sellers," The New York Times, Feb.

Effler, L. and G. Wagner. 1992. "Optimization of load procurement and energy management, IEEE Transactions on
power systems," Vol.7, No.1, 327-333.

EnergyPlus Manual, 2001. http://simulationresearch.lbl.gov/

EnergyPlus Support, 2003. http://groups.yahoo.com/group/EnergyPlusSupport/

Freund, R. 2002. Systems Optimization lecture notes. MIT.

GenOpt Manual, 2002. http://simulationresearch.lbl.gov/GO/index.html

Gibbs, N., "Lights out," Times magazine, Aug 2003.

Gibson, G. 1997. "A supervisory controller for optimization of building central cooling systems," AHSRAE
Transactions. 486-493.

Greenwald, J., "The new energy crunch," Time magazine, Jan. 2001.

Gross, G. and F.Galiana. 1987. "Short-term load forecasting," Proceedings of the IEEE. Vol.75, No.12.

Haves, P., and L. Gu. 2001. "Guideline for the operation of demand-responsive HVAC systems," LBNL.

Henze, G., R. Dodier and M. Krarti. 1997. "Development of a predictive optimal controller for thermal energy
storage systems," Intl. J. of HVAC&R Research. Vol.3, No.3, 233-264.

Holson, L. "Trying to follow the money in California's energy mess," The New York Times, Jan 2001.

Hsu. Y. and Su. C., 1991. "Dispatch of direct load control using dynamic programming," IEEE Transactions on
Power System. Vol.6, No.3.

Hung, S.-Y., T.Liang, and V.Liu. "Integrating arbitrage pricing theory and artificial neural networks to support
portfolio management," Decision Support Systems. Vol.18, 301-316, 1996.

Ilic, M, J. Black, and J. Watz. "Potential Benefits of Implementing Load Control," Proceedings of the IEEE PES
Winter Power Meeting, New York City, NY. January 27-31, 2002.

Jorge, H., C. Antunes, and A. Martins. 2000. "A multiple objective decision support model for the selection of
remote load control strategies," IEEE Transactions on Power Systems. Vol.15, No.2.

Joskow P., 2001, "California's electricity crisis," Oxford Review of Economic Policy. Nov, 2001.

Kaastra, I., and M. Boyd. "Design a neural network for forecasting financial and economic time series,"
Neurocomputing. 1996 (10) 215-236.



Keeney, K. and J. Braun. 1996. "A simplified method for determining optimal cooling control strategies for
thermal storage in building mass," Intl. J. of HVAC&R Research. Vol.2, No.1, 59-78.

Kluger, J. 2003. "Can America free itself from the grid and democratize energy?" Times magazine. Aug.

Kurucz, C., D. Brandt, and S. Sim. 1996. "A linear programming model for reducing system peak through customer
load control programs," IEEE Transactions on Power Systems. Vol.11, No.4.

Lan, M.-S., and S. Chand. 1990. "Solving linear quadratic discrete-time optimal controls using neural networks,"
Proceedings of the 29th Conference on Decision and Control, Hawaii.

Lewis, R., V. Torczon, and M. Trosset. 2000. "Direct search methods: then and now," Journal of Computational
and Applied Mathematics. Vol. 124, No.1-2, 191-207.

MacArthur, J., A. Mathur, and J. Zhao. 1989. "On-line recursive estimation for load profile prediction," ASHRAE
Transactions 95(1): 621-628.

Markowitz, H. 1952. "Portfolio selection," Journal of Finance. Vol.7, No.1, 77-91, March.

Michalewicz, Z. C. Janikow and J. Krawczyk. 1992. "A modified genetic algorithm for optimal control problems,"
Computers Math. Application. 23(12), 83-94. Hawaii.

Morris, F., J. Braun, and S. Treado. 1994. "Experimental and simulated performance of optimal control of building
thermal storage," ASHRAE Transactions 100(1): 402-414.

Narendra, K. and Parthasarathy, K. 1990. "Identification and control of dynamical systems using neural networks,"
IEEE Trans. on Neural Networks, 1(1):4, 4-27.

Neuralworks Professional II/PLUS, 2003. http://www.neuralware.com/products-pro2.jsp

Neural networks toolbox, 2003. http://mathworks.com

NeuroSolutions, 2003. http://www.nd.com/

Rabl, A., and L. Norford. 1991. "Peak load reduction by preconditioning buildings at night," Int. J. of Energy
Research. Vol.15. 781-798.

Norgaard, M., 0. Ravn, and N.K.Poulsen. 2001. "NNSYSID and NNCTRL tools for system identification and
control with neural networks," Computing and Control Engineering Journal, Feb. 2001, pp 29-36.

NYISO, New York Independent System Operator, 2003. http://www.nyiso.com/

Papalexopoulos, A. and Hesterberg, T. 1990. "A regression-based approach to short-term system load forecasting,"
IEEE Transactions on Power System. Vol.5, No.4.

Polak, E., and M. Wetter. 2001. "Generalized Pattern Search Algorithms with Adaptive Precision Function
Evaluations," LBNL Technical Report 52629.

Porter, A., 1998. "On power load aggregation," The Magazine of Total Supply Chain Management.

Raymond, J. 1971. "Airport noise and congestion: a peak load pricing solution," Applied Economics. Vol.3, No.3.

Reddy, T., and L. Norford. 2002. "Building operation and dynamics with an aggregated load," ASHRAE 1146RP
Final report.



Reticular System Inc., 1999. "Using intelligent agents to implement an electronic auction for buying and selling
electric power," http://www.aesc-inc.com/download/epri.pdf

Rossi T. and J. Braun, "Minimizing operating costs of vapor compression equipment with optimal service
scheduling," HVA C&R Research. Vol.2, No.1, 3-25, 1996.

Sage, A.P. and C.C.White III, Optimum Systems Control, Prentice-Hall, Inc., 1977.

Seem, J. and J. Braun. 1991. "Adaptive methods for real-time forecasting of building electrical demand," ASHRAE
Transactions 97(1): 710-721.

Seem, J., P. Armstrong, and C. Hancock. 1989. "Comparison of seven methods for forecasting the time to return
from night setback," ASHRAE Transactions 95(2): 439-446.

Specht, D.F. 1990. "Probabilistic neural networks," Neural networks, Vol.3, 109-118, 1990.

Specht, D.F. 1991. "A general regression neural network," IEEE Transactions on Neural Networks 2(6).

TEC, Texas Electric Choice, 2003. http://www.powertochoose.org/

Tsitsiklis, J., B. Van Roy, D. Bertsekas, and Y. Lee. 1997. "A neuro dynamic programming approach to retailer
inventory management". Proceedings of the IEEE Conference on Decision and Control.

Johnson, R. and J. Wichern. 2002. Applied Multivariate Statistical Analysis. Prentice Hall; 5th edition.

Wright J. and H. Loosemore. 2001. "The multi-criterion optimization of building thermal design and control,"
Seventh International IBPSA Conference, 873-880, Brazil.

Wright, J. and R. Farmani. 2001. "The simultaneous optimization of building fabric construction, HVAC system
size, and the plant control strategy," Seventh International IBPSA Conference, 865-872, Rio de Janeiro, Brazil.

Vanderbei, R. 1997. "LOQO users' manual. v.3.10," Princeton University.

Xing, H. and L. Norford. 2003. "Load-control assessment methodologies: multi-building optimal control,"
deliverable 3.5.3(a) (b) reports. Submitted to the Architectural Energy Corporation.



EnergyPlus code for the base model

Download at http://mit.edu/hxing/www/3vav.idf or email to hxing@alum.mit.edu
for the base model.

Appendix A.2 Core EnergyPlus code

1. We vary the densities of major construction materials to create models
with different thermal mass

2. An outside air system is added to enable free cooling
3. Thermostat set point schedules, fan schedules and chiller schedules are

varied during parametric studies and simulation-based optimization
4. reduce the fan static pressure rise for capacity reduction

MATERIAL:Regular,
C4 - 4 IN COMMON BRICK, !- Name

Rough, !- Roughness

0.1014984, !- Thickness {m}
!- Conductivity {W/m-K}, !- density, Specific Heat {J/kg-K)

- base material

0.7264224, 1922.216, 836.8000,
- high thermalmass (2mass)
0.7264224, 3844.432, 836.8000,

- low thermal mass (halfmass)
0.7264224, 961.108, 836.8000,
0.9000000, !- Absorptance:Thermal

0.7600000, !- Absorptance:Solar
0.7600000; Absorptance:Visible

MATERIAL:Regular,
C10 - 8 IN HW CONCRETE, !- Name

MediumRough, !- Roughness

0.2033016, !- Thickness {m}
!- Conductivity {W/m-K}, !- density, Specific Heat {J/kg-K}
base material
1.729577, 2242.585, 836.8000,
high thermalmass
1.729577, 4485.17, 836.8000,

low thermal mass
1.729577, 1121.293, 836.8000,

0.9000000, 0.6500000, 0.6500000;

MATERIAL:Regular,
C12 - 2 IN HW CONCRETE, !- Name

MediumRough, !- Roughness

5.0901599E-02, !- Thickness {m}
!- Conductivity (W/m-K}, !- density, !- Specific Heat {J/kg-K}

base material
1.729577, 2242.585, 836.8000,
high thermalmass
1.729577, 4485.17, 836.8000,

low thermal mass
1.729577, 1121.293, 836.8000,
0.9000000, 0.6500000, 0.6500000;
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!nightcooling
CONTROLLER:OUTSIDE AIR,

OA Controller 1, !- Name
ECONOMIZER, !- EconomizerChoice
RETURN AIR TEMP LIMIT, !- ReturnAirTempLimit
NO RETURN AIR ENTHALPY LIMIT, ReturnAirEnthalpyLimit
NO LOCKOUT, !- Lockout
FIXED MINIMUM, MinimumLimit
Mixed Air Node, ControlNode
Outside Air Inlet Node, !- ActuatedNode
0.2, minimum outside air flow rate {m3/s}
1.3, maximum outside air flow rate {m3/s}
10, temperature limit {C} how to set this temp needs more thoughts

- temperature lower limit {C}
- enthalpy limit {J/kg}

Relief Air Outlet Node, !- ReliefAirOutletNode
Air Loop Inlet Node, !- ReturnAirNode
Min OA Sched; Minimum Outside Air Schedule Name

DAYSCHEDULE,
Zone Hi Temp Day Sch, Temperature,

30.,30.,30.,30.,30.,30.,30.,24.,24.,24.,24.,24.,
24.,24, 24, 24, 24.,30.,30.,30.,30.,30.,30.,30.;

, , , , , 20,20,20,20,24,24,24,24,24,24, , , , ,

DAYSCHEDULE,
FanAndVAVOperatingDaySched, Fraction, - ScheduleType

night setup - fan not running at night

DAYSCHEDULE,
CoolingcoilOperatingDaySched, Fraction, - ScheduleType

! original chiller schedule - start at 8am

FAN:SIMPLE:VariableVolume,
Var Vol Supply Fan 1, Fan Name
FanAndVAVAvailSched, ! FanAndCoilAvailSched, - Available Schedule
0.7, Fan Total Efficiency
600.0, !- Delta Pressure {Pa} ! originally 600 delta pressure
1.3, Max Flow Rate {m3/s}
0.20, Min Flow Rate {m3/s}
0.9, Motor Efficiency
1.0, Motor In Airstream Fraction
0.35071223, FanCoefficient 1
0.30850535, FanCoefficient 2
-0.54137364, FanCoefficient 3
0.87198823, FanCoefficient 4
0.000, !- FanCoefficient 5
Mixed Air Node, !- FanInletNode
Cooling Coil Air Inlet Node; !- FanOutletNode
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Matlab GA code for both single and multiple buildings

B.1.1 Main program

%function mymain (pop, gen, model index, weather)

%function mymain(pop, gen, model index, weather)
%pop - population in GA, gen- total generations to run
%model inrde - which model to run
% 1: single bldg, 14-17p 4hr thermostats

2: single bldg, 10 worktime hrs thermostats
% 3: single bldg, fan starting time + 8-11a 4 thermostats
% 4: single bldg, chiller start time + 8-11a 4 thermostats
% 5: single bldg, fan on fixed pe:riod, 10 thermostats
% 6: 2 bldgs, 14-17p thermostats, (8 vars)
% 7: 2 bldgs, fan starting time + 8-11a 4 thermostats (10 vars)
% 8: 5 bldgs, 13-17 thermostats (or could be all 10 worktime hrs)
% weather - "SF", "LA" and "Austin" etc.

% VBA codes apply comfort const:raints

%cost function - peak load, oi total cost or a mix of total cost and comfort
%control variables - thermostats, nightcooling schedules, and ...

clear all
close all
%load nextPop. mat
global history-array-new array-temp
global evaluationctr epEval ctr simsavectr
global modelindex

modelindex = 7;

numof-gen=150;
numinpop=20;

evaluationctr=0;
epEval ctr=0;
simsavectr=0;

% Crossover Operators
xFns 'arithXover simpleXover';
xOpts [1 0; 1 0];

% Mutation Operators
mFns = 'boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation';
mOpts [2 0 0;3 200 4;2 200 4;2 0 0]; %change multiNontinif and nonUnif paras 3
->2

% Termination Operators
termFns = 'maxGenTerm';
termOps = [num-of-gen]; % number of generations before program terminates

% Seection Function
selectFn 'normGeomSelect'; %could be 'roulette' too
selectOps [0.081;

% Evaluation Funct ion
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evalFn 'myepeval';
evalOps []; %consider putting base file name in here? [2, 24, 15, 16]

% GA Options [epsilon float/binar display]
gaOpts=[le-3 1 1];

%4-hr thermostats 14,15,16,17prri
if model-index ==1

bounds = [22 28; 22 28; 22 28; 22 28];

%10-hr thermostats
elseif model-index ==2

bounds =[22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28];

%fan-based night cooling, fan starting time, early AM tihermostats
elseif model-index ==3

bounds =[17 31; 20 26; 20 26; 20 26; 20 26];

%fan-based night cooling. fan starting time and all day thermostats
elseif model-index ==30

bounds=[17 31; 20 26; 20 26; 20 26; 20 26; 20 26; ...
20 26; 20 26; 20 26; 20 26; 20 26];

%chiller-based night cooling, chiller starting time, early AM thermostats
elseif model-index ==4

bounds= [17 31; 20 26; 20 26; 20 26; 20 26];

%wi. th fan on 12a-5a., 10-hr thermostats, ot her Limes float wiL th economi zer
elseif model-index ==5

bounds =[22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28;22 28];

%two bldgs, 4-hr thermostats 14,15,16,17pm (8 vars total)
elseif model-index ==6

bounds = [24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24
26];

%two bldgs with night cooling, fan start time, early AM thermostats (10vars)
elseif model-index ==7

bounds = [17 31; 20 26; 20 26; 20 26; 20 26; 17 31; 20 26; 20 26; 20 26; 20
26];

elseif model-index ==8
bounds = [24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; ..

24 26; 24 26; 24 26; 24 26; 24 26; 24 26; ...
24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26; 24 26];

end

% Generate an intialize population of size 20
startPop = initializega(num-in-pop, bounds, evalFn, evalOps, [le-3 1])
%star-tPop7-endPop;

history-array-new=[floor(startPop(:,l:end-1))*10 startPop( :,end)];%iput into
ar ray

save historyarraynew history-arraynew;
array-temp = history-array-new;
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%run the GA to create next generation

%end of CA when the cr:i.teria are sat:sfied or 1 m :: is reached

start-time=cputime;

[x,endPop,bestPop,trace]=ga(bounds,evalFn,evalOps,startPop,gaOpts,...
termFns,termOps,selectFn,selectOps,xFns,xOpts,mFns,mOpts);

% x is the best solution found

x;
% endPop is the ending population
endPop;
% bestPop is the best soluti on trackeci ovier generati ons
bestPop;
% trace is a trace of the best value and average value of generations
trace;

% Plot the best over trime
% clf
plot(trace(:,1),trace(:,2));

hold on
plot(trace(:,1),trace(:,3));

numof-epEval epEvalctr
num of simSave simsave ctr
%num_of epEvalGA = evaluation ctr
timeuse in min=(cputime-start-time)/60
time-perEval = timeuse in min / num-of-epEval

save history-array-new history-array-new



B.1.2 EnergyPlus-based function evaluator

function [sol, val]= myepeval(sol,options)

global epEvalIctr
global modelindex

TO=24;

cd C:\EnergyPlusl.1.O\ExampleFiles

%4hr thermostat control only, no nightcooling
if model-index ==1

dos( copy Tibase.idf Tivary.idf');
filejid=fopen('Tivary.idf', 'A');

fprintf(fileid,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch,
Temperature');

for i=1:7
fprintf(file_id, '%s%s', ',

end
for i=8:13

fprintf(file_id, '%s%f , , , TO);

end
for i=14:17 %hours 14,15,16,17

fprintf(file_id, '%s%f ' ',,sol(i-13));
end
for i=18:24 %hours 18 24

fprintf(file_id, '%s%s , ',,
end
fprintf(file_id,'%s ',';');

fclose(file-id);

%101hr thermostat control only, no nightcooling
elseif model-index ==2

dos('copy Tibase.idf Tivary.idf');
file id=fopen( 'Tivary.idf', 'A');

fprintf(file-id,'\n %s ', 'DAYSCHEDULE, Z(one Hi Temp Day Sch,
Temperature');

for i=1:7
fprintf(file_id, '%s%s', ',, ' )

end
for i=8:17 %hours 8-17

fprintf(file_id, '%s%f ', ',', sol(i-7));

end
for i=18:24 %hours 18-24

fprintf(file_id, 'I%s%s '), ';, ', '

end
fprintf(file_id, '%s ', ';

fclose(file-id);



%nght oolin eabled
elseif model index ==3

fan sta.rt t.i me and dischi na roe pi.ocess

dos ('copy fanTibasel. idf Tivary. idf
file-id=fopen('Tivary.idf', 'A');

fprintf(file_id, \n %s
Fraction');

tfan=round(sol(1));
if tfan > 24

tfan=tfan-24;
for i=l:tfan

fprintf(file-id,
end
for i=(tfan+l):17

fprintf(file-id,
end
for i=18:24

fprintf(file-id,
end
fprintf(fileid,'%s

elseif 17 <tfan <24
for i=1:17

fprintf(file-id,
end
for i=18:tfan

fprintf(fileid,
end
for i=(tfan+l):24

fprintf(file_id,
end
fprintf(fileid,'%s

elseif tfan ==24
for i=1:17

fprintf(file_id,
end
for i=18:24

fprintf(file_id,
end
fprintf(fileid,'%s

elseif tfan ==17
for i=1:24

fprintf(file_id,
end
fprintf(fileid,'%s

end

, 'DAYSCHEDULE, FanAndVAVOperatingDaySched,

%s%d ',, ' 0)

'%s%d ',,',1);

'%s%d ',', ',0);

'%s%d ,,',0);

%s-d ' , , ,1);

%s d ',' ', )

%s%d , , '1)

, ; F);

%%; only specify four temperatures irn the earlyP[ discharging process
fprintf(file-id, '\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch,

Temperature') ;
for i=1:7

fprintf(file-id, '%s ', ,

end
for i=8:11

fprintf(file-id, '%s%ff ', ',', sol(i-6));
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end
for i=12:17

fprintf(fileid, '%s%f
end
for i=18:24

fprintf(filejid,

, , TO);

'%S ',' ,');
end
fprintf(fileid,%s ;

fclose(file-id);
%%- ---- ----- ------------------- ----

elseif model-index ==30

dos('copy fanTibaselO.idf Tivary.idf');
file-id=fopen('Tivary.idf', 'A');

fprintf(file_id, \n %s
Fraction');

tfan=round(sol(l));
if tfan > 24

tfan=tfan-24;
for i=1:tfan

fprintf(file_id,
end
for i=(tfan+l):17

fprintf(file_id,
end
for i=18:24

fprintf(fileid,
end
fprintf(fileid,'%s

elseif 17 <tfan <24
for i=1:17

fprintf(fileid,
end
for i=18:tfan

fprintf(fileid,
end
for i=(tfan+l):24

fprintf(fileid,
end
fprintf(fileid, '%s

elseif tfan ==24
for i=1:17

fprintf(filejid,
end
for i=18:24

fprintf(file id,
end
fprintf(fileid, '%s

elseif tfan ==17
for i=1:24

fprintf(file id,
end
fprintf(file_id, '%s

end

, 'DAYSCHEDULE, FanAndVAVOperatingDaySchied,

%s%d ', ,' 0);

%s%d ' ', ,1);

%s%d ',',',0);

);)

I I

%s%d ', ' 1)

%s d ', 0);

'%s%d ' ' , )

'%s'fd ',' ', )
);;

I;);
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% a11 10 thermost aEs
fprintf(file-id, '\n %s ',

Temperature');
for i=1:7

fprintf(fileid, '%s
end
for i=8:17

fprintf(file_id, '%s%f
end
for i=18:24

fprintf(file-id, '%s
end
fprintf(file_id,'%s

fclose(file-id);
%%- ---- ---- ------ -- -- -

%nightcooling enabled
elseif model-index == 4
%with fan on 12a-5a, 10-
elseif model-index ==5

DAYSCHEDULE, Zone Hi Temp Day Sch,

sol(i-6));

chiller starting time and discharge process,

hr thermostats, not used

%two bidgs, 4 hr thermostats 14,15,16,17pm (8 vars total)
%thermal comfort constraints applied by VBA codes
elseif model-index ==6

dos ( 'copy Tibasel. idf Tivaryl. idf
dos('copy Tibase2.idf Tivary2.idf');

fileidl=fopen( 'Tivaryl.idf', 'A');
fprintf(file_idl,'\n %s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch,

Temperature' ) ;
for i=1:7

fprintf(filejidl, '%s%s', ',

end
for i=8:12

fprintf(file_idl, '%s%f
end
for i=13:17 %hours 14,15,16,

fprintf(fileidl, '%s%f
end
for i=18:24 %hours 18-24

fprintf(file_idl, '%s%s
end
fprintf(file_idl,'%s ',';

fileid2=fopen('Tivary2.idf',
fprintf(file-id2,'\n %s ' D, '

Temperature' ) ;
for i=1:7

fprintf(fileid2, '%s%s',
end
for i=8:12

fprintf(file-id2, '%s%l'
end

, ',', TO);

17 of bldg1 (1,2,3,4 of 8 vars)
sol(i-12));

'A');
AYSCHEDULE, Zone Hi Temp Day Sch,

, ', TO);



for i=13:17 %hours 13 , 14,1 15, 16,17 of blIdg2 (6, 7,8, 9, 10 of 10 vars)
fprintf(fileid2, '%s%f ', ',', sol(i-7));

end
for i=18:24 %hours 18 24

fprintf(fileid2, '%s%s
end
fprintf(fileid2,'%s ',';');

fclose(file-idl);
fclose(file-id2);

%two bldgs, nightcooling enabled,
elseif model-index ==7

fan start time, early AMYI thermostats

dos('copy NCfani.idf Tivaryl.idf');
dos ('copy NC fan2. idf Tivary2. idfI');

fileidl=f open( 'Tivaryl. idf ' , 'A');
fileid2=fopen('Tivary2.idf','A');

% bldg 1 input ---------
fprintf(fileid1, '\n %s

Fraction');
tfan=round(sol(1));
if tfan > 24

tfan=tfan-24;
for i=l:tfan

fprintf(file-idl,
end
for i=(tfan+l):17

fprintf(file-idl,
end
for i=18:24

fprintf(file-idl,
end fprintf

elseif 17 <tfan <24
for i=1:17

fprintf(file-idl,
end
for i=18:tfan

fprintf(file-idl,
end
for i=(tfan+l):24

fprintf(file-idl,
end
fprintf(file_idl,'%s

elseif tfan ==24
for i=1:17

fprintf(file_idl,
end
for i=18:24

fprintf(file_idl,
end
fprintf(file_idl,'%s

elseif tfan ==17
for i=1:24

fprintf(file-idl,

---- - - - --------- ----

'DAYSCHEDULE, FanAndVAVOperatingDaySched,

'%sd ',',',0);

'%s%d ', , 1)

'%s%d ' , ,0);
(file-idl,'%s ',

'%s%d ',',',1);

'%,Is%d ',',',0);

'%s%d ' ' , )

'%s%d ' , ,1);

'%s%d , )

' , ' , ' ' ) ;



end
fprintf(fileid1,'

end

%% only specify four

fprintf(fileid1,'\n
Temperature' ) ;

for i=1:7
fprintf(file_idl,

end
for i=8:11

fprintf(file_id1,
end
for i=12:17

fprintf(file_idl,
end
for i=18:24

fprintf(file-id1,
end
fprintf(filejidl,'%s

% bldg 1 input ends

%s ' ,'; ) ;

temperatures in the earlyiM discharging process
%s ' DAYSCHEDULE, Zone Hi Temp Day Sch,

'%s ' ') ;

'%s%f , sol(i-6));

'%s%f , TO);

', ; );

% bldg 2 i riput ---- -
fprintf(file_id2,'\n %s

Fraction');
tfan=round(sol(6));
if tfan > 24

tfan=tfan-24;
for i=l:tfan

fprintf(file_id2,
end
for i=(tfan+l):17

fprintf(fileid2,
end
for i=18:24

fprintf(file_id2,
end
fprintf(filejid2,'%s

elseif 17 <tfan <24
for i=1:17

fprintf(file_id2,
end
for i=18:tfan

fprintf(file_id2,
end
for i=(tfan+l):24

fprintf(fileid2,
end
fprintf(filejid2,'%s

elseif tfan==24
for i=1:17

fprintf(file_id2,
end
for i=18:24

fprintf(file_id2,
end
fprintf(filejid2,'%s

DAYSCHEDULE, FanAndVAVOperatingDaySched,

II );

%s%d ', 0);

%s%d , ,1);

; );

%s%d ', ,1);

%s%d ' 0);

, ;);
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elseif tfan ==17
for i=1:24

fprintf(fileid2, '%s
end
fprintf(file_id2,'%s

end

fprintf(file_id2, '\n.
Temperature');

for i=1:7
fprintf(file_id2,

end
for i=8:11

fprintf(file_id2,
end
for i=12:17

fprintf(file_id2,
end
for i=18:24

fprintf(file_id2,
end
fprintf(fileid2,'%s

%s ','DAYSCHEDULE, Zone Hi Temp Day Sch,

'%s%f ', ' , sol(i-1));

' ', ' , TO);

',;');

fclose(file-idl);
fclose(file-id2);

elseif modelindex == 8 %five buildings,

dos('copy Tibasel.idf Tivaryl.idf');
dos('copy Tibasel.idf Tivary2.idf');
dos('copy
dos ( 'copy
dos('copy

Tibasel.idf
Tibase2. idf
Tibase2.idf

Tivary3.
Tivary4.
Tivary5.

testi g for Ime

idf'
idf '
idf'

for Tik = 1:5

if Tik==l
estr = ['file id

elseif Tik ==2
estr = ['fileid

elseif Tik ==3
estr = ['file id

elseif Tik == 4
estr = ['fileid

elseif Tik ==5
estr = ['file-id

end
eval(estr);

fprintf(fileid,'\n
Temperature ' ) ;

for i=1:7

fopen(''Tivaryl.idf'

= fopen ( ' 'Tivary2. idf''

, 'A'');']1;

, 'A'');'];

= fopen( ''Tivary3.idf' ', ' 'A' ') ; ']

= fopen( ''Tivaiy4.idf'', ''A'');'];

= fopen( ''Tivary5.idf'' ''A'');'];

%s ', 'DAYSCHEDULE, Zone Hi Temp Day Sch,

fprintf(file_id, '%s%s', ', ', ' )
end
for i=8:12

fprintf(fileid, '%s3%f ' , ', TO);
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end
for i=13:17

fprintf(fileid, '%s%f ', ',', sol(i-12+(Tik-l)*5));

end
for i=18:24

fprintf(file_id, '%s%s , ' '
end
fprintf(file_id, '%s ,

fclose(file-id);
end

end
f modelindex == 6 | modelindex ==7

epEvalctr=epEvalctr+2;
cd C:\EnergyPlusl.l.0
%runeplus2 starts runeplus Tivary2
dos( 'runeplus2bldg Tivaryl LA');

elseif model-index ==8
epEval-ctr=epEval_ctr+5;
cd C:\EnergyPlusl.l.0
dos('runeplus5 Tivaryl LA');

else %single bulcling
epEval-ctr=epEval_ctr+l;
cd C:\EnergyPlusl.l.0
dos('runeplus Tivary LA');

two-buildings

weather in the end

end

cd C:\my_research\singlepara\genoptfiles\
fileout=fopen( 'newoutput.txt' , 'r')
val=fscanf(fileout, '%f');

cd C: \'Program Files'\MatlabRll\work\GA
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Appendix B.2

B.2.1 GenOpt Command file

Vary

Parameter

Name
Min
Ini
Max
Step

Parameter

{
Name
Min
Ini
Max
Step

Ti2;
22;
26;
28;
0.2;

Ti3;
22;
26;
28;
0.2;

}

OptimizationSettings

{
MaxIte = 100;
MaxEqualResults = 5;
WriteStepNumber = false;

}
Algorithm

Main = HookeJeeves; // Main = EquMesh;
StepReduction = 0.5;
NumberOfStepReduction 3;

B.2.2 GenOpt initialization file

Simulation {
Files {

Template {
Filel = xTemplate.txt;
Pathl = C:\MyResearch\singlepara\genoptfiles;

}
Input

Filel = x.idf;
Pathl = C:\EnergyPlusl.l.0\ExampleFiles;
//SavePath = Simulation.Files.Template.Pathl;

Log
Filel = x.err;
Pathl = Simulation.Files.Input.Pathl;
//SavePath = Simulation.Files.Template.Pathl;

}
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Output {
Filel = newoutput.txt;
Path1 = Simulation.Files.Template.Pathl;
//SavePath = Simulation.Files.Template.Pathl;

}
Configuration {

Filel = configuration.cfg;
Path1 = C:\Research\goprg\cfg;

}
}
CallParameter { // optional section

Suffix = Austin;

ObjectiveFunctionLocation

Delimiter1
Name1
Delimiter1
Name1
Delimiter3
Name3
Delimiter1
Namel
Delimiter1
Namel

"Peak load,"
"Peak load";
"Total load,"
"Total load";
"day avg PPD,"
"day avg PPD";
"Total energy cost,"
"Total energy cost";
"aggr cost,"
"aggr cost";

}
} // end of section Simulation

Optimization {
Files {
Command {

Filel = Command.txt;
Pathl = Simulation.Files.Template.Pathl;

}

B.2.3 GenOpt configuration file

// Error messages of the simulation program
SimulationError
{

ErrorMessage ="** Severe **";

ErrorMessage = " Fatal **";

ErrorMessage ="** EnergyPlus Terminated--Error(s) Detected";

// Format of simulation input files

I0

NumberFormat = Float;

SimulationStart

Command = "cmd /c \"start /DC:\\EnergyPlusl.1.0 /WAIT /MIN RunEPlus.bat

%Simulation.Files.Input.Filel% %Simulation.CallParameter.Suffix%\""

WriteInputFileExtension = false;
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VBA code for data post processing for Matlab GA and GenOpt DS

Public Sub transition ()

Dim title As String
Dim page As String
Dim Tik As Integer

For Tik = 1 To 5 'can post-process 1 - n buildings

title "C:\EnergyPlusl.l.O\ExampleFiles\Tivary" & Tik & ".csv"
page "bldg" & Tik

Workbooks.Open Filename:=title
Cells.Select
Selection.Copy
Windows("extract.xls").Activate
Sheets.Add
Cells.Select
ActiveSheet.Paste

ActiveSheet.Name = page

'column o - avg PMV

Range("O2").Formula = "=(L2+M2+N2)/3"
Range("02").Select

Selection.AutoFill Destination:=Range("O2:025"), Type:=xlFillDefault
' column P - avg PPD

Range("P2").Formula = "=100-95*exp(-(0.03353*02^4+0.2179*02^2))I
Range ("P2").Select
Selection.AutoFill Destination:=Range("P2:P25"), Type:=xlFillDefault
' working time PPD
Range("P26").Formula = "=average(P9:P18)"

' column Q - load W/m2
Range("Q2").Formula = "=(G2+H2+I2)/(3600*102)"
Range("Q2").Select

Selection.AutoFill Destination:=Range("Q2:Q25"), Type:=xlFillDefault
' peak load
'matlab GA is max, so '-' used for peak load as cost fn
Range("Q26").Formula = "=max(Q2:Q25)"
' total load
Range("Q28").Formula = "=sum(Q2:Q25)"

Next Tik

For i = 9 To 18 ' only care about the peak during 8-17

If Sheets("bldgl").Range("P" & i).Value > 50 Or
Sheets("bldg2").Range("P" & i).Value > 50 Or
Sheets("bldg3").Range("P" & i).Value > 50 Or
Sheets("bldg4").Range("P" & i).Value > 50 Or
Sheets("bldg5").Range("P" & i).Value > 50 Then
Sheets("price").Range("J" & i).Value = 399 'set output if PPD violates

Else
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Sheets("price").Range("J" & i).Value = Sheets("bldgl").Range("Q" & i).Value
+ Sheets("bldg2").Range("Q" & i).Value + Sheets("bldg3").Range("Q" & i).Value
+ Sheets("bldg4").Range("Q" & i).Value + Sheets("bldg5").Range("Q" & i).Value

End If

Next i

' aggregated peak load - Matlab GA is maximization

Sheets("price").Range("J26").Formula = "=max(J9:J18)"
Sheets("price").Range("J27").Formula = "=400-max(J9:J18)"

fr = FreeFile

Open "C:\My_Research\single-para\genoptfiles\newoutput.txt" For Output As #fr

'peak demand output for GenOpt Direct Search

'Print #fr, "Peak load,";
'Print #fr, Sheets("price").Range("J26").Value

'peak demand output for matlab GA
Print #fr, Sheets("price") .Range("J27") .Value

Close #fr

Sheets("bldgl").Activate
DeleteWorksheet
Sheets("bldg2").Activate
DeleteWorksheet
Sheets("bldg3").Activate
DeleteWorksheet
Sheets("bldg4").Activate
DeleteWorksheet
Sheets("bldg5").Activate
DeleteWorksheet

ChDir "C:\EnergyPlusl.1.O\ExampleFiles"
Workbooks( "Tivaryl.csv").Close
Workbooks("Tivary2.csv").Close
Workbooks( "Tivary3.csv").Close
Workbooks( "Tivary4.csv").Close
Workbooks("Tivary5.csv").Close

ChDir "C:\My_Research\singlepara\genoptfiles"
Workbooks("extract.xls").Save
Workbooks("extract.xls").Close

End Sub

Public Sub DeleteWorksheet()
Application.DisplayAlerts = False
ActiveWindow.SelectedSheets.Delete
Application.DisplayAlerts = True
End Sub
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Appendix C.1
Key EnergyPlus inputs for three models used in the multi-building studies

Difference in thermal mass can be found in Appendix A.2

Model 1 and 2: half mass
Model 3: 2 mass

Difference in the internal load pattern

Model 1 and 3:
DAYSCHEDULE,

BLDG Day 1, - Name

Any Number, ScheduleType
0.00,0.00,0.00,0.00,0.00,0.00,0.10,0.50,1.00,1.00,1.00,1.00,
0.50,1.00,1.00,1.00,0.50,0.10,0.00,0.00,0.00,0.00,0.00,0.00;

DAYSCHEDULE,
BLDG Day 5, Name
Any Number, ScheduleType
0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,1.00,1.00,1.00,1.00,
1.00,1.00,1.00,1.00,1.00,1.00,0.00,0.00,0.00,0.00,0.00,0.00;

Model 2:
DAYSCHEDULE,

BLDG Day 1, - Name

Any Number, ScheduleType
0.00,0.00,0.00,0.00,0.00,0.50,0.50,1.00,1.10,1.20,1.30,1.30,
1.50,1.30,1.00,0.80,0.40,0.10,0.00,0.00,0.00,0.00,0.00,0.00;

DAYSCHEDULE,
BLDG Day 5, Name
Any Number, ScheduleType
0.00,0.00,0.00,0.00,0.00,0.20,0.20,0.4,1.00,1.10,1.30,1.30,
1.5,1.10,0.90,0.70,0.55,0.50,0.30,0.30,0.00,0.00,0.00,0.00;

Whether or not there is a west window

Models 1 and 2 have a west window, but model 3 does not
!! west window in north zone
Surface:HeatTransfer:Sub,
Zn003:WallOO1:WinOO1, !- User Supplied Surface Name
Window, !- Surface Type
WIN-CON-LIGHT, Construction Name of the Surface
Zn003:WallOO1, Base Surface Name

, !- OutsideFaceEnvironment Object
0.5000000, !- View Factor to Ground

- Name of shading control
- WindowFrameAndDivider Name

1.0, !- Multiplier

4, !- Number of Surface Vertice Groups -- Number of (X,Y,Z) group

0.OOOOOOOE+00,10.0,3.048000, !- X,Y,Z ==> Vertex 1
0.0000000E+00,10,0.0000000E+00, !- X,Y,Z => Vertex 2

0.OOOOOOOE+00,8.0,0.OOOOOOOE+00, !- X,Y,Z ==> Vertex 3
0.OOOOOOOE+00,8.0,3.048000; !- X,Y,Z ==> Vertex 4
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Matlab code to match multiple building in Enumeration

datal=load(
data2=load(

data3=load(
data4=load(
data5=load(

'bldgi load.dat
'bldg2_load.dat
'bldg3_load.dat
'bldg1ljoad.dat
'bldg1_load.dat

Nl=length(datal);
N2=length(data2);
N3=length(data3);
N4=length(data4);
N5=length(data5);

ppdl=load(
ppd2=load(
ppd3=load(
ppd4=load(
ppd5=load(

'bldglppd.dat'
'bldg2_ppd.dat'
'bldg3_ppd.dat'
'bldg1_ppd.dat'
'bldglppd.dat'

sum12_base=datal(
sum13_base=data1(
sum23_base=data2(
sum14_base=data1(
sum25 base=data2(

1) +data2
1) +data3
1) +data3
1) +data4
1) +data5

:,1)

:,1)
:,l)
:,1)
: ,1)

figure
plot(datal(:,l),'g*')
hold
plot (data2 (:,1), r+')

plot(data3(:,l),'kx')
plot(data4(:,1), mo)

plot(data5(:,1),'c-')
legend('bldg1', 'bldg2', bldg3, bldg4 , bldg5
plot(data1(:,1),'g')
plot(data2(:,l), r')

plot (data3 (:,1) , k')
plot(data4(:,1), m)
plot(data5(:,1), 'c)

xlabel('time (hr)')
ylabel('power consumption (W/m2) ')
title ('single building load profiles')

[sum12, peak12, indexl2_1, index12_2]=match2(datal,N1, data2, N2);
plotcomp2(sum12base, datal(:,l), data2(:,l), sum12, datal(:,index12_1),
data2(:,indexl2_2));
plotppd2(ppdl, indexl2_1, ppd2, index12_2);
[peakl2_base,peakl2_basetime]=max(suml2_base)
[peakl2_check, peak12_time]=max(sum12)
singlesum12 = demandp*max(datal(:,l))+sum(datal(:,l).*costp)+...

demandp*max(data2(:,1))+sum(data2(:,1).*costp);;
[singlesuml2max, singlesuml2maxindex]=max(singlesuml2)
indvsuml2 = demandp*max(datal(:,32))+sum(datal(:,32).*costp)+...

demandp*max(data2(:,28))+sum(data2(:,28).*costp);;
[indvsuml2max, indvsuml2maxindex]=max(indvsuml2)
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[sum13, peakl3, indexl3_1, indexl3_2]=match2(datal,N1, data3, N3);
plotcomp2(suml3_base, datal(:,1), data3(:,1), suml3, datal(:,indexl3_1),
data3(:,indexl3_2));
plotppd2(ppdl, indexl3_1, ppd3, indexl3_2);
[peakl3_base,peakl3_base_time]=max(suml3 base)
[peak13_check, peak13_time]=max(sum13)
singlesum13 = demandp*max(datal(:,1))+sum(datal(:,1).*costp)+...

demandp*max(data3(:,1))+sum(data3(:,1).*costp);;
[singlesuml3max, singlesum13max_index]=max(singlesuml3)
indvsuml3 = demandp*max(datal(:,32))+sum(datal(:,32).*costp)+...

demandp*max(data3(:,89))+sum(data3(:,89).*costp);;
[indvsuml3max, indvsuml3max index]=max(indvsuml3)

% 3-building case
suml23_base=datal(:,1)+data2(:,1)+data3(:,1);
[sum123, peak123, indexl23_1, indexl23_2, indexl23_3]=match3(datal,N1, data2,
N2, data3, N3);
plotcomp3(suml23_base, datal(:,1), data2(:,1), data3(:,1), sum123,
datal(:,indexl23_1), data2(:,indexl23_2), data3(:,indexl23_3));
plotppd3(ppdl, ppd2, ppd3, indexl23_1, indexl23_2, indexl23_3)
[peakl23_base,peakl23_base time]=max(suml23_base)
[peakl23_check, peakl23_time]=max(suml23)
singlesum123 = demandp*max(data2(:,1))+sum(data2(:,1).*costp)+...

demandp*max(data3(:,1))+sum(data3(:,1).*costp)+...
demandp*max(datal(:,1))+sum(datal(:,1).*costp);;

[singlesuml23max, singlesuml23max_index]=max(singlesuml23)
indvsuml23 = demandp*max(data2(:,28))+sum(data2(:,28).*costp)+...

demandp*max(data3(:,89))+sum(data3(:,89).*costp)+...
demandp*max(datal(:,32))+sum(datal(:,32).*costp);;

[indvsuml23max, indvsuml23maxindex]=max(indvsuml23)

% 4 -bli
sum1234_base=datal(:,1)+data2(:,1)+data3(:,1)+data4(:,1);
[sum1234, peak1234, indexl234_1, indexl234_2, indexl234_3, indexl234_4]...

= match4(datal,N1, data2, N2, data3, N3, data4, N4);
plotcomp4(sum1234_base, datal(:,1), data2(:,1), data3(:,1), data4(:,1),...

sum1234, datal(:,indexl234_1), data2(:,indexl234_2),...
data3(:,indexl234_3), data4(:,indexl234_4));

plotppd4(ppdl, ppd2, ppd3, ppd4, indexl234_1, indexl234_2, indexl234_3,
indexl234_4)
[peakl234_base,peakl234_base-time]=max(sum1234_base)
[peak1234_check, peak1234_time]=max(sum1234)

%5-bldg
sum12345_base=datal(:,1)+data2(:,1)+data3(:,1)+data4(:,1)+data5(:,1);
[sum12345, peak12345, index_1, index_2, index_3, index_4,
index_5]=match5(datal,N1, data2, N2, data3, N3, data4, N4, data5, N5);
plotcomp5(sum12345_base, datal(:,1), data2(:,1), data3(:,1),data4(:,1),
data5(:,1) ,...

sum12345, datal(:,index_1), data2(:,index_2), data3(:,index_3),
data4(:,index 4), data5(:,index_5));

plotppd5(ppdl, ppd2, ppd3, ppd4, ppd5, index_1, index_2, index_3, index_4,
index_5)
[peakl2345_base,peak12345_basetime]=max(sum12345_base)
[peak12345_check, peakl2345_time]=max(sum12345)
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VBA code for automated E+ simulation in Smart Enumeration

C.3.1 computational savings illustration

C.3.2 VBA code

Public Sub main()

Dim N, Nt, flag As Integer
Dim Tshed, deltaT As Variant
Dim sheetname As String

Dim Ti(24) As Variant
Dim I, j As Integer
Dim k As Integer
Dim k21, k22 As Integer
Dim k31, k32, k33 As Integer
Dim k41, k42, k43, k44 As Integer

1-hr shedding
2-hr shedding
3-hr shedding
4-hr shedding

Count = 0

' compute the original case without

Worksheets(I"Tisum").Activate

load shedding

FileCopy "C:\MyResearch\MultiSmartEnum\bldglTi.idf",
"C:\EnergyPlusl.1.0\ExampleFiles\Tivary.idf"
fr = FreeFile

Open "C:\EnergyPlusl.l.0\ExampleFiles\Tivary.idf" For Append As #fr
Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,";
For i = 1 To 23
Print #fr, Cells(i, 4).Value,
Next i
Print #fr, Cells(24, 4).Value,
Close #fr

Shell "C:\MyResearch\MultiSmartEnum\myrunep.bat"
Sleep 15000 ' wait for energyplus
Count = Count + 1

Sheets.Add
ActiveSheet.Name = "base"
Call Readin

For i = 1 To 24

Worksheets("Tisum").Cells(i + 25, 4).Value = ActiveSheet.Cells(i + 1, 17).Value
Worksheets("Load").Cells(i, 1).Value ActiveSheet.Cells(i + 1, 17).Value
Worksheets("PPD").Cells(i, 1).Value = ActiveSheet.Cells(i + 1, 16).Value
Next i

209

Load control strategy original E+ runs New E+ runs savings

Bldg1 - vary thermostats 90 32 64%

Bldg3 - vary thermostats 90 75 17%

Bldg1 - night cooling 70 40 43%

Appendix C.3



ChDir "C:\EnergyPlusl.1.O\ExampleFiles"
Workbooks("Tivary.csv").Close

Nt = 1

' k = 1 case---------------------------------------------
For k = 1 To 5

Worksheets( "Tisum").Activate
Tshed = 1
deltaT 1

valueloop_1:

If Tshed < 4 Then

Worksheets(I"Tisum").Activate
For i = 1 To 24

Ti(i) = Cells(i, 4).Value
Next i'

Ti(12 + k) = Ti(12 + k) + Tshed

FileCopy "C:\My_Research\MultiSmartEnum\bldgl_Ti.idf",
"C:\EnergyPlusl.1.0\ExampleFiles\Tivary.idf"

fr = FreeFile

Open "C:\EnergyPlusl.1.0\ExampleFiles\Tivary.idf" For Append As #fr
Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,";
For i = 1 To 23

Print #fr, Ti(i),
Next i
Print #fr, Ti(24),
Close #fr

Shell "C:\MyResearch\MultiSmartEnum\myrunep.bat"
Sleep 15000 ' wait for energyplus
Count = Count + 1

Sheets.Add
Call Readin

flag = 0
For i = 9 To 18

If Range("P" & i).Value > 50 Then
flag = 1
End If

Next i

ChDir "C:\EnergyPlusl.1.0\ExampleFiles"
Workbooks("Tivary.csv").Close

If flag = 0 Then

sheetname = 12 + k & " " & Tshed

ActiveSheet.Name = sheetname

For i = 1 To 24

Worksheets("Tisum").Cells(i, Nt + 4).Value = Ti(i)
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Worksheets("Tisum").Cells(i + 25, Nt + 4).Value = Cells(i + 1, 17).Value
Worksheets("load").Cells(i, Nt + 1).Value Cells(i + 1, 17).Value
Worksheets("PPD").Cells(i, Nt + 1).Value Cells(i + 1, 16).Value
Next i
Worksheets("Tisum").Cells(25, Nt + 4).Value = sheetname

Nt = Nt + 1

Tshed = Tshed + deltaT
GoTo valueloop_1
Else 'ActiveSheet.Move After:=Sheets("Tisum")
DeleteWorksheet
End If

End If 'if Tshed < 4

Next k

' k = 2 case --------------------------------------------
For k21 = 1 To 4

For k22 = k21 + 1 To 5

Worksheets("Tisum").Activate
Tshed 1
deltaT 1

valueloop_2:

If Tshed < 4 Then

Worksheets("Tisum").Activate
For i = 1 To 24
Ti(i) = Cells(i, 4).Value
Next i

Ti(12 + k21) = Ti(12 + k21) + Tshed
Ti(12 + k22) = Ti(12 + k22) + Tshed

FileCopy "C:\My_Research\MultiSmartEnum\bldglTi.idf",
"C:\EnergyPlusl.1.O\ExampleFiles\Tivary.idf"

fr = FreeFile
Open "C:\EnergyPlusl.1.O\ExampleFiles\Tivary.idf" For Append As #fr
Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,";
For i = 1 To 23

Print #fr, Ti(i),
Next i
Print #fr, Ti(24),
Close #fr

Shell "C:\MyResearch\MultiSmartEnum\myrunep.bat"
Sleep 15000 ' wait for energyplus
Count = Count + 1

Sheets.Add
Call Readin

flag = 0
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For i = 9 To 18
If Range("P" & i).Value > 50 Then
flag = 1
End If

Next i

ChDir "C:\EnergyPlusl.1.0\ExampleFiles"
Workbooks("Tivary.csv").Close

If flag = 0 Then
sheetname = 12 + k21 & " " & 12 + k22 & " " & Tshed

ActiveSheet.Name = sheetname
Tshed = Tshed + deltaT

For i = 1 To 24
Worksheets("Tisum").Cells(i, Nt + 4).Value Ti(i)
Worksheets("Tisum").Cells(i + 25, Nt + 4).Value =Cells(i + 1, 17) .Value
Worksheets("load").Cells(i, Nt + 1).Value =Cells(i + 1, 17).Value
Worksheets("PPD").Cells(i, Nt + 1).Value = Cells(i + 1, 16).Value
Next i
Worksheets("Tisum").Cells(25, Nt + 4).Value = sheetname

Nt = Nt + 1

GoTo valueloop_2

Else 'ActiveSheet.Move After:=Sheets("Tisum")
DeleteWorksheet
End If

End If ' Tshed <4

Next k22
Next k21

' k = 3 case-------------------------------

For k31 = 1 To 3

For k32 = k31 + 1 To 4
For k33 = k32 + 1 To 5

Worksheets("Tisum").Activate

Tshed 1
deltaT 1

valueloop_3:

If Tshed < 4 Then

Worksheets("Tisum").Activate
For i = 1 To 24

Ti(i) = Cells(i, 4).Value
Next i

Ti(12 + k31) = Ti(12 + k31) + Tshed
Ti(12 + k32) = Ti(12 + k32) + Tshed
Ti(12 + k33) = Ti(12 + k33) + Tshed
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FileCopy "C:\MyResearch\MultiSmartEnum\bldgl_Ti.idf",
"C:\EnergyPlusl.1.0\ExampleFiles\Tivary.idf"

fr = FreeFile
Open "C:\EnergyPlusl.l.0\ExampleFiles\Tivary.idf" For Append As #fr
Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,";
For i = 1 To 23
Print #fr, Ti(i),
Next i
Print #fr, Ti(24),
Close #fr

Shell "C:\MyResearch\MultiSmartEnum\myrunep.bat"
Sleep 15000 ' wait for energyplus
Count = Count + 1

Sheets.Add
Call Readin

flag = 0
For i 9 To 18

If Range("P" & i).Value > 50 Then
flag = 1
End If

Next i

ChDir "C:\EnergyPlusl.l.0\ExampleFiles"
Workbooks("Tivary.csv").Close

If flag = 0 Then
sheetname = 12 + k31 & " " & 12 + k32 & " " & 12 + k33 & " " & Tshed

ActiveSheet.Name = sheetname

For i = 1 To 24
Worksheets("Tisum").Cells(i, Nt + 4).Value Ti(i)
Worksheets("Tisum").Cells(i + 25, Nt + 4).Value = Cells(i + 1, 17).Value
Worksheets("load").Cells(i, Nt + 1).Value Cells(i + 1, 17).Value
Worksheets("PPD").Cells(i, Nt + 1).Value Cells(i + 1, 16).Value
Next i
Worksheets("Tisum").Cells(25, Nt + 4).Value = sheetname
Nt = Nt + 1

Tshed = Tshed + deltaT
GoTo valueloop_3
Else 'ActiveSheet.Move After:=Sheets("Tisum")
DeleteWorksheet
End If

End If ' if Tshed < 4

Next k33
Next k32

Next k31

' k = 3 case- --------------------------------------------
For k41 = 1 To 2
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For k42 = k41 + 1 To 3
For k43 = k42 + 1 To 4

For k44 = k43 + 1 To 5

Worksheets("Tisum").Activate

Tshed 1
deltaT 1

valueloop_4:

If Tshed < 4 Then

Worksheets("Tisum").Activate
For i = 1 To 24
Ti(i) = Cells(i, 4).Value
Next i

Ti(12 + k41) = Ti(12 + k41) + Tshed
Ti(12 + k42) = Ti(12 + k42) + Tshed
Ti(12 + k43) = Ti(12 + k43) + Tshed
Ti(12 + k44) = Ti(12 + k44) + Tshed

FileCopy "C:\My_Research\MultiSmartEnum\bldglTi.idf",
"C:\EnergyPlusl.1.O\ExampleFiles\Tivary.idf"

fr = FreeFile
Open "C:\EnergyPlusl.l.0\ExampleFiles\Tivary.idf" For Append As #fr
Print #fr, "DAYSCHEDULE, Zone Hi Temp Day Sch, Temperature,";
For i = 1 To 23
Print #fr, Ti(i),
Next i
Print #fr, Ti(24),
Close #fr

Shell "C:\My_Research\MultiSmartEnum\myrunep.bat"
Sleep 15000 ' wait for energyplus
Count = Count + 1

Sheets.Add

Call Readin

flag = 0
For i 9 To 18

If Range("P" & i).Value > 50 Then
flag = 1

End If
Next i

ChDir "C:\EnergyPlusl.l.0\ExampleFiles"
Workbooks("Tivary.csv").Close

If flag = 0 Then

sheetname = 12 + k41 & " " & 12 + k42 & " " & 12 + k43 & " " & 12 + k44 &
& Tshed
ActiveSheet.Name = sheetname
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For i = 1 To 24
Worksheets("Tisum") .Cells(i, Nt + 4) .Value = Ti(i)
Worksheets("Tisum").Cells(i + 25, Nt + 4).Value = Cells(i + 1, 17).Value
Worksheets("load") .Cells(i, Nt + 1) .Value = Cells(i + 1, 17) .Value
Worksheets("PPD") .Cells(i, Nt + 1) .Value = Cells(i + 1, 16) .Value
Next i
Worksheets("Tisum").Cells(25, Nt + 4).Value = sheetname

Nt = Nt + 1

Tshed = Tshed + deltaT
GoTo valueloop_4
Else 'ActiveSheet.Move After:=Sheets ("Tisum")
DeleteWorksheet
End If

End If ' if Tshed < 4

Next k44
Next k43

Next k42
Next k41

End Sub

Public Sub Readin()
Workbooks.Open Filename:="C:\EnergyPlusl.l.O\ExampleFiles\Tivary.csv"
Cells.Select
Selection.Copy

Windows("bldglTi.xls").Activate
Cells.Select
ActiveSheet.Paste

Range("02") .Formula = "=(L2+M2+N2)/3"
Range("02").Select

Selection.AutoFill Destination:=Range("02:025"), Type:=xlFillDefault
column P - avg PPD

Range("P2") .Formula = "=100-95*exp(-(0.03353*02A4+0.2179*02A2))"
Range ("P2").Select
Selection.AutoFill Destination:=Range("P2:P25"), Type:=xlFillDefault
' working time PPD

Range( "P26") .Formula = "=average(P9:P18)"
' column Q - load W/m2

Range("Q2") .Formula = "=(G2+H2+I2)/(3600*102)
Range(1"Q2").Select
Selection.AutoFill Destination:=Range("Q2:Q25"), Type:=xlFillDefault
' peak load
Range("Q26") .Formula = "=max(Q2:Q25)"
' total load
Range("Q28").Formula = "=sum(Q2:Q25)"

End Sub

Public Sub DeleteWorksheet()
Application.DisplayAlerts = False
ActiveWindow.SelectedSheets.Delete
Application.DisplayAlerts = True
End Sub
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Appendix D.1 Key Splus code for training load prediction models

D.1.1 Time series model for base load profile prediction in SPlus

import.data(DataFrame="Xf", FileName ="_Data//_model3//Xt3.txt",
FileType="ascii")

y <- Xf[,1]

yt1 <- Xf[,2]

yt24 <- Xf[,3]

yt25 <- Xf[,4]

Tout <- Xf[,51

SS <- Xf[,6]

SW <- Xf[,7]

SR <- Xf[,81

SE <- Xf[,9]

Tout1 <- Xf[,10]

SS1 <- Xf[,11]

SWI <- Xf[,12]

SR1 <- Xf[,13]

SE1 <- Xf[,14]

Tout24 <- Xf[,15]

SS24 <- Xf[,16]

SW24 <- Xf[,171

SR24 <- Xf[,18]

SE24 <- Xf[,191

Tout25 <- Xf[,20]

SS25 <- Xf[,21]

SW25 <- Xf[,22]

SR25 <- Xf[,23]

SE25 <- Xf[,24]

Xglm <- glm(y - ytl + yt24 + yt25 + Tout+SS+SW+SR+SE +Toutl+SS1+SW1+SR1+SE1
+Tout24+SS24+SW24+SR24+SE24 +Tout25+SS25+SW25+SR25+SE25)

plot(Xglm)
summary(Xglm)
Xres <- residuals(Xglm)

plot(Xres)
Xresacf <- acf(Xres, lag.max=48, type="correlation")
acf.plot(Xresacf)

Xglm2 <- glm(y - ytl + yt24 + yt25)
summary (Xglm2)

import.data(DataFrame="reshat", FileName ="_Data//_model3//reshat.txt",
FileType="ascii")

reshat <- reshat[,1]

Xglm3 <- glm(y - ytl + yt24 +yt25 + reshat)

import.data(DataFrame="hat", FileName ="_Data//_model3//hat.txt",
FileType="ascii")

ytlhat <- hat[,1]

ytreshat <- hat[,21

Xglm4 <- glm(y- yt1hat + yt24 + yt25 + ytreshat)
summary(Xglm4)
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D.1.2 Regression model for peak load correction in SPlus

import.data(DataFrame="max", FileName="_Data//_deltaP//TEmax.txt",
FileType="ascii")

Emax <- max[,11

Tmax <- max[,2]

SSmax <- max[,3]

SWmax <- max[,4]

SRmax <- max[,5)

SEmax <- max[,61

Emaxfullglm <- glm(Emax - Tmax + SSmax + SWmax + SRmax + SEmax)

summary(Emaxfullglm)

EmaxTglm <- glm(Emax - Tmax)

summary(EmaxTglm)

D.1.3 Regression model for load reduction in SPlus

new.database(where=" _Data//_deltaP", type="directory")
attach("_Data//_deltaP", pos=1)

import.data(DataFrame="H14", FileName="_Data//_deltaP//H14.txt",
FileType="ascii")

H14E <- H14[,11

H14T <- H14[,2]

H14B <- H14[,3]

H14glm <- glm(H14E ~ H14TO.5 + H14B)
H14res <- residuals(H14glm)

import.data(DataFrame="H15", FileName="_Data//_deltaP//H15.txt",
FileType="ascii")

H15E <- H15[,11

H15T <- H15[,2]

H15B <- H15[,31

H15glm <- glm(H15E - H15TAO.5 + H15B)

H15res <- residuals(H15glm)

import.data(DataFrame="H16", FileName="_Data//_deltaP//H16.txt",
FileType="ascii")

H16E <- H16[,11

H16T <- H16[,2]

H16B <- H16[,3]

H16glm <- glm(H16E - H16TAO.5 + H16B)

H16res <- residuals(H16glm)

import.data(DataFrame="H17", FileName="_Data//_deltaP//H17.txt",
FileType="ascii")

H17E <- H17[,1]

H17T <- H17[,2]

H17B <- H17[,31

H17glm <- glm(H17E - H17TAO.5 + H17B)

H17res <- residuals(H17glm)
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D.1.4 Regression model for PMV increase in SPlus

import.data(DataFrame="Hpmv3", FileName="_Data//_PNV//Hpmv.txt",
FileType=" ascii")

pmv3 <- Hpmv3[,1]

deltaT3 <- Hpmv3[,2]

baseld3 <- Hpmv3[,3]

pmvglm3 <- glm(pmv3 ~ deltaT3 + baseld3)
summary(pmvglm3)

import.data(DataFrame="TPMV", FileName="_Data//_PMV//TPMVmax.txt",
FileType="ascii")

PMVmax <- TPMV[,1]

Tmax <- TPMV[,2]

Emax <- TPMV[,3]

PMVmaxglm <- glm(PMVmax - Tmax + Emax)
summary (PMVmaxglm)

SupportCode 1 Power difference data visualization and analysis

%visualize all power data in sunmer
close all
V_deltaT=[O 1 2 3 4];
N=length(VdeltaT) ; %r.iumber of shedd.ng case + 1
M=length(ShortpowerData);
powerDiff = zeros(M,N);

for i=l:N
powerDiff(:,i)=Short-powerData(:,5+i) - ShortpowerData(:,6);

end

%plo at.i ng power di i fference
for i=1:10

figure
plot(powerDiff(14+i*2*24,:), 'c*')

hold
plot(powerDiff(14+i*2*24,:),'c')
plot(powerDiff(15+i*2*24,:), 'gx')
plot(powerDiff(15+i*2*24,:), 'g')
plot(powerDiff(16+i*2*24,:), 'ro')
plot(powerDiff(16+i*2*24,:), 'r')
plot(powerDiff(17+i*2*24,:), 'k-')
plot(powerDiff(17+i*2*24,:), 'k')
title('power diff 14-17pm, 6/7')
end

Np = N-1; % number of dJaLa point cat egori es
%graphically review for each hour the power change varying with temp increases
Mp=M/24;
hrlypdiff zeros(12, Mp, Np);
hrlyload = zeros(12, Mp);

for i=1:12 % hours 7 18 examined
for j=1:Mp %Mpr >=66 wi.t hK weekends taken out

hrlyload(i,j) = ShortpowerData((j-l)*24+(i+6), 6);
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for k=l:Np %Np=4
hrly-pdiff(i,j,k)= powerDiff( (j-l)*24+(i+6), k+1);

end
end

end

% powerDiff for each hour varies with days and Temp change
for i=1:3

figure
for j=1:4

subplot(2,2,j)
hold
plot(hrly-pdiff((i-l)*4+j, :, 1), 'c')

plot(hrly-pdiff((i-1)*4+j, :,2), 'g')
plot(hrly_pdiff((i-1)*4+j, :,3), 'r')

plot(hrly_pdiff((i-1)*4+j, :,4), 'k')
axis([0 70 -10 51)
xlabel ( 'time (days) )
ylabel('hourly power reduction (W/m2)')

end
end

% powerD iff for each hour vaiies with or igi nal.
for i=1:3

figure
for j=1:4

subplot(2,2,j)

plot(hrly-load((i-1)*4+j,:), hrly_pdiff(

hold
plot(hrlyload((i-l)*4+j,:), hrlypdiff(
plot (hrly-load( (i-1) *4+j, :) , hrlypdiff(
plot(hrly-load((i-1)*4+j,:), hrlypdiff(
axis([0 70 -10 51)
xlabel('base load (W/m2)')
ylabel('hourly power reduction (W/m2) )

end
end

load arid Temp change

(i-1) *4+j,

(i-1) *4+j,
(i-1) *4+j,
(i-1) *4+j,

SupportCode 2 Power difference predication check in testing data in Matlab

function [lb, ub]=hrbound(nlhr, hr)
close all

nl = nlhr; %[12.558, -8.217, -0.161]' for hr17 for example

for i=1:44
for j=1:4

hsim(i,j) = hrly-pdiff(hr-6, (i+22),j);
hpred(i,j) nl(l)+nl(2)*sqrt(VdeltaT(j+l))+nl(3)*hrly_load(hr-6,i+22);

end
end
hres = hsim - hpred;

figure
for i=1:4

subplot(2,2,i)
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plot(hsim(:,i), hpred(:,i),'.')
axis([-20 3 -20 3])

end
xlabel('simulated power reduction (W/m2)')
ylabel ( 'predication (W/m2)')

figure
for i=1:4

subplot(2,2,i)
plot(hres(:,i),'.')

end

std_h_res=std(reshape(hres,44*4,1));
mean_h_res=mean(reshape(hres,44*4,1));

lb = mean h res - 2*stdh_res;
ub = mean h res + 2*stdh_res;
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AMPL code for nonlinear optimization

D.2.1 Model file

We trained two models for building 1 and building 3. the statistical results
are embedded in the code. The code presented here is a 10-building case with

five type-1s and five type-3s. The mix and the total number can both be
adjusted easily. The data file needs to be adjusted accordingly.

reset;

set T :=1. .24;
# total number of buildings
set bn :=1. .10;
# number of building 1
set bnl : 1.-.5;
set bn3 6..10;
param n1 5;

param Tmax >= 0;

param SSmax >= 0;

param SEmax >= 0;

param SRmax >= 0;

param Tmaxpre >= 0;

param Epre {bn, T} >= 0;
param Emaxpre {bn} >= 0;
param PMVmaxpre {bn} >=0;
param corr {i in bn} := if i <= nl then (1.468*Tmax + 0.032*SSmax + 0.015*SEmax
+ 0.0*SRmax)/Emaxpre[i) else 1

param PMVgoal >= 0;

data 10bldg.dat;

var Ebase {bn, T} >= 0;
var Eadj {bn, T} >= 0;

var dT {bn, 1..4} >= 0;
var sqdT {bn, 1..41 >= 0;

var z >= 0;

option solver loqo;
#option solver minos;

minimize peak: z;
subject to peakcon {i in T}: sum {k in bn} Eadj[k,i] <= z;

#minimize totalcon : sum{k in bn, i in T} Eadj[k,i];

#bldg type 1
subject to initial {k in bn}: Ebase[k,l]=O;
subject to Earmal {k in bn1, i in 2..241: Ebase[k,i]= 0.874*Ebase[k,i-
1]+1.007*Epre[k,i]-0.88*Epre[k,i-1];
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subject to Earma3 {k in bn3, i in 2..24}: Ebase[k,i]=
1]+1.01*Epre[k,i]-0.88*Epre[k,i-11;
subject to dTrange {k in bn, i in 1..4}: dT[k,i]<= 4;
subject to sq {k in bn,i in 1..4}: dT[k,i] = sqdT[k,i]

0.873*Ebase[k,i-

* sqdT[k,i];

subject to Tadjustal
subject
17.31 -
subject
16.53 -
subj ect
14.39 -
subj ect
12.56 -
subject
subject

{k in bnl, i in 1..13}: Eadj[k
to Tadjust141 (k in
7.35*sqdT[k,i-131 -
to Tadjustl5l {k in
8.01*sqdT[k,i-13] -
to Tadjust161 {k in
8.43*sqdT[k,i-13] -
to Tadjust171 {k in
8.22*sqdT[k,i-13] -
to Tadjustbl {k in
to PMV1 {k in bnl,

bnl, i in 14..14}: Eadj
0.31*Eadj[k,i];
bnl, i in 15..15}: Eadj
0.26*Eadj [k,i];
bnl, i in 16..16}: Eadj
0.20*Eadj[k,i];
bnl, i in 17..17}: Eadj
0.16*Eadj [k,il;

bnl, i in 18..24}: Eadj[]
i in 14..17}: 0.005*Eadj

0.199 <= (if(PMVgoal-PMVmaxpre[k]*Tmax/Tmaxpre)> 0.15
PMVmaxpre[k]*Tmax/Tmaxpre else 0.15);

subject to Tadjusta3 {k in bn3, i in 1..13}: Eadj[k,i]
subj ect
15.62 -
subj ect
15.68 -
subject
15.61 -
subject
15.17 -

to Tadjust143 {k in
4.4* sqdT[k,i-13] -
to Tadjust153 {k in
4.74*sqdT[k,i-13] -
to Tadjust163 {k in
5.08*sqdT[k,i-13] -
to Tadjust173 {k in
4.98*sqdT[k,i-13] -

bn3, i in 14..14}: Eadj[k,
0.38*Eadj[k,i];
bn3, i in 15..15}: Eadj[k,
0.363*Eadj [k,i];
bn3, i in 16..16}: Eadj[k,
0.347*Eadj [k,i];
bn3, i in 17..17}: Eadj[k,
0.343*Eadj [k,i];

= Ebase[k,i]*corr[k];
i]=Ebase[k,i]*corr[k] +

i]=Ebase[k,i]*corr[k] +

i]=Ebase[k,i]*corr[k] +

il=Ebase[k,i]*corr[k] +

]= Ebase[k,i]*corr[k];
i] + 0.124*dT[k,i-13] -
then PMVgoal-

= Ebase[k,i]*corr[k];
i]=Ebase[k,i]*corr[k] +

i]=Ebase[k,i]*corr[k] +

i]=Ebase[k,i]*corr[k] +

i]=Ebase[k,i]*corr[k] +

subject to Tadjustb3 {k in bn3, i in 18..24}: Eadj[k,i]= Ebase[k,i]*corr[k];
subject to PMV3 {k in bn3, i in 14..17}: 0.00886*Eadj[k,i] + 0.0981*dT[k,i-131
- 0.2885 <= (if (PMVgoa1-PMVmaxpre[k]*Tmax/Tmaxpre)> 0.15 then PMVgoal-
PMVmaxpre[k]*Tmax/Tmaxpre else 0.15);

solve;
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D.2.2 Data file

param PMVgoal 1.5;

param Epre

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2

2 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2

3 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2

4 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2

5 0 0 0 0 0 0 0 29.1 39.4 44.2 49 53.2

6 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6

7 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6

8 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6

9 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6

10 0 0 0 0 0 0 0 30.2 39.4 41.1 42.8 44.6

13 14 15 16 17 18 19 20 21 22 23 24

54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0

54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0

54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0

54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0

54.9 58.6 60.2 60.8 59.6 0 0 0 0 0 0 0

45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0

45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0

45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0

45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0

45.1 47.4 48.9 50 49.6 0 0 0 0 0 0 0

param Emaxpre
1 60.8
2 60.8
3 60.8
4 60.8
5 60.8
6 50.0
7 50.0
8 50.0
9 50.0
10 50.0;

param PMVmaxpre
1 1.21
2 1.21
3 1.21
4 1.21
5 1.21
6 1.00
7 1.00
8 1.00
9 1.00
10 1.00;
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param Tmax := 28.0;
param Tmaxpre := 25.6;
param SSmax 442;
param SEmax 595;
param SRmax 970;
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