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Abstract

Pricing of a perishable product over a multi-period time horizon is a challenging
problem under an oligopolistic market framework. We propose and study a model
tor multi-period pricing in an oligopolistic market for a single perishable product.
Each participating seller in the market has a fixed inventory of the product at the
beginning of the time horizon and additional production is not an available option.
Any unsold inventory at the end of the horizon is worthless. The sellers do not have
the option of periodically reviewing and replenishing their inventory. Such a model
is appropriate for modelling competition in situations where inventory replenishment
decisions are made over a longer time horizon and can be considered exogenous to
the pricing decision process. This kind of a setup can be used to model pricing of air
fares, hotel reservations, bandwidth in communication networks, etc.

In this thesis. we study two issues related to multi-period pricing of a perishable
procduct. First we study the competitive aspect of the problem. Second we study
the setup where the demand function for each seller has some associated uncertainty.
We assume that the sellers would like to adopt a policy that is robust to adverse
uncertain circumstances. We discuss the challenges associated with the analysis for
this model.

We study non-cooperative Nash equilibrium policies for the sellers. We discuss
why known results from the literature do not extend to this model. We introduce
an optimization approach using results from variational inequality theory and robust
optimization to establish existence of the pricing equilibrium policy and comment
on the uniqueness of the pricing equilibrium policy. We also introduce an iterative
learning algorithm for computing the equilibrium policy and analyze its convergence.
We study how much is lost in terms of efficiency (in terms of total system profit) due
to competition. Finally, we illustrate our results with some numerical examples and
discuss some insights,
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Chapter 1

Introduction

1.1 Motivation

Pricing right is the fastest and most effective way for managers to
increage profits. Consider the average income statement of an S&P 500
company: A price rise of 1%, if volumes remained stable, would generate
an 8% increase in operating profits—an impact nearly 50% greater than
that of a 1% fall in variable costs such as materials and direct labor and
more than three times greater than the impact of a 1% increase in volume.
Unfortunately, the sword of pricing cuts both ways. A decrease of 1% in
average prices has the opposite effect, bringing down operating profits by
that same 8% if other factors remain steady.

The Power Of Pricing
The McKinsey Quarterly
Number 1, 2003

Pricing has been recognized as a critical lever for revenue management in the
industry. As shown by the above excerpt from a McKinsey study, it is a high impact
factor determining the overall profitability of a firm. Firms in the retail industry
hire pricing experts to help determine optimal pricing mechanisms when introducing
new products, entering new markets, scheduling promotions, determining discounting
and determining markup/markdown schedules. Firms in the transportation industry
often outsource their entire revenue management (including processes like pricing,
inventory control and overbooking) to companies specializing in this area such as
Sabre. Other specialized consultants like Demandtec, Khimetrics, Knowledge Support
Systems, ProfitLogic and ProS Revenue Management offer pricing solutions for firms
in retall and transportation.

Pricing has been studied extensively in the academic literature in Economics,
Revenue Management and Supply Chain Management. Monopoly pricing problems
are generally concerned with sellers finding prices that maximize some revenue-based
objective function subject to some resource constraints. In that sense pricing problems
are essentially constrained optimization problems. However, there is a fundamental
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difference between the two when the market is not monopolistic. What makes the
problem of revenue maximization through pricing different from other optimization
problems is that one seller’s pricing is influenced by the pricing policies of other
sellers in the same market. This is one of the key factors that affects the demand
behavior. Unlike the monopolistic pricing problem, where a single objective function
is optimized by a single seller setting all control prices, in the oligopolistic pricing
problem there are several sellers trying to maximize their individual objectives by
setting their respective control prices.

There are very few products for which the market can be modelled as a monopoly
or in which one could assume collaborative pricing between different firms. In fact
most developed economies have laws that prohibit monopolistic conduct, price fixing
agreements, and other actions that are considered to restrain fair trade. Trusts and
monopolies are thought to be injurious to the general consumer. They minimize, if
not obliterate normal marketplace competition, and yield undesirable price controls
causing markets to stagnate. The United States Antitrust Act is one example of a
law that actively seeks to promote competition and competitive pricing. The main
source of the antitrust law in the United States is the Sherman Antitrust Act that
the US Congress passed in 1890, in order to prevent trusts from creating restraints
on fair trade and reduce competition.

A widely used model of such markets is an oligopoly in which the market consists
of a finite, but typically small, number of competing firms. The fact that the pricing
problem involves considerations about the pricing policies of competitors gives rise
to very different dynamics. These interactions, where each agent’s payoff depends
on not only her individual decisions but is also affected by her competitors’ decision
variables, cause these models to take the form of a game. Under these circumstances
a game-theoretic framework is required to study this problem.

1.2 A practical application

Consider the problem of pricing a one-way flight, say, from Boston to New York the
evening before Thanksgiving (between 6 and 10 pm on 26* November, 2003). The
competing sellers in this case are airlines operating flights in the same time window.
The starting inventory in this case for a particular airline is the total number of
seats on the aircraft scheduled for this trip. In theory, an airline should be able to
reschedule a bigger plane in case it sees a surge in demand on a particular leg, but
this rarely happens in practice because fleet schedules are set well in advance and
last minute rescheduling is avoided except under adverse circumstances. Hence for
purposes of the pricing problem, the total available inventory 1s fixed and generation
of additional inventory is not an available option.

From the consumer’s point of view one has an entire range of options to choose
from. One can pick the airline one wants to fly with. One can also pick one out of
three airports within a 50 miles radius in the Boston area to fly out of and onc of the
three airports in a 50 mile radius in the New York Area to fly into. One can decide to
take flights that are direct, one-stop or two stops, and pick {rom a number of flights
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leaving Boston roughly every 10 minutes. The prices for these options vary widely
and the variety of prices for different airport, airlines and route options! on the 26
of November, 2003, are shown in Table A.1 and Table A.2.

The prices also vary depending on when and how one books tickets. Booking for
tickets usually opens anywhere from 6 to 12 months before the actual flight. Prices
are typically lower if one can make travel plans well in advance (and lock in a date
and time for the flight) like for a planned vacation trip. Ticket prices rise as the flight
date approaches and prices could be substantially higher if the ticket is bought a short
tune before the flight. This is usually the case for business travellers who have to plan
trips at short notice and often need the flexibility to change their itineraries at the
last minute. The reason behind this kind of pricing pattern is that the airlines try
to maximize their revenues by, among other methods, customer differentiation. The
1dea 1s to get each customer to pay as much as her personal budget would allow. Since
vacation travellers have limited budgets and higher price sensitivities than business
travellers, airlines switch to higher prices for business travellers who typically buy
their tickets late. This is done by time-varying pricing and also price differentiation
tfor different booking channels. The price you would be quoted would be different
depending on whether you booked through a corporate travel agency like American
Ezpress Travel, a local travel agent, a college travel advisory like STA Travels, an
online travel site like Orbitz, Travelocity, Hotunre or Priceline, or directly from the
Airline toll free call-in number or booking website.

There arc a number of additional factors that come into play when pricing prod-
ucts. Airlines price seats on a leg of a flight as part of a larger package consisting
of multiple connecting legs or even a round trip ticket. This aspect could play a
major role in determining how much discounting the airline would be willing to offer.
Such network effects have been ignored for the purposes of this thesis. Consequently,
other pricing practices like those involving the creation of differentiated products by
artificial restrictions like Saturday-night stay are also ignored.

From the buyer’s perspective, not everyone will go for the cheapest option when
picking a flight even if the choice was between flights leaving in the same time window.
The most important factor that influences preference in choice of flights today is
the frequent flier mile programs run by airlines. Secondary factors influencing this
chaice could be the choice of airports, perception of in-flight service and restricted
access to some booking channels. It would require a certain price differential between
two airlines before a frequent flier member on one airline would switch to another
airline. When this assumption is applied to individual buyers in a population, each
possessing their own individual price differential thresholds and the demand behavior
of the whole population towards one seller tends to show a continuous decrease when
that seller’s price is raised. This contrasts with a sudden drop when the price crosses
that of @ competitor as is modelled in the Bertrand models of oligopoly.

'Source: QPX airfare pricing and shopping system by ITA Software, Inc.
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1.3 Oligopoly pricing models

Oligopolistic competition has been a topic of research in the Economics academic
community since the early 19** century. Literature in Economics has studied a va-
riety of models for such oligopolistic markets. In the static (single period) quantity-
competition model of oligopoly (for example, Cournot models [21]}, the sellers si-
multaneously decide on the quantity that they will each individually release into the
market. There is a market clearing price resulting from a market mechanism that is
a function of the total quantities from all the sellers. The market clearing price is a
decreasing function of the total quantity. Each seller then earns a revenue equal to
the product of the quantity she had released into the market and the market clearing
price. This can be extended to a multi-period problem where each seller is endowed
with a given inventory of the product for sale and decides what fraction of that to
sell in each period. Nevertheless, this model is not suitable for settings like the sale
of flight tickets since each seller (in this case, the aitlines) declares a price for her
own product (tickets for a particular origin-destination leg leaving in a small time
window) while deciding on the maximum allowable quantity that she wants to sell in
a period (inventory control).

In the single period price-competition model of oligopoly (for example, Bertrand
models [6] and Bertrand-Edgeworth models [26]), the sellers declare their respective
prices simultaneously. In the Bertrand model, the seller with the lowest price is
obliged to fill the entire demand and has positive revenue while all the other sellers
earn nothing. In case of a tie, the sellers with the tied prices split the demand
according to some rational rule. In the Bertrand-Edgeworth model, the seller with
the lowest price fills as much demand as is economical at her production cost level
while the remaining demand is filled by other sellers in a cascading fashion. Such
models can be extended to the multi period case and are suitable for supply-chain
problems which typically have a periodic production-review framework. These are
not suitable for settings like airlines selling flight seats since for these situations, the
inventory of each seller is fixed and additional production is not an option.

It is important here to distinguish between two different types of multi-period
pricing models that are fundamentally different. The first one, which we call the
periodic production-review model, assumes a framework that is suitable for
supply chain problems. In this model each seller start with a given level of inventory
at the beginning of the time horizon. In each period she sets a price along with all the
other sellers and realizes a certain demand that is a function of all the price levels.
She fills the demand realized with her current inventory. If the demand is less than
the inventory she had at the beginning of the period, she has some leftover inventory
at the end of the period. In that case, she incurs some holding cost that is a function
of the amount of inventory left. The rationale behind this is that the holding cost
could be representative of the storage costs, interest on capital cost of inventory, etc.
On the other hand, if the demand is more than her inventory level at the beginning
of the period, she fills the demand with all her current inventory and promises to fill
the remaining demand in the next period. This is sometimes represented as negative
inventory. She also incurs a backorder cost which is described as a function of the
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amount of products in backorder. At the beginning of the next period, she reviews
her inventory level, and makes a decision whether she would produce more quantity
in order to increase her inventory for the subsequent periods. Production costs are
typically increasing functions of the quantity produced. It has been shown under
certain conditions that the resulting optimal policies consist of a base-stock policy
where the optimal amount produced is enough to fill the inventory to a certain level
irrespective of the level at the beginning of the period. In case the inventory is already
higher than the base stock then no quantity is produced.

In this thesis we introduce a model to study the pricing problem faced when the
firm does not have the option to produce additional inventory between periods and
the initial inventory is a given. We call this model the fixed inventory model. This
model is better suited than the periodic production-review model for some situations.
For example, such a model is suited for Airlines that are selling seats on a particular
flight. or Hotels selling advance room reservations for a particular day or weekend.
For these problems there are no holding or backorder costs. There are no holding
costs since there 1s no tangible product that the seller has to hold on to from period
to period if unsold. There are no backorder costs since the seller can sell only if she
has the product in inventory and loses the sale otherwise. Note that this case is not a
trivial extension of the periodic production review model. The challenges that arise
for analysis of equilibrium are very different from that of the periodic review model.
This thesis focuses on this model.

1.4 Literature review

There are several excellent surveys of the literature in this field. McGill and van
Ryzin [47] and the references therein also provide a thorough review of different
issues in revenue management, for example, seat inventory control, overbooking, and
pricing models, Bitran and Caldentey [9] provide an overview of pricing models for
the monopolistic version of the revenue management problem in which a perishable
and non-renewable set of resources satisfy stochastic price-sensitive demand processes
over a finite period of time. They survey results on deterministic as well as non-
deterministic, single as well as multi-product, and static as well as dynamic pricing
cases. Elmaghraby and Keskinocak [30] review the literature and current practices in
dynamic pricing in industries where capacity or inventory is fixed in the short run and
perishable. They classify monopolistic models on the basis of whether inventory can
be replenished or not, whether demand is dependent over time or not, and whether
customers are myopic or strategic optimizers. Yano and Gilbert [68] review models
for joint pricing and production under a monopolistic setup.

On the competitive side, Vives [66] discusses the development of oligopoly pricing
models. A survey by Chan et al [15] summarizes research on joint pricing, inventory
control and production decisions in a supply chain. They also survey literature on
price and quantity competition in supply chain settings. Cachon and Netessine [14]
also survey the problem of competition from a supply chain perspective where the
problem is characteristically a periodic production-review model. They discuss both
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non-cooperative and cooperative games in static and dynamic settings.

There is rich literature in Economics on price and quantity competition. For
example, the seminal models by Cournot, Bertrand and Edgeworth mentioned in the
previous section. Kirman and Sobel [43] develop a multi-period model of oligopoly
where a set of competing firms decide in each period the price and the production
level in the face of random demand. They show the existence of equilibrium price-
quantity strategies for the firm. Rosen [58] proves existence and uniqueness results
for general oligopolistic games. The paper shows existence under concavity of the
payoff to a seller with respect to it’s own strategy space and convexity of the joint
strategy space and uniqueness under strict diagonal dominance of the payoff function.
Murphy et al [49] analyze equilibrium in a single-period quantity competition model
using mathematical programming results. Harker [39] analyze the same model using
variational inequalities. Eliashberg and Jeuland [28] model a two stage problem. The
market in the first stage is a monopoly and becomes a duopoly in the second stage
with the entry of a second seller. The sellers dynamically price their product. The
paper analyzes the pricing behavior under the cases that the incumbent seller foresees
or does not foresee the entrant. Eliashberg and Steinberg [29] also study a duopoly
over a multi-period time horizon. The first firm faces a convex production cost and
a linear inventory holding cost. The second firm faces linear production cost and
holds no inventory. The paper studies the behavior of the two firms and characterize
the conditions under which the second firm’s prices are strictly lower than the first
firm’s prices over the entire time horizon. Tanaka [64] considers a multi-seller game
and analyzes the profits of firms when they choose price or quantity as a strategic
variable. They show that the quantity strategy is a better strategy for the seller,
irrespective of whether all the other sellers choose price or quantity as their strategic
variables.

A number of papers have proposed and studied periodic production-review mod-
els. One group of models are inventory management models (see Zipkin [72]) where
the price for a product is a static single price and is exogenous to the problem. The
other group of models are those that allow price to be a decision variable and vary
from period to period. There is a single product being sold in a multi-period setting,
and demand is not dependent on sales in previous periods. Some examples of such
papers are Zabel [70] and Federgruen and Heching [33]. These models assume convex
production, holding and ordering costs and unlimited production capacity. Chen and
Simchi-Levi [18] extend the model to include fixed ordering costs and Chan, Simchi-
Levi and Swann [16] extend the model to include limited production capacity. In all
of these models however, the seller is a monopolist and issues that arise with com-
petitive interactions regarding equilibria are not addressed. Petruzzi and Dada [56]
develop various extensions to the newsvendor problem. They consider joint pricing
and inventory control in the face of uncertain demand. For the single period problem
they discuss the cases where the stochastic demand is additive and multiplicative in
nature. For the multi-period extension of the problem, they consider shortage cost
and holding costs for inventory between periods and discuss the additive case. They
do not consider the influence of competition on demand. Cachon and Netessine [14]
survey the application of game theory to supply chain analysis using, for example,
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newsvendor games. They give an overview of techniques used for the analysis of
general cooperative and non-cooperative games in static and dynamic settings and
discuss the issues related to existence and uniqueness of equilibrium. In particular,
they discuss the significance of quasi-concavity and supermodularity requirements for
the payoff function for equilibrium.

The literature on competitive pricing for supply chains is surveyed in Chan et al
[15]. We refer the reader to their survey for a description of papers which consider
the effect of factors like delivery time in market competition models.

One application where the fixed-inventory model has been studied and applied
is in retail pricing and clearance sales. The variety of products is high and product
lifc cycles are short. The combination of long lead times (because of supply chains
spanning multiple continents and markets) and shorter selling seasons results in a
scenario where production/inventory decisions have to be made well in advance with
little information about demand, before the actual selling begins. Pricing becomes
a vital component in balancing supply and demand since the inventory levels and
the length of the selling season is predetermined. Some analytical models have been
presented that study pricing for such products. However, these models typically
assume conditions of monopolistic markets or imperfect competition and hence do
not address issues regarding the existence of pricing equilibria. These include Lazear
[45], Bitran and Mondschein [11], Bitran, Caldentey and Mondschein [10], Feng and
Gallego [34], Gallego and Van Ryzin [37], Smith and Achabal [62] and Zhao and Zheng
'71]. For a detailed comparison of these models, we refer the reader to a survey paper
by Elmaghraby and Keskinocak [30].

A key component of the problem we address in this thesis is the aspect of un-
certainty. To achieve this we employ ideas from the newly emerging field of robust
optimization. Therefore, in what follows we cite some literature on robust solutions
for optimization problems. Soyster [63] was the first to propose the idea of robust
optinuzation for a linear optimization model in which the sclution would be feasible
for all data belonging to a convex set. Ben-Tal and Nemirovski [3] introduced ro-
bust convex optimization and showed that for certain types of linear and nonlinear
optimization problems, the robust problem could also be efficiently solved exactly,
or approximately, using polynomial-time algorithms. Ben-Tal and Nemirovski [4]
focussed specifically on robustness in linear programming problems with uncertain
data. In particular, they show that under ellipsoidal uncertainty sets, the robust
counterpart of a linear programming problem is a conic quadratic program which is
solvable in polynomial time. Ben-Tal and Nemirovski [5] demonstrates numerically
the robust optimization methodology introduced in [3] and [4] by applying it to some
lincar programming problems. Papers that study semidefinite robust optimization
problems include Ben-Tal, El-Ghaoui and Nemirovski [2] and El-Ghaoul, Oustry and
Lebret [27]. Recently, Bertsimas and Sim (7] studied the tradeoff between robustness
of a solution to a linear programming problem and the sub-optimality of the solu-
tion. In their paper they adjust the level of conservatism (robustness) of the solution
in terms of probabilistic bounds of constraint violation and numerically study how
optimality 1s affected when robustness is increased. Bertsimas and Thicele (8] apply
robust optimization principles to supply chain management. In this thesis, we use
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some results presented in the cited literature. Later we will discuss how we use the
concept of robustness to find policies that optimize the payoffs for the sellers in the
worst case scenario.

We compare the system optimal and the user optimal solutions to competitive
pricing problem and we comment on both price competition models and quantity
competition models. The system optimal and user optimal solutions are not the
same for problems of competition in general. There has been an increasing attention
in literature in recent years towards this issue. Some effort has been made to quantify
the inefficiency of Nash equilibrium problems in non-cooperative games. The fact
that there is not full efliciency in the system is well known both in the economics
but also in the transportation literature (see Braess [12], Dubey [25], etc). Wardrop
[67] first stated equilibrium principles in the context of transportation. Dafermos
and Sparrow [23] coined the terms user-optimized and system-optimized in order to
distinguish between Nash equilibrium where users act unilaterally in their own self
interest versus when users are forced to select the routes that optimize the total
network efficiency. Smith [61] and Dafermos [22] recognized that this problem can be
cast as a variational inequality. Hearn and Yildirim [41], Hearn and Ramana [40], and
Cole, Dodis and Roughgarden [19] have also studied the notion of introducing tolls
(taxes) in order to make the decentralized problem efficient in a centralized manner.
The review paper by Florian and Hearn [35], the book by Nagurney [50], and the
references therein summarize the relevant literature in traffic equilibrium problems.
Traffic equilibrium problems are typically modelled through variational inequalities.
The books by Facchinei and Pang [31] summarize the developments in the area of
variational inequalities.

This inefficiency of user-optimization was first quantified by Papadimitriou and
Koutsoupias [44] in the context of a load balancing game. They coined the term
the price of anarchy for characterizing the degree of efficiency loss. Subsequently,
Roughgarden and Tardos [60] and Roughgarden [59] applied this idea to the classical
network equilibrium problem in transportation with arc cost functions that are sep-
arable in terms of the arc flows. They established worst case bounds for measuring
this inefficiency for affine separable cost functions and subsequently for special classes
of separable nonlinear ones (such as polynomials). It should be noted that Marcotte
presented in [46], results on the price of anarchy for a bilevel network design model.
Recently, Johari and Tsitsiklis [42] also studied this problem in the context of resource
allocation between users sharing a common resource. In their case the problem also
reduces to one where each player has a separable payoff function. Correa, Schulz and
Stier Moses [20] have also studied the price of anarchy in the context of transporta-
tion for capacitated networks. The cost functions they consider are also separable.
The paper by Chau and Sim [17] has recently considered the case of nonseparable,
symmetric cost functions giving rise to the same bound as Roughgarden and Tardos
(60]. We refer the reader to Perakis [53] for an analysis of the difference between
costs arising from an user optimal and a system optimal solution for general asym-
metric and non-separable cost functions. We would like to bring to the attention of
the reader, the fact that the cited literature compares efficiencies for cost minimizing
games. In this thesis, we have a profit maximizing game and some of the issues that
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arise make a direct application of some general results inappropriate.

1.5 Challenges and contributions

Previously published results prove existence and uniqueness for equilibrium strategies
for competitive pricing problems under various conditions. We found that none of
these conditions hold for our model, hence requiring a new approach for analysis. One
possible approach used in the literature requires results for supermodular games In
brief, supermodular games can be described as games with supermodular objective
functions and lattice strategy spaces for each player. We refer the reader to Vives [66]
for a detailed description of such games. Other approaches use results that require
the payoff function to be concave or quasi-concave (See Nash [51]) over a convex
strategy space. The model discussed in this thesis does not fall under any of the above
categories. For example, the model can be reformulated so that the strategy space
Is a lattice and nicely convex but the resulting objective function to be maximized
1s neither concave nor supermodular. Alternatively, it can be formulated to have
a concave objective function, but then the resulting strategy space is no longer a
convex set. This makes it difficult to prove equilibrium results for this model. These
observations prompted us to take a different approach using ideas from variational
incqualities.

Our model differs from other models of oligopolies, like the competitive supply
chain models, previously studied in the literature, since we have rigid inventory con-
straints over the entire horizon and the flexibility to replenish inventory between
periods through additional production is absent. Under these modelling restrictions,
we lose the convenient structure of the problem which would otherwise allow us to
analyze equilibrium pricing with the above standard techniques. To the best of our
knowledge, there are no general results in the literature that can be directly used to
analyze such a model. This is the main challenge behind the fixed-inventory compet-
itive pricing problem.

The main contributions of this thesis are as follows.

1. We formulate a multi-period pricing model for an oligopoly where each seller
has a pre-determined starting inventory and additional production is not an
option. We show that this problem does not have a structure that falls un-
der the framework of game theoretic models such as quasi-concave games or
supermodular games.

2. We first focus on addressing the competitive aspect of the problem. We es-
tablish existence of equilibrium pricing policies with deterministic demand and
comment on the uniqueness of the solution. As no traditional approach applies
to this problem, a key innovation of this thesis is a quasi variational inequality
reformulation. This reformulation allows us to study existence of equilibrium
prices and does not require the payoff functions to be concave. To the best of
our knowledge, no such analysis for multi-period price competition models for
perishable products has been done before.
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3. We address the issue of uncertainty in demand for the model via robust op-
timization. We establish existence of robust equilibrium policies under such
uncertain demand.

4. We establish equilibrium results for the model when sellers are faced with
stochastic linear demand and each seller adopts policies that maximize their
expected payoff.

5. We introduce and study an algorithm for computing equilibrium pricing policies
and analyze its convergence in the deterministic demand and robust demand
settings.

6. We compare the combined payoff from all sellers in the user optimal equilib-
rium policies and in the system optimal equilibrium policies for both the price
competition and quantity competition settings.

7. We illustrate our results through numerical examples and compare the perfor-
mance of robust policies with non-robust policies.

1.6 Outline of thesis

The thesis is structured as follows. In Chapter 1, we give the motivation behind the
model and discuss some applications. We also describe a broad literature review that
covers relevant literature in this area. In Chapter 2 we formulate the model for the
fixed inventory pricing problem. We introduce the terminology used throughout this
thesis and give the general bilevel program formulation for the deterministic demand
model, the robust demand model and the stochastic demand model. In Chapter 3
we consider the deterministic demand model. We describe the formulations for the
best response problem and the market equilibrium problem under deterministic de-
mand. We provide the proofs for existence and uniqueness of the best response policy
and existence of the equilibrium policies. In Chapter 4 we discuss the concepts of
uncertainty in demand and robustness of a policy to this uncertainty. We discuss for-
mulations for the best response problem and the market equilibrium problem under
robust demand. We provide proofs for existence and uniqueness of the best response
policy and existence of equilibrium policies for this model. In Chapter 5 we discuss
the stochastic demand model. We discuss two approximations of this model in brief
for which we can show equilibrium results using convex games. In Chapter 6 we com-
pare user optimal and system optimal solutions for some price competition games and
quantity competition games. In Chapter 7 we start by showing how the best responsc
problem can be formulated as a network flow optimization problem and is convenient
to solve. We introduce the iterative learning algorithm and show convergence under
both deterministic and robust demand models. In Chapter 8 we use some simple nu-
merical examples to demonstrate some general properties of the model. These include
the basic properties of the equilibrium policies, convergence behavior of the algorithm
and the performance of robust equilibrium policies. In Chapter 9 we conclude and
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talk about possible future extensions and research directions that we feel might be
worth exploring.

Appendix A contains all tables and data that are referenced in the thesis. Ap-
pendix B contains all figures and graphs. This is followed by a bibliography of the
literature referenced in this thesis.
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Chapter 2

Model formulation

In this chapter we introduce the notation and terminology used throughout this thesis
and describe the oligopolistic market models under deterministic demand and robust
demand. We break the development and analysis of the model into two steps. The
first step considers the problem faced by an individual seller. Let us assume that
the seller has either prior knowledge, or an estimate of the pricing policy of her
competitors. In such a case, the seller would then adopt a policy that maximizes
her revenue from the sale of her inventory over the entire time horizon. We call this
step the best response problem and the resulting policy, the best response policy. We
formulate the best response problem as a nonlinear optimization problem that has an
underlying structure similar to a min-cost network flow problem.

The second step involves addressing the broader issues concerning the market as
a whole. [s there an equilibrium state that the market will converge to? Is there a
sct of Nash equilibrium policies for the sellers? Questions regarding the existence and
uniqueness of equilibrium policies can only be answered through the market equilib-
rium model. The market equilibrium problem is formulated as a quasi-variational
incquality problem derived from the sellers’ best response problems considered to-
gether. We will discuss the formulations and their solution methodology in greater
detail in subsequent chapters in this thesis.

2.1 Notation and terminology

We denote the set of sellers by I. A single seller is denoted by i € I. With slight abuse
of notation, we denote the set of all competitors of ¢+ by —i. The product inventory
belonging to seller ¢ at the beginning of the time horizon is denoted by C;.

The time horizon is divided into a finite number of time periods. A time period
is denoted by ¢t € T. The price set by seller ¢ in period ¢ is denoted by p!. Seller
+'s pricing policy over the entire horizon consists of the prices (p},p?,...,p!) and is
denoted by p,. The pricing policy variables for the entire set of sellers consist of the
price vectors (pi, Py, ..., P1) and we denote this by p.

The buyers are represented in an aggregate form by a demand function. Seller i’s
share of demand (observed demand) in period ¢ is denoted by the demand function

27



hi(p') and is a function of the price levels set by all sellers in that period.

The actual amount of product sold by seller ¢ in period ¢ is denoted by dt. Clearly
d! is less than or equal to hi(p') since the sale made cannot be greater than seller 7's
observed demand. The relation is an inequality since the seller might he restricted
by the actual inventory level available. We use the notation d; = (d},d?,...,d?) and
d = (dy,dy,...,d;) to denote the realized demand.

We denote the strategy of Seller 7 by z; consisting of the prices set and the real-
ized demand (p;,d;). Consequently, we also denote the pricing policies of all sellers
together (z,,2s,...,27) by z. We use the notation h;(p) = (ki (p'),..., A (p")) and
h{p) = (hi(p),...,h;(p)). Note that we assume that period ¢ demand for Seller ¢
depends on the prices of all sellers in the market but only on period 1.

Given the inventory information C = (C4, ..., Cy), the total payoff to seller ¢ over
the entire time horizon is a function of the sellers’ policies p, and is denoted by J;(p).

We denote the best response policy that maximizes the payoff of seller i over the
entire time horizon given that her competitors have adopted policies z_; by BR.(z_.).
In Subsections 2.3, 2.4 and 2.5, we formulate this as a bilevel optimization problem
for different demand models. We denote the resulting best response policy BR(z_;)
for seller i by z';.

Next we define the concept of Nash equilibrium policies for the sellers.

Definition 2.1.1 (Nash equilibrium policies). The pricing policies for each seller
are Nash equilibrium pricing policies if no single seller can increase her payoff by
untlaterally changing her policy.

This definition implies that each seller sets her equilibrium pricing policy as the
best response to the equilibrium pricing policies of her competitors. This set of policies
would then, by definition, be a Nash equilibrium set of policies. See Nash {51] for
further details on the notion of a Nash equilibrium in non-cooperative games. We
denote the equilibrium price levels by p* = (p*,;,p"_;). Later in the thesis, we providc
a quasi-variational inequality formulation of the problem for determining the market
equilibrium policies.

2.2 Best response and market equilibrium prob-
lems

There are two problems that are of interest to us. The first problem, which we will
call the best response problem, is faced by an individual seller and solves the
following problem: If a seller also has precise information regarding the pricing policy
of each of her competitors in addition to the knowledge about the demand function,
how should she choose her pricing policy in order to maximize her revenue? The
assumption regarding complete prior knowledge of competitors” policies is, of course,
unrealistic and makes this problem hypothetical in nature. This step, however, 1s
crucial in solving the second problem that does not require this assumption. The
second problem, which we will call the market equilibrium problem, answers the
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following questions: Is there a set of pricing policies, one for each seller, such that
no seller can increase her revenue by unilaterally deviating from it? Does such an
equilibrium exist in the market? If the market starts from a non-equilibrium state,
will it achieve an equilibrium and how fast?

In this section we formulate models that will solve the best response problems
for different demand models. First we assume that the policies of the competitors
are fixed and known to the seller. We start by formulating the model for the best
response problem under three different demand models. In the deterministic de-
mand model, the demand function is modelled as a deterministic function of the
price levels, In the robust demand model, the demand function is modelled as
a function of the price levels but involves some parameters whose values are uncer-
tain. In this case, the seller adopts a pricing policy that is robust to this uncertainty.
In the stochastic demand model, the aforementioned parameters follow a known
distribution and the seller adopts a policy that maximizes the expected revenue.

In all the following models, we formulate the best response problem for a seller
as a bilevel program. The control variables that the individual seller sets are the
prices and protections levels for each time period. These are the variables that are
set 1n the upper level of the bilevel program. The actual amount of inventory sold is
determined after prices and protection levels are set by the sellers and the demand
parameters assume their actual vales. The amount of inventory sold in all periods is
denoted by variables in the lower level of the bilevel program formulation of the best
response problem since they are not controlled by the seller. This bilevel program can
be viewed as a best response problem formulation where the feasible policy space for
a scller does not depend on the policy of her competitors but the payoff does. In later
chapters we will consider formulations of the best response problems as single level
optimization problems. These are equivalent to the bilevel formulations given in this
chapter. Unlike the bilevel formulations, which make more sense from a modelling
perspective, the single level optimization formulations of the best response problems
mvolve feasible policy spaces that depend on the competitors’ policies. However, they
are used since the single level optimization problems are easier to analyze and solve.

2.3 Deterministic demand model

We start with the deterministic demand model. The seller’s problem can be formu-
lated as a bilevel optimization problem. The variables in the higher level program,
(p:, D;), arc the policy variables set by the seller. p! is the price set by seller ¢ in
period ¢ and D} is the amount of inventory protected for sale in period t+ 1 and later.
The variables in the lower level program, (d;), are the sale variables that assume their
values depending on the policy variables. The formulation ensures that the sale in
any period is exactly the amount that is the lower of the following two quantities:
demand in that period, and the maximum allowed quantity available for sale in that
period. In the lower level program, we do this by maximizing the weighted sum of d's
with strictly decreasing weights in t. The exact weights could be chosen arbitrarily
as long as they satisfy this property.
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max i, pid! (2.1)

(p..D:)
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where
max SE (T —t+1)d
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2.4 Robust demand model

In the robust demand model, the seller’s problem can be formulated as a slightly
modified bilevel optimization problem. The variables in the higher level program,
(pi,Dy), are the policy variables set by the seller without prior knowledge of the
actual values of the uncertain parameters. The variables in the lower level program,
(d;), are the sale variables that assume their values depending on the policy variables
and the realization of the uncertain parameters. This formulation ensures that the
sale in any period is the amount that is the minimum between the following two
quantities: the demand in that period (allowing for adverse values of the uncertain
parameters), and the maximum allowed quantity available for sale in that period.

max S Pt (2.2)
such that Plain < P! < Ploa vieT
0< Dl < < DF LG
where
rfldej,?c E;F:l(T — i+ 1)dt

such that dt < hi(pt,pt,, &) Ve, veeT

7. —

St di<C-Dt VvteT

=1 "

>0 vteT

In the above robust demand model, the demand realized by a seller 4 in a period
¢ is modelled as a function of the prices set by the seller 7 in period ¢, the prices set
by the competitors of seller i in period ¢t and an uncertainty factor. We denote the
function by AL(pt,pt,, &), where £ is the uncertainty factor. The uncertainty factor
is a parameter that can take any value from a given closed uncertainty set U The
vector of uncertain parameters for all time periods, for a seller 4, is denoted by &. &;
can take any value from the set U; where

U = U x U > xUl.

1
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Similarly, the vector of uncertain parameters for all time periods and sellers is denoted
by £ €U =Uy x Uy x - x Up?

Since the seller does not have prior information about what values the uncertainty
variable will take, the natural question that arises is what objective function should
the seller maximize? In the stochastic demand model, an a prior: distribution is
assumed for the uncertainty variable, and the seller adopts a policy that maximizes the
expected revenue. This however, involves assuming knowledge about the distribution
of the uncertain parameters. In a lot of cases, it is difficult to estimate accurately
the mean and variance of such parameters, let alone their distribution. The most
hasic information that is available is a likely interval or set within which the realized
parameter values will fall. A robust policy is a policy that would maximize the
objective function for a seller even when under the most adverse instances of the
uncertainty factor within such a set. Note that by introducing a budget of uncertainty,
[, we try to reduce being very conservative. This allows us to control a tradeoff
hetween optimality and robustness.

It has been seen that the robust policy typically improves the worst case payoft
with regards to uncertainty at the loss of optimality of the best case payoff. Such
a tradeoff can be beneficial for a number of reasons. One such reason is linked to
the fact that the robust policy reduces the variance in the payoff compared to the
optimal policy corresponding to the nominal values of the uncertainty parameters. A
lot of firms might find it more attractive to adopt a policy that guarantees revenues
that are less variable and uncertain even if they are lower on an average basis than to
adopt a policy that on average generates higher revenues but also potentially could
generate very poor revenues.

2.5 Stochastic demand model

ln the stochastic demand model, we model the seller’s problem as yet another bilevel
optimization problem. The variables in the higher level program, (p;, D;), are the
same as before, i.e. policy variables set by the seller without prior knowledge of the
actual values of the uncertain parameters. In the stochastic demand model, the

'For example, for a linear demand function in a duopoly setting, the demand function for a time
period t is

PP, &) = D, —Biph +alph
RS (ph, Pl €5) Dj,... — Biph + abpi

where £ = (D! !, al). Parameters £ could take any value in the uncertainty set 24/, An example
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of such uncertainty sets is:
where n may be 1 or 2 (polyhedral or ellipsoidal sets), th__, Bt and a‘ are the nominal values of
the uncertainty parameters and op: , 03 and 04 are some measure of the parameters’ dispersion
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uncertain parameters take values from a countably finite set I/ with a probability
distribution (f¢) known to the seller. The seller adopts a policy that maximizes the
expected revenue. There are several lower level programs (one for each stochastic sce-
nario) resulting in a lot more lower level variables, i.e. (d¢;). These are sale variables
for each realization of the uncertain parameters, and they assume their values depend-
ing on the policy variables from the higher level program. This formulation ensures
as before, that the sale in any period is the amount that is the minimum between
the following two quantities: the demand in that period given the corresponding re-
alization of the uncertain parameters, and the maximum allowed quantity available
for sale in that period.

T fdt ) 2.3
o T Ceafld Y
such that Phin S P! < Ploax vieT

0<Df < <D} <G
for each £ € U

max ZL(T —t+ l)dzz-
(de:)

such that dt, < hi(pl, ', €) vteT
Sedp <C-Df YteT
dgi >0 VteT

The bilevel program formulations for the best response problem are hard to solve.
The analysis for equilibrium policies is even harder. In this thesis, we consider some
settings for which the bilevel program structure can be simplified into a simpler op-
timization problem. This is then followed by a quasi-variational inequality reformu-
lation that is used to model the market equilibrium problem. In Chapter 3 (See also
Perakis and Sood [54]) we examine the deterministic demand case and in Chapter 4
(See also Perakis and Sood [55]) we analyze the robust demand case. We will discuss
the stochastic demand case in Chapter 5.
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Chapter 3

Deterministic demand model

In this chapter we will assume that the demand is a deterministic function of the
prices with known parameters. Uncertainty in demand will be considered in Chapters
4 and 5. The formulation and analysis of the best response problem and the market
equilibrium problem under this assumption of deterministic demand follow below.

3.1 Best response problem

The best response pricing policy for seller 7 is the policy that maximizes seller i’s
pavoff in response to all others sellers’ pricing policies.

Definition 3.1.1 (Multi-period Pricing Problem). Consider a set of sellers 1
with inventories C and time horizon 'T. The strategy of ecach seller consists of setting
her price levels p; optimally, i.e., as best response prices arising from formulation
{(3.1) below. The demand observed by seller 1 in any period is equal to the number of
buyers who are welling to buy from her, given the price levels for all sellers. Seller i
will realize that demand if she has enough inventory.

The best response policy p; of seller ¢, given all competitors’ policies p_;, is the
solution of the following optimization problem:

argmaxy, Lo, dip! (3.1)
such that dt < hi(pt,pt,), VteT
S di <G
pfnin S P: S pfnax) Vt € T
dﬁ 2 dmin.\ Vt € T
In vector notation, the above can be rewritten as:
max Ji(zi) = 12 Qz;
z;=(d;,p;) ( ) 2 Q

such that d; < hy(p;, p_)
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Pmin S P g Pmax
di 2 dmina

z : . . . . .
where Q = ( g 0 ), T denotes a square identity matrix of suitable dimension.

Note that in this optimization problem, given a Z_;, seller ¢ selects the vector z,
that maximizes the objective function Ji(di, pi) = S~ dip! within the feasible space
Ici(z—i)r
& < hi(plpl,) VieT
(7)) = . Yoo di < G
]Cz(z—z) = (dup@) pfnjn < p: S p::nax vie'T
dt > dmin vteT
In Subsection 3.3.2, we reformulate the best response problem for seller ¢, given Z_;,
as variational inequality problem:

—VJI(ZD - (Zi - Zi) z 0, VZi € lCi-(Zmi), (32)

and establish existence of solution.

3.2 Market equilibrium problem

The definition of a Nash equilibrium (Definition 2.1.1) implies that, at equilibrium,
cach seller would select a pricing policy that optimally solves her own best response
problem. Notice that all competitors solve their best response problems simultane-
ously (and as a result, variational inequality (3.2)). Given equilibrium pricing pohcies
for her competitors, z*, seller ¢ sets her equilibrium pricing policy by solving vari-
ational inequality problem (3.2). That is, the following set of variational inequality
problems:

—VJi(2z) (2 —2) 20, Vz, € Ki(zZ,) i€l (3.3)

In Subsection 3.3.3, we study this reformulation further, combine it into a single
quasi-variational inequality problem, and establish that equilibrium pricing policies
indeed exist.

3.3 Analysis

In order to establish that the model in this thesis has a solution, we first need to estab-
lish existence of solution for the best response problem when competitors’ strategies
are given (see Subsection 3.3.2). This allows us to subsequently study existence of
solution for the market equilibrium problem through an equivalent quasi-variational
inequality reformulation (see Subsection 3.3.3). Furthermore, we study some addi-
tional interesting properties of the model such as when it gives rise to unique policies.
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3.3.1 Conditions

In this subsection, we describe the conditions we impose on the model of this thesis
and discuss the intuition behind them. Although we often use the linear demand case
as an example for illustrating these conditions, the results in this thesis hold for a
general non-linear demand.

Condition 3.3.1. Price in any period is allowed to vary between a minimum and
mazimum allowable price level. We require pl,, to be strictly positive and pt,,, to
he a level at which demand for seller ¢ vanishes irrespective of competitor prices in
that period. Mathematically, we require that pl, > 0 and sups (hi(pt,p ) =0 at
ph=pl . forallt e T,

Condition 3.3.2. The amount of sale made by any seller in any period should be
strictly positive. ie. dt > 0 for alli € I, t € T. This forces each seller to participate
in the market in every period. We enforce this with a constraint db > duy, ¥V i, where
Amin 15 a arbitrarily small strictly positive value.

Condition 3.3.3. The demand function hi(p},p",) is a concave function of (pt,p,)

—1

over the set of feasible prices for alli € 1,t € T.

Condition 3.3.4. For any period t, for any fized p',, the function hi(pl,p',) is
decreasing with respect to pt over the set of feasible prices. Mathematically,

(—hi(pt, phy) + RE(pE,PL)) - (B — 1) >0, V(P50 ,iel

Condition 3.3.5. For any period t, for any fized p*;, the function hi(p p',) is
strictly decreasing with respect to pt over the set of feasible prices. Mathematically,

(=hi(pi,ph,) + REPL D)) - (B — B >0 Y(@Lp) , Pt #pl,iel

Condition 3.3.6. The function —h(p) s strictly monotone with respect to p, over
the set of feasible pricing policies K. That is,

([-h(p) +h(p)] - (-D))>0 VP,PEK ,p#D

Condition 3.3.1 ensures that the space of allowed prices is bounded. We achieve
this boundedness property by constraining the prices between some allowable upper
and lower limits. Under this condition, we can eliminate strategies involving infinitely
high price levels. Note that the lower limit could be arbitrarily close to the zero price
level and the higher limit would be the price level at which the demand function
vanishes (demand becomes zero).

Condition 3.3.2 ensures that each seller participates in each period with a strictly
positive sale. The implication, if this were not true, would be that a seller with
nothing to sell in a period could influence the demand seen by her competitors by
sctiing a price. In other words, setting a price would make sense only if there is a
non zero sale in that period.
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Condition 3.3.3 ensures that the demand for a seller is concave in the seller’s price
for each period. This condition ensures that the strategy space in the best response
problem is convex. This holds for products where demand decreases faster as price
increases. The linear demand model trivially satisfies this condition.

Condition 3.3.4 ensures that the demand in any period for any seller does not
increase with an increase in her price. The condition allows us to show existence of
solution of the best response problem. Condition 3.3.5 ensures that the demand is
strictly decreasing in price. This is required to ensure that the best response policy
is unique. For a linear demand case, this implies that the demand function is strictly
downward sloping with respect to price as is true for normal goods.

Condition 3.3.6 is used in the uniqueness result for the market equilibrium model.
It requires strict monotonicity on the demand function as a whole. For a two seller
linear demand case this is equivalent to saying that the sensitivity of seller ¢’s demand
to seller ¢’s price is higher than the sensitivity of seller —¢’s demand to seller 7's price
and the sensitivity of seller +’s demand to seller —i’s price. This makes intuitive sensc
since we expect the decrease in demand seen by seller 7 when she raises prices to
be more than the resulting increase in demand seen by her competitor. This can
be interpreted as saying that upon seeing an increase in seller i’s price, some of her
customers will prefer to switch to her competitor and some will prefer not to buy at
all.

3.3.2 Best response problem

In Section 3.1, we discussed that to find such a best response policy, seller 1 solves
optimization problem (3.1). Note that under Condition 3.3.3, best response optimiza-
tion problem (3.1) has a compact and convex feasible space denoted by K;(p_i,d-.),
where

di < hi(pl,pt;) VteT

=3 _ : ) ZT:ld:SC‘"
ICz(p,z,d_l) = (d“p") pfnin < p: < pfnax VteT
di Z dmin vt € T

The objective function J;(d;,p.) = 23;1 dipt is not concave. We now consider the
corresponding variational inequality problem that seeks (pj,d;) € K;(p—:,d-;) such
that

f
—VJz‘(P;adi) ’ ( gl : 3: ) >0, v (Pi,di) € ’Ci(p-iaafi)' (3.4)
It is easy to show that any solution to best response optimization problem (3.1)
is a solution to variational inequality problem (3.4). To show the converse, one
traditionally requires concavity of the objective function in the optimization problem.
However, as noted before, the objective function for optimization problem (3.1) is
not concave. Nevertheless, the variational inequality problem structure allows us to
establish this result. First, Lemma 3.3.1 below proves that in any solution to the
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variational inequality problem (3.4), the variables p! and df must be related through
an equality relation.

Lemma 3.3.1. Given a competitor strategy (P_, d_;), the solution (d!,p}) to varia-
tional inequality problem (3.4) satisfies the following relation:
d't - ht(p‘t —t )

K3 (2 J

Proof. Assume that at some period ¢, df # hi(p!, ;). There are two possible cases:

1. For some t € T, let d! < hi(p},7*;). The properties of the demand function
(see Condition 3.3.4) imply that p;t can be increased by ¢* while maintaining
dt < hi(pt + 8,5 ,). Note that since hi(p} + &', ,) > d! > 0, we can find
a 6" > 0 such that p} 4+ 8 < pl .. Variational inequality problem (3.4) seeks
(ph,d2) € Ki(p_,,d_;) such that

oy
i) (TR )20 vipud) eKpad
We will choose a (p;, d;) € Ki(p-s, c_l_i) such that the above condition is viclated
and hence prove that (p!, d}) could not be a solution to the variational inequality.
For any t € T, choose

‘t i t t =t
ot pi lfd:h(pz’ 1)
P = { P+ 8 i dt < hi(pt,pt) (3:5)

Choose d; = d';. Considering the above point (d,, p;) in variational inequality
problem (3.4) we get ), 6'd} < 0. Nevertheless, since >, 6*dt > 0 this yields
a contradiction. Thus, (d, p!) could not be a solution to variational inequality
problem (3.4).

o

For some t € T, d}! > hi(p!,7t,). Notice that (d}, p}) is infeasible and could
not be a bOluthIl to variational inequality problem (3.4).

Both cases lead to a contradiction and the result follows. O

Proposition 3.3.1 below proves the existence of a solution to best response opti-
mization problem (3.1).

Proposition 3.3.1. For any fired (P_;,d_;), there exists a solution (d}, p}) to best
response optimization problem (8.1).

Proof. 1t is easy to show that the feasible space is non-empty and compact and the
objective function is continuous. Under these conditions the result follows from the
well known Weierstrass theorem (See Bazaraa, Sherali and Shetty [1]). O

Having shown that there exists an optimal policy for best response optimization
problem (3.1), Proposition 3.3.2 proves that this optimal policy is also a solution to
variational inequality problem (3.4).
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Proposition 3.3.2. Fizing competitor policies at (d_;, P_;), under Conditions 3.3.3,
3.8.4, best response optimization problem (8.1) and variational inequality problem
(3.4) have the same solutions.

Proof. We first show that a solution to best response problem (3.1) also solves vari-
ational inequality problem (3.4). Under Condition (3.3.3), the feasible space for
best response optimization problem (3.1) is a convex and closed set. Moreover,
the objective function is continuously differentiable. Consider any point (p;,d;) €
Ki(P_i,d_;). The convexity of the feasible space K,(p_;, d_,) ensures that the point
z/ + 0 - (z; — z}) also belongs to the feasible space for all § € [0,1]. We define function
£E(0) = —Ji(z + 6 - (z, — 2)), for 8 € [0,1]. Function £(f) achieves its minimum at
f = 0. It follows that £'(0) = =V Ji(2]) - (z; — 2z}) > 0. It follows that if the feasible
space is a closed and convex set, and the objective function is continuously differ-
entiable, the solution to best response optimization problem (3.1) solves variational
inequality problem (3.4).

We now establish the opposite, i.e., that any solution to variational inequality prob-
lem (3.4) is also a solution to best response problem {3.1). The policy that solves
variational inequality problem (3.4) satisfies the following condition,

-2 Al - ) - S —pl) 20, ¥ (pid) € Ki(pondo).  (36)

t

Condition 3.3.4 states that
(—hite! 5 + B BL)) - (0 =) 20, W (), B #
From Lemma, 3.3.1 it follows that for all df = hi(pf, p",),
(= +at) - G - 20, Ve B Ak
Summing over all ¢

> (—d5'+df) S -y 20, Vo), Pl A d =il ). (3.7)

t

Adding (3.6) and (3.7) we get that ¥ (p,,d;) € K,(D _idy)
Sopldt > Pkl AL 2 Y pldt.
t t t

The second inequality results from the fact that df < AI(pf,pt,), for all feasible d;.
The variational inequality solution is thus an optimal policy for seller ¢ and solves
best response optimization problem (3.1). L]

In conclusion, Proposition 3.3.2 establishes that variational inequality problem
(3.4) is an equivalent reformulation of best response problem (3.1).
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3.3.3 Market equilibrium problem

We now consider the quasi-variational inequality formed by combining the variational
inequality formulations (3.4) for each seller 7 € I. We define the joint feasible space
as

}C(Z*) = {Z:(Z17Z2;---;Z[) ] ZiEICi(Zii), V'LEI}

Furthermore, the joint quasi-variational inequality problem seeks a point (p*,d*) €
K(p*.d*) such that

rna)- (T )20 ved ekE) 39
where Fi(z*) = -V Ji(z}), Vi € L

Proposition 3.3.3. Solving the joint quasi-variational inequality problem (3.8) is
equivalent to solving simultaneously for each ¢ € I, variational inequality problems
(3.4) withz_; = z* .

Proof. Tt i1s easy to show that a policy (p*,d*) that solves variational inequalities
problem (3.4), for each 4 € T also solves joint quasi-variational inequality (3.8).

Let us now consider the converse. Joint quasi-variational inequality (3.8) can be
rewritten as (p*,d*) € K(p*,d*) so that

—Zp‘* (df — d¥) — Zd“ )>0, V(p,d)eK(p*,d).

Consider an individual seller «. Let (p,d) € K(p*,d*) be a feasible policy such that
pt, = p'* and d', = d',, for all her competitors and any feasible (pt, d!) € K;(p™,, d",).
Then

- ZPE*(UQ —d) ~ Zd“ )20, V{(p;di) € Ki(p, d).
t

Notice this coincides with variational inequality problem (3.4). Repeating the argu-
ment for every ¢ € 1, it is easy to show that (p;, d}) solves variational inequality prob-
lem (3.4) for every seller when the competitor’s policy is (p_;, d_;) = (p*,,d*;). O

Lemma 3.3.2 proves that any solution to the joint quasi-variational inequality
(3.8) satisfies a relation similar to the one described in Lemma 3.3.1.

Lemma 3.3.2. Let (p*,d*) be a solution to the joint guasi-variational inequality
problem (3.8). (p*,d”) satisfies the following relation.:

d = ni(p*, pt), viel, teT.
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Proof. Proposition 3.3.3 shows that for every 7 € I, (p},d}) solves variational in-
equality problem (3.4) for the corresponding seller . Lemma 3.3.1 shows that (p},d})
follows the relation

di* = Rhi(pt*,p™), vteT.

Repeating the argument for every 7 € I implies the result. O

Proposition 3.3.4 shows that the solution to the joint quasi-variational inequality
problem (3.8) is an optimal policy for each seller ¢ and hence is a Nash equilibrium

policy.

Proposition 3.3.4. Conditions 3.3.1 - 3.3.4 imply that the policy that solves the
joint quasi-variational inequality problem (3.8) is also a Nash equilibrium policy.

Proof The policy that solves joint quasi-variational inequality (3.8) satisfies the fol-
lowing condition,

—Zpt* (dt — d*) — Zd“‘ pt—p") >0, V(p,d) € K(p* d*).

Consider an individual seller ¢. Since the above holds for all feasible (p, d), consider
the feasible policy (p,d) € K(p*,d*): pt, = p** and d'; = d™; for all her competitors
and any (p,d%) € K.(p™;, d";). For this seller,

—pr* (d; = ") = Zd“ )20, Y(pidi) € Kilp%, d). (39)

Under Condition 3.3.4 it follows that
(—hi(pi, ) + hi(el, ) - (o —pl) 2 0, VA", p]
From Lemma 3.3.1 it follows that for dt* = hl(pl*, p™*,) and d} = hi(p!, p™,),
(—d+d) - (o —pl) 20, VP Pl
Summing over all ¢

o= +di) - (o —pl) 20, VP!, pr, dp = hi(php"), (3.10)

i

Adding (3.9) and (3.10) implies that ¥V (p;, d;) € K;(pt, d;)
Zpt*dt* > szht pi,p%) 2 ZPI g

The second inequality results from the fact that df < hi(pt,p™,), for all feasible d.
Thus, the joint quasi-variational inequality solution is a Nash equilibrium policy for
each individual seller and the result follows. O
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We can now establish existence of a market equilibrium policy. First, we give a
result due to Pang and Fukushima [52] regarding the existence of solution to quasi-
variational inequalities.

Theorem 3.3.1 (Pang and Fukushima [52]). Let F' be a continuous point-to-point
map from N™ into itself and let K be a point-to-set map from R™ into subsets of RN".
If there exists a compact convexr set T C R™ such that

(a) for every x € T, K(z) is a nonempty, closed, convex subset of T';
(b) K s continuous at every point tn T,
then the QVI(K, F) has a solution.
We usc this to show existence of a market equilibrium policy in the following theorem.

Theorem 3.3.2. Conditions 8.3.1 - 8.3.3 imply that a solution to the joint quasi-
variational inequality problem (3.8) exists and as a result, a market equilibrium policy
exLsts.

Proof. Notice that the feasible region in joint quasi-variational inequality (3.8) is non
empty for any feasible (p,d). Indeed, consider the point (p, d) where for all i € T and
t e T, (p,d) = (Puan, duin). It is easy to show that (p,d) lies in the feasible space
K(p.d). K(p,d) is thus a non-empty set. Condition 3.3.3 implies that the feasible
space K(p, d) is also a convex and compact set. We construct the set 7" as follows.

dt < hl(phpt,) VteT, Viel

Z?:l d<C;, Viel
Piin S Pf S Phax VEET, Vi€l
di 2 dyin VteT, Viel

T = ((d,p)

This satisfics condition (a) of Theorem 3.3.1. It is also easy to show that (b) is
true. Furthermore, the quasi-variational inequality function F is continuous. Thus,
a solution to the quasi-variational inequality problem exists due to Theorem 3.3.1.
Therefore, Proposition 3.3.4 implies that a market equilibrium policy exists. O

Remark: Till now, we have considered undiscounted revenue cash flows It is easy
to incorporate discounting into the model, for example discounting the cash flow in
period ¢ by a factor 4* where & > 0 is the discounting factor. The best response
problem for the discounted case is

argmaxy, o, tT=1 5td§.p§ (3.11)
such that dt < hi(pf,p',), VteT
Sl d <G
pfnm < p: < anax, VteT
d 2 dumin, vteT.

The conditionus for existence remain exactly the same as those for the undiscounted
case.
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3.4 TUniqueness of best response policy

In this subsection we discuss conditions guaranteeing that the best response problem
gives rise to a unique policy. In Proposition 3.4.1 we prove that there is a unique
solution to variational inequality problem (3.4) (and hence to the best response opti-
mization problem (3.1)).

Proposition 3.4.1. Under Condition 3.3.5, there is a unique solution to best response

optimization problem (3.1).

Proof. Under Condition 3.3.5, relation (3.7) in the proof of Proposition 3.3.2, becomes
a strict inequality:

SO ) -p) >0 Vil Bl £

t

Adding (3.6) and the previous inequality implies that ¥V (p;,d;) € Ki(pt,,d".)
Y opd > pld..
t t

Thus, (p],d’) is the unique solution to best response optimization problem (3.1).
From Proposition 3.3.2, it follows that the variational inequality also has a unique
solution. a

3.5 Remarks on uniqueness of equilibrium

The market equilibrium policy is the policy that solves the joint quasi-variational in-
equality problem (3.8). To the best of our knowledge, there are currently no unique-
ness results for a general quasi-variational inequality problem in the literature. Hence
it is hard to prove the uniqueness of a market equilibrium policy. There is however,
one characterization that ensures uniqueness. This is presented in Proposition 3.5.1
below.

Proposition 3.5.1. If there are two distinct equilibrium solutions, say (p!,d!) and
(p?,d?), to the joint quasi-variational inequality (3.8), then the following two condi-
tions cannot hold simultaneously:

1 (p',d') € K(p*, d?)
2. (p*,d?*) € K(p',d")

Proof. Let us assume that there exist two distinct equilibrium solutions (p*,d") and
(p%,d?) and that the two conditions hold. Then, substituting (p',d") in (3.8) de-
scribing the QVI with solution (p?,d?) and substituting (p? d*) in (3.8) describing
the QVI with solution (p!,d') and adding the two, we get

(p* —p')(d®—d') = 0.
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Using Lemma 3.3.2 leads to
(p* — p')(h(p®) - h(p")) > O.
This contradicts Condition 3.3.6. O

Remark: In Section 6.2 we will provide some insight as to when these conditions
hold for some special symmetric cases (See Lemma 6.2.2 and Lemma 6.2.1).

Remark: In the absence of Condition 3.3.6, the equilibriuin need not be unique. We
show an example below that has multiple market equilibrium. Consider a two seller,
single period, uncapacitated example. Instead of requiring that the demand function
hi(pt, pt,) is jointly concave in (pf,p",), we will require it to be concave with respect

to only p! for any fixed p* .
Example: For both Seller 1 and Seller 2, let the demand be given by
hi(pi, p—i) = D — Bp; + ap?,

for 1 = 1,2. Since both the sellers have no capacity constraints, the best response for
Seller 4 given the price level p.; is given by

) *(— ) _ D+O!ﬁ2_1
p’i p—l - 2/3
for 2 = 1,2. If p* is an equilibrium policy, then for ¢ = 1,2,
) D+ ap:f
pi p—l - Qﬁ :

This has two solutions:
0+ /(32 —aD

a4

pr=pl, =

For example, consider D = 1, @« = 1 and 8 = 2. Notice that —h(p) is a strictly
monotone function. Furthermore,

p,=p,=2+V3

df=d, =4+2V3

and

p;.‘:p*_i=2—\/§
df =df, =4—2V3

Both of these are equilibrium solutions.

43



44




Chapter 4

Robust demand model

4.1 Preliminaries

In this chapter, we discuss a model for pricing in markets with oligopolistic competi-
tion and uncertainty in demand.

1. Competition: Each seller optimizes her own payoff simultaneously by solving
a best response problem.

(a) The problem that each seller solves is to find a policy that maximizes
her payoff given her competitors’ policies. We analyze the best response
problem and study the existence and uniqueness of the solution to this
problem in Section 4.2.

(b) When viewed from a market perspective, an equilibrium exists when all
sellers adopt a policy that simultaneously solves each seller’s best response
policy. This is the market equilibrium problem which we analyze in Section
4.3.3. We study the existence of solution to this problem.

2. Demand Uncertainty: We address the issue of uncertainty in the demand
function by studying the model when sellers adopt robust policies described in
Section 4.1.2. The uncertain parameters introduced into the demand function
pose an additional challenge in the analysis of equilibrium.

In this chapter, we will assume that the demand is a function of the prices with
parameters belonging to some uncertainty sets. The sellers adopt policies that arc
robust to this uncertainty. We start by describing the concepts of uncertain demand
and robust policies. The formulation and analysis of the best response problem and
the market equilibrium problem under this case follow next.

4.1.1 Robust demand

We model the demand realized by Seller 7 in period ¢ as a function of her prices in
period ¢, the prices set by her competitors in period ¢ and some uncertainty factors.
We denote the function by hi(pi,p';,&!), where & is the uncertainty factor. The
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uncertainty factor is a parameter that can take any value from a given closed uncer-
tainty set !. The vector of uncertain parameters for all time periods for a seller ¢ is
denoted by &;. This vector can take any value from the set If;, where

U, = U xUEx - xUT

Similarly, the vector of uncertain parameters for all time periods and sellers is denoted
by £ € U = Uy xUs % - - - xUj. For example, for a linear demand function in a duopoly,
the demand function for a time period ¢ can be defined as follows.

hi(ol, 05, &) = Db — Bipl + aiph
t
h’g(p%ptlafb = Débage - ;pf?+a§2pt1!

where ¢! = (D! f,of) and & lying in the uncertainty set 24!, Examples of such

ibage ! 174 ?

uncertainty sets are:

Dt Dt Bt — gt al — &t
t _ t t t L3 *base i 7 ] 1 t
L{i - {(Dibasa’ﬁ’i7ai) “ae_ . + O At o S F’i
t
D‘basa 5" «
and,
— 2 _ .12 2
Dt — Pt Bt — 3t ot — &t
t __ i i t ‘base lbaza 1 1 1 i t2
Uy = ¢ (D0 Biv ) 5 + + <TI;
apt O’ﬁt Tt
*base t L)

where D} , 07 and &' are the nominal values of the uncertainty parameters and
opt 0 and o are some measure of the parameters’ dispersion around the nominal

*base

values.

4.1.2 Robust policy

Since information about the values that the uncertainty paramecters will take is not
available to the seller, the natural question that arises is what objective function
should the seller maximize? As is done in certain models, if an a priori distribution
is assumed for the uncertainty variable, the seller could adopt a policy that maxi-
mizes the expected revenue. This however, involves assuming knowledge about the
distribution of the uncertain parameters. In a lot of cases, it is difficult to estimate
accurately the mean and variance of such parameters, let alone their distribution.
The most basic information that is available is an interval or set in which the re-
alized parameter values will fall. A robust policy is a policy that would maximize
the objective function for a seller even when under the most adverse instances of the
uncertainty factor within such a set.

[t has been seen that the robust policy typically improves the worst case payofl
with regards to uncertainty at the loss of optimality of the best case payoff. Such
a tradeoff can be beneficial for a number of reasons. One such reason is linked to
the fact that the robust policy reduces the variance in the payoff compared to the
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optimal policy corresponding to the nominal values of the uncertainty parameters. A
lot of firms might find it more attractive to adopt a policy that guarantees revenues
that are less variable and uncertain even if they are lower on an average basis than to
adopt a policy that on average generates higher revenues but also potentially could
generate very poor revenues.

4.2 Best response problem

I this scetion we consider the problem of finding the robust best response policy for
seller i given the policy of all her competitors —i. To find such a robust best response
paolicy, seller @ solves the following optimization problem.
T
Jmax 2i=1 dipi (4.1)
such that dt < Ri(pk, P, &) Ve eU, Ve T
SE_dr<C—-Df vteT

T=1"
0<Df < <D} <G
p::, miuSpgSpg, max vieT

d > d vteT

i, min

Note that under Condition 4.3.3 which we introduce in the following section, the best
response optimization problem (4.1) has a compact and convex feasible space denoted

by K,(p_.,d_;,,D_;) where

d; < hi(pi. pLi, &) Ve € ULVt
S di <C;— Dt vteT
Ki(p_.d_,,D_))=<¢(p:,d;,D;) | 0<DF<--- <D} <
pg min S p§ S pi, max vteT
di > df oin vteT
but an objective function J;(p;,d;, D;) = E;F:l d'pt that is not concave. The lack of
a concave objective function makes the problem hard. For this reason, we consider a
variational inequality reformulation. We now consider the corresponding variational

inequality: We want to find (p},d}, D)) € K;(p_:,d_;, D_;) such that

p: — D}
—VJz(pnlud;z Di) : di - d;, 2 01 v (pi;di7 Dz) S ’Ci(ﬁ—iaa—i) D—i) (42)
D, - D,

4.3 Analysis

4.3.1 Conditions

The analysis for the robust best response problem and the market equilibrium problem
holds under certain conditions. We start by listing these conditions and in order
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to obtain additional intuition on these conditions, we will use the linear demand
case to illustrate. Please note that although we illustrate the intuition behind these
conditions via linear demand functions, the results hold for general non-linear demand
as well.

Condition 4.3.1. Prices in any period is allowed to vary between o minimum and
mazimum allowable level. We require pt ., to be strictly positwe and p} . to be a
level at which demand for seller 1 vanishes irrespective of competitor pr:ices i that
period. Mathematically, we require that p} .., > 0 and supy (hi(pt, P &) =0
at pi = Pl pay for allt € T.

Condition 4.3.2. The amount of sale made by any seller in any period should be
strictly positive. ie. dt > 0 for allt € I, t € T. This forces each seller to participate
in the market in every period. We enforce this with a constraint d > di .. Vit
where dt is a arbitrarily small strictly positive value.

1, min

Condition 4.3.3. The demand function hi(pt,p' ., &) is a concave function of the
price variables (pt,p',) over the set of feasible prices, for all i € 1,t € T, for all
el

Condition 4.3.4. For any period t, for any fited p*, and & € U}, the function
Ri(pt, pt,, € is decreasing with respect to pt over the set of feasible prices. Mathe-
matically,

(—hi(ph, Bty &) + hi(pL, P2 €)) - (B — P 2 0 V(L p)) 1€ L

Condition 4.3.5. For any period t, for any fized p, and & € U}, the function
hi(pt Bt &) is strictly decreasing with respect to pi over the set of feasible prices.
Mathematically,

(=hi(pL P, &) + hi(ph, P10, &) - (P — 1) >0 Y(BLB) B # P, 1 €L

Condition 4.3.1 ensures that the space of allowed prices is bounded. We achieve
this boundedness property by constraining the prices between some allowable upper
and lower limits. Under this condition, we can eliminate strategies involving infinitely
high price levels. Note that the lower limit could be arbitrarily close to the zero price
level and the higher limit would be the price level at which the demand function
vanishes (demand becomes zero).

Condition 4.3.2 ensures that each seller participates in each period with a strictly
positive sale. The implication, if this were not true, would be that a seller with
nothing to sell in a period could influence the demand seen by her competitors by
setting a price. In other words, setting a price would make sense only if there is a
non zero sale in that period.

Condition 4.3.3 ensures that the demand for a seller is concave in the seller’s price
for each period. This condition ensures that the strategy space in the best response
problem is convex. This holds for products where demand decreases faster as price
increases. The linear demand model trivially satisfies this condition.
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Condition 4.3.4 ensures that the demand in any period for any seller does not
increase with an increase in her price. We will use this condition to show that the
solution to the variational inequality for seller 7 formulated in the next section is
the optimal solution for the seller given the pricing policy for all her competitors.
Condition 4.3.5 ensures that the demand is strictly decreasing in price. This condition
will be useful to establish that the best response policy is unique. For a linear demand
case, this implies that the demand function is strictly downward sloping with respect
to price as is true for normal goods.

4.3.2 Best response problem

[t is easy to show that any solution to the best response optimization problem (4.1)
is a solution to the variational inequality problem (4.2). The converse can be shown
under conditions of concavity of the objective function in the optimization problem.
However, as noted before, the objective function for the optimization problem (4.1)
is not concave. It is easy to see that replacing the inequality involving the protection
levels in variational inequality problem (4.2) with an equality would not change the
resulting optimal policy. Hence we establish that the following equality holds at the
solution:

t
Di=Ci—) df (4.3)
=1

It should be clear by now that the protection level variables Dis do not affect the
outcome of the robust best response problem. This is because the optimal protection
levels for the robust best response policy can be removed from the problem formu-
lation and later independently determined from the values of the optimal demand
variables. However, these variables play a non-trivial role in the actual implementa-
tion of the policy in which case the demand parameters take different values and the
protection levels act as cushions for absorbing variance in demand across different
periods.

By utilizing {4.3) and some properties of the variational inequality formulation,
we can show that any solution to the variational inequality problem (4.2) will also be
a solution to the best response optimization problem (4.1) even though the objective
function in the optimization problem is not concave. Lemma 4.3.1 proves that in any
solution to the variational inequality problem (4.2) the variables p! and d! must be
related through an equality relation as we describe below.

Lemma 4.3.1. Given a competitor strategy (p_;,d_,, D_;), the solution to the vari-
ational inequality problem (4.2) (pl,d}, D) satisfies the following relations:

d"t _ ht (p't Z_)t gt' \
i = H\Pi Pl G
for some £ € UL

Proof. Assume that at some period ¢, dif # ht(p}, 5t ,, € for all €& € U?. There are
two possible cases:
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1. For some ¢t € T, d} < hi(p},pt;, &) for all € € U’. The properties of the
demand function (see Condition 4.3.4) imply that p;’ can be increased by 4
while maintaining d;! < hi(p} + 6%, 8" ,,&%) for all €& € U?. Note that since
Ri(pt + 84,5 ;. €) > df > 0, we can find a & > 0 such that p* + 8 < pf,..
Variational inequality problem (4.2) states that we want to find (p;,d; D}) €
K,‘i (I_D_i, d_l‘, D_i) such that

Pi — P;
_vjz(p:‘ d:,a D:) . di - di 2 0 v (pia d'ﬂ,a D’L) € }Ci(l_)-’h a,“ B,l)
D, - D

We will choose a (p;,d;, D;) € Ki(p_i,d_;, D_;) such that the above condition
is violated and hence prove that (p},d!,D!) could not be a solution to the
variational inequality. For any ¢ € T, choose

it if dt = hi(pt ot &t ; t
1 { p1 1 T 1(pz 7p——1,£1) for some 62 € ul (44)

Pem pt+6t it dt < hi(pt, by, ) for all & € U

and d; = d’;, D; = D’;. Considering the above point (p;,d;, D;) in variational
inequality problem (4.2) implies that 3 §dt < 0. Since ¥ §%dt > 0, this is a
contradiction. Thus, (p;,d;, D}) could not be a solution to variational inequality
problem (4.2).

2. Forsomet € T, d} > hi(p}, p* ;). Notice that (p},d}, D!) is infeasible and could
not be a solution to variational inequality problem (4.2).

Both cases lead to a contradiction. Thus, df = hi(p}, 7' ,,£), for some & e Uf. O

Proposition 4.3.1 proves the existence of a solution to the best response optimiza-
tion problem (4.1). This shows that given the competitors policies, there is a policy
that maximizes the revenue for seller :.

Proposition 4.3.1. For any fized (p_i,d_;,D_;), there ezists a solution (p},d}, D})
to best response optimization problem (4.1).

Proof. It is easy to show that the feasible space is non-empty and compact and the
objective function is continuous. Under these conditions the result follows from the
well known Weierstrass theorem (See Bazaraa, Sherali and Shetty [1]). O

Having shown that there exists an optimal policy for the best response optimiza-
tion problem (4.1), Proposition 4.3.2 proves that this optimal policy is also a solution
to variational inequality problem (4.2).

Proposition 4.3.2. Given the competitor policies (p—i,d—;,D_;), let (p},d; D;)

be a solution to best response optimization problem (4.1). Under Condition 4.3.3,
(p},d], D)) also solves variational inequality problem (4.2).

50




Proof. Under Condition (4.3.3), the feasible space for best response optimization
problem (4.1) is a convex and closed set. Moreover, the objective function is continu-
ously differentiable. Consider any point (p;,d;, D;) € Ki(p_i,d_;, D_;). The convex-
ity of the feasible space K;(p—;,d—;,D_;) ensures that the point z, + 8 - (z, — z)
also belongs to the feasible space for all § € [0,1]. We define function {(8) =
—Ji(2; + 0 - (z, — z)), for 8 € [0,1]. Function {(8) achieves its minimum at § = 0.
It tollows that £'(0) = —VJi(z) - (z; — z{) > 0. It follows that if the feasible space
is a closed and convex set, and the objective function is continuously differentiable,
the solution to best response optimization problem (4.1) solves variational inequality
problem (4.2). U

In Proposition 4.3.3 we prove the converse of Proposition 4.3.2 by showing that any
solution to variational inequality problem (4.2) also solves best response optimization
problem (4.1).

Proposition 4.3.3. Under Condition 4.3.4, for any fized (p_;,d_;,D_,), any solu-
tion to the variational inequality problem (4.2) solves the best response optimization
problem (4.1).

Proof. The policy (p’,;,d”;, D’;) that solves variational inequality problem (4.2) sat-
ishies

ﬁzpi,(df_dt‘ Zdt _p1 >O V(p’t)dUD) GK:( —ud—nD—i)- (4-5)
T
From Condition 4.3.4 it follows that for any & € U
(*fb’;(pu Y &)+ hi(a pt, 6)) (B =0, V(@)

For a given pt and p!', we pick ¢ and ¢! as follows:

& = arg min hi(ph, p¥s € (4.6)
g = arg Imin i, p", &) (4.7)
From Condition 4.3.4 it follows that for any ¢! and £ € U?
(—hf(pf,pt_'i, &) + hi(pl,p%, Ef)) Sl —p) >0 V(B (4.8)
(—hipt P ) + BEGE 00 E)) - =) 20 Y Glp)  (49)

Consider two cases:

1. If " = pt,

hi(pt, pt ., €0 = Rt pt €8 = Rt pY,, €F)

The first inequality follows from (4.8) while the second inequality follows from
(4.7). This implies that

(=R P2 ) + i 8% ED) - (B~ ) 2 0
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2. If pt > pt,
i, pt, €8) > Aot Pt ) = Ri(ph Pt €.

The first inequality follows from (4.9) while the second inequality follows from
(4.6). This also implies that

(—hit ) + Rt L €D) - (B = pl) 2 0.
In both cases,
(ret B0 ) + Mt P €0 ) - (0 — 7 2 0. (4.10)
From Lemma 4.3.1, &' = hi(p!,pt;, &) Therefore,
(*dﬁ' + hﬁ(pﬁ,pt_'i,éf)) (P —p) >0V (pph).

Summing over all ¢

> (—di' + hi(pﬁ,pi'i,éﬁ)) @ -ph =0 V(P (4.11)
t
Adding (4.5) and (4.11) we get that for all (p;,d;, D;) € Ki(p- Ld_i, DY),
£t tpte t ot t ¢ t
> (p,-, d; — pihi(pi, 020 &) + Py (h (0}, &) )) (4.12)
t

Note that for every d; such that 5., d¢ < Ci, there exist corresponding Di(di) and
p:(d;) given by

t

Did;) = Ci— ) df,and

pi(d;) = max {pﬁ | d; < hf(pﬁ,pfii,éf)}
respectively, for all t € T. It is easy to show that d} = RE(pH(dL), p",, €) using argu-
ments similar to those used in Lemma 4.3.1. By construction, (Pi(ds),d:, Di(d,)) €

Ki{p_i,d_;,D_,). Substituting in (4.12), we get that

S (rd —si d) = 0

t

With a rearrangement of terms we get
S > i) o
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Since pi(d}) > p! for any feasible (p,,d.,D.) € Ki(p_:,d_i,D_,) by construction, it
18 easy to see that

prdf 2 prdf v (pi,di, D) € }Ci(ﬁ—i;a—i,]—)_i)
2 t

The variational inequality solution is thus an optimal policy for seller ¢ and solves
best response optimization problem (4.1). O

First in Proposition 4.3.4 we prove that there is a unique solution to the variational
inequality problem (4.2) and hence best response optimization problem (4.1).

Proposition 4.3.4. Under Condition 4.3.5, for any fived (p_;,d_,,D_,), any solu-
tion to the variational inequality problem (4.2) is a unique solution to the best response
optimization problem (4.1).

Proof. Under Condition (4.3.5), (4.11) in the proof of Proposition 4.3.3 becomes a
strict inequality:

> (‘df/ + hf(pi,p‘li,ﬁf)) (' —p) >0 V!, pl), i # 1l

t

f

and adding (4.5) and (4.11) we get that V (p;,d;, D;) € Ki(p_,,d
> opld > pldl.
t t

Thus, (p!,d/,D!) is the unique solution to the best response optimization problem
(4.1). It is easy to show using results from Proposition 4.3.2 and Proposition 4.3.3
that the variational inequality also has a unique solution. O

D)

—31

4.3.3 Market equilibrium problem

We now formulate the market equilibrium problem using a quasi-variational inequality
formulation. We combine variational inequality problems (4.2) for each seller ¢ € L.
We define the following feasible space for all sellers:

K = {z=(2z1,20,...,21) | z, € Ki(z_,), Vi € I}.

The joint quasi-variational inequality problem seeks to find a point (p*,d* D*) €
K{p*,d*.D*) such that

PP
F(p‘:d*aD*) : d—-d” 2 0 v (padaD) S ]C(p*id*) D*)J (413)
D -D-

where Fi(z*) = =V Ji(2}), Vi € L.
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Proposition 4.3.5. The policy arising from the joint quasi-variational inequality
problem (4.13) and the policy arising from the solution of variational inequality prob-
lems ({.2) for each seller i simultaneously are the same.

Proof. It is easy to show that a policy (p*,d*, D*) that solves variational inequality
problem (4.2), for each i € I simultaneously, also solves the joint quasi-variational
inequality problem (4.13). We will now show the converse: the solution to joint quasi-
variational inequality problem (4.13) solves variational inequality problems (4.2) for
each seller ¢ simultaneously. That is, if (p*,d*,D*) is a solution to joint quasi-
variational inequality problem (4.13), then for each i € I, (p;,d;, Dj) solves varia-
tional inequality problem (4.2) with the competitor policy (p_l,d 5, D_,) given by
(p*—ﬂ d*—w D:’L)

The joint quasi-variational inequality problem (4.13) can be rewritten as the fol-
lowing: Find (p*,d*,D*) € K so that

—Zp — dt*) de* )>0 VY (p,d,D)eK(p*,d*,D*)

Consider an individual seller ;. Consider the policy (p,d, D) € K(p*,d*,D*) that has
Pt =p*, db, = d¥* and D', = D™, for all her competitors and general (p;,d;,D;) €
Ki(p*,;, d*,, D*.) then,

—1

—pr*dt di*) = > d(pt —pl*) 20 ¥ (p.,,di, D.) € Ki(pt,;, d;, D7)

t

This is the same as variational inequality problem (4.2). Repeating the argument
for every ¢ € I, it is easy to show that (p},d;, D;) solves variational inequality
problem (4.2) for every seller When the corresponding competitor policy is given to
be (I_)fz') dfia D—i) = (p*—u dim ) O
Lemma 4.3.2 proves that any solution to the joint quasi-variational inequality
problem (4.13) satisfies a relation similar to that described in Lemma 4.3.1.

Lemma 4.3.2. Let (p*,d*,D*) be a solution to joint quasi-variational inequality
problem (4.13). (p*,d*,D*) satisfies the following relation:

di* = hiplt, &) viel teT

Proof, Proposition 4.3.5 shows that for every i € I, (p;,d;, Dj) solves the corre-
sponding variational inequality problem (4.2). Lemma 4.3.1 shows that (p;,d;,D;)
follows the relation

di" = hi(pl", po, &) VieT

for some £* € U!. The argument can be repeated for every ¢ € I and the result
follows. O

Proposition 4.3.6 shows that the solution to the joint quasi-variational inequal-
ity problem (4.13) is an optimal policy for each seller 7 and hence defines a Nash
equilibrium policy.
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Proposition 4.3.6. Under Condition 4.3.4 and Lemma 4.3.2, the policy that solves
the joint quasi-variational inequality problem (4.18) is also a Nash equilibrium policy
for each individual seller and optimizes her revenues given that her competitors do
the same.

Proof. The policy that solves variational inequality problem (4.13) satisfies the fol-
lowing condition,

=) pd - dl) - Zdt*pl p’) 20 ¥ (p,d,D) € K(p*.d", D)
N

Consider an individual seller <. Since the above holds for all feasible (p,d, D). Con-
sider the policy (p,d,D) € K(p*,d*,D*): p*, = p™, d', = d*, and D', = D" for
all her competitors and any (p,,d;, D;) € K;(p*,,d*,;, D*,). For this seller,

—2}#& d*) = df(pt-p) 20 (4.14)

¢

*
dr,,

for all (p;, d;, D) € K,(p*,, D*,). For a given p! and p!*, we pick the correspond-
ing uncertainty parameters £f and £ as follows:
& = arg 1 Inin hipi, P23, &)
eu!

1

£ = arg min hi(pl*, p", &)
=2

Under Condition 4.3.4 it can be shown, in a way similar to (4.10), that

(—hi(pi" P &) + hilp 0%, 6)) - (0 =) 20, Y (61", )
From Lemma 4.3.2 it follows that df* = hi(pt*, pt*,, ).
(=" + hilpl p2, 6)) - (7 —p1) 20, Y (6", P0).
Summing over all ¢

t

Adding (4.14) and (4.15) we get that V (p;,d;, D;) € Ki(p*,,d*,,D*))

Z(pf*df* pehl(ph, 02, &) + pi* (Ripl, p%, &) — df)) = 0 (4.16)

Note that for every d; such that Y, d! < C}, there exist corresponding D,(d.) and
p:(d;) given by

t
DHd,) = Ci—Zd'{, and
pi(d;) = max {pz | di < hi(pl, P, €D}
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respectively, for all t € T. It is easy to show that df = hi(pi(d}),p";, &) using
arguments similar to those in Lemma 4.3.2. By construction, (Di(d.), d;,Di(d,)) ¢
Ki(p-i,d_;,D_;). Substituting in (4.16), we get that

> (prd - iy df) > 0.

¢

With a rearrangement of terms we obtain that
Yoptdr > pid)
t i

Since pi(dt) > p! for any feasible (p;,d;,D;) € Ki(P_;,d_i, D_;) by constructior, it
is easy to see that

sz*df* > Zpidf V (pi,d;, D;) € Ki(p—i,d_y, D_y)
¢ t

The variational inequality solution is thus an optimal policy for seller 7 and solves the
best response optimization problem (4.1). Repeating the argument for each seller 7 €
I, the variational inequality solution is a Nash equilibrium policy for each individual
seller and the result follows. O

Theorem 4.3.1 illustrates that a solution to the joint quasi-variational inequality
problem (4.13) exists.

Theorem 4.3.1. Under Condition 4.3.3, a solution to the joint quasi-variational
inequality problem (4.13) exists. As a result, a market equalibrium erists.

Proof. Notice that the feasible region in the joint quasi-variational inequality problem
(4.13) is not empty for any feasible (p,d,D). To prove that, consider the point
(p,d,]')) where for all i € Iand t € T, (8, d, D?) = (Prin, dminy Ci — tDain). It s
easy to show that (p,d, D) lies in the feasible space K(p,d,D). K{p,d, D) is thus
non-empty. Condition 4.3.3 implies that the feasible space K(p,d, D) is a convex and
compact set. We construct the set T required in Theorem 3.3.1 as

dt < Riplpt, &) VE U, Ve T, iel
SY_dI<Ci—-D! VteT, viel

P oo SPL Sl nax VEET, Viel
dt > dt vteT, Viel

i, min

T = ¢ (pi,di, Dy)

This satisfies condition (a) of Theorem 3.3.1. It is also easy to show that (b) is
true. Furthermore, the quasi-variational inequality function F is continuous. Thus,
a solution to the joint quasi-variational inequality problem exists. ]
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Chapter 5

Stochastic demand model

In this chapter we will assume that the demand is a stochastic function of the prices
and the sellers adopt policies arising from optimizing expected payoffs. The analysis
of the market equilibrium problem in this case is more difficult than the deterministic
demand and the robust demand case. The primary reason is that the bilevel formula-
tion of the best response problem for the stochastic demand case cannot be reduced
to a single level optimization problem without any simplifying approximations. In
this chapter we discuss results for some stochastic models with some additional ap-
proximations.

5.1 Analysis

For the stochastic demand model, we consider a relaxation of the inventory constraint
and establish results in the linear demand case. In particular, we replace the inventory
coustralnt with a penalty function. For this purpose, we allow sellers to sell the
product in excess of their inventory levels and charge a per-unit penalty cost (K;),
for the excess sale (overbooking).

The demand is modelled as a linear function of the price levels involving the
uncertainty parameter as follows: for all ¢ € T,

h"i(pgvpt-'i:gt) = gf(p;"pt_z) + ftp:(pf,pt_l)

where the functions ¢ and u are defined as

wiplpl) = di-pgipi+ S glpt
J€l, j#4
Oiehpl) = di-+lpi+ Y Alpt
JeL, j#i
We will assume that demand follows some basic rules. These allow us to characterize
the demand function in every period ¢:

¢ The demand seen by each seller is non-increasing in the price level set, by that
scller. Thus,
ﬂfi'.' 1‘31‘ 2 D
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o The demand seen by each seller is non-decreasing in the price level set by any
of that seller’s competitor. Thus,

t ot
ig1 Vij > 0.

o If the sellers set the same price level and increase (or decrease) this level simul-
taneously, the corresponding demand seen by each seller is non-increasing {or
non-decreasing) with respect to this price level. That is,

B> Z Bi;

J#i

Vi > Z'Y:j-

I

and

e The total demand should be non-increasing in any seller’s price level. Thus,

> 8

J#

t t
Yii 2 Z’Yﬁ-

I

and

We essentially require that the demand function ht(pl, ot &) increases with respect
to pt; (le. 7, for all j # 4). This states that the demand for any seller’s product
increases with respect to the price of any other seller. This is a standard condition for
substitute products. We also require that decreasing the price of any product results
in a greater increase in the demand for that product for lower levels of the price of
any other product; that is, the demand for any product is more sensitive to its price
when any other product is more competitive by virtue of its lower price.

Under this structure, the best response problem can be formulated as the following
convex optimization problem.

max Yeeu Je [S0L, i + min(0, ~Ki(L dk — C)

(s
such that pgmin S Pf S p]z?max veteT

where dt, = hi(p},p*;,€),Vt € T, £ € U. The objective function is a convex function
of pi for any given p_;. The strategy space is a compact and convex set. Using the
following theorem attributed to Fan [32], Debreu [24] and Glicksberg [38], it can be
shown that a pure strategy Nash equilibrium exists.

Theorem 5.1.1 (Fan, Debreu, Glicksberg). Suppose that for each player the
strateqy space is compact and convez and the payoff function is continuous and quasi-
concave with respect to each players own strategy. Then there exists at least one pure
strategy NE in the game.
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A typical method for showing uniqueness of equilibrium in a game with smooth,
twice differentiable payoff functions, is to use the following theorem attributed to
Gale and Nikaido [36].

Theorem 5.1.2 (Gale and Nikaido). Suppose the strategy space of the game is
conver and all equilibria are interior. Then if the determinant |H| is negative quasi-
definite (i.e., if the matriz H + HY is negative definite) on the players strategy set,
there is o unique NE.

Note that for our game, the payoff functions are not differentiable since the ob-
iective of the best response problem involves the minimization of two functions. In
this case, the same result can be shown by considering a slightly perturbed payoft
function that is smooth and twice differentiable. We show that the Hessian H of the
perturbed payoff function is indeed negative quasi-definite in the limit and arrive at
conditions under which a unique equilibrium exists. The basic outline of the process
is as follows.

Consider a function h(z,y) = man(f(z,y),g(z,y)) defined over (z,y) € S. Let
f(z,y) and g(z,y) be smooth concave functions over S. Clearly h(z,y) is also a con-
cave function that might not be double differentiable everywhere on S. We consider
a perturbation of A{z,y) for every € > 0 as follows:

h’e:%(f'i'g_\/f2+92_2(1_6)fg>-

Note that h(z,y) = h(z,y) at € = 0 and h.(z,y) is a smooth function for e > 0. We
only need to consider the function at points of potential non-differentiability, i.e., at
points where f(z,y) = g(z,y). Using the Hessian matrix of the smooth function, it
can be shown that a unique equilibrium exists under the conditions given above. We
do not go deeper into the analysis since Topkis [65] gives results for a similar model.
He does not require the demand function to be linear in the prices. Instead of using
the concavity of the objective function, he shows that the payofts are supermodular
under certain conditions. See Section 4.4.1, Page 196 in Topkis [65] for more details.

Note that the above formulation does not require the use of the allocation vari-
ables. In that sense, we have moved away from the fixed-inventory model and used
an approximation that is closer to the periodic production-review model.

There is another approximation we will introduce next in order to study a dynamic
pricing model with competition and stochastic demand. It incorporates strict alloca-
tions for each period. We consider the special case of a multiplicative demand model
and strict period-wise allocations. Before we introduce that approximate model for
the multi-period problem, we consider very briefly the single period problem: For the
singte period problem, assuming that the inventory allocated for sale in the period is
given by D;, the revenue given price levels is

mi(pi, Di,p_i, D_y,€) = pimin(hi(pi, p—s, &), Di)

where
hipip—i,§) = Eulpi,p_i)-
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Taking the expectation over the uncertain parameters, we get that

Wi(piaDiap—ﬁD—'i) = Eﬁ[ﬂi(pi’Di)p_i’D_ijg)]
= Zf(f)m(pi,D,;,pfi,Dfiaf)-
£

Using a result by Zabel [70], it can be shown that for D, > 0, the optimal price
p’:(D%) = a‘rgma‘xpiﬂ-i(p‘i: Di; P—i; D*’I‘.)a

is a continuously differentiable function of IJ; and 1s the unique solution of the equa-
tion

D —pat(p) [
Bimin( o6l = e [ tete)

Using the above result, we define
7i( Dy, p_s, D—i) = my(p; (Ds), Di, ps, D—i)-

A result by Young [69] shows that if log(f(£)) is concave or £ is Lognormal-distrbuted,
then m,(D;,p_;, D_;) is concave and p}(D;) is non-increasing in D;. This condition is
satisfied for the cases where £ follows a uniform, beta, gamma, or weibull distribution.
In this chapter we extend the result to the multi-period problem. First, we note that
the payoff is given by

Wi(pi; Diapfia D—iy&) = Zp: mln(h’:(pfvpt—z: ‘ft)) Df)
t

Therefore the best response problem for Seller ¢ can be written as

mi(pi, Diyp_i, D_i) = Eelmilpi, Di,pi, D_i,€)]

= Z f(.g)’i'ﬁ;(pi7 Di,pfi; D_y, 6)
¢

D <G
t

D! >0

1

p: € [pmina pmaz]

We note that this is an approximation since it does not allow unsold inventory from
one period to be used in the future time periods. This would be a good approximation
if prices are increasing over time; e.g. airline fare pricing since the allocations will be
made such that probability of unsold inventory being sold in future periods is very
low. This would be a bad approximation if prices are decreasing over time; e.g. retail
markdown modelling.
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Using the result from Young [69] mentioned above, we define the objective of the
best response problem each seller solves as

m{ Dy, pi, D, €) = Zpt* (D! min(dt*, D)

m(Di,p_y, D) = E&[ Dy, poiy D_,6))
= D Em(Dipa. Dy ).
¢

We can finally show that m(D;, p—i, D_;) is concave and continuously differentiable
in D! under previous assumptions. Transforming back to the price variables, we get
that the m;(p;, Df(p:), p—i, D) is quasi-concave in p;. The strategy space is compact
and convex. Using Theorem 5.1.1 from Fan, Debreu, Glicksberg [32, 24, 38], it follows
that a pure strategy Nash equilibrium exists.
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Chapter 6

Comparison of user optimal and
system optimal

As discussed in the literature survey in Chapter 1, there has been a lot of work
recently in various fields comparing the system optimal costs and user optimal costs.
That is, quantifying the loss in efficiency in a decentralized vs. a centralized system.
Traditionally, the results derived in literature (See, for example, Perakis [53]) consider
a centralized/de-centralized setting where cost is minimized. In the problem of this
thesis, we consider a profit maximization problem problem. The analysis in literature
does not directly extend. The primary reason is that the problems considered in
the literature are cost-minimization problems and the conditions required for the
objective functions do not hold for our problem. Also, unlike the setup considered in
the literature, the competitors in an oligopoly are not infinitesimal. In this section
we glve some results for two competitive settings, a quantity competition model and
a price competition model.

6.1 Quantity competition model

In this section, we consider a multi-period quantity competition model. As before,
there 1s a set of sellers denoted by I competing through the sale of a single product
over several time periods denoted by T. Each seller has an inventory, C;, of the
product and competes by setting quantities for sale at every period. Competing
through quantity competition, it is different from price competition as we studied in
previous chapters. For example, the resulting equilibrium policies are different from
the ones obtained in a price competition model. We illustrate this with an example
in Section 6.3. The total quantity of the product for sale in a period defines a market
clearing price and the sellers sell the amount they allocate at that price. In this
section, we consider a linear function for the market clearing price.

Let the market clearing price in period t be defined as

pi(dl,dly) = D' — Bidi = BLde
i
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This kind of a structure can be used to model a market-clearing price function similar
to that used by Murphy, Sherali, and Soyster [49] and Harker [39] in the single period
setting with linear demand. That is,

P(Q") = D' - 8@,

where Qf = 3, d! is the total quantity for sale in period t and D', 3, > O for all t. The
best response problem is the decentralized (user optimal) problem each seller solves:

max 3, dip"{QL: + di)
such that, S di < C

dt >0 vte T,

where Q% = 3, d’. For this linear market clearing price function, the optimization
problem can be written as

HLE:,X Zt (D Z 13} ﬁfjdg
such that, S di < C;
&t >0 vte T.

This can be cast as the following variational inequality problem for every seller 1.
Given d_; find df € K; such that

Z( D +28hd" + Y BLd)(d —d) = 0 (6.1)
JF#E

for all d; € K,;. The feasible set is defined as

}Ci:{d,ﬂ Zd’;gcﬁ dﬁzOVteT}.

Considering the market equ1hbr1um problem for all sellers gives rise to the following
variational inequality: Find d”® € K such that

PIDBEREELT DY L) (d - ) 2 0 6.2)

J#i
for all d € K. The feasible set is defined as

K::{L|E:ﬁg(mcﬁzOVteT,WGI}.
t

Theorem 6.1.1. For the multi-period quantity competition model given above,

—Z —l—ZZdtSOZ t dtUO _d;so) 2 07

J#i

where Z°° and Z°° are the user optimal and system optimal profits respectively.
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Proof. Notice that the variational inequality (6.2) can be written as
22D >N = )
jel
+3°N 8 (d - %) = 0 vdek
Pt

Considering the above for d = d®® and noting that

=Y DD -y A,
|2 t

j€l
we get
z° +ZZ (D' + 3 8L ) (d) (6.3)
e +Zzﬂidfuo (@ —d®®) > 0.
or

Z°° + Z Z —Dt 4> BT (6.4)

el

+ZZﬂt d.tUOdtSO ZZ t dtUO

Note that for any a;,ay > 0, since (w/ald’zUO - ,/agdﬁso)z > 0,

v
o

2 _ﬁ_alGQdﬁUOszO S al(deO)z + a2(d550)2.

Using this result in inequality (6.4), we get that for {a; > 0, a; > 0, aias > 4}

z° +ZZ( D'+ 84de %) (d°) (6.5)

jel

+aQZZﬂﬁ F (-1 PPBEIC (@) = o
[ t

Also note that

tso tso
=2 2 (D) Byd)d
1 t

7€l

Incorporating this in (6.5), we get

_ Z n sziso Zﬁfj tUO B dtso)

jel

+a2225 a4 (ar - 1) Y BT > 0
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This can be written as

_ Z + Z Z dtso Z t dtUO _ j ) + Z Z ﬁf,dfso dtUO d:so)

i

e () <a1—1>22ﬁ:i<d3”°>2 > 0

Note again that for any by, by > 0, since (\/b_ldffuo - \/B;dfso) > 0, we know that

Using this result in inequality (6.4), we get that for {by > 0, by > 0, biby > 1},

_ Z + Z Z dtSO Z f dtUO d;—SD)

J#E

+(az + by - 1)22@1 TV @b -0 BT = 0
i t i t
Selecting {a1, as, b1, b2} = {3, 3,1, 3}, we get that

ZUO _ ZSO + Z ZdtSO Z tUO O>
t

7 J#L

v
o

(6.6)

O

Note that in Theorem 6.1.1, we have not used any assumptions of symmetry of
demand for all sellers or over time periods, nor have we assumed anything about the
tightness of capacities. Inequality (6.6) holds very generally.

In what follows, we will derive bounds on the ratio of Z YC and Z°° under the assump-
tion that the system optimal policy for a seller will be the same across all sellers (and
the user optimal policy for a seller will be the same across all sellers). For example,
this might hold under symmetry of demand (that is, same demand across scllers) and
assuming that the capacity of each seller is the same.

Corollary 6.1.1. If the system optimal policy for a seller is the same across all

sellers, then
uo

4 <Z
341~ z5°

Proof. Under the assumption, 8% = of and ff; = 8 for all i and j, j # ¢ with the
condition that o' > G for all ¢. Then (6.6) can be written as

2% -7 413 gd* 1 - 1)@’ ) = o
t

<1

which implies that
Z%° - Z7° +10-1) Y g™ - (@)) = o

t

66




Again, using the fact that d°"d*"° < (d°7)2 + i(dtUO)Q, we get

vo s0 I(I—l) t; VO
z° -z +—4~—Z:5(df 2 > 0. (6.7)

Consider d = 0 in the user optimal variational inequality (6.2). For the symmetric
case, it iimplies that

A%

ZUO > I Z at(dtUO )2
t

1> p4a°)

v

Using this in (6.7), we get that

(I-1) _vo

77 7% ¢ ] z°° > o

This implies that
3+1 _uve so

TZ >Z
Since 2% < 2%, it follows that
4 ZUO
371 < 750 <1
where Tis the number of sellers. 0

Remark: In the case where I = 1, this result translates to the fact that the system
optimal and the user optimal are the same. This is to be expected since there is only

uo
a single user. As the number of users becomes higher, the lower bound on %g‘o— falls
lower and lower and goes to zero as the number of users tends to infinity.

Special case: Let us now compare this bound to the actual ratio of Z%;,O— for the
specific case where the market clearing price function is the same for a.lf periods In
the multi-period symmetric uncapacitated game. That is, D! = D and ﬂfj = j for
all 2,7 and £ € T. In such a case, the system optimal solution is

dtSO _ D
N ¥
and the user optimal solution is
dtUO _ D
T (I+1)3
for all i € T and ¢t € T. The corresponding profits are
ZSO _ TD2

443
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and

vo TD® 41

z L
48 (T4 1)2
The ratio vo
z° 4
Z%°  (I+1)?

is very closely approximated by the ratio obtained. This implies that the time-
symmetric case is close to the worst case bound. The two are compared in Figure B-2
that illustrates how good the bound obtained 1s. The line on top is the actual ratio
for the time- and seller- symmetric case while the bottom line is the bound obtained
for the general seller- symmetric case.

6.2 Price competition model

In this section, we consider a seller-symmetric' game. As in the previous section, we
will compare the system optimal and user optimal profit but for the price competition
problem we studied in Chapters 3 of this thesis. We let (p"°,d"?) be the user optimal
solution and (pso7 dso) be the system optimal solution to the pricing problem. The

user optimal solution solves the quasi-variational inequality given by
—duo(p—on)—-—pUO(d—dUO) 2 0 (68)

for all (p,d) € /C(puo ; duo)
inequality given by

. The system optimal solution solves the quasi-variational

~d®(p-p)-p d-d") 2 0 (6.9)
for all (p,d) € K(p™°,d™)
variational inequality

uo uo uo uo
ST - Y e (=) 2 0
it it

. In expanded format, this can be written as the quasi

for all (p,d) € K(p"*,d"?) and
=S -y =YY 2 0
it %t

UO)

for all ng,d) e K(p™°, d”?) respectively. We show that if (pso,dso) cK(p .d
and (p o,duo) € K(pso,dso), then the user optimal profit, ZY9, is equal to the
system optimal profit, Z5©. Following that, we show that for the time-symmetric*
case, this condition follows when the capacity constraint of each seller is tight in the
system optimal and the user optimal solution.

1\We assume that the game is symmetric with respect to all sellers, and between themselves, all
sellers will have identical user optimal policies (and system optimal policies).

2The time-symmetric case is the case where the demand function parameters are the same in all
periods.
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uo S0

e K(p°°,d"), then

Theorem 6.2.1. If (p°°,d°°) € K(p°°,d"") and (p “?)
ZUO _ 780

,d

Proof. (p~°.d°%) e }C(puo,duo) implies that

80 S0 +tUo

P )

foralli € It € T. Since dt°° = RI(pi°", pt° ), this implies that

dt < Ri(p

tSO +UO

P )

Since the demand is increasing in the competitor’s price, we get that forall: € It € T

SO sO
ht( 0" ;) < hﬁ(pﬁ

lSO +UO

pi <p - (6.10)
(p 0,d"%) e K(p°®,d°°) implies that

&7° < hi(pt

)

forall i € Lt € T. Since d'"° = ht(p!"°,p'>"), this implies that
uo uo uo 50
hi(l " P ) < Rl p)

Since the demand is increasing in the competitor’s price, we get that foralli € I,t € T

tSO tUO

Thus, from (6.10) and (6.11), we get p°° = pt'"* and d©°° = d'”° for all 4, and thus
they coincide. O

In order to give some intuition as to when these conditions might hold, we consider
the time- and seller- symmetric game. We show that in this case, if the capacity
constraint is tight for the system optimal setting then (pSo d*) e K(p'°,d"%)
Conversely, if the user optimal solution is tight then (p° ,d ) € K(p°,d° ) This
is shown in the following two lemmas.

Lemma 6.2.1. If the capacity constraint for every seller is tight for the system op-
tunal solution, then (p° ,d°") € IC(pUO,dUO).

Proof. Since the capacity constraint is tight for the system optimal solution, it follows

that
> -c

t

tor all »+ € 1. We also know that since the user optimal solution is feasible,

zdzuo <c

t
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for all 2 € I. We thus have that

th Rifel tuo
z' 3 —1

(VAN

o
S
SO S0
Sty
For the game that is symmetric for all time periods, this implies that

Rp ) < Ap)

which implies that

80 uo

which further implies that

50 uo S0 S0
h:(Pz' P_;) 2 h:(pi P_;)
S0

= d
This implies that (p°°,d"") € K(p"°,d"®) and completes the proof. O

Lemma 6.2.2. If the capaczty constmmt for every seller is tight for the user optimal
uo
solution, then (p__,d"") e K(p-",d™).

Proof. Since the capacity constraint is tight for the user optimal solution, we have
pacity
that vo
S =
t
for all i € I. We also know that since the system optimal solution is feasible,
P
>4 <G
i
for all i € I. We thus have that
th t_SO’ t_s:) < Ci
- e
B Z ht 1uo ,Uo
For a symmetric setting for all time periods, it follows that
g

hp™?) < AP )

A

50
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which implies that

uo SO
p =P
This further implies that
vuo S50 uUo uo
h(p; ,P_) = hp; ,p)
. dUO
This implies that (p~,d" ) € K(pso,dso) and completes the proof. a

6.3 Equilibrium in price and quantity competition
models

We show using a 2-seller example that the formulation of the best response problem
(whether it is price-competition or quantity-competition) does affect the nature of
the resulting equilibrium solution. Intuitively, this is because a transformation of
variables changes the definition of the Nash equilibrium for the problem: in the price
competition case the equilibrium is defined in terms of keeping the price of competitors
fixed while in the quantity competition case, it is the quantity of each competitor that
is fixed. For more details sece Oligopoly Pricing® by Xavier Vives. In the example
that follows, the equations determining the demand-price relation in both models
(price-competition and quantity-competition) are identical but the resulting (unique)
equilibrium is not.

6.3.1 Price Competition

The demand is defined as:

11
di(pipi) =1—sp+ 7ps Vi€ {1,2}

The price competition will lead to the following equilibrium solution:

wo= pi'di(piap*i)
o,
= 0
op;

=p(pa) =

by

+
N

*

=p =

Oloc W]l - =

#Section 5.2.4, Pages 132-136 and Section 7.1 Pages 185-187
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6.3.2 Quantity Competition
The clearing price is defined as:

8 4
pi(di,d—i) =4 — —di - '—d_.i Vi € {1, 2}
3 3
The quantity competition will lead to the following equilibrium solution:
m = Pz’(di, d—i) - d;
om;
od,;

= d:(d_l) =

-

W

=d =

P =

oo wis]|w O

*_
T, =

t\Jll\D
[SLR TS
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Chapter 7

Computation of equilibrium
strategy

[n this chapter we introduce an algorithm for computing the market equilibrium
prices arising from the joint quasi-variational inequality formulation (3.8). A number
of algorithms proposed for solving quasi variational inequalities exist in the literature
(see for example, Pang and Fukushima [52], Morgan and Romaniello [48]). The
algorithm we study 1s based on a simple intuitive process inspired by the concept of
fictitious play, first introduced by Brown [13] and Robinson [57]. The tatonnement
process described in Vives [66] is very similar in nature. It is shown to converge
(tatonnement stability) for supermodular games in particular. Consequently, the
result does not apply to the model in this thesis.

The basic idea for the algorithm is as follows. Imagine a market where none of the
sellers are aware of the equilibrium policies. Instead, each seller observes the pricing
policies of its competitors and would like to adopt a policy that optimizes her payoff.
No seller has any information about the starting inventories of any competitor and
can only observe the prices that are part of the market information. The entire multi
period game is repeated a number of times. Each seller observes the policies of her
competitors at every realization of the game and adapts her pricing policy myopically
(i.e. optimizes her payoff given the prices from the previous realization of the game).
As this process is repeated, one would expect the market to involuntarily approach
the equilibrium state. We describe conditions under which this would happen.

There are two parts in the process. The first part involves the best response
problem a seller needs to solve and the second involves how prices form in the market
as a whole. In the following sections, we describe how the best response problem can
be solved computationally, and then provide conditions that guarantee convergence
of the algorithm for the multi-period pricing models (both deterministic demand and
uncertain demand) we introduced in this paper. To provide some intuition, we discuss
how these conditions can be interpreted for the linear demand case.
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7.1 Iterative learning algorithm

Consider the market we described in Chapter 3, consisting of several sellers pricing
a product in a multi-period setting. Assume that the process is repeated under the
same conditions of initial inventory and demand. The sellers do not start with the
equilibrium policies but rather follow a naive myopic optimization approach: They
price using the best response policy given all competitors’ prices from the previous
instance of the process. The key question is that if this process is repeated sufficiently
many times, under what conditions will the sellers’ prices converge to the equilibrium
prices, irrespective of the state that the sellers in the market started from.

The outline of the general algorithm is as follows. Start by considering an initial
cstimate for the solution denoted by z° € K and set k£ = 1. Compute z* by solving
the following set of separable variational inequality subproblems for each i € I:

Fzf) (z—2f) 20, Va € Ki(253"). (7.1)
For our problem, this iteration step corresponds to each seller setting the best response
policy to her competitors’ strategies from the last iteration. This step in detailed
in Subsection 7.2. We check for convergence (if the policies from two successive
iterations are the same or e-close to each other) and stop; otherwise we repeat with
an incremented value for k. This algorithm is formally presented in Algorithm 1.

Algorithm 1

1. fori=1...N do
g enof o Pinitial
4; fori=1. N do
'p; — BR:(°p_i)
end for
k—1

while *p, # *1p; do
fori=1...Ndo

10: k+lpi — BRi(kP_i)

11:  end for

12: k—k+1

13: end while

14: p* — kp

15 RETURN p*

L s o

7.2 Solving the best response problem

In this section we illustrate how we solve each step of Algorithm 1 for the deterministic
demand case. The best response policy pF = BR{p*™') of each seller ¢ € I, given all
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her competitors’ policies p*~!, is obtained as the solution of the following optimization
problem. This step is the main part of each iteration of Algorithm 1.
For each ¢ € I, set P_; = p*,;! and solve for p¥ as the solution to:

argmaxgy, o ZtT=1 dﬁpﬁ
such that df < hi(pt,pt,) VteT
23:1 df < G
pfnin S p: S ptnax Vt S T
(:[5 >0 VteT.

For convenience, we denote the demand function hi(.,p';) by hi(.). The function is
invertible under Condition 3.3.5 and we denote p! = pi(d!) = Al ' (d!) as a function
of d'. Under this notation, the problem can be formulated as:

maxa, Yoi_,dt - Fi(df)
such that ) d! < C;
d >0 vt e T.

This formulation 1s a convex optimization problem since it has a concave objective
function that is maximized over a convex feasible space. There are well studied algo-
rithims that can be used to solve such problems efficiently since there is an underlying
network structure. One way to solve it is to consider two cases hased on whether the
mventory constraint is tight or not.

If the inventory constraint is not tight, the problem separates by time period. We
denote the single period revenue by 7! = pt(dt)-d! and solve the following optimization
problem:

such that >0 vteT.

This separates into simpler optimization problems corresponding to each period t € T,
cach of which is an easily solvable optimization problem in a single variable d!:

maxq: = d; - 7i(d;)
such that dt >0

[f the inventory constraint is tight, the problem is not separable by time period.
However 1t can be formulated as a min-cost network flow problem as shown in Figure
B-1. In the figure, the label on each arc refers to the flow variable and per unit flow
cost function respectively. For this reformulation, efficient solution methods are well
established in the transportation literature (See Florian and Hearn [35]). Under this
structure the solution can be calculated using the following condition for optimality:

ont =uv ifd >0
od" <wifd =0
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T
subject to Z di = C;
t=1

d: >0 vteT.

7.3 Convergence under the deterministic demand
model

In this section we study the convergence of Algorithm 1. We first need to introduce
the following conditions.

Condition 7.3.1. For any given p;, hi(P;, p_s) is Lipschitz continuous with respect
to p_; with parameter L.

e (Pi, Pi) — Mi(Bi, P=i)|] < L IP—i — P=ill, ¥ (P-iy P-i)

Condition 7.3.2. For any given p_;, —h;(p;, D—i) s strongly monotone with respect
to p; with parameter Ay.

(—hi(Py, Pi) + Mi(Pi, Boi)) - (Bs — D:) = An [Di — B>, ¥ (Di, D)

Condition 7.3.3. There exists an ¢; > 0 such that —fl—’; < 1— ¢ where A, and L,
are defined as above.

Notice, for example, that for the two seller, linear demand case, the above condi-
tions hold when for all ¢ € I, the minimum sensitivity of seller ¢’s demand to seller
i’s price over all periods, is greater than the maximum sensitivity of her demand
to her competitor’s price over all periods. In particular, if the demand for a two
seller market is given by hi(p,p*;) = Dy . — Gipt + afpt , then Ay, = min,(3!) and
Ly, = max,(af).

We first define the inverse demand function g(d}, p* ;) as follows.

Since our demand function is strictly decreasing and concave, it is invertible and g
is well defined. We impose the following conditions on

f)(dy p) = [ﬁ:(d:pt—f)]txt

Condition 7.3.4. For any given d, p(d, p) is Lipschitz continuous with respect to p
with parameter Py > 0.

Ip(d, p) — B(d,p)l < Psllp-bBll, VB P)
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Condition 7.3.5. For any given P, P(d, p) s Lipschitz continuous with respect to d
with parameter Dy 2> 0.

IB(d,p) - B(d, )l < Dpld—d|l, V(d,

je RS

)

We also define the function é(d, p) as follows.

+ O,
s p) = |~ (et
ixt

where pi(dt, p'.) is the inverse of the demand function defined above. On this function,
we impose the following conditions.

Condition 7.3.6. For any given d, 6(d, p) is Lipschitz continuous with respect to p
with parameter Ls > 0.

l16(d, p) - 6(d,p)| < Ls llp—bl, Y (B, P)

Condition 7.3.7. For any given P, d(d,p) is strongly monotone with respect to d
with parameter As > 0.

(6d.5)+6(d,p) (@-d) > A [d-d% v(d )

Condition 7.3.8. For Pjs, D;, L5 and As defined as above, there exisis an eg > 0
such that

Ls
Py + Dyt < 1—¢
PA& 2
For the two seller, linear demand case with hi(pf,pL;) = Dy ... ﬁtpz + alpt,
mentioned above, the values of the parameters are Py = %:-))-, Dy = gmgny L5 =0

and A; = —(5'7 This implies that Condition 7.3.8 is satisfied whenever Cond1t1on

T

7.3.3 1s satisfied.

Theorem 7.3.1. Under Conditions 7.8.3 and 7.3.8, Algorithm 1 converges to an
equilibrium pricing policy.

Proof. In Algorithm 1, we start with an initial guess for the pricing policies of all
sellers, p’. Let us call this the m = Oth iteration. Given price levels at the mth
iteration (p™) we find the best response policy for each seller by solving the best
response problem using the algorithm in Section 7.2. Essentially, we transform the
problem into an equivalent problem for each seller ¢+ with variables (d;) instead of

(p:.d.} as given below:

maxq, D2, d - Pl pT)
such that S di<C
d; >0 vteT.
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The solution to this problem is d™'! and we obtain the corresponding p7*™' using

the relation
tm+1 _ Vp(dt."1+1 m)
thereby ensuring that di™"" = ht(pt™" pt ™) for all i € I and ¢ € T. The equivalent

variational inequality for step (m + 1) is thus to find a d,™"! € K4, such that

m opt m
Z(—ﬁf(d: +1’ m) dthrl 82: (d,:m+1 m))(d: i d: +l) 2 0 (72)
teT
for all d; € K4 where Ky, = {d- | Z?ldt- <C, d>0Vvte T}. Similarly, the
variational inequality for step m is to find a d,” € Ky, such that

m ma m — m
D (A", P — dT SR P - d") 2 0 (7.3)

teT

for all d; € Kg,. Substituting d; = d;™ in (7.2) and d; = d,;"*" in (7.3) and adding
the two we get,

S (@™ pm) - & P ) (@7 ™) (7.4)
teT
m ap m+1 mavr: m _ m+1 m
N 17 my gt Il ™ ey (@l gty >
tET( adt(d 7p ) ) 8d~;‘,( (3 7p ) ( 3 ) ) — O

Adding the above for all i € I,
SON (@ e = AT ) @ - )+

€] teT

tm+18p7 tm+1l o, _ ma%
ZZ(d (d1 P ) d: adt

el teT

) G eI

In vector notation, this can be written as
(p(dm+17pm) _ f)(dm,pm_l)) (dm+1 o dm)+
(—5(dm+1,pm) + 5(dm,pm—1)) (dm+1 _ dm) 2 U (75)

We consider two exhaustive cases. From the inequality (7.5), we can conclude that at
least one of the terms (the first or the second term) is greater than or equal to zero.

Case 1: The first term in (7.5) is non-negative, i.e.,

(B(d™+,p™) = B(d™, p™H)) (@™ —d™) = 0.

Note that
d:m—{»l ht( ,t_.rrH—l7 zm)’
™ = TP,

™) p™ 7, and

g™ pm ) = Pl
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Making these substitutions in the given inequality, we get that

Z(pfanl tm)(ht( tm-{-l ptm) ht( 1m’pzm—l)) 2 0.

teT

The above can be written in vector notation as

(Pt —pf) - (hi(pP™,p2) — hi(p",P7Y) 2> 0. (7.6)
Adding Vi € I, gives rise to
(pm+1 _ pm) . (h(pm«kl, pm) _ h(pmypm—1)> 2 O (77)

Adding and subtracting h(p™, p™) we get

(h(pm_H, pm) _ h(pm,pm) 4+ h(pm,pm) _ h(pm, pm—l )

On rearranging terms we get

(h(p™,p") —h(p™,p™ ")) - (p"* - p™) 2 (7.8)
((—h(p’”“,p )) = (=h(p™,p™)) - (P™"' —p™).

Under Condition 7.3.2, the right hand side of (7.9) is non negative. Thus, both
sides are non-negative and (7.9) becomes equivalent to

|(h(p™,p"™) — h(p™, p™ ")) - (P™! — p™)|
> |((=h(p™",p™) — (~h(p™,p™)} - (P""" —p™)|.

Under Conditions 7.3.1 and 7.3.2 it follows that:

Lullp™ = p" 7| - o™ - ™|
> |b(p™,p") — h(p P 1)|| lp™* = p™|
2 (h(pm,p7 )_ m ) ( m+l __ m)

> ((~h(p™**,p" )) ( h(p™,p™))) - (™' - p™)
> Apllp™t = p™I%.

The first step follows from Lipschitz continuity. The second step follows from
Cauchy’s Inequality. The third step follows from (7.9). The fourth step follows
from the strong monotonicity assumption. As a result,

m+1 mH < [’hH ™

lp™" ~p

m—l”_

= 4 —p

Case 2: The second term in (7.5) is non-negative, ie.
(—&(d™*, p™) + 5(dm,pm_1)) (d™* —d™) > 0.
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Adding and subtracting 6(d™, p™) in above, we get
(=5(d™1, p™) + 5(d™, p™) — 6(d™, p™) + 5(d™, p 1)) (@™ — d™) 2
which implies that

(6(d™*, p™) — 8(d™, p™)) (d™! —d™)
< (8(d™, pmt) — §(d™, p™)) (A7~ d™.

Under concavity of the demand function (and hence the inverse demand func-
tion) the left hand side of the above inequality is non-negative. Hence, both
sides of the inequality are non negative and we can take absolute value of both
sides without affecting the direction of the inequality. This gives us the following
relation.

|(8(d™!", p™) — §(d™, p™)) (A7 — ™)
< J(6@™,p™h) = 8(d™, p™)) (47— d7)|. (

=1
K=}

Note that,

Lspmt = |- A - a7
> ||3(d™, pm1) = a(d™, p)| - 4" — a7
> /(3@ p™ ) = 5(d™, p™)) - (™ — ™|
> (8(d™.p™) - (™, p™) - (A" - dm)
2 Aglld™ - d"?

The first step follows from Lipschitz continuity. The second step follows from
Cauchy’s Inequality. The third step follows from (7.9). The fourth step follows
from the strong monotonicity assumption. As a result,

Ls|p™ ' —p™| = Aslld™t —d™. (7.10)
Now consider that

[p™*! —p™|
= [|p(d™*!, p™) — p(d™, p™ |
= (A" p™) = (", p) + B(d™ p™) = B, p" )]
< IB(d™,p™) — B(d”, B + | B(d™, p") ~ B(d" p" )]
< Dp”dm+l ~ dm” + Pp”pm - Pm"1||

L .
< Dp=2flp™ — P+ PypT — p |
)
E m m—
= (Dpjj;”’p) lp™ ="

The first step follows from the definition of the inverse demand function. In
the second step we add and subtract p(d™,p™). The first inequality comes
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from the usual triangle vector inequality. The second inequality comes from
the continuity conditions. The last inequality comes from the inequality (7.10)
derived above. As a result,

7 T £5 T m—
P N o e A ]

In both cases, we get
lp™ —p™ < (=€) [P =P,
where ¢ = min(ey, €2) and thus,
lp™ =p7| < (1=o" p' -l (7.11)

[t follows that sequence {||p™*! — p™||},, converges to zero at a geometric rate. As a
result it follows that sequence {p™},, is a Cauchy sequence and thus is a convergent
sequence to a stationary price p. This is an equilibrium point since each seller’s best
response leads to the same point. O
Corollary 7.3.1. Let (p*), be the sequence generated by Algorithm 1. The number
n(Z)

of iterations requirved to reach a solution within -distance from p* s O(T(i_)) where
l1—¢

D is the diameter of the feasible space K and € is as defined above.

Proof. Denote the diameter of the feasible policy space by D, i.e. the maximum
distance between any two points p and p in K.

D = sup ||p — P
p.peK

Equation 7.11 can be written as
lp™ =P < (1-€)"D

since D > ||p' — p°||. Summing over k =m,m +1,--- co we get

Yot -t <Y (1-¢fD.
k=m k=m

[t follows from the triangle inequality that the left hand side of the equation is greater
than the distance between p™ and p*. The right hand side sum is equal to (l—fﬂ.
Thus we get,

m * (1 _ E)m D
pm - pt < L2
Consequently, for
In(£
o )
In(y=,)

we get that ||p™ — p*|| € £. This proves the result and the number of iterations
required for the algorithm to converge to a solution e-close to the equilibrium is

ln(D\
Olmrts)- O

(1=



7.4 Convergence under the robust demand model

For the robust demand model, Algorithm 1 starts with an initial guess for the pricing

oth

policies of all sellers, p°. Let us call this the iteration. Given price levels at the

mth iteration (p™), we find the best response policy for each seller by solving the ro-
bust best response problem. We also define the inverse demand function p(df, p* ;. €)
similar to before.

pt=pidi,pt,, &) & d = hi(ptp,, 8)

Since our demand function is strictly decreasing and concave, it is invertible and !
is well defined. We also denote in vector form,

f)(da p)f) = [ﬁ:(di?pt—i’ ‘g)]ixt

As before, we transform the problem into an equivalent problem for each seller 7 with
variables (d;) instead of (p,, d;),

maxd, Z;F:1 d; - (mingfeuf pi(di, p™, f«f))
such that S dE<C
dt >0 vt e T.

Let us denote the robust inverse demand function by #(dt, p™) as follows

pi(dt, p™) = min pi(dl, p™, &).
pi(d;, p™) 6tEwpz( HP™ &)

i )

The solution to this problem is 7! (with the corresponding £,™) and we obtain the
corresponding p ! using the relation

m+1 v m+l _m m
A G S

thereby ensuring that dt™ "' = Ri(pt™*! pt.™ €™) for alli € Tand t € T. As in the
previous section, we first introduce some required conditions.

Condition 7.4.1. For any given p; and &, hy(Ds, p_i, €) is Lipschitz continuous with
respect to p_; with parameter L(&).

b (P, B-i, &) — hi(Pi, D-i. ) < La(€) 1D p-ill, ¥V (P-i, P-i)

Condition 7.4.2. For any gien p_; and &, =h;(p;, P_i, £) is strongly monotone with
respect to p; with parameter A, (€).

(_hi(f)i;f)—iaf_) + hi(phl—)—i)g)) : (f)‘t - f)l) 2 Ah(g) Hf)'b - f’z‘HQJ v (131‘ 157:)

Condition 7.4.3. There erists an €; > 0 such that %:Aé—)) < 1— ¢, for all &, where
Ar(&) and L,(€) are defined as above.

The conditions on the inverse demand function pi(d, pt ;) are as follows.
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Condition 7.4.4. For any given d, P(d, p) is Lipschitz continuous with respect to p
with parameter Py > 0.

IB(d,p) - B(d, B)I < P lIp—Bll, V(B D)

Condition 7.4.5. For any given P, p(d, P) s Lipschitz continuous with respect to d
wrth parameter Dy > 0.

Ip(d.p) - B(d,p)| < Dplld—df, V(d, d)
We define the function 4(d, p) as follows.

o
5(dp) = |~ (et )
Xt

where pt(dt, pt ) is the inverse of the demand function defined above. On this function,
we impose the following conditions.

Condition 7.4.6. For any given d, §(d, p) is Lipschitz continuous with respect to p
with porameter L5 > 0,

lé(d.p) —8(d,p)| < Ls IB-pl, V(B B)

Condition 7.4.7. For any gwen p, 6(d,p) s strongly monotone with respect to d
with parameter As > Q.

(8d,p) - 8(dp)) (@ - Q) > Asd-d’, v (4, Q)

Condition 7.4.8. Let parameters Ps, Dy, Ls and A; are defined as above, there
exists an €9 > 0 such that

Ls

Py + D; yy

Note, that for the two seller, linear demand case with rectangular uncertainty

hounds the above conditions hold when for all ¢ € I, the minimum sensitivity of seller

i's demand to seller 2’s price over all periods, is greater than the maximum sensitivity

of her demand to her competitor’s price over all periods In particular, if the demand

for a two seller market is given by At{pf,p', &) = o Bipt + afpt . and the
uncertainty sets are of the form

{ t a3 t at At t At <t :
{(Dbasewﬁi’ D | Dhage: € {Dbasef,’ base] i { 1,51} i € [ad,ai]w,t}

then Py = supy Il’ldX”( ) D = supy max;.(4r). L5 = 0 and A; = supy, min, 4(
Hence, for such a case, the conditions 7.4.3 and 7.4.8 hold.

< 1 —e9.

bas

)

Theorem 7.4.1. Under Conditions 7.4.8 and 7.4.8, Algorithm 1 converges to an
equilibrium pricing policy.
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Proof. The solution to Step m + 1 of Algorithm 1 is dJ**! (with the corresponding
£7) and we obtain the corresponding p/**! using the relation

ptmt = T pm, e

thereby ensuring that d/™"" = hi(pt™*' pt., " €M) for alli € T and t € T. The
equivalent variational inequality problem for step (m+1) is thus to find a d,""*! € K,
such that

m m av"‘ m m
(~p(™ p™) = T B (@ P - dT) 2 0 7.12
teT adg Z

for all di € Ky, where Ky = {d |5 <G, dz0Vte T} Similarly, the
variational inequality problem for step m is to find a d,"* € K, such that

o m m— maﬁ: m m— m p
D (=B P = d S (T P ) — A 2 0 (7.13)
teT t

for all d; € K,,. Substituting d; = d;" in (7.12) and d; = d, " in (7.13) and adding
the two gives rise to,

ST (B o) = ST P ) (@ - ™)+ (7.14)
teT
=t
Z (d:m+lggz (dtm+1 m) _ d:mgd: (d:m,pml)) (dém+1 _ dim) > 0

teT

Adding the above for all 7 € 1,

ZZ (ut dtm+1 p™) — A" 7pm—l)) (d$m+1 _d™)+

icl teT
™ apz m m mavt ™m _ m— m m
ZZ(dt N aE e - A S p 1))<d2 g™y > 0
i€l teT

In vector notation, this can be written as

(B(d™, p™) - p(d™,p™ 7)) (A" - d7)+ (7.15)
(_J(derlme) + 6(dm,pmA1)) (dm+1 _ dm) > 0

We consider two cases. From inequality (7.15), we can conclude that at least one of
the two terms (the first or the second term) is greater than or equal to zero.

Case 1: The first term in {7.15) 1s non-negative and can be written as

(B(am™*!,p™, &™) — p(dm,pm €M) (A7 - d™) 2 0
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Note that

dH = Rt Pt e,

m m m—1

d: = h:(p: 1p: :5 1))
" m+l _m em +1
t(dt 7p in) = ptm

P\ )

g™ pm e = B

and

Making thesc substitutions in the given inequality, we get that

—+1 1 m+1 m o .m m m—1 .y
S @ =M R P e - BT BT, 20
teT

The above can be written in vector notation as
(p*’i—nJrl - p:n) ' (hi(p;n,+1’pr7n“§im) - hi(prap?ji_laézn_l)) 2 0 (716)
Adding V¢ € 1, this is equivalent to

(pm+1 _ pm) . (h(perl, p7n,£m) _ h(pm, pmul’ ém—l)) 2 0 (717)

Here we necd to perform an additional step compared to the proof of Theorem
7.3.1. We construct £ as follows

g [ &7 B spm
: £X™  Otherwise

1

From the definition of £, it follows that componentwise

h(p™*, p™, &) 2 h(p™*,p™,£7),
and
h(p™,p™ ', €) = h(p™,p™ L"),
Hence, inequality (7.17) implies that
(pm+l _ p-m) . (h(pm+1’ pm’E) _ h(pm’ pm—l’ 5)) 2 0 (718)

Adding and subtracting h(p™, p™, &) we get

(h(p771+1 ) pm‘ E) - h(pm, pm, é) + h(pm~ pma 6) - h(pm pm*1 y ‘5))
. (perl _ pm) _>— 0.

On rearranging terms we get

(h(p™, p™.&) — h(p™,p™ 1, €)) - (p™" —p™) > (7.19)
((=h(p™" p™ &) - (=h(p™,p™.¢))) - (P™*' - p™)
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Case 2:

Under Condition 7.4.2, the right hand side of {7.20) is non negative. Thus, hboth
sides are non-negative and (7.20) becomes equivalent to

|(a(p™, p™ &) —h(p™,p" ", &) (™" - p")]
> |((=h(p™',p™ £)) — (~h(p™,p™. &) - (™' - p™)|
Under Conditions 7.4.1 and 7.4.2 it follows that:

La@©llp™ =™ - Ip™** = p™l
> |h(p™, p™,€) — (™, p" LI - [P - p7
> (h(p™,p™, &) —h(p",p",¢)) - (P - p7)
> ((-h(p™*,p™€) - (~h(p™,p™,€))) - (™' —p")
> An(&)|p™* - p™II?
The first step follows from Lipschitz continuity. The second step follows from

Cauchy’s Inequality. The third step follows from (7.20). The fourth step follows
from the strong monotonicity assumption. As a result,

m+1 _ m ‘C‘h(é) T
p"l < () |

The second term in {7.15) is non-negative, ie.

(~8(d™, p™) + 8(d™, pm) (d" 1 = d™) > 0

Ip -p" 7

Adding and subtracting 6(d™, p™) in above, we get

(=d(a™*,p™) +6(d™, p™) — §(d™, p™) + 8(d™, p" 7))
_(dm-H _ dm) > 0.
This implies that
((5(dm+l,pm) _ (5(dm, pm)) (dm+1 _ dm)
< (5(dm,pm_1) _ 5(dm,pm)) (dm+1 _ dm)_
Under concavity of the demand function (and hence the inverse demand func-
tion) the left hand side of the above inequality is non-negative. Hence, both
sides of the inequality are non negative. Taking the absolute value on both sides
gives us the following relation.
’(5(dm+1,pm) _ (5(dm;pm)) (dm—H _ dm)|
< |(3(d™, p™") — §(d™,p™) (d™H — d™) (7.20)
Therefore,
Lsllp™t = p™f - A7 — 7|
2 I|6(dm,pm_l) o 5(dm, pm)” . Hdm+1 _ de
> [[(8(d™, p™ 1) = 6(d™,p™)) - (@™ — d™)|
Z (5(dm+1,pm) . 5(dm,pm)) . (dm+1 _ dm)
2 A5||dm+1 _ dm”2‘
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The first step follows from Lipschitz continuity. The second step follows from
Cauchy’s Inequality. The third step follows from (7.20). The fourth step follows
from the strong monotonicity assumption. As a result,

Ls|p™ "t —p™l| = Aslld™ —d™. (7.21)

Now consider that

m+l m”

— H (drn.+l m

Ip

") — p(d™, pm ||
< |B(d™*, p™) — p(d™, p" Y|
= |p( p™) — p(d™, p™) + p(d™, p™) — p(d™, p" )|
< [Ip(d™, p™) — p(d™, p™)| + [B(d™, p™) — p(d™, p™ ||
<D, |ld™ = d™ + Pollp™ —p™ 7|

dm+1

¥

’C m— ™m m—
gop—j||pm~p N+ Pyl = p™ Y|

C m m—
=(Dq‘;+%) o™ — p|

The first step follows from the definition of the inverse demand function. In the
sccond step we add and subtract p(d™, p™). The first inequality comes from
the usual triangle inequality. The second inequality comes from the continuity
conditions. The last inequality comes from the inequality (7.21) derived above.
As a result,

m m 'CIS m _
o —pnl < (D547 Iom -

In both cases, we obtain that

™' —p" < (1-¢)-[p™-p"
where ¢ = min(e;, €5) and thus,
Ip™ —p" < Q-¢™ |lp" Pl (7.22)

It follows that sequence {||p™*' — p™||},, converges to zero at a geometric rate. As a
result it follows that sequence {p™}., is a Cauchy sequence and thus is a convergent
sequence to a price p which is a stationary equilibrium point. O

Corollary 7.4.1. Let (p*) be the sequence generated by Algorithm 1. The number
iy

of iterations required to reach a solution within e-distance from p~ is O(%_f%) where
T

D is the diameter of the feasible space K and € is as defined above.

Proof. The proof is similar to that in Corollary 7.3.1. a
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Chapter 8

Numerical results

In this chapter we illustrate some of the results obtained in this thesis through nu-
merical examples. The purpose of this exercise is to show the general trends for the
equilibrium pricing policies and revenues for each seller when different factors are
varied, and demonstrate the convergence behavior of the computational algorithmn.
We also compare the performance of the robust policy with non-robust counterparts
and experiment with the robustness budget for a seller. The goal is to demonstrate
tlie results qualitatively using simple examples.

This chapter is divided into three parts. In the first part we study the general prop-
erties of the equilibrium policies that the model results in. In particular, we observe
the changes in pricing policies when the following factors are varied:

1. Price sensitivity of demand in different time periods on the price levels in those
periods

2. Starting inventory of the seller and the effect on her pricing policy
3. Starting inventory of a competitor and the effect on a seller’s pricing policy

4. Number of sellers in the market.

In the second part, we study the convergence behavior of the algorithm. We track the
number of iterations it takes to converge when different parameters of the problem
are varied. The factors that potentially would affect the complexity of the problem
are:

1. Relative sensitivitics of demand to seller’s and competitors’ price

N

Starting cstimate of policies of each seller
3. Number of sellers in the market
4. Number of periods in the market.
In the third part, we study the performance of robust pricing policies and analyze

numerically the effect of varying the robustness budget for a seller. We also study
the effect of a seller adopting a robust policy on the equilibrium policies of all sellers.
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All computations in this thesis (including this example) were performed using
MATLAB! Version 6.1.0.450 Release 12.1 on a IBM ThinkPad? with a Mobile Intel
Pentium 4 Processor-M?® 1.60GHz CPU and 256MB RAM on a Microsoft Windows
2000* platform.

8.1 General properties of the equilibrium policies

In this section, we use examples with deterministic demand to show the general
properties of the policies at equilibrium. Note that the results presented hold for
general demand functions though in this section we use the linear demand case for
illustration. As mentioned above, we study the nature of the resulting equilibrium
pricing policies when the following parameters are varied:

1. Price sensitivity of demand in different time periods
2. Starting inventory of the seller

3. Starting inventory of a competitor

4. Number of sellers in the market.

The results observed agree with intuition. In particular, we observe that:

1. The higher the inventory that any seller has available for sale over the entire
horizon, the lower the prices that she sets. The revenue earned, however, is
higher even though the prices set are lower.

2. Correspondingly, an increase in the inventory of a competitor results in lower
revenues for the seller since the competitor reduces prices.

3. Prices are higher in periods with lower price sensitivities.

4. If the number of sellers is increased and the demand function adjusted for the
new split, the total revenue earned remains the same. Each seller’s share of the
revenue is increasing in (but not proportional to) her starting inventory.

For illustration purposes, we consider a two-seller multi-period, symmetric linear
demand example. For this example, I = {1,2} and T = {1,2,--.,10}. The demand
is linear in prices and symmetric with respect to both sellers and varies with time:
¥4 € I, the demand function Al = D{)ase — 3'pt + o'pl,. For this example, we assume
that the demand is symmetric for the sake of convenience. Note that the results hold
in general for asymmetric demand. We model markets where customers with lower
price sensitivities typically arrive in later periods. This is usually the case for airlines
etc. As a result, the sensitivity of the demand to the seller’s price (and also to her
competitor’s price) in the examples decreases towards the end of the time horizon.
In Table A.3 we study the trend in pricing policies with varying inventory balances.
We consider three cases with different inventories for each of the two sellers. In the first

1@ Copyright of The MathWorks, Incorporated 1984-2001.
“® Registered Trademarks of IBM Corporation 1994, 2003.
3® Registered Trademarks of Intel Corporation 2003.
1® Registered Trademarks of Microsoft Corporation.
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case both sellers have excess inventory with {C1,C2} = {3000, 2000} and the optimal
equilibrium policy results in neither of them selling their entire inventory. This casc
is effectively equal to the uncapacitated case. Figure B-3 shows the evolution of
the pricing policies as the algorithm iterates, the resulting equilibrium prices, the
remaining inventory over the time horizon under the equilibrium prices, and the
curnulative revenue from those sales. In the second case, only one of them is over-
inventoried ({C1,C2} = {3000,500}). Figure B-4 shows the results from this case.
Note that the seller with less inventory sets prices higher than the seller with higher
inventory. Even though the average price is lower for the latter, her total revenues
are higher. The prices in general are also higher than in the previous case. Finally,
in the third case, neither has sufficient inventory ({C1,C2} = {1000,500}) so the
demand supply imbalance results in a general price hike (Figure B-5).

In Table A.4 we study the effect of the number of sellers in the market. We start
with three sellers, each having an inventory of 500 units (Figure B-7). We compare
this to two other situations with only two sellers. In the first situation, we assume
that sellers C'1 and C'2 combine to form a single seller {with inventory 1000) and seller
C3 remains alone (Figure B-5). In the second situation, we assume that there are two
new sellers with inventories of 750 each (Figure B-6). Of course, we need to adjust the
demand function to reflect the presence or absence of a seller and make the markets
comparable. We do that by adjusting the parameters so that the net demand in the
market is comparable in all cases®. On doing that and solving for equilibrium, we find
that the total revenue earned by the sellers collectively does not change. In a nutshell,
a change in the number of sellers does not increase or decrease the competition in
the market or lead to price slashing. We also note that each seller’s share of this
total revenue is increasing in her starting inventory, but not proportional to it. The
seller with a lower starting inventory earns a higher payoff per unit inventory than
the seller with a higher starting inventory.

In Table A.5 we study the effect of an asymmetric demand function on the policies.
We compare the symmetric case from Figure B-6 in which each seller starts with an
inventory of 750. We keep the demand function for Seller 1 the same as before and
modify the demand function for Seller 2. The price sensitivities for both sellers are
shown in Table A.5. Note that we have made the demand less favorable for Seller 2
by increasing the &’s and decreasing the a’s. The result i3 shown in Figure B-8 We
note that Scller 2 has lower revenue than Seller 1. The total revenues are lower than
the symmetric case since the total demand function has been tightened. In Table A.6
we consider an asymmetry only in the 3’s for Seller 1 and 2. In particular, we increase
the 3’s for Seller 2 and decrease them for Seller 1. As expected, the revenue for Seller
2 1s lower than that for Seller 1 (Figure B-9).

51f the demand for Seller 7 in a three seller market is Lfi(pz,p_i), i = 1,2,3, then the demand
for a comparable two seller market d;(p;,p_;), © = 1, 2 should be such that is satisfies the following

condition:
Y. dipup) = Y dilpip_i)

i=1,2,3 i=1,2

when p; = po = p3 = p.
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8.2 Convergence behavior of algorithm

In this part we examine the convergence behavior of Algorithm 1 numerically as the
relative ratio of price sensitivities is varied and also as the initial estimate of prices
used in the algorithm is varied. We use the same numerical example as in the previous
section. In general, numerical experience led us to the following conclusions regarding
the practical convergence of the algorithm:

1. The algorithm converges to the equilibrium policies rapidly in practice.

2. The numerical results verify the theoretical analysis regarding convergence of
the algorithm to an equilibrium pricing policy when starting from different
starting points.

3. The number of iterations taken to converge were dependent on the starting
point. Convergence was tested by initializing the algorithms with different
initial prices. In general, numerical experience led us to conclude that the
number of iterations required to converge were smallest for cases where the
starting prices were taken close to the equilibrium prices for all sellers. However,
the rate of convergence did not depend on the starting point.

4. Changing the relative ratio of demand sensitivities to price affected the rate
of convergence in accordance to Theorem 7.3.1. The prices converged to the
equilibrium prices at a geometric rate roughly proportional to the theoretically
predicted rate.

We have previously shown that the convergence of Algorithm 1 is geometric. Note
that this only gives information about the number of iterations that would be required
by the algorithm and does not imply anything about the time needed to complete a
single iteration. The complexity of solving an iteration is the same as that of solving a
best response problem for each seller. The best response problem, in general, is a non-
linear optimization problem with a number of variables proportional to the number of
periods. The complexity of solving a best response problem is thus dependent on the
number of time periods. Consequently, the time taken to solve an iteration depends
on the number of sellers and the number of time periods.

In Table A.7 we study the movement of pricing policies as Algorithm 1 iterates
with varying initial estimates for starting prices. Figure B-10 shows how Algorithm 1
converges to the equilibrium pricing policy when starting from four different starting
points. We consider prices which are constant over all time periods as our initial
estimates. We find that convergence is faster when the starting point is close to the
equilibrium price. In Table A.9 we look at the same issue by measuring the 2-norm
distance between the price policy vector from successive iterations.

In Table A.8 we study the practical convergence behavior of Algorithm 1 with
varying relative price sensitivities. Figure B-11 shows the 2-norm distance between
the price vectors p in the current iteration and the previous iteration of Algorithm 1.
The four cases correspond to the choice of different ratios of the sensitivity of seller’s
demand to her own price and her competitor’s price. The fastest convergence (steepest
line) occurs for the smallest ratio and vice versa.
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In Table A.9 we study the practical convergence behavior of Algorithm 1 with
varying initial estimates for starting prices. Figure B-12 shows the 2-norm distance
between the price vectors p in the current iteration and the previous iteration of
Algorithm 1. The four cases correspond to the choice of different initial estimates of
the p. We observe that the rate of convergence (downward slope of the line) is the
same.

8.3 Performance of robust pricing policies

We will consider two numerical examples with four sellers and ten time periods, ie.
I={1.234}and T ={1,---,10}.

The starting inventories of the sellers in the first example (Robust demand example
(1)) are given by C = {55,466, 636, 843}. The demand is linear and of the form:

hHptpt €)= DL, B+ Y ofpf VielteT
JEIL, j#i

where &8 = (D! 8% o' ;) can take any value in an uncertainty set U} given by

tkase

D =Dt

tbase ibase

ut_t = (beue7ﬁ1t7at—i) ﬁzt € ( : ; )’

a; € (a;.min’a;max) v] 7&[[’

The actual uncertainty set was generated randomly (see Table A.10) and shown graph-
ically in Figure B-13. The values were generated so that the sensitivity to price in
different periods shows a decreasing trend with time in order to model a market where
customers with lower price sensitivity arrive in later periods. For the sake of simplic-
ity we consider the symmetric demand with respect to the sellers in this numerical
example (l.e. same price sensitivities across sellers’ demand function) though it need
not be so.

We use Algorithm 1 to compute the robust equilibrium policies. Figure B-14
shows the policies for each seller as the algorithm progresses. The robust equilibrium
pricing policics found when the algorithm converges are given in Table A 11 and
depicted graphically in Figure B-15. Figure B-16 shows the starting inventory level,
the total inventory sold and the total payoff under robust equilibrium conditions for
cach seller.

We pick Seller 3 (choscn arbitrarily) and analyze the performance of different
pricing and protection level policies under uncertainty. We compare two policies: the
robust pricing and protection level policy of Seller 3 (given in Table A.12) which is
obtained when the seller optimizes her policy using the robust best response prob-
lem: and the nominal policy that Seller 3 would have chosen if she had ignored the
uncertainty in the demand parameters and had optimized after naively assuming the
nominal values for the demand parameters (given in Table A.13). We call these poli-
cles the robust policy and the nominal policy respectively. We then generate 10,000
instances of the uncertain variables uniformly within the uncertain set and compute,
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for both policies, the payoft for Seller 3 for every generated instance. The histogram
for the payoff in the trials for the robust policy and nominal policy is given in Fig-
ure B-17 and Figure B-18 respectively. Figure B-19 shows the comparison between
the two. Since the assumption regarding uniformity of the uncertain parameters in
the uncertain set is arbitrary, it makes sense to consider the range instead of the
distribution of the payoffs. As shown in Figure B-20, the range of payoff from the
robust policy ([1208.55,1217.85]) is much narrower and the policy has much better
worst-case performance than the the payoft from the nominal policy (Payoff range:
[514.72,1393.43]).

The numerical example shows that the robust pricing model behaves like the
deterministic demand model in Perakis and Sood [54]. We find that the prices are
typically higher in periods where the demand sensitivity to price is lower. Prices set by
sellers with higher inventories tend to be typically lower than the prices set by sellers
with lower inventories, though their overall profits still remain higher. Regarding the
performance of the robust policies, we find that the payoffs are much less sensitive
to the uncertain parameters compared to the payoffs when policies which ignore
uncertainty in demand. In particular, the worst case performance of robust policies
is much better. Finally, Algorithm 1 that is used to compute the robust policics
converges to the equilibrium prices rapidly.

An interesting issue to consider is the effect of robustness on the equilibrium
prices. Before we move to a more complex example, we study the following two scller
example (robust demand example (2)). The demand function is symmetric and the
starting inventory is the same (3000 units) for both sellers. The demand parameters
are given in Table A.14 and shown graphically in Figure B-21. On running the
algorithm (see Figure B-22) the equilibrium policy obtained (Table A.16 and Figure
B-23) is symmetric with respect to the sellers since they are identical in all respects.
The average iteration time for the algorithm was 0.2721 seconds per iteration (with
a standard deviation of 0.0691 seconds.)

Now, we let Seller 2 adopt a policy that is robust towards the demand parameter
set in Table A.15 while Seller 1 still considers a policy optimal for the nominal values of
the demand parameters. The algorithm converges to a different equilibrium solution
(see Figure B-24). This leads to lower prices and a reduction in the payoff to both
sellers in general. The equilibrium prices obtained for both sellers are shown in Figure
B-25 and given in Table A.17.

Let us now compare the distribution of the payoffs for the sellers in the two cases
- one where both sellers assume the nominal values for the demand parameters; and
two, where one seller adopts a robust policy and the other does not. Figure B-26
shows the distribution of the payoff to either seller {identical) when neither of them
considers adopting a robust policy. The average payoff is 11,416 with a standard
deviation of 415 units. In the second case where Seller 2 considers a robust policy,
the average payoff is Sellers 1 and 2 are 10, 386 units with a standard deviation of 339
units, and 9, 713 with a standard deviation of 40 respectively. Note that on adopting
a robust policy, Seller 2's payoff has decreased more on average than Seller 1’s, but
with a much lower standard deviation. The comparison can be made in Figures B-27
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and B-28.

We now consider another numerical example (Robust demand example (3)) with
four sellers and ten time periods, ie. I={1,2,3,4} and T = {1,---,10}. The starting
inventories of the sellers are given by C = {1000, 1300, 1500, 2800}. The demand is
lincar and of the same form as in the previous example. Table A.18 shows the range
for uncertain parameters in the demand function for this robust demand example.
This is also shown graphically in Figure B-32.

On running the algorithm for this problem, we note that results similar to the
deterministic example are obtained. The equilibrium prices are given in Table A.19.
Interestingly, we note that the skewed distribution of starting inventory between
sellers leads to an equilibrium where Sellers 1, 2, and 3 manage to sell off their entire
inventory while Seller 4 manages to sell only part of his inventory (see Figure B-31).
This is similar to what was observed for the deterministic demand case. Figure B-30
shows the equilibrium policies found for the sellers. In this example, we will focus
on the average payoff of a seller and its randomness when the robustness parameter
is varied. We will do that by measuring the payoff when the uncertain demand
parameters are assumed to take values uniformly in the uncertainty range given above
but the seller adopts a policy that is robust to only a smaller range of parameters.

Figure B-29 shows the policies during successive iterations of the algorithm. The
time taken for an iteration averaged 0.5668 seconds (standard deviation: 0.0726 sec-
onds). We note, however, that most of this time was required by the graph-drawing
routines rather than the optimization routines. The optimization problems in an
iteration of the algorithm was not a bottleneck for problems of this size.

We now study the effect of robustness on the payoff. We select Seller 1 arbitrarily.
The robust and nominal policies for Seller 1 are given in Table A.20 and Table A .21
respectively. The range of payoff for Seller 1 when the robust policy was adopted was
from 2684.51 to 2702.01 while the same with the nominal policy was from 2303.80
to 4321.58. Instead of locking at only the range in these two extreme cases, let us
now look at the distribution for varying levels of robustness. We vary the range
of robustness for the seller and compute the corresponding robust policy. We then
observe the distribution of payoffs under this policy assuming that the uncertain
demand parameters take values randomly and uniformly within the original range.
The results are shown in Figures B-34 (and B-33°). As we move from the graph on
the top-left to the graph at the bottom-right (row-wise from left to right) we vary
the robustness of the policy adopted from very optimistic (Seller assumes that the
demand parameters are most favorable) to nominal (Center: Seller assumes that the
demand parameters will take the nominal values) to very robust (Seller assumes that
the demand parameters could be anywhere in the uncertain area). The graphs show
the distribution of the payoff when the actual values are uniform over the uncertain
set.

Figure B-34 shows the distribution of the payoff to Seller 1 when she changes her
policy from optimistic (top left) to nominal (center) to robust (bottom right). We

SFigure B-33 is the same as B-34 except that the distributions are scaled to make them clearer.
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note that the standard deviation reduces with decreasing optimism. Also, reduced
standard deviation for progressively more robust policies comes with a slight sacrifice
in terms of average payoff. Using this knowledge, a seller can adjust her budget of
robustness. Figure B-35 shows this tradeoff between average payoff and the standard
deviation for different values of robustness. The standard deviation of the payoff
(y-axis) verses the expected payoff (x-axis) as the robustness of policies is varied for
Seller 1. The right-most point corresponds to optimism (low mean and high std.
deviation) and the left-most point corresponds to robustness (some sacrifice of mean
with very low std. deviation). The nominal policy point is marked with a circle. The
actual values of the mean payoff and the standard deviation are given in Table A.22.
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Chapter 9

Conclusions

9.1 Contributions and future research directions

In this thesis we formulated a multi-period pricing model for an oligopoly where each
scller has a pre-determined starting inventory and additional production 1s not an
option. We showed that this problem does not have a structure that falls under the
framework of game theoretic models such as quasi-concave games or supermodular
games. We first focussed on the competitive aspect of the problem, and established
existence and uniqueness of the best response policy and the existence of equilibrium
pricing policies under deterministic demand. As traditional approaches do not apply
to this problem, a key innovation of this thesis was the quasi-variational inequality
reformulation. This reformulation allowed us to study existence and uniqueness of the
best response policy and existence of equilibrium prices and did not require the payoft
functions to be concave. We have shown cases (without the concavity condition on
the demand function) for which the market equilibrium does not exist uniquely. We
have also considered conditions guaranteeing uniqueness. However, the question of
uniqueness under when this condition holds is an interesting open question for future
rescarch. To the best of our knowledge, no such analysis has been done before for
multi-period price competition models for perishable products.

We addressed the issue of uncertainty in demand for the model via robust opti-
mization. We established existence and uniqueness of the robust best response policy
and existence of robust equilibrium policies under such uncertain demand. We have
some restrictions on the nature of the uncertainty sets for the demand parameters
which somewhat limits the kind of robustness that can be modelled. In particular,
we assume that the uncertainty set for the joint set of demand variables from all time
periods 1s a cartesian product of the uncertainty set for the set of demand variables
from every single time period (see Chapter 4). This assumption is required in order
to reduce the best response problem from the general bilevel program we presented
to a single level optimization problem that is easier to analyze. In the absence of
this restriction, the robust demand model faces the same kind of difficulties as the
stochastic demand model. This would be an interesting future research direction.

In this thesis we presented equilibrium results for the deterministic and robust
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demand models along with results for two approximate models for the stochastic de-
mand case. The line of analysis that was used for the deterministic and robust demand
models could not be used as is for the stochastic case. We established equilibrium
results for the special cases where sellers are faced with stochastic linear demand and
each seller adopts policies that maximize their expected payoff.

The two approximations we have discussed for the stochastic demand model 1n-
volve getting rid of either the fixed inventory constraint or the multi-period character
of the model. Another challenging research direction is the analysis of the stochas-
tic demand model without the approximations. This is closely linked to the future
research proposed for the robust demand model without the current restrictions on
the uncertainty set. This is done by assuming an over-sale penalty in the first ap-
proximation and by separating the different periods in the second approximation. In
either case, we essentially moved away from the multi-period fixed-inventory model
and in some sense, moved towards the periodic production review model. This makes
the model a supermodular game and the analysis from literature on supermodularity
can be applied. Although the approach followed for the deterministic demand model
and the robust demand model does not work for the stochastic demand model, we
see no reason why a completely different approach might not succeed.

We introduced and studied an algorithm for computing equilibrium pricing policies
and analyzed its convergence. In our algorithm we cycle between sellers and solve their
best response problems simultaneously at each iteration. There are several variants
of the algorithm. One of these is where we could modify the iteration by solving
the best response policies of sellers sequentially instead of simultaneously. This does
not improve the complexity of the algorithm but practically could be faster than
the aforementioned algorithm since we are incorporating information about sellers’
policies faster into the market. A numerical or analytical comparison of such variants
of the algorithm could be an interesting research direction for the future.

We established that under symmetric policies, (i.e. the same market conditions for
all sellers and tight capacities) the equilibrium policies globally maximize the payoffs
for all sellers. That is, we showed that the user-optimal and the system-optimal
solutions for the model are the same. This result is specific to the structure of the
problem we consider. For example, it is not clear if the same result would hold if there
were other interactions between the sellers (for example, if the sellers could buy and
sell products between themselves at market or pre-agreed rates). We also considered
a variant of our model (quantity competition model) from the literature, extending
it to a multi period setting, and studied the loss in the efficiency for this formulation.
We feel that this is a promising new research field. Finally, we illustrated our results
through numerical examples and compare the performance of robust policies with
non-robust policies.

There are several extensions to this model that we propose for future research. Thesc
include:

e Incorporating multiple products into the market: In this thesis we have
considered only a single product market. This could be extended to multiple
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products being sold by sellers, each having her own portfolio of products. The
interactions between the demand for one product with another would give rise
to interesting results. One could also study an extension where the sellers do not
have an inventory of products as such, but has a fixed capacity of a resource (or
multiple resources) that are shared by the products. Using such an extension
one could model advanced characterization of some markets like the network
nature of airlines for the purposes of fare pricing.

Stronger interaction between sellers: In the current model, the only in-
teraction between the sellers is through the demand function through which
they influence each other’s demand. One possible extension would be to allow
stronger interaction, for example, by allowing sellers to buy inventory from each
other at pre-determined or market-prevailing prices in each period.

Demand learning: We have assumed that the seller has no knowledge of the
demand faced by her competitors. In the real market, sellers try to guess the
market share of competitors and the price sensitivity of competitor’s demand
over time by observing the pricing behavior of sellers over successive games.
Such demand learning behavior could be a possible extension of this model.
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[ t \ 'fbase 5711311 'L.tnnminﬂ 6fmax 2mm [ afﬂnminal I '?max
1 250 | 162.80 | 180.89 | 198.98 | 32.99 | 36.66 | 40.33
2 250 | 1564.47 | 171.63 | 188.79 | 29.60 | 32.89 | 36.17
3 250 | 121.62 | 135.14 | 148.65 | 16.22 | 18.02 | 19.82
4 250 | 119.08 | 132.31 | 145.54 || 15.18 | 16.87 | 18.55
S 250 | 116.85 | 129.83 | 142.82 [ 14.27 | 15.86 | 17.44
6 250 [ 115.00 | 127.78 | 140.55 || 13.52 | 15.02 | 16.52
7 250 | 111,95 | 124.39 | 136.83 || 12.28 | 13.64 | 15.01
8 250 | 108.06 | 120.07 | 132.08 || 10.69 | 11.88 | 13.07
9 250 | 107.41 | 119.34 | 131.28 || 1043 | 11.58 | 12.74
10 250 93421 103.81 | 114.19 | 4.73 5.25 | 5.78

Table A.10: Robust demand example (1) in Chapter 8:
parameters in the demand function.
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[ Seller 1 | Seller 2 | Seller 3] Seller 4 ‘

2.20 1.96 1.86 1.74
2.21 1.97 1.87 1.74
2.27 2.02 1.91 1.79
2.27 2.02 1.92 1.79
2.28 2.02 1.92 1.79
2.28 2.03 1.92 1.80
2.29 2.03 1.93 1.80
2.30 2.04 1.94 1.81
2.30 2.04 1.94 1.81
0 2.33 2.07 1.96 1.83

— O 00 3 Oy UV N =

Table A.11: Robust demand example (1) in Chapter 8: Equilibrium prices.
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[¢ [ Price | Protection Level |
1 1.86 561.15
2 1.87 488.32
3 1.91 424.24
4 1.92 360.90
) 1.92 208.22
6 1.92 236.10
7 1.93 174.91
8 1.94 114.92
9 1.94 55.14
10| 1.96 0.00

Table A.12: Robust demand example (1) in Chapter 8: Robust Policy for Seller 3.
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|t | Price | Protection Level |
1 2.14 557.55
2 2.15 481.81
3 2.18 417.64
4 2.19 354.45
5 2.19 202,11
6 2.19 230.49
7 2.20 170.08
8 2.20 111.23
9 2.20 52.64
10| 2.22 0.00

Table A.13: Robust demand example (1) in Chapter 8: Nominal Policy for Seller 3.

114




| Bnom | onom |
139.1299 | 89.1299
132.1407 | 82.1407
129.1937 | 79.1937
126.2097 | 76.2097
111.5432 | 61.5432
110.6843 | 60.6843

08.5982 | 48.5982

95.6468 | 45.6468

94.4703 | 44.4703
0| 51.8304 | 1.8504

— O 00~ O U OB

Table A.14: Robust demand example (2) in Chapter 8: The demand parameters for
the non-robust competition.
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[t T Bpigl PBnom]| Pmax]| opin| %nom |  omax |
1 111.3039 | 139.1299 | 166.9559 | 71.3039 | 89.1299 | 106.9559
2 105.7126 | 132.1407 | 158.5689 | 65.7126 | 82.1407 | 98.5689
3 103.355 | 129.1937 | 155.0324 | 63.355 | 79.1937 | 95.0324
4 | 1009677 | 126.2097 | 151.4516 | 60.9677 | 76.2097 | 91.4516
5 89.2346 | 111.5432 | 133.8519 [ 49.2346 | 61.5432 | 73.8519
6 88.5474 { 110.6843 | 132.8211 | 48.5474 | 60.6843 | 72.8211
7 788786 | 985082 1 118.3179 | 38.8786 | 48.5982 | 58.3179
8 76.5174 | 95.6468 | 114.7761 | 36.5174 | 45.6468 | 54.7761
9 755763 | 94.4703 | 113.3644 | 35.5763 | 44.4703 | 53.3644
10| 41.4803 51.8504 | 62.2204 1.4803 1.8504 2.2204

Table A.15: Robust demand example (2) in Chapter 8: The range of demand param-
eters for the robust policies for Seller 2.
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| Seller 1 | Seller 2 |

34716 | 34716
3.5616 | 3.5616
3.6017 | 3.6017
3.6436 | 3.6436
3.8722 | 3.8722
3.8869 | 3.8869
4.1115 | 4.1115
4.1720 | 4.1720
4.1968 | 4.1968
0 54821 5.4821

= O 00 1 O A LN | T

Table A.16: Robust demand example (2) in Chapter 8: The identical equilibrium
prices for both sellers.
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|t | Seller 1] Seller 2 |
1 3.0515 | 2.7640
2 3.1473 | 2.8510
3 3.1901 | 2.889R%
4 3.2349 | 2.9306
5 3.4807 | 3.1539
6 3.4965 | 3.1683
7 3.7403 | 3.3899
8 3.8063 | 3.4500
9 3.8335 | 3.4747
10| 5.2764 | 4.7910

Table A.17: Robust demand example (2) in Chapter 8: The equilibrium prices for
sellers when Seller 2 adopts a robust policy.
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Dt [cR N a3 ab |at at
107.66 | 119.62 | 131.58 | 27.19 30.21 | 33.24
250 | 88.16 | 97.95 | 107.75 || 19.25 21.39 | 23.53
2501 69.18 | 76.86 | 84.55 | 11.52 12.80 | 14.08
250 | 65.95| 73.28 | 80.61 | 10.20 11.34 | 12.47
250 | 65.44 | 72.71 | 7T9.98 9.99 11.10 | 12.21
95.82 | 62.02 | 68.22 6.07 6.75 | 7.42
250 | 52.28 | 58.09 | 63.90 4.63 5.15| 5.66
250 | 50.67 | 56.30| 61.93 3.98 442 | 4.86
250 | 43.77| 48.64 | 53.50 1.17 1.30 1.43
0 250 | 42.91 47.68 | 52.45 0.82 0.91 1.00

|| T
[\
ot
<

= O 00~ O Ot = W S
| \)
)
o

Table A.18: Robust demand example (3) in Chapter 8: The range for uncertain
parameters in the demand function.
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Seller 1 | Seller 2 | Seller 3 | Seller 4 |

213 1.80 1.58 1.52
2.32 1.99 1.77 1.70
2.57 2.23 2.01 1.94
2.62 2.28 2.06 1.99
2.63 2.29 2.07 2.00
2.81 2.46 2.23 2.17
2.89 2.54 2.30 2.24
2.92 2.57 2.34 2.27
3.09 2.73 2.50 243
0 3.12 2.76 2.52 2.45

= O 00~ O Uk W) T

Table A.19: Robust demand example (3) in Chapter 8: Equilibrium prices.
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|t | Price | Protection Level |
1 2.13 896.88
2 2.32 791.88
3 2.57 688.18
4 2.62 585.13
5 2.63 482.2
6 2.81 382.27
7 2.89 283.89
8 2.92 186.31
9 3.09 92.85
10| 3.12 0.00

Table A.20: Robust demand example (3) in Chapter 8: Robust Policy for Seller 1.
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t | Price | Protection Level ]
1 4.40 822.86
2 4.37 680.32
3 4.33 571.46
4 4.32 468.32
5 4.32 366.09
6 4.29 280.94
7 4.28 202.06
8 4.27 126.04
9 4.23 62.26
10| 4.22 0.00

Table A.21: Robust demand example (3) in Chapter 8: Nominal Policy for Seller 1.
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[ ¢ | Mean Payoff | Std. Dev. |

1 2448.86 462.31
2 2653.21 462.98
3 2830.85 451.80
4 3007.85 448.98
5 3186.63 431.68
6 3346.20 413.21
7 3495.60 392.20
8 3635.83 373.32
9 3758.09 353.92
10 3875.65 321.42
11 3968.03 292.63
12 4045.08 247.43
13 4093.58 203.90
14 4121.41 157.04
15 4123.44 115.98
16 4106.84 80.15
17 4077.53 93.45
18 4039.17 36.58
19 3996.48 24.84
20 3951.66 17.86
21 3906.23 12.78
22 3860.59 8.69
23 3815.07 5.76
24 3769.83 3.26
25 3725.01 1.34

Table A.22: Robust demand example (3) in Chapter 8: Risk vs. Return for different
values of robustness.
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Appendix B

Figures
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Figure B-1: Representation of the min-cost network flow problem for the best-
response problem of Seller i.
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Figure B-2: Comparison of the general lower bound obtained for Zgy for a seller-

symmetric case (bottom line) with the actual ratio (top line) for a time- and scller-
symumetric quantity competition game.
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Figure B-3: Deterministic demand example from Chapter 8: Both sellers have excess
inventory. {C1,C2} = {3000, 2000}
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Figure B-4: Deterministic demand example from Chapter 8: One seller has excess
mventory. {C1.C2} = {3000, 500}
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iterations: Evolution of pricing strategy Equilibrium pricing policies: Seller 1 & 2

300 y 300
250t 250}
_ 200} — 200t
Q [
> b4 -
2 o o
o 150 150 /
100 100}... .. s
5Ot 50
0 n : 0 - :
2 4 6 8 10 2 4 6 8 10
Time period Time period
Inventory: Initial level & Level at end of period x10* Cumulative Revenues
1000— 15
800 9
—_ c
= 600 o
s 9 g T
[= = -~
¢ 400 ] L T
3J . e
200} o T
0 + . = 0 .
2 4 6 8 10 2 4 6 8 10
Time pericd Time period

Figure B-5: Deterministic demand example from Chapter 8: Neither of the sellers
have excess inventory. {C1,C2} = {1000, 500}
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lterations: Starting price =0 Equilibrium pricing policies: Seller 1 & 2
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Figure B-6: Deterministic demand example from Chapter 8: A redistribution of
inventory over sellers. {C1,C2} = {750, 750}
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lterations: Starting price =0 Equilibrium pricing policies: Seller 1 & 2
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Figure B-7: Deterministic demand example from Chapter 8: Increasing the number
of sellers to three. {C1,C2,C3} = {500,500,500}
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lterations: Starting price =0 Equilibrium pricing policies: Seller 1 & 2
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Figure B-8: Deterministic demand example from Chapter 8: Asymmetric demand
function {C1, C2} = {750, 750}

133



Iterations: Starting price =0 Equilibrium pricing policies: Seller 1 & 2
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Figure B-9: Deterministic demand example from Chapter 8: Asymmetric 4 in the
demand function {C1, C2} = {750,750}
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Figure B-10: Deterministic demand example from Chapter 8: Actual trend of pricing

policies over successive iterations of Algorithm 1 when starting with different initial
prices.
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Figure B-11: Deterministic demand example from Chapter 8: Convergence starting
with different a.
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Figure B-12: Deterministic demand example from Chapter 8: Convergence behavior
starting with different initial prices.
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Figure B-13: Robust demand example (1) from Chapter 8: The value of the uncertain
parameters 3 (top) and a (bottom) for any seller ¢ with time period ¢. The error bars
denote the uncertainty in the parameters.
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Figure B-14: Robust demand example (1) from Chapter 8: The pricing policies for
all sellers over successive iterations of the algorithm.
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Figure B-15: Robust demand example (1) from Chapter 8: The equilibrium pricing
policies for all sellers (From top to bottom are seller 1 though 4.)
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Figure B-16: Robust demand example (1) from Chapter 8: The starting inventory
level for all sellers and the total amount sold (top graph) and the total payoff for each
seller (bottom graph) under the equilibrium policies.
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Robust Payoff Histogram
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Figure B-17: Robust demand example (1) from Chapter 8 A histogram of payoffs
for seller 3 from the robust policy when uncertain parameters are sampled uniformly
from the uncertainty set.
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Nominal Payoff Histogram
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Figure B-18: Robust demand example (1) from Chapter 8: A histogram of payoffs for
seller 3 from the nominal policy when uncertain parameters are sampled uniformly
from the uncertainty set.
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Robust and Nominal Payoff Histograms
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Figure B-19: Robust demand example (1) from Chapter 8: A comparison of the
payoffs for seller 3 from the robust and the nominal policy when uncertain parameters
are sampled uniformly from the uncertainty set.
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Figure B-20: Robust demand example (1) from Chapter 8: A comparison of the range
of payoffs for seller 3 from the robust and the nominal policy under uncertainty.
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Figure B-21: Robust demand example (2) from Chapter 8: Values of the nominal
demand function parameters (o and j).
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Figure B-22: Robust demand example (2) from Chapter 8: The pricing policies of
both scllers over successive iterations of the algorithm as it converges to the equilib-
rium.
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Equilibrium policy of sellers
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Figure B-23: Robust demand example (2) from Chapter 8: The equilibrium prices
that the algorithm converges to. Note that the prices for Seller 1 and Seller 2 are
identical.
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Figure B-24: Robust demand example (2) from Chapter 8: The pricing policies over
successive iterations of the algorithm when Seller 2 adopts a robust policy.
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Equilibrium policy of sellers
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Figure B-25: Robust demand example (2) from Chapter 8: The equilibrium prices
that the algorithm converges to. Note that the prices for Seller 2 (who adopts a
robust policy) are lower than prices for Seller 1.
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Payoff Histogram: Nominal policy
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Figure B-26: Robust demand example (2) from Chapter 8: Distribution of payoff for
either seller when both adopt nominal policies.
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Payoff Histogram: Nominal policy
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Figure B-27: Robust demand example (2) from Chapter &: Distribution of payoft for
Seller 1 when only Seller 2 adopts nominal policies.
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Payoft Histogram: Robust policy
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Figure B-28: Robust demand example (2) from Chapter 8: Distribution of payoff for
Scller 2 when only Seller 2 adopts nominal policies.
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Figure B-29: Robust demand example (3) from Chapter 8: The pricing policies for
all sellers over successive iterations of the algorithm.
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Equilibrium policy of sellers
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Figure B-30: Robust demand example (3) from Chapter 8: The equilibrium pricing
policies for all sellers (From top to bottom are seller 1 though 4.

155



Inventory: Starting level and total quantity sold
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Figure B-31: Robust demand example (3) from Chapter 8: The starting inventory
level for all sellers and the total amount sold (top graph) and the total payoff for cach
seller (bottom graph) under the equilibrium policies.
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Figure B-32: Robust demand example (3) from Chapter 8: The value of the uncertain
parameters J (top) and « (bottom) for any seller 1 with time period ¢. The error bars

denote the uncertainty in the parameters.
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Figure B-33: Robust demand example (3) from Chapter 8: As we move {rom the
graph on the top-left to the graph at the bottom-right (row-wise from left to right)
we vary the robustness of the policy adopted from very optimistic (Seller assumes
that the demand parameters are most favorable) to nominal (Center: Seller assumes
that the demand parameters will take the nominal values) to very robust (Scller
assumes that the demand parameters could take any values in the uncertain set).
The graphs show the distribution of the payoff when the actual values are uniforin
over the uncertain set.
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Figure B-34: Robust demand example (3) from Chapter 8: These graphs show the
same distribution as Figure B-33. The y-axis in each graph has been scaled to show
the shape of the distribution more clearly.
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Payoft with different budgets: Mean Vs. Standard deviation
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Figure B-35: Robust demand example (3) from Chapter 8: The standard deviation of
the payoff (y-axis) verses the expected payoff (x-axis) as the robustness of policies is
varied for Seller 1. The right-most point corresponds to optimism (low average payoff
and high risk) and the left-most point corresponds to robustness (some sacrifice of
average payoff with very low risk). The nominal policy point is marked with a circle.
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