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On the Microeconomic Theory of Investment under Uncertainty

Robert C. Merton

I. Introduction

Investment theory is the study of the individual behavior of house-

holds and economic organizations in the allocation of their resources to

the available investment opportunities. For the purposes of investment

theory, economic organizations are characterized as being members of one of

two groups: "business firms" that hold as assets the physical means of

production for the economy and finance their production decisions by issu-

ing financial claims or securities; and "financial intermediaries" that

hold financial claims as assets and finance these assets by issuing se-

curities. Individuals or households are assumed to invest primarily in se-

curities, and therefore invest only indirectly in physical assets. The mar-

kets in which these securities are traded are called the capital markets.

The natural starting point for the development of investment theory is

to derive the investment behavior of individuals. It is traditional in

economic theory to take the existence of households and their tastes as exo-

geneous to the theory. However, this tradition does not extend to economic

organizations and institutions. They are regarded as existing primarily be-

cause of the functions they serve instead of functioning primarily because

they exist. Economic organizations are endogeneous to the theory. To derive

the functions of these economic organizations, therefore, the investment

behavior of individuals must be derived first.
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It is convenient to break the investment decision by individuals into

two parts: (1) the "consumption-saving" choice where the individual decides

how much of his wealth to allocate to current consumption and how much to

invest for future consumption; and (2) the "portfolio selection" choice where

he decides how to allocate his savings among the available investment oppor-

tunities. In general, the two decisions cannot be made independently. How-

ever, the format of the paper is to, first, solve the portfolio selection

problem taking individual's consumption decisions and firms' production de-

cisions as given, and to derive necessary conditions for financial equilibrium.

Second, using these necessary conditions, the optimal production decision rules

for firms are derived. Finally, the combined consumption and portfolio selec-

tion problem for individuals is solved.

If is, of course, not possible in a single paper to cover all the topics

important to investment theory. However, two topics not covered here warrant

special mention. First, while some necessary conditions for equilibrium are

derived, I have not attempted to integrate these conditions into a general

equilibrium theory for the economy. Second, no attempt has been made to make

explicit how individuals and firms acquire the information needed to make

their decisions, and in particular how they modify their behavior in envir-

onments where there are significant differences in the information available

/to various participants.
to various participants.-

Ill
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II. One-Period Portfolio Selection

The basic investment choice problem for an individual is to determine

the optimal allocation of his wealth among the available investment oppor-

tunities. The solution to the general problem of choosing the best invest-

ment mix is called portfolio selection theory. I begin the study of

portfolio selection theory with its classic one-period formulation.

There are n different investment opportunities called securities and

the random variable one-period return per dollar on security j is denoted

by Zj (j=l, ..., n) where a "dollar" is the "unit of account." Any linear

combination of these securities which has a positive market value is called

a portfolio. It is assumed that the investor chooses at the beginning of

a period that feasible portfolio allocation which maximizes the expected

2/
value of a von Neumann-Morgenstern utility functionrr- for end-of-period

wealth. I denote this utility function by U(W).where W is the end-of-period

value of the investor's wealth measured in dollars. It is further assumed

that U is an increasing strictly concave function on the range of feasible values for

W and that U is twice-continuously differentiable.-- / Because the criterion

function for choice depends only on the distribution of end-of-period wealth,

the only information about the securities that is relevant to the investor's

decision is his subjective joint probability distribution for (Z1, '... Zn).

In addition, it is assumed that:

(A.1) ("Frictionless" markets) There are no transactions costs or taxes, and

all securities are perfectly divisible.

(A.2) ("Price Taker") The investor believes that his actions cannot affect

the probability distribution of returns on the available securities.
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Hence, if w. is the fraction of the investor's initial wealth, W , allocated

to security j, then {w1, ..., wn} uniquely determines the probability dis-

tribution of his terminal wealth.

A "riskless security" is defined to be a security or feasible portfolio

of securities whose return per dollar over the period is known with certainty.

(A.3) ("No-Arbitrage Opportunities") All riskless securities must have the

same return per dollar. This common return will be denoted by R.

(A.4) ("No-Institutional" Restrictions) Short-sales of all securities,

with full use of proceeds, is allowed without restriction. If there

exists a riskless security, then the borrowing rate equals the

4/
lending rate. 4

Hence, the only restriction on the choice for the {w} is the budget constraint

that En = 1.

Given these assumptions, the portfolio selection problem can be formally

stated as

(II.1) Max E{U( 1 wjZjWo)}
{Wl,.. ,w}

subject to w = 1 where "E" is the expectation operator for the subjective

joint probability distribution. If (wl ,.., wn ) is a solution to (II.1),

then it will satisfy the first-order conditions

(II.2) E{U'(Z W);} , j = 1, 2, ..., n

n *
where the prime denotes derivative; Z 1 W zj is the random variable

return per dollar on the optimal portfolio; and X is the Lagrange multiplier

III
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for the budget constraint. Together with the concavity assumptions on U,

if the nxn variance-covariance matrix of the returns (Z1, ... Z n) is non-

singular, then there exists a unique interior solution. This condition on

the returns distribution eliminates "redundant" securities (i.e., securities

whose returns can be expressed as exact linear combinations of the returns

on other available securities). / It also rules out that any one of the

securities is a riskless security.

If a riskless security is added to the menu of available securities

(call it the (n+l)s t security), then it is the convention to express (II.1)

as the following unconstrained maximization problem:

(II.3) Max E{U([Z=1 wj(Zj - R) + R]W )}
{W.,... ,wn}

where the portfolio allocations to the risky securities are unconstrained because

the fraction allocated to the riskless security can always be chosen to satisfy

* n *
the budget constraint. (I.e., Wn+ = 1 - 1 w.). The first-order conditions

can be written as

(11.4) E{U'(Z W )(Zj - R)} = 0 j = 1, 2, ... , n

where Z can be rewritten as Z1 wj (Zj - R) + R. Again, if it is assumed

that the variance-covariance matrix of the returns on the risky securities is

nonsingular, then there exists a unique interior solution.

In both (II.1) or (II.3), no explicit consideration has been given

for the treatment of bankruptcy (i.e., Z < 0). To rule out bankruptcy,

the additional constraint that the probability of Z > 0 be one could be

* * 6 / f the reason for this on-
imposed on the choices for (w , .., wn ).- If the reason for this con-

straint is to reflect institutional restrictions designed to avoid individual
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bankruptcy, then it is too weak because the probability assessments on the

{Z.} are subjective. A more-realistic treatment would be to forbid borrow-

ing and short-selling in conjunction with limited-liability securities

where, by law, Z. > 0. These rules can be formalized as restrictions on

the allowable set of {w.} such that wj > 0, j = 1, 2, ..., n+l, and (II.1)

7/or (II.3) can be solved using the methods of Kuhn and Tucker-- for inequality

constraints. However, since the creation of limited-liability securities is

itself a bankruptcy rule and only one of many that might be proposed, such

explicit restrictions will not be imposed. Rather, it

is simply assumed that there exists a bankruptcy law which allows for U(W) to

be defined for W < 0 and that this law is consistent with the continuity

and concavity assumptions on U.

The optimal demand functions for risky securities, {wjW0}, and the

resulting probability distribution for the optimal portfolio will, of course,

depend on the risk preferences of the investor, his initial wealth, and the

joint distribution for the securities' returns. It is well-known that

the von Neumann-Morgenstern utility function can only be determined up to

8/
a positive affine transformation.8 Hence, the preference orderings of

all choices available to the investor are completely specified by the Pratt-

9/
Arrow-- absolute risk-aversion function which can be written as

-U" (W)
(II.5) A(W) -

U'(W) 

and the change in absolute risk-averson with respect to a change in wealth is,

therefore, given by

dA A U"' (W)
1.6) dA = A' (W) = A(W)[A(W) + ]

dW U"(W)

By the assumption that U(W) is increasing and strictly concave, A(W) is positive, and
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such investors are called risk-averse. An alternative, but related, measure of

risk-aversion is the relative risk-aversion function defined to be

(II.7) (W) - U(W)W = A(W)W,

and its change with respect to a change in wealth is given by

(II.8) 6' (W) = A' (W)W + A(W)

The certainty equivalent end-of-period wealth, W, associated with a

given portfolio for end-of-period wealth whose random variable value is

denoted by W, is defined to be that value such that

(II.9) U(Wc) = E{U(W)}

I.e., W is the amount of money such that the investor is indifferent between

having this amount of money for certain or the portfolio with random variable

outcome W. The term "risk-averse" as applied to investors with concave

utility functions is descriptive in the sense that the certainty equivalent

end-of-period wealth is always less than the expected value of the associated

portfolio, E{W}, for all such investors. The proof follows directly by

Jensen's Inequality. Namely, if U is strictly concave, then

u(Wc) = E{U(W)} < U(E{W})

whenever W has positive dispersion, and because U is a nondecreasing function

of W, W < E{W}
c

The certainty-equivalent can be used to compare the risk-aversions of

two investors. An investor is said to be more risk-averse than a second

investor if for every portfolio, the certainty-equivalent end-of-period

wealth for the first investor is less than or equal to the certainty equivalent
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end-of-period wealth associated with the same portfolio for the second

investor with strict inequality holding for at least one portfolio.

While the certainty equivalent provides a natural definition for

10 /
comparing risk-aversions across investors, Rothschild and Stiglitz--

have attempted in a corresponding fashion to define the meaning of "increa-

sing risk" for a security so that the "riskiness" of two securities or port-

folios can be compared. In comparing two portfolios with the same expected

values, the first portfolio with random variable outcome denoted by W1 is

said to be less risky than the second portfolio with random variable outcome

denoted by W2 if

(II.10) E{U(W1)} > E{U(W2 )}

for all concave U with strict inequality holding for some concave U. They

bolster their argument for this definition by showing its equivalence to

the following two other definitions:

(II.11) There exists a random variable Z such that W2 has the

same distribution as W1 + Z where the conditional ex-

pectation of Z given the outcome on W 1 is zero. (I.e.,

W2 is equal in distribution to W1 plus some "noise.")

(II.12) If the points of F and G, the distribution functions of

W1 and W2, are confined to the closed interval [a,b],

and T(y) f [F(x) - G(x)]dx, then T(y) > 0 and
a

T(b) = 0. (I.e., W2 has more "weight in its tails"

than W1 .)

A feasible portfolio with return per dollar Z will be called an

tefficient portfolio if there exists an increasing, strictly concave function

V such that E{V'(Z)(Zj - R)} = 0, 1, 2, ..., n. Using the Rothschild-
j
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Stiglitz definition of "less risky," a feasible portfolio will be an effi-

cient portfolio only if there does not exist another feasible portfolio

which is less risky than it is. All portfolios that are not efficient are

called inefficient portfolios.

Proposition II.1. If the set of available securities contain no

redundant securities, then no two efficient portfolios have the

same risk in the Rothschild-Stiglitz sense.

1 2
Proof: Let Ze1 and Ze denote the random variable returns per dollar on

two distinct efficient portfolios. Let "E" denote the expectation

operator over their joint distribution. The proof goes by contradic-

tion. If the two portfolios have the same risk, then E(Ze) = E(Z )

and E{U(Ze )}= E{U(Ze )} for every concave U. Consider the following

artificial security with return per dollar Z given by Z = YZe +

(1 - Y)Z where Y = 1 with probability 6 (O < 6 < 1) and Y = 0 with
e

1 2
probability (1 - 6)of Z and Z . It follows

e e

that Ez(Z) = E(Ze ) = E(Ze ) and Ez{U(Z)} = 6E{U(Ze )}+ (1 - 6)E{U(Ze 2 )}

2 1
= E{U(Z = E{U(e )}. I.e., Z has the same risk as either Ze or

Ze . Define Z Ey(Z) = 6Z1 + (1 6)Z . By the independence of

Y and Jensen's Inequality, E{U(Z6)} > Ez{U(Z)} with equality holding

if and only if Z = Z because U can be taken to be strictly concave.

If the inequality holds, then Z6 is less risky than Z because E(Z6)

= Ez(Z). But Z6 is the random variable return on a feasible portfolio

1 2
gotten by combining the two portfolios Ze and Z with portfolio

e e
1 2

weights [6, (1 - 6)]. Hence, Z6 is less risky than both Ze and Ze

But, this contradicts the hypothesis that these portfolios are efficient.

1 2
Hence, Z = Z6, and this is possible if and only if Ze = Ze If

1 2
there are no redundant securities, then Z = Z if and only if thee e
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two portfolios contain identical holdings, but this contradicts the

hypothesis that the two portfolios are distinct.

Hence, from the definition of an efficient portfolio and Proposition

II.1, it follows that no two portfolios in the efficient set can be ordered

with respect to one another. From (II.10), it follows immediately that

every efficient portfolio is a possible optimal portfolio. I.e., for each

efficient portfolio, there exists an increasing, concave U and an initial

wealth W0 such that the efficient portfolio is a solution to (II.1) or (II.3).

Further, from (II.10), all risk-averse investors will be indifferent between

selecting their optimal portfolios from the set of all feasible portfolios

or from the set of efficient portfolios. Hence, without loss of generality,

I will assume that all optimal portfolios are efficient portfolios.

With these general definitions established, I now turn to the analysis

of the optimal demand functions for risky assets and their implications

for the distributional characteristics of the underlying securities. A

note on notation: the symbol "Z " will be used to denote the random variable
e

return per dollar on an efficient portfolio, and a bar over a random variable

(e.g., Z) will denote the expected value of that random variable.

Theorem II.1. If Z denotes the random variable return per dollar

on any feasible portfolio and if (Ze - Ze) is riskier than (Z - Z)

in the Rothschild and Stiglitz sense, then Z > Z.

Proof: By hypothesis, E{U([Z - Z]W0)} > E{U([Z e -Ze]W 0)} If Z - Ze then

trivially, E{U(ZWo)} > E{U(ZeWo)} . But, Z is a feasible portfolio

and Z is an efficient portfolio. Hence, by contradiction, Z > Z.e e

Corollary II.l.a. If there exists a riskless security with return

R, then Ze> R with equality holding only if Z is a riskless security.
e -- e
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Proof: The riskless security is a feasible portfolio with expected return

R. If Z is riskless, then by assumption (A.3), Ze = R. If Ze is not

riskless, then (Ze - Z e) is riskier than (R - R). Therefore, by Theorem

II.1, Ze > R.

Theorem II.2. The optimal portfolio for a nonsatiated, risk-averse

* *
investor will be the riskless security (i.e., w+ 1

= 1, w. = 0,
n+l J

j = 1, 2, ..., n) if and only if Z = R for j = 1, 2, ..., n.

Proof: From (II.4), { 1, ... , wn } will satisfy E{U'(Z W)(Zj - R)} = 0,

_ *

j = 1, 2, ..., n. If Z. = R, j = 1, 2, ..., n, then Z = R will

satisfy these first-order conditions. By the strict concavity of U

and the nonsingularity of the variance-covariance matrix of returns,

this solution is unique. This proves the "if" part. If Z = R is

an optimal solution, then we can rewrite (II.4) as U'(RWo)E(Zj - R) = 0.

By the nonsatiation assumption, U'(RWO) > 0. Therefore, for Z = R

to be an optimal solution, Z = R, j = 1, 2, ..., n. This proves

the "only if" part.

Hence, from Corollary II.l.a and Theorem II.2, if a risk-averse investor

chooses a risky portfolio, then the expected return on that portfolio exceeds

the riskless rate, and a risk-averse investor will choose a risky portfolio if,

at least, one available security has an expected return different from the

riskless rate.

Define the notation E(YIX 1, ..., X ) to mean the conditional expectation

of the random variable Y, conditional on knowing the realizations for the ran-

dom variables (X1, ..., Xq).
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Theorem II.3. If there exists a feasible portfolio with return Zp

such that for security s, Zs Zp + es where E() = E( Zp Zj

j=l, ..., n, js) = 0, then the fraction of every efficient portfolio

allocated to security s is the same and equal to zero.

Proof: The proof follows by contradiction. Let Z be the return on an

efficient portfolio with fraction 6 0O allocated to security s.

Let Z be the return on a portfolio with the same fractional holdings

as Ze except instead of security s, it holds the fraction 6 in fea-

sible portfolio Zp. Hence, Z = Z + 6 (Zs - Z) or Z = Z + 6 s 
p e 5 s p e s s

By hypothesis, Ze = Z and by construction, E(e sZ) = 0. Therefore,

for 6 0, Z is riskier than Z in the Rothschild-Stiglitz sense.

But, this contradicts the hypothesis that Z is an efficient portfolio.

Hence, 6 = 0 for every efficient portfolio.

Corollary II.3.a. Let , denote the set of n securities with returns

(Z1 ... , Z s-1, Z, Zs+l, ... Zn) and 4' denote the same set of

securities except Zs is replaced with Zs,. If Z , = Z + s and

E( s) = E(C Z1, ... , Zs-1 , Zs Zs+1, . Zn) = 0, then all risk

averse investors would prefer to choose their optimal portfolios from

j rather than '.

The proof is essentially the same as the proof of Theorem II.3 with "Z "

replacing "Z ". Unless the holdings of Z in every efficient portfolio is
p s

zero, will be strictly preferred to 4'.

Theorem II.3 and its corollary demonstrate that all risk averse inves-

tors would prefer any "unnecessary" uncertainty or "noise" to be eliminated.

In particular, by this theorem the existence of lotteries is shown to be

inconsistent with strict risk aversion on 11 /
inconsistent with strict risk aversion on the part of all investors.
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While the inconsistency of strict risk-aversion with observed behavior such

as betting on the numbers can be "explained" by treating lotteries as consumption

goods, it is difficult to use this argument to explain other implicit lotteries

such as callable, sinking fund bonds where the bonds to be redeemed are selected

at random.

As illustrated by the partitioning of the feasible portfolio set into its

efficient and inefficient parts and the derived theorems, the Rothschild-

Stiglitz definition of increasing risk is quite useful for studying the properties

of optimal portfolios. However, it is important to emphasize that these

theorems apply only to efficient portfolios and not to individual securities

or inefficient portfolios. For example, if (Zj - Zj) is riskier than (Z - Z)

in the Rothschild-Stiglitz sense and if security j is held in positive amounts

in an efficient or optimal portfolio (i.e., w. > 0), then it does not follow
3

that Z must equal or exceed Z. In particular, if wj > 0, it does not follow

that Zj must equal or exceed R. Hence, to know that one security is riskier

than a second security using the Rothschild-Stiglitz definition of increasing

risk provides no normative restrictions on holdings of either security in an

efficient portfolio. And because this definition of riskier imposes no

restrictions on the optimal demands, it cannot be used to derive properties

of individual securities' return distributions from observing their relative

holdings in an efficient portfolio. To derive these properties, a second

definition of risk is required. However, discussion of this measure is

delayed until Section III.

In closing this section, comparative statics results are derived for

the optimal risky security demand in the special case of a single risky secur-

ity and a riskless security (i.e., n=l). Additional results for the general

case of many risky securities can be found in Fisher [22].
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Define K by

(II.13) K - -E{U"(W )(Z - R) 2W} > 0

where Z is the random variable return per dollar on the single risky security

and W - [w (Z - R) + R]W is the random variable end-of-period wealth for

the optimal allocation.

Applying the Implicit Function Theorem to (II.4), the change in the

proportion of the optimal portfolio allocated to the risky security with res-

pect to a change in initial wealth can be written as

* * * *
w -E{w(W )U' (W )(W - RW )} *

aw o
(II.14) W * 2 for w 0

o (wW) K
0

=0 for w = 0,

whered is the relative risk-aversion function defined in (II.7). If U

is such that L is a constant, then aw */aw = 0 because E{U'(W* )(W - RW = 
0 0

from (II.4). By integrating (II.7) twice, the general class of concave utility

functions that exhibit constant relative risk aversion can be written as

(11.15) U(W) = C1 WY - + C2

where C1 and C2 are any constants such that C1 > 0 and y < 1. Because

von Neumann-Morgenstern utility functions are unique only up to a positive

affine transformation, all distinct members of this class are determined by

the single parameter y. The relative risk-aversion function, , equals

(1 - y) > O. Hence, for investors with utility functions in this class, a

larger value of y implies a smaller value of relative risk aversion. Moreover,

12/
for all portfolios that can be ranked,- it is straightforward to show that
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aw /ay > 0.

For each possible outcome for W , we have by the Mean Value Theorem that

*
there exists a number e = e(W ), 0 < < 1, such that

(II.16) (W*) = t(RWo) + R' () (W - RW o)

where nq RW + (W - RW ) and R' is defined in (II.8). Substituting from
0 0

(II.16) into (II.14) with w 0, (II.14) can be rewritten as

*k · k 2
*k - E{Wa(n)U' (W)(W - RW )2I

aw o
(II.17) * 2

o (*W) K

From (II.17), a sufficient condition for the optimal proportion in the risky

security to decline with an increase in initial wealth is that R'w > 0.

Similarly, a sufficient condition for the optimal proportion to increase is

*
that PR'w < 0. Hence, for investors with strictly increasing (decreasing)

relative risk aversion, an increase in initial wealth will induce a decrease

(increase) in the absolute proportion of the optimal portfolio allocated to

the risky security, w .

From II.14, the change in the dollar allocation to the risky security in

the optimal portfolio with respect to a change in initial wealth can be written

as

a( Wo) - RE{w A(W )U'(W )(W - RW)} *

(II.18) aw ° , w 0
o 2(w ) K

0 w =0

where A is the absolute risk-aversion function defined in (II.5). If U is

such that A is a constant, then a(w Wo)/aW = 0. By integrating (II.5) twice,

the general class of concave utility functions that exhibit constant absolute
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risk-aversion can be written as

(II.19) U(W) = C2 - Cle"

where C1 and C2 are any constants such that C1 > 0 and p > O0. All distinct

members of this class are determined by the single parameter p which is equal

to the absolute risk-aversion function, and a(w Wo)/a u < 0.

Again, using the Mean Value Theorem, A(W ) can be written as

(II.20) A(W A(RWo) + A' ()(W - RW ).

Substituting from (II.20) into (II.18) with w # 0, (II.18) can be rewritten as

a(wW ) -RE{wA' ()U'(W )(W - RW )2}0 o
(11.21) aw = 

o (w ) K

From (II.21), a sufficient condition for the optimal dollar investment in the

risky security to decline is that A'w > 0, and a sufficient condition for it

to increase is that A'w < 0. Hence, for investors with strictly increasing

(decreasing) absolute risk aversion, an increase in initial wealth will induce

a decrease (increase) in the absolute dollar position in the risky security,

Jw*woIW

Although the direction of change in both the proportional and absolute

dollar holdings of the risky security depends upon the sign of w , the sign of

w is determined solely by the sign of (Z - R). From Theorem II.2, w = 0

if and only if Z = R. If w # 0, then Z > R because an optimal portfolio is

an efficient portfolio. But Z = R + w (Z - R). Hence, w (Z - R) > 0 if

w $ 0. Therefore, for any nonsatiated, risk-averse investor, the sign of w

will equal the sign of (Z - R). Warning: this condition need not obtain

with respect to an individual security when there is more than one risky
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security. I.e., the sign of w need not equal the sign of (Zj - R) for n > 1.

From (II.14), the change in w with respect to a change in the risky

security's expected return, Z, can be written as

aw* E{U'(W )[1 - A(W*XW RW )I}
(II.22) =

Kaz

Inspection of (11.22) shows that the sign of aw /az is ambiguous. However,

* _

three sufficient conditions for 3w /Z to be positive are:

(II.23) (i) w = 0;

or

(ii) A'(W) = 0;

or

(iii) ( - RW for RW < W < WW - RW o
o

where W+ equals the maximum possible outcome for W . Conditions (i) and (iii)

follow directly from (II.22) and (ii) follows from the substitution for A(W )

from (II.20) into (II.22).

From (II.14),. the change in w with respect to a change in R can be

written as

*aw(11.2 aR (w* 2From (II.24), w /aR can be either positive or negative. Two sufficient

conditions for aw /aR to be negative are:

(11.25) (i) A'W 0 and w (1 - w ) = 0

or
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(ii) A'(W) 0 and w (1 - w ) - 0.

These conditions follow from the substitution for A(W ) from (II.20) into (II.24).

Rothschild and Stiglitz / have examined the effect on the optimal

demand for the risky security of an increase in that security's riskiness.

As with the other comparative statics results derived here, they found that

the change in the optimal demand can be either positive or negative. A

sufficient condition for an increase in risk to decrease the demand for the

risky security is that f(Z) (Z - R)U'([w (Z - R) + R]W o) be concave in Z.

It is straightforward to show by differentiating f(Z) twice with respect to Z that

if relative risk aversion is less than or equal to R and nondecreasing and if

absolute risk aversion is nonincreasing, then f(Z) is strictly concave for

w > 0 and strictly convex for w < 0.

In summary, even for the simplest case of one risky security and a

riskless security, the sign of the change in the optimal demand for the risky

security with respect to changes in its probability distribution is consistently

ambiguous unless restrictions are placed on the class of utility functions or

on the class of probability distributions for Z.
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cov[V'(Ze),Ze] < 0.14/ It is understood that in the following discussion

"efficient portfolio" will mean "efficient portfolio with positive dispersion."

Let Z denote the random variable return per dollar on any feasible portfolio p.
p

Definition. The measure of risk of portfolio p relative to efficient

portfolio K with random variable return ZKe bK , is defined by

bK cov[Y(Ze) Z p]
p e p

and portfolio p is said to be riskier than portfolio p' relative to

efficient portfolio K if bK > b, .
P P

Theorem III.1. If Z is the return on a feasible portfolio p and ZK
P e

is the return on efficient portfolio K, then Z - R = b (Z - R).
P P e

Proof: From the definition of V(Ze), E{V'(ZeK)(Zj - R)} = 0, j = 1, 2, ..., n.

Let 6 be the fraction of portfolio p allocated to security j. Then,

= 1n 6(Zj - R) + R, and 6jE{V'(Z e)(Zj - R)} = E{V'(Z)(Z - R)} = 0.
p .1 J e e p

By a similar argument, E{V'(Z)(Z - R)} = 0. Hence, cov[V'(ZK), Ze] =

(R- )E{V'(ZK)} and cov[V'(Ze), Z] = (R - Z )E{V'(Z)} . By

Corollary II.l.a, > R. Therefore, cov[Y(ZK ), Zp] = - (R - Z .e e p (R zp, e

Hence, the expected excess return on portfolio p, Zp - R, is in direct propor-

tion to its risk, and because > R, the larger is its risk, the larger is
e

its expected return. Thus, Theorem III.1 provides the first argument why bK

is a natural measure of risk for individual securities.

A second argument goes as follows: consider an investor with utility

function U and initial wealth W0 who solves the portfolio selection problem

Max E{U([wZj + (1 - w)Z]W0)}
w
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III. Risk Measures for Securities and Portfolios in the One-Period Model

In the previous section, the Rothschild-Stiglitz measure for the risk

of a security was defined, and the comparative statics of an increase in

a security's risk was analyzed in the special case of a single risky securi-

ty and a riskless security. However, in the more-than-one risky security

portfolio problem, the Rothschild-Stiglitz measure is not a natural definition

of risk for a security. In this section, a second definition of increasing

risk is introduced, and it is argued that this second measure is a more

appropriate definition for the risk of a security. Although this second

measure will not in general provide the same orderings as the Rothschild-

Stiglitz measure, it is further argued that the two measures are not in

conflict, and indeed, are complementary.

If Z is the random variable return per dollar on an efficient portfolio
e

with positive dispersion, then let V(Ze) denote an increasing, strictly concave

function such that

E{V'(Z e ) (z j - R)} 0, j 1, 2, .... , n.

I.e., V is a concave utility function such that an investor with initial wealth

Wo = 1 and these preferences would select this efficient portfolio as his

optimal portfolio. While such a function V will always exist, itwill not

be unique. If cov(xl, x2) is the functional notation for the covariance

between the random variables x and x2, then define the random variable,

Y(Ze), by

V'(Ze) - E{V'(Z e)}
(Il.1) Y(Z )

e Cov[V'(Z ),Ze]

Y(Z ) is well-defined as long as Z has positive dispersion because
e e

III
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Kordering while the b-measure provides a complete ordering. Moreover,

they can give different rankings. For example, suppose the return on security

j is independent of the return on efficient portfolio K, then b = 0 and

K
Zj = R. Trivially, bR = 0 for the riskless security. Therefore, by the

b.-measure, security j and the riskless security have equal risk. However,

if security j is not riskless, then by the Rothschild-Stiglitz measure,

security j is more risky than the riskless security. Despite this, the two

measures are not in conflict, and indeed, are complementary. The Rothschild-

Stiglitz definition measures the "total risk" of a security in the sense that

it compares the expected utility from holding a security alone with the

expected utility from holding another security alone. Hence, it is the

appropriate definition for identifying optimal portfolios and determining

the efficient portfolio set. However, it is not useful for defining the risk

of securities generally because it does not take into account that investors

can mix securities together to form portfolios. The b-measure does take

this into account because it measures the only part of an individual security's

risk which is relevant to an investor: namely, the part that contributes

to the total risk of his optimal portfolio. In contrast to the Rothschild-

Stiglitz measure of total risk, the b measures the "systematic risk" of a

security (relative to efficient portfolio K). Of course, to determine

K
the b, the efficient portfolio set must be determined. Because the Rothschild-

Stiglitz measure does just that, the two measures are complementary.

Other properties of the bK measure of systematic risk are:

(P.1) If a feasible portfolio p has portfolio weights (61, 62' ' 6n),
K n K

then b = E1 ibj . The systematic risk of a portfolio is the weighted

sum of the systematic risks of its component securities.
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where Z is the return on a portfolio of securities and Z is the return on

the security j. The optimal mix, w , will satisfy the first-order condition

(III.2) E{U'([w*Z. + (1 - w )Z]W)(Zj - Z)} = 0.

If the original portfolio of securities chosen was this investor's optimal

portfolio (i.e., Z = Z ), then the solution to (III.2) is w = 0. However,

an optimal portfolio is an efficient portfolio. Therefore, by Theorem III.1,

* -*
Zj - R = b(Z - R). Hence, the "risk-return tradeoff" provided in Theorem

III.1 is a condition for personal portfolio equilibrium. Indeed, because

security j may be contained in the optimal portfolio, w W0 is similar to an

excess demand function. b. measures the contribution of security j to the

Rothschild-Stiglitz risk of the optimal portfolio in the sense that the

investor is just indifferent to a marginal change in the holdings of security

j provided that Z. - R = bz - R). Moreover, by the Implicit Function

Theorem, we have from (III.2) that

3) w w*WoE{U"(- Z)} - E{U'}
(III.3) aw

azj E{U"(Z - Zj) 2

> O at w =0.

Therefore, if Z lies above the "risk-return" line in the (Z - b ) plane,

then the investor would prefer to increase his holdings in security j and

if Z lies below the line, then he would prefer to reduce his holdings. If

the risk of a security increases, then the risk-averse investor must be

"compensated" by a corresponding increase in that security's expected return

if his current holdings are to remain unchanged.

The Rothschild-Stiglitz measure of risk is clearly different from the

b.-measure here. The Rothschild-Stiglitz measure provides only for a partial
J
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(P.1) follows directly from the linearity of the covariance operator,

Cov[x1, x2], with respect to the random variable x2.

Let p and p' denote any two feasible portfolios and let K and L denote

any two efficient portfolios.

K L
(P.2) If b = 0 for some efficient portfolio K, then b = 0 for any efficient

P P

portfolio L.

(P.2) follows from Theorem III.1 and Corollary II.l.a. If bK = 0, then

-K B -L L
Z = R because Z > R. But if Z = R and Z > R, then b = 0.
p e p e p

K > K L > L
(P.3) b = b, if and only if b b

K K K
(P.3) follows from (P.2) if b = bp, = O. Suppose b 0, then (P.3)

follows from Theorem (III.1) because

K -
Zb , - R ,

p = P = 
K L
b Z -R b

P P P

(P.3) provides a third argument why bK is a natural measure of risk for
p

individual securities. Namely, the ordering of securities by their systematic

risk relative to a given efficient portfolio will be identical to their

ordering relative to any other efficient portfolio. Hence, given the set

of available securities, there is an unambiguous meaning to the statement

"security j is riskier than security i."

(P.4) If portfolio p is an efficient portfolio (call it the K one with

Z = Z ), then for any efficient portfolio L, b > 0 and in particular,
p e p

b = 1. Hence, all efficient portfolios have positive systematic
p

risk relative to any efficient portfolio.
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(P.4) follows from Theorem (III.1) and Corollary II.l.a.

(P.5) If the systematic risk of portfolio p is defined by its expected

return, Z, and if portfolio p is said to be riskier than portfolio

p' if and only if Z > Z ,, then this measure of systematic risk is

equivalent to the bK measure.
P

(P.5) follows directly from Theorem (III.1), Corollary II.l.a, and (P.3).

Although the expected return of a security provides an equivalent ranking
K K

to its b measure, the bK measure is not vacuous. There exist nontrivial
P P

information sets which allow b to be determined without knowledge of Z .

For example, consider a model in which all investors agree on the joint dis-

tribution of the returns on securities. Suppose one knows the probability

distribution of the optimal portfolio, Z W, and the utility function U for

some investor. From (III.1), one, therefore, knows the distribution of Y(Z ).

For security j, define the random variable ej Zj - Zj. Suppose further

that one has enough information about the joint distribution of Y(Z ) and

* -15 /
¢j to compute Cov[Y(Z ), sj], but does not know Z..- By the definition

of covariance, Cov[Y(Z ), ] = Cov[Y(Z ), Zj] = b . However, Theorem III.1

is a necessary condition for equilibrium in the securities market. Hence,

one can deduce the equilibrium expected return on security j from Z. =

R + bj(Z - R). An analysis of the necessary information sets required

to deduce the equilibrium structure of security returns is an important part

of portfolio theory,and further discussion of this topic is provided in

Sections IV and V.

III
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IV. Spanning, Separation and Mutual Fund Theorems

Definition A set of M feasible portfolios with random variable

returns (XI,...,X) are said to span the space of portfolios

contained in set ' if and only if for any portfolio in with

return denoted by Zp, there exists numbers (1 .,), ZiMj = 1,

such that Z = M jX. If N is the number of securities available
p 1 j ·

to generate the portfolios in ' and if M* denotes the smallest

number of feasible portfolios that span the space of portfolios

contained in , then M* - N.

As was illustrated in section II, very little can be derived about the

structure of optimal portfolio demand functions unless further restrictions

are imposed on the class of investors' utility functions or the class of

probability distributions for securities' returns. A particularly fruit-

ful set of such restrictions is the one that provides for a nontrivial

(i.e., M*<N) spanning of the feasible portfolio set. Indeed, the spanning

property leads to a collection of "mutual fund" or "separation" theorems

that are the core of modern financial theory.

A mutual fund is a financial intermediary that holds as its assets a

portfolio of securities and issues as liabilities shares against these

assets. Unlike the portfolio of an individual investor, the portfolio of

securities held by a mutual fund need not be an efficient portfolio.. The

connection between mutual funds and the spanning property can be seen in

the following theorem:

Theorem IV.1 If there exists M mutual funds whose portfolios span

the portfolio set , then all investors will be indifferent between

selecting their optimal portfolios from or from portfolio combin-

ations of just the M mutual funds.
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The proof of the theorem follows directly from the definition of spanning.

If Z* denotes the return on an optimal portfolio selected from and if

X. denotes the return on the jth mutual fund's portfolio, then there exist
J

* * * Mportfolio weights (61,..' 6M) such that Z = l Xj. Hence, any investor

would be indifferent between the portfolio with return Z and the (61..,6M)

combination of the mutual fund shares.

Although the theorem states "indifference," if there are information-

gathering or other transactions costs and if there are economies of scale,

then investors would prefer the mutual funds whenever M<N. By a similar

argument, one would expect that investors would prefer to have the smallest

number of funds necessary to span . Therefore, the smallest number of

such funds, M , is a particularlyimportant spanning set. Hence, the span-

ning property can be used to derive an endogenous theory for the existence

of financial intermediaries with the functional characteristics of a mutual

fund. Moreover, from these functional characteristics, a theory for their

optimal management can be derived.

For the mutual fund theorems to have serious empirical content, the

minimum number of funds required for spanning, M , must be significantly

smaller than the number of available securities, N. When such spanning

obtains, the investor's portfolio selection problem can be separated into

two steps: first, individual securities are mixed together to form the M

mutual funds; second, the investor allocates his wealth among the M funds'

shares. If the investor knows that the funds span the space of optimal

portfolios, then he need only know the joint distribution of (X1,..., X*)

to determine his optimal portfolio. It is for this reason that the mutual

fund theorems are also called "separation" theorems. However, if the M
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funds can be constructed only if the fund managers know the preferences,

endowments, and probability beliefs of each investor, then the formal

separation property will have little operational significance.

In addition to providing an endogenous theory for mutual funds, the

existence of a nontrivial spanning set can be used to deduce equilibrium

properties of individual securities' returns and to derive optimal decision

rules for' business firms making physical investments. Moreover, in vir-

tually every model of portfolio selection in which empirical implications

beyond those presented in sections II and III are derived, some nontrivial

form of the spanning property obtains.

While the determination of conditions under which nontrivial spanning

will obtain is in a broad sense a subset of the traditional economic theory

of aggregation, the first rigorous contributions in portfolio theory were

made by Arrow [2 ], Markowitz [491, and Tobin [89]. In each of these papers

and most subsequent papers, the spanning property is derived as an implica-

tion of the specific model examined, and therefore, such derivations provide

only sufficient conditions. In two notable exceptions, Cass and Stiglitz [7]

and Ross [72] "reverse" the process by deriving necessary conditions'for

nontrivial spanning to obtain. In this section, necessary and sufficient

conditions for spanning are developed along the lines of Cass and Stiglitz

and Ross, leaving until Section V discussion of the specific models of

Arrow, Markowitz, and Tobin.

Let Tf denote the set of all feasible portfolios that can be con-

structed from a riskless security with return R and n risky securities with

a given joint probability distribution for their random variable returns

(Z ,...,Z). Let denote the nxn variance-covariance matrix of the returns

on the n risky assets.

�1_1111�111_ --
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Theorem IV.2 Necessary conditions for the M feasible portfolios

with returns (X1 ,...,X M) to span the portfolio set f are (i) that

the rank of M and (ii) that there exists numbers (61 ,., 6M),

ZElj = 1 such that the random variable jX. has zero variance.

Proof:

(i) the set of portfolio f defines a (n+l) dimensional vector space.

f
By definition, if (X1,...,XM) spans , then each risky security's

return can be represented as a linear combination of (X1,...,XM).

Clearly, this is only possible if the rank of Q < M. (ii) The risk-

less security is contained in . Therefore, if (X1,...,XM) spans ,

then there must exist a portfolio combination of (X1,...,X) which is

riskless.

Proposition IV.1 If Z = ZlajZj + b is the return on some security
p ljj

or portfolio and if there are no "arbitrage opportunities" (Assumption

(A.3)), then (1) b = [1- n ]R and (2) Z = R + En (Z -R).
laj p laj j

Proof:

Let Z be the return on a portfolio with fraction 6t allocated to

security j, j=1,2,...,n; 6 allocated to the security with return Zp;
p p

(1-6 p-16j) allocated to the riskless security with return R. If J

is chosen such that 6 = -6 a., then Z - R + 6 (b-R[1-naj]). Z± is

t
a riskless security, and therefore, by (A.3), Z= R. But, 6 can be

P

chosen arbitrarily. Therefore, b = [l-EZla]R. Substituting for b,

n
it follows directly that Zp = R + Zlaj(Zj-R).

As long as there are no arbitrage opportunities, from Theorem IV.2 and

Proposition IV.1, without loss of generality, it can be assumed that one
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of the portfolios in any candidate spanning set is the riskless security.

If by convention, XM = R, then in all subsequent analyses, the notation

(X1,...,Xm,R) will be used to denote a M-portfolio spanning set where

m M-1 is the number of risky portfolios (together with the riskless secur-

ity) that span f.

Theorem IV.3 A necessary and sufficient condition for (X1,...,X ,R)

to span 'f is that there exist numbers (aij) such that Z = R +

laij(i-R), j=1,2,...,n.

Proof:

If (X1 ,...,Xm,R) span T'f, then there exists portfolio weights (6lj. '6mj)

6ij = 1, such that Z = i ijXi . Noting that XM = R and substituting

6Mj = 1- Z6j' we have that Zj = R + ij(Xi-R). This proves
1 ij'j ij i

necessity. If there exists numbers (aij) such that Z = R + aij (Xi-R),

then pick the portfolio weights 6ij = aj for i=l,...,n, and

6Mj = 1 - 6ij from which it follows that Zj = E16ijXi. But every

portfolio in yf can be written as a portfolio combination of (Zl,..,Z)

and R. Hence, (X1,...,X ,R) spans 'yf and this proves sufficiency.

Let QX be the mxm variance-covariance matrix of the returns on the m port-

folios with returns (X1,...,X)

Corollary IV.3a A necessary and sufficient condition for (X,..,X R)

to be the smallest number of feasible portfolios that span

(i.e., M = m+l) is that the rank of equals the rank of X = m.

Proof:

If (X1 ,..,Xm,R) span f and m is the smallest number of risky portfo-

lios that does, then (X1,..,XM) must be linearly independent, and
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therefore, rank QX = m. Hence, (X1,..,Xm) form a basis for the vec-

tor space of security returns (Z1,..,Z). Therefore, the rank of Q

must equal QX' This proves necessity. If the rank of QX = m, then

(X1,..,X ) are linearly independent. Moreover, (X1,..,X ) . Hence,

if the rank of Q = m, then there exists numbers (aij) such that

- = im m
Z- Z = ai (X -Xi) for j=1,2,...,n. Therefore, Z = b + Ea Xi

where b Zj - a X By the same argument used to prove Proposi-
j j 1 i

tion IV.1, b = [1-lai]R. Therefore, Z = R + a (X -R). By

Theorem IV.3, (X1,..,Xm,R) span Tf.

If follows from Corollary IV.3.a, that a necessary and sufficient

condition for nontrivial spanning of f is that some of the risky securi-

ties are redundant securities. Note, however that this condition is suffi-

cient only if securities are priced such that there are no arbitrage

opportunities.

In all these derived theorems, the only restriction on investors'

preferences was that they prefer more to less. In particular, it was not

assumed that investors are necessarily risk averse. Although Yf was

defined in terms of a known joint probability distribution for (Z1,..,Z )

which implies homogeneous beliefs among investors, inspection of the proof

of Theorem IV.3 shows that this condition can be weakened. If investors

agree on a set of portfolios (X1, .,X ,R) such that Z = R + Eia (X

j=1,2,...,n, and if they agree on the numbers (aij), then by Theorem IV.3,

(X1,..,Xm,R) span f even if investors do not agree on the joint distribu-

tion of (X1,..,X ). These appear to be the weakest restrictions on

preferences and probability beliefs that can produce nontrivial

spanning and the corresponding mutual fund theorem. Hence, to derive

additional theorems, it is assumed that all investors

III
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are risk-averse and that investors have homogeneous probability beliefs.

Define e to be the set of all efficient portfolios contained in f.

Proposition IV.2 If Z is the return on a portfolio contained in
e

Te, then any portfolio that combines positive amounts of Ze with

the riskless security is also contained in Te.

Proof:

Let Z = 6(Ze-R) + R be the return on a portfolio with positive frac-

tion 6 allocated to Ze and fraction (1-6) allocated to the riskless

security. Because Ze is an efficient portfolio, there exists a

strictly concave, increasing function V such that E{V'(Ze)(Zj-R)} = 0,

j=1,2,..,n. Define U(W) - V(aW+b) where a - 1/6 > 0 and b - (6-1)R/6.

Because a > 0, U is a strictly concave and increasing function. More-

over, U'(Z) = aV'(Ze). Hence, E{U'(Z)(Zj-R)} = O, j=1,2,..,n. There-

fore, there exists a utility function such that Z is an optimal port-

folio, and Z is, therefore, an efficient portfolio.

Hence, from Proposition IV.2, if (X1,..,XM) are the returns on M portfolios

that are candidates to span the space of efficient portfolios Ye, then

without loss of generality, it can be assumed that one of the portfolios is

the riskless security.

Theorem IV.4 If (X1,..,X ,R) span e and if Z. = Z. + . where
j J J

E(cj) = E(Ej|X,..,X m) = 0, then Z = R.

Proof:

By hypothesis, (X1 ,..,Xm,R) span Ye and therefore, for each efficient

k k
portfolio, Z , there exists portfolio weights such that Z = R +

e e

EM6k(Xi-R). Hence, E(ej I) = 0 for every efficient portfolio.l ii ije
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Therefore, the systematic risk of security j with respect to efficient

portfolio k, b = 0. By Theorem III.1, Z. = R.
J J

Hence, by Theorem IV.4, if inequilibrium, the total source of variation in

a security's return is noise relative to a set of portfolios that span Te,

then risk averse investors will be willing to hold the total quantity of

that security outstanding even though they are not "compensated" by a posi-

tive expected excess return. Moreover, Theorem IV.4 suggests that the

equilibrium expected return on a security will depend upon the joint distri-

bution of its return with the set of spanning portfolios.

Theorem IV.5 If (X1 ,..,X ,R) span Te and if there exists numbers
- m m

(aij) such that Z_ = Z + Elai (Xi-Xi) + ej where E(ej) = E(Ej[

X X ) - 0, then Z = R+ m i
M3 J 1aij (Xi-R)

Proof:

Let Z be the return on a portfolio with fraction 6. allocated to

portfolio Xi, i=l,...,m; 6 allocated to security j, and 1-6-Z16t

allocated to the riskless security. If 6ft is chosen such that

6i -6ai, then Z = R + 6[Zj- R - Zlai(X -R)] + 6e. By Theorem
1 1 ij 1 J,

IV.4, Z = R. But 6 can be chosen arbitrarily. Therefore,

Zj= R + Elij iixi-R).

Hence, if the return on a security can be written in a linear form

relative to the spanning portfolios (X1,..,Xm,R), then its expected excess

return is completely determined by the expected excess returns on the

spanning portfolios and the weights aij.

The following theorem first proved by Ross [72] shows that security

returns can always be written in this linear form relative to a set of

Ill
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spanning portfolios.

Theorem IV.6 A necessary and sufficient condition for (X1,..,Xm,R)

to span the set of efficient portfolios Te is that there exists

numbers (aij) such that for j=l,...,n, Zj = R + ai (Xi-R) + cj
1 ij i j

where E(ej) E(sjX 1 ,..,X) = O.

Proof:

The proof of sufficiency is straightforward. Let Zp be the return on

a feasible portfolio with fraction 6 invested in security j,

j=1,2,..,n and 1 - n6 invested in the riskless security. Then

Zp = R + E6j(Z-R). By hypothesis, Zp can be rewritten as Zp = R +

Eld6 (X -R) + p where 6i 6 ai and - E6 e. Consider the
l i i i j ij p l J

feasible portfolio with return Zp' constructed by allocating fraction

6i to portfolio Xi and fraction 1 - 6i to the riskless security. By
i li

construction, Zp = Z' + sp where E(s ) = E(p IZp ) = O. Hence, for

£p O0, Zp is riskier than Z,' in the Rothschild-Stiglitz sense, and

hence, Zp cannot be an efficient portfolio. Therefore, all efficient

portfolios can be generated by a portfolio combination of (Xl,..,XmR).

The proof of necessity is not presented here because it is long and

not constructive. The interested reader can find the proof in Ross [72]-.

Since ye is contained in f, any properties proved for portfolios that span

e f
Te must be properties of portfolios that span f . From Theorems IV.3 and

IV.6, the essential difference is that to span the efficient portfolio set,

it is not necessary that linear combinations of the spanning portfolios

exactly replicate the return on each available security. Hence, it is not

necessary that there exist redundant securities for nontrivial spanning of
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ye to obtain. Of course, both theorems are empty of any empirical content

if the size of the smallest spanning set, M , is equal to (n+l).

As discussed in the introduction to this section, all the important

models of portfolio selection exhibit the nontrivial spanning property for

the efficient portfolio set. For all such models that do not restrict the

class of admissible utility functions beyond that of risk aversion, the

distribution of individual security returns must be such that Z. = R +

Ema. (Xi-R) + where E(cjIX,..,X ) = 0 for j=l,...,n. Moreover, given

some knowledge of the joint distribution of a set of portfolios that span

ewih_
Ve with (Zj-Zj), there exists a method for determining the aij and Z..

Proposition IV.3 If (X1 ,..X ,R) span e with (X1,..,X ) linearly

independent with finite variances and if the return on security j,

Zj, has a finite variance, then the (aij), i=1,2,..,m in Theorem

IV.6 are given by the formula, i=1,2,...,m

aij IlvikCov[X, Zj]

th -l
where vik is the i-k- element of 1

The proof of Proposition IV.3 follows directly from the condition that

E(Ejl Xk) = 0 which implies that Cov[ej,Xk] = O, k=l,...,m. The condition

that (X ,..,Xm) be linearly independent is trivial in the sense that know-

ing the joint distribution of a spanning set, one can always choose a lin-

early independent subset. The only properties of the joint distributions

required to compute the aij are the variances and covariances of the

X1, ...X and the covariances between Zj and X1,..,X . In particular, know-

ledge of Z is not required because Cov[X,Zj] = Cov[Xk,Z-Zj]. Hence, for

m<n (and especially so, for m<<n), there exists a nontrivial information
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set which allows the aij to be determined without knowledge of Z.. If

X1,..,X are known, then Zj can be computed by the formula in Theorem IV.5.
m i

By comparison with the example at the end of section III, the information

set required there to determine Z was a utility function and the joint

distribution of its associated optimal portfolio with (Zj-Zj). Here, one

must know a complete set of portfolios that span e. However, only the

second-moment properties of the joint distribution are required, and no

utility function information other than risk aversion is required.

A special case of no little interest is when a single risky portfolio

and the riskless security span the space of efficient portfolios. Indeed,

the classic model of Markowitz and Tobin which is discussed in section V

exhibits this strong form of separation. Moreover, most macroeconomic

models have highly-aggregated financial sectors where investors' portfolio

choices are limited to simple combinations of two securities: "bonds" and

"stocks." The rigorous microeconomic foundation for such aggregation is

precisely that e is spanned by a single risky portfolio and the riskless

security.

If X denotes the random variable return on a risky portfolio such

that (X,R) spans 'e, then the return on any efficient portfolio, Ze, can be

written as if it had been chosen by combining the risky portfolio with

return X with the riskless security: Namely, Ze = 6(X-R) + R where 6 is

the fraction allocated to the risky portfolio and (1-6) is the fraction

allocated to the riskless security. By Corollary II.l.a, the sign of 6 will

be the same for every efficient portfolio, and therefore, all efficient

portfolios will be perfectly positively correlated. If X>R, then by Pro-

position IV.2, X will be an efficient portfolio and 6>0 for every efficient

portfolio.
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Proposition IV.4 If (Z1,..,Z ) contain no redundant securities

and if 6 denotes the fraction of portfolio X allocated to secur-

ity j, and w denotes the fraction of any risk-averse investor's
J

optimal portfolio allocated to security j, j=l,...,n, then for

every such risk-averse investor,

w 6.
j = I , k= 1,2,..,n.

wk 6k

The proof follows immediately because every optimal portfolio is an effi-

cient portfolio, and the holdings of risky securities in every efficient

portfolio are proportional to the holdings in X. Hence, the relative hold-

ings of risky securities will be the same for all risk averse investors.

Whenever Proposition IV.4 holds and if there exists numbers 6. such that

/6* = 6j/ 6 j, k=l,...,n and Cn = 16 , then the portfolio with propor-

tions (61,..,6n) is called the Optimal Combination of Risky Assets. If

such a portfolio exists, then without loss of generality, it can always be

n *
assumed that X = E16 ZJ

Proposition IV.5 If (X,R) spans ve, then e is a convex set.

Proof:
1 2

Let Z and Z denote the returns on two distinct efficient portfolios.
e e

Because (X,R) spans e, Z1 = 61 (X-R) + R and Z =6 2(X-R) + R. Be-
e 1 e 2

cause they are distinct, 6 62' and so, assume 6 1 0 Let Z Z1

+ (-X)Z 2 denote the return on a portfolio which allocates fraction
e

X to Z1 and (l-X) to Ze2 where 0 < X < 1. By substitution, the expres-
e e

1 6
sion for Z can be rewritten as Z = 6(Z -R) + R where 6 [X+ 2 (1-X)].

1 2 e 1
Because Z and Z are efficient portfolios, the sign of 61 is the same

e O. Therefore, by Proposition IV.2, Z

as the sign of 62. Hence, 6 > 0. Therefore, by Proposition IV.2, Z
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is an efficient portfolio. It follows by induction that for any

integer k and numbers X. such that 0 < < 1, i=l,...,k and Z i 1,
integer k andnume i

Zk 1 EiZ is the return on an efficient portfolio. Hence, Fe is a

convex set.

Definition A market portfolio is defined to be a portfolio that holds

all available securities in proportion to their market values. To

avoid the problems of "double counting" caused by financial interme-

diaries and inter-household issues of securities, the equilibrium mar-

ket value of a security for this purpose is defined to be the equili-

brium value of the aggregate demand by individuals for the security.

In models where all physical assets are held by business firms and busi-

ness firms hold no financial assets, an equivalent definition is that

the market value of a security equals the equilibrium value of the

aggregate amount of that security issued by business firms. If Vj

denotes the market value of security and VR denotes the value of the

riskless security, then

V
j=1,2,,..,n

vj R

where 6M is the fraction of security j held in a market portfolio.

Theorem IV.7 If Ye is a convex set, and if the securities' mar-

ket is in equilibrium, then a market portfolio is an efficient

portfolio.

Proof:

Let there be K risk-averse investors in the economy with the initial

wealth of investor k denoted by . Define Z R + lW(Zj-R) to
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be the return per dollar on investor k's optimal portfolio where w is

the fraction allocated to security . In equilibrium, ElW f = Vj,

K kw k
j=1,2,...,n and z E WO = E"j + V. Define Xk /W k=l,..,K.

K
Clearly, Sk < 1 and EZk = 1. By definition of a market portfolio,

Ew = 6 M j=1,2,...,n. Multiplying by (Zj-R) and summing over j,

K nk K knM
it follows that kElwj(Zj-R) = iXk(Zk-R) = E16j(Zj-R) = ZM - R

where ZM is defined to be the return per dollar on the market port-

folio. Because : k = 1, ZM = zk . But every optimal portfolio

is an efficient portfolio. Hence, ZM is a convex combination of the

returns on K efficient portfolios. Therefore, if e is convex, then

the market portfolio is contained in Ye.

Because a market portfolio can be constructed without the knowledge of

preferences, the distribution of wealth or the joint probability distribution

for the outstanding securities,models in which the market portfolio can be shown

to be efficient are more likely to produce testable hypotheses. In addition,

the efficiency of the market portfolio provides a rigorous microeconomic justi-

fication for the use of a "representative man" in aggregated economic models.

Moreover, it is currently fashionable in the real world to advise passive"

investment strategies that simply mix the market portfolio with the riskless

security. Provided that the market portfolio is efficient, by Proposition

IV.2, no investor following such strategies could ever be convicted of

"inefficiency." Unfortunately, necessary and sufficient conditions for the

market portfolio to be efficient have not as yet been derived.

However, even if the market portfolio were not efficient, it does have

the following important property:
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Proposition IV.6 In all portfolio models with homogeneous beliefs

and risk-averse investors, the equilibrium expected return on the

market portfolio exceeds the return on the riskless security.

The proof follows directly from the proof of Theorem IV.7 and Corollary II.l.a.

Clearly, ZM - R = Zl (Z -R). By Corollary II.l.a, > R for k=l,...,K,

with strict inequality holding if Zk is risky. But, k > 0 Hence, > R

if any risky securities are held by any investor. Note that using no infor-

mation other than market prices and quantities of securities outstanding,

the market portfolio (and combinations of the market portfolio and the risk-

less security) is the only risky portfolio where the sign of its equilibrium

expected excess return can always be predicted.

Returning to the special case where e is spanned by a single risky

portfolio and the riskless security, it follows immediately from Proposition

IV.5 and Theorem IV.7 that the market portfolio is efficient. Because all

efficient portfolios are perfectly positively correlated, it follows that

the risky spanning portfolio can always be chosen to be the market portfolio

(i.e., X = ZM). Therefore, every efficient portfolio (and hence, every op-

timal portfolio) can be represented as a simple portfolio combination of

the market portfolio and the riskless security with a positive fraction

allocated to the market portfolio. If all investors want to hold risky

securities in the same relative proportions, then the only way in which this

is possible is if these relative proportions are identical to those in the

market portfolio. Indeed, if there were one best investment strategy, and

if this "best" strategy were widely known, then whatever the original state-

ment of the strategy, it must lead to simply this imperative: hold the

market portfolio.
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Because for every security, 6 0, it follows from Proposition IV.4,

that in equilibrium, every investor will hold non-negative quantities of

risky securities, and therefore, it is never optimal to short sell risky

securities. Hence, in models where m=l, the introduction of restrictions

against short-sales will not affect the equilibrium.

Theorem IV.8 If (ZM,R) span 'e, then the equilibrium expected

return on security j, can be written as

Zj = R + j(ZM-R)

where . Cov[Zj,ZM1]
J Var(ZM)

The proof follows directly from Theorem IV.6 and Proposition IV.3. This

relationship, called the Security Market Line, was first derived by

Sharpe [84] as a necessary condition for equilibrium in the mean-variance

model of Markowitz and Tobin when investors have homogeneous beliefs. This

relationship has been central to the vast majority of empirical studies of

securities' returns published during the last decade. Indeed, the switch in

notation from "ai" to "Bj" in this special case reflects the almost univer-
ij 

sal adoption of the term "the 'beta' of a security" to mean the covariance

of that security's return with the market portfolio divided by the variance

of the return on the market portfolio.

In the special case of Theorem IV.8, 8j measures the systematic risk

of security j relative to the efficient portfolio ZM (i.e., ij = bj as

defined in section III), and therefore, beta provides a complete ordering of

the risk of individual securities. As is often the case in research, useful
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concepts are derived in a special model first. The term "systematic risk"

was first coined by Sharpe and was measured by beta. The definition in

Section III is a natural generalization. Moreover, unlike the general risk

measure of Section III, j can be computed from a simple covariance between

Zj and ZM Securities whose returns are positively correlated with the mar-

ket are called "pro-cyclical," and will be priced to have positive equili-

brium expected excess returns. Securities whose returns are negatively

correlated are called "counter-cyclical," and will have negative equilibrium

expected excess returns. In general, the sign of b can not be determined

by the sign of the correlation coefficient between Z. and Z . However,
e

because Y(Z )/3Zk > 0 for each realization of Z , b. >-O does imply a
e e e 2

generalized positive "association" between the return on Z. and Z . Simi-
e

larly, b < 0, implies a negative "association."

Let .min denote the set of portfolios contained in Vf such that there
min

exists no other portfolio in Yf with the same expected return and a smaller

variance. Let Z(p) denote the return on a portfolio contained in min suchmin

that Z(p) = , and let 6~ denote the fraction of this portfolio allocated to

security , j=l,...,n.

Theorem IV.9 If (Z ,...,Z ) contain no redundant securities,

then (a) for each value A, p6, j=l,...,n are unique; (b) there

exists a portfolio contained in min with return X such thatmin

(X,R) spans min; (c) Z - R = a(X-R) where a _ Cov(Zj,X)/

Var(X), j=l,2,...,n.

Proof:

Let aij denote the i-j-th element of and because (Z1,...,Z n) contain

no redundant securities, Q is nonsingular. Hence, let v.i denote the
l0
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i-jth element of -1 . All portfolios in with expected return 
min

must have portfolio weights that are solutions to the problem: mini-

nn
mize nZ 16.6...i subject to the constraint Z(P) = . Trivially, if

= R, then Z(R) = R and 6. = 0, j=1,2,...,n. Consider the case when

pi R. The n first-order conditions are:

n1 ;6 i - ) (Zi-R), i=1,2,...,n

where i is the Lagrange multiplier for the constraint. Multiplying

by and summing, we have that Xt = Var[Z(i)]/(p-R). By definition

of min. , must be the same for all Z(p). Because is nonsingular,

the set of linear equations has the unique solution

6= n Zlvij(Zi-R) i=l,2,..,n.

This proves (a). From this solution, 6/6k , j, k=l,2,...,n are the

same for every value of . Hence, all portfolios in Ymin with p R

are perfectly correlated. Hence, pick any portfolio in min with

P R and call its return X. Then every Z(P) can be written in the

form Z(p) = 6 (X-R) + R. Hence, (X,R) span Pmin which proves (b), and

from Theorem IV.6 and Proposition IV.3, (c) follows directly.

From Theorem IV.9, ak will be equivalent to bk as a measure of a

security's systematic risk provided that the Z(p) chosen for X is such that

p>R. Like k, the only information required to compute ak are the joint

second-moments of Zk and X. Which of the two equivalent measures will be

more useful obviously depends upon the information set that is available.
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However, as the following theorem demonstrates, the ak measure is the natural choice

in the case when there exists a spanning set for T. with m=l.

Theorem IV.10 If (X,R) span Ye and if X has a finite variance,

then Te is contained in min'
min

Proof:

Let Z be the return on any efficient portfolio. By Theorem IV.6, Ze
e

can be written as Ze R + a (X-R). Let Z be the return on any port-
e p

folio in f such that Z = Z . By Theorem IV.6, Z can be written as
e p p

Z = R + a (X-R) + where E(sp) = E(p IX) = 0. Therefore, a = a
p p p p p p e

if Z = Z Var(Zp) = a2 Var(X) + Var(£p) > a2 Var(X) = Var(Ze).
p e p p p p e

eHence, Ze is contained in Tmin. Moreover, e will be the set of all

portfolios in min such that p> R.

Thus, whenever there exists a spanning set for e with m=l, the means, var-

iances, and covariances of (Zl,..,Z n) are sufficient statistics to completely

determine all efficient portfolios. Such a strong set of conclusions sug-

gests that the class of joint probability distributions for (Z1,..,Zn) which

admit a two-fund separation theorem will be highly specialized. However, as

the following theorems demonstrate, the class is not empty.

Theorem IV.11 If (Z ,..,Z ) have a joint normal probability dis-

tribution, then there exists a portfolio with return X such that

(X,R) span 'e.

Proof:

Using the procedure applied in the proof of Theorem IV.9, construct a

risky portfolio contained in min' and call its return X. Define the

random variables, k Zk - R - ak(X-R) k=l,...,n. By part (c) of
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that theorem, E(£k) = 0, and by construction, Cov[Ck,X] = 0. Because

Z1,.. ,Z are normally distributed, X will be normally distributed.

Hence, k is normally distributed, and because Cov[Ck,X] = 0, k and X

are independent. Therefore, E(sk) = E(EkIX) = O. From Theorem IV.6,

it follows that (X,R) spans .

It is straightforward to prove that if (Z1,..,Z ) can have arbitrary means,

variances, and covariances, then a necessary condition for there to exist a

portfolio with return X such that (X,R) span Fe is that (Z1,. ,Z ) be joint

normally distributed. However, it is important to emphasize the word "arbi-

trary." For example, the joint probability density function, p(Zl,..,Z n) is

called a symmetric function if for each set of admissible outcomes for

(Z1,..,Z), P(Z1,..,Zn ) remains unchanged when any two arguments of p are

interchanged.

Theorem IV.12 If p(Z,.. ,Z ) is a symmetric function with respect

to all its arguments, then there exists a portfolio with return X

such that (X,R) spans .

Proof:

By hypothesis, p(Z1,..,Zi,..,Z) = p(Zi ,Z1 ,..Zn) for each set of

given values (Z1,.,Z ). Therefore, from the first-order conditions
n

for portfolio selection, (II.4), every risk averse investor will choose

* *

w1 = w i. But, this is true for i=l,..,n. Hence, all investors will

hold all risky securities in the same relative proportions. Therefore,

if X is the return on a portfolio with an equal dollar investment in

each risky security, then (X,R) will span 'e

Samuelson [77] was the first to examine this class of density functions in a

portfolio context. An obvious example of such a joint distribution is when
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Z1,..,Z are independently and identically distributed which implies that

p(Z1,..,Z n) is of the form p(Z1)... ((Z ).

A second example comes from the Linear-Factor model developed by

Ross [71]. Suppose the returns on securities are generated by

(IV.) Z Z + iji j j=l,...,n

where E(Cs) = E(EjY 1 ..,Y) = 0 and without loss of generality, E(Yi) = O

and cov[Yi,Yj] = O, i j. The random variables {Yi} represent common fac-

tors that are likely to affect the returns on a significant number of secur-

ities. If it is possible to construct a set of m portfolios with returns

(X1,..,X ) such that Xi and Y. are perfectly correlated, i=1,2,...,m, then

the conditions of Theorem IV.6 will be satisfied and (X1,..,X ,R) will span ye.

Although, in general, it will not be possible to construct such a set,

by imposing some mild additional restrictions on {ej., Ross [71] has derived

an asymptotic spanning theorem as the number of available securities, n,

becomes large. While the rigorous derivation is rather tedious, a rough des-

cription goes as follows: Let Z be the return on a portfolio with fraction
p

6j allocated to security , j=1,2,..,n. From (IV.1), Zp can be written as

(IV.2) Z = Zp + ip i p

where Z = R + ZE6j(Zj-R); ai; cE E6jsj. Consider the set
p lj'j' ai 1j i p 1

of portfolios (called "well-diversified" portfolios) that have the property

6j uj/n, where ujl < M < - and M. is independent of n, j=l,...,n. Vir-

tually by the definition of a common factor, it is reasonable to assume that

for every n>>m, a significantly positive fraction of all securities, X i, have
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aij $ 0, and this will be true for each common factor i, i=l,..,m. Similarly,

because the { } denotes the variations in securities' returns not explained

by common factors, it is also reasonable to assume for large n that for each

j, Ej is uncorrelated with virtually all other securities' returns. Hence,

if the number of common factors, m, is fixed, then it should be possible to

construct a set of well-diversified portfolios {Xk} such that for \, aik = 0,

i=l,..,m, ik and akk 0 for all n>>m. It follows from (IV.2), that ~ can be

written as

(IV.3) Xk X + akkYk + Zu j , k=l,...,m.

But lull is bounded, independently of n, and virtually all the ej are uncor-

related. Therefore, by the Law of Large Numbers, asn > , ->Xk + akkYk.

So, as n becomes very large, Xk and Yk become perfectly correlated, and by

Theorem IV.6, asymptotically, (X1,..,X,R) will span e. In particular, if

m=l, then asymptotically, two-fund separation will obtain independent of any

other distributional characteristics of Y1 or the {}.
1 21

It is interesting to note that empirical studies of stock market

securities' returns have rarely found more than two or three statistically-

16!
significant common factors.- Given that there are tens of thousands of dif-

ferent corporate liabilities traded in U.S. securities markets, the assump-

tions used by Ross are not without some empirical foundation. Indeed, when-

ever nontrivial spanning of e obtains and the set of risky spanning port-

folios can be identified, much of the structure of individual securities

returns can be empirically estimated. For example, if (X1,..,X ,R) span e,

then by Theorem IV.6 and Proposition IV.3, Ordinary Least Squares Regression

of the realized excess returns on security j, Zj - R, on the realized excess

Ill
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returns of the spanning portfolios, (X-R,.., X -R), will always give unbi-

ased estimates of the aij. Of course, for these estimators to be efficient,

further restrictions on the {C. } are required to satisfy the Gauss-Markov
3

Theorem.

Although the analyses derived here have been expressed in terms of

restrictions on the joint distribution of security returns without explicitly

mentioning security prices, it is obvious that these derived restrictions

impose restrictions on prices through the identity that Z - V./V. where V.

is the random variable, end-of-period aggregate value of security j and Vj

is its initial value. Hence, given the characteristics of any two of these

variables, the characteristics of the third are uniquely determined. For the

study of equilibrium pricing, the usual format is to derive the equilibrium

Vjo, given the distribution of V..

Theorem IV.13 If (X1,..,Xm,R) spans TF , = m + , and all1 m
securities have finite variances, then a necessary condition for

equilibrium in the securities' market is that

V. E1 VikC°V[ XkV.](Xi-R)
(IV.3) V, = j..,n

Jo R

th -1
where vik is the i-k h element of x

Proof:

Because M = m+l, nx is nonsingular. From the identity V _ Z V

and Theorem IV.6, V Vj [R + Caij(Xi-R) + j] where E(ejXl..,X )

m
= E(sj) = 0. Taking expectations V = Vjo[R + Elaij(Xi-R)]. Noting

that cov[ X,Vj] = Vjo Cov[Xk,Zj], we have from Proposition IV.3, that

Vjoaij = lv.ikCov[X,Vj]. By substituting for aij in the V expression

and rearranging terms, the theorem is proved.
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Hence, from Theorem IV.13, a sufficient set of information to determine the

equilibrium value of security j is the first and second moments for the

joint distribution of (X1,..,Xm,Vj). Moreover, the valuation formula has

the following important "linearity" properties:

Corollary IV.13.a If the hypothesized conditions of Theorem IV.13

hold and if the end-of-period value of some security is given by

V = nX V where are numbers, then in equilibrium,

V = n
o Xljjo'

The proof of the corollary follows by substitution for V in formula (IV.3).

This property of formula (IV.3) is called "value-additivity."

Corollary IV.13.b If the hypothesized conditions of Theorem IV.13

hold and if the end-of-period value of some security is given by

V qVj + u where E(u) = E(UIX1,..,Xm ) = u and E(q)= E(q|X1l..,XmV j)

= q, then in equilibrium,

V = qVjo + u/R

The proof follows by substitution for V in formula (IV.3) and by applying

the hypothesized conditional expectation conditions to show that Cov[X,V]

= q Cov[X,Vj]. Hence, to value two securities whose end-of-period values

differ only by multiplicative or additive "noise," one can simply substi-

tute the expected values of the noise terms. As will be shown later, both

corollaries are central to the theory of investment by business firms.

If nontrivial spanning of e is to obtain, the joint probability dis-

tribution for securities' returns cannot be arbitrary. How restrictive

these conditions are cannot be answered in the abstract. First, the
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introduction of general equilibrium pricing conditions on securities will

impose some restrictions on the joint distribution of returns. Second, the

discussed benefits to individuals from having a set of spanning mutual funds

may induce the creation of financial intermediaries or additional financial

securities which together with pre-existing securities will satisfy the

conditions of Theorem IV.6. An important example of the latter is the

Arrow model discussed in section V.

An alternative approach to the development of nontrivial spanning

theorems is to derive a class of utility functions for investors such that

for arbitrary joint probability distributions for the available securities,

investors within the class can generate their optimal portfolios from the

spanning portfolios. Let Tu denote the set of optimal portfolios selected

from yf by investors with strictly concave Von Neumann-Morgenstern utility

functions Ui, Cass and Stiglitz [7] have proved the following theorem:

Theorem IV.14 There exists a portfolio with return X such that

(X,R) spans Tu if and only if A.(W) = /(a i+bW) > 0 where A. is

the absolute risk aversion function for investor i in u.17

The family of utility functions whose absolute risk aversion functions

can be written as l/(a+bW) > 0 is called the "HARA" (Hyperbolic Absolute

Risk Aversion) family.1 -/ By appropriate choices for a and b, various

members of the family will exhibit increasing, decreasing, or constant

absolute and relative risk aversion. Hence, if each investor's utility

function could be approximated by some member of the HARA family, then it

might appear that this alternative approach would be fruitful. However,

it should be emphasized that the "b" in the statement of Theorem IV.14
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does not have a subscript i, and therefore, for separation to obtain, all

investors in Tu must have virtually the same utility function. 9-- Moreover,

they must agree on the joint probability distribution for (Z...,Z).

Hence, the only significant way in which investors can differ is in their

endowments of initial wealth.

Cass and Stiglitz also examine the possibilities for general nontrivial

spanning (1 < m < n) by restricting the class of utility functions and con-

clude, "... it is the requirement that there be any mutual funds, and not

the limitation on the number of mutual funds which is the restrictive fea-

20/
ture of the property of separability. - Hence, the Cass and Stiglitz anal-

ysis is essentially a negative report on this approach to developing span-

ning theorems.

In closing this section, two further points should be made. First,

although virtually all the spanning theorems require the generally implaus-

ible assumption that all investors agree upon the joint probability distri-

bution for securities, it is not so unreasonable when applied to the theory

of financial intermediation and mutual fund management. In a world where

the economic concepts of "division of labor" and "comparative advantage"

have content, then it is quite reasonable to expect that an efficient allo-

cation of resources would lead to some individuals (the "fund managers")

gathering data and actively estimating the joint probability distributions

and the rest either buying this information directly or delegating their

investment decisions by "agreeing to agree" with the fund managers' estimates.

If the distribution of returns is such that nontrivial spanning of e does

not obtain, then there are no gains to financial intermediation over the

direct sale of the distribution estimates. However, if nontrivial spanning
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does obtain and the number of risky spanning portfolios, m, is small, then

a significant reduction in redundant information processing and transactions

can be produced by the introduction of mutual funds. If a significant co-

alition of individuals can agree upon a common source for the estimates and

if they know that, based on this source, a group of mutual funds offered

spans , then they need only be provided with the joint distribution for

these mutual funds to form their optimal portfolios. On the supply side,

if the characteristics of a set of spanning portfolios can be identified,

then the mutual fund managers will know how to structure the portfolios of

the funds they offer.

The second point concerns the riskless security. It has been assumed

throughout that there exists a riskless security. Although some of the

specifications will change slightly, virtually all the derived theorems can

be shown to be valid in the absence of a riskless security?1-1 However,

the existence of a riskless security vastly simplifies many of the proofs.
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V. Two Special Models of One-Period Portfolio Selection

The two most-cited models in the literature of portfolio selection are

the Time-State Preference model of Arrow [2] and Debreu [9] and the Mean-

Variance model of Markowitz [49] and Tobin [89]. Because these models have

been central to the development of the microeconomic theory of investment,

there are already many review and survey articles devoted just to each of

these models. 22/ Hence, only a cursory description of each model is pre-

sented here with specific emphasis on how each model fits within the frame-

work of the analyses presented in the other sections. Moreover, while,

under appropriate conditions, both models can be interpreted as multiperiod,

intertemporal portfolio selection models, such an interpretation will be

delayed until section.VII.

The structure of the Arrow-Debreu model is described as follows:

Consider an economy where all possible configurations for the economy at

the end of the period can be described in terms of M possible states of

nature. The states are mutually exclusive and exhaustive. It is assumed

that there are N risk averse individuals with initial wealth W and von
~k ~~ o

Neumann Morgenstern utility function U (W) for investor k, k = 1, .. , N.

Each individual acts on the basis of subjective probabilities for the states

of nature denoted by k(8), =1,..,M; k=l,..,N. While these subjective

probabilities can differ across investors, it is assumed for each investor

that 0 < k(e) < 1, =l,..,M. As was assumed in section II, there are n

risky securities with returns per dollar Z and initial market value, V ,

j=l,..,n, and the "perfect market" assumptions of that section,

(A.1) - (A.4), are assumed here as well. Moreover,

if state obtains, then the return on security j will be Zj(0),
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and all investors agree on the functions Z(e), j=l,..,n; 0=l,..,M.

Because the set of states is exhaustive, [Zj(l),..,Zj(M)] describe all the

possible outcomes for the returns on security j. In addition, there are

available M "pure" securities with the properties that, i=l,..,M, one unit

(share) of pure security i will be worth $1 at the end of the period if

state i obtains and will be worthless if state i does not obtain. If P.

denotes the price per share of pure security i and if X. denotes its return

per dollar, then for i=l,..,M, Xi as a function of the states of nature,

can be written as Xi(e) = 1/Pi if 0=i and Xi(e) = 0 if 60i. All investors

agree on the functions {Xi(8)}, , 80=1,..,M.

Let Z = Z(N1,..,NM ) denote the return perdollar on a portfolio of pure

securities that holds N. shares of pure security j, j=l, .,M. If V (N ,.,N M )

ZN jP denotes the initial value of this portfolio, then the return per

dollar on the portfolio, as a function of the states of nature, can be

written as Z(8) = N0/Vo , =1,..,M.

Proposition V.1 There exists a riskless security, and its return

per dollar R equals 1/(ZPij).

Consider the pure-security portfolio that holds one share of each pure

security (Nj=l, j=l,..,M). The return per dollar, Z, is the same in every

state of nature.and equals 1/V (1,..,1) . Hence, there exists a riskless
0

security and by (A.3), its return R is given by l/(ij).

Proposition V.2 For each security j with return Zj, there exists

a portfolio of pure securities whose return per dollar exactly

replicates Z.
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Proof:

Let Zj Z(Zj(1),..,Zj(M)) denote the return on a portfolio of pure

securities with N = Z(8), =l,..,M. It follows that V (Zj(l),..,Zj(M))

Z MiZj (i) and Zj(e) = Z (e)/V , =1,..,M. Consider a three-security

portfolio with return Z where fraction V is invested in ZJ; fraction
p 0

-1 is invested in Z; and fraction 1 - V - (-1) = (2-V ) is invested

in the riskless security. The return per dollar on this portfolio as

a function of the states of nature can be written as

Z () = (2-V )R +V`Zj(6) - Zj(e) = (2-V )R

which is the same for all states. Hence, Zp is a riskless security

and by (A.3), Z () = R. Therefore, V = 1, and Z (e) = Zj(e),
p 0 

0=1,..,M.

Proposition V.3 The set of pure securities with returns (X1,..,X)

spans the set of all feasible portfolios that can be constructed

from the M pure securities and the n other securities.

The proof follows immediately from Proposition V.1 and V.2. Hence, when-

ever a complete set of pure securities exists or can be constructed from

the available securities, then every feasible portfolio can be replicated by

a portfolio of pure securities. Models in which such a set of pure secur-

ities exists are called "complete markets" models in the sense that any

additional securities or markets would be redundant. Necessary and suffi-

cient conditions for such a set to be constructed from the available n

risky securities alone are that n > M; Assumption (A.3) holds; and the rank

of the variance-covariance matrix of returns, Q., equals M.
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The connection between the pure securities of the Arrow-Debreu model

and the mutual fund theorems of section IV are obvious. To put this model

in comparable form, we can choose the alternative spanning set (X1,..,X ,R)

where m = M-1. From Theorem IV.3, the returns on the risky securities can

be written as

(V.1) Z. = R + (XiR) j=l..,m
j Zlij 1

where the numbers (aij) are given by Proposition IV.3
ij

Note that nowhere in the derivation were the subjective probability

assessments of the individual investors required. Hence, individual inves-

tors need not agree on the joint distribution for (X1,..,X ). However, by

Theorem IV.3, investors cannot have arbitrary beliefs in the sense that they

must agree on the (aij) in (V.1).

Proposition V.4 If Vj(e) denotes the end-of-period value of

security j if state obtains, then a necessary condition for

equilibrium in the securities' market is that

Vjo = v. (k) , jl,..,n
jo k j

The proof follows immediately from the proof of Proposition V.2. It was

shown there that V = E kZ (k) = 1. Multiplying both sides by Vo and
o kj jo

noting the identity Vj(k) VoZj(k), it follows that V = EM kV (k).
Jo' Jo 1k j

However, by Theorem IV.3 and Proposition V.3, it follows that the {Vj }

can also be written as

-2) - Cov[k vj](X.-R)
(V.2) V.,

Jo R
.
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where vik is the i-kth element of QX1 Hence, from (V.2) and Proposition

V.4, if follows that the aij in (V.1) can be written as

(V.3) aij = [Zj(i)-R]/[l/Pi-R] , i=l,..,m; j=l,..,n.

From (V.3), given the prices of the securities, {P } and {Vj }, the {a }

will be agreed upon by all investors if and only if they agree upon the

{V.(i)} functions.

While it is commonly believed that the Arrow-Debreu model is completely

general with respect to assumptions about investors' beliefs, the assumption

that all investors agree on the {V.(i)} functions can impose nontrivial

restrictions on these beliefs. In particular, when there is production, it

will in general be inappropriate to define the states, tautologically, by

the end-of-period values of the securities, and therefore, investors will

23/
at least have to agree on the technologies specified for each firm-. How-

ever, as discussed in section IV, it is unlikely that a model without some

degree of homogeneity in beliefs (other than agreement on currently observed

variables) can produce testable restrictions. Among models that do produce

such testable restrictions, the assumptions about investors' beliefs in the

Arrow-Debreu model are probably the most general.

Finally, for the purposes of portfolio theory, the Arrow-Debreu model

is a special case of the spanning models of section IV which serves to

illustrate the generality of the linear structure of those models.

The most elementary type of portfolio selection model in which all

securities are not perfect substitutes is one where every portfolio can be

characterized by two numbers: its "risk" and its "return." The mean-

variance portfolio selection model of Markowitz [49] and Tobin [89] is such
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a model. In this model, each investor chooses his optimal portfolio so as

to maximize a utility function of the form, H[E(W), Var(W)], subject to his

budget constraint where W is his random variable end-of-period wealth. The

investor is said to be "risk-averse in a mean-variance sense" if H1 > 0;

H < 0; and HH - H2 > 0 where subscripts denote partial derivatives.
H2 < 0; and HllH 22 H12

In an analogous fashion to the general definition of an efficient

portfolio in section II, a feasible portfolio will be called a mean-vari-

ance efficient portfolio if there exists a risk averse mean-variance util-

ity function such that this feasible portfolio would be preferred to all

other feasible portfolios. Let e denote the set of mean-variance effici-
my

ent portfolios. As defined in section IV, min is the set of feasible

portfolios such that there exists no other portfolio with the same expected

return and a smaller variance. For a given initial wealth W , every risk-

averse investor would prefer the portfolio with the smallest variance among

those portfolios with the same expected return. Hence, pe is contained
mv

in .
min

Proposition V.5 If (Z1,..,Z n) are the returns on the available

risky securities, then there exists a portfolio contained in

ev with return X such that (X,R) spans 'e and Zj R = a (X-R)

where aj Cov(Zj,X)/ Var(X), j=1,2,..,m.

24/
The proof follows immediately from theorem IV.9.-4/Hence, all the proper-

ties derived in the special case of two-fund spanning (m=l) in section IV

apply to the mean-variance model. Indeed, because all such investors would

prefer a higher expected return for the same variance of return, m y is the

set of all portfolios contained in min such that their expected returns

are equal to or exceed R. Hence, the mean-variance model is also a special

case of the spanning models developed in section IV.
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If investors have homogeneous beliefs, then the equilibrium version

25/
of the mean-variance model is called the Capital Asset Pricing Model. It

follows from Proposition IV.5, and Theorem IV.7, that in equilibrium, the

market portfolio can be chosen as the risky spanning portfolio. From

Theorem IV.8, the equilibrium structure of expected returns must satisfy

the Security Market Line.

Because of the mean-variance model's attractive simplicity and its

26/
strong empirical implications, a number of authors have studied the condi-

tions under which such a criterion function is consistent with the expected

utility maxim. Like the studies of general spanning properties cited in

section IV, these studies examined the question in two parts: (i) what is

the class of probability distributions such that the expected value of a

arbitrary concave utility function can be written solely as a function of mean

and variance; and (ii) what is the class of strictly concave von Neumann-

Morgenstern utility functions whose expected value can be written solely

as a function of mean and variance for arbitrary distributions. Since the

class of distributions in (i) was shown in section IV to be equivalent to

the class of finite variance distributions that admit two-fund spanning of

the efficient set, the analysis will not be repeated here. To answer (ii),

it is straightforward to show that a necessary condition is that U be of

the form, W - bW2, with b > 0. This member of the HARA family is called

the quadratic, and will only satisfy the von Neumann axioms if W < 1/2b,

for all possible outcomes for W. Even if U is defined to be Max[W-bW2,1/4b]

so that U satisfies the axioms for all W, for general distributions, its

expected value can be written as a function of just E(W) and Var(W), only

if the maximum possible outcome for W is less than 1/2b.

Ill
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Although both the Arrow-Debreu and Markowitz-Tobin models were shown

to be special cases of the spanning models in section IV, they deserve

special attention because they are unquestionably the genesis of these

general models.
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VI. Investment Theory for the Firm

In the preceding section of the paper, the portfolio selection problem

for individuals was solved and a set of necessary conditions for financial

equilibrium were derived. Neither the current consumption-saving choice

by individuals nor the allocation of resources for physical production were

explicitly considered. Hence, the preceding analyses are best viewed as a

partial equilibrium study of the financial markets taking current consumption

and production plans as fixed. In this section, the theory of optimal invest-

ment in physical assets is presented, and the connection between production

theory and the financial markets is made explicit. However, the optimal

choice of current consumption by individuals is still taken as given

leaving until Section VII its explicit examination.

There are two essential differences between the portfolio selection

problem and the optimal allocation of physical investment problem. First,

because it was assumed that individuals behave "competitively" with respect

to the securities market (i.e., assumption (A.2) in Section II), only linear

allocations of resources are allowed among the available investments in the

portfolio selection problem. In general, physical production technologies can

be nonlinear functions of their inputs. Also, because the available invest-

ments in the portfolio problem are securities, it is possible for an indivi-

dual to invest negative amounts in specific investments. For production

technologies, the amount of physical investment must be nonnegative.

Second, in developed market economies, most of the physical production

is carried on by business firms where the production decisions are made by

managers who are generally not the (sole) owners of the firm. Hence, it is

II[
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important to know the conditions under which an efficient allocation of

resources among the available production technologies will obtain when there

exists an institutional separation between the owners of the resources and

the managers of these resources. In essence, does there exist a set of in-

vestment decision rules such that if firm managers follow these rules, the

firm will operate "as if" the owners of the firm had made the production de-

cisions directly. Hence, unlike the utility function of an individual which

is taken to be exogeneous in the portfolio selection problem, the criterion

function for production decisions by the firm is derived, and is therefore

endogeneous.

It is well known in the theory of production under certainty that if

firms are competitive and make their production decisions so as to maximize

the market value of the firm, then a competitive equilibrium is a pareto op-

timum. Arrow [ 2] and Debreu [9 ] extended these results to uncertainty within

the framework of their "complete markets" model. However, the extent to which

these results carry over to "incomplete markets" has not as yet been determined.

Diamond [10] and more recently Leland [46], Eckern and Wilson [12], Radner

[69], and Hart [31] have derived conditions under which stockholders will

unanimously agree on a production decision. However, the "derived" criterion

function for the firm will not, in general, be "to maximize market value."

While the nonoptimality of the value maximization rule is not surprising when

firms do not behave competitively, Jensen and Long [40], Fama [16], and

Stiglitz 88] claim that it can be nonoptimal even when firms are competitive.

Merton and Subrahmanyam [62] argue that the posited firm behavior in the

Jensen-Fama-Stiglitz models is not competitive and, therefore, the findings

using their models are not inconsistent with those proven for complete markets.
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While these issues have not yet been resolved and will not be here, it is

hoped that the analysis of this section will shed some light on the contro-

versy.

A firm is defined by the single production technology it owns and let

there be n production technologies where the random variable end-of-period

value of firm j, Vj(I j;j), can be written as a function of the initial invest-

ment in its technology, Ij, and an exogeneously specified random variable

9.. Suppose there exists a set of portfolios with random variable returns
J

per dollar (X1, . . ., X , R) that span the efficient portfolio set. Let

Vjo(Ij) be the equilibrium initial value of firm j after I has been invested
jo i 

in its technology. Therefore, Vjo(Ij) will satisfy the formula (IV.3) in

Theorea IV.13.

Consider a risk averse individual with utility function U(W). Prior

to investment and trading, his initial endowment contains j fractional

ownership of firm , j = 1, . .. , n, in addition to other exogeneous

assets with market value W . His initial wealth, W , can be written as

n

(VI.1) Wo( Il, In) = ZX j[ V j o( I) - Ij] + W

Consider the expanded portfolio selection problem where the investor

chooses his optimal portfolio allocation and the amount of initial investment

allocated to those firms in which he has some positive initial ownership.

As a natural extension of assumption (A.2) in the standard portfolio problem

of Section II, it is assumed that the investor believes that his actions

(including his choices for I) cannot affect the probability distribution

of returns on the set of spanning portfolios (X1, . . ., Xm, R).
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By hypothesis, (X1, . .. , X, R) span me. Hence, without loss of

generality, we can formulate the problem as:

(VI.2) Max E{U([.wi(X - R) + R]Wo)}

where wi is the fraction of his initial wealth allocated to spanning port-

m
folio Xi, i = 1, . . ., ;(1 - Elwi) is the fraction allocated to the risk-

less security; W is given by (VI.1); and "E" denotes the expectation operator

over his subjective probability distribution for (X1, . . . , Xm).

*~ m n ~~~k* *
Define W - [Wi(Xi - R) + R][ + W where

(w1, . . ., w ) are his optimal portfolio weights and (I1, . .., I ) are his
1m ''n

optimal choices for initial investment in the n firms. For an interior

solution, the optimal choices will satisfy the first order conditions

(VI.3) E{U'(W*)(Xi - R)} , i = 1, . ., m

and

(VI.4) E{(W*)X Z[ (I) - 1]} - , j 1, *. ., n,

where Z* is the return per dollar on his optimal portfolio and V(I j) - aVjo/I j..

By the first-order conditions (VI.3), E{U'(W*)Z*} = R E{U'(W*)} > 0 by nonsa-

tiation. Hence, for all firms where the individual has positive initial owner-

ship (j > 0), the first-order conditions (VI.4) can be rewritten as

VI (I*) - 1 = 0 ·.Jo (VI.5)
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From (VI.1), optimality conditions (VI.5) simply imply that for a given dis-

tribution of the spanning portfolios, the investor would prefer the allocation

of physical investment across firms to be the one that maximizes his initial

wealth. But the initial wealth function in (VI.1) does not depend upon the

investor's utility function. Hence, every investor with a positive owner-

ship of firm j will agree that the amount of physical investment in firm j

should be chosen so as to maximize its market value.

And if the investors agree on the Vj (Ij) func-

tion, then they will agree on the optimal choice for Ij. Note: This latter

condition can be satisfied even if investors do not have homogeneous beliefs

about the probability distribution for (X1, . . ., X ). For example, for

the Arrow-Debreu model in Section V, it was shown that all investors will

agree on the valuation formula (IV.3), even though they

have heterogeneous beliefs about the probability distribution for the states.

In general, with heterogeneous beliefs, investors will disagree on the amount

of investment that the firm should take to maximize its market value. How-

ever, as long as each shareholder perceives changes in the firm's investment

as having no effect on the return distributions of the efficient set, they

will agree that any change in investment which increases the market value of

the firm will be preferred to ones that do not.

Theorem VI.1 If changes in the investment made by firm j do

not change the distribution of the efficient portfolio set, then

all shareholders of firm j will agree that its investment should

be chosen to maximize its market value. In addition, if all
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such shareholders agree on the valuation function Vjo(Ij),

then the value-maximizing firm will operate "as if" the

owners of the firm had made the investment decision directly.

Of course, the critical issue is under what conditions will the hypothesis of

Theorem VI.1 obtain? One clear example is if, for every choice Ij, the

resulting equilibrium random variable return on firm j is such that it is a

"redundant" security (as defined in Sections II and IV), then changes in the

investment made by firm j will not affect the equilibrium distribution of the

efficient portfolio set. This condition will occur whenever, from the point

of view of investors, there exist other securities that are perfect substitutes

for security j. While "perfect substitutability" is sufficient, it is not

necessary as the following analysis demonstrates.

Consider the same risk averse individual in the previous analysis, but for

simplicity it is assumed that he has an initial endowment of positive frac-

tional ownership of firm j only. Assume that (X1, . ., Xm, Zj,R) span

the efficient portfolio set. The investor believes that his actions cannot

affect the distribution of returns for (X1, . . ., X , R) and he can only
m

affect the distribution of Zj through his choice of I. (VI.2) can be re-

formulated as

(VI.6) Max E{U([Zwi(Xi - R) + Wm(Z - R) + R]W)}
{w., I. } 

where wm+lis the fraction of his initial wealth allocated to firm j. The

first-order conditions for an interior solution can be written as

(VI.7) E{U'(W*)(X i - R)} = O , i - 1 . . ., m

E{U'(W*)(Zj - R)} = 0
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and

(VI.8) E{U'(W*)[(Vjo(I ) - )jXZ* + W*w*o Z(I) = 0
3o0J 3 om+lj 3

where W* X [V () - I] + W and Z(Ij) is shorthand for

a[v;(Ij;Oj)/Vjo(Ij)]/3Ij for each given value of the random variable 0.

Using (VI.7), (VI.8) can be rewritten as

(VI.9) X.R E{U'(W*)}(V! (I) - 1) + w* lW* EU'(W*)Z!(It)} = 0.

Hence, without further conditions on the distribution of the marginal return

on security j, Z!(It), the value-maximizing choice for I will not be optimal.

Of course, if the post-investment holdings of security j by the investor are

zero, (w*l = 0), then the value-maximizing choice is optimal for him, but

this will not substain a post-investment equilibrium unless all investors

would choose w*l = O.
M+l

However, if the random variable marginal return can be written in the form

Zj(It) = yj + 1 ij(Xi -R) + j(Zj -R) + cj where E(j) = E(E Xi, . . ..,

Xm, Zj) = O, then using (VI.7), (VI.9) can be rewritten as

(VI.10) XjR(Vo (I) - ) + WlW* = 0.

If yj = O, then value maximization is again optimal. Even if yj 0 O, if the

condition is imposed that I* be chosen such that post-investment investors in
3

firm j would not want to change it, then XjVjo(It) = wW*, and (VI.10) can

be rewritten as
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(VI. 11) R(V! (It) - 1) + jVjo (I ) = 0.
Jo023 30jo 2

Hence, if the firm chooses its investment so as to satisfy (VI.11), then all

(pre- and post-investment) stockholders will agree on the investment chosen

by the firms. (VI.11) is an example of stockholder unanimity and the condi-

tions imposed on are the same (except for our including Ej) as in the Propo-

sition proved by Eckern and Wilson [12 , p. 1751.

If the available technologies exhibit stochastic constant returns (as in

the model of Diamond [10]) and if the technologies are freely available, then

a necessary condition for equilibrium is that the value of firm j be no larger

than the value of its factor inputs. In our structure, V (It) < I. If the
jo 3 -

investment process is "reversible" or if ex ante investment decisions are agreed

upon by ex post stockholders, then Vjo(It) = I*. But stochastic constant re-

turns implies that V.(Ij;j) = Ijj and therefore Z(I*) = j. Hence,
I32323 j3 ji i

Z'(I*) = 0, and from (VI.9), value maximization is optimal.

In summary, if the choice of investment for each firm taken individually

is perceived as having no impact on the return distribution of the efficient

portfolio set, then value maximization will produce the same investment allo-

cation as would have been chosen by the stockholders of the firms if they had

made the decision directly.

There appears to be a connection between this condition and the condi-

tions for a competitive securities market. Since a change in a firm's invest-

ment choice will change its market value and can change its own return distri-

bution, the traditional definition of a competitive market as one in which no

single participant's action can affect prices in that market makes no sense
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for a securities market. However, it seems to me that a reasonable condition

for a securities market to be competitive is that no single participant's ac-

tion can affect the distribution of returns on any set of portfolios that span the

efficient portfolio set. In the case of a certainty world, this condition im-

plies that no single participant's actions can change the interest rate. In the

Arrow-Debreu model, this condition implies that no single participant's actions

can affect the prices of the pure securities (P1, .. ., P). In the Capital

Asset Pricing model, it implies that no single participant's actions can

affect the return distribution for either the market portfolio or the interest

rate. Like the traditional definition, this condition implies that no single

participant's actions can affect anything "that matters" to everyone.

While this condition is appealing, there are a number of issues that must

be resolved before it could be accepted as a definition. First, unlike prices,

return distributions are not observable. In models with homogeneous expecta-

tions, this is not a problem because, given a set of prices, the return dis-

tributions are unambiguously defined. However, in incomplete markets models

with heterogeneous beliefs, there are obvious complications. Second, the

definition, existence, and optimality properties of a "competitive" equilibrium

would require derivation. Third, while it is already a standard assumption of

portfolio theory that the actions of a single individual or financial institu-

tion will not affect the distribution of returns on securities, the case for

individual firms investment decisions is more subtle. In discussing the

value maximization criterion in incomplete markets, Radner notes that with the

exception of the Diamond model, "I have not seen a formulation of this

hypothesis that enables the producer to act as a price-taker; i.e., that does

not imply that the producer is able to calculate the effect of his actions
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on the equilibrium prices.'- / In general, his comment would also apply to the assump-

tion that producers take the distribution of the efficient set as given. While

this issue merits careful study, my suspicion is that if significant non-

trivial spanning of the efficient set obtains, then a producer might not be

able to calculate the effect of his actions on the equilibrium return distribu-

tion for the efficient set. If these issues can be satisfactorily decided,

then much of the current controversy surrounding the theory of the firm with

incomplete securities markets will be settled.

In discussing the investment decision by firms, it was assumed that each

firm had a single production technology and the investment decision was to

choose the intensity at which the technology is operated. However, firms can

also make investments by buying other firms' technologies. To examine the

effects of this type of investment, suppose that the first k technologies are

owned by a single firm and so, instead of n, there are only n - k + 1 firms.

If there are no economies of scale in such a consolidation (i.e., no

"synergy"), then the end-of-period value for the consolidated firm can be

written as

k
V(I1' ' ' 'k; e1' ' ' " ) - Z1 Vj(Zj; Oj).

Theorem VI.2 Suppose (X1, . . ., Xm , R) span the efficient

portfolio set and (VI.12) holds. If the return distribution

for (X1, . . ., Xm, R) remains the same as it was prior to

consolidation, then, post consolidation, the initial value

of the consolidated firm is given by

1k j (Ij)V0 1 jo 
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The proof follows immediately from the "value additivity" properly derived in

Corollary IV.13.a. Indeed, if the investment decision of any single firm

(including the consolidated firm) cannot affect the distribution of (X1,

.., Xm, R); (VI.12) holds;and firms make their investment decision accord-

ing to the value maximization rule, then from Theorem VI.2, the investment

allocation chosen by the consolidated firm will be identical to the alloca-

tion that would have been chosen by the k individual firms. In this case,

consolidation of firms has no effect on individual welfare because both the

initial wealth of each individual and the return distribution on his optimal

portfolio will remain unchanged. Indeed, if (VI.12) holds and the (pre-

consolidation) allocation of investment is optimal, then individuals cannot

be any better off after consolidation. However, it is possible that, post-

consolidation, investors could be worse off. For example, suppose there do

not exist "perfect substitute" securities for at least some of the individual

firms and pre-consolidation, not all investors chose to hold these k firms in

proportion to their market values. Since, post-consolidation, investors can

only hold these k firms in the same relative proportions, some pre-consolida-

tion optimal portfolios will not be feasible after consolidation, and therefore

some individuals could be worse off.

In an analogous fashion to the individual's portfolio selection be-

havior, it has been argued that firms acquire other firms to reduce risk. How-

ever, unless an acquisition provides a production opportunity otherwise un-

available or unless the acquired firm was not operating its technology efficiently,

diversification by the firm cannot improve the welfare of individuals, and in

some cases it can reduce it. This result serves as a warning against the in-

discriminate use of models that treat firms "like" individuals and ascribe
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to the firms exogeneously given utility functions rather than deriving

endogeneous criterion functions for ranking their choices.

In the discussion of the investment decision by firms, the method of

financing these investments was not made explicit. Implicitly, it was assumed

that firms used internally available funds or issued additional financial

securities where all financial claims against the firm were of a single type

called equity. Of course, it is well known that, in addition to equity, firms

also issue other types of financial claims (e.g., debt, preferred stock,

and convertible bonds). The choice of the menu of financial liabilities is

called the firm's financing decision. Although, in general, the optimal

investment and financing decisions by a firm are determined simultaneously,

it is useful to study the financing decision by taking the in-

vestment decision as given.

Consider firm with random variable end-of-period value V and q

different financial claims, The kth such financial claim is defined by the

function fk[V j] which describes how the holders of this security will share

in the end-of-period value of the firm. The production technology and

choice of investment intensity, Vj(Ij;Oj) and Ij, are taken as given. If it

is assumed that the end-of-period value of the firm is independent of its

choice of financial liabilities,- then V (Ij;j), and Eq f Vj(Ij;j)1 k Vj(j

for every outcome 9..
3

Suppose when firm j is all equity financed, there exists an equilibrium

such that the initial value of firm is given by Vo(I).

I
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Theorem VI.3 If firm j is financed by q different claims

defined by the functions fk(V), k = 1, . .. , q and if there

exists an equilibrium such that the return distributions of

the efficient portfolio set Remains unchanged from the

equilibrium in which firm j was all equity financed, then

fko = V j(Ij)1 ko Jo j

where fko is the equilibrium initial value of financial claim k.

Proof: In the equilibrium in which firm j is all equity financed, the end-

of period random variable value of firm j is V(Ij;Oj) and the

initial value, V (Ij ), is given by formula (IV.3)

where (X1, . . ., Xm,R) spans the efficient set. Consider now

that firm j is financed by the q different claims. The random

variable end-of-period value of firm , fk is still given by

Vj(Ij;Oj). By hypothesis, there exists an equilibrium such that

the distribution of the efficient portfolio set remains unchanged,

and therefore the distribution of (X1, . . ., X , R) remains un-

changed. By inspection of formula (IV.3),

the initial value of firm j will remain unchanged, and therefore,

1 fko = Vo( 

Hence, for a given investment policy, the way in which the firm finances

this investment will not affect the market value of the firm unless the

choice of financial instruments changes the return distributions of the effi-

cient portfolio set. Theorem VI.3 is representative of a class of theorems

that describe the impact of financing policy on the market value of a firm

when the investment decision is held fixed, and this class is generally re-

ferred to as "Modigliani-Miller Theorems" after the pioneering work in this

29/
direction by Modigliani and Miller.-
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Clearly, a sufficient condition for Theorem VI.3 to obtain is that

each of the financial claims issued by the firm are "redundant securities"

(as defined in Sections II and IV). This condition will be satisfied by

the subclass of financial securities that provide for linear sharing rules.

I.e., fk(V) = akV + bk where ZE ak = 1 and bk = 0. They are redundant

securities because the investor can replicate exactly the payoff structure

of each claim by a portfolio combination of the (all-equity) firm and the risk-

less security. Hence, in this case, Theorem VI.3 will obtain as a special case of

Proposition IV.1. Indeed, an example of this subclass is in the original Modigliani-

Miller paper where they examined the effect on firm values of borrowing by firms under

the assumption that borrowing (either by firms or individuals) is riskless and there

is no bankruptcy.

It should be pointed out that the linear structure for firm borrowings

only applies if there is no chance of default on the debt. Consider the

case of a single homogeneous debt issue where the firm promises to pay B

dollars at the end of the period and in the event the firm does not pay

(i.e., defaults), then ownership of the firm is transferred to the debtholders.

If the equity of the firm has limited liability, then the payoff function to

the debt, fl, can be written as

(VI.13) f =(Vj) Min[Vj, B]

and the payoff function to the equity, f2, can be written as

(VI.14) f2(VJ ) = Max[O, Vi - B].
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Hence, fl and f2 will have a linear sharing-rule structure oly if the proba-

bility that VJ < B is zero.

While the linearity of the sharing rules is sufficient, it is not a nec-

essary condition for Theorem VI.3 to obtain as Stiglitz [87] has shown for

the Arrow-Debreu and Capital Asset Pricing Models, and as will be demonstrated

in Section VII.
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VII. Intertemporal Consumption and Portfolio Selection Theory

As with the preceeding analyses here, most papers on investment theory

under uncertainty have assumed that individuals act so as to maximize the

expected utility of end-of-period wealth and that intra-period revisions

-are not allowed' Therefore, all events which take place after next period are

irrelevant to their decisions. Of course, individuals, and therefore firms,

do care about events beyond "next period," and they can review their alloca-

tions periodically. Hence, the one-period, static analyses will only be valid

under those conditions such that an intertemporally-maximizing individual

acts, each period, as if he were a one-period, expected utility-of-wealth

maximizer. In this section, the lifetime consumption-portfolio selection

problem is solved, and conditions are derived under which the one-period

static portfolio problem will be an appropriate "surrogate" for the dynamic,

multi-period portfolio problem.

As in the early contributions by Hakansson [29], Leland [45],

Samuelson [78] and Merton [53], the problem of choosing optimal portfolio

and consumption rules for an individual who lives T years is formulated as

follows. The individual chooses his consumption and portfolio allocation

for each period so as to maximiz 3 0/

(VII.l) T-1(VII.1) E {O U[C(t),t] +B[W(T),T]}

where C(t) is consumption chosen at age t; W(t) is wealth at age t; "Et"

is the conditional expectation operator conditional on knowing all relevant
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information available as of time t; the utility function (during life) U

is assumed to be strictly concave in C and the "bequest" function B is

also assumed to be concave in W.

It is assumed that there are n risky securities with random variable

returns between time t and t+l denoted by Zl(t+l), . . , Zn(t+l), and

there is a riskless security whose return between t and t+l, R(t), will be

known with certainty as of time t.31 / When the individual "arrives" at

date t, he will know the value of his portfolio, W(t). He chooses how

much to consume, C(t), and then reallocates the balance of his wealth,

W(t) - C(t), among the available securities. Hence, the accumulation

32/equation between t and t+l can be written as-

(VII.2) W(t+l) = [En wj(t)[Zj(t+l) - R(t)] + R(t)][W(t) - C(t)]

where wj(t) is the fraction of his portfolio allocated to security j at

date t, j=l, . . ., n. Because the fraction allocated to the riskless se-

curity can always be chosen to equal 1 - w(t), the choices for wl(t),

., w (t) are unconstrained.

It is assumed that there exist m state variables, {Sk(t)}, such that

the stochastic processes for {Z (t+l), ... , Zn(t+l), S(t+l), . . S(t+l)}

are Markov with respect to Sl(t), . . ., S (t), and S(t) will denote the
m

33/m-vector of state variable values at time t.-

The method of stochastic dynamic programming is used to derive the optimal

consumption and portfolio rules. Define the function, J[W(t), S(t), t], by

(VII.3) J[W(t),S(t),t] _ Max E U[C(T),T] + B[W(T),T]}.t t
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J, therefore, is the (utility) value of the balance of the individual's

optimal consumption investment program from date t forward, and, in this

context, is called the "derived"utility of wealth function. By the

Principle of Optimality, (VII.3) can be rewritten as

(VII.4) J[W(t),S(t),t] = Max{U[C(t),t] + Et(J[W(t+l),S(t+l),t+l])}

where "Max" is over the current decision variables [C(t),wl(t), .

wn(t)]. Substituting for W(t+l) in (VII.4) from (VII.2) and differentiat-

ing with respect to each of the decision variables, we can write the n+l

34/first order conditions for a regular interior maximum as--3

(VII.5) 0 = Uc[C*(t),t] - Et{Jw[W(t+l),S(t+l),t+l](Elwj(Zj-R) + R)}

and

(VII.6) 0 = Et{Jw[W(t+l),S(t+l),t+l](Z j - R)}, jl, 2, . .. , n

where UC - aU/aC; JW - aJ/aW; and (C*,w*) are the optimum values for the

decision variables. Henceforth, except where needed for clarity, the time

indices will be dropped. Using (VII.6), (VII.5) can be rewritten as

(VII.7) 0 = U[C*,t] - R Et{Jw}.

To solve for the complete optimal program, one first solves (VII.6)

and (VII.7) for C* and w* as functions of W(t) and S(t) when t = T-1.

This can be done because J[W(T),S(T),T] = B[W(T),T], a given function.
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Substituting the solutions for C*(T-1) and w*(T-l) in the right-hand side

of (VII.4), (VII.4) becomes an equation and therefore one has J[W(T-1),S(T-l),

T-1]. Using (VII.6), (VII.7), and (VII.4), one can proceed to solve for

the optimal rules in earlier periods in the usual "backwards" recursive

fashion of dynamic programming. Having done so, one will have a complete

schedule of optimal consumption and portfolio rules for each date expressed

as functions of the (then) known state variables W(t), S(t), and t.

Moreover, as Samuelson [ 78 1 has shown, the optimal consumption

rules will satisfy the "envelope condition" expressed as

(VII.8) Jw[W(t), S(t), t] = Uc[C*(t), t].

I.e., at the optimum, the marginal utility of wealth (future consumption)

will just equal the marginal utility of (current) consumption. Moreover,

from (VII.8), it is straightforward to show that JWW < 0 because UCC < 0.

Hence, J is a strictly concave function of wealth.

A comparison of the first order conditions for the static portfolio

selection problem, (II.4) in Section II, with the corresponding conditions

(VII.6) for the dynamic problem will show that they are formally quite

similar. Of course, they do differ in that, for the former case, the utility

function of wealth is taken to be exogeneous while, in the latter, it is

derived. However, the more fundamental difference in terms of derived

portfolio selection behavior is that J is not only a function of W but

also a function of S. The analogous condition in the static case would

be that the end-of-period utility function of wealth is also state dependent.
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To see that this difference is not trivial, consider the Rothschild-

Stiglitz of riskier that was used in the one-period analysis to partition

the feasible portfolio set into its efficient and inefficient parts. Let

W1 and W2 be the random variable, end-of-period values of two portfolios

with identical expected values. If W2 is equal in distribution to W1 + Z

where E(ZJW1) = O, then from (II.10) and (II.11), W2 is riskier than W1

and every risk averse maximizer of the expected utility of end-of-period

wealth would prefer W1 to W2. However, consider an intertemporal maximizer

with a strictly concave, derived utility function J. It will not, in

general be true that Et{J[W (t+l),t+l]} > Et{J[W2,S(t+l),t+l]}. Therefore,

although the intertemporal maximizer selects his portfolio for only one

period at a time, the optimal portfolio selected may be one that would never

be chosen by any risk-averse, one-period maximizer. Hence, the portfolio

selection behavior of an intertemporal maximizer will, in general, be opera-

tionally distinguishable from the behavior of a static maximizer.

To adapt the Rothschild-Stiglitz definition to the intertemporal case,

a stronger condition is required. Namely, if W2 is equal in distribution

to W1 + Z where E[ZW 1l,S(t+l)] = O, then every risk-averse intertemporal

maximizer would prefer to hold W1 rather than W 2 in the period t to t+l.

The proof follows immediately from the concavity of J and Jensen's Inequality.

Namely, Et{J[W2, S(t+l),t+l]} = Et{E(J[W 2,S(t+l),t+l]Ww,S(t+l))}. By Jensen's

Inequality, E(J[W2,S(t+l),t+l]W 1l,S(t+l)) < J[E(W2 1W1,S(t+l)), S(t+l),t+l]

= J[W 1,S(t+l),t+l], and, therefore, Et{J[W2(t+l),t+l]} < Et[Wl,S(t+l),t+l]}.

Hence, "noise" as denoted by Z must not only be noise relative to W1 but

noise relative to the state variables Sl(t+l), . ., Sm(t+l). All the
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analyses of the preceeding sections can be formally adapted to the inter-

temporal framework by simply requiring that the "noise" terms there, , have

the additional property that Et(elS(t+l)) = Et(e) = 0. Hence, in the ab-

sence of further restrictions on the distributions, the resulting efficient

portfolio set for intertemporal maximizers will be larger than in the static case.

However, under certain conditions,3 5 / the portfolio selection behavior

of intertemporal maximizers will be "as if' they were one-period maximizers.

For example, if Et[Zj(t+l)] Z j(t+l) = Et[Zj(t+l)IS(t+l)], j=l, 2, ., n,

then the additional requirement that Et(clS(t+l)) = 0 will automatically

be satisfied for any feasible portfolio, and the original Rothschild-

Stiglitz "static" definition will be valid. Indeed, in the cited papers

by Hakansson, Leland, Samuelson, and Merton, it is assumed that the security

returns {Zl(t), . . ., Zn(t)} are serially independent and identically

distributed in time which clearly satisfies this condition. Define the

investment opportunity set at time tto be the joint distribution for

{Zl(t+l), . . ., Z(t+l)} and the return on the riskless security, R(t).

The Hakansson et al papers assume that the investment opportunity set is

constant through time. The condition Zj(t+l) = Et[Zj(t+l) IS(t+l)], j=1,

. .. , n, will also be satisfied if changes in the investment opportunity

set are either completely random or time dependent in a nonstochastic

fashion. Moreover, with the possible exception of a few perverse cases,

these are the only conditions on the investment opportunity set under which

Zj(t+l) = Et [Z(t+l)S(t+l)], j=l, . . n. Hence, for arbitrary concave

utility functions, the one-period analysis will be a valid surrogate for

the intertemporal analysis only if changes in the investment opportunity set

satisfy these conditions.

III
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Of course, by inspection of (VII.6), if J were of the form V[W(t),t] +

H[S(t),t] so that JW = VW is only a function of wealth and time, then for

arbitrary investment opportunity sets, such an intertemporal investor will

act "as if" he is a one-period maximizer. Unfortunately, the only concave

utility function that will produce such a J function and satisfy the addi-

tivity specification in (VII.1) is U[C,t] = a(t) log[C] and B[W,T] = b(T) log[W]

where either a = 0 and b > 0 or a > 0 and b > O. While some have argued

36/that this utility function is of special normative significaace,36 any model

whose results depend singularly upon all individuals having the same utility

function ;here, in addition, the utility function must have a specific form,

can only be viewed as an example, and not the basis for a theory.

Hence, in general, the one-period, static analysis will not be rich

enough to describe the investment behavior of individuals in an intertemporal

framework. Indeed, without additional assumptions, the only derived restric-

tions on optimal demand functions and equilibrium security returns are the

ones that rule out arbitrage. Hence, to deduce additional properties, fur-

ther assumptions about the dynamics of the investment opportunity set will

be needed. · However, before these assumptions are introduced, I make a brief

37/
digression.37

There are three time intervals or horizons involved in-the consumption-

portfolio problem. First, there is the trading horizon which is the mini-

mum length of time between which successive transactions by economic agents

can be made in the market. In a equence-of-markets analysis, it is the

length of time between successive market openings, and is therefore part

of the specification of the structure of markets in the economy. While this
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structure will depend upon the tradeoff between the costs of operating the

market and its benefits, this time scale is not determined by the individual

investor, and is the same for all investors in the economy. Second, there

is the decision horizon which is the length of time between which the

investor makes successive decisions, and it is the minimum time between

which he would take any action. For example, an investor with a fixed

decision interval of one month, who makes a consumption decision and port-

folio allocation today will under no conditions make any new decisions or

take any action prior to one month from now. This time scale is determined

by the costs to the individual of processing information and making de-

cisions, and is chosen by the individual. Third, there is the planning hori-

zon which is the maximum length of time for which the investor gives any

weight in his utility function. Typically, this time scale would correspond

to the balance of his lifetime and is denoted by "T" in the formulation

(VII.1).

The static approach to portfolio selection implicitly assumes that

the individual's decision and planning horizons are the same: "one period."

While the intertemporal approach distinguishes between the two, when indivi-

dual demands are aggregated to determine market equilibrium relationships,

it is implicitly assumed in both approaches that the decision interval is

the same for all investors, and therefore corresponds to the trading inter-

val. If "h" denotes the length of time in the trading interval, then every

solution derived has, as an implicit argument, h. Clearly, if one were to

change h, then the derived behavior of investors would change, as indeed

38/
would any deduced equilibrium relationships.- I might mention, somewhat

III
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parenthetically, that empirical researchers almost uniformly neglect to

recognize that h is part of a model's specification. For example, in

Theorem IV.6, the returns on securities were shown to have a linear re-

lationship to the returns on a set of spanning portfolios. However, because

the n-period return on a security is the product (and not the sum) of the

one-period returns, this linear relationship can only obtain for single time

interval, h. If we define a fourth time interval, the observation horizon,

to be the length of time between successive observations of the data by the

researcher, then the usual practice is to implicitly assume that the decision

and trading intervals are equal to the observation interval. This is done

whether the observation interval is daily, weekly, monthly, or annually!

If the "Frictionless" markets assumption (A.1) is extended to include

no costs of information processing or of operating the markets, then it

follows that all investors would prefer to have "h" as small as physically

possible. Indeed, the aforementioned general assumption that all investors

have the same decision interval will, in general, only be valid if all

such costs are zero. This said, it is natural to consider the limiting case

when h tends to zero, and trading takes place continuously in time.

Returning from this digression on time scales, consider an economy

where the trading interval, h, is sufficiently small such that the state

description of the economy can change only "locally" during the interval

(t,t+h). Formally, the Markov stochastic processes for the state variables,

S(t), are assumed to satisfy the property that one-step transitions are

permitted only to the nearest neighboring states. The analogous condition

in the limiting case of continuous time is that the sample paths for S(t)
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are continuous functions of time. I.e., for every realization of S(t+h)

except possibly on a set of measure zero, lim[Sk(t+h) - Sk(t)] = 0, k=l,
h-+0

.. ., m. If, however, in the continuous limit, the uncertainty of

"end-of-period" returns is to be preserved, then, an additional

requirement is that lim[Sk(t+h) - Sk(t)]/h exists almost nowhere. I.e.,
h-+O

even though the sample paths are continuous, the increments to the states

are not, and therefore, in particular, "end-of-period" rates of return

will not be "predictable" even in the continuous time limit. The class

of stochastic processes that satisfy these conditions are called diffusion

39/
processes.-

Although such processes are almost nowhere differentiable in the usual

sense, under some mild regularity conditions, there is a generalized

theory of stochastic differential equations which allows their instantaneous

40/
dynamics to be expressed as the solution to the system of equations.40

(VII.9) dSi(t) = Gi(S,t)dt + Hi(st)dqi(t) , i=1 . .. , m,

where Gi(S,t) is the instantaneous expected change in Si(t) per unit time

at time t; H. is the instantaneous variance of the change in Si(t) where
1 1

it is understood that these statistics are conditional on S(t) = S. The

dqi(t) are Weiner processes with the instantaneous correlation coefficient

per unit of time between dqi(t) and dqj(t) given by the function nij (S,t), i,

41/
j=l, . . ., m. Moreover, the functions {Gi, Hi, i' i, j=l, . ., m}

completely describe the transition probabilities for S(t) between any two

42/dates.

11
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Under the assumption that the returns on securities can be described

by diffusion processes, Merton [54] has solved the continuous-time analog

to the discrete-time formualtion in (VII.i). Namely,

(VII.10) Max E f tU[C(t),t] dt + B[W(T),T]t

43/
Adapting the notation in that paper,

4 3 / the rate of return dynamics on the

security j can be written as

~(VII.1) dP.
(VII.ll) ].j = (St) dt + aj(S,t) dZ. , j=l, . .. , n

where aj is the instantaneous conditional expected rate of return per unit

time; 2 is its instantaneous conditional variance per unit time; and dZj

are Weiner processes with the instantaneous correlation coefficient per

unit time between dZj(t) and dZk(t) given by the function pjk(S,t), j, k=l,

., n. In addition to the n risky securities, there is a riskless

security whose instantaneous rate of return per unit time is the interest

rate r(t).44/ To complete the model's dynamics description, define the

functions pij(S,t) to be the instantaneous correlation coefficients per

45/
unit time between dqi(t) and dZ.(t), i=l, ... , m; j=l, . ,

If J is defined by

(VII.12) J[W(t), S(t), t] E Max Et{ U[C(T),T]dT + B[W(T),T] ,
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46/then the continuous-time analog to (VII.4) can be written as-

(VII.13) 0 = Max{U[C,t] + Jt + JW[( Z1 wj(aj-r)+r)W - C] + 1 JiGi +

1JWW n n W2 1 m m
2 WW 1 iwjij + 2 1 Jij Hi Hj "ij +

m n w a H U WI
1 1 iW j i ij

where the subscripts t, W, i on J denote partial derivatives with respect

to the arguments t, W, and S (i=l, . . ., m) of J, respectively and ij..

iajpij is the instantaneous covariance of the returns of security i with

security j, i, j=l, ... , n. As was the case in (VII.4), the "Max" in

(VII.13) is over the current decision variables [C(t),wl(t), . .. , Wn(t)].

If C* and w* are the optimum rules, then the (n+l) first-order conditions

for (VII.13) can be written as

(VII.14) 0 = UCC*,t] - Jw[W,S,t]

and

n m
(VII.15) 0 = J (a-r) + JWW Z w*ij W + 1 J jHiij, j=l, , n.

(VII.14) is identical to the "envelope condition," (VII.8 ), in the discrete

time analysis. However, unlike (VII.6 ) in the discrete time analysis,

(VII.15) is a system of equations which is linear in the optimal demands

for risky securities. Hence, if none of the risky securities is redundant,

then (VII.15) can be solved explicitly for the optimal demand functions

using standard matrix inversion. I.e.,
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w*(t)W(t) = K n Vk j(VII.16) w-(t)W(t) = K 1 k(akr) + 1 BiCij j=l, . . ., n

where Vkj is the k-jth element of the inverse of the instantaneous

variance-covariance matrix of returns [ij ]; ij v H K -JW/J;
i n vkj kH i ik;

and Bi -Ji W/WW i l, , m.

As an immediate consequence of (VII.16), we have the following mutual

fund theorem:

Theorem VII.1 If the returns dynamics are described by

(VII.9) and (VII.11), then there exists (m+2) mutual funds

constructed from linear combinations of the available securi-

ties such that, independent of preferences, wealth distribu-

tion, or planning horizon, individuals will be indifferent

between choosing from a linear combination of these (m+2) funds

or a linear combination of the original n risky securities

and the riskless security.

Proof: Let mutual fund #1 be the riskless security; let mutual

fund #2 hold fraction, 6j 1 vk r), in security j, j=l,

n
. ., n, and the balance (1 - 1 6j) in the riskless security;

let mutual fund #(2+i) hold fraction, 6 cij. in security j,

n i
j=l, . .., n and the balance (1 - En 6 ) in the riskless

1 j

security for i=l, . . , m. Consider a portfolio of these mu-

tual funds which allocates d2(t) = K dollars to fund #2;

d2+i(t) = Bi dollars to fund (#2+i), i, . . ., m; and
2+i 1

dl(t) = W(t) E2+m di(t) dollars to fund #1. By inspection

of (VII.16), this portfolio of funds exactly replicates the

optimal portfolio holdings chosen from among the original n
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risky securities and the riskless security. However, the

fractional holdings of these securities by the (m+2) funds

do not depend upon the preferences, wealth, or planning horizon

of the individuals investing in the funds. Hence, every

investor can replicate his optimal portfolio by investing in

the (m+2) funds.

Of course, as with the mutual fund theorems of Section IV, Theorem VII.1

is vacuous if m > n + 1. However, for m << n, the (m+2) portfolios pro-

vide for a nontrivial spanning of the efficient portfolio set, and it is

straightforward to show that the instantaneous returns on individual

securities will satisfy the same linear specification relative to these

spanning portfolios as was derived in Theorem IV.6 for the one-period

analysis.

It was shown in the discrete-time analysis that if Et[Zj(t+l) S(t)]

= Zj(t+l), j=l, . .. , n, then the intertemporal maximizer will act "as

if" he were a static maximizer of the expected utility of end-of-period

wealth. The corresponding condition in the continuous-time case translates

into ij = 0, i=l, . . ., m and j=l, . . ., n. Under these conditions,

the optimal demand functions in (VII.16) can be rewritten as

(VII.17) w.!(t)W(t) = K lvjk(k - r) , j=l . . ., n.

From inspection of (VII.17), the relative holdings of risky securities,

w(t)/wi(t), will be the same for all investors, and, hence, the efficient

Al
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portfolio set will be spanned by just two funds: a single risky fund and

the riskless security. Moreover, by the procedure used to prove Theorem IV.9

and Theorem IV.10 in the static analysis, the efficient portfolio set here

can be shown to be generated by the set of portfolios with minimum (in-

stantaneous) variance for a given expected rate of return. Hence, under

these conditions, the continuous-time intertemporal maximizer will act "as

if" he were a static, Markowitz-Tobin mean-variance maximizer. Although

the demand functions are formally identical to those derived from the

mean-variance model, the continuous-time analysis is valid for any concave

utility function and does not assume that security returns are normally

distributed. Indeed, if, for example, the investment opportunity set

{aj, r, aij, i, j=l, . . ., n is constant through time, then from (VII.11),

the return on each risky security will be lognormally distributed which

implies that all securities will have limited liability.47/

In the general case described in Theorem VII.1, the qualitative be-

havioral differences between an intertemporal maximizer and a static maxi-

pizer can be clarified further by analyzing the characteristics of the

derived spanning portfolios.

As already shown, fund #1 and fund #2 are the "usual" portfolios that

would be mixed to provide an optimal portfolio for a static maximizer. Hence,

the intertemporal behavioral differences are characterized by funds #(2+i),

i=l, . .. , m. At the level of demand functions, the "differential demand"

for risky security , ADS, is defined to be the difference between the de-

mand for that security by an intertemporal maximizer at time t and the

demand for that security by a static maximizer of the expected utility

of "end-of-period" wealth where the absolute risk aversion and current
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wealth of the two maximizers are the same. Noting that K -JW/JWW is the

reciprocal of the absolute risk aversion of the derived utility of wealth

function, from (VII.16), we have that

(VII.18) AD = Bi.i. , j=l, . .., n.
1 iij

Lemma VII.1 Define dY1 dSi (Z1 6 Pt -rdt)+--rdt) The

t J
set of portfolio weights {6?} that minimize the (instantaneous)

variance of dYi are given by = ij j=l, ... , n and i=l,

., m.

Proof: The instantaneous variance on dYi is equal to [H - 2 En6tHiaji..

+ 1Z1 6t6kajk] . Hence, the minimizing set of {6} will satisfy
11 jkj.k 2

o = -Hiajij + 1 6tkojk' j=l, ., n. By matrix inversion,

j = ij

dP.

The instantaneous rate of return on fund #(2+i) is exactly [rdt + ij( p rdt)]

Hence fund #(2+i) can be described as that feasible portfolio whose rate of

return most closely replicates the instantaneous change in state variable ¶

Si(t), and this is true for i=l, . .. , m.

Consider the special case where there exist securities that are instantaneously

perfectly correlated with changes in each of the state variables. Without loss

of generality, assume that the first m securities are the securities such

that dPi/P is perfectly positively correlated with dSi, i=l, m.

In this case,48 / the demand functions (VII.16) can be rewritten in the form
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w*(t)W(t) = KZ1 vik( k - r) + BiHi/ i1 . . . m

K Vik( k - r) , i-m+l, . . ., n.

Hence, the relative holdings of securities m+l through n will be the same

for all investors, and the differential demand functions can be rewritten

as

AD* = BH/a
i i i 1 

i=l, . . ., m

= 0 i--m+l, . . ., n.

The composition of fund #(2+i) reduces to a simple combination of security

i and the riskless security.

The behavior implied by the demand functions in (VII.16) can be more

easily interpreted if they are rewritten in terms of the direct utility

and optimal consumption functions. The optimal consumption function has

the form C*(t) = C*(W,S,t), and from (VII.14), it follows immediately that

(VII.21) K = -UC [c*,t]/(ucc[C*,t] ac*/aw)

Bi = -(ac*/as i ) / ( ac */ aw ) i=l, . .., m.

Because C*/aW > 0, it follows that the sign of Bi equals the sign of

(-ac*/asi). An unanticipated change in a state variable is said to be

unfavorable if, ceteris paribus, such a change would reduce current optimal

(VII.19)

(VII.20)

YI_��____I___I__II__-^�- -___
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consumption. E.g., an unanticipated increase in Si would be unfavorable

if ac*/3S i < 0. Inspection of (VII.20), for example, shows that for such

an individual, the differential demand for security i (which is perfectly

positively correlated with changes in Si) will be positive. If there is

an unanticipated increase in Si, then, ceteris paribus, there will be an

unanticipated increase in his wealth. Because ac*/aw > 0, this increase

in wealth will tend to offset the negative impact on C* caused by the

increase in Si, and therefore, the unanticipated variation in C* will be

reduced. In effect, by holding more of this security, he expects to be

"compensated" by larger wealth in the event that Si changes in the unfavor-

able direction. Of course, if ac*/aS i > 0, then he will take a differ-

entially short position. However, in all cases, investors will allocate

their wealth to the funds #(2+i), i=l, . .. , m, so as to "hedge" against

unfavorable changes in the state variables S(t).49/

In the usual static model, such hedging behavior will not be observed

because the utility function depends only upon end-of-period wealth, and

therefore it is implicitly assumed that aC*/aSi = 0, i=l, . . ., m. Thus,

in the intertemporal model, securities have, in addition to their manifest

function of providing an "efficient" risk-return tradeoff for end-of-period

wealth, a latent function of allowing consumers to "hedge" against other

50/
uncertainties.5

It was shown in Section IV that a necessary and sufficient condition

for a set of portfolios to span the efficient portfolio set is that the

returns on every security can be written as a linear function of the returns

on the spanning portfolios plus noise. Moreover, for the spanning property
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to have operational significance, the size of the minimum spanning set, M*,

must be very much smaller than the number of available securities, n+l.

This linearity requirement would appear to virtually rule out nontrivial

spanning unless the markets are already complete in the Arrow-Debreu sense.

To see this consider the following: suppose there exists a nontrivial span-

ning set ( , . . X, R) and the return on all-equity financed firm j

satisfies the linearity condition. Suppose firm j changes its liabilities

structure by issuing debt and retiring some equity where the end-of-period

values of the two claims are given by (VI.13) and (VI.14) in Section VI.

Although the payoffs to these claims are perfectly functionally related to

the end-of-period value of the firm, this functional relationship is non-

linear if there is a positive probability of default. Hence, the returns on

either of these claims will not, in general, be expressible as a linear function of the

returns on the spanning portfolios plus noise. Therefore, upon such a change

in firm j's liability structure, the size of the spanning set would, in

general, have to increase. In effect, because the payoff to these liabilities

cannot be replicated by a portfolio combination of the previously-existing

securities, there are no "perfect substitutes" for the created liabilities among

these securities. While "perfect substitutability" is not a necessary

condition for the spanning set to remain unchanged, without it, it is unlikely

that this set will remain unchanged. Because firms can and do issue

many different liabilities, it is, therefore, unlikely that the size of

the minimum spanning set will differ significantly from the number of se-

curities outstanding in incomplete market models with arbitrary concave

utility functions.

a. .- �I-�-�-----
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While the issuing of nonlinear liabilities has this effect in the static

and discrete-time dynamic models, it does not for the continuous-time model

described here. To illustrate, consider the following example which uses a

type of analysis first presented by Black and Scholes [5] in the context of

option pricing. Let V be the value of some security whose return dynamics

are described by the diffusion process.

(VII.23) dV adt + tadZ

where a and a are, at most, functions of V and t so that the process is

Markov. Let W be the price of some security whose value as of a specified

date in the future, T*, is given by the function g[V(T*)] where g[O] = 0

and g[V(T*)]/V(T*) is bounded.

Let f(V,t) be the solution to the partial differential equation5 1/

(VII. 24) 1 O2V~fvv =20
(VII.24) 1 a 2V2f W + rVf - rf + ft 

subject to the boundary conditions

(VII.25) (a) f[O,t] = 0

(b) f[V,T*] = g[V]

(c) f/V bounded,

where i this example the interest rate r is taken to be constant over

time and subscripts denote partial derivatives.
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Consider the continuous-time portfolio strategy where the investor

allocates the fraction w(t) to the security with value V(t) and [1 - w(t)]

to the riskless security. If w(t) is a right-continuous function and P(t)

denotes the value of the portfolio at time t, then the dynamics for P must

satisfy

(VII.26) dP = [w( - r) + r]Pdt + waPdZ.

Suppose the particular portfolio strategy chosen is w(t) = fV[V,t]V(t)/P(t).

Substituting this strategy into (VII.26), we have that

(VII.27) dP = [fvV( - r) + rP]dt + fVadZ.

521
Since f is twice-continuously differentiable, ItO's Lemma- can be used

to express the stochastic process for f as

1 2 2
(VII.28) dg -- [a V f + aVfv + ft]dt + faVdZ

But f satisfies (VII.24), and therefore (VII.28) can be rewritten as

(VII.29) df - [fV( - r) + rf]dt + fVVOdZ.

Comparing (VII.29) with (VII.27), if the initial investment in the port-

folio, P(O), is chosen such that P(Q) = f[V(0),O], then P(t) = f[V,t] for

all V and t < T*. But P(t) is a feasible portfolio strategy with the

properties that P(t) = 0 if V(t) = 0 and P(T*) = g[V(T*)]. Hence, if the
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value of the other security, W(t), does not equal P(t) for each t, then

there will exist an arbitrage opportunity. Therefore, W(t) = f[V(t),t].

Since g can be a nonlinear function, it has been shown that there exists

a dynamic portfolio strategy that will exactly replicate the payoff to a

nonlinear function of the price of the security. The application of this

procedure to the debt-equity case of (VI.13) and (VI.14) is immediate. If

V denotes the value of the firm, then the debt issue will satisfy (VII.24)

with g[V] = min[V,B] and the equity will satisfy the same equation but

with g[V] = max[O,V-B]. In addition, this type of analysis can be used to

show that the Modigliani-Miller Theorem (Theorem VI.3) will obtain for

53/
nonlinear sharing rules.53/ Finally, inspection of (VII.24) shows

that knowledge of the expected return on V, a, is not required to solve

for the values of the various claims, and indeed the only non-observable

2
input required is the variance rate, a . Moreover, (VII.24) often yields

closed-form solutions and in those cases where it does not, there exist

efficient numerical solution techniques. Hence, this type of analysis has

led to a copious theoretical and empirical literature on the pricing of

54/
corporate liabilities and contingent claims generally.-5

In summary, the combined assumptions of continuous trading and local

state variable changes substantially simplifies the analysis required in

the discrete-time case. Under these conditions, the crucial non:-trivial

spanning properties will obtain, and the creation of firm-contingent

liabilities will not, in general, affect the equilibrium. Although contin-

uous-trading is only a theoretical proposition, it has been shown that the

continuous-trading solutions will be an asymptotically valid approximation

III
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to the discrete time solution as the trading interval h becomes small. 5 /

Indeed, actual securities markets are open virtually every day, and hence

the assumption that h is small is not without empirical foundation. In

the intertemporal version of the Arrow-Debreu model with complete markets,

it is well known that the market need only be open "once" because indivi-

duals will have no need for further trade. The continuous trading model

is, of course, the opposite extreme. However, the continuous-time model

appears to have many of the properties of the Arrow-Debreu model without

nearly so many securities. Hence, it may be that a good substitute for

having so many markets and securities is to have fewer markets and se-

curities but the existing markets open more frequently. However, the

study of this possibility will be left as a topic for future research.



FOOTNOTES

* This paper is not a survey of the economics and-finance literature on
investment theory which is.already copious.and whose rate of expansion
has in recent years accelerated. Rather the paper-is designed to be
a self-contained, but cryptic, introduction to some of the major problems
in investment theory, In many cases, I have referenced excellent
survey articles which themselves contain extensive bibliographies
rather than attempt to.reference all the important individual contribu-
tions to the subject. I gratefully acknowledge financial support from
the National Science Foundation for this paper.

1. An important issue within this topic is the information efficiency"
of the stock market as derived in Fama [ 13, 14 ] and Samuelson [ 76, 81 ].
Grossman 25] and Grossman and Stiglitz [26] provide some additional
insights. Hirshleifer [36] has shown that, in the absence of production,
private sector expenditures on information gathering-may be "socially
wasteful." Moreover, significant further advances in general equilibrium
theory will require explicit recognition of information production and
its dissemination, and the development of such an integrated theory is
just at its beginning.

2. von Neumann and Morgenstern [91]. For an axiomatic description, see
Herstein and Milnor 3, Although the original axioms require that U
be bounded, the continuity axiom can be extended to.allow for unbounded
functions. See Samuelson 1821 for a discussion of this and the St.
Petersburg Paradox,

3. The strict concavity assumption implies that investors are everywhere
risk-averse. While strictly convex or linear utility functions on the
entire range imply behavior that is grossly at variance with observed
behavior, the strict concavity assumption also rulesout Friedman-
Savage type utility functions whose behavioral implications are reason-
able. The strict concavity also implies U'(W) > 0 which rules out
individual satiation.

4. The "borrowing rate" is the rate on riskless-in-terms-of-default loans.
While virtually every individual loan involves some chance of default,
the empirical "spread" in the rate on margin loans to individuals sug-
gests that this assumption is not a "bad approximation" for portfolio
selection analysis. An explicit analysis of risky loan evaluation is
provided in Section VII.,

5. For a trivial example, shares of General Motors with odd serial numbers
are technically different from shares of GM with even serial numbers,
and are, therefore, technically different securities. However, be-
cause their returns are identical, they are perfect substitutes from
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the point of view of investors. In portfolio theory, securities are
operationally defined by their return distributions, and therefore two
securities with identical returns are indistinguishable.

6. If U is such that U'(0) = a, and by extension, U'(W)= a, W < 0, then
from (II.2) or (II.4), it is easy to show that the probability of
Z* < 0 is a set of measure zero.

7. Kuhn and Tucker [42]. The analysis of the "'no short-sales" case
is complicated and leads to virtually no theorems. Although in actual
markets there are some restrictions on short sales, these restrictions
may not be too important because limited liability securities (e.g.
put options) can and have been created that provide essentially the
same type of return as a short sale.

8. The behavior associated with the utility function V(W) aU(W) + b,
a > 0, is indistinguishable from the behavior associated with U(W).

9. Pratt [67] Note: A(W) is invariant to any positive
affine transformation of U(W).

10. Rothschild and Stiglitz 73] and [74]. There is an extensive litera-
ture not discussed here that uses this type of risk measure to deter-
mine when one portfolio "stochastically dominates" another. Cf.
Hadar and Russell [27,28 ] and Bawa [ 3].

11. I believe that Christian von Weizsfcker proved a similar theorem in
unpublished notes some years ago. However, I do not have a reference.

12. Because the iso-elastic family is not well defined for W < 0, port-
folios with a positive probability of negative end-of-period wealth
cannot be ranked.

13. Rothschild and Stiglitz [74 , pp. 70-74].

14. For a proof, see Theorem 236 in Hardy, Littlewood, and P81lya [30].

15. A sufficient amount of information would be the joint distribution of
Z* and j. The necessary amount of information will depend upon the func-
tional form of_U'. However, in no case will a necessary condition
be knowledge of Z.

16. Cf. King 41], Livingston [48], Farrar [17], Feeney and Hester P9 ]? Farrell 8 ].
Unlike standard "factor analysis," the number of common factors here
does not depend upon the fraction of total variation in an individual
security's return that can be "explained." Rather what is important
is the number of factors necessary to "explain" the covariation
between pairs of individual securities.
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17. For this family of utility functions, the probability distribution
for securities cannot be completely arbitrary without violating the
von Neumann-Morgenstern.axioms. For example, it is required that for
every realization of W, W > -a/b for b > 0 and W < -a/b for b < 0.
The latter condition is especially restrictive.

18. Many authors have studied the properties of this family. See Merton
1 54, p389] for references.

19. As discussed in footnote 17, the range of values for a. cannot be
arbitrary for a given b. Moreover, the sign of b uniquely determines
the sign of A'(W).

20. Cass and Stiglitz [ 7 , p. 144].

21. Cf. Ross [72] for spanning proofs in the absence of a riskless se-
curity. Black [4 ] and Merton [55] derive the two-fund theorem for
the mean-variance model with no riskless security.

22. For the Arrow-Debreu model, see Hirshleifer [33 , 34 ,35 ], Myers [66],
and Radner [ 68. For the Mean-Variance model, see Jensen [38 , 39]
and Sharpe [85 ].

23. If the states are defined in terms of end-of-period values of the
firm in addition to "environmental" factors, then the firms' pro-
duction decisions will, in general, alter the state space descrip-
tion which violates the assumptions of the model. Moreover, I see
no obvious reason why individuals are any more likely to agree upon
the {V.(i)} function than upon the probability distributions for
the environmental factors. If sufficient information is available
to partition the states into fine enough categories to produce
agreement on the {V (i)} functions, then, given this information,
it is difficult to imagine how rational individuals would have heter-
ogeneous beliefs about the probability distributions for these
states. As with the standard certainty model, agreement on the
technologies is necessary for pareto optimality in this model.
However, as Peter Diamond has pointed out to me, it is not sufficient.
Sufficiency demands the stronger requirement that everyone be "right"
in their assessment of the technologies.

24. In particular, the optimal portfolio demand functions are of the
form derived in the proof of Theorem IV.9. For a complete analytic
derivation, see Merton [55].

25. Sharpe [84], Lintner [47], and Mossin [65] are generally credited
with independent derivations of the model. Black [ 4] extended the
model to include the case of no riskless security.

_1�� _·�II____
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26. Cf. Borch [ 6], Feldstein [20], robin [90], and Samuelson [77].

27. Radner [68, p. 460].

28. By this assumption, I have formally ruled out financial securities
that alter the tax liabilities of the firm (e.g., interest deduc-
tions) or ones that can induce "outside" costs (e.g., bankruptcy
costs). However, by redefining V (I.;O.) as the pre-tax and bankruptcy
value of the firm and letting oneJofJth! fk represent the government's
(tax) claim and another the lawyers' (bankruptcy) claim, then the
analysis in the text will be valid for these extended securities as
well.

29. Miller and Modigliani [64]. See also Stiglitz [87] and
Miller [63].

30. The additivity of the utility function and the single-consumption-good
assumptions are made for analytical simplicity and because the prin-
ciple topic of this paper is investment allocation and not the indivi-
dual consumption choice. Fama [15] analyzes the problem for non-additive
utilities. Although T is treated as known in the text, the analysis
is essentially the same for an uncertain lifetime with T a random
variable. Cf. IRichard [70] and Merton [54].

31. This definition of a riskless security is purely technical and without
normative significance. For example, investing solely in the riskless
security will not allow for a certain consumption stream because R(t)
will vary stochastically over time. On the other hand, a T-period,
riskless-in-terms-of-default coupon bond which allows for a certain con-
sumption stream is not a riskless security because its one-period
return is uncertain. For further discussion, see Merton [57].

32. It is assumed that all income comes from investment in securities.
The analysis would be the same with wage income provided that
investors can sell shares against future income. However, because
institutionally this cannot be done, the "nonmarketability" of wage
income will cause systematic effects on the portfolio and consumption
decisions.

33. Many non-Markov stochastic processes can be transformed to fit the
Markov format by expanding the number of state variables. Cf. Cox
and Miller [ 8, pp. 16-18]. To avoid including "surplus" state
variables, it is assumed that {S(t)} represent the minimum number of
variables necessary to make j.(t+l)}Markov.

J
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34. Sufficient conditions for existence and uniqueness of the solutions
are: (1) strict concavity of U and B; (2) no redundant securities;
(3) no arbitrage opportunities. Cf. Dreyfus [11] for the dynamic
programming technique.

35. See Fama [15] for a general discussion of these conditions.

36. See Latand [44], Markowitz [50], and Rubinstein [75] for arguments
in favor of this view, and Samuelson [80], Goldman [24], and Merton
and Samuelson [ 6] for arguments in opposition to this view.

37. This digression is adapted from Merton [58, pp. 662-663].

38. If investor behavior were invariant to h, then investors
would choose the same portfolio if . they were "frozen" into
their investments for ten years as they would if they could revise
their portfolios every day.

39. See Feller [21]; It6 and McKean [37], and Cox and Miller [ 8].

40. (VII.9) is a short-hand expression for the stochastic integral

t t
Si(t) = Si(O) + f Gi(S,T)dT + f Hi(S,T)dqi0 0

where S(t) is the solution to (VII.9) with probability one. For a
general discussion and proofs, see Arnold [ 1], It8 and McKean [37],
McKean [51], and McShane [52].

41. ft dq = q (t) - q (0) will be normally distributed with a zero mean
and variance equal o t.

42. See Feller [21, pp. 320-321]; Cox and Miller [ 8, p. 215]. The transi-
tion probabilities will satisfy the Kolmogrov or Fokker-Planck partial
differential equations.

43. Merton [54, p. 377]. dP /P. in continuous time corresponds to Z(t+l) - 1
in the discrete-time analysis.

44. r(t) corresponds to R(t) - 1 in the discrete-time analysis, and is the
"force of interest," continuous rate. While the rate earned between
t and (t+dt), r(t),is known with certainty as of time t, r(t) can vary
stochastically over time.

45. Unlike in the Arrow-Debreu model, for example, it is not assumed here
that the returns are necessarily completely described by the changes
in the state variables, dSi, i=l, . .. , m. I.e., the dZ need not be
instantaneously perfectly correlated with some linear combination of
dq, . . d, dq . Rather it is only assumed that (dP1/P1, . . ., dP /P,'dSi,

., dS) is-Markov in S(t).
m
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46. See Merton [54, p. 381] and Kushner [43, Chapter IV, Theorem 7].

47. See Merton [54, p. 384-488]. It is also shown there that the return
will be lognormal on the risky fund which, together with the riskless
security, spans the efficient portfolio set.

48. This case is similar in spirit to the Arrow-Debreu complete markets
model.

49. This behavior will obtain even when the return on fund #(2+i) is not
instantaneously perfectly correlated with dSi..

50. For further discussion of this analysis, descriptions of specific
sources of uncertainty, and extensions to discrete-time examples, see
Merton [57, 58, 59]. In the case of multiple consumption goods with
uncertain relative prices, similar behavior obtains. However C* is a
vector and J is the "shadow" price of the "composite" consumption
bundle. Hence, the corresponding derived "hedging" behavior is to
minimize the unanticipated variations in JW

51. (VII.24) is2a linear partial differential equation of the parabolic
type. If a is a continuous function and g is piece-wise continuous,
then there exists a unique solution that satisfies boundary conditions
(VII.25). The usual method for solving this equation is Fourier
transforms.

52. It6's Lemma is for stochastic differentiation the analog to the Funda-
mental Theorem of the calculus for deterministic differentiation. For
a statement of the Lemma and applications in economics, see Merton [54,
56 ]. For its rigorous proof, see McKean [51, p. 44].

53. For a proof and extensions to general contingent claim securities,
see Merton [60].

54. The literature based on the Black-Scholes type analysis has grown so
rapidly that no attempt has been made here to provide a complete set of
references. An excellent survey article is Smith [86]. In addition to
the pricing of corporate liabilities, it has been applied to the pric-
ing of loan guarantees, insurance contracts, "dual" funds, term-structure
bonds, and even tenure for university professors.

55. See Samuelson [79] and Merton and Samuelson [61]. In Merton [58, p. 663]
there is a brief discussion of the special cases in which the limiting
discrete-time solutions do not approach the continuous-time solutions.
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