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COMPARING MULTIPLE COMPARISON PROCEDURES

1. INTRODUCTION

In a recent panel discussion on multiple comparison (MC) procedures [7],

a question was raised about the advisability of journals requiring that

certain specific MC procedures be used in the papers they published. The

consensus seemed to be that while a journal might consider proposing standards

it should in no way inhibit the use of other procedures which the author might

consider more suitable to his problem.

In this paper we propose that instead of standardized procedures, the

journals recommend that, where possible, the costs (losses) associated with

a particular MC procedure be stated in at least two ways - total and relative.

The first way emphasizes the total cost of type 1 (1 and/or 3) errors

(conversely type 2 errors) and is associated with control of the experiment-

wise error rate (a) for all hypotheses containing groups of equal (or for

type 3, nearly equal) population means. (Of course, this does not control

the total cost of type 1 and 2 errors which increases with the number

of populations considered.)

The second way focuses on the relative cost of type 1 and type 2

errors and has been most frequently associated with tests proposed by Waller

and Duncan [8].

There are at least three basic approaches to inference in the MC

situation; Bayesian (B) , James-Stein or empirical Bayes (JS), and maximum

likelihood (ML). It is important, at least at the beginning, to separate

discussions of cost from questions of inference. This has not often been

done in the past and total cost seems to be limited to ML methods while

relative costs are linked to the JS and B methods.
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There are valid reasons to consider different inferential approaches.

Sometimes B or JS procedures cannot be used because reasonable prior assumptions

are not satisfied. (There are cases that we discuss later where it may pay to

do some preliminary work in order to get the problem into a suitable form for

such procedures.) On the other hand, the availability of prior information

may make the strict use of ML methods very wastful.

The need to consider both types of cost is, perhaps, more controversial.

Here, I think, we owe it to ourselves and our clients to be able to look at

cost both ways, at least until there is a concensus on one approach. or the

other. One way to build a consensus is to have both a and k available in

each problem and then see which is more useful.

This paper is organized in the following manner. The next three sections

discuss how to compute total and relative costs for each of the three inferential

methods. The concluding part notes some difficulties with the proposed method-

ology and discusses a few unsolved problems.

The author would like to acknowledge helpful discussions with John Tukey,

Ray Faith, Bradley Efron and David Duncan.
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2. AYESIAN METHODS

We shall focus on the basic one-way ANOVA model with equal sample

sizes, treatment means x. } , grand mean x, and s2 (standard error of
i=l

the means) based on n-p degrees of freedom. Only the pairwise differences

xi-xj, will be considered.

The three types of error are:

1. declare population means not equal when they actually
are equal;

2. delcare equal, when actually not equal;

3. declare not equal, when actually not equal but reverse
order.

Often type 3 errors are included with type 1 errors. We will let E stand for the

experimentwise error rate and C for the comparisonwise error rate (for

definitions see [6]).

In the Bayesian case assume that the population means Il'... p

are independent samples from a population which is Gaussian with mean

6=0 and variance (known). We also assume that the treatment means x.

are independent Gaussian samples from G(pi, a ) where, to make our early
e

discussion simple, we take ae as known.

In this case the posterior distribution of the i (which we will call

pi) is Gaussian with mean xi/(l+r) and variance a2/(l+r) where r = /a.

If we want to preserve the posterior E (the experimentwise type 1 error

T
rate), we would compute q ,p,_ so that

p range i q,p+r (2.1)
i-1 , Cr .pl+r >-

e 
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Thus we have a Bayesian range procedure with critical values

T
a, (l+r) 1/2 a (2.2)

T
where qa,p,a is the standard studentized range statistic or Tukey HSD test

([6], p. 38). Since r>O, it is clear that if we have any prior precision

(1/a 2>0) and a2>0, then the B critical values will be larger than for the
'P e

Tukey HSD test. This is reasonable because the more we feel the population

means are clumped together, the more evidence the data must give us to separate

them.

We could also have used a Scheffe' F-test in place of the range. The

Scritical values would then have been 2p-1) +r) 
critical values would then have been [2(p-1) (+r) q,p_,,.]

S
where q,,p_ are

the critical values for the usual Scheffe' test.

The relative error B approach has been treated by Duncan 1].

critical values are

z(k) (l+r) a 22
e

The

(2.3)

where z(k) satisfies

h(z) + zH(z)/(h(z) - zH(z)) = k (2.4)

with h(-) and H(-) denoting the p.d.f. and c.d.f. of a Gaussian (0,1) variable.

We note that (2.3) is independent of p.

If a were given,we would find k(a) by finding the value k* that satisfied

2,(k) T S 2 2z(k*) = qp, or [2(p-l) qmSp-lc ]½ and conversely if k were given.

Tables 1 and 2 provide examples when p = 6 for a = .01, .05, .10

and for k = 50, 100 and 500. Extensive tables of the range are available

in [4].

Tables 1 and 2 about here
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3. JAMES-STEIN METHODS

The Bayesian case discussed in the previous section is difficult

to implement because we do not often know r.

provides us with a way to estimate r.

If we again assume a Gaussian model for

The James-Stein methodology

p
{x }i= then the James-Stein

estimate for the treatment effects would be

(3.1)Yi = (1 - ) (i)

where

p
F = il (xi-xi)2/(p-l)

S2

(3..2)

and AX=F is often taken to be (p-3)/(p-1). There does not appear

to be a simple way to estimate the variance of yi (see [3] for a recent

discussion), so we used a quantity analogous to that for the pure Bayesian

case, s2 (1- ). We will exploit the idea that (l+r) is like (1- ~)-l

extensively.

To perform a Scheffe' type MC procedure on the yi we need to find

critical numbers bS
ap-l,n-p

such that

p

2 i=1 i > .bpln
P s ci p

12
(5 a'T)

or

P 2(p-1) S p -ln

or

P{ F .- ,p-ln-p }
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Solving this gives critical values of

s [2(p-1)( ,p,n-p (3.3)

which can be compared to the usual Scheffe' values

s [2(p-1) qpn-p (3.4)

S
Thus the JS Scheffe' test has smaller critical values whenever F > q ,p,n-p

and as a consequence is more powerful. In fact, this test can be viewed

as an extension of Fisher's idea of using a preliminary F-test before applying

a MC procedure.

It is formally possible to modify the Tukey HSD in a similar way. Let

R denote the studentized range statistic and replace F by R2 in (3.1).

Then solving

(1-X2 ) (xi-x)
P range

S (1 X 1/2
R2

T
>b
- ,p,n-p

gives the critical values

s [((qT pn p) 2_) (1- 2 )-l (3.5)

Since there is no James-Stein type result using R2 , we do not know what X=X

should be. However, we can note that p-3 in the JS case is E(X ) and use E(W ),
p-3 p-3

where Wn is the range of n independent G(0,1) variates, to replace p-3 in then

range case. (The factor (p-l) 1 in XF corrects for the fact that the numerator

of the F statistic is divided by p-l.) Tables of the moments of the range are

contained in [4]. This is only a heuristic approximation and developing a useful

theory in this case remains an open problem.
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For relative costs, Waller and Duncan [8] have again provided the

necessary results. We shall take the liberty of calling their method a James-

Stein approach, even though Waller and Duncan start from a pure Bayesian

framnework and require exchangeable priors in their development.

To compare total and relative costs in the JS Scheffe' case we proceed

as follows. First compute the F statistic and find AF. If a is given, compute

(3.3) omitting the factor 2, and look in the Waller-Duncan [81 tables to find

a k which gives approximately the same critical value. The procedure can be

reversed if k is given first. We call the Waller and Duncan values t(k). Tables

3 and 4 provide examples when p=6, n-p=30, and F=3.

The procedure is similar for the JS Tukey case. First compute R, the

studentized range statistic, and then look up E(W 3)=XR. When a is given,

compute (3.5), divide it by 2 and again use the Waller and Duncan tables.

Tables 3 and 4 provide examples when p=6, n-p=30, R=4.7, and R=3.65.

Extensive tables of the studentized range are contained in [51].

Tables 3 and 4 about here
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4. MAXIMUM LIKELIHOOD

In this case the total cost approach has been discussed by many

authors with a vast array of different techniques (for reviews, see

[21, [61, and [9]). We shall continue to focus on the Tukey and Scheffe'

procedures which have widely available tables of critical values.

For maximum likelihood we do not, however, have available a relative

cost approach. One way to fill this void is to let r = 0 (i.e., no prior

precision) on the pure Bayesian case (section 2) and then use the initial

values z(k)e(2) from (2.3). Of course, we do not know e and it is

natural to approximate it by s. We can find critical numbers for this

by noticing that if we consider (1 + r) analogous to (1 - ) then r = 0

corresponds to F = a. Thus we can use the Waller and Duncan tables for

F = a and the appropriate number of degrees of freedom for s.

When a is given, find the T or S statistic, divide by 2½ and find a

k value (interpolation in log k is recommended) from the Waller and Duncan

tables. The procedure is easily reversed using the tables in [5]. Examples

for p=6, n-p=30 are given in Tables 5 and 6.

Tables 5 and 6 about here

_
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5. CONCLUDING REMARKS

For Scheffe' type MC procedures (and in some cases for the Tukey HSD)

we have provided a way (there may be others) to choose a type of inference

(Bayes, James-Stein, or maximum likelihood) and then compute a total cost

value a for a given relative cost k and vice versa.

We have not mentioned comparisonwise (C1) error rates in the preceding

derivations because for situations where MC procedures seem most relevant

we do not think the C1 error rate is a useful measure. In fact, the results

presented here free us from having to always compare the relative cost k

with the C error rate associated with the least-significant difference

test ([6], p. 90). For example, Waller and Duncan have argued ([8], p. 1486)

that k = 100 corresponds to a C1 error rate of about 5%. But, depending on

p and n-p we have seen how k = 100 can correspond to rather high experiment-

wise error rates. This fact should be reported when relative cost procedures

are used. Conversely E1 = .05 can correspond to what sanme would consider an

absurdly high relative cost ratio. This, too, should be reported.

Given the results of section 3, it is reasonable to ask why we should

ever use a maximum likelihood procedure. First, the procedures discussed in

this paper (especially B and JS) lean very heavily on Gaussian assumptions.

The current theories of robust estimation can probably be more readily applied

to maximum likelihood type procedures than to Bayesian methods. This

advantage will keep ML methods in the picture for some time to come.

Second, it is important to remember that B and JS, in effect, shrink the

ML (least-squares) estimates toward the grand mean. If we suspect that the

population means may be in clumps (blocks) of equal or nearly equal means

with some separation between the clumps, then can we argue that there is a

common mean to shrink toward? This clumpiness of means is. not consistent
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with a Gaussian prior and could lead to a large value of F and low critical

values.

There is no simple way out of this dilemma. Perhaps we could first make

a pass over the ordered sample means using a gap procedure [91, in order to

break them into clumps. Within clumps it may seem more reasonable to use

a B or JS procedure because the shrinking would be toward the mean of the

clump, not the grand mean. Just how to compute error rates for such compound

procedures is a subject for further research.
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Table 1

aeeeeeea e .01 .05 .10
T 4.76 4.03 3.66

T/2½ 3.36 2.85 2.59

k*(T,2) 27800 4387 1719

S 5.50 4.70 4.30

s/2½ 3.89 3.32 3.04
k*(S,a) 189382 24052 8728

Table 2

k 500 100 50

z(k) 2.23 1.72 1.49
V z(k) 3.15 2.43 2.11

c*(T,k) .23 .52 .67

z(k)/(p-1) ½ 1.00 .77 .67

o*(S,k) .32 .57 .65
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Table 3

a .01 .05 .10

T 5.24 4.30 3.85

T/22 3.71 3.04 2.72

k*(T,a) 19486 3036 1250

S 6.08 5.03 4.52

S/2- 4.30 3.56 3.20

k*(S,t) 100173 12852 4738

Table -.4

· k 500 100 50

t(k) 2.39 1.81 1.55

v2 t(k) 3.38 2.56 2.13

a*(T,k) .19 .48 .66

t(k)/(p-1)½ 1.07 .81 .69

a*(S,k) .40 .55 .63
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Table 5

.01 .05 .10

T
9q)t,5,30 5.24 4.30 3.85

T/2½ 3.71 3.04 2.72

(a) 3.79 2.99 2.59

k*(T,a) 1404' 346 172

S
%q,5,30 3.70 2.53 2.05

s/2½ 4.30 3.56 3.20

(b) 4.40 3.47 3.01

k*(S,e) 4080 802 359

(a) ((qT 5 3 0 )2 XR) (l-AR/R2)-] 

(b) [(p-i) ( ,5,30 -F) (1-X/F)- ½

F=3, F=.6, AF/F=.2; R=4.7, R=3.65, AR/R2= .17F AF/F R3 R
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Table 6

k 500 100 500

t(k) 3.20 2.28 1.92

(c) 4.54 3.50 3.13

c(T,k) .04 .16 .26

(d) 2.24 1.43 1.19

a(S,k) .08 .24 .34

(c) [t2 (k) 2 (1-XR/R2) + XR]

(d) t2 (k) (1-XF/F) + F

F=3, XF=.6, F/F=. 2 ; R=4.7, R=3.6 5, R/R2=.1 7
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