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Abstract

In 2000, Bond and Anderson exposed a new family of attacks on application programming
interfaces (APIs) of security modules. These attacks elicit compromising behaviors using
an unexpected sequence of legal calls to the module, uncovering severe security flaws even
in widely-deployed cryptographic hardware. Because these attacks do not depend on the
underlying cryptographic mechanisms, they often succeed even under the assumption of
ideal cryptographic primitives.

This thesis presents a methodology for the automatic detection of API attacks. Taking
a cue from previous work on the formal analysis of security protocols and noting these
attacks' independence from precise cryptographic mechanisms, we model APIs opaquely,
purely according to specifications. We use a theorem prover tool and adapt it to the
security API context. Several specifications of Cryptographic APIs are implemented for
analysis using a theorem prover known as OTTER . These implementations successfully
found known attacks, and provide evidence that OTTER will also be able to find new
attacks, and perhaps eventually verify security in arbitrary Cryptographic APIs. Based on
these implementations, various strategies, potential problems, and solutions are discussed
that can be applied towards the formal analysis of Cryptographic APIs. We detail how,
using these formalization and automation techniques, we have confirmed a number of known
attacks and exposed an undocumented behavior of the IBM 4758 CCA, a hardware add-on
crucial to a large portion of banking transactions worldwide. We show how the confirmed
attacks' complexity and unintuitiveness make a very strong case for continued focus on
automated formal verification of cryptographic APIs.

Thesis Supervisor: Ronald Rivest
Title: Professor
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Chapter 1

Introduction

1.1 Security APIs and Attacks

An Application Programming Interface (API) is a set of calls exposed by a hardware or soft-

ware module for the purpose of giving external components access to packaged functionality.

APIs enable a form of abstraction: changes to the implementation remain localized if they

do not alter the specified API behavior. Though each API call looks like a function, APIs

are not purely functional: internal state can be modified by function calls, and these changes

may affect the result of future function calls. Widely-known APIs include the Microsoft

Win32 API [19] for Windows client programming and the Posix Interface [27] for Unix

programming,

A security API is an API that uses cryptography to provide specific security functional-

ity and implements a policy on what interactions a user may perform. Most useful security

APIs give as much as they take away: certain features are offered, while others are purposely

missing in order to guarantee well-defined security goals. For example, an SSL accelera-

tor card might offer key-pair generation, fast encryption and decryption, and public key

extraction but never allow private-key extraction.

A security API attack is a breach of a target API's stated security goals that respects

the API boundary. That is, only legal sequences of legal calls are made. The potential

attack paths in an average API are numerous: usually, most API calls are available for

invocation at each step in an attack search.

Our goal is the formal analysis of these security APIs and the detection of attacks against

them. In this work, we describe a new methodology for the specification of security APIs
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in the language of first-order logic, the input language of many theorem provers. This new

methodology allows the application of many powerful search strategies. This methodology

was developed during the analysis of several security APIs (the Visa Security Module,

PKCS #11, and the IBM 4758 CCA) which we will use as a running examples. We note as

evidence of our technique's effectiveness that our automated reasoning tool found not only

all previously-known attacks on these APIs, but also a new variant of an attack on the IBM

4758 CCA unlikely to be discovered by the unaided human.

1.2 Our Contribution

Our main contribution to the analysis of security APIs is three-fold:

1. We provide what we believe to be the first application of formal methods and auto-

mated reasoning to the problem of API security.

2. We define a modeling methodology which greatly speeds the analysis of APIs, thus

making such analysis practical.

3. We reproduce all previously-known attacks on the studied APIs and expose new vari-

ants of an attack on the IBM 4758 CCA. These new variants is surprisingly long and

complex: it is unlikely that it would be found by the unaided human.

Modeling & Special Techniques. Our methodology models security APIs with a the-

orem prover. Specifically, we use OTTER [16]: an automated reasoning tool based on

first-order logic. At the most basic level, the model proceeds as follows:

* User knowledge of a message or value is represented as a predicate which is true only

for known values. That is, user knowledge of a value x is represented via the truth of

predicate U(x).

* Compound terms are represented by functions. For example, the encryption of x with

key y is represented by e (x, y), while the XOR of these two values is represented as

xor(x,y).

* Initial user knowledge is represented as axioms stating this predicate to be true for

given messages. For example, the user may know the primary account number (PAN)

of a given customer. Thus, the model includes U(PAN) as an axiom.

12



* The user may be able to make basic deductions without the use of the API. For

example, the user can XOR together two known values. Therefore, the model includes

these possible deductions as implications.

* The user can also make function calls to the API, therefore the function calls are

modeled as implications that map knowledge of input to knowledge of output.

* Properties of the underlying cryptographic primitives can be represented via equa-

tions. For example one of the properties of the XOR operation can be represented as

xor(x,y) = xor(y,x).

* Lastly, we ask the tool to find attacks by asking it to violate the security goals of

the API. That is, we ask it to prove that the security goals are false. If we wish to

find an attack that recovers a user's PIN, we might provide -U(PIN) as a goal. (The

actual form of this goal is slightly more complex, for reasons explained in Section 3.3.1.

However, the basic intuition is the same.)

This approach is not especially novel. Unfortunately, it is not especially fast either.

Analysis of this simple specification will prove to be intractable, for two basic reasons.

Firstly, the implications will allow the user to deduce an infinite number of terms, most of

which are ill-formed. That is, the deduction system allows the user to apply the XOR and

encryption operators in meaningless ways. Secondly, certain necessary optimizations may

cause OTTER to miss certain attacks. Specifically, an optimization called demodulation that

collapses all "equivalent" forms of a predicate to one canonical form may cause the tool to

miss attacks t;hat use non-canonical forms. However, demodulation is a powerful tool, and

it seems infeasible to analyze the API without it.

One of our contributions is a way of modeling an API that avoids both of these problems.

We impose typing on the deduction system' which restricts the possible deductions to

meaningful, well-formed terms. Secondly, we propose a way of representing implications that

simultaneously allows demodulation but captures otherwise-overlooked attacks. Indeed, this

technique can be thought of as making demodulation work "for us" instead of "against us."

Re-Derivation of Known Attacks. With these two techniques, it was possible to re-

discover in an automated way all previously-known attacks [1, 3, 8, 9], all of which were

1Not to be confused with the typing system of the API, which is being modeled in the deduction system.
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originally found "by hand". These attacks are similar in that they exploit the APIs' key

typing system. By changing the type of a key, we are able to either recover an unknown

key or establish a known key in the system.

The implications of either recovering an unknown key or establishing a known key de-

pend on the associated type of the key and the permissible API calls. For example, a known

or recovered exporter key can be used to export and recover other keys from the system.

We note that our model was developed without knowledge of some of these attacks.

However, all these documented attacks were found in a few minutes of computation.

A New Attack? In the process of confirming existing attacks, we discovered three vari-

ants of a particularly complex and devastating attack on the IBM CCA.

The weakness of the CCA's lie in the fact that key typing and secret sharing use the

same basic implementation: a simple XOR operation. Using a combination of secret sharing

and key unwrapping API calls with cleverly chosen key values, an attacker can cause various

forms of type confusion in resulting keys. With type confusion comes function confusion

and the ability to export sensitive data (PINs or PIN derivation keys) that should remain

wrapped.

The complexity of these attacks - about 12 steps including 8 API calls each - makes

this result particularly interesting: the role of automated verification is particularly strong

where the intricacy of the attack rules out unaided human discovery. Section 4.2 details the

specifics of the CCA transactions and the step-by-step attack.

Upon testing one of these attacks on an actual IBM 4758, we found that one specific API

call used in our attack did not function as advertised in the CCA specification documen-

tation. This undocumented behavior makes the attack impractical but doesn't undermine

the promise of automated API analysis: given a model correctly programmed from API

documentation, we were able to discover a new security attack.

1.3 Previous & Related Work

Security protocols, a close friend of security APIs, have been the subject of formal analysis

since 1989, when the seminal paper by Burrows, Abadi and Needham introduced BAN

logic [6]. Automated verification began soon thereafter with Meadows's work on the NRL

protocol analyzer [17].
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In 1995, Lowe used the CSP/FDR model checker to find and provably fix [13, 14] a

serious flaw in the Needham-Schroeder mutual authentication public-key protocol [20]. A

theorem prover tool was first used for protocol verification by Paulson [21]. The field has

since expanded [18], including complete formal modeling efforts such as Strand Spaces [26].

In 2000, Bond introduced security API attacks [1] and described a number of such

attacks against the key management of IBM's CCA [12]. [2, 3, 4, 7, 9] extended this work

with additional attacks and addressed the issue of secure API design. The scope of API

attacks was further expanded to include PIN processing for financial and banking systems

in [2, 5, 9] and popular standards such as PKCS#11 [23] in [8].

1.4 This Thesis

In this thesis, we first present evidence that the theorem prover OTTER is an excellent

tool for analyzing Cryptographic APIs. We then show how OTTER has re-derived known

attacks on the IBM CCA, the Visa Security Module, and the PKCS #11 APIs to show that

formal analysis is at least as powerful as manual analysis. We present a powerful, complex,

and automatically discovered attack on the IBM CCA documented specifications (Section

4.2) that was previously unknown, as well as two attacks that work on slight variants of

the actual IBM CCA. We then use the CCA API as an example with which to discuss the

theorem-prover based modeling and analytical techniques we developed and used to derive

the new attacks (Chapter 5). We conclude with a number of ideas for future work in turning

these initial results into a full-blown, generic toolkit for discovering Security API attacks

(Chapter 6).
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Chapter 2

The Theorem Prover Otter

In selecting a formal tool to use to analyze Cryptographic APIs, we considered several

important properties:

1. Is the tool easy to use and how well supported is the technology?

2. How quickly can the formal tool find an attack or verify security?

3. How accurately and easily can the input language of the formal tool be used to model

the specific functions in an API?

In the end the theorem prover OTTER proved to posses an excellent balance of these prop-

erties.

2.1 Using a Theorem Prover

The input to a theorem prover is a set of clauses (see definition 2.1.1). These clauses can

specify some initial knowledge, equality relations, implications, and the negation of the the-

orem one would like to prove. Then, the theorem prover attempts a proof by contradiction.

As an example, say one knows two facts: that John's father is Bill, and Bill's brother is

Joe. Lets also, say that one knows the implication: someone's father's brother is their uncle.

The first two facts represent some initial knowledge about the world, and the implication

is something that can be used to derive new knowledge about the world. Finally, let the

desired theorem be that John's uncle is Joe, which would be input in the negated form: Joe

is not John's uncle. The theorem prover would then simply use the first two facts and the

implication to derive a contradiction and concludes that John's uncle is Joe.

17



The language used above is the English translation of what the input to a theorem prover

may look like, which in the case of OTTER is first-order logic. This is further described in

Section 2.1.2.

2.1.1 Basic First-Order Logic Definitions

Before proceeding, it is necessary to understand the following first-order logic definitions

from first-order logic. For more detailed definitions, see [28].

Definition. A predicate represents a property or a relationship over zero or more terms.

An n-ary predicate is a predicate over n arguments. For example, the binary predicate

RAIN(x, y) could represent that it rained y inches on day x, and FATHER(x,y) could

represent the relationship that y is the father of x [28, p. 36,37]. All predicates will be

written in capitalized lettering.

Definition. A constant is a symbol that has a fixed value. For example TMK is a constant

that could represent the Terminal Master Key for a cryptographic card in an ATM. All

constants will also be written in capitalized lettering.

Definition. A variable is a symbol that does not have a fixed value. In the clause

FATHER(x, y), x and y are variables.

Definition. A term and a function are defined recursively. A variable is a term. A constant

is a term. A function over terms is also a term [28, p. 257]. All functions will be written in

all lower case lettering.

Definition. If P is an n-ary predicate symbol, there are n variables tl,t 2 ,. ,tn, then

P(tl,t2, , tn) is an atom [28, p. 257].

Definition. A literal is an atom or a negation of an atom. An atom is called a positive

literal and the negation of an atom is called a negative literal [28, p. 266]. A literal that

contains an equality is called an equality literal. Here an equality is simply a literal that

relates two atoms as equal, denoted by the = symbol.

Definition 2.1.1. A clause is a (possibly empty) set of literals. Within a clause, literals

are separated by an or symbol (denoted by "I" in OTTER ). In English, a clause gives us

a set of literals, at least one of which must be true. A positive clause is a clause that does

18



not contain any negative literals. A mixed clause is a clause that contains both positive

and negative literals. A negative clause is a clause that contains only negative literals [28,

p. 266].

2.1.2 Theorem Prover Reasoning

Theorem provers generally use an inference rule first introduced by Robinson called binary

resolution [22] to derive new knowledge. In the most general form, binary resolution asserts

that if we know that either A or B is true (denoted AIB) and also that -AIC is true, then

we can conclude that BIC is true [11, p. 1119]. For clarity, the predicates A, B, and C

can be thought to represent some facts in the world. Say A represents that it is raining

outside, B represents that children are playing outside, and C represents that the ground

is wet. Then, the first clause states that either it is raining or children are playing outside,

and the second clause says either it is not raining or the ground is wet. After resolving the

two clauses, we know that either children are playing outside or the ground is wet.

OTTER uses a form of resolution called hyperresolution. Hyperresolution combines the

result of any number binary resolutions into a single step. By combining several binary

resolutions, OTTER derives far fewer clauses than if simple resolution was used. Hyperreso-

lution applies to a set of clauses, one of which must be a negative or mixed clause, and the

remaining of which must be positive clauses. The number of negative literals in the mixed

clause must equal the number of positive clauses in the input set [28, p. 75]. The positive

clauses are resolved with the negative literals in the mixed clause and the result is always

a positive clause. For example, if we know the following clausesl:

FATHER(Nick, John)

FATHER(Mary, Nick)

- FATHER(x, y)I - FATHER(y, z) IGRANDFATHER(x, z)

hyperresolution will yield the clause: GRANDFATHER(Mary, John). The matching of

variable terms to constant terms is called unification [28]. Unification can also be used to

1For technical reasons, OTTER prefers this disjunctive form to the equivalent FATHER(x,y) && FA-
THER(y,z) -+ GRANDFATHER(x,z)
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match variable terms in different clauses. Unification was first introduced by Robinson [22].

Unifying a variable x with another term y will be written as x/y.

2.2 Benefits of Using a Theorem Prover to Model an API

2.2.1 Easy and Efficient Modeling

Previous work with theorem provers has provided excellent examples of modeling systems in

first-order logic. The field of AI has already done a significant amount of well documented

work modeling real world systems in first-order logic [10]. In particular, the literature

describing ways to model systems with state has proved to be very valuable. One of these

methods of representing state will be discussed below in Section 2.5, but in general theorem

provers tend to be limited in reasoning about systems with a lot of state.

2.2.2 Complete Modeling of an Adversary

Certain theorem provers are complete. Completeness means that if a theorem prover ter-

minates without finding a proof, no proof exists. In the ideal case, we would be able to

carefully tune OTTER to run in a complete manner. Then, if OTTER analyzes a Crypto-

graphic API and terminates without finding an attack, we can assert that no attack exists

for our model of the API and the attacker's abilities. Without completeness, a theorem

prover could only be useful in finding security holes and would never be able to verify that

an API is secure. The issue of verifying security of a Cryptographic API is discussed in

Chapter 5 and in Chapter 6.

Unfortunately, theorem provers are not, in general, guaranteed to terminate. For our

purposes, however, careful specification of an API will ensure termination in theory, but

memory constraints often prevent all possible proof possibilities from being considered.

2.3 Specific Benefits of Using Otter

Initial investigation into theorem provers quickly showed that OTTER is one of the best

documented and supported. In fact, on several occasions it has been very easy to contact

Larry Wos (one of the fathers of automated reasoning and author of several books about

OTTER) as well as the author of OTTER himself: William McCune. Both were very willing
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to assist our research.

OTTER is a theorem prover that has all of the general benefits specified above in Section

2.2 and also offers a great deal of control over how the reasoning is performed. It is possible

for the user to control everything from runtime constraints, such as memory allowances

and time bounds, to the actual type of inference rules that are used to reason about the

problem. Correctly setting the appropriate controls can allow OTTER to reason in a much

more efficient; and targeted manner. Some of the controllable settings that deserve particular

attention are: weighting and lexicographical ordering, paramodulation, demodulation, and

search pattern.

2.3.1 Weighting and Lexicographical Ordering

OTTER assigns every clause a weight [15]. The default weighting scheme assigns a clause a

weight equal to the number of symbols in the clause. For example, the clause:

-FATHER(Jenny, John) I-GIRL(Jenny) I DAUGHTER(Jenny, John).

would have a weight of eight. OTTER prefers to first reason about light clauses before

reasoning about heavier clauses. This heuristic is centered around the idea that it is more

valuable to know some specific fact, than to know that one fact is true out of a set of

possible facts. Recalling that clauses are composed of a set of literals, one of which must

be true (see definition 2.1.1), clauses that are composed of one or two literals are closer to

facts and tend to be lighter. Clauses that are composed of several literals tell us less about

the world and tend to be heavier [11, p. 1120]. An OTTER user can also define their own

custom weighting scheme in an effort to direct OTTER 's search based on some intuition

about the problem (see [28, p. 85]).

Weighting also serves to significantly decrease the search space OTTER explores. A user

can set a maximum weight for derived clauses, which will cause OTTER to instantly discard

any derived clauses that exceed that weight. By adjusting the value of maximum weight,

a user can adjust how much of the search space OTTER explores. Unfortunately, setting a

maximum weight for clauses means that OTTER cannot possibly be complete: a proof will

not be found if it requires an intermediate clause that is heavier than the maximum weight.

OTTER ' default weighting scheme is well suited to search for an attack in a Crypto-

graphic API. In general, longer clauses tend to be more complicated. These clauses may
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involve the XOR of many different constants, or the encryption of a complicated message

with a complicated key. By first looking at lighter clauses, OTTER will search for attacks

that involve simpler terms. In practice, this strategy almost always finds an attack faster

than a blind breadth-first search.

Weighting also provides an excellent heuristic for demodulation which is described in

Section 2.3.3. If OTTER derives two or more clauses that are equivalent, it is much more

efficient to only remember one of those clauses and discard the remaining equivalent clauses;

it can choose to keep the clause that is lighter.

When two equivalent clauses have the same weight, OTTER needs to rely on lexicograph-

ical ordering. Clauses are ordered lexicographically based on the comparison of symbols in

each clause. The default lexicographical ordering of symbols is alphabetical ordering. For

example, the two clauses FATHER(Andrew, Joe) and FATHER(Andrew, Joseph) can

be compared although they both weigh three. The first and second clause have the same

first symbol FATHER, as well as the same second symbol Andrew. However, the final

symbol Joe is lexicographically smaller than Joseph and so the first clause can be thought

of as "simpler" than the second clause. In the case where Joe refers to the same thing

as Joseph, the second clause can be discarded because it is equivalent. Note that because

every symbol is comparable to every other symbol, that lexicographical ordering provides a

total ordering of clauses. Especially when dealing with functions such as binary XOR, the

number of equivalent clauses that have the same weight can be relatively large, but with

weights and the total lexicographical ordering, there is a single unique clause that has the

lowest ordering. The application of this technique is described more completely in Chapter

5.

2.3.2 Paramodulation

Paramodulation is an inference rule that draws conclusions from pairs of clauses. This

inference rule was first described by Lawrence Wos and George Robinson in 1968 [29].

Paramodulation requires that at least one of the clauses contains a positive equality lit-

eral. This equality clause, called the from clause, is used to make a substitution in the

other, into, clause (see [28, p. 76]). A simple example would be to paramodulate from

the clause Joseph = Joe into the clause FATHER(Paul, Joseph) to produce the clause

FATHER(Paul, Joe). In this case, paramodulation yields a clause that is equivalent to
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the original into clause.

Paramodulation can also be used more generally. The following example is taken

from [28, p. 77]. If we paramodulate from the clause sum(O,x) = x into the clause

sum(y, minus(y)) = 0, we get the clause minus(0) = 0. Note that the variable x is unified

with the term minus(y), and y is unified with the term 0. Here the derived clause isn't

exactly equivalent to the original into clause, but a clear result of the two input clauses.

Although this example illustrates that paramodulation is a powerful inference rule, for our

purposes the derivation of equivalent clauses is the most important use of paramodulation.

Paramodulation can be of great importance when dealing with binary associative and

commutative functions such as XOR. When modeling the function XOR, we model it as a

function that takes in two arguments. Basic properties of XOR include:

Commutativity: xor(x,y) = xor(y,x).

Associativity: xor(x,xor(y,z)) = xor(xor(x,y),z).

Cancellation: xor(x,x) = ID.

Identity: xor(ID,x) = x.

Say we know the following things:

Implication: -U(xor(x,xor(y,z)))l -U(y) IGOAL(z).

Knowledgel: U(xor(xor(B,C), D)).

Knowledge2: U(C).

where GOAL(z) refers to the generic result of this implication. Although we have enough

information to conclude GOAL(D) and GOAL(B), OTTER will not be able to unify the impli-

cation clause with the first knowledge clause. However, OTTER can paramodulate from the

association clause into the implication clause to produce the equivalent rule:

-U(xor(xor(x,y),z)) -U(y)IGOAL(z).

At this point unification and hyperresolution can occur, unifying x/B, y/C, and z/D to

conclude GOAL.(D). To derive GOAL(B), OTTER must do a series of six paramodulations:
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Original: -U(xor(x,xor(y,z))) -U(y) GOAL(z).

Commute: -U(xor(x,xor(z,y))) -U(y) GOAL(z).

Associate: -U(xor(xor(x,z) ,y)) -U(y) IGOAL(z).

Commute: -U(xor(xor(z,x) ,y)) -U(y) IGOAL(z).

Associate: -U(xor(z,xor(x,y))) -U(y) GOAL(z).

Commute: -U(xor(z,xor(y,x))) -U(y) GOAL(z).

Associate: -U(xor(xor(z,y),x)) -U(y) GOAL(z).

Now unification can occur between the new implication clause and the second knowledge

clause unifying z/B, y/C and x/A. The result of this hyperresolution GOAL(B) 2. As this

example points out, paramodulation can take up a significant amount of time to derive

seemingly simple results. A detailed discussion of this problem appears in Chapter 5.

In the above examples, paramodulation is as an assistant for unification. Sometimes the

theorem prover knows a clause that is equivalent to a clause required for unification, and

paramodulation can change the form of the clause to allow for unification.

2.3.3 Demodulation

The goals of demodulation are to simplify and canonicalize clauses. For our purposes, we

can deal with these goals simultaneously. We use demodulation to canonicalize a target

clause into the simplest form. Demodulation is very similar to paramodulation. Demod-

ulation was first described by Wos, Robinson, Carson, and Shalla in 1967 [30]. Similar to

paramodulation, demodulation acts on two clauses, one of which must be a positive unit

equality clause. However, demodulation will only act to simplify a clause, while paramodu-

lation could derive a clause that is heavier than the original into clause. The clause derived

from demodulation will be equivalent to the original into clause, but have the lowest pos-

sible weight, and the lowest possible lexicographical order for that weight. An additional

restriction is that the equality clause used must come from a special set of clauses called

the demodulators. Finally, this simplification rule replaces the into clause with the derived

clause. This resulting clause is necessarily unique because any two clauses that have equal

weight and lexicographical ordering must consist of the same symbols in the same order.

In other words, if two clauses C1 and C2 are equivalent, they will demodulate to the same

2 Note that the knowledge clause could also have been paramodulated to fit the implication clause, but
this specific paramodulation would not necessarily be as widely usable as paramodulating the implication
itself.
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clause C3. Demodulation is applied to every initial clause and to every clause that is derived

by the active inference rule(s) (in our case, hyperresolution).

For example, if the target clause is:

FATHER(FATHER(Joe, John), Jerry)

and we have the demodulator:

FATHER(FATHER(x, y), z) = GRANDFATHER(x, z)

the target clause will be demodulated to:

GRANDFATHER(Joe, Jerry)

However, the reverse transformation is not possible. If the target clause is:

GRANDFATHER(Joe, Jerry)

and the demodulator is the same, the target clause will not be changed because the equiv-

alent clause:

FATHER(FATHER(Joe, John), Jerry)

has weight five, while the target clause has weight three.

In another example, say we have the target clause xor(xor(A, B), C) and a demod-

ulator xor(xor(x, y), z) = xor(x, xor(y,z)). The target clause will be demodulated to:

xor(A, xor(B, C)). Although the demodulated clause and the original target clause both

have the same weight, the demodulated clause has lower lexicographical ordering because

the first non-matching term xor(A, B) has a higher order than the term A (we define func-

tion terms to have a higher lexicographical order than non-function terms).

2.3.4 Search Pattern

OTTER has two possible search methods of particular interest. The first is a weight based

search method that reasons about the lightest clauses first as mentioned in Section 2.3.1.

The second is a breadth first search. The first method is almost always faster at finding a
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proof (an attack) because simpler terms tend to be more likely to be involved in an attack.

However, the second search method is very important. In the event that an API is too large

to exhaustively explore, it is more useful to be able to claim that we have searched through

all possible attacks that involve k or fewer steps, than to claim that we have searched

through all possible attacks that involve clauses with less than n symbols.

2.4 The Selection of Otter

OTTER clearly meets all three of the criteria outlined at the beginning of this chapter. It is

extremely well supported both in literature, as well as via direct contact with experts. In

addition, the optimizations and controls that are available allow for very efficient searching.

Finally, an API can be accurately and easily transformed into first-order logic. All of these

reasons led us to begin experimenting with OTTER .

2.5 Modeling an API Using Otter

Modeling an API in first-order logic for OTTER can be tricky. This Section will cover basic

modeling techniques that deal with state and knowledge, while Chapter 5 will deal with

more specific and advanced techniques for efficiently modeling an API.

In modeling an API, there are only two things of which we need to keep track. The

first is a change in the state of the device we are exploring. If a function call, for example,

changes the master key of a device, that function call can have an impact on how the device

behaves from that point forward. Certain states may restrict what function calls are allowed

on particular inputs, and to accurately specify an API, the state of a device needs to be

modeled. If we ignored the state of the device, we may find an attack that uses a function

call that is only possible in state S, followed by a function call that is only possible in state

S'. However, if it is impossible to get the device from state S to state S', the attack is not

valid.

The second thing that we need to keep track of is the change in attacker's knowledge.

Every function call that gives the attacker some knowledge will allow the attacker to po-

tentially use that knowledge to gain more knowledge, and eventually learn something he is

not supposed to know.

The fundamental unit of the model is the user knowledge predicate U. That is, user
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knowledge of a value FACT would be represented by setting U(FACT) to true. Merely placing

U(FACT) in the model will suffice to specify that it is true.

To model state, we use the same technique as is often used in the field of AI. We start

by using the binary predicate T(x, y) to denote that x is true in state y. For example, we

model truths in the original state with: T(x, Initial). Then, when a state change happens

due to some action S, we model truths in that new state by T(x, S(Initial)). A truth x may

be true before a state transition, but false after the transition. On the other hand, most

of the other truths may be unaffected by that given transition. This is called the Frame

Problem [10, p. 271] because only some truths are affected while the rest of the world stays

the same 3. A classic problem with state is modeling blocks on top of a table [10, p. 28].

Say there are originally 4 blocks on the table. Let On(x, y) denote that a block x is

directly on top of some object y. Initially, say all the blocks are on the table, so you have:

T(On(B1,Table),Initial).

T(On(B2,Table),Initial).

T(On(B3,Table),Initial).

T(On(B4,Table),Initial).

The state change that moves B1 onto B2 adds the relationship:

T(On(B2,B1),Put(B2,B1,Initial)).

Here, Put (x ,y,z) is a ternary predicate specifying the state where block x has been moved

on top of y from the state z. In addition to the direct result of moving a block onto another

block, we need to also know that all previous unaffected relationships still hold in the new

state Put(B2,B1,Initial). So, we say that any truths that are unaffected by the state

transition, are still true. Specifically:

T(On(B1,Table),Put(B2,B1,Initial)).

T(On(B3,Table),Put(B2,B1,Initial)).

T(On(B4,Table),Put(B2,B1,Initial)).

2.6 Other Tools Considered

Model checkers are another class of formal tool that was considered for the project. Model

checkers take in a description of a State Machine and attempt to verify that user defined

3This term comes from drawing cartoons where the background frame of a cartoon is often stationary
while the foreground has movement.
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invariants hold by searching through reachable states. It is very possible that tools such

as these will prove more effective in the future analysis of cryptographic APIs. Indeed,

Chapter 6 discusses a potential use for model checkers in analyzing APIs with state. At

the same time, the purpose of our research is to show that formal tools can be used for

analyzing Cryptographic APIs, and at this point finding the best tool is less important than

finding an effective tool.
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Chapter 3

Formal Derivation of Known

Cryptographic API Attacks

We have specified several Cryptographic APIs in the first-order logic and input them into

OTTER . These specifications have been successfully used to find known attacks on these

APIs. The particular way in which an API is specified before fed into OTTER, as well as

the specific mode you run OTTER in, has proven to make a very significant difference both

in terms of the running time, and completeness of OTTER .

3.1 The Visa Security Module and the IBM 4758 CCA

The Visa Security Module (VSM) and the IBM Common Cryptographic Architecture 4758

(CCA) API are hardware-based architectures used to facilitate banking transactions. Both

devices have similar security goals, and have similar restrictions to enforce those goals.

These basic principles are described in this Section and specific attacks on each device are

discussed in more detail below in Sections 3.2 and 3.3.

The VSM and IBM CCA enable secure banking operations, and are used in Automatic

Teller Machine (ATM) networks for two important tasks: secure bank-to-ATM/bank-to-

bank communication and Personal Identification Number (PIN) verification.

Both the VSM and the IBM CCA accomplish these tasks using:

* a symmetric-key encryption scheme,

* a unique master key,

29



* secret sharing [24],

* key wrapping, and

* key typing

Key wrapping consists of protecting a sensitive symmetric key by encrypting it with

another key. The symmetric-key-as-plaintext is said to be "wrapped" under the key that

encrypts it. This key wrapping allows the module to maintain no more than a single master

key KM in secure storage. If the module needs to work with another key k, k is wrapped

under the master key (i.e., encrypted as {k}KM) and stored in insecure memory external to

the device. Once keys are wrapped, the device will not simply unwrap the key and reveal it

in the clear. Instead, it acts as a gate-keeper to the wrapped key: all operations with that

key are performed by API requests, and all underlying computation is performed securely

inside the hardware security module.

Finally, key typing provides a mechanism for specifying a key's precise usage domain. A

DATA key, for example, can be used to encrypt and decrypt data in a customer transaction.

However, a DATA key should not be used to wrap other keys: allowing this wrapping would

allow an attacker to easily unwrap the key and obtain it in the clear by issuing a simple

decrypt call. The VSM and CCA APIs are designed to prevent this (among other things).

Along with preventing fraudulent behavior, both hardware devices need to:

1. enable the ATM network to cryptographically authenticate the customer, and

2. prevent anyone - including bank insiders - from gaining access to customers' ac-

counts.

The devices attempt to meet these goals by issuing each customer a Personal Identification

Number (PIN) which is cryptographically derived from their Primary Account Number

(PAN) 1. That is, the bank randomly generates a PIN-derivation key P, which will be used

to generate PINs for all customers. Then, a customer's PIN is generated by encrypting that

customer's PAN with this key. We denote the encryption operation as:

PIN := {PAN}p (3.1)

1There are other PIN generation/verification techniques such as the VISA PIN Verification Value method,
but we will not go into them here.
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(Technically, the PIN is only the first few digits of this encryption, but this will make no

difference to our model. Also, some banks allow their customers to "change" their PIN,

which only means that a PIN offset is stored in the clear on the bank card.)

Thus, the banking hardware devices must:

1. compute a customer's PIN by encrypting the PAN of the swiped card under the

PIN-derivation key, and

2. compare this true PIN with the number punched in by the human customer.

If these two values match, the device will allow the transaction to proceed. To protect

the customer and to limit fraud, the device must prevent the customer's true PIN and the

PIN-derivation key from ever leaving the card. Note that loss of the first endangers the

assets of one customer, while loss of the second puts at risk the accounts of all customers.

3.2 An Attack on the VSM

3.2.1 Overview of Relevant VSM Policy and Functionality

In order for banks to set up a new remote ATM, they have to somehow securely transfer

secret keys to the VSM in the new ATM. To accomplish this task requires a new set of

functions. When a bank initially deploys an ATM, they need to establish a shared secret

key. The bank accomplishes this task by creating two key shares KMT1 and KMT2 and

sending each share to the new ATM. Each share would be entered separately by a different

person, and then XORed together to create a whole key KMT [3, p. 5]. This initial shared

secret key is called the terminal master key or KMT and can then be used to obtain other

keys [3, p. 4]. Once the KMT is established, various other master keys can be put on the

remote VSM. Because the VSM has limited storage, other keys (non-master keys) are then

stored off of the device, but encrypted under a master key. The particular master key used

to encrypt another key defines the type of that key. For example, one type of master key is

the master terminal communications key, or TMC. All keys that are stored off the device

encrypted under TMC are considered terminal communications keys. The type of a key

determines the functionality of that key and how securely the VSM protects that key. The

attack described below takes advantage of weak security policy associated with terminal

communications keys.
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A terminal communications key, from now on referred to as the KC, is used to com-

pute the MAC of messages received by the VSM. This key is not viewed to be of critical

importance because the cleartext of the message received is assumed to be known and so

KC can be used to encrypt and decrypt arbitrary data [3, p. 6]. These functions will be

referred to as "Encrypt with Communications Key"

m, {KC}TMC -+ {m}KC

and "Decrypt with Communications Key"

{m}KC, {KC}TMC -+ m

By contrast, the PIN derivation key can't be used to encrypt arbitrary data, otherwise

anyone could calculate a PIN number from a primary account number. Because a termi-

nal communications key KC is viewed as non-critical, there is a transaction that allows

it to be entered into the VSM in the clear, and the key is then immediately encrypted

under the appropriate master key to yield {KC}TMC. This function will be called "Create

Communications Key".

KC -+ {KC}TMC

In order for KC to be useful for computing the MAC of messages sent between VSM

modules, it needs to be distributed. As such, there is a second function that allows a

terminal communications key to be re-encrypted under any key of type "terminal master

key". This function will be called "Re-wrap Communications Key".

{KC}TMC -+ {KC}TMK'

where TMK' is an arbitrary terminal master key [3, p. 6].

The VSM only stores nine master keys, which only allows for nine different types of keys.

As such, the PIN derivation key P and the terminal master key KMT are both considered

the same type. This may seem reasonable because both P and KMT are of similar critical

importance.
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3.2.2 The Attack

Given the outlined facts above, we can now mount an attack on the VSM.

1. Enter in the PAN of an ATM card as a terminal communications key by calling

"Create Communications Key". This yields {PAN}TMC.

2. Then, the PAN can be re-wrapped under the "terminal master key" P by calling "Re

wrap Communications Key". This yields {PAN}p.

3. The attacker now knows the PIN number for the account PAN.

For a more detailed description of this attack, see [3].

3.2.3 Verifying the Attack

A first-order logic model of the VSM API was quickly written based on a single spec sheet

describing the transactions. Once the initial model was created, OTTER quickly found the

attack described after generating about 7.4 billion clauses and keeping about 11 thousand

clauses. Each generated clause is the result of using existing knowledge and applying an

online transaction. Most of the clauses are discarded immediately because they exceed the

weight limit as described in Section 2.3.1. Because of variance in actual timing data on

different machines under unknown load, the number of generated clauses and kept clauses

is the standard measure of how fast OTTER reasoned about a problem. For reference,

however, this attack was found in about four minutes of wall-clock running time.

Using a later revision of the model using techniques described in Chapter 5, the number

of generated clauses was reduced to 100 clauses generated and 105 clauses kept. Not only

did this later model run much faster, it also included off-line abilities such as the ability

to bitwise XOR two strings and to encrypt one string under another string. In addition,

OTTER was run in a mode that we believe to be complete. If we could prove that OTTER

was indeed complete, it would allow us to assert that no other API attack exists on the

VSM that uses the functions we defined in our model.

3.2.4 Conclusions

Modeling the VSM and successfully finding a known attack served three main purposes:
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1. This immediate and satisfying result partially motivated us to focus more attention

on OTTER as a potentially effective tool for analyzing Cryptographic APIs.

2. Because no further attacks were found, combined with the fact that OTTER was

running in what we believe to be in a complete mode, allows us to believe that our

VSM model has exactly one API attack. As will be pointed out in Chapter 5, the

assertion that a model is in fact a replication of the actual abilities of an adversary

is a problem with no immediate solution. Chapter 6 will discuss the the necessity to

prove that OTTER is running in a complete mode.

3. Revisions of the VSM model using coding strategies developed later served as a pow-

erful benchmark that proved our new strategies are effective.

3.3 The 4758 CCA Co-Processor

3.3.1 Overview of the 4758

In order to transmit sensitive data from one module to another, the IBM CCA requires

that two communicating 4758's must share at least one communication key KEK (Key-

Encrypting Key). KEK is stored locally at each end in external memory, wrapped under

that CCA's master key. Once each CCA has a copy of KEK, communication between

the two can easily be secured. Much like the VSM, simple secret sharing bootstraps the

secure transmission of KEK from one CCA module to another: one module creates a fresh

random key KEK (a key-encrypting key). KEK is not directly exported from the module.

Instead, an elementary secret sharing algorithm is employed to produce three shares, called

key parts. The key parts, when XORed together, produce the original key KEK. Each

key part is sent by individual courier and recombined using special CCA API calls. The

complete KEK is never available in the clear outside the CCA's secure boundary: as soon

as an operator imports the first KEK share, the resulting partial key is wrapped under

the CCA's master key as usual. The second and third shares are added in similar ways,

with the prior wrapped partial key as input and the newly recombined and wrapped key as

output.

It is unwieldy to send three couriers for every key to be shared between two 4758

modules. Therefore, once KEK is shared between two 4758 modules, other keys (including

34



{KEKI},KeEXP CCA1

:P KM1 'PIN

,PIN 'KM 1

I I
I I

I PI}KEKePIN I
l I

I I

I I

CCA2

KM2

{ KEK } KM2 IMP 

PIN I

{P}KM2 EPIN I

Figure 3-1: Transfer of P from CCA-1 to CCA-2 via KEK

the PIN-derivation key P) can be wrapped with it and sent from one to the other. These

new keys (and KEK itself) can then be used for:

* deriving PINs (i.e., acting as a PIN-derivation key),

* encrypting arbitrary data, such as customer transactions,

* acting as an importer key, and

* acting as an exporter key.

The last two require a brief explanation. Importer keys are those keys trusted to secure

other keys arriving from some external source. Exporter keys are trusted to secure keys

being sent to some external destination. In both cases, the importer and export keys wrap

the key to be secured. For example, KEK will be generated by one CCA and split into

three parts. The generating CCA might also designate KEK as an exporter key. After

this key is reconstructed from the three parts, the receiving CCA will most likely designate

KEK as an importer key. Thus, the first CCA can generate a new key K1 and export it

by wrapping it with the exporter key KEK to yield {K1}KEK. Likewise, the second CCA

can import it by decrypting (unwrapping) {K1}KEK with the importer key KEK. Once

again, once both modules have a shared key (this time, K1) they may use it for a joint

cryptographic operation.

Because much of the 4758 CCA transaction set (as well as our attacks) concern this

dedication of keys to roles, we describe it in further detail. Each individual 4758 card

contains a master key KM. The on-board storage of a 4758 card is limited; with this

master key, protected storage can be implemented using key wrapping and normal, external

memory. Instead of storing the PIN-derivation key P in the 4758, for example, the ciphertext
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{P}KM can be stored externally. Of course, this ciphertext must be fed to the 4758 by the

operating system when the PIN-derivation key is required. In order to denote key type

information, the CCA specification fixes a set of control vectors: binary strings that are

public and unique for a given type across all implementations of the CCA. The CCA control

vector system has many thousands of types, but we need only consider four:

* PIN: used for PIN-derivation keys

* IMP: used for importer keys,

* EXP: used for exporting keys, and

* DATA: used DATA keys.

To dedicate a key to a particular purpose, it is wrapped and typed to that control vector.

That is, it is encrypted not with the master key KM, but with the XOR of KM and the

relevant type. Hence, the PIN-derivation key will actually be stored as {P}PINGKM For

the rest of this paper, we will speak of a key as being the type used in the wrap-and-type

operation. That is, when we say that a key K is a "DATA key," we mean that the ciphertext

{K}DATAEKM is stored externally to the 4758. Similarly, if the ciphertext {K}IMPGKM is

stored, then K can be used as an importer key. Note that it is possible (and sometimes also

correct) to obtain a given key wrapped and typed under more than one control vector. For

example, a key K can be both of type EXP and of type PIN. This key K would be equal

to {K}EXpePINEKM.

Note that the method for recombining key parts also uses the XOR operation. This

dual use of XOR will be basis of our attacks. Before we describe the attacks, though, we

present the required API commands in detail.

3.3.2 4758 Functions

The 4758 CCA offers dozens of functions. Here, we present only those functions necessary

for our attack. Unsurprisingly, these functions also concern key management as described

in the previous sub-section.

Encrypt with Data Key. A DATA key can be used to encrypt arbitrary data. This

call takes as input an arbitrary message m and a data key, and produces the corresponding

ciphertext:
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m, {K}KM(DATA 4 m3K

Decrypt with Data Key. Conversely, any ciphertext can be decrypted with a DA TAkey:

{m}K , {K}KMeDATA -+ m (3.3)

Key Import. If K1 is an importer key, then any key K2 wrapped with K1 can be

imported. Note the difference between K1, a key wrapped under the CCA's master key

KM and typed as an importer key, and K2 wrapped under K1 and typed as T. The type

T of K2 must be known in advance and provided as an input to this function call:

T, {K1KMeIMP, {K 2 }K1i T -' K 2}KMeT (3.4)

Key Export;. This is the sister function of Key Import. If K2 is wrapped and typed as

T and K1 is an exporter key, then this call will produce K2 wrapped under K1 and of type

T. Again, the type T must be provided as input:

T, {K1}KMqEXP, {K 2}KMe T -+ {K2}K1D T (3.5)

The intent is for this wrapping to be sent to another CCA which has K1 as an importer

key.

Key Part Import. As mentioned above, the original key shared between two CCAs,

KEK, is split into three parts, K1, K2 and K3. These parts are sent in the clear. The Key

Part Import finction is used to merge them at the other end.

We will only describe the use of this function to import the third part. After the first

two parts (say, K1 and K2) are entered, their XOR sum is wrapped under the receiving

CCA's master key KM. Furthermore, K1 K2 will have already been typed as T, the

intended type of the completed key. However, the key-part bit, a special bit, will have been

set to indicate that this is only a partial key and not yet completed. (We denote this via

the function kp() on the control vector.)

When the third part is entered, the completed key KEK = K1 K2 D K3 will be
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produced, wrapped under KM as type T, with the key-part bit turned off.

K3, T, {K1 E K 2}KMekp(T) - {K1 D K2 G) K 3 }KMeT (3.6)

Key Generate. The "Key Generate" function is used to generate matching pairs of

import and export keys. The key is randomly generated inside the 4758 and revealed only

once wrapped under the master key. One use of this function, as published in the 4758

manual, is to allow a user to change the key type of another key. The initial step is to:

Use the KeyGenerate verb to generate an IMPORTER/EXPORTER pair of

(Key Encryption Keys) with the KEY-PART control vector bit set on. Then

use the KeyPartlmport verb to enter an additional key part... [25, p. 407]

This function allows a CCA to generate a new key-encrypting key KEK2 key. The

importer key version is sent to another CCA (via a KEK wrapping), while the exporter

key is kept locally. KEK2 becomes a shared key between the two CCAs with appropriate

typing to export keys on one end and import them on the other.

KEK2 := RandomKey()

() - {KEK 2}KMekp(IMP), {KEK 2}KMDk(EXP) (3.7)

3.3.3 Preliminary Conditions

The following attack relies upon a number of assumptions about the environment in which

the 4758 is operated, manifested in the initial knowledge, and of course upon the specifics

of the model. We assume an exchange of a key encryption key, KEK, for the first time

between two banks, followed by sharing of the source bank's PIN-derivation key, P. KEK

is transported by multiple couriers and entered using the Key Part Import command, while

P is received in encrypted form, wrapped with KEK.

Our model considers the scenario where type-casting is still used by the recipient bank

(i.e. the improved integrity control on key part entry in version 2.41 of the CCA has not

been enabled in the access control configuration).

We assume that the first two couriers have correctly delivered their key parts K1 and K2,

to begin the construction of a KEK = K1 E K2 E K3. Thus, K1 G K2 (more conveniently
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written as KEK K3) exists in wrapped form as:

{KEK e K3 }KMEkP(IMP)

In our attack, the third courier is an accomplice.

3.3.4 The Known Attack

The previously known attack on the 4758 CCA type casts the existing PIN Derivation Key

P to be of type DATA, and then use that key to encrypt any Primary Account Number.

Recall that the encryption of a PAN is the PIN number for that account (see Section 3.1).

That is the attacker knows K3 and {P}KEKePIN.

1. The third courier delivering K3 as the final part of the initial importer key KEK

delivers K3 e DATA ® PIN instead. This outputs: {KEK D DATA e PIN}KMeIMP

instead of the expected {KEK}KMeIMP. In English, this yields the key KEK )

DATA Et) PIN as an importer key.

2. The attacker now waits for the originating bank to send the encrypted version of the

PIN-derivation key P across the wire: {P}KEKePIN.

3. The attacker now calls Key Import using the importer key from the first step to import

the Pin Derivation Key under the claimed type DATA. Note that: {P}KEKDATAePINeDATA

= {P}KEKePIN which is assumed to be known. The result is: {P}KMEDATA, or the

Pin Derivation Key as a Data Key.

4. Now, any PIN number can be derived from a Primary Account Number by feeding

the Primary Account Number into the card as data to be encrypted under the DATA

key P.

3.3.5 The Verification of the Attack

Once the specification had been written, the attack was initially verified by generating 5.45

billion clauses and keeping 8312 clauses. Later, we trimmed the search down to generating

only 11,379 clauses clauses and keeping 5,456 clauses. In wall clock running time, this
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was an improvement of about a thousand fold. The original attack took around sixteen

minutes to run, while this attack took a mere second to run. Note that the original search

was conducted with OTTER running in a non-complete mode. In other words, it would

have been possible for OTTER to miss the attack, but the necessary clauses happen to be

sufficiently simple that they were not discarded as too heavy (see Section 2.3.1). Most

of the simplification involved efficiently dealing with the off-line ability of the attacker to

preform XOR and using demodulation to eliminate redundant clauses. In both forms of

the attack, we had to limit the attacker to only using keys that were not the result of a

previous encryption to perform new encryptions. For a justification of these approaches,

see Chapter 5.

3.4 Public-Key Cryptography Standards #11

As stated in [23, pg. 12]:

(PKCS #11) was intended from the beginning to be an interface between ap-

plications and all kinds of portable cryptographic devices, such as those based

on smart cards, PCMCIA cards, and small diskettes.

At the heart of PKCS #11 is an API designed to verify the digital identities of users. A

person's digital identity is usually in the form of a private key that is stored on a smart

card (or similar device) she carries around much like a drivers license. Then, this smart

card can interface with various hardware systems to positively identify the user. PKCS #11

describes a standard for the interaction between hardware systems, also known as tokens,

and the associated software that can leverage that identity to perform some application.

The actual token can do any number of things, and in the words of Jolyon Clulow:

a token is a device that stores objects (e.g. Keys, Data and Certificates) and

performs cryptographic functions [8, pg. 412].

As an example, one could design a hardware/software device for secure e-mail. The

basic device could take in a digital identity card as well as a password to grant a user the

appropriate level of security clearance to access an encrypted e-mail database. The device

would need to be able to generate key pairs to issue to users for authentication. To manage

these keys, it should be possible to export a wrapped key to a user's ID card, and import
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a key from a user's ID card. A normal user, once identified, should be able to only access

their stored e-mail, and should also would be able to sign/encrypt e-mail using their unique

private key. This level of complexity requires that keys be explicitly typed. Recall that a

key should not be able to both decrypt arbitrary data, and wrap a key for exporting (see

Section 3.1).

In general, PKCS #11 is not a strict API as the other devices discussed in this the-

sis. PKCS #11 describes potential functions a token could implement. In addition, the

specification places as few restrictions on the functions as possible, leaving it up to the

implementors of a token to specify the exact behavior of those functions. On one hand,

this places a large burden on implementors of PKCS #11 devices. A device could meet the

PKCS #11 specification, but offer very little real security. On the other hand, this allows

the standard to be as widely applicable as possible. Finally, although the attack described

below could work on an implementation of PKCS #11 because the functionality required to

perform the attack is within the standard, it is likely that good implementations of PKCS

#11 will resist this attack.

3.4.1 The Attack

The main security of PKCS #11 is based on various keys stored on a token along with

the attributes of that key. The attribute vector of a key serves the same purpose as key

typing served in the VSM: they are necessary in order to deal with key management and

the normal cryptographic functionality of the token. The attributes specify if a key can:

* Wrap another key for exporting (encrypt another key).

* Be wrapped for exporting.

* Encrypt data.

* Decrypt data.

* Sign data.

* Be exported in the clear.

* Sign data.

* Verify data.
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Unlike the VSM which has very little state, a PKCS #11 token has an attribute vector

associated with each key in the device. In order to manage keys, PKCS #11 describes a

function SETATTRIBUTE that allows the attribute vector for a key to be changed. This

function takes in a key, an attribute, and a new value and alters the attribute vector of that

key.

An attacker could:

1. Call SET-ATTRIBUTE on a key K1 to alter its attribute vector to allow it to wrap

another key and also decrypt data.

2. Then a target key's attribute vector can be changed to allow it to be wrapped and

extracted by another call to SET-ATTRIBUTE.

3. The target key K2 can be exported wrapped by K2 to yield {K2 }K 1.

4. Finally, the "message" K 2}K1 can be decrypted by the key K1 to yield K2 in the

clear.

This attack was originally conceived by Jolyon Clulow in his paper [8, pg. 416, 417].

3.4.2 Verifying the Attack

Our specification of a PKCS #11 token was our first exposure to modeling state in an

API. Our initial model used a method first described in section 2.5. In particular, the

predicate ATT(x,y) denoted the key x has attribute y set to true. For example, if the

constant DES1 represented a DES key, and the constant WR represented that a key could

wrap another key, then ATT(DES1,WR) would represent that the key DES1 could wrap another

key. However, because of state, we need to know in which states a particular attribute is

true. The predicate T(x,y) was used to denote that x is true in state y. For example,

T(-ATT(DES1,WR), INITIAL) represents that in the Initial state the key DES1 can not be

used to wrap other keys. Changing that attribute constitutes a state change and can be

represented by the predicate: T(Att(DES1 ,WR), TOGGLE(ATT(DES1,WR), INITIAL)) where

the predicate TOGGLE(ATT(DES1,WR) ,INITIAL) represents the new state that results from

toggling the value of the wrap attribute for the DES1 key from the Initial state.

After the partial specification of PKCS #11 was complete, OTTER was used to verify

the attack described above in Section 3.4.1. OTTER generated 55,170 clauses and kept 5,249
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clauses in finding the attack. By using an idea that is further described in Chapter 5, we

were able to trim down the search to 22 clauses generated and 44 clauses kept. The basic

idea is to essentially ignore state and search for attacks, then verify that the generated

attacks actually work in the true model of the API.

3.4.3 Conclusions

State transitions greatly increase the size of the search space. In particular, we must re-

derive truths in every reachable state. PKCS #11 has 2 n*k reachable states where n is the

number of attributes per key, and k is the number of keys in the device, making the search

tree significantly larger. The most important benefit gained from exploring PKCS #11 was

to expose ourselves to the potential problems that state presented, and force us to formulate

ideas on how to manage state.
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Chapter 4

Formal Derivation of New

Cryptographic API Attacks

4.1 Attacks on a Flawed Model of the 4758 CCA

Once the 4758 CCA code had been optimized as much as possible using the techniques

described in Chapter 5, we tried to run OTTER in what is believed to be a complete mode.

Using this mode, and much more efficient reasoning, we were able to discover three new

attacks on the 4758 CCA. Although two of the attacks are protected against in the latest

implementation of the 4758 CCA assuming customers follow the suggested security mea-

sures, the attacks are much more complex than previously discovered attacks, and offer

strong evidence that formal methods will aid humans in their search for new attacks on a

Cryptographic API. The first two attacks were found based on a slightly flawed model that

was previously considered correct, and had escaped the human eye.

We assume the same assumptions as given in Section 3.3.3, and also that the attacker

can call Key Part Import multiple times outside of the context of actually importing the

third key part K3.

All attacks involve recovering the PIN-Derivation Key P in the clear. Along the way,

when P is also established as an Exporter key, any key on the device can be exported under

P and decrypted in the clear. The first attack proceeds as follows:

1. Use the function Key Part Import with a claimed Type IMP (importer key), clear key

part K3elkp(DATA PIN), and the partially assembled key {KEKefK 3}kp(IMP)$KM.
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The return is: {KEK kp(DATA PIN)}MP~KM, or in other words, the key KEKE

kp(DATA PIN) as an importer key.

2. Repeat the above step 1, but use the key part K3 PIN E EXP. The return this

time is: {KEK EXP E PIN}IMPDKM. In English, the key KEK e EXP PIN as

an importer key.

3. Repeat the above step 1 one more time but with the key part K3 E IMP D PIN. The

return this time is: {KEK e IMP D PIN}KMeIMP, the key KEK E IMP E PIN as an

importer key.

We now have 3 slightly different importer keys.

4. Call Import Key with the claimed type EXP, the key to be imported {P}KEKDPIN,

and the import key from 2. Note that due to XOR canceling, {P}KEKGPIN =

{P}KEKEPINEEXPeEXP as required by the function. The return of the function call

is: {P}EXPeKM, P as an exporter key.

5. Call Import Key again with the same key to be imported as step 4 but with the

claimed type is IMP instead of EXP, and the importer key from step 3. The return

is: {P}IMP®EKM, P as an Importer key.

6. Again call Import key using the claimed type kp(DATA), the importer key from step

1, and the same key to be imported as in step 4. The return is: {P}kp(DATA)DKM, the

PIN-derivation key as a key part and a data key.

7. Call Key Part Import once again with the claimed type DATA, key part of any

known string such as EXP, and the partial key from the previous step 6. The return

is: {P EXP}DATAG3KM, a data key.

8. Call Key Export using the result of step 4 as both the key to be exported, and the

exporter key, with claimed type EXP. This results in: {P}PeEXP-

9. Call Decrypt Data using the result from the previous step 8 and the Data Key from

step 7. This returns P in the clear.

This attack is prevented by the real API. Key Import can not be called on partial keys as

it is in step 6. Secondly, the ability to import a partial key and the ability to complete it,
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which is necessary before the key can be used, can be assigned to different people. In fact,

IBM suggests that these tasks are assigned to separate people. Even though the underlying

model of the API was flawed, this complex attack clearly shows that the strategy of using

OTTER to find attacks is powerful.

The second attack proceeds as follows:

1. Call Key Part Import with claimed type IMP, clear key part DATA K3 6 PIN, and

partially assembled key {KEK G) K 3}kp(iMP)DKM. The return is: {DATA 6) KEK E

PIN}IMPeKM, an importer key.

2. Again call Key Part Import with the same arguments as above in step 1 except with the

clear key part EXP E K3 E PIN. The return value is: {EXP ED KEK ed PIN}IMPeKM,

another importer key.

3. Call Key Import with the importer key from step 1 above, claimed type DATA, and

the key to be imported {P}KEKOPIN. The return is: {P}DATAEKM, or P as a DATA

key.

4. Again call Key Import but with a claimed type EXP, the importer key from step 2,

and the key to be imported {P}KEKEPIN. The return is: {P}EXPSEKM, or P as an

EXP key.

5. Call Key Part Import with the clear key part EXP, the "partially assembled" key

{P}DA7TADKM from step 3, and the claimed type DATA. The return is: {P 6)

EXP} kP(DA TA)KM.

6. Call Key Part Import to complete the key generated in the previous step 5. The

return is: {P 6) EXP}DATAeKM.

7. Call Key Export using the result of step 4 as both the key to be exported, and the

exporter key, with claimed type EXP. This results in: {P}PeEXP.

8. Call Decrypt Data using the result from the previous step 7 and the Data Key from

step 6. This returns P in the clear.

This second attack is again prevented in the real API. First of all, Key Part Import requires

that the claimed type of the part being imported is a Key Part, which is violated by step
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5. Secondly, again this attack requires both the importing of partial keys as well as the

completion of the assembled keys, which may require-two different people.

4.2 Formally Found API Flaw in the IBM 4758

Our final new attack variant also violates the above-stated security goal: the attacker

obtains the PIN-derivation key P from a small constant number of interactions with the

CCA. The attacker can then derive any user PIN off-line. Because the 4758 CCA does not

fully conform to its advertised behavior, our final tests on a real 4758 cannot confirm our

analytical results. However, at the very least, this attack constitutes a major breach of the

CCA specifications.

We assume the same assumptions as given in Section 3.3.3.

1. The third courier delivers K3 PIN instead of K3. Using "Key Part Import":

K3 E PIN, IMP, {KEK K 3}kp(IMP)eKME (3_ {KEK ED PIN}IMPEKM

2. The attacker calls "Key Generate" and obtains, for some random K4 determined

internally by the 4758 (and unknown to the attacker):

0 (a {K4 }KMDkP(IMP) and {K4 }kp(EXp)p) KM.

3. The attacker completes the keys generated in step 2 with "Key Part Import" opera-

tions: the importer key is completed with the IMP control vector submitted as if it

were a key part, while the exporter key is completed with the DATA control vector

as if it were a key part. The keys obtained are complete importer and exporter keys:

IMP, IMP, {K4 }kP(IMP),KM ( {K4 G IMP}IMP)KM

DATA, EXP, {K 4}kP(EP)gKM ( {K4 e DATA}ExPeKM

4. The attacker exports the key obtained in step 1 using the export key completed in

step 3, using the claimed type IMP. Since the modified KEK from step 1 is indeed a

key of type IMP, this works flawlessly and the attacker obtains:

IMP, {K4 e DATA}EXPeKM' ,{KEK E PIN}IMPeKM (3 {KEK PIN} DATAeIMPfK4
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5. Note at; this point the type confusion enabled by having XORed the DATA and IMP

control vectors into the export and import keys at step 3. The key created in step 4

was exported as type IMP but can now be imported as type DATA.

6. The attacker imports the key obtained in step 4 with claimed type DATA and importer

key from step 3. The attacker obtains:

DATA, {KEK e PIN}DATAeIMPGK4 , {K4 E IMP}IMP®3KM (__ {KEK E PIN}DATADKM

7. At some later point, the 4758 receives the PIN-derivation key typed as PIN and

wrapped with the KEK that the remote bank system uses unchanged (the modification

of K3 was only performed locally). The attacker thus has access to {P}KEKePIN

Using the key from step 6, the attacker can use "Decrypt with Data Key":

{P}KEKEDPIN, KEK PIN}DATAa3KM P

8. Using P-, the attacker can now generate PINs off-line.
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Chapter 5

Difficulties Facing Formal

Verification and Potential Solutions

In the ideal case, a formal tool would be able to exhaust every potential attack on a Cryp-

tographic API, find every legitimate attack, and terminate with the claim that no stone was

left unturned. This ideal formal tool could then exactly specify all weaknesses in an API.

In reality, it is very difficult for a formal tool to exhaustively search through every potential

attack.

Consider a typical API which may contain fifty to a hundred function calls, and an

attacker that can perform generic functions such as encryption and XOR offline. As an

approximation, say each function takes in two terms, and outputs a single term. If we

define the depth of an attack as the number of consecutive API and offline function calls

required, searching through all attacks up to a depth of n takes time and space slightly

worse than exponential in n. At level k < n of an arbitrary search, any of the previous

terms from the search can be used as input to any of the available b functions. As an upper

bound, there are at most n2 * b function calls available. The search has a total of n such

levels, thus a complete search up to a depth of n will take O(n n2 *b) time, which is rewritten

as O(c2*n*o9(n) ) time.

Though this simplified model ignores possible constraints on function data types, it

illustrates the combinatorial explosion at the heart of formal verification. We present the

development of strategies for using OTTER efficiently and methods for simplifying API

models while maintaining accuracy. The following three sections will describe the motivation
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and discovery of various techniques that we used to model the IBM 4758 CCA efficiently.

Note that these techniques can be widely applied to any Cryptographic API. Finally, this

chapter concludes with a discussion of how to efficiently deal with state and human error.

5.1 A Simple Model of the 4758

Functions can be used to build compound terms. For example, the expression e(M, KEK)

can be used to represent the encryption of M under key KEK, and xor(K1, K2) can be used

to represent the bit-wise XOR of keys K1 and K2. Thus, if {KEK}KMGIMP is stored outside

the 4758 and thus available to the user, we can specify this to OTTER via the statement

U(e(KEK, xor(KM, IMP))).

OTTER can also operate over equalities. For example, the relevant properties of xor can be

specified as:

xor(x,y) = xor(y,x).

xor(x,x) = ID.

xor(x,ID) = x.

xor(xor(x,y),z) = xor(x,xor(y,z)).

The implications of this deduction system will be of two types: those deductions which the

user can make offline, and API function calls. The first type of implication is simple. For

example, the adversary can always XOR two known values:

-U(x) I -U(y) I U(xor(x,y)).

The above statement reads:

* User does not know x, OR

* User does not know y, OR

* User knows the XOR of x and y.

Thus, if the user knows x AND the user knows y, the first two statements are false and the

last one must be true.

However, although each individual implication is simple to specify, how to decide which

implications to include? It is impossible to include all implications that a real adversary
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might make on the actual bit-strings; some abstraction must be made. We chose a high level

of abstraction, based on the ideal encryption assumption of the Dolev-Yao model. Briefly,

this assumption states that the only operations available to the adversary with respect to

the cryptography are encryption and decryption-and then only if it knows the proper keys:

-U(x) I -U(y) I U(e(x,y)).

-U(e(x,y)) I -U(y) I U(x).

The API functions are also simple to represent as implications: given that the user knows

some given input to a function call, it can use the 4758 to learn the output. For example,

the "Encrypt with Data Key" function call can be represented as:

-U(x) -U(e(K, xor(KM,DATA))) I U(e(x,K)).

Here x represents the data to be encrypted, and K is the data key, typed by encryption

under the master key KM and the data control vector DATA.

When OTTER is run, it attempts to prove an inconsistency in its input. As such,

theorems to be proved are entered in a negated form: if an inconsistency is discovered, the

original theorem is true. In the case of Cryptographic APIs, we add the security goals to

the input because "proofs" are actually attacks on an API: steps that derive a clause that

contradicts a security goal. For example, if one security goal was that the master key KM is

never learned by the user, one would include in the specification the statement:

-U(KM).

If OTTER derives the clause U(KM), then it will present a proof of how that security goal

has been violated.

A model of the 4758 created in this way will be perfectly valid. However, it will also

take an extremely long time for OTTER to reason about it. When specified in the simple

way described above, the branching tree of possible deductions grows large very quickly. In

the next two sections, we describe two sources for this growth, and for each we provide an

alternate specification method that eliminates it.

5.2 Partitioning Adversary Knowledge

The above naive specification of the user's offline encryption and XOR capabilities allows

for terms to be derived that are unlikely to be of use to an attacker. For example, given
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that the attacker initially knows two control vectors U(DATA) and U(IMP), he could derive:

U(e(DATA,IMP)).

U(e(DATA,e(DATA,IMP))).

U(e(DATA,e(DATA,e(DATA,IMP)))).

U(xor(e(DATA,IMP),DATA)).

To limit an attacker's ability to perform encryption, we only allow the attacker to encrypt

a message that is not the result of a previous encryption. Though this approach may fail

to model certain classes of attacks, we believe these attacks are unlikely to succeed under

the assumption of ideal cryptographic primitives. Likewise, the key used for encryption

cannot be the result of a previous encryption. To enforce this standard, we must introduce

types. Data that is the result of an encryption will be of one type, while data that is not

the result of an encryption will be another type. We use the predicate UE(x) to represent

that the attacker knows x, and x is the result of an encryption. UN(x) is the predicate

that represents an attacker knows x and that x is not the result of a previous encryption.

Together, these two predicates replace the previous "attacker knowledge predicate" U(x).

Now, the attacker ability to encrypt a message x under a key k can be represented by the

clause:

-UN(x) I -UN(k) I UE(e(x,k)).

In addition, we decided that it is unlikely that an attack would require calculating the

XOR of any known constant with a result of a previous encryption. We model the attackers

ability to XOR two known messages x and y as:

-UN(x) I -UN(y) I UN(xor(x,y)).

These simplifications greatly reduce the size of our search space. Specifically, it can

be easily shown that the number of literals that the attacker can learn is finite under

this model of XOR and encryption. Theoretical work is currently underway to exactly

specify what attacks might be missed by using this data typing simplification. The above

simplifications were necessary before OTTER was able to successfully able to recreate known

attacks originally found by Mike Bond and Ross Anderson [3] on the 4758. Recreating the
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attacks required OTTER to derive a total of 5,458,647 clauses, and OTTER reasoned about

only 8,312 clauses. The process finished in 28 system CPU seconds and 987 seconds of wall

clock time. OTTER only reasoned about a small fraction of the generated clauses because

the process was run under a mode where clauses that contained more than ten symbols

were immediately discarded.

5.3 Harnessing Demodulation

We use demodulation mainly to deal with the function XOR. Because XOR is associative

and commutative, there can be many equivalent ways to rewrite a given term. For example,

without demodulation OTTER may derive all of the following clauses:

UN(xor(B,xor(C,D))).

UN (xor(xor(B,C) ,D)).

UN(xor(D,xor(B,C))).

UN(xor(xor(C,B),D)).

although they are all equivalent. However, if we declare the following equalities as demod-

ulators:

xor(x,y) = xor(y,x).

xor(x,x) = ID.

xor(x,ID) = x.

xor(xor(x,y),z) = xor(x,xor(y,z)).

OTTER will only retain the first clause U (xor (B, xor (C, D))). However, using demodulation

has its costs. In particular, when OTTER uses existing knowledge to perform one of the

transactions it must unify variables to knowledge we already know. In some cases, it may

be impossible to unify the variables in the transaction to knowledge we already know even

if we know equivalent information. For example, the clauses:

Implication: -UN(x) I-UN(y)I-UN(xor(x,y))IGOAL(x).

Knowledgel: UN(xor(B,C)).

Knowledge2: UN (xor(D, E)).

Knowledge3: UN(xor(B,xor(C,xor(D,E)))).

Negated Goal: -GOAL(xor(B,C)).
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will not unify and a proof will not be derived. To resolve these clauses, OTTER may attempt

to unify x/xor(B,C), and y/xor(D,E), but then the term xor(x,y) will need to unify with

a term of the form xor(xor(B,C),xor(D,E)). Because the form required for unification

is not the same as the known form (also the simplest form), GOAL(xor(B,C)) cannot be

derived.

We introduce an intermediate clause to solve this problem. We do not know if this

approach has been used before. We split the implication clause into two separate clauses:

-UN(x) I-UN(y) INTERMEDIATE(xor(x,y),x).

-INTERMEDIATE(z,x) I UN(z) I GOAL(x).

In this case, we can take advantage of demodulation. Once

INTERMEDIATE(xor(xor(B,C),xor(D,E)),xor(B,C)).

is derived, OTTER will demodulate it into the simplest form:

INTERMEDIATE(xor(B,xor(C,xor(D,E))),xor(B,C)).

Then, in the second clause, OTTER unifies z/xor(A,xor(B,xor(C,D))), x/xor(B,C), al-

lowing GOAL(xor(B,C)) to be derived. Notice that the intermediate clause contains the

variable x by itself, which is necessary to eventually derive GOAL(x) because x is not recov-

erable from xor(x,y).

Unfortunately, by using intermediate steps, we may derive extra clauses. These extra

clauses are undesirable, but because the use of intermediate clauses can be limited to cases

where we know unification will be difficult, it is much preferable to running OTTER without

demodulation which will blindly retain numerous equivalent versions of arbitrary clauses.

In order to model the 4758 function "Key Import":

-UN(x) I -UE(e(z, xor(IMP,KM))) I -UE(e(y,xor(z,x))) I UE(e(y,xor(x,KM))).

we must split it into two clauses because the term xor (z, x) may be a barrier to unification.

-UN(x) I -UE(e(z, xor(IMP,KM))) I INTERMEDIATE(e(y,xor(z,x)),x).

-INTERMEDIATE(e(y,z),x) I -UE(e(y,z)) I UE(e(y,xor(x,KM))).

This encoding of the transaction allows for every possible unification. By using these tech-

niques, we are able to find the known attack by generating only 11,379 clauses and keeping
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5,456 clauses. The process takes .06 system CPU second, and takes one wall clock sec-

ond. In addition, no clauses were discarded which means that OTTER should not miss any

potential attacks.

Other simple barriers to unification involve term cancellation and pattern matching, and

are solved by keeping several versions of implication clauses that explicitly deal with these

barriers. For example, the clause

-UN(xor(x,B) GOAL(x).

would be expanded into:

-UN(xor(x,B) GOAL(x).

-UN(xor(B,x)) GOAL(x).

-UN(x) IGOAL(xor(x,B)).

Note that OTTER is not guaranteed to be complete when demodulation is used. This

section has been full of examples where unification will fail to derive simple conclusions

because demodulation is used. However, we firmly believe that the above strategies will

maintain completeness. For every potential problem that demodulation creates for unifica-

tion, we have found a strategy that allows unification to proceed. A proof of this claim is

pending.

5.4 Dealing with State

As was pointed out in Section 3.4.3, modeling state can greatly increase the size of a search

tree by a factor of the number of possible states. In the case where there are k bits of state,

this increases our search space by a factor of 2
k .

A possible solution to the state problem is to treat state transitions as independent.

This model of an API can be created by allowing the attacker to preform any function call

in any state. Although any function can be called at any time, the affect of each function

call on the state of the system is maintained.

For example, in a particular implementation of PKCS #11, it may be impossible to

set the "exportable" attribute if the key is labeled as "sensitive". In the true model of

the API, the state of the "sensitive" attribute bit affects the ability of an attacker to call

SETATTRIBUTE on the attribute "exportable". However, using the above strategy would
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allow an attacker to toggle the "exportable" bit regardless of the setting of the "sensitive"

bit.

Using this strategy, any attack that is possible in the true API will necessarily be found

in the state-independent model. In addition, many attacks that are not possible in the real

API will also be found. This strategy will require manual or automated verification of the

potential attacks that are found.

Applying this strategy to the PKCS #11 API allowed us to find the desired attack

after generating only 21 clauses and keeping only 44 clauses. In contrast, our initial search

required the generation of 55,182 clauses and 5,107 clauses were kept. But what if this

strategy yields an enormous number of potential attacks?

In this case, we can adjust our model to consider certain state dependencies but not

others. For example, in PKCS #11, the state transitions alter the attribute vectors for a

particular key. Although the entire system may contain n keys, functions operating on a

set of keys K are only affected by the attributes of the keys in K. State dealing with a

particular key should therefore be considered dependent in the ideal case, but independent

of the state of other keys. In the case where we cannot consider all of the dependencies in

the state of the API, we can trim the number of state dependencies considered to make the

model small enough to analyze. Once the proper compromise has been reached, however, we

still may be left with a large set of potential attacks. We now present a possible algorithm

for processing these attacks. This algorithm was not implemented.

1. Determine the state changes associated with each potential attack. This may involve

adjusting the original model to include a string that describes the necessary state

conditions for each function call in the API. Note that the number state changes

associated with a potential attack should not be larger than the number of total

function calls required for an attack. An attack may require three function calls from

the initial state, a function call that changes the state of the device, and finally four

function calls from this new state. The attack requires eight function calls, while the

attack only contains a single state transition.

2. Create a state tree where each edge represents a state transition and the root node

r represents the initial state. Each state node n is associated with a set of attacks

that require all of the state transitions between the root node r and n to preform the
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initial portion of the attack. Here, the leaves of the tree represent the state transitions

for complete attacks.

3. Create a new model of the API that only considers the possible state transitions of

the Cryptographic system. It is possible that a model checker would be ideally suited

for this task because they deal solely with state transitions, while theorem provers

have no native sense of state.

4. Begin pruning the tree. Any state transition that is not possible in the state tree will

allow us to eliminate all attacks associated with a node who's path to the root node

contains that transition.

5. Once every state transition has been considered, the remaining leaves of the tree

represent valid attacks.

5.5 Human Error

It is extremely difficult to correctly model an API. Because the desired result from running a

model through OTTER is usually unknown, spotting bugs in a specification from undesirable

program behavior isn't easy. Looking through several thousands of lines of output can tell

you if your model is behaving inefficiently (this tactic showed us that paramodulation was

inefficient, and that infinite chains of function calls needed to be avoided). However, looking

through output to search for actual errors in the specification is very difficult. When we

model an API with a known attack, verifying that attack serves as a very valuable test we

can use to judge if our model is correct. In the case where we would like analyze an API

which has no known attacks, careful documentation and peer review is likely to be the most

effective method for catching modeling errors.

Finally, proving that an attack exists in our model of an API, or that our model is

indeed secure, still leaves us with the problem of proving our model is accurate. In the end,

this problem is not entirely solvable. It seems that it will always be possible for an attacker

to use a function that was not considered as an ability in our model, or that our functions

do not quite match the actual system we are studying. Solving this problem is likely to be

beyond the scope of this research project.
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5.6 Results of Using Demodulation and Independent States

Using demodulation and independent steps on both the 4758 CCA and the VSM greatly

reduced the search space. The data for the VSM includes searching through the entire

search space available while the data for the 4758 only includes searching until the attack

was found.

API Strategy Attack Clauses Clauses CPU Wall
Used Found? Generated Kept Time (sec) Clock (sec)

VSM None Yes > 7,405, 163 > 11,217 > 29.11 > 227
VSM Data Partition/ Yes 100 105 .01 < 1

Demodulation/
Intermediate

CCA None No > 114,327,949 > 11159 > 484.34 > 12398
CCA Data Partition Yes 5,458,647 8,312 28 987
CCA Data Partition/ Yes 11,379 5,456 .06 1

Demodulation/
Intermediate

Figure 5-1: Summary of using data partitioning, demodulation, and intermediate steps
results.

The above figure shows how a naive OTTER approach is unable to derive significant

attacks against the 4758 CCA API, even those short enough to be found manually. (OTTER

is even unable to terminate, as far as we can tell.) The figure also shows the significant

value of our modeling techniques, allowing OTTER to trivially re-derive previously-known

attacks [1, 3, 9]. In the case of the VSM, the above figure clearly shows that the search

space can be dramatically decreased by applying the techniques developed in this thesis.

In modeling PKCS #11, we were also able to make significant improvements by treating

state transitions as independent. Note that this result is specific to PKCS #11 and is

unlikely to be as effective in APIs with heavily dependent state transitions. The experiments

were run until the attack was found.

Strategy Attack Clauses Clauses CPU Wall
Used Found? Generated Kept Time (sec) Clock (sec)
None Yes 55,170 5,249 .58 80
State Yes 21 44 .01 < 1
Independence

Figure 5-2: Summary using state independence results
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Chapter 6

Conclusions and Future Researh

With this work, we have shown the first successful application of formal tools to the analysis

of security APIs. Using these tools, we have discovered and detailed a variant of a major

flaw in the specifications of a widespread hardware security module. We believe this very

same process can be applied to the analysis of many other security APIs.

Our results emphasize the usefulness of theorem provers like OTTER in the verification

of security APIs. Theorem provers have become very efficient (note the speed of attack

discovery) and appear particularly talented at discovering non-intuitive attacks. We believe

our techniques will allow theorem provers to discover many attacks that could never be

found by hand.

We expect; this research to continue in at least five interesting directions:

* optimized security analysis: we are currently working to ensure that our use of

the OTTER Theorem Prover provides a more focused search of the real attack tree,

even with optimizations. The real attack tree is a pruned version of the naive attack

tree: we believe theoretical results can rule out entire subtrees and help fight the

computational explosion problem inherent to API verification.

* improved modeling tools: even if we had a perfect theorem proving approach,

modeling remains a very human - and thus very fallible - process. One likely re-

search direction is the construction of pre-processing tools that might greatly simplify

the modeling task in order to minimize human error.

* new attack discoveries: our methodology is ready to take on new, more complex
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APIs. We fully expect the techniques presented here to be used in discovering new

and powerful attacks against a number of API targets.

* analysis of stateful APIs: Although the PKCS #11 standard was studied and

attacked, the loose definitions of valid state transitions make it a fairly weak API.

Also, the fact that Jolyon Clulow had previously found the attacks we verified [8]

make our specification of the API less than impartial. A major step in the formal

verification of Cryptographic APIs will be the succesful specification of a new stateful

Cryptographic API. Attacking such an API will likely require an algorithm such as

the one outlined in Chapter 5 to be implemented, which will be a major effort.

* towards verification: Currently, Otter has only been used to find holes in Cryp-

tographic APIs. In order to verify the security of a Cryptographic API will require

a careful proof that the strategies described in Chapter 5 maintain completeness. If

we can prove that the strategies maintain completeness, then we can claim that all

possible attacks are found by Otter (given our model).

We hope these techniques and future improvements will help bridge the gap between

the high-level security policies and low-level specifications of security APIs.
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Appendix A

Complete Models

A.1 VSM

% file: vsm.in

% Author: Paul Youn

% Date: Feb 24, 2004

% This file is an input file for the OTTER theorem-proving program.

% Description:

% Shows how adversary can derive user's pin from a crypto box.

% Notation:

% e(x,k) denote encryption of x with key k.

% U(x) means "User knows x".

% C(x) means "They crypto box knows x".

% Crypto box uses the following keys:

% TMK = the box master key (kept inside box)

% WK = Working Key (kept inside box)

% ZCMK = Zone Control Master Key (sent to box, encrypted with km)

% TC = Terminal Communications key.

% LP = Local Pin Data
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% Crypto box allows adversary to encrypt anything with kmc.

% Crypto box allows adversary to re-encrypt something encrypted with

% kmc, using a new key that is supplied in encrypted form (with key km).

% Adversary knows the encryption of pin creation key kp encrypted with km.

% Adversary knows users "primary account number" pan.

% The user's pin for the account number pan is defined to be e(kp,pan).

% Want to show adversary can derive pin associated with pan.

X [ as follows:

% adversary encrypts pan with kmc

% adversary re-encrypts pan from key kmc to key kp

% ]

%Input flags, identical to 4758 flags.

set(processinput).

%Set output style.

clear(printkept).

clear(printnew_demod).

clear(printback_demod).

clear (printbacksub).

assign(statslevel,1).

%control memory/time

clear(control_memory).

assign(max_mem, 120000).

assign(maxseconds,1000000).
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%disable paramodulation

clear(parafrom).

clear(para.into).

clear(parafrom_right).

clear (parainto_right).

clear (para from_vars).

set(eq_unit;sbothways).

%use lexicographical ordering

set(lrpo).

%use breadth first search.

set(sos_queue).

%use hyperresolution

set(hyperres).

set(orderhyper).

.search for 4 attacks.

assign(max._proofs, 4).

list(usable).

%.Keys that are on the card.

C(TMK).

C(WK).

C(ZCMK).

C(TC).

C(LP).

%Initial attacker knowledge.
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UE(e(P, TMK)).

UE(e(W, WK)).

UE(e(T1,W)).

UE(e(T2,LP)).

UE(e(K,TC)).

UN(Acc).

%SECURITY GOALS:

-UN(P).

-UN(T1).

-UN(T2).

-UN(K).

-UE(e(Acc,P)).

end_of_list.

list(sos).

%Offline things Adversary can do:

%encrypt something

-UN(x) I -UN(y) I UE(e(x,y)).

%,decrypt if knows stuff.

-UE(e(x,y)) I -UN(y)IUN(x).

% ability to xor

-UN(x) I -UN(y) I UN(eor(x,y)).

%If the user knows something x, encrypted under something z,

%and z encrypted under ZCMK, then the user knows x encrypted

%under TMK.

%IMPORT A PIN DERIVATION KEY

-UE(e(x,z)) I -UE(e(z,ZCMK)) I UE(e(x,TMK)).
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%EXPORT A PIN DERIVATION KEY

-UE(e(x,TMK)) I -UE(e(z,ZCMK)) I UE(e(x, z)).

%CONVERT TMK TO WK

-UE(e(x, TMK)) I UE(e(x,WK)).

GENERATE TMK

UE(e(NewTMK, TMK)).

%GENERATE TC

UE(e(NewTC, TC)).

%UPDATE TMK (MKB ADDED WED)

-UE(e(x,TMK)) I -UE(e(y,TMK)) I UE(enc(x,y)).

%Input TC

-UN(x) I UE(e(x,TC)).

%EXPORT TC

-UE(e(x,TC)) I -UE(e(y,TMK)) I UE(e(x,y)).

%Encrypt communications data (MKB MOD)

-UE(e(x,TC)) I -UN(y) I UE(e(y,x)).

%Decrypt communcations data.

-UE(e(x,TC)) I -UE(e(y,x)) I UN(y).

%Export trial pin

-UE(e(x,y)) I -UE(e(y, TMK)) I -UE(e(z, WK)) I UE(e(x,z)).

,Translate trial pin between wks.

-UE(e(x,y)) I -UE(e(y,WK)) I -UE(e(z, WK)) I UE(e(x,z)).
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%Export local pin

-UE(e(x,LP)) I -UE(e(z,WK)) I UE(e(x,z)).

end_of_list.

list(demodulators).

%necessary demodulators for XOR

eor(x,y) = eor(y,x).

eor(x, eor(y,z))= eor(y,eor(x,z)).

eor(x,x) = ID.

eor(ID,x) = x.

%demodulators that speed up Otter

eor(eor(x,y),z) = eor(x,eor(y,z)).

eor(x, eor(y, eor(z, eor(x,w)))) = eor(y, eor(z,w)).

eor(x, eor(y, eor(z, eor(w,x)))) = eor(y, eor(z,w)).

eor(x, eor(y, eor(x, z))) = eor(y,z).

eor(x, eor(y, eor(z, x))) = eor(y,z).

eor(x, eor(x,y))= y.

end_of_list.

A.2 4758

% file: 4758.in

% Author: Paul Youn, Mike Bond, and Jon Herzog

% Date: Feb 24, 2004

% Description:

% Shows how adversary can derive user's pin from a crypto box.
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% Notation:

% e(x,k) denote encryption of x with key k.

% UE(x) means "User knows encryption x".

% UN(x) means "User knows non-encryption x".

% KM is the master key for the 4758.

% KEK represents a key-encrypting key.

% EXP1 represents an exporter key.

% K3 represents the final part of KEK that is known to

% the attacker.

% P is the Pin Derivation key.

% DATA is a control vector designating a key as a data key.

A% IMP is a control vector designating a key as an importer.

@% EXP is a control vector designating a key as an exporter key.

% PIN is a control vector designating a key as an pin derivation key.

% KP represents the key part bit in a control vector. In this

% specification, we do not use kp(x) to designate a control vector x

% is a key part, but rather use x $oplus$ KP. In particular, this requires

% careful representation of the Key Part Import, Key Import, and

A% Key Export functions to accurately model the 4758.

% OTTER INPUT FLAGS

set(process.input).

% output information

clear(print.kept).

clear(print,_new_demod).

clear(print._back_demod).

clear(print,,backsub).

clear(control_memory).

%runtime constraints, memory usage
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assign(maxmem, 500000).

assign(stats_level,l).

/.maximum allowed running time.

assign(maxseconds, 1000000).

%/maximum number of proofs produced.

assign(maxproofs, 10).

.maximum depth of attack

assign(max_levels, 100).

%.disable paramodulation

clear(para_from).

clear(para_into).

clear(para_from_right).

clear(para_into_right).

clear(para from_vars).

set (eq_units_bothways).

%Use lexicographical ordering

set(lrpo).

%Perform a breadth first search

set(sosqueue).

%use hyperresolution

set(hyperres).

set(orderhyper).

%The lexicographical ordering of terms. The term KM is listed

%as having the highest lexicographical ordering because it

.often appears in clauses XORed with variables. Because we

%do not know what constant will unify with that variable, by

70



%making KM have the highest lexicographical order, we can still

Yensure that all possible unifications will occur.

lex( [ ID, Acc, DATA, IMP, K3, KEK, PIN, EXP1, EXP, KP,KM] ).

%This list represents all actions an attacker can take.

list(usable).

% Attacker Abilities

O.0ffline things Adversary can do:

%encrypt something

-UN(x) I -UN(y) I UE(e(x,y)).

%decrypt if knows stuff.

-UE(e(x,y)) I -UN(y) I UN(x).

% ability to xor

-UN(x) I -UN(y) I UN(xor(x,y)).

% Transaction Set
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/, Command : Encrypt using data key

-UN(x) I -UE(e(y,xor(DATA,KM)))

I UE(e(x,y)).

%Command: Clear_Key_Import

-UN(x) I UE(e(x,xor(DATA,KM))).

% Command : Key Import

% Note that the predicate INTUE keeps the term xor(x,KP) and not

/, just the term x. By doing this, if the claimed type x were a

% key part (included XOR with KP), the two KP terms will cancel

/ when INTUE is demodulated, and the predicate will not unify

% with the second clause.

%INTERMEDIATE STYLE:

-UN(x) -UE(e(z,xor(IMP,KM))) I INTUE(e(y,xor(z,x)),xor(x,KP)).

-INTUE(e(y,x),xor(w,KP)) -UE(e(y,x))

I UE(e(y,xor(w,KM))).

% Command : Key Part Import

% Here, the claimed type is required to involve the XOR with KP

% to enforce that the claimed type must be a key part.

% The first transaction represents calling Key Part Import and

7. completing the key. The second transaction represents calling

% the function and not completing the key.

-UN(xor(x, KP)) I -UN(y) I -UE(e(z,xor(x,xor(KP, KM))))

I UE(e(xor(z,y), xor(x, KM))).
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%Don't complete

-UN(xor(x, KP)) I -UN(y) I -UE(e(z,xor(x,xor(KP, KM))))

I UE(e(xor(z,y), xor(x, xor(KP, KM)))).

% Command : Key Export

% This command does the opposite of key import.

% It takes an exporter key (a key with type EXP,

% rather than IMP) and uses it to export any key

. encrypted under the local master key KM and

% encrypts it (with it's type) under the exporter.

%Here dealing with cancellation explicitly will save time.

%no cancellation with KM

-UN(x) I

-UE(e(y,xor(x,KM))) I

-UE(e(z,xor(EXP,KM))) I

UE(e(y,xor(z,x))).

%cancellation with KM

-UN(xor(x, KM)) I

-UE(e(y,x))

-UE(e(z,xor(EXP,KM))) I

UE(e(y,xor (z,xor(x,KM)))).

% Command : Decrypt using data key

% This does the opposite of the encrypt with

% data key command.

-UE(e(x,y))

-UE(e(y,xor(DATA,KM))) I
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UN(x).

end_of_list.

%This list contains the security goals of the system, as well as

%all initial knowledge.

list(sos).

%Security goals of the 4758

-UE(e(Acc, P)).

-UN(KEK).

-UN(KM).

-UN(P).

% Initial Knowledge

UN(DATA).

UN(PIN).

UN(ID).

UN(IMP).

UN(K3).

UN(Acc).

UN(KP).

UN(EXP).

UE(e(P,xor(KEK,PIN))).

UE(e(xor(K3,KEK),xor(IMP,xor(KM, KP)))).
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%The result of calling key generate

UE(e(KEK2,xor(IMP,xor(KM, KP)))).

UE(e(KEK2,xor(EXP,xor(KM, KP)))).

UE(e(EXP1,xor(KM,EXP))).

endoflist;.

%XOR demodulators

list(demodulators).

xor(x,y) = xor(y,x).

xor(x, xor(y,z))= xor(y,xor(x,z)).

xor(x,x) = ID.

xor(ID,x) = x.

% The rest of these demodulators have proved to be useful in

. allowing Otter to reason quickly, but are not strictly

% necessary.

xor(xor(x,y),z) = xor(x,xor(y,z)).

xor(x, xor(y, xor(z,

xor(x, xor(y, xor(z,

xor(x, xor(y, xor(x,

xor(x, xor(y, xor(z,

xor(x, xor(x,y))= y.

end_of_list.

xor(x,w)))) = xor(y, xor(z,w)).

xor(w,x)))) = xor(y, xor(z,w)).

z))) = xor(y,z).

x))) = xor(y,z).

A.3 PKCS #11
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% file: pkcs.in

% Author: Paul Youn

% Date: January 29, 2004

% This is an input file for the OTTER theorem-prover

% Description: Simple attack exporting an arbitrary key with a DES key.

% Notation:

% A(x) means "adversary knows x" for some x.

% Exp(x, y) denotes exporting key y wrapped with key x.

% Wr is a constant that represents the flagWrapping.

% Ex is a constant that represents the flag Exporting.

% Dec is a constant that represents the flag Decrypt.

, Sen is a constant that represents the flag Sensitive.

% In(x) means "x is known to the card".

% Att(x, y) represents the attributes of key x.

% Tog(x, y) is a state changing function that toggles a flag in a key. Toggles

% flag y for key x.

% Initial is the constant representing the initial state.

% T(x, u) reperesents that x is true in state s.

% Do(x, y) represents doing an action (such as toggling an attribute)

% in state s.

% Decrypt(x, y) represents decrypting message y with key x.

%Run in Automatic mode.

set(auto).

%Only find attack.

assign(maxproofs, 1).
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%Allows the use of formulas. Clauses can only consist of the OR of

%a set of literals. Formuals can include the AND of literals.

formula_list(usable).

% initial constants.

T(In(des), Initial). % some des key is on the card.

T(In(rsa),Initial). % some larger RSA key is on the card.

T(-Att(des,Wr),Initial). % des can't be used to wrap other keys.

T(-Att(des,Ex),Initial). % rsa key can't be exported.

T(-Att(des,Dec),Initial). % des key can't be used to decrypt messages.

T(Att(des,Sen),Initial). % des key is sensitive.

T(-Att(rsa, Wr), Initial). % rsa key can't be used to wrap keys.

T(-Att(rsa,Ex),Initial). % rsa key can't be exported.

T(-Att(rsa,Dec),Initial). % rsa key can't be used to decrypt messages.

T(Att(rsa,Sen),Initial). % rsa key is sensitive.

T(-Att(key3, Wr), Initial). % dummy key can't be used to wrap other keys.

T(-Att(key3,Ex),Initial). % dummy key can't be exported.

T(Att(key3,Dec),Initial). % dummy key can't be used to decrypt messages.

T(Att(key3,Sen),Initial). % dummy key is sensitive.

%Explicitly define equality. Otter does not know if constants refer

%to the same thing.

key3 != rsa.

key3 != des.

des != rsa.

Wr != Ex.

Wr != Dec.

Wr != Sen.

Ex != Dec.

Ex != Sen.

Dec != Sen.
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% Note that state remains in Initial for all function calls.

% TOGGLING AN ATTRIBUTE:

%STATELESS VERSION

%If a key x has attribute y set to true, then toggle it to

.false.

all x y (-T(Att( x, y), Initial) I T( -Att( x, y), Initial)).

%If a key x has attribute y set to false, then toggle it to

%true.

all x y (-T(-Att( x, y), Initial) I T( Att( x, y), Initial)).

% EXPORTING A KEY STATELESS:

% If in state s, key x and y are in the card, and x can wrap and y

% can be exported then the Adversary gains knowledge of the key

% y wrapped by x.

all x y u (-T(In(x),u) I -T(In(y),u) I -T(Att(x,Wr),u)

I -T(Att(y, Ex),u) I A(Exp(x,y))).

X Decrypting a key. If key w is in the card, the Adversary knows x

% wrapped with w, and w can Decrypt, then the adversary knows the

%/, plain key. STATELESS

all x y u (-T(In(x), u) I -A(Exp(x, y)) I -T(Att(x, Dec), u) I A(y)).

% SECURITY GOALS:

% A total failure. Adversary knows the rsa key.

-A(rsa).

end_of_list.
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