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Abstract

Using concepts from computer science and mathematics I develop three algorithms
to find the minimum integer weights for voting games. Games with up to at least 17
players can be solved in a reasonable amount of time. First, coalitions are mapped
to constraints, reducing the problem to constraint optimization. The optimization
techniques used are Gomory's all-integer simplex algorithm and a variant of the pop-
ular integer programming method branch and bound. Theoretical results include
that minimum integer weights are not unique and a confirmation of a prior result
that minimum integer weights are proportional to a priori seat share. Thus, these
algorithms can be useful for researchers evaluating the differences between propor-
tional bargaining models and formateur models. The running times of the different
algorithms are contrasted and analyzed for potential improvements.
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Chapter 1

Introduction

1.1 Voting Games

Integer programming techniques that find optimal solutions to constraint problems

have far-reaching applications outside the realm of computer science and mathemat-

ics. I tailor the general approaches of all-integer simplex and branch and bound to

the political science puzzle of finding the minimum integer weights of weighted voting

games. In addition to giving scholars a research tool to quickly solve voting games, I

show that minimum integer weights are not unique and confirm the theoretical result

that weight share is proportional to a priori resources. After transforming branch and

bound into a wholly new algorithm (bound and enumerate) and leaving all-integer

simplex mostly as Gomory originally described, a third algorithm-augmented integer

simplex-is developed by combining techniques from the other two methods.

Weighted voting games are scenarios in which players control certain numbers of

votes, and in which some threshold of votes (usually a majority) is needed to distribute

the spoils among the "winners." The winners are those who contributed their votes

to cross the threshold. Manifestations of voting games include fixed voting systems

(e.g., European Union, Electoral College), elected parliaments (where the players are

political parties), and shareholder blocs of corporations.

As long as one player does not have enough votes to single-handedly control the

outcome, competing players must join together to form coalitions of votes. A winning
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coalition is a group of players whose combined vote meets or exceeds the threshold.

If a winning coalition would turn into a losing coalition if it lost any of its players,

then it is called minimal winning. Enumerating these minimal winning coalitions is

a key component of many operations on voting games.

1.2 Minimum Integer Weights

The minimum integer weights for a game assign a different set of votes (or weights) to

the players of that game. Thus, the minimum integer weights also define a new voting

game. The winning and losing coalitions for this new game must be the same as the

original. As the designation "minimum integer" suggests, the new weights must all

be integer values and there must be no smaller integer game that also produces the

same coalitions. This minimality is helpful in determining whether augmenting one's

position with more votes will actually increase power [17]. If all minimal winning

coalitions of a game have the same total minimum integer weight, then the game is

homogeneous.

Stepping back to the larger problem of determining each player's payoff (or power)

in a game, notice that two subproblems are involved in the overall voting games.

First, for a player to receive any pay-off, that player must be included in the winning

coalition. Second, rarely is the distribution of pay-offs predefined; thus, the players

in the governing coalition have differing levels of power, which affect the proportion

of the spoils they can win for themselves. There are diverging branches of literature

on these two topics. Only recently, in the works of Morelli [20] and Snyder [28], have

scholars attempted to merge these two problems.

Minimum integer weights can be useful in solving both of the above problems.

When forming a government, players must form a majority coalition that agrees on

the government. An analogous setting is ministry allocation, where a majority (vote-

wise) of coalition members must agree to the final government setup. The latter

power relationship is more subjective, since portfolios have wide ranges of powers at-

tached to them. On the other hand, coalition formation is binary in nature: a party

14



is either involved or not involved in the governing coalition. Because of this differ-

ence researchers used to focus solely on the question of government formation [6] [7];

more recently they have been tackling the harder problem of ministry allocation as

well [31] [1].

1.3 Notation

A game is made of up a quota (or threshold) q and n players, each of whom starts with

si seats (or weight). The notation for such a game is [q; s1 , S2 , ... , Sn]. However, since

this paper deals with parliaments and other majoritarian voting games, q is always a

simple majority of the total weight. Thus, a "set of weights" will by itself determine

a unique game. Coalitions are notated {P1,P2, ... ,pi}, where each p represents a

player, the "coalition size" is i, and the "coalition weight" is the sum of the weights

for each player in the coalition.1

'Coalitions with parties that lack names will be designated as [si, S2, ... ssi]. In this case, I will
specify whether the combinations of congruent coalitions should be considered.

15



16



Chapter 2

Prior Research

2.1 The Theory Behind Coalition Building

William Gamson [12] was the first to examine the motivations and expectations of

coalition players. He assumes that each player knows how much relative value the

other players bring to the coalition, and uses Von Nuemann and Morgenstern's canon-

ical work [30] to define the minimal winning coalition. Gamson theorizes that each

player in the coalition will assert a payoff in proportion to the amount of resources

contributed to the coalition. Hence, the resulting power of each player (if they are in

the coalition) should be proportional to their beginning resources. This proportion-

ality prediction has come to be known as "Gamson's Law."

Baron and Ferejohn [3] outlined a legislative bargaining process that contradicts

Gamson's proportionality claim. Baron's model uses concepts from non-cooperative

game theory and includes an ordering of proposal-makers. The general theory was

developed for determining power in policy-making through the process of proposing,

amending, and approving bills; however, Baron also applied his model to coalition

formation. Baron argues that the proposal-maker, or formateur (in this case, the

party that forms the coalition around it), has a disproportionately large amount of

power.

The key difference between Baron's model and the proportional models are that

Baron assigns different values to players whether they are the formateur or not. The
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formateur's share is whatever is left over after paying the other parties their non-

formateur values (or prices). Thus, this model is also dependent on how often each

party is selected as formateur. Assuming that the probability a party is chosen as

formateur is proportional to the minimum integer weights, the non-formateur Baron-

Ferejohn values in odd, homogeneous games are always the minimum integer weight

shares [28].1

Morelli [20] disagreed with Baron's method, and described another type of non-

cooperative framework for legislative bargaining. As in Baron's model, Morelli distin-

guishes between formateurs and non-formateur. But Morelli assigns higher demands

to the non-formateur parties than Baron does. The result of Morelli's framework is

that coalition payoffs are proportional to the number of seats each party has. Morelli's

model (unlike Baron's) does not give any party higher status in three-player games

with odd total weight, which makes sense from a minimum integer weight standpoint

(since each party has a weight of one, no matter what the initial resources are).

Morelli [19] later extended his model by using the minimum integer weights as

the demand ratios for the parties vying to be in the coalition. He uses a "demand

bargaining set" to translate parties' demand ratios to the resultant coalition. Thus,

Morelli was the first to combine coalition formation with payoffs from the resultant

coalition. Given this combination, Morelli finds a proportional relationship between

number of seats and "combined" power for homogeneous situations. He ignores het-

erogeneous games, which may partially explain the discrepancy between his results

and other models.

Recently, Snyder, Ting, and Ansolabehere [28] have attempted to settle the multi-

ple debates in the community. First, by using a theoretical analysis of infinite games,

they find two types of game equilibria: (1) an "interior" equilibrium, for which power

share is proportional to vote share, and (2) a "corner" equilibrium, for which power

share for smaller parties is greater than what Gamson's Law predicts. Games with

many "high weight" voters (or, put another way, where the quota is low compared to

the largest parties) are more likely to have a corner equilibrium.

'An example of an even, homogeneous game where this property does not hold is [5,3,3,2, 1].
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2.2 Empirical Evidence in Parliaments

Given the number of voting games that occur in practice, it would be folly to make

theoretical predictions without verifying the result in the political arena. Eric Browne

and Mark Franklin [6] noticed a lack of empirical data in the literature and set out

to confirm Gamson's Law. Browne and Franklin operationalized a party's resources

as the number of seats that party controls and the payoff as the number of cabinet

positions given to the party. They then analyzed 13 parliaments from 1945 to 1969,

resulting in 324 data points. Correlating payoff to seats yields a coefficient on seats

of 1.07 (close to the ideal unity relation), and 86 percent of the payoff variance is

explained purely by seats held. Browne and Franklin introduce the idea of a "relative

weakness effect" to explain why smaller parties get disproportionately higher payoffs

in small governing coalitions (in terms of the number of coalition members).

Eric Browne revisited the question of the relationship between coalition payoff and

seats in 1980, this time with John Frendreis [7]. They expanded the dataset of the

previous study by eight years (obs=394) and corrected for "lumpiness" (incompatible

denominators in total coalition votes and number of cabinet positions) and the relative

weakness effect. The new analysis explained 93 percent of the variance of coalition

payoff.

Two decades later, Paul Warwick and James Druckman [31] attempted to rec-

oncile Browne and Franklin's findings of a proportional relationship with the series

of theoretical works (starting with Baron's) that predict a disproportionate amount

of power for the formateur. Warwick and Druckman compiled an extensive dataset,

with 607 observations from 1945 to 1989. Their main contribution to this series of

works is that they re-operationalized coalition payoffs. Realizing that some cabi-

net positions are more important than others, Warwick and Druckman weighted the

portfolios, thus changing the dependent variable. Accounting for lumpiness and the

relative weakness effect, they found a coefficient on seats of 0.987 (almost exactly

proportionality).

However, Warwick and Druckman debunked Baron's model incorrectly. Instead
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of using seat share as the independent variable, they should have used a proportional

power index (such as the minimum integer weights). If such an index were used,

the predictive abilities of both proportional and disproportional theoretical models

could have been analyzed and contrasted. Instead, by using seat share, they must

account for the relative weakness effect, thereby not actually predicting a proportional

model. For instance, the game [101; 100, 100, 1] has seat shares of approximately [0.5,

0.5, 0.005], but the party with one seat has just as much power as the others. The

minimum integer weights (along with any other reasonable index) predict the power

share to be [0.33, 0.33, 0.33]. The algorithm presented in this paper gives researchers

such as Warwick and Druckman the opportunity to use minimum integer weights in

their analyses.

Recently, Ansolabehere et. al. [1] moved from the theoretical to the empirical side

of the question. Using the algorithm presented in prior work [27] and in this paper,

we compared European parliamentary data (1945-2000) to the predicted results of

both the proportional and Baron-Ferejohn models. Baron-Ferejohn was the better

fit in most cases, however the formateur effect was smaller than predicted. We also

explored what factors predicated a party being chosen as the formateur. We found

that minimum integer weight share, party rank, and incumbency have the greatest

effect, in that order. This result supports the assumption that the probability of

being chosen as formateur is proportional to weight share, a simplification often used

to simplify the process of finding Baron-Ferejohn values. Other authors emphasize

incumbency advantage [10], but incorporating that information into an algorithm has

the disadvantage of producing a one-to-many relationship between voting games and

their finding Baron-Ferejohn values.

Undoubtedly, as more data from across the globe is collected, further similar

studies will be conducted. Since the minimum integer weights are an integral part of

both proportional and formateur models, an efficient algorithm to determine these

weights is crucial. Past research enabled scholars to find the minimum integer weights

for about 75% of large parliamentary games [27]; the algorithm detailed below fills

this gap and allows researchers to solve almost any game.
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2.3 Computation Difficulty of Finding the Mini-

mum Integer Weights

Finding the minimum integer weights of a game relies on solving two independent,

serial problems. First, the coalitions of the game must be enumerated to ensure

that the solution weights form the same coalitions as the original game. Next, with

the coalition constraints in hand, the minimum sequence of weights that satisfy those

constraints must be found. Using a naive approach on the first problem is a reasonable

solution. However, a reasonably efficient solution to the second problem can be

elusive; thus, this paper is focused on the search subproblem.

Minimum integer weights are not the only way scholars measure voting power.

Two of the most popular indices are Shapley-Shubik [25] and Banzhaf [2]. Yasuko

Matsui and Tomomi Matsui [18] proved that calculating both Shapley-Shubik and

Banzhaf values were NP-hard problems. They proved that both measures are NP-

hard by reducing the each voting power problem to the well-known, NP-complete

knapsack problem. This result directly leads to a proof (see Section 3.10) that coali-

tion enumeration in general is NP-hard. Thus, the only way to find a polynomial-time

algorithm for minimum integer weights would be to somehow avoid complete coalition

enumeration. Future research will investigate this possibility.

The second subproblem of searching a constrained space for the minimum solution

is an instance of integer linear programming. In general, integer linear programming

(ILP) is NP-complete [24]. The most common technique for solving ILP problems is

branch and bound [21]. I compare the efficiency of a variant of branch and bound,

which I term bound and enumerate, to all-integer simplex [13], a lesser-known ILP

technique. Both have exponential worst-case running times.

2.4 Analogous Research in Neuroscience

Led by Professor Jehoshua Bruck, a Caltech research group is developing efficient

algorithms to model the neural networks found in brains; while this would seem
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wholly unrelated to legislatures, the problems at hand are startlingly similar. Neural

networks are the superposition of many linear threshold functions, which are functions

that take in binary inputs and output a single binary number. This type of function

is analogous to a coalition formation function that would take in a set of parties (or

alternatively, a 1 if the party would be included in the coalition and 0 otherwise),

and would output a 1 if the given coalition were winning and 0 if the coalition were

losing. Such a coalition formation function would define a weighted voting game, and

vice versa. Therefore, linear threshold functions also have minimum integer weights.

Previously, Bohossian and Bruck [5] demonstrated how to construct a set of integer

weights that was guaranteed to be minimal. Transforming the weights to a threshold

function is a simple process. Unfortunately, the inverse of this process does not allow

one to take an arbitrary threshold function and subsequently determine the minimal

weights. Bruck's research is currently attempting to solve that problem, which is

also the main focus of this paper. While Bruck's team is using attributes of threshold

function to guide the search for minimum integer solution, this paper focuses on using

existing techniques in mathematics and computer science. Given both the success of

this research and Bruck's group, future work might contrast the speeds of the two

approaches.
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Chapter 3

The Algorithms

The algorithms for finding minimum integer weights consist of two parts: (1) deter-

mining the defining constraints of a game, and (2) identifying the smallest sequence

of integers that satisfies those constraints. Both of these subproblems are currently

implemented in terms of NP-hard problems; thus, while I have refined the algorithms

to increase efficiency, both grow exponentially with the size of the game.

3.1 Coalition Enumeration

Enumerating the coalitions of a voting game allows the game to be characterized by a

set of inequalities. These inequalities will serve as the constraints for the minimization

problem in the second half of the algorithm. The fewer redundant constraints used

to define a problem, the more efficient the minimization problem will be; thus, the

goal of the first subproblem will be to uniquely define a game in the fewest number

of constraints possible.

A simplistic approach would be to mark all possible coalition combinations as

"winning" or "losing," depending on whether the total weight for the coalition is a

majority. This approach yields exactly 2" coalitions, where n is the number of parties

in the game. The winning and losing coalitions for the sample game [5; 3, 2, 2, 1] are

shown in Table 3.1.

For each coalition, an inequality is formed based on whether the coalition is win-
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Game Coalitions
Party Seats Coalition Seats Status

a 3
b 2
C 2
d 1

- majority: 5

Table 3.1: All Coalitions of Sample Game

ning or losing. Letting the seats of

be q, then:

the ith party be si, and the majority (or quota)

E si > q where S is a winning coalition of parties, and
iES

si < q where S is a losing coalition of parties
iES

(3.1)

(3.2)

These 21 inequalities define the weighted voting game. Any sequence of weights that

meets these inequality constraints models the same game as the original sequence of

seats.

Upon closer examination, this comprehensive approach to enumeration contains

redundant information. First, we need not examine super-majority coalitions. In our

example, since the coalition {a, b} is winning, then clearly all coalitions that include,

as a subset, the parties a and b must also be winning. The analogous argument is true

for losing coalitions. From Table 3.1 we can safely remove the winning coalitions of

{a, b, c}, {a, b, d}, {a, c, d}, and {a, b, c, d}, along with the losing coalitions of 0, {a},

24

{abcd} Winning

0
{a}
{ b}

{d}
{ a, b}
{a, c}
{ a, d}l
{ b, c}
{b, d}
{c, d}

{a, b, c}
{a, b, d}l
{ a, c, d}l
{ b, c, d}l

{ a, b, c, d}

Losing
Losing
Losing
Losing
Losing

Winning
Winning
Losing
Losing
Losing
Losing

Winning
Winning
Winning
Winning
Winning



{ b}, {c}, and {d}, from our set of "defining" coalitions; thus, we also eliminate eight

constraints. The only coalitions remaining are either minimal winning coalitions or

"maximal losing coalitions" (i.e., adding any party would make it winning). These

are enumerated in Table 3.2.

Game
Party Seats

a 3 {a, b} 5 Min. Winning
b 2 {a, c} 5 Min. Winning
c 2 {a,d} 4 Max. Losing
d_ _ _ _1 f{b, c} 4 Max. Losing

-Majority: 5 {b, d} 3 Max. Losing

{c, d} 3 Max. Losing
{b, c, d} 5 Min. Winning

Table 3.2: Minimal Winning and Maximal Losing Coalitions of Sample Game

A second redundancy can be eliminated through the rule of complementation.

For each winning coalition, the coalition that includes all of the members not in the

winning coalition must, by definition, be losing. (This only holds for majoritarian

games.) Hence, we can eliminate all losing coalitions whose complements are winning

from our defining inequalities. Note, however, that this reduction does not remove

all losing coalitions. The complement of "tying coalitions"-losing coalitions whose

sum is exactly half of the total sum-will not be winning either. But, in this case,

we know its complement must be another tying coalition as well, so we need only one

inequality for each pair of tying coalitions. This procedure changes our constraints

slightly:

7vsi q where S is a winning coalition of parties, and (3.3)
iES

si = q - 1 where S is a tying coalition of parties (3.4)
iES

Implementing both these reductions results in only four "game defining" coalitions,

listed in Table 3.3.

25
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Game Coalitions
Party Seats Coalition Seats Status

a 3 {a, b} 5 Min. Winning
b 2 {a, c} 5 Min. Winning
c 2 {a, d} 4 Unique Tying
d 1 f{b, c, d} 5 Max. Losing

Majority: 5

Table 3.3: Minimal Winning and Unique Tying Coalitions of Sample Game

3.2 Interchangeable Parties

Given the minimal winning and unique tying set of inequality constraints, it would

be possible to start searching for the smallest sequence of weights that is consistent

with all the constraints. This approach would correctly find the minimum integer

weights. However, more information can still be gleaned from the results of coalition

enumeration. Helpful techniques for narrowing the potential search space include:

(1) finding dummy players, (2) finding interchangeable parties, and (3) ordering the

parties.

A "dummy player" is a party that is never included in a minimal winning coalition.

These parties automatically are assigned the minimum integer weight of zero. Parties

with at least one seat that are in unique tying coalitions will be included in a minimal

winning coalition, so it is safe to ignore tying coalitions when searching for dummy

players. (There are no dummy players in the given sample game.)

Some weighted voting games include "interchangeable parties." Interchangeable

parties are those that have the exact same power when forming coalitions, even though

they might have a different number of a priori seats. In a more technical sense, parties

a and b are interchangeable when (and only when):

VS. (1) S is minimal winning, (2) a E S, and (3) b V S =>
(3.5)

(S - {a} + {b}) is also minimal winning.

In the sample game, parties b and c are clearly interchangeable since they have

the same number of seats. The following theorem demonstrates how to find inter-
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changeable parties that do not have the same number of seats.

Theorem 3.1. Parties a and b are interchangeable if and only if for each coalition

size, they are included in the same number of minimal winning coalitions of that size.

Proof. The "only if" direction is trivial. By the definition of interchangeable, for all

minimal winning coalitions that a is in, then b must either be in that same coalition

or in an analogous coalition of the same size (namely, S - {a} + {b}) . The same

is true for all coalitions that include b. Thus, a and b will form the same number of

coalitions for each coalition size.

Instead of proving the "if" direction directly, I will prove the contrapositive: If

a and b are not interchangeable, then there exists a coalition size for which a and

b belong to different numbers of coalitions of that size. Assume, without loss of

generality, that there is some coalition of size k that includes a but not b and that

swapping b in for a would produce a losing coalition. Thus, b has a lower weight

than a. For all coalitions of size k that include b but not a, swapping a in for b would

produce either (1) a minimal winning coalition of size k or (2) a superset of a minimal

winning coalition of size less than k (let this size be j) that includes party a. If, when

swapping all of b's k-sized coalitions, only situation 1 results, then a must be in more

k-sized minimal winning coalitions than b. If situation 2 results, then repeat this

procedure for size j, as our initial assumption would still hold for j-sized coalitions.

When k = 1, situation 2 cannot occur, and the procedure terminates. Thus, there

must exist a coalition size for which a belongs to more minimal winning coalitions

than b.

Note that only minimal winning coalitions, and not tying coalitions, are relevant.

If party a is involved in a tying coalition and (1) the coalition does not include b, and

(2) the analogous coalition including b and excluding a does not exist, then swapping

a and b would necessitate a minimal winning coalition that a is in and b is not in (or

vice versa). In essence, if there is a mismatch in power in the tying coalitions, this

mismatch will manifest itself in the minimal winning coalitions as well. E

This characteristic allows for an easy way to find interchangeable parties and order
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such interchangeable sets. A set of interchangeable parties that is included in more

k-sized coalitions must have a larger weight than the interchangeable parties that are

in fewer coalitions of size k. 1 But, must all interchangeable parties have the same

minimum weight? What about minimum integer weight? Intuition tends toward

affirmative answers, but only the former is true.

First note that minimum weights do not actually exist. Given a game, one can

divide the weights by an arbitrarily large number to get arbitrarily small weights.

These new weights, being proportional to the original weights, will still define the

same game. Thus, for logic's sake, let the sequence of minimum weights be the

smallest weights that define the original game and that has a weight of 1 as its

smallest weight.

Lemma 3.2. Given a game with interchangeable parties a and b, which have respec-

tive weights Wa and Wb, if Wa A WO, then there exists a smaller set of weights that (1)

defines the same game and (2) does not decrease the smallest weight.

Proof. Let the smaller, new set of weights be the same as the original weights but

with w' and w' as the weights for parties a and b instead of wa and Wb. Assume,

without loss of generality, that Wa > Wb. These new weights are defined as:

W' wa - - e, where e is an appropriately small positive number.

Swb + f(3.6)

w= wi, for i = 1, 2..., n (i # a A i # b)

1
= (wa - Wb)

2

These new sets of weights are smaller than the original by 2 * c. To show that

the new weights still define the same game, I must show that all the original winning

coalitions are still winning. There are three cases of winning coalitions. First, consider

winning coalitions that do not include either parties a or b. Since w' + w, < Wa + Wb,

the winning coalitions increase their margins of victory in the new game. Next,

consider winning coalitions that include either party a or party b, but not both.

'Further clarification of and discussion on this point is in Section 3.3.
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Since a and b are interchangeable, these types of winning coalitions come in pairs. Of

the pair, the winning coalition that includes b is clearly still winning since w' > wb

and w' < w,. Since, in the new game, w' = w', both coalitions in the pair have

the same weight; thus, both are winning. Finally, consider coalitions that include

both parties a and b. Each of those coalitions must have a greater weight than its

complement; denote this difference as 6. If c is chosen such that, for every 6, 2 * e < 6,

then the coalitions will still be winning even with the new, smaller weights. Thus,

the new weights define the same game.

For the second proof requirement, clearly the smallest weight does not decrease.

The only weight to decrease is Wa, which cannot be the smallest weight since I assume

Wa > Wb.

Lemma 3.3. Interchangeable parties have the same minimum weight.

Proof. By contradiction. Assume there is a sequence of minimum weights for which

interchangeable parties a and b are do not have the value. Then by Lemma 3.2,

there exists a smaller set of weights that defines the same game with smallest weight

greater than or equal to one. If the smallest weight is equal to one, then these new

weights are minimum. If the smallest weight is greater than one, then scaling all the

weights down so that the smallest weight is equal to one results in minimum weights.

In either case, the original weights are not minimum. E

The above proofs indicate that having interchangeable parties with different weights

is inefficient. Therefore, can one assume that interchangeable parties will have the

same minimum integer weight, thus reducing the number of variables needed to solve

the voting game problem? First I attempt to use the same proof technique used

in Lemma 3.2 to show that interchangeable parties have the same minimum integer

weight.

Proposition 3.4. Interchangeable parties have the same minimum integer weight.

Proof Attempt. Assume (similarly to Lemma 3.2) that wi are integer weights, a

and b are interchangeable, and Wa > Wb. To end with a smaller integer set of weights,
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the following transformations would need to be done:

= Wa - 1

Wb = Wb (3.7)

w = wi, for i = 1, 2..., n (i # a A i = b)

Note the differences between (3.7) and (3.6). To decrease the size of the game, one

needs to decrease a party's weight be at least one, not some arbitrarily small value.

That restriction becomes the Achilles' heel of the proof.

As before, when determining whether these new weights define the same game,

there are three types of coalitions to consider. First, coalitions that include neither

parties a nor b are still winning, since w' + w' < wa + wb. Second, consider coalitions

that include either parties a or b, but not both. Using the logic of Lemma 3.2, the

coalition that includes b and not a is still winning, since w' = Wb and w' < Wa. The

second coalition in the pair, which includes a but not b, remains winning since (1)

w' > w' and (2) the first coalition in the pair is winning.

The proof fails on the third type of coalition, which has both parties a and b as

members. If the coalition won by one vote with the original set of weights, then since

W' + Wb' = Wa + Wb - 1, the coalition would be losing in the new scheme. The fact

that the transformation given above does not work in this case by no means indicates

that a smaller set of integer weights (with w' = w') does not exist. However, this

smaller set is also not guaranteed to exist.

Theorem 3.5. Minimum integer weights are not unique.

Proof. The fact that the above proposition cannot be proven begs the question of

whether there exists a counterexample to the claim. After searching thousands of

randomly generated 12-player games, a case in which interchangeable parties do not

share the same weight was found. In games such as the one detailed in Table 3.4,

there are multiple possible minimum integer weight assignments. The "constrained

integer" row shows the result when interchangeable parties are constrained to have

the same value. In the example, another valid minimum integer weight scheme would
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Parties
1 2 3 4 5 6 7 8 9 10 11 12 Total

Original 56 53 47 46 37 36 30 10 6 6 4 3 334
Minimum Integer 55 52 46 45 36 35 30 10 6 6 3 4 328
Constrained Integer 61 58 51 50 40 39 34 11 7 7 4 4 366
Parties 11 and 12 are interchangeable

Table 3.4: Interchangeable Parties with Unequal Minimum Integer Weights

have party 11 with a weight of four and party 12 with a weight of three. Thus,

minimum integer weights are not unique.

Corollary 3.6. Minimum integer weights are not necessarily monotonic.

Proof. Table 3.4 gives and example of a sequence of minimum integer weights that,

when ordered by seat share, are not monotonic. E

3.3 Party Rank Ordering

The fact that interchangeable parties may have different minimum integer weights is

an unfortunate blow to the efficiency of the algorithm, as now one variable must be

used for each party. However, it would still be beneficial to give a partial ordering to

the parties. Thus, the goal is to assign ranks to the parties.

Definition Let n parties (excluding dummy players) be assigned ranks 1,... , r. Let

wi be the minimum integer weight of the ith party. The following characteristics hold:

1) r < n

2) Vi, j. rank(i) < rank(j) => wi > wj (3.8)

3) Vi. rank(i) = 1 => wi > 1

Lemma 3.7. Non-interchangeable parties have different minimum integer weights.

Proof. By contradiction. Given a set of minimum integer weights, any two parties

with the same weight must be interchangeable since they would clearly meet the
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requirements of 3.5. Therefor, non-interchangeable parties must have different mini-

mum integer weights. 0

Thus, assigning parties to the same group if and only if they are interchangeable

will result in party rank. Property (1) of (3.8) holds since there cannot be more groups

than parties. Property (3) holds since all minimum integer weights (for non-dummy

parties) must be greater than or equal to one. Property (2) holds from Lemma 3.7,

but one might not necessarily be able to order these groups before discovering the

minimum integer weights.

Theorem 3.8. Parties can be divided into ranks in based solely on a priori knowledge

of coalition formation.

Proof. First, as suggested above, collect all parties into groups based on interchange-

ability. Theorem 3.1 proves useful in this endeavor. Starting with k = 1, assign the

higher rank (a rank of one being considered "higher" than a rank of two) to groups of

parties that are involved in the greater number of k-sized minimal winning coalitions.

Break ties by incrementing k and repeating.

Assume party a is included in more k-sized minimal winning coalitions than party

b. Thus, there exists one of these coalition that includes a and not b. Adding b to the

coalition would either (1) produce a losing coalition, or (2) produce a superset of a j-

sized minimal winning coalition (j < k). In situation (1), party a has a larger weight

than party b are the procedure correctly assigns a the higher rank. In situation (2),

party b has a larger weight, and since the procedure checks j-sized coalitions before

k-sized, party b will appropriately receive the higher rank.

Thus, parties can be ranked by only using information available from coalition

formation.

Corollary 3.9. For each game, there exists a monotonic sequence of minimum integer

weights.

Proof. Using the same logic as the proof in Theorem 3.8, one can see that if party

a has a higher rank than party b, then party a also has a higher seat share. Thus,
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ordering the parties by seat share will also order the parties by weight share with the

exception of within groups of interchangeable parties. However, since in these groups

the weights can be distributed in an arbitrary manner (the parties are interchangeable

after all), then by monotonically ordering the weights within each rank, a monotonic

weight sequence is produced.

3.4 Game Definition Constraints

Ranks are useful in that they provide a more compact way to define a game. By using

ranks instead of party values for variables in coalition enumeration, the number of

coalitions produced is significantly reduced. In the sample game presented in Table

3.3, the coalitions {a, b} and {a, c} are now both [1, 2] as a's rank is 1 and the rank

of both b and c is 2. (Note that coalitions are no longer sets since they can contain

duplicate values.) I refer to this smaller set of coalitions as "unique rank coalitions;"

the same principle can be applied to tying coalitions as well.

While this reduction helps save space in some areas of research (e.g., Baron-

Ferejohn values), because of the failure of Proposition 3.4, the constraint variables

must be the parties themselves. The constraints used to find the minimum integer

weights are that: (1) the minimal winning coalitions must win by at least one "vote,"

(2) the unique tying coalitions must tie, (3) each party's weight must be at least one

greater than the weight of a party one rank below the bigger party, and (4) the parties

with the smallest rank must be at least one. Table 3.5 lists the eights constraints that

would be used to find the minimum integer weights of the sample game. In general,

the number of constraints is the sum of the number of minimal winning coalitions,

unique tying coalitions, and ranks.

3.5 Coalition enumeration is NP-hard

To prove that coalition enumeration is NP-hard I reduce the known NP-complete

problem of calculating Banzhaf power indices [18] to coalition enumeration. The
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Table 3.5: Coalition and Rank Inequality Constraints Of Sample Game

input to Banzhaf is the same as the input to coalition enumeration-namely, a weighted

voting game. A party's Banzhaf score is proportional to the number of coalitions for

which that party is a "swing" voter (i.e., without that party, the coalition would be

losing). The Banzhaf value is normalized so that the sum of the scores is unity. Note

that more coalitions are involved in this calculation than just the minimal winning

coalitions, since minimal winning coalitions are composed of only swing voters, while

"Banzhaf" coalitions need only one swing voter.

Theorem 3.10. Coalition Enumeration is NP-hard.

Proof. I solve the NP-hard Banzhaf problem in terms of coalition enumeration. The

first step in solving Banzhaf would be to list the all minimal winning coalitions. Then,

for each party in each coalition, the numerator of that party's Banzhaf score (as well

as the common Banzhaf denominator) would be incremented by one plus the number

of parties outside the coalition that, if added to the current coalition, would keep the

current party swing.2 Since the running time of coalition enumeration is already a

function of the number of coalitions times the number of parties, this extra procedure

only multiplies a factor of n to that running time. Thus, coalition enumeration cannot

2 This procedure, in effect, enumerates all the Banzhaf coalitions. Care must be taken not to

repeat coalitions.
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Game
Party Seats Rank Resulting Inequality

a 3 1 a-Wb>I

b 2 2 Wb-Wd>l

c 2 2 W-Wdl

d 1 3 Wdl1

Majority: 5

Coalitions
Coalition Seats Status Resulting Inequality

{a, b} 5 Min. Winning Wa + Wb - cW d - W> > 1

{a, c} 5 Min. Winning Wa - Wb + Wc -W 1

{a, d} 4 Unique Tying Wa - Wb - Wc + Wd = 0
{b, c, d} 5 Min. Winning -W. + Wb + c + Wd 1



be easier to solve than Banzhaf and is thus NP-hard.

Given this result, I am unconcerned that the current coalition enumeration algo-

rithm runs in time O(2"). The current algorithm is just a depth-first, British-museum

search on a binary tree. Each node is a party, and the children are whether to add that

party to the coalition or not. Thus, no party is repeated in the coalition. If adding

a party results in a tying coalition, that coalition is recorded as such. If adding a

party results in a winning coalition, then the coalition is recorded and that sub-tree

is pruned. If the nodes are ordered so that the largest party is decided first and the

smallest party last, then all recorded winning coalitions will also be minimal winning.

The depth of the tree is n; thus, the running time is O(2"). In Section 4.2 I show

that the number of coalitions grow exponentially with the size of the game, thus a

much more thoughtful approach is needed to find some sort of polynomial algorithm.

Potential avenues of future research are also discussed in that section.

3.6 Searching the Feasible Region for the Mini-

mum Integer Weights

With a set of constraints, the problem of finding the minimum integer weights reduces

to an integer linear programming (ILP) problem. A common technique for solving

ILP problems is called branch and bound; and a variant of this method, termed

bound and enumerate, is developed in this paper. A separate, less-common technique

of all-integer simplex is also tried and found to be, on average, faster than bound and

enumerate. Both bound and enumerate and all-integer simplex use the well-known

linear programming (LP) simplex algorithm at some level.

3.6.1 Revised Simplex

The simplex algorithm takes a set of constraints and a cost function and returns the

sequence of variables that satisfies all constraints and has minimum cost. Since, in

this case, the variables are the weights of each party, the cost function is simply the
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sum of the weights. Simplex finds the optimal point by moving from extreme point

to extreme point in the n-dimensional feasible search space. The algorithm uses the

cost function to choose the best constraint to move along and thereby finding the

next extreme point. There are many versions of the simplex algorithm; the first tried

was the two-phase revised simplex method detailed by Best [4].

Revised simplex first converts inequalities to equalities by adding "slack variables."

These variables absorb the difference between the two sides of the inequality. To en-

sure that the algorithm starts with a feasible point, an artificial optimization problem

(called "phase one") is performed. Another set of variables, "artificial variables," are

added to every equality and > inequality constraint.

With the addition of slack and artificial variables, there are more variables than

equations. In a linear programming problem, however, the number of non-zero vari-

ables cannot the number of constraints. Thus, variables are separated into two cate-

gories: basic and non-basic. Basic variables are allowed to be non-zero, and the set

of basic variables is called the "basis."

Revised simplex starts with all the artificial variables and the slack variables of

the < inequalities as the basic variables. An artificial cost function ensures that at

the termination of phase one all artificial variables are removed from the basis.3 The

party and slack variables that took their places during phase one start in the basis for

phase two, during which the original cost function is optimized. If a feasible solution

exists, and for voting games one must exist, all the party variables move into the

basis. The weights of the parties are easily gleaned from terminating information

(i.e., the final matrices).

3.6.2 Dual Simplex with the Beale Tableau

The two-phase revised simplex algorithm has large inefficiencies in terms of both time

and space. With regard to running time, a dual approach allows for an infeasible

3 Occasionally, an artificial variable will remain in the basis; its value is guaranteed to be zero.

Unfortunately, this situation indicates a redundant constraint and the phase one must be re-run

with the constraint removed.
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starting point, thus avoiding the necessity for two phases. The minimum integer

weight problem will always have an infeasible starting point since the origin (i.e.,

Vi. wi = 0) does not define a voting game. The dual problem starts at the origin and

systematically increases the weights until a feasible is found. The first sequence of

weights in the "primal" feasible region is the solution to the problem.

For technical reasons, the dual method handles only 5 inequality or equality

constraints. Thus, three of the constraint types must be scaled by negative one. The

resulting equations that define a game are

Z:-Wi + wi < -1 where S is a winning coalition of parties (3.9)
jeS igs

w - wi = 0 where S is a unique tying coalition (3.10)
ieS igs

.- i + j 5 -1 where rank(i) = rank(j) + 1 rank(i) > 1; (3.11)
-Wi _ -1 rank(i) = 1.

Tangentially, the Beale tableau is a more efficient way of keeping track of the basic

and non-basic variables (as opposed to the canonical form) [23].4 Given a game with

m constraints and n variables of the form

min. z=E 1 (3.12)
j=1

n

V1<i<m. E aij(xj) bi (3.13)
j=1

the initial Beale tableau is shown in Table 3.6 [23]. The advantages of the Beale

tableau are that no matrix inversion is needed and that the information on basic

and nonbasic variable is kept in one place. Pivoting5 on the Beale tableau is slightly

'Implementations of the simplex algorithm usually use a "tableau" of numbers to hold the data
through the iterations. An example of a tableau, for those unfamiliar, is given later in this section.
"Canonical form" includes the original constraints, plus all the surplus and artificial variables. Re-
vised simplex splits the tableau into separate matrices; the two main matrices hold the coefficients
of the basic and non-basic variables respectively.

5Pivoting is a method to move a variable into or out of the basis. Pivoting in canonical form
involves scaling each row by a multiple of a specific "pivot row" in such a way to make all elements
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All Constant Nonbasic variables
Variables Values (-x 1 ) (-X 2 ) ... (-X,)

(-z) (-z) 1 1 ... 1
X1 0 -1 0 ..- 0
X2  0 0 -1 --- 0

xn 0 0 0 ... -1

n+1 1i a1,1  a1 ,2  ... ,n

Xn+m bm am,1 am,2 ... am,n

Table 3.6: Initial Beale Tableau for Weighted Voting Games

irregular in that: 1) the pivot column (including the pivot element) is scaled by the

negative inverse of the pivot element, 2) the general pivot is done based on columns,

thus the pivot row (excluding the pivot element) will be set to zero. Examples of

pivoting are shown in Section 3.8.4.

The one disadvantage of the Beale tableau is that equalities can no longer be

expressed. Thus, tying coalitions must be in pairs; both pairs of coalitions are con-

strained to be < 0. That work-around forces both coalitions to be 0. Unique tying

coalitions are therefore no longer pertinent.

A "constant value" column with no negative values indicates an optimal solution

and the procedure terminates. Until that point, a pivot row and a pivot column

need to be chosen at each iteration. The pivot row is simply the row (excluding the

cost row) with the most negative constant value. Choosing the pivot column is more

complex. Letting the pivot row be r and each tableau element be represented by d3,,

the pivot column is the lexicographically smallest6 when columns are scaled by their

respective [i,j, and after excluding the "constant value" column and all columns

with d,,j > 0.

of the "pivot column" zero, with the exception of the intersection of the pivot row and pivot column,
which becomes one.

6 Precedence is given to the top of the tableau-cost row included. Formally, column p is lexi-
cographically smaller than column q when the first term of ii,, - 7i,q is negative. Ties are avoided
since the nxn identity matrix at the top of the initial tableau ensures that all columns are linearly
independent.
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3.7 Deriving Bound and Enumerate

3.7.1 Branch and Bound

While the set of weights calculated by the simplex algorithm is guaranteed to be

minimal, the weights are not guaranteed to be integral. For odd, homogeneous games

with no tying coalitions, however, the weights actually are always integral. For all

other games, some sort of integer programming algorithm is needed. Branch and

bound, if given a large amount time and resources, will do the trick.

Branch and bound starts by running the simplex algorithm on the initial problem.

This problem is treated as the root of a search tree. If there are no non-integer

weights in the solution, then the algorithm stops-those weights are the minimum

integer weights. If there are non-integer weights, then for each of those weights,

two additional simplex problem are produced: one in which the offending variable

is constrained to be at most the floor of its current value, and another in which the

variable is constrained to be at least the ceiling of its current value. Thus, if the

root solution has two non-integer weights, the root node will have four children in

the graph (see Figure 3-1). Each subproblem is put in a queue, which is ordered by

Root Node
No Bounds

Nofrt ... , w1 = .5..., wj=2.5, ...

Node Node 4
Bounds: w, <= 5 Bounds: wj >= 3

Infeasible ...,I w,=-4, ...
Node 2 Node 3

Bounds: W, >= 6 Bounds: wj <= 2
., w,=6, ... ... w7=2, ...

nodes generated;

All nodes must
have w, >= 6

Figure 3-1: Top of a Branch and Bound Tree
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ascending cost.

This ordering implies that if an integer solution is found, it must be minimal,

since all subproblems of least cost have already been analyzed. The key notion is

that the costs of the children of a node must be at least the cost of the parent

node. Children are formed by adding constraints; since additional constraints can

only reduce the search space, the solution to a child node cannot be more efficient

than the solution to the parent. Many subproblems will be infeasible (especially

nodes with upper-bounded variables); these nodes are not included in the queue,

which effectively prunes their sub-trees.

3.7.2 Integer Branch and Bound

A key characteristic of the voting game problem is that the coefficients of the cost

function are all integers. Thus, the total cost must be integral. However, branch and

bound searches many nodes that have non-integer total cost. Watching branch and

bound visit over 10,000 nodes in games with as few as 10 players is painful, since the

vast majority of those nodes could be ruled out since they have non-integer cost.

While these nodes can be ruled out after the LP relaxation problem has been

executed and their total cost has been found, the puzzle of avoiding the nodes before

their cost is known is trickier. One solution is to add a constraint to the LP problem

restricting the total cost to be a specific integer value. Instead of minimizing cost,

one could minimize the weight of the largest party.

To find which values to restrict cost to, first, just as in branch and bound, run

simplex (minimizing total cost) on the root node. The ceiling of the total cost of the

root node gives a lower bound for the total cost of the minimum integer weights. For

example, if the cost of the root is 252.63, then the minimum integer weights must

sum to at least 253; if the sum was 252 or below, then the root LP problem would

have found that solution.

Start with k as the ceiling of the root's cost. Run branch and bound with the

additional constraint the total cost = k. If an integer solution is found, those values

are the minimum integer weights. If branch and bound terminates with no solution,
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increment k and repeat. Figure 3-2 illustrates this concept.

Root Node
Cost = 252.63

Root has non-integer party values

Cost restricted to 263

Node 263-1
No party bounds

Node 263-2 Node 263-4
Has party bounds Node 263-3 Has party bounds

Has party bounds

Branch and bound terminates
without finding a solution

Cost restricted to 264

Node 264-1
No party bounds

Node 264-2
Has party bounds Node 264-3

Has party bounds

Solution Found in Node 264-3

Figure 3-2: Integer Branch and Bound

3.7.3 Bound and Enumerate

Even with the cost restriction, one iteration of integer branch and bound can easily

explode exponentially. For each iteration, a simpler subproblem would be whether

there exists an integer solution with that specific cost. Unfortunately, characteristics

of empty lattice spaces is an "open question" [22]. Advances in this topic would make

variants of integer branch and bound much more efficient by allowing the algorithm

to skip over certain cost levels.
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Letting the true scholars tackle the general problem of empty lattice spaces, there

is some basic logic that can shed light on whether a space has an integer point in it.

Consider restricting total cost to be k and minimizing wi. The root node of the k

iteration of branch and bound might return a non-integer solution with wi = 22.3.

Running this same node again, but now maximizing wi, returns a solution with wi =

22.8. Clearly, no integer solution can be present with total cost being k, because no

integer value is available for wi.

Expanding this concept to the entire game, at each cost level k each weight variable

is minimized and maximized. Let the minimum and maximum values for wi at cost

level k be [Lp and vk, respectively. If, for any variable i, [pf1 > [v4J, then there is no

integer solution with cost k. Note that p and vik will always exists, since the original

sequence of seats can be scaled by (k/ E si) to produce weights that both sum to k

and define the same game.

Running 2n LP relaxation problems at each cost level significantly reduces the

potential search space and avoids the necessity of executing branch and bound. In-

stead, given the lower and upper bounds for each variable (~pf4 and [vzJ), enumerate

all possible combinations of integer values that satisfy those bounds. Simply check

whether an individual combination satisfies the minimal winning and unique tying

constraints; if the sequence of weight satisfies all conditions, these are the minimum

integer weights.

Additional restrictions can be placed on the possible combinations. First, the sum

of the variables should be k; otherwise, combinations will be repeated over iterations,

and minimality of the resulting weights is not guaranteed. Second, Corollary 3.9

proves the existence of a monotonic solution, thus one may safely ignore combinations

that violate the rule Vi, j. si ; sj =* wi < w. Both restrictions cut down on the

number of combinations tested while still guaranteeing that a solution will be found.

Table 3.7 illustrates the branch and enumerate algorithm executed on the game

[104; 71,53, 31, 21, 11,9, 7,3]. The algorithm, after running one LP relaxation prob-

lem, jumps immediately to a cost of 48. Nine iterations later, the algorithm enu-
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Parties
1 2 3 4 5 6 7 8

Seats (si) 71 53 31 21 11 9 7 3
Root node determines minimum cost of 48
Iteration 1, Cost = 48

Minimum (ffpl]1) 15 10 9
Maximum (Lv 8J ) 14 10 8

Enumerated
Iteration 2, Cost = 49
Minimum (F19]) 15 10 9
Maximum (Lv49]) 15 10 9

Enumerated

Iteration 8, Cost = 55
Minimum (f[i1) 17 12 9
Maximum ([v 5J) 18 13 10

_ _ [Enumerated
Iteration 9, Cost = 56
Minimum ([p56]) 17 12 9
Maximum ([vi5J) 18 14 10

[Enumerated
Iteration 10, Cost = 57
Minimum ([ F17) 17 12 9
Maximum (LvJ7]) 19 14 11

6 4 3 2 2
6 3 2 1 1

Combinations:_ 0

6 4 3 2 2
6 3 2 1 1

Combinations: 0

6 4 3 2
7 4 3 1 1

Combinations: 0

6 4 3 2 2
8 4 3 2 2

Combinations:- 4

6 4 3 2 2
8 4 3 2 2

----------.-- FL numerated Combinations: 10

Iteration 23 Cost- 70
Minimum ([y 0]) 20 14 9
Maximum ([vi7J) 25 21 14

[Enumerated
Iteration 24, Cost E r71
Minimum (Fp41) 21 15 9
Maximum (Lv71J) 26 21 14

LEnumerated
Iter tion 25, Cost =72

Minimum ( [1421)
Maximum ([Vi2])
Solution (wi) L

6 4 3 2 2
11 5 4 2 2

Combinations: 71

6 4 3 2 2
11 5 4 2 2

Combinations:- 471

21 15 9 6 4 3 2 2
26 22 14 12 5 4 3 3
22 15 13 9 5 4 2 2

Weight constraints that eliminate all possible
combinations are italicized.

Table 3.7: Example of Bound and Enumerate
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merates and tests its first possible weight sequences. The valid search space grows

exponentially with additional iterations; this explosion is the fatal weakness of the

algorithm. In the example, subtle changes in three values between iterations 23 and

24 lead to a 660% increase in the number of sequences to examine.

3.8 All-Integer Simplex

In the early 1960's, Ralph Gomory [13 [15] developed a variant of the simplex al-

gorithm in which all tableau entries are kept as integers. The theory behind the

algorithm is that instead of moving along a constraint to the next extreme point, as

one does in normal simplex, a constraint (or "cut") is added to the system which

reduces the feasible region while creating an alternative extreme point [14] [11].

As with normal simplex, the voting weight problem is easier to solve via a dual

method. The exact algorithm used is detailed by Salkin and Mathur [23]; little

changed from the process originally introduced by Gomory in 1963 [13]. Again, the

Beale tableau is utilized, but in this case all the elements remain integers. From (3.9)

and Table 3.6, the original tableau only consists of integers. Thus, if the additional

cuts are all-integer rows, and the ensuing pivot keeps the columns integral, then the

entire tableau (and hence the solution) will never contain a fractional value.

The rules for adding a cut are as follows. First, choose the pivot row (now des-

ignated the "source row," s) as described in Section 3.6.2. Then add the next pivot

row x, row to the tableau with the following equation

Xr = J + -J(-xy) > 0 (3.14)
j=1

Pivot with row r and column p; if the new tableau is suboptimal proceed to the next

iteration.

The only variable unspecified in the above cut equation is A. The rules for choosing

A (and pivot column p) are a bit complex and are as follows.

1. Given a source row s, exclude from consideration the "constant value" column
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and columns with U,,, > 0.

2. Choose pivot column p as the lexicographically smallest of the eligible columns.

3. Excluding column p, let u3 be the largest integer > 1 such that column j scaled

by the inverse of uj is still lexicographically larger than column p. Set up = 1.

If no such uj for column j exists (e.g., Vi < y. -ij = -i,p = 0; -,,j > 0 and ",, <

0), then set u3 to an arbitrarily large value.

4. Set Aj = -Ej/uj.

5. Use the maximum of all valid Af's as the A for the cut and its column as the

pivot column.

This process produces A > 1 since A > A, = -= - >,,, 1. Also note that

A > -d,,,; thus, the pivot element term in (3.14), [ ], is always -1. A pivot element

of -1 will keep all tableau entries as integers, thus fulfilling the main characteristic of

all-integer simplex.

3.8.1 Finiteness of the Algorithm

The algorithm is finite due to the lexicographically decreasing nature of the "constant

value" row. At each iteration the pivot column is scaled by [9J, which is less than

zero. Because each column (besides the "constant value" column) is lexicographi-

cally greater than zero (since a larger column is never subtracted from it-hence the

derivation of uj), the "constant value" column will decrease lexicographically after

each iteration.

Thus, the only way for the algorithm to loop forever would be for there to be

an infinite decreasing sequence of "constant value" columns. Since a feasible solution

exists, do,o is bounded below by the total cost of this solution. Thus, for the algorithm

to loop, Uj,O, i > 0 must decrease forever. However, one can show that each element

must have a lower bound.

Examine the element U1,0. If it goes below zero, the first row is eligible as the

source row. When this row is chosen as the source row, its value increases; to ensure
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the column as a whole lexicographically decreases, then do,o must decrease. If d1,o

decreased forever, column one would be the source row an infinite number of times,

and do,o would decrease forever as well. But do,o is known to be bounded below,

therefore si,o must be bounded below too. Repeat this argument for all di,o, i > 1 to

prove finiteness of the algorithm.

3.8.2 Source Row Selection

The above proof does rely on the assumption that if a row is negative it will eventually

be chosen. The source row selection rule presented in Section 3.6.2 does not abide

by this rule. 7 Using the "most negative" rule will result in cycling in a significant

number of large all-integer simplex problems. One potential rule would be to choose

the first row with a negative entry in the "constant value" column. Unfortunately,

while this change solves the problem of cycling, it increases the number of iterations

to an intolerable amount.

Upon finding the same inefficiency, Gomory [13] introduced a "look ahead" rule

to determine the source row. The objective of this rule to choose a row that will

result in the largest pivot column (lexicographically speaking), thus driving down the

"constant value" column as far as possible. There are three steps to the rule:

1. List the columns (as usual, ignoring the "constant value" column) in descending

lexicographical order. Assign each column a rank (1, 2, ... , n) based on that

ordering. Let this rank be C(j).

2. For every row with di,o < 0, assign the row a rank R(i) = maximum C(j) where

j E {j di~j < 0}.

3. Select source row s = argmini R(i).

I break ties by choosing the smallest i (i.e., the first row).

7Indeed, as Solow [26] points out, in LP simplex the "most negative" rule, while lowering the

number of iterations needed, is vulnerable to cycling as well. However, he also asserts that cycling
rarely happens; a claim my experiential evidence supports. Bound and enumeration (under this

selection regime) never failed to solve the LP relaxation problems.
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While the Gomory rule does greatly speed up the algorithm, cycling does occur

because rows are not guaranteed to be chosen. To solve this dilemma between effi-

ciency and consistency, I introduce non-determinism into the program. For two-thirds

of the iterations I use the Gomory criterion and one-third of the time I choose the

first eligible row. The two-thirds/one-third split is largely arbitrary, only a small

amount of searching was done in an attempt to find the optimal ratio. Regardless of

the optimal percentage, this configuration never leads to cycling and solves weighted

voting games in a reasonable amount of time (see Sections 4.5 and 4.6).

3.8.3 Cut Formation and Deletion

Sources conflict [23] [11] on whether to delete a newly formed cut row after it has

been used to pivot. Even Firla, who recommends keeping the rows in the tableau

notes that they should not be used as source rows. Thus, they are useful only for

record keeping; in large problems, such as 14-party parliaments, it is wise to delete

the rows after pivoting. Therefore, the space needed for the tableau does not grow

and remains at O(n 2 . m) for the duration of the algorithm.

The same sources do agree, however, for the case when A = 1. In this situation,

the added cut would be the same as the source row; thus, the source row can be used

as the pivot row and there is no need to create the additional cut.

3.8.4 All-Integer Simplex Example

Example Solve the weighted voting game [46;32,24,18,17].

1. Coalition Enumeration. There are four minimal winning coalitions: {32,24},

{32,18}, {32,17},{24,18,17}. There are no tying coalitions.

2. Rankinq. Labelling the parties in descending order yields rank(1) = 1,

rank(2) = 2, rank(3) = 2, and rank(4) = 2.
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3. Constraints.

-W1 -W2

-W1 + W2

-W1 + W2

W1 -W2

+ W3 + W4

- W3 + W4

+ W3 - W

- W3 - W

-W1 + W2

-W 2 + W3

-W 3 + W4

+ -W4

K

K

K

K

K

K

-1

-1

-1

-1

-1

-1

-1

-1

4. All-Integer simplex

Source rows are marked with a -+, pivot elements are in bold, and the solution

in the optimal tableau is italicized. Note the monotonically decreasing negative

total cost in do,o and the lexicographically decreasing "constant" column.

#1
(-z)
X1

X 2

X3

X4

X5

-+ X7

X 1o

X12

1 (-Xi) (-X2) (-X3) (-X4)

0
0
0
0
0
-1
-1
-1
-1
-1
-1
-1
-1

1
-1
0
0
0
-1
-1
-1
1
-1
0
0
0

1
0
-1
0
0
-1
1
1
-1
1
-1
0
0

1
0
0
-1
0
1
-1
1

-1
0
0
-1
0

1
0
0
0
-1
1
1
-1
-1
0
0
0
-1

Source row criterion: Gomory; potential rows: {7,9}; source row, s = 7.
Potential pivot columns: {1,4}; u 1 = 1, u 4 = oo; A = A1 = 1, A4 = 0; pivot col., p = 1

,,p = -1, so there is no need to add a cut.
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#2 1 (-X7) (-X2) (-X3) (-X4)
(-z)
x1

X2

x 3
x 4

x5

X;6
X;7

Xg

a;1 0

ai;1

X12

-1
1
0
0
0
0
0
0
-2
0
-1
-1
-1

1
-1
0
0
0
-1
-1
-1
1
-1
0
0
0

2
-1
-1
0
0
-2
0
0
0
0
0
0
0

2
-1
0
-1
0
0
-2
0
0
-1
0
-1
0

-1 0 0 0 -1

Source row criterion: any negative; potential rows: {8,10,11,12}; source row, s = 8.
Potential pivot column: {4}; u4 = 1; A = A4 = 2; pivot col., p = 4

#3
(-z)
X1

x 2

X 3

X 4

Xa5

-4 X6

X;7

Xa8
ag

X1 0

a;1 1

X;1 2

1 (-X7) (-X2) (-X3) (-X13)

-1
0
0
0
1
-2
-2
0
0
-1
-1
-1
0

1
-1
0
0
0
-1
-1
-1
1
-1
0
0
0

2
-1
-1
0
0
-2
0
0
0
0
-1
0
0

2
-1
0
-1
0
0
-2
0
0
-1
0
-1
0

0
1
0
0
-1
2
2
0
-2
1
0
0
-1

Source row criterion: Gomory; potential rows: {6,9}; source row, s = 6.
Potential pivot columns: {1,3}; U1 = 1, u3 = 3; A = A1 = 1, A3 = 2; pivot col., p = 1
drp = -1, so there is no need to add a cut.
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1
0
0
-1
2
2
0
-2
1
0
0
-1

x13
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1 (-X6) (-X2) (-X3) (-X13)

(-z)
x1

x2

x3
X4

zio

x 12

-3
2
0
0
1
0
0
2
-2
1
-1
-1
0

1
-1
0
0
0
-1
-1
-1
1
-1
0
0
0

2
-1
-1
0
0
-2
0
0
0
0
-1
0
0

0
1
0
-1
0
2
0
2
-2
1
0
-1
0

2
-1
0
0
-1
0
0
-2
0
-1
0
0
-1

Source row criterion: Gomory; potential row: {9}; source row, s = 9.
Potential pivot columns: {1,4}; U1 = 1, u4 = 3; A = A1 = 1, A4 = 1; pivot col., p = 1

?ir,p= -1, so there is no need to add a cut.

1 (-X9) (-X2) (-X3) (-X13)

-5
3
1
0
1
2
-2
1
0
-1
0
-1
0

1
-1
0
0
0
-1
-1
-1
1
-1
0
0
0

2
-1
-1
0
0
-2
0
0
0
0
-1
0
0

0
1
0
-1
0
2
0
2
-2
1
0
-1
0

2
-1
0
0
-1
0
0
-2
0
-1
0
0
-1

-1 0 0 -1 0

Source row criterion: Gomory; potential row: {8,11}; source row, s = 8.
Potential pivot column: {3}; u3 = 1; A = A3 = 2; pivot col., p = 3
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(-z)
X1

X2

X 3

X4

X;7

-+ X;8
4a;9

a;1 0

a;1 1

X12

x 14 |

#4



1 (-X9) (-X2) (-X14) (-X13)

(-z) -5 1 2 0 2
xi 2 -1 -1 1 -1
X2 1 0 -1 0 0

X3 1 0 0 -1 0

X4 1 0 0 0 -1
X5  0 -1 -2 2 0

X6 0 -1 0 0 0

X7 0 -1 0 2 -2

X8 0 1 0 -2 0
Xg 0 -1 0 1 -1

x1o 0 0 -1 0 0
X11  0 0 0 -1 0
X 12  0 0 0 0 -1

Optimal tableau:
Wi = doj (1 <: j < 4) = [2,1,1,1]

3.9 Worst Case Orders of Growth of Algorithms

Despite the development of polynomial-time algorithms to solve linear programming

problems [24], the simplex algorithm, which grows exponentially in the worst case,

remains quite a popular algorithm [26]. In the worst case, where the variables and

constraints conspire to form a space with 2'+" vertices, the vertices can be ordered so

that simplex moves linearly from one to the next. (Here, m is the number of equations,

and n is the number of variables.) Thus, worst case, simplex takes O( 2 mn) [29].

However, problems take only O(m + n) iterations on average [24].

In the specific case of majoritarian voting games, the number of variables, n, and

the number of equations, m, are closely related. The number of equations is the

number of minimal winning coalitions, plus the number of tying coalitions, plus the

number of non-dummy parties (for the rank constraints). Upper bounds for those

variables are 2.. I, and n respectively.' How the number of minimal winning and

'Calculating the upper bound of (2n/vri) for tying coalitions is involved. Given n parties with
t=q-1 = I E si and h=, the largest number of combinations of parties that add up to t
is when Vi. si = c and t mod c = 0, where c is a constant integer. In this case, the number of
tying coalitions is (n) = n!/(h!2 ).Taking the in: ln(n!) - 21n(h!). Using Stirling's approximation
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tying coalitions vary with the number of parties on average is discussed in Section

4.2. Also, note that the use of the Beale tableau adds n rows to the matrix, which

would normally only consist of the m equation rows. Let the total number of simplex

rows (or constraints) be c; thus, c=O(m + n), which is also the order of growth of the

average simplex execution.

Generalized integer programming is an NP-complete problem, and thus a poly-

nomial time algorithm for the minimum integer weight search problem is unlikely to

be found [24]. To calculate the order of growth in time for bound and enumerate,

the number of iterations and the number of combinations per iteration must be taken

into account. Given n parties with r ranks, the minimum total cost that the original

root node could return is (n - r) + E r. The E r term is derived from the fact that

the difference between adjacent rank values is bounded below by one. The (n - r)

term signifies the additional parties that belong to non-exclusive ranks; the minimum

weight for these parties is one. The maximum total cost is 2q (i.e., the total number

of seats), thus the order of growth of the maximum number of iterations is O(q - r 2 ).

At each iteration, the number of sequences enumerated is limited by the number of

monotonic combinations of weights that add up to k. This is somewhat analogous to

the maximum number of tying coalitions. Indeed, as k approaches q the number of

combinations that sums to k approaches half9 that of the potential number of tying

coalitions. Thus, the upper bound for combinations is 2 . The worst case order of

growth for bound and enumerate is O((q - r2 ) * 2n)-clearly exponential.

The order of growth of all-integer simplex directly depends on the number of cuts

needed before an optimal solution is found. Schrijver [24] proved that the number of

cuts needed can not be bounded by a polynomial number. That is not to say that

on average all-integer simplex cannot be exponential, but that, worst case, integer

simplex will be exponential. Cook, Coullard, and Turan [8] then showed that, for

empty spaces, the number of cuts is bounded by O(c3c). (That exponential result

(let k = }ln(2-7r)): nln(n) + .ln(n) - n + k - 2hlin(h) - ln(h) + 2h - 2k = nln(n) + 'in(n) -
nln(h) - ln(h) - k = in(nn+(1/2)/hn+1) - k = ln(2n+1/vfn) - k = ln(2n+1/ / 27r).Undoing the in:
2n+/,V2- = (v"2/\/5) * (2"/V/n) < (2n/V/n).For odd n, use (n - 1) to keep h as an integer.

9Half since tying coalitions are unique in that their complement also meets the required sum.

This is not true for any other k, thus cutting the pool of potential sequences in half.
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implies that an all-integer simplex process at each bound and enumerate iteration

would not be helpful for determining emptiness of fixed-cost spaces). Further research

by Cook, Gerards, Schrijver, and Tardos [9] showed that for any space, the number

of cuts needed only depends on c. Thus, a reasonable assumption would be that the

order of growth of simplex, in the worst case, would be O(cc). In the next chapter,

the average number of cuts and time needed for a solution is analyzed.
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Chapter 4

Results and Analysis

4.1 Methodology

By using these algorithms for finding the minimum integer weights for arbitrary

games, I now examine (1) different properties of games, (2) the proportionality of

minimum integer weights, (3) the relative strengths and weaknesses of the algorithms.

The following analysis is based on randomly-generated games. For empirical results,

see Ansolabehere [1] and Strauss [27].

Random games were generated based on two parameters: the number of parties

and the maximum number of seats. The number of parties (denoted n) ranges from

three to 13; the maximum seat size (denoted t) has five discrete values: 5, 20, 50, 100,

and 250. For each party and maximum seat size, 500 random games were generated.

Thus, games are laid out on two axes; I refer to games with relatively many parties

as "large games" and games with a large maximum seat parameter as "many-seat

games." (The analogous terminology for smaller games is "small games" and "few-

seat games.") In all cases, games were solvable by at least one algorithm; and, games

that could be solved by only one algorithm composed a small minority.

When one party's weight alone is at least a majority of the total weight, that player

is considered a "dictator" and the game is a "dictator game." A probabilistic analysis

indicates that for three players with randomly chosen seats (and no maximum), the
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probability of the resulting game including a dictator is 50%.1 Indeed, almost half of

the large-seat, three-player stochastic games include dictators. The data also confirm

the probabilistic facts that as the number of players increases, the rarer dictator

games become (Figure 4-1); and, that as the maximum number of seats increases,

the more prevalent dictator games become (Figure 4-2). Since game theorists are

interested only in games for which multi-player coalitions are formed, dictator games

are excluded from further analyses. This proscription has a significant effect only on

small-player games.

0.40

0.35 -

S0.30

-0.20

150.15

0.10

0.05 -

0.00 -

3 4 5 6 7 8 9 10 11 12 13

Number of Parties

Figure 4-1: Incidence of Dictator Games by Number of Parties

-4

0.14

0.12

o 0.10

.5 0.08

0.06

Q 0.04

0.02

5 20 50 100 250

Maximum Number Of Seats

Figure 4-2: Incidence of Dictator Games by Maximum Seats (n ; 7)

'To calculate this, find Pr(Z - W > 0) + Pr(Z - W' > 0) where W = X + Y, W' = IX - Y1,
and X,Y, and Z are random variables uniformly distributed over [0,1].
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4.2 Number of Coalitions and Constraints

The primary that larger games are harder to solve (see Section 4.5) is because more

parties lead to more coalitions. Since the running time of all-integer simplex is greatly

affected by the number of coalitions, how quickly the number of coalitions grows needs

to be examined. Figure 4-3 shows that the relationship between coalitions and parties

is exponential. Running an ordinary least squares regression on the log of the number

of coalitions indicates that the number of coalitions grows by approximately O(1.7')

(Table 4.1). Similarly, the number of tying coalitions grows exponentially as well.

600

S500

0400-
A300

200

100

04
3 4 5 6 7 8 9 10 11 12 13

Number of Parties

Figure 4-3: Average Number of Min. Win. Coalitions by Number of Parties

Interestingly, the number of coalitions decreases as the maximum seats allowed

per party increases. The reason is that the sparseness of the seat values in many-seat

games allows a few parties to dominate, thus producing fewer coalitions. A linear

relationship fits the data slightly better than an exponential relationship, though

more in-depth study would be needed to verify this claim. Another notable property

is that the number of unique coalitions increases as party size grows. In this case,

the dense seat-space in few-seat games produces many fewer ranks than parties, thus

decreasing the number of unique coalitions and outweighing the opposing trend shown

in Figure 4-4.

A more probing analysis of coalitions versus maximum seat size only produces

hazier results. For instance, if one only looks at games with specific parameters (e.g.,
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n = 11 and t = 100), then the number of coalitions increases over the average number

of seats per party. This claim appears to be in direct contradiction with the finding in

the preceding paragraph. However, as one increases the maximum seat parameter, the

positive relationship between coalitions and average seat size becomes more "bottom

heavy," bringing the group's average down. To detail this local relationship a bit more,

as maximum seat size increases the slope of this positive relationship decreases, while

increasing n has an opposite effect. Analysis shows that the most likely reason for

this relationship is that the more relatively small parties are in a game, the fewer

coalitions there will be, since coalitions will need more parties in them to reach the

quota.

180

160

o 140

120

100-

80 -
0 50 100 150 200 250

Maximum Number of Seats

Figure 4-4: Average Number of Min. Win. Coalitions by Maximum Seats

The number of tying coalitions is also affected by the density of the seat-space

in games. As the discussion in Section 3.9, the scenario which results in the most

tying coalitions is when all the parties have equal weight. As party size spreads out

over a larger potential space (i.e., when the maximum seat parameter increases), the

number of tying coalitions decreases. This principle is illustrated in Figure 4-5.

The number of coalitions in a game affects both the subproblem of coalition enu-

meration and of solution searching. Since the number of minimal winning coalitions

grows exponentially on the size of n, any algorithm-no matter how clever-that

enumerates all the minimal winning coalitions will grow exponentially. There are a
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Figure 4-5: Average Number of Tying Coalitions by Maximum Seats

few potential ways to avoid this problem. One, even minimal winning coalitions can

be redundant. For instance, let a minimal winning coalition S have as its small-

est two seat values si and s3 respectively. For all players Pk, where si ;> sk > Si,

S' = S - {pj'} + {Pk} will be a minimal winning coalition as well. Each coalition of

type S coalition implies all S' minimal winning coalitions; thus, S' coalitions need

not be enumerated. While the number of defining coalitions would probably still be

exponential on average, further such insights might prove very fruitful in reducing

the time needed for coalition enumeration.

Another potential method for enumerating fewer coalitions would be a random-

ized, bounded error, algorithm. Perhaps some polynomial number of coalitions could

be picked and checked to see if they were minimal winning. Clever algorithms could

probabilistically (or even deterministically) avoid picking coalitions that were obvi-

ously not minimal winning. Sometimes a crucial coalition would be missed, thus

producing weights that defined a different game. A difficult task would be knowing

whether one had indeed stumbled upon the correct weights or whether the algorithm

should be run again.

For the second subproblem, specifically when a simplex technique is employed,

the relevant question is how the number of constraints grow over the size of games.

To find the number of rows present in the Beale tableau, one sums the number
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of minimal winning coalitions, tying coalitions, and twice the non-dummy parties

(needed for both the identity sub-matrix at the top of the tableau and the ranks

constraints). As Figures 4-6 illustrates, the number of rows is dominated by the

number of minimal winning coalitions, and thus grows exponentially on the number

of parties and decreases polynomially on maximum seats. In total, the number of

rows (i.e., constraints) grows at a rate of c = Q(1. 5 6 5 " * t- 0 .12 9) (Table 4.1).

700
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a 400

O 300-

U 200-

100 -

0*-
3 4 5 6 7 8 9 10 11 12 13

Number of Parties

N Min. Win. Coalitions N Tying Coalitions E 2*Non-dummy parties

Figure 4-6: Composition of Simplex Rows Averaged over Number of Parties

Obs = 26,185 . Dep. Var. = a#"ty
Dependent Variable a # _* R_2

Min. Win. Coalitions 0.366 1.721 - 0.945

Min. Win. Coalitions 0.544 1.723 -0.110 0.952

Simplex Rows 1.721 1.533 - 0.925

Simplex Rows 2.776 1.535 -0.132 0.943

All coefficients significant at 99% confidence level

*Assumed zero when excluded

Table 4.1: OLS Regressions for Minimal Winning Coalitions and Simplex Rows

4.3 Proportionality of Minimum Integer Weights

A major impetus for this research was to discover whether minimum integer weights,

and thus potentially power, follow Gamson's Law of proportionality. Empirical ev-
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idence indicated that for games with few parties, larger parties would have dispro-

portionately less power, while for games with many parties, power was proportional.

While prior research [27] confirmed this result with incomplete data, given the im-

portance of this question, it is worth re-examining.

The data, this time complete and extended, once again supports Gamson's Law for

large parties (see Figure 4-7). In smaller games, there is a "relative weakness effect":

the coefficient on seat share is below one, and the constant is positive. But as the

number of parties increases, these values approach unity and zero. The maximum

number of seats has little impact on these numbers (with the exception of small,

few-seat games).

1.0 - -
0.986 0.993 0.997 0.999

0.857 0.904 0.939 0.940 0.955 0.972
S0.8

0.6

. 0.4

0.2
4 0.1.42

0.0
3 4 5 6 7 8 9 10 11 12 13

Number of Parties

Figure 4-7: Weight Share Regression Coefficients

An appropriate question to raise is whether the almost perfect correlation between

weight share and seat share (R 2 = 0.9997 when n = 13) is due to the congruence of

minimum integer weights and seats. Indeed, as the number of parties increase, the

less often seat values need to be reduced to find the minimum integer weights. With

13 parties, 68 percent of games had this property. However, even after removing those

games and removing those games with similar weights and seats2, the change in the

coefficient values presented in Figure 4-7 was less than one percent3 for all n > 3.

2 Let the percent of weight reduction be (total seats - total weights)/ (total seats) = (Z si -
E wi)/(E si) = 6. Consider games with 6 < .10 to have "similar" weights and seats.

3Let percent change in coefficient values be (old coefficient - new coefficient) / (old coefficient).
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4.4 Homogeneity of Games

From Von Nuemann [30] to Isabel [16] in the early years of voting game research to

Morelli [19] and Snyder [28] more recently, scholars have had a penchant for exam-

ining properties of homogeneous games. One reason is that the mathematics behind

homogeneous games is easier, thus leading to the second reason: there are more in-

teresting properties to discover. As noted in previous work [27], the prevalence of

homogeneous games decreases as games become larger. Now with complete data, the

view (Figure 4-8) is sharper.

0.8

0.6

0.6

0.

3 4 5 6 7 8 9 10 11 12 13

Number of Parties

Figure 4-8: Percent of Homogeneous Games by Number of Seats

A simple probit analysis reveals a coefficient of 0.976 on n and 1.94 x 10' on t (Std.

Err.'s: 1.27 x 10-2, 1.69x10-4; pseudo-R 2 =0.741). Taking the percent of homogeneous

cases at each party-seat value and running a Gompertz nonlinear regression on n

yields:

Percent Homogeneous .0143 + 1.047 * e- 1.12 3
(n-

6
.342) R2 = 0.979 (4.1)

Standard errors: (0.0117) (0.0340) (0.120) (0.0665)

While there might be some theoretical insight to be gained for why a Gompertz "s-

curve" fits the data so well, the important message the data provide is that the number

of homogeneous games approaches zero in large games. Thus, researchers must refocus
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their efforts to nonhomogeneous games if their analyses are to be generally useful.

4.5 Running Times of Algorithms

Both all-integer simplex and bound and enumerate algorithms were clearly faster than

the branch and bound method used in prior research [27]. While all-integer simplex is

faster than bound and enumerate on average, there are some games for which bound

and enumerate will find the solution but simplex will choke on. These games often

have the attribute that their initial seats are the minimum integer weights for the

game. 4 In these cases, bound and enumerate finds the solution when it examines the

root node while all-integer simplex starts at the (infeasible) origin and works its way

toward the solution. In these cases, bound and enumerate is much faster.

Given these different approaches to solve the same problem, a third algorithm,

"augmented integer simplex," was developed. This new method first runs the root

LP relaxation problem, as in bound and enumerate. Only if an integer solution is

not found, then all-integer simplex is executed with the additional constraint that the

total cost must be greater than the ceiling of the root node's cost.

To compare the three methods, 50 random games were generated for each com-

bination of the two parameters of number of parties and maximum seats per party.

To get a better sense of how game difficulty changed on the second parameter, more

maximum seat levels were added. The algorithms were given ten minutes (excluding

coalition enumeration) to solve each game. For many-seat, 12-player games bound

and enumerate struggled, solving only 60 percent of games attempted. Thus, larger

games were not attempted for that algorithm. Similarly, all-integer simplex, started

significantly slowing on 13-player games, and the algorithm was discontinued after

that level. But, augmented integer simplex was still going strong with 14-player

games-solving over 90 percent of the games in under ten minutes and needing (on

average) fewer than nine seconds per solved game (Figure 4.2).

A simpler demonstration of the dominance of augmented integer simplex is illus-

4Or, more generally, when the seats are the minimum weights given the extra rank constraints.
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t: 5 50 100
n Alg.* Attribst Time' S%O Attribs Time S% Attribs Time S%

ISim 42 37 All 42 21 All 53 25 All
8 BaE 1; 0 55 All 8; 2,498 406 All 6; 1,299 235 All

AIS 13; 82% 18 All 33; 62% 22 All 22; 80% 14 All
ISim 54 78 A -~l 68 60 Al 79 66 AlI

9 BaE 0; 0 56 All 14; 41,214 1,852 All 10; 9,910 1,027 All
AIS 3; 94% 14 All 51; 56% 55 All 37; 74% 39 All
Iim 75 266 ~ ~Al 121 268 All 182 324 All

10 BaE 0; 0 220 All 21; 3,315 6,230 All 33; 86,953 11,376 All
AIS 4; 96% 35 All 79; 58% 157 All 91; 56% 187 All
1Sim 62 381 ~ ~A-ll 329 f,110 All 1 ~ ~ 6f7 2,621 ~ All

11 BaE 0; 0 237 All 27; 5,272 23,595 All 65; 84,347 55,470 98%
AIS 1; 98% 50 All 182; 54% 898 All 269; 50% 1,387 All

-- ISi 71 1013 All~ 103 8,6~82 All 1306 1,67 ~98
12 BaE 0; 0 127 All 27; 391 61,265 98% 45; 30,463 67,276 88%

AIS 0; All 128 All 126; 62% 1,254 All 246; 60% 2,666 All
ISim 95 2,8~9f ~All~ ~ ~ 1248 - 20,03 Al 1 ~F850 29,4~00 80%

13 BaE - - - - - - -

AIS 0; All 300 All 247; 72% 4,716 All 245; 57% 3,964 98%
ISim - ----------------------------------- - - - -

14 BaE - - - - - -

AIS 0; All 767 All 20; 96% 1,862 All 194; 72% 6,810 94%

t: 150 200 250
n Alg. Attribs Time S% Attribs Time S% Attribs Time S%

ISim 47 27 All 44 21 All 39 19 All
8 BaE 5; 364 225 All 6; 4,322 273 All 2; 1,073 78 All

AIS 16; 82% 12 All 15; 82% 10 All 7; 94% 4 All
16 101 -All ~ 102~ 898 All 8 6 X Al7

9 BaE 14; 111,290 3,447 All 14; 107,020 3,476 All 14; 422,133 11,971 All
AIS 40; 74% 38 All 32; 74% 37 All 26; 82% 24 All
i 2 - 568 A 211 - ~206~ ~ ~ ~ 318~ All 191 322~ A ill

10 BaE 44; 232,567 17,962 All 27; 208,941 11,690 90% 27; 504,574 21,098 96%
AIS 84; 54% 165 All 71; 66% 141 All 63; 70% 126 All
Sim 804 ~ 2,6~92 Al 616 2,956 Afl - - 710 2,668 -- -X

11 BaE 65; 393,944 72,060 94% 71; 751,520 64,802 94% 40; 790,236 54,581 88%
AIS 127; 52% 519 All 138; 54% 459 All 87; 66% 322 All
ISim 1483 ~ ~11,830) Al l 1759 - - ~10,806 907 ~ ~ f266 ~ 16,9~62 ~94%

12 BaE 67; 418,095 129,349 74% 48; 62,867 69,633 66% 15; 17,722 20,946 60%
AIS 403; 48% 4,282 96% 198; 54% 1,694 All 1,372; 57% 11,349 98%
Im- - 1384 30,578~ 82% 105 24,358 807 1899W 33,f47 80%$

13 BaE - - - - - - - -

AIS 611; 48% 15,874 All 145; 68% 2,300 94% 176; 63% 2,831 92%
ISim - - - - - - --

14 BaE - - - - - - - - -

AIS 643; 63% 23,165 98% 496; 54% 14,257 96% 268; 61% 8,679 92%
*All Integer Simplex, Bound and Enumerate, Augemnet Integer Simplex.
tISim : Number of cuts added. BaE: Number of Iterations; Number of enumerations.
AIS : Number of iterations; Percent solved by root node.

bTime is in milliseconds. Percent of games solved.

Table 4.2: Time Trials for the Three Algorithms
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trated and discussed further in Section 4.7.

4.6 Average Iterations for All-Integer Simplex

Given that, in the worst case, all-integer simplex grows exponentially with the num-

ber constraints (c) [9] [8], and that, on average, non-integer (normal) simplex scales

linearly [24], an intriguing question is how all-integer simplex grows on average. The

answer is: exponentially, but barely. I ran 2,000 stochastic games with between eight

and 12 parties (with a variable maximum seat parameter). Then I took a moving av-

erage based on the number of simplex rows, not based on the number of data points,

to avoid biasing the results to the more numerous, smaller games. The result is show

in Figure 4-9. The number of iterations all-integer simplex requires is on the order of

Q(1.01c), which is about as slow as a function can grow and still be exponential. How-

ever, the data are certainly not linear. No matter how the data were adjusted, be it

by removing outliers or changing the moving average, an exponential model always fit

better than a linear one. This finding is unfortunate news for the all-integer simplex

algorithm, since, as noted in Section 4.2, the constraints already scale exponentially

on the number of players.

3500

3000

. 2500*

2000 + z

S1500-

S1000

500~

0+

0 50 100 150 200 250 300 350 400
Tableau Rows

+ Iterations - Fitted function, 77*(1 .01Arows)

Figure 4-9: Exponential Growth of All-Integer Simplex on Number of Constraints
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4.7 Solving an Arbitrary Game

If all-integer simplex scales poorly with large games, then augmented integer simplex

will similarly slow on games that are not solved by the root node. As games get larger,

however, the probability increases that the a priori seat values are the minimum

weights (with the additional rank constraints). This property enables the root node

to solve more games. In the tug-of-war between the slow simplex process and the quick

root node, thankfully, the root node wins. Eager to test augmented integer simplex's

limits, I extended the analysis to 17 games (Figure 4-10). Note that the percent of

games solved by augmented integer simplex actually increases between 14 and 17

parties.5 Given these results, finding the minimum integer weights for any game is

clearly only a matter of resources and patience. For very large games the bottleneck

becomes coalition enumeration. While coalition enumeration is exponential, there

is neither uncertainty of whether it will terminate nor of how long it will take to

terminate. Since the world's fastest computers execute over 1012 instructions per

second, even the Electoral College, with (worst case) 1015 winning coalitions, seems

well within reach.

0.98

0.9 .

0.84
0.8 .

0.77

0.6
8 9 10 11 12 13 14 15 16 17

Number of Parties

-A-Bound and Enumerate -+ All-Integer Simplex -M- Augmented Integer Simplex

Figure 4-10: Percent of Games Solved by the Three Algorithms (t > 50)

5A similar rise would surely also seen in bound and enumerate's effectiveness.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

When developing these algorithms, important theoretical properties of minimum in-

teger weights were discovered. First, interchangeable parties are useful in delineating

weight differences between parties, but cannot guarantee that two parties have the

same weight. Continuing along that path of research, one finds that minimum integer

weights are non unique and that there is always a monotonic solution to a voting

game. Thus, minimum integer weights will never fall into the trap of additional

seats leading to less power that at least one power index, Deegan-Packel [27], does (a

comforting and intuitive solution).

The basic integer linear programming approach of branch and bound is not pow-

erful enough to solve games of more than about eight players. Optimizing branch and

bound by utilizing properties to the minimum integer problem results in the bound

and enumerate algorithm. While this is a significant improvement, this algorithm

starts to fail at about twelve players. The large advancement in this paper is to use

Gomory's 1960 all-integer simplex algorithm to solve the optimization subproblem.

Combining the two algorithms into augmented integer simplex yields a very power-

ful tool capable of solving over 90 percent of 17-player games in under ten minutes.

The bottleneck for the vast majority games is now coalition enumeration-unthinkable

progress only six months ago.
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5.2 Improvements to the Algorithms

While great strides were made in developing algorithms to find the minimum inte-

ger weights of voting games, time constraints limited the amount of truly in-depth

optimization that was completed on these algorithms. The first priority was to find

the weights of European parliaments for related work [1]. That mission was com-

pleted successfully; the largest hurdle being the 1994 Italian election with 21 parties

and over 10,000 coalitions (and 3,000 tying coalitions).' While further improvements

were made after the empirical research, some sacrifices had to be made.

For instance, the fact that bound and enumerate is the slowest of the three algo-

rithms has been apparent for some time, thus closer scrutiny was placed on the other

algorithms. An unimplemented, direct approach to improve the "bound" portion

of bound and enumerate would be to use an interior point method to solve the LP

subproblems instead of the simplex method. Interior point methods are polynomial

time algorithms [32], while simplex is only polynomial on average. These interior

point processes, which do not usually return exact solutions, are a good fit for bound

and enumerate since that algorithm does not require its subproblems to return exact

solutions.2 The effect of this change greatly depends on how the "enumerate" portion

of the algorithm scales on the size of the game. The relevant results in Figure 4.2

are equivocal, with increased complexity of games pushing the number of enumera-

tions up, and the time limit and smaller weight reduction for larger games exerting

downward pressure.

Also, more information could potentially be included in augmented integer sim-

plex. Similar to bound and enumerate, the lower bounds for each variable would be

found. This n-tuple, instead of the origin, would be useful as a starting point for the

simplex algorithm. Exactly how to implement this change is beyond the mathemati-

'Interestingly, the minimum integer weights were not the seat values. All parties with more than
50 seats had a minimum integer weight of one less than its number of seats.

2Since bound and enumerate takes the ceiling or floor of the subproblem solutions, an inexact
(but accurate), solution would be sufficient in most cases. For cases in which the solution is an
integer and the LP algorithm misses in the "wrong" direction, benefit of the doubt could be given to
making the search space larger. Also note that polynomial LP algorithms that return exact solutions
are available [32], but require more work and time.
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cal ability of the author. But, the simplex algorithm seems dynamic enough to utilize

this new information, and hopefully this additional information will speed up future

implementations of the algorithm.

Putting this all into perspective, current researchers are comparing the empirical

results from parliaments to proportional bargaining models (e.g., Morelli) and for-

mateur models (e.g., Baron-Ferejohn), determining which model fits the data best.

Minimum integer weights are proportional to seat share and correct for the relative

weakness effect (a feature seat shares lack); thus, minimum integer weights can act

as a stand in for the complex, open form proportional bargaining models. With algo-

rithms such as augmented integer simplex, scholars can now more accurately contrast

the competing bargaining models.
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Appendix A

Technical Efficiencies,

Optimizations, and Details

Rational numbers and GCD calculation. Most programming languages do not

have exact floating point arithmetic. Thus, each real number needs to be stored as

a rational number (i.e., a pair of two integers). To simplify a rational number, the

greatest comrnon denominator (GCD) of the numerator and denominator must be

calculated. It is efficient to determine the GCD of a rational number only when (1)

the number is needed or (2) the numerator and denominator are so large that an

overflow will occur in the near future.

Keeping a Library. To ensure that work is not lost, each solution is recorded in

a library. The library is stored as a hashmap, with the minimal winning and unique

tying rank coalitions as keys, and the minimum integer weights as values. Some non-

vital data, such as the number of iterations that the respective algorithm needed to

solve the problem, are also recorded. Currently, the library holds over 14,000 games.

Sorting the queue in branch and bound. A small optimization is to check

whether a node is integral, and give it highest priority in the queue for its weight-

level. Thus, one does not have to examine non-integral solutions of the same weight

because the minimum integer weights would be found first.

On the Web. The algorithms have been incorporated into a Java Web Start

application that has been placed on the World Wide Web at
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http://web.mit.edu/aaronbs/www/thesis/

Note, though, that web addresses are ephemeral and the application will no doubt be

relocated within six months. However, a Google search for "Minimum Integer Weight

and Baron-Ferejohn Calculator" should produce the desired result.
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