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I. Introduction

The theory of portfolio selection in continuous-time has as

its foundation two assumptions: (1) the capital markets are assumed to

be open at all times, and therefore economic agents have the opportunity

to trade ontinuously and (2) the stochastic processes generating the

state variables can be described by diffusion processes with continuous

1/
sample paths.l/

If these two assumptions are accepted, then the continuous-time

mode of analysis has proved fruitful in solving some of the basic problems

in portfolio selection and capital market equilibrium theory. Since I

have summarized many of these solutions in an earlier paper [5], I will

only briefly highlight the main results.

In solving the intertemporal consumption-portfolio selection

problem for the individual, the continuous-time approach leads to many

of the analytical simplicities of the classic Markowitz-Tobin mean-variance

model, but without their objectionable assumptions. In general, the

intertemporal nature of the problem induces a "derived" utility function

for the investor which is a function of other variables in addition to

"end-of-period" wealth. Hence, there are other sources of uncertainty

in addition to end-of-period asset price uncertainty. These other uncer-

tainties systematically affect the optimal portfolio demands by investors

for assets, and hence lead to different demand functions than would be
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derived from either the mean-variance model or from maximizing the expected

utility of terminal wealth. However, like the mean-variance model, there

are separation or "mutual fund" theorems although, in general, more than two

"funds" will be required to span the space of investors' optimal portfolios.

In an analogous fashion to the derivation of the Capital Asset

Pricing Model-/ from the mean-variance model, the demand functions of indi-

vidual investors can be aggregated; market-clearing conditions imposed; and

a structure of the equilibrium expected returns on assets derived. However,

because of the multi-dimensional nature of the uncertainties that affect

investors' portfolio allocations, there will be more than one dimension to

the measure of a security's risk. Hence, instead of a Security Market Line

equation defining this equilibrium structure, there will be a Security Market

Plane equation.

Like the mean-variance Capital Asset Pricing Model, the continuous-

time model can be used to derive equilibrium asset prices. However, to

derive the asset prices by this method requires estimates of the price of

risk, the covariance of the asset's cash flows with the market, and the

expected cash flows. These numbers are often difficult to estimate. More-

over, as will be shown, it is not always necessary to have these numbers to

price an asset.

In a seminal paper, Black and Scholes [1] used the continuous-time

3/
analysis to derive a formula for pricing common stock call options.3

Although their derivation uses the same assumptions and analytical tools

used in the continuous-time portfolio analysis, the resulting formula ex-

pressed in terms of the price of the underlying stock requires as inputs
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neither expected returns or cash flows, the price of risk, nor the covariance

of the returns with the market. In effect, all these variables are implicit

in the stock's price. Moreover, while their pricing formula is consistent

with the continuous-time portfolio model's equilibrium price structure,

it does not assume equilibrium pricing for its validity.

The essential reason that the Black-Scholes pricing formula requires

so little information as inputs is that the call option is a security whose

value on a specified future date is uniquely determined by the price of

another security (the stock). As such, a call option is an example of a

contingent claim. While call options are very specialized financial instru-

ments, Black and Scholes and others4/ recognized that the same analysis

could be applied to the pricing of corporate liabilities generally where

such liabilities were viewed as claims whose values were contingent on the

value of the firm. Moreover, whenever an asset's return structure is such

that it can be described as a contingent claim, the same technique is appli-

cable.

In section II, I derive a general formula for a price of an asset

whose value under specified conditions is a known function of the value of

another asset. In section III, the Modigliani-Miller Theorem [9 ] that the

value of the firm is invariant to its capital structure is proved even when

there is a positive probability of bankruptcy. In section IV, the formula

is applied in a nonstandard fashion to derive the value of capital assets and

human capital in an economy with a single source of uncertainty. This example

is designed to illustrate the potential of this approach to asset pricing in

a simple economic structure and is not meant to be descriptive of a "real

world" economy.
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II. A General Derivation of a Contingent Claim Price

To develop the contingent-claim pricing model, I make the following

assumptions:

(A.1) "Frictionless" Markets:

There are no transactions costs or taxes. Trading takes place

continuously in time. Borrowing and shortselling are allowed without

restriction. The borrowing rate equals the lending rate.

(A.2) Riskless Asset:

There is a riskless asset whose rate of return per unit time is

known and constant over time. Denote this return rate by r.

(A.3) Asset #1:

There is a risky asset whose value at any point in time is denoted

by V(t). The dynamics of the stochastic process generating V( ) over time

is assumed to be describable by a diffusion process with a formal stochastic

differential equation representation of:

dV = [aV - D1 (V,t)]dt + aVdZ

where a = instantaneous expected rate of return on the asset per unit
time;

= instantaneous variance per unit time of the rate of return

D1(V,t) = instantaneous payout to the owners of the asset per unit time

dZ standard Wiener process

a can be generated by a stochastic process of a quite general type. a is

restricted to be at most a function of V and t.

(A.4) Asset #2:

There is a second risky asset whose value at any date t is denoted

by W(t) with the following properties:
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For 0 < t < T, its owners will receive an instantaneous payout per unit

time, D2(V,t).

For any t(O < t < T), if V(t) = V(t), then the value of the second asset

is given by: W(t) = f[V(t),t], where f is a known function

For any t(O < t < T), if V(t) = V(t), then the value of the second asset

is given by: [V(t) < V(t)]

W(t) = g[V(t),t], where g is a known function

For t = T, the value of the second asset is given by: W(T) = h[V(T)].

Asset #2 will be called a contingent claim, contingent on the value of Asset

#1.

(A.5) Investor Preferences and Expectations

It is assumed that investors prefer more to less. It is assumed

that investors agree upon , but it is not assumed that they necessarily

agree on a.

(A.6) Other

There can be as many or as few other assets or securities as one

likes. Market prices need not be equilibrium prices. The constant

interest rate and most of the "frictionless" market assumptions are not

essential to the development of the model but are chosen for expositional

convenience. The critical assumptions are continuous-trading opportunities

and the dynamics description for Asset #1.

The derivation of the pricing formula takes place in two steps:

First, we assume that the value of asset #2 can be written as a twice-

continuously differentiable function of the price of asset #1 and time, and

derive what the function must be. Second, we show that if such a pricing

function can be found, then asset #2 must be priced according to that function.
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Suppose W(t) = F[V(t),t] for 0 < t < T and for V(t) < V(t) < V(t).

If F is sufficiently smooth, the dynamics for W(t) can be written in

stochastic differential equation form as

(1) dW = [W - D2(V,t)] dt + aFWdZF

where all the symbols have the same definition as in (A.3) except they apply

to asset #2.

Consider a portfolio strategy that invests X1 dollars in asset #1,

X2 dollars in asset #2, and X3 dollars in the riskless asset. However, unlike

a standard portfolio, require that

(2) X1 + X2 + X3 = 0

I.e., the net investment in the portfolio is zero. This is possible by

using the proceeds of short sales and borrowing to finance purchases. If

the portfolio is continuously revised, then the dynamics for the dollar

return on the portfolio, dY, can be written in stochastic differential equa-

tion as

[dV + D dtl [dW + D dt

(3) dY = Xj1 [ V 2 w + X3rdt

dV + Ddt 1 dW + D2dt

- X1 -rdtj + X2 W - rdt1

V

where, in the second line, X3 is eliminated by substitution from the constraint

(2).

By using It6's Lemma,- an alternative representation to (1) for

the dynamics of W can be written as
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(4) dW = [ V F + [V - D1] F1 + F d ct + F iVdZ

where subscripts on F denote partial derivatives with respect to its two

explicit arguments, V and t.

Matching terms in the two representations (1) and (4), we

have that

(Sa) aFW = D2 (V,t)+ 
2 V Fll + [(aV- D1] F1 + F 2

(5b) a W F1 V

(5c) dZF dZ.

Substituting for the dynamics of V from (A.3) and for the dynamics of W

given in (1), and using (5c), we can rewrite (3) as

(6) dY = {[X1( - r)] + [X2 (aF - r)]} dt + [Xla + X2aF] dZ.

Let us further restrict our choice of portfolios such that

(7) 0

at each point in time.

satisfy (7) are denoted

such investment choices

that

(8)

If the set of investment choices (, X2)that

by (X1 , X2 ) and if the portfolio returns using

are denoted by dY , then from (6) and (7), we have

dY = [X1 (a - r) + X2 (aF - r)]dt

* -oF( - r) t
-X2 a + (a- r) dt.

Xa + X2aF =
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By inspection of (8), the dollar return on such portfolios, dY , is not

uncertain, and hence is riskless. But, these portfolios require no net

*
investment by construction. Therefore, to avoid arbitrage, dY = 0. However,

X2 can be chosen arbitarily. Hence, to avoid arbitrage opportunities, it

must be that the assets are priced such that

a- r
a - r F

(9) a aF

Substituting from (5a) and (5b) and collecting terms, we can rewrite (9)

as

(10) 0 = 7 V Fll + [rV - D]F- rF + F2 + D 2

Equation (10) is a linear partial differential equation of the parabolic

type that must be satisfied by the price of asset #2 (i.e., the contingent

claim) to avoid arbitrage opportunities. Inspection of (10) shows that

in addition to V and t, F will depend on a02 and r. However, F does not

depend on the expected return on asset #1, a, and it does not depend on the

characteristics of other assets available in the economy. Moreover, investors'

preferences do not enter the equation either. Finally, while the absence

of arbitrage opportunities is a necessary condition for an equilibrium, it

is not sufficient. Therefore, it is not required that V and r be equilibrium

prices for (10) to be valid.

To solve (10), boundary conditions must be specified. From (A.4),

we have that

(la) F[V(t),t] = f[V(t),t]

(llb) F[V(t),t] = g[V(t),t]

(lc) F[V,T] = h[V].
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While the function f, g, and h are required to solve for F, they are

generally deducible from the terms of the specific contingent claim being

priced. For example, the original case examined by Black and Scholes is

a common stock call option with an exercise price of E dollars and an ex-

piration date of T. If V is the value of the underlying stock, then the

boundary conditions can be written as

(12a) F/V < 1 as V + 

(12b) F[O,t] = 0

(12c) F[V,T] = Max [0, V-E]

where (12a) is a regularity condition which replaces the usual boundary con-

dition when V(t) = A. Both (12a) and (12b) follow from limited liability

and from the easy-to-prove condition that the underlying stock is always

more valuable than the option. (12c) follows from the terms of the call

option which establish the exact price relationship between the stock and

option on the expiration date.

Hence, (10) together with (lla) - (llc) provide the general

equation for pricing contingent claims. Moreover, if the contingent claim

is priced according to (10) and (11), then it follows that there is no

opportunity for intertemporal arbitrage. I.e., the relative prices (W,V,r)

are intertemporally consistent.

Suppose there exists a twice-continuously differentiable solution

to (10) and (11). Since the derivation of (10) depends on the assumption

that the pricing function satisfies this condition, it may be possible that

some other solution exists which does not satisfy this differentiability

condition. Indeed, in discussing the Black-Scholes solution to the call
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option case, Smith-/ points out that there are an infinite number of solu-

tions to equation (10) and (12) which have discontinuous derivatives at only

one interior point although the Black-Scholes solution is the only smooth

solution. He goes on to state that there is no obvious economic justification

for the smoothness assumption.

The following is a direct proof that if a twice-continuously

differential solution to (10) and (11) exists, then it must be the pricing

function.

Let F be the formal twice-continuously differentiable solution to

equation (10) with boundary conditions (11). Consider the continuous-

time portfolio strategy where the investor allocates the fraction w(t)

of his portfolio to asset #1 and [1 - w(t)] to the riskless asset.

Moreover, let the investor make net "withdrawals" per unit time (for example,

for consumption) of C(t). If C(t) and w(t) are right-continuous functions

and P(t) denotes the value of the investor's portfolio, then I have shown

elsewhere-7/ that the portfolio dynamics will satisfy the stochastic differ-

ential equation

(13) dP = {[w(a - r) + r]P - C}dt + waPdZ.

Suppose we pick the particular portfolio strategy with

(14) w(t) = F1[V,t]V(t)/P(t)

where F is the partial derivative of F with respect to V, and the "consump-

tion" strategy,

C(t) = D2(V,t).(15)
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By const-ruction, F is continuously-differentiable, and hence, is a right-

continuous function. Substituting from (14) and (15) into (13), we have

that

(16) dP = FldV + {F1 (D1 - rV) + rP - D2}dt

where dV is given in (A.3).

Since F is twice-continuously differentiable, we can use Ito's

Lemma to express the stochastic process for F as

(17) dF = V Fll (aV -DD1)F + F2]dt + Fl VdZ.

But F satisfies equation (10). Hence, we can rewrite (17) as

(18) dF = FldV + {F1(D1 - rV) + rF - D2}dt.

Let Q(t) P(t) - F[V(t),t]. Then, from (16) and (18), we have that

(19) dQ = dP - dF

= r(P - F)dt

= rQdt.

But, (19) is a non-stochastic differential equation with solution

(20) Q(t) = Q(O)ert

for any time t and where Q(0) P(O) - F[V(0),O]. Suppose the initial amount

invested in the portfolio, P(O), is chosen equal to F[V(0),0]. Then from

(20) we have that

P(t) = F[V(t),t].(21)
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By construction, the value of asset #2, W(t), will equal F at

the boundaries V(t) and V(t) and at the termination date T. Hence, from

(21), the constructed portfolio's value, P(t), will equal W(t) at the

boundaries. Moreover, the interim "payments" or withdrawals available to

the portfolio strategy, D2[V(t),t], are identical to the interim payments

made to asset #2.

Therefore, if W(t) > P(t), then the investor could short-sell

asset #2; proceed with the prescribed portfolio strategy including all interim

payments; and be guaranteed a positive return on zero investment. I.e.,

there would be an arbitrage opportunity. If W(t) < P(t), then the investor

could essentially "short-sell" the prescribed portfolio strategy; use the

ptrceeds to buy asset #2; and again be guaranteed a positive return on zero

investment. If institutional restrictions prohibit arbitrage, then a

similar argument could be developed on the principle that no security should

be priced so as to "dominate" another security.8 / Hence, W(t) must equal

F[V(t),t].

While this method of proof may appear very close to the original

derivation, it was not assumed that asset #2 had a smooth pricing function.

Rather it swas proved that if a smooth solution to (10) and (11) exists,

then this solution must be the pricing function.
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II. On the Modigliani-Miller Theorem with Bankruptcy

In an earlier paper [10, p. 460], I proved that in the absence of

bankruptcy costs and corporate taxes, the Modigliani-Miller theorem [9]

obtains even in the presence of bankruptcy. In a comment on this earlier

paper, Long [11] has asserted that my method of proof was "logically in-

coherent." Rather than debate over the original proof's validity, the

method of derivation used in the previous section provides an immediate alter-

native proof.

Let there be a firm with two corporate liabilities: (1) a single

homogeneous debt issue and (2) equity. The debt issue is promised a contin-

uous coupon payment per unit time, C, which continues until either the ma-

turity date of the bond, T, or until the total assets of the firm reach

zero. The firm is prohibited by the debt indenture from issuing additional

debt or paying dividends. At the maturity date, there is a promised principal

payment of B to the debtholders. In the event the payment is not made, the

firm is defaulted to the debtholders, and the equityholders receive nothing.

If Q(t).denotes the value of the firm's equity and D(t) the value of the firm's

debt, then the value of the (levered) firm, VL(t), is identically equal to

Q(t) + D(t). Moreover, in the event that the total assets of the firm reach

zero, VL(t) = Q(t) = D(t) = 0 by limited liability. Also, by limited liability,

D(t)/VL (t ) 1.

Consider a second firm with identical initial assets and an iden-

tical investment policy to the levered firm. However, the second firm is

all-equity financed with total value equal to V(t). To ensure the identical

investment policy including scale, it follows from the well known accounting

identity .that the net payout policy of the second firm must be the same as

I�_ �� _ I �_1_1��_ _



- 14 -

for the first firm. Hence, let the second firm hve a diyidend policy that

pays dividends of C per unit time until either date T or until the value of its total

assets reach zero (i.e. V - 0). Let the dynamics of the firm's value be as

posited in (A.3) where D1(V,t) = C for V > 0 and D1 = 0 for V = 0.

Let F[V,t] be the formal twice-continuously differentiable solution to

equation (10) subject to the boundary conditions: F[0,t] = 0; F[V,t]/V < 1; and

F[V(T).,T] = Min [V(T),B]. Consider the dynamic portfolio strategy of investing

in the all-equity firm and the firkless asset according to the "rules" (14)

and (15) of section II where C(t) is taken equal to C. If the total initial

amount invested in the portfolio, P(0), is equal to F[V(O),0], then from (20),

P(t). F[V(t),t].

Because both the levered firm and the all-equity firm have identical

investment policies including scale, it follows that V(t) 0- if and only if

VL(t) - 0. And it also follows that on the maturity date T, VL(T) = V(T).

By the indenture conditions on the levered firm's debt, D(T) = Mn[VL(T),B]

But since V(T) -and P(T) = F[V(T),T], it follows that P(T) D(T).

Moveover, sinceVL(t) 0 if and only if V(t) - 0, it follows that P(t) =

F[0,t] .D(t) -0 in that event.

Thus, by following the prescribed portfolio strategy, one would

receive interim payments exactly equal to those on the debt of the levered

firm. Moreover, on a specified future date, T, the value of the portfolio

will equal the value of the debt. Hence, to avoid arbitrage or dominance,

P(t) D(t).

The proof for equity follows on similar lines. Let f[Vt] be the

formal solution to equation (10) subject to the boundary conditions:

f[lo,t] = , f[V,t]/V < 1; and f[V(T),T] - Max [O,V(T) - B]. Consider the

dynamic portfolio strategy of investing in the all-equity firm and the riskless

- -. _ -- __ -__ -I -11 - - -·--- - -- - --" -. , - -_ _ _ .- -· -1- -- 1 , , ," , -S _ _ , .I' 11 I II I II I I I . .- --- I - - I I I . I Il .
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asset according to the "rules" (14) and (15) of section II where C(t)

is taken equal to zero. If the total initial amount invested in this port-

folio, p(O), is equal to f[V(0),0], then from (20), p(t) = f[V(t),t].

As with debt, if V(t) = 0, then p(t) = Q(t) = 0, and at the maturity

date, p(T) = Max[O,V(T) - B] = Q(T).

Thus, by following this prescribed portfolio strategy, one would

receive the same interim payments as those on the equity of the levered

firm. ·On the maturity date, the value of the portfolio will equal the value

of the levered firm's equity. Therefore, to avoid arbitrage or dominance,

p(t) = Q(t).

If one were to combine both portfolio strategies, then the result-

ing interim payments would be C per unit time with a value at the maturity

date of V(T), I.e., both strategies together are the same as holding the

equity of the unlevered firm. Hence, f[V(t),tj + F[V(t),t] = V(t). But

it was shown that f[V(t),t] + F[V(t),t] = Q(t) + D(t) VL(t). Therefore,

VL(t) = V(t), and the proof is completed.

I

����1 ��� 1111·--_11�_1�_
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IV. On the Pricing of Capital Assets and Human Capital: A Simple Example

Consider a single commodity world with one source of economy-wide

risk.9 / Let V denote the market value of all assets in the economy (includ-

ing human capital). Because there is only one source of uncertainty, all

unanticipated changes in asset values must be perfectly linked. Hence,

the unan ticipated changes in V can serve as an instrumental variable for

this uncertainty. Let a denote the expected rate of return for the economy

as a whole (including both income flows and asset value changes) and let

a be its instantaneous standard deviation. I.e.,

(22) dV = (aV - C)dt + aVdZ

describes the dynamics of the economy with aggregate consumption equal to

net withdrawals from the system.

Let there be n business firms (which could also be treated as

factors of production) with the ith such firm having net payouts per unit

101
time of Qi(V);/ a termination date Ti and a "salvage" value at that date

of Si(V) where Qi(0) = Si(O) = 0. Let F (V,t) denote the value of firm i.

If there is "free disposal," then F > O. Substituting into (10) and (11),

we have that F must satisfy

1 22i i i i
(23) 2 V Fll + [rV - C(V)]F - rF + F2 + Qi(V) = 0

subject to the boundary conditions:

(23a) Fi/V < 1 as V + 

(23b) F [O,t] = 0

(23c) Fi [VTi] = Si(V)
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2
In the special case when a is constant and aggregate consumption

is a constant fraction of national wealth (i.e., C(V) = V), then the

solution to (23) can be written as

T Co

(24) F (Vt) = rSds Q (Vy)p(y,s;r,a ,c)dy

0 0

rTi 2
+ e-rti e Si(Vy)p(y,Ti;r,o ,c)dy

0

where T. - T -t and
1 i

,, c) -1 exp 12 (log(x) - (r - c - o2)s) 

2c s

I

While (24) may seem formidable, depending upon the functions Qi and Si, it

may have a closed-form solution. Moreover, even when such closed-form

solutions cannot be found, it lends itself to numerical integration rather

nicely.

To illustrate more specifically, consider the following example

for the evaluation of an individual's human capital.

Let T be the lerngth of time until death which is assumed to be an

exponentially-distributed random variable with parameter X which corresponds

to the event of death being Poisson-distributed.

Let the individual's wages per unit time, Q(V), be given by

(25) Q(V) = aV - bVY , for V > V

= 0 for V ' V

1____1_~_~____ 11_____ _1 ~ _L_1_~_1____ 1___ 1----- .·___
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1

where 0 < a< 1; b > 0; 0 < y < 1; and for V < V_= (b/a) , he is unemployed.! 2/

The "salvage" value at death is zero. If a is constant, C(V) = cV, and the

event of his death is "diversifiable" in an economy-wide sense,-- then

from (24), the value of his human capital can be written as

T at ·

-rs C 2
(26) F(V) = E e ds Q(Vy)p(y,s;r, ,c)dy

0 0

where "E" is the expectation operator over the random variable T.

Using the assumed properties for , we can rewrite (26) as
co co

(26')- F(V) e ds Q(Vy)p(y,s;r,a ,c)dy

0 0

By substitution, it is easy to show that F(V) is given by

' 1

(27) F(V) = f (V) for V > V - (b)l-u a

= f(V) for 0 <V < V

where f is the solution to
u

(28) 1 2Vf + (6V) f of + aV- bVY = 0

subject to the' boundary conditions:

(28a ) f
< 1 as V +

V

(28b) fu C) f(v)

(28c) f'(V) f'(V)

where primes denote derivatives and r - c, a constant, and p r + X,

a constant, and where f is the solution to
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(29)
122"
: V f + Vf - fk = 0

subject to the boundary conditions:

(29a)

(29b)

(29c)

fg(0)

f(V)
ft (
fI(V)

= 0

= f (V)

+ f (V)
U

In essence, f is the value of his human capital while employed and f is

its value when he is unemployed for different levels of the economy. The

solution of the coupled set of differential equations (28) and (29) is

straightforward, and the solutions are:

1

For V > V (a)1-
a 1

(30a) F(V) = f (V) = ( a 1-kl ] +
u [kl-k 2] [(c1x)

( k2

+ aV
(c+X)

and for 0 < V < V,

( l-y

(30b) F(V) = f (V) - [a 1-k2 +
[kl1-k2] [+k 2

where b
l =

(k,

> 0

[(1-y) [ri2 + A + cry

I

_1 2 R T- -1 2) + + +)2 + 22 (c+)
k -2 21=0 2

a

t

(V)

> 1

-----·--·-·-------�-�---

I0

.

I
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1 2

k -(6 -2 ) ( +2)+ 2o2(c +X)
2 2

The examples in this section are simple illustrations of this

technique for asset evaluation, and they were designed more to show the

potential breadth of the technique than for their substantive content. The

technique can be expanded in a straightforward fashion to include multiple

.sources of uncertainty. Research is in progress to develop efficient

numerical methods for solving the fundamental partial differential equation

13/
when a closed form solution cannot be found.

I
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and Brown Universities in April 1976 and at the EIASM Workshop in

Management Science, Bergamo, Italy in October 1976. I thank the

participantsfor their helpful comments. Aid from the National Science

Foundation is gratefully acknowledged.

1. For references to the mathematics of diffusion processes and their

applications in economics, see the bibliographies in Merton [3] and

[4].

2. For an excellent survey article on the Capital Asset Pricing Model,

see Jensen [2].

3. A call option gives its owner the right to buy a specified number of

shares of a given stock at a specified price (the "exercise price") on

or before a specified date (the "expiration date").

4. The literature based on the Black-Scholes analysis has expanded so

rapidly that rather than attempt to list individual published articles

and works-in-progress, I refer the reader to an up to date survey

article by Smith [8].

5. See Merton [3] for a discussion of Ito's Lemma and stochastic differ-

ential -equations.

6. See Smith [8,- p. 23, footnote 21].

7. See Merton [3, p. 379].

8. See Merton [4, p. 143] and Smith [8, p. 7] for a discussion of "dominance"

in this context.
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Footnotes 2

9. While the formal analysis assumes a single uncertainty source, essen-

tially the same formulas will apply if there are other sources of

uncertainty, but these sources can be "diversified" away for the

economy at large.

10. While, for the purpose of this analysis, the Qi(V) are exogenous, they

could be deduced from value maximizing behavior by firms. The Qi can

be negative in which case they are interpreted as net additions to

the firm's capital from outside sources.

11. For the particular wage schedule chosen in (25), his unemployment could

be "voluntary" in the sense that "net" wages below this level are

negative. As an example, negative net wages from working can occur if

unemployment compensation or welfare payments exceed the wage rate.

12. An individual death is generally viewed as a source of individual

uncertainty that has no impact on economy-wide risk. Hence, as shown

in Merton 6] for such diversifiable risks, the correct formula can be

determined by first solving the model conditional on a given death

date and then taking the expected value of this conditional formula

over the distribution of possible death dates.

13. Cf. Parkinson [7].
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