
SOME PROBLEMS ON DYNAMIC/PERIODIC GRAPHS*

James B. Orlin
J

Sloan W.P. No. 1399-83 January 1983

*We gratefully acknowledge partial support received from the National Science
Foundation Grant ECS-8205022, entitled "Research Initiation: Dynamic/Periodic
Optimization Models."

James B. Orlin, Massachusetts Institute of Technology, Sloan School of
Management, Cambridge, Massachusetts 02139.

Abstract

A dynamic graph is a (locally finite) infinite graph G=(V,E) in

which the vertex set is V = {iP:i=l,...,n and pEZ}, where Z is the set of

integers, and the edge set has the following periodic property: (iP,jr) is

an edge of E if an only if (ip+ 1 , r+l) is an edge of E. Dynamic graphs

may model a wide range of periodic combinatorial optimization problems in

workforce scheduling, vehicle routing, and production scheduling.

Here we provide polynomial time algorithms for several elementary problems

including the following: determining the connected components, determining

the strongly connected components, determining an eulerian path if one exists, and

determining a 2-coloring if one exists. (Here, the polynomial is in the

finite number of bits needed to describe a dynamic graph.) In each case

the problem on the dynamic graphs reduces to a related (but distinct)

problem on a finite graph.

0745219

1. Introduction

In this paper we consider dynamic/periodic combinatorial optimization

problems. The problems are dynamic in the sense that the best schedule on

any day depends on the schedules on the preceding and succeeding days. The

problems are periodic in the sense that the demands and constraints for any

week are the same as those of preceding and succeeding weeks.

A number of problems in transportation planning, communications, and

operations management may be modeled as dynamic/periodic optimization problems.

For example, Simpson (1968) considers a number of different models for

airplane scheduling. As another example, Baker (1976) considers a number of

models relating to (cyclical) workforce scheduling. There have also been a

number of papers relating to processor scheduling in a periodic environment,

e.g. Dhall and Liu (1978), Labetoulle (1974), Lawler and Martel (1981) and

Liu and Layland (1973).

The above list of papers comprises just a small sample of papers relating

to applications in dynamic/periodic scheduling. In this paper we focus on

fundamental combinatorial structures relating directly to dynamic/periodic

combinatorial optimization problems. In particular we will investigate and

analyze problems on dynamic/periodic graphs. These graphs are infinite

horizon graphs that are "time expansions" of finite graphs. They may be

viewed as dynamic/periodic analogs of finite graphs.

Dynamic Graphs

Let G = (V,E,T) be a directed graph with vertex set V = {l,...,n

and such that each edge (u,v)eE has an integral (possibly non-positive)

-2-

transit time tuv, which may be interpreted as the number of time periods that

it takes to travel from u to v along the edge. We make the simplifying

assumption that there is at most one edge from u to v so as to simplify

the notation (it is easy to show that the results in this paper do extend

to graphs in which multiple edges are permitted.)

A static graph G = (V,E,T) is said to induce a directed dynamic graph

G = (V , E) via time expansion as follows: Let Z denote the set of

integers. Then

V = {vP : v e V and p e Z)

E = {(up , vP+ t U V) : (u, v) E , p E Z).

The vertex v of G represents vertex v of G in period p, and edge

(up, vp+tuv) represents "traveling" from u to v starting in period p and

arriving tuv periods later. A static graph is portrayed in Figure 1, and

the induced dynamic graph is portrayed in Figure 2.

In this paper we analyse dynamic/periodic analogs of the classical "easy"

problems of graph theory, viz., the problems of determining (1) the weakly

connected components, (2) the strongly connected components, (3) eulerian

paths, (4) odd length circuits, and (5) minimum average cost spanning trees. In

particular, we provide polynomial time algorithms for each of the above problems.

In each case the dynamic/periodic problem reduces to a static problem on

a finite graph. However, in no case does the dynamic/periodic graph theoretic

problem reduce to the same problem on a finite graph; (e.g., determining the

strongly connected components of a dynamic graph does not reduce to finding

the strongly connected components of a related static graph unless we allow

the related static graph to have an exponentially large number of vertices.)

Moreover, there are some problems that cannot be solved in polynomial time on

-3-

1
1

-1

Fi:gure 1. A static network. The arc numbers are the
transit times.

Periods.

p p+l p+2 p+3 p+4 p+5 p+6 p+7

1

2

3

4

Figure 2. The dynamic network derived by expanding the static
network of Figure 1.

Vertices

9 * .

dynamic graphs. For example, we show that determining if there is a directed

path from vertex u to vertex v in a dynamic graph is NP-complete.

This paper may be viewed as a companion paper to Orlin (1981b) in which

the author analysed the complexity of the classical "difficult problems" of

graph theory as generalized to dynamic graphs. In that paper, the author

showed that many NP-complete problems become PSPACE-hard when generalized to

dynamic graphs.

Some other dynamic/periodic combinatorial optimization problems that are

solvable in polynomial time include: the minimum cost-to-time ratio circuit

problem (see Dantzig et al. (1979) and Lawler (1967)), the problem of minimizing

the number of vehicles to meet a fixed periodic schedule (see Bartlett (1957),

Bartlett and Charnes (1957), Dantzig and Simpson (1962), Simpson (1969),

Wollmer (1980), and Orlin (1982a and b)). In fact, both of the above problems

are special cases of both the minimum cost dynamic network flow problem solved

by Orlin (1981a) and of the dynamic matching problem solved by Orlin (1982c).

The results of this paper contrast with those of Ford and Fulkerson (1958)

who considered a finite horizon version of the dynamic network and those of

Gale (1959) who considered dynamic networks with a fixed starting period (and

the starting period was an essential element of his theory.)

Some Empirical Observations

There is no guaranteed method of assessing the complexity of a problem

on a dynamic graph given only the complexity of the problem on finite

graphs. Nevertheless, there are certain "rules of thumb" for assessing the

complexity, and these rules are quite robust in practice.

(1) If X is an NP-hard problem on graphs, then the problem X as

applied to dynamic graphs is strongly PSPACE-hard. (See Orlin

(1981b) for a detailed explanation of this phenomenon).

(2) If X is a graph problem that may be solved in polynomial time,

then problem X as applied to dynamic graphs may also be solved

in polynomial time. Moreover, we may solve the dynamic variant

of X as follows. First define an "appropriate"graph problem X'

on static graphs that is solvable in polynomial time. Next show

that a feasible solution for X' on G induces a feasible solution

for X on G . Finally, show via a duality result for X' that an

optimal solution for X' on G induces an optimal solution for X

on G .

Although the above rule of thumb is accurate in general, it does fail tor

specific problems. Perhaps its failure in certain instances is not so sur-

prising since a corollary of the rule of thumb would be that P = NP if and

only if P = PSPACE.

2. Elementary Properties of Dynamic Graphs

Most of the polynomial time algorithms developed in succeeding sections

rely on classical elementary results from graph theory along with two other

elementary results that are established in this section. In particular we

establish two connections between the circuits of the static graph and paths

of the dynamic graph.

Graph Theoretic Terminology

Suppose that G is either a static or a dynamic graph. A path in G

is an alternating sequence of vertices and edges P = v, el,...,ek, vk

where ei = (Vil vi) or else ei = (Vi, vi-1). In the former case edge ei

is a forward edge of P; in the latter case, edge ei is a backward edge of

P. If all edges are forward, then P is called a directed path. The

transit time of a path P is the sum of the transit times of the forward

edges of P minus the sum of the transit times of the backward edges of P,

and we denote it as t(P).

A path is called closed if the initial vertex of the path is also the

terminal vertex. A closed path P is called trivial if each edge e E

-6-

occurs an equal number of times as a forward edge and as a backward edge of

P. A circuit of G is a non-trivial closed path P = vo, el,..., vk-1, ek vk

such that v0,..., Vk_1 are distinct.

The vertex v will be called the pth copy of vertex v and the edge

(ur, vP) for tuv = p-r will be called the rth copy of edge (u,v). For

any path P in G~ whose sequence of vertices is v0 , V , v k there

is a corresponding path P' in G whose vertex sequence is v, v,..., vk

and such that the jth edge has a transit time rj-rj . Similarly P'

induces an infinite number of copies in G , and path P above is the rth

copy of P. The correspondence between paths in G and paths in G is

described in the following Lemma.

LEMMA 1. Suppose that G =

of V and suppose that r, p Z.

between the set of finite paths

G from u to v with transit time

(V,E,T) is a static graph. Let u,v be vertices

Then there is a 1:1 canonical correspondence

r vp from ur to v in G and the set of paths in

p-r. El

The above elementary lemma was proved by the author (1982b) via a

simple inductive argument.

LEMMA 2. Let G= (V,E,T) be a static graph and let C be a circuit of G.

If t(C) = 0, then C induces an infinite number of vertex disjoint circuits

of G. If t(C) 0, then C induces It(C)Ivertex-disjoint infinite length

paths in G .0

Lemma 2 is an elementary consequence of

the infinite number of paths induced by

We illustrate Lemma 2 as follows.

C.= 1.(1,2),2,(2,3),3,(1,3),1 of Figure

Lemma 1 as can be seen by concatenating

a circuit C with t(C) 0.

Consider the circuit

1. Then t(C) = 2 and one can observe that

-7-

C induces 2 vertex-disjoint infinite length paths in the dynamic graph of

Figure 2.

A vertex assignment for a static graph G = (V,E,T) is an integral valued

vector d with V components. Each vertex assignment d induces a reduced

transit time vector Td = (tuv) where

td =t +d - d
uv uv U V

d d
We let t (P) denote the transit time of a path in which T is replaced by T

The following lemma is a well-known property of reduced transit times and

is easily established by induction.

LEMMA 3. Suppose that G = (V,E,T) is a static network and that d is a

vertex assignment. Then for any path P from vertex u to v it follows that

td(P) = t(P) + du - dv.D

LEMMA 4. Suppose that G = (V,E,T) is a static graph and that d is a

vertex assignment. Then the dynamic graph induced by G is isomorphic to the

dynamic graph induced by G = (V,E,Td).

PROOF. Let f : V + V be defined as follows:

f(vP) = vP- dv for all v E V and p Z. Then (up, vr) is an edge of G

if and only if (f(uP), f(vr)) is an edge of G.

3. Connectivity In Dynamic Graphs

In this section we consider the following three problems for a given

dynamic graph G . First, what are the connected components of G 7 Second,

what are the strongly connected components of G ? Thirdly, for two specified

vertices u, v of V , is there a directed path from u to v? For the first

two problems we provide polynomial time algorithms. The third problem is

-8-

NP-hard and is linearly equivalent to the knapsack problem.

Weak Connectivity

In order to determine the weakly connected components of the graph

G we first make two simplifying assumptions.

(1) The static graph G = (V,E,T) is connected,

and (2) G has a spanning tree S such that each arc of S has a transit

time of 0.

The first assumption is routine since if G is the union of connected components

G 1 ,..., Gk then the set of components of G is the union of the sets of

o co

components of G1,..., Gk .

We also can make assumption 2 without loss of generality because of

Lemma 4. In particular we can choose a vertex v e V and let du be the

distance in S from v to u for all u V. Then each edge of S in G = (V,E,Td)

has a transit time of 0.

For each integral valued vector w we let gcd(w) be the greatest common

divisor of the components of w. For example, gcd(-12, -20, 30) = 2.

THEOREM 1. Let G = (V,E,T) be a static graph and suppose that there

is a spanning tree of G consisting of edges whose transit time is 0. Then

the number of components of G is gcd(T).

PROOF. Let g = gcd(T). We first observe that the number of components

of G is at least g since by Lemma 1 there is no path from vp to vP +j for

1 lj g - 1.

To see that G has exactly g components, let

r
Vi = {V e V : r i (mod g)} for i1,..., g.

We shall show that the subgraph of G induced by V i is connected and thus

-9-

G has at most g components.

By assumption there

Thus by Lemma 1, vr is

r Z. It follows that

if the subgraph of G

that there is a path P

To this end let S

time of 0, and for each

adding edge (u,v) to S.

is a path P from v to w in G with t(P) = 0.

in the same component as wr for all v, w E V and

v is in the same component as vr+g if and only

induced by Vr is connected. Thus it suffices to show

in G from v to v such that t(P) = g.

denote the spanning tree whose edges have a transit

(u,v) S let Cuv denote the unique circuit induced by

By assumption t(C uv) = t .
uv uv

Let X = (X v) be an integral vector determined by Euclid's algorithm

such that

Auvtuv = g
(u,v) EE-S

Let C be the eulerian graph consisting of X+ = max (,X) copies of C and
uv uv

Xuv copies of the reversal of Cv for each (u,v) C E-S and two copies of S

so as to ensure that C is connected. Then C induces a path from v to v

of transit time g, completing the proof.0

We observe that we can obtain a spanning tree and compute all reduced

costs in O(E) steps using virtually any tree search approach, and we can

compute the gcd in O(IEI log (tma + 1)), where tmax = max (Ituvl : (u, v)EE).

Also note that the components of G are the subgraphs of G induced by the

vertex sets V1,..., Vg as defined in the above proof. Finally, we observe

that each component of G is isomorphic to the dynamic graph

induced by G' = (V,E,T') where tv = tv/g.

-10-

Strong Connectivity

A graph is strongly connected if for every ordered pair u, v of vertices

there is a directed path from u to v. The strongly connected components of

a graph G are the maximal induced subgraphs that are strongly connected.

There are several very efficient algorithms for computing the strongly

connected components including Tarjan's (1972) algorithm that runs in

O(]EI) steps using a depth first search approach.

In order to determine the strongly connected components of a dynamic graph

G we first make 2 simplifying assumptions:

(1) G is strongly connected,

and (2) G is connected.

If G were not strongly connected, we could determine the strongly connected

components of G by applying the procedure described below to each of the

strongly connected components of G. Similarly, if G were not connected,

then each component of G is itself a dynamic graph as mentioned above, and

thus we could apply the algorithm below to each of the components.

We shall develop an algorithm for determining the strongly connected

components of G by considering two separate cases.

THEOREM 2. Suppose that G = (V,E,T) is a strongly connected static

graph and that G is connected. Suppose in addition that there are directed

circuits C and C in G such that

t(C-) < 0 < t(C+)

Then G is strongly connected.

PROOF. Let S be an arborescence of G with root v for some v V.

(An arborescence with root v is a spanning tree in which there is a directed

path from v to every other vertex.) Without loss of generality, assume that

each edge of S has a transit time of 0.

-11-

(Otherwise, let d be the distance of the path in S from v to u and

replace T by Td). Such an arborescence exists because there is a path from

v to every other vertex.

We will show below that there is a path from vP to v for any

p, r Z. In this case, the graph G is strongly connected. To see this, note

that since G is strongly connected there is a directed path P from u to v in G

and thus a path from ur to r+t(P) in G for all r E Z. Similarly there is

a directed path from v to w in S and thus there is a path from vP to wP in G .

-r+t(P) -
Thus if we assume that there is a path from v to then there is

r p r
also a path from u to wP in G for any u , wP e V.

Our proof that there is a path P from v to v with t(P) = 1 proceeds

similarly to the proof of Theorem 1. For each v V, let Pv denote the

path on S from v to v and let P denote some path in G from v to

v. Let Cv = Pv,PV and let Duv = P, (u, v),Pv. We have constructed the

directed circuits Cv and Duv so that

t(Duv) - t(Cv) = tuv

Let q = It(C+)t(C-)I. By assumption, gcd(T) = 1 and thus we can use

Euclids algorithm to determine an integral vector X = (uv) such that

Z Auvtuuv - l(mod q)
(u,v) EE

and O < Xuv < q-l for all (u, v) V.

Let C* be the directed eulerian graph which is the sum of Xuv copies

of Cv and q - Xuv copies of Duv for all (u, v)cE. Then

t(C*) = Z Xuvtuv + Z qt(Pv) 1 (mod q).
(u,v)cE (u,v)E

We can then add sufficient multiples of C+ and C- so as to obtain a

�1_ _II1_III____IIII_�_llll1l__l__lls^_� IIYl�i�-�-Y-L�- ·- _I·-..- .
--.- ll·lllllillPI1--·L----_l---ll-·_� I···XI-----·ll�__l-l �I ^I I-_�-.

-12-

directed circuit whose transit time is 1. Thus there is a path from

to vP+ for all p Z. Similarly,

E (q-)uv)tuv -1 (mod q)
(u,v)cE

so that we can construct a path from vp+l to for each p Z. Thus

there is a directed path from to v-r for all p, r Z, completing the

proof.0

The remaining case to analyse is the case in which either all circuits

C of G are such that t(C) 0 or else all circuits are such that t(C) 0.

The cases are symmetric, so that we may consider without loss of generality

only the case that each directed circuit of G has a non-negative transit time.

Since G = (V,E,T) is strongly connected and has no negative transit

time circuits, there is a spanning tree S rooted at vertex v V (for any

specified v V) such that the path in S from v to u is the minimum

distance directed path in G from v to u. Let us assume without loss of

generality that each edge of S has a transit time of 0 and thus T 0.

LEMMA 5. Let G = (V,E,T) be a strongly connected directed graph with

T 0 and such that there is a directed path from v to u of transit time

O for each u e V. Then

(i) up and v are in different strongly connected components if

p r,

(ii) up and v are in the same strongly connected component of G

if and only if there is a directed path from u to v and another

directed path from v to u in G such that each path consists

only of edges whose transit time is 0.

_

-13-

PROOF. If p > r, then there is no path P in G from u to v with

t(P) = r - p < O and thus by Lemma 1 there is no path in G from up to vr.

If p < r, then there is no path in G from vr to .

If p = r then up and vr are in the same strongly connected component

if and only if there is a path P from u to v with t(P) = 0 and also a

path P' from v to u with t(P') = 0. Since T O0, it follows that all

directed paths P with t(P) = 0 must consist solely of edges of transit time

0.0

To summarize the results concerning the strongly connected components, we

first decompose G into strongly connected components and further decompose

if necessary so that each induced dynamic graph is connected.

We then consider each resulting strongly connected static graph G in the

partition. If G has both positive transit circuits and negative transit time

circuits, then G is strongly connected. Otherwise, each strongly connected

component of G has at most IVI vertices, and these components can be

located by letting S be a minimum distance spanning tree (resp., maximum

distance spanning tree if t(C) < 0 for all circuits C) and applying Lemma 5.

PROBLEM: DIRECTED PATHS IN G

INPUT: A directed graph G = (V,E,T) and two vertices up, vr of G'

QUESTION: Is there a path from up to v in G ?

THEOREM 3. The directed path problem in G is P-complete.

PROOF. By Lemma 1, there is a directed path in G from up to ur if

and only if there is a directed path in G from u to v with transit time

r - p. We shall show that this latter problem is transformable to the

knapsack recognition problem which was proved tobe NP-complete by Karp (1972),

and can be described as follows:

__._ __ _�___11_1_11_1_1__1_s__l1llllll�� �__._1-�·_··^11111111111. 1�1^-·. --�YY··I--II..I�I ·)) (I·-LIC- I·I1_*IYI�LII·-_-·-.-.i
-XI II·iP III^lP -~--- -- ^-- - -L ---I

-14-

INPUT: non-negative integers al,...,an, b.

QUESTION: is there an index set S c {l,...,n) such that iE S ai = b2

Let G = (V,E,T) be the graph described in Figure 3. Then it is clear that

there is a path from vertex 1 to vertex n+l of transit time b if and only

if there is an index set S such that Zi S ai = b.O

Figure 3. A directed graph such that there is a path from 1 to n+l

of transit time b if and only if there is an index set S with

EiES ai = b.

Below we consider the problem of determining a minimum cost path in G

from v to u of transit time r. In particular, we show that the problem is

solvable in pseudo-polynomial time. A problem is solvable in pseudo-polynomial

time if it is solvable in time polynomial in the data and in the largest integer

in the data, in this case max(c ,t ,r). Such an algorithm isnotpossible for themax max

following NP-complete problem. Is there a simple directed path P in G from

v to u such that t(P) = r. This latter problem is easily shown to be a

generalization of the hamiltonian path problem.

Let f(u, p, j) be the minimum cost of a path from v to u of transit

time p and with at most j edges, and let

f(v,p) min f(v, p, j) for each p E Z and v E V.
<J<

* ·

-15-

The pseudo-polynomial algorithm for computing f(u, r) is a consequence of

Lemma 6 below.

LEMMA 6. Let G = (V,E,T) be a network with transit times. Suppose

t = Ivltmax and t* = 21Vl(t + V + ir) 3
. Then f(u, r) = f(u, r, t*)

or else there is no minimum cost path from v to u of transit time r.

PROOF. We develop a proof by contradiction. Suppose that P is a minimum

cost path from v to u such that t(P) = r and such that P has a minimum

number of edges with respect to all such paths. Suppose further that P has

at least t* edges.

By flow decomposition theory, we can decompose path P into the sum of

one directed path P from v to u and a collection f of directed circuits.
u

Let S be the union of P and at most IVI circuits of so that S is

strongly connected and such that the vertex set of S is the vertex set of P.

Let W* = - S. Thus we can delete any collection of circuits of H* from P

and the resulting graph is connected.

Let n be the number of circuits of V* that have a transit time

equal to p.

Since each circuit C E ,*has at most IVI edges and It(C) I < t, it

follows that the number of circuits in V is

t
.. nP > (t* - IV12)/IVI > 2t3+ Irl + VI . (3.1)

p= -t

Moreover, since t(P) = r it follows that

pn r - t . (3.2)

P= -t (u,)

-16-

We next note that n = 0. Else

If the cost of C is negative, then

cost of C is not negative, then P

number of edges.

From (3.2) and the fact that no

there is a circuit C e : with

P is not a minimum cost path.

is not an optimum path with the

= 0 we obtain the inequality

-1 t
-pnp > pnp - r - I lt

p= -t p=l

and from (3.3) we obtain the inequality

-1 t
E n () - n

P P P
p= -t p=l

- Irl - Ivl

Combining (3.1) and (3.4) we see that the number of circuits in W* with a

negative transit time is at least t2. Using a symmetric argument, we can show

that the number of circuits in V* with a positive transit time is at least 2.

By the pigeon hole principle, there are integers p and q such that

p< O< q and np,nq > t. Let C* be the sum of q circuits of * with

transit time p plus another -p circuits of * with transit time q.

Then t(C*) = 0, and we can devise the same contradictions as before.0

In order to translate Lemma 6 into a result concerning dynamic graphs,

we first define Vp = {v : v V and Ij I p and we let GP be the

subgraph of G= induced by the vertex set Vp .

COROLLARY 1. Suppose that G = (V,E,T)

is a minimum cost path from u to vr in G

cost path all of whose edges are in GP for

is a static graph. If there

then there is such a minimum

P = tmax t*.

t(C) = 0.

If the

fewest

(3.3)

(3.4)

-17-

PROOF. By Lemma 6 we can restrict attention to paths with at most

t* edges and thus whose transit time is at most t ma t*.O

4. Eulerian Paths

In what is usually credited with being the first paper in graph theory,

Euler (1736) showed that there is a closed path that passes through each edge

exactly once if and only if (1) the graph is connected and (2) every vertex

has even degree. In this section we consider the problem of determining

eulerian paths on dynamic graphs, i.e., paths that pass through each edge of

the dynamic graph exactly once. It is easy to see that conditions (1) and

(2) above are still necessary, but they are no longer sufficient. For

instance, the dynamic graph of Figure 4.1 satisfies both conditions even

though there is no eulerian path.

Figure 4.1 A dynamic graph in which all vertices have degree 4 and
for which there is no (infinite) eulerian path.

Below we provide necessary and sufficient conditions for dynamic graphs

to have either directed eulerian paths or undirected eulerian paths.

Suppose that G = (V,E,T) is a static graph. Then G

. .

. .

. .

. .

THEOREM 3.

-18-

has a directed eulerian path if and only if each of the following conditions

holds:

(1) The indegree of each vertex of G is equal to its outdegree,

(2) G is connected,

and (3) I tuv = 1
(u,v) EV

PROOF. The necessity of conditions (1) and (2) are obvious. We see

the necessity of condition (3) as follows. First, suppose that P is any

infinite path in G that passes through each edge at most once. We say

that P crosses the origin from below (resp., from above) at edge

(uP, vr) E P if p < 0 and r 0 (resp., p 0 and r < 0) . Let

b+(P), (resp., b-(P)) denote the number of crossings of P from below

(resp., from above) . Since there is a crossing from above between every two

crossings from below, and there is a crossing from below between every two

crossings from above, and since b+(P), b-(P) are finite it follows that

Ib+(P) - b-(P) 1 . Moreover, if P is eulerian then the number of crossings

from below cannot equal the number of crossings from above. (If the first

crossing is from below and if the last crossing is from above, then the path

cannot pass through an infinite number of edges (up, vr) with p, r 0 ,

contradicting that P is eulerian. We can derive a similar contradiction

if the first crossing is from above and the second crossing is from below).

Thus

jb+(P) - b-(P) = 1

Furthermore, if P is eulerian then

b+(P) '= Z max(O, t) ,
uv -(u,v) eV

-19-

and

b-(P) = Z max(O,-tuv)
(u,v) E-

so that

b+ (P) - b-(P) = Z t
(u,v)EE UV

We see the sufficiency of conditions (i), (ii), and (iii) as follows. Let

C be a directed eulerian cycle in C initiating and ending at vertex v.

(Conditions (i) and (ii) ensure that such a cycle exists). Then the pth copy

of C is a directed path in G from vp to vP+ or from vP to vP- 1 accord-

ing as t(C) = +1 or t(C) = -1. In either case, we can concatenate all of

the copies of C so as to form an eulerian path.0

THEOREM 4. Suppose that G = (V,E,T) is a static graph. Then G has an

undirected eulerian path if and only if each of the following conditions holds:

(1) Each vertex of G has even degree,

(2) Gc is connected,

and (3) Z t = 1 (mod 2)
(u,v) EV

PROOF OF NECESSITY OF CONDITIONS (1), (2) and (3). The necessity of con-

ditions (1) and (2) are immediate. The necessity of condition (3) is proved

analogously to the necessity of condition (3) of Theorem 3.

First, suppose that P is an undirected infinite path in G . We say that

P crosses the origin from below at edge (P, v) if P < 0 and r > 0 and

(uP , v) is a forward edge of P or else P > 0 and r < 0 and (up, vr) is

a backward edge of P. We say that P crosses the origin from above at edge

-20-

(uP, vr) if the reversal of P croses the origin from below at edge (uP, vr).

As before, we let b+(P) (resp., b-(P)) denote the number of crossings from

below (resp., above). The necessity of condition (3) follows from the fact if

P is an eulerian path then

Ib+(P) - b-(P)I = 1
and

E tuv - b+(P) - b-(P) (mod 2).D
(u,v)eV

In order to prove the sufficiency of (1), (2) and (3), we reduce the

undirected eulerian path problem on dynamic graphs to the directed eulerian path

problem. In order to perform the transformation, we will first consider a

variant of dynamic graphs.

Let G* = (V, E*) where V = {vP : vEV and pZ}

We say that E is periodic with period q if the edges of E have the

following property:

(ur, vP)cE if.and only if (vr + q , vP+q)cE .

REMARK. Suppose that G = (V , E) is an infinite graph such that E

is periodic with period q and each vertex of V is incident to a finite

number of other vertices. Then G is a dynamic graph induced by a static

graph with qVj vertices.

PROOF. Let G = (V,E,T) where

V - {v : vcV and lgp<q} . For each edge (ur, vP)cE with lr-<q we choose

k and t so that p - r = k + tq and lk-q and we associate an edge

(ur, vk)~E with transit time t.0

-21-

PROOF OF SUFFICIENCY OF (1), (2) and (3).

Since G is eulerian we can express G as the union of undirected

circuits C1,.... Ck , each with a non-negative transit time. Let us assume

without loss of generality that each circuit is directed. Otherwise we could

perform a series of edge reversals so as to obtain directed circuits. (An edge

reversal is the replacing of edge (u, v) by an edge (v, u) whose transit

time is tvu -tuv . Edge reversals do not effect transit time of circuits,

and they change arc directions in G .)

Order the circuits so that t(C1)<...< t(Ck) and let

t =
k
Z t(Ci) = £ tuv .

i=l (u,v) EE

Next choose index j and k E Z such that

and

j-1
k + Z t(Ci) =

i= 1

1 < k < t(Cj)

(t*+1)/2

Reorient the edges of G again so that

j-1
(i) all of the Z t(Ci) infinite paths

i=1

in G induced by C1,..., C 1 are reversed (i.e., each edge of

of these paths in G is reversed)

and (ii) k of the infinite paths induced by Cj are reversed.

and (iii) all other edges keep their current orientation.

It can be verified that the resulting infinite graph G is periodic with

period t(Cj) and that the static graph that induces G satisfies the

conditions of Theorem 3. Hence G is eulerian.D

�____I�PI1YII_·_1IWYLX--YYI-_·UII1I·II ·̂ ...

-22-

The condition that G is connected is a necessary condition and cannot

be replaced by the condition that G is connected as in the directed case.

For example the graph G = (V,E,T) with V = {v}, E = {(v, v)} and tw = 3

satisfies conditions 1 and 3 and G is connected. However, G fails to be

connected.

5. 2-Colorability

As is well known, a graph G (infinite or not) is bipartite (2-colorable)

if and only if there is no undirected circuit with an odd number of edges.

REMARK. Suppose that G = (V,E,T) is a static graph. Then the induced

co

dynamic graph G is bipartite if and only if there is no closed path P in

G with an odd number of edges and with t(P) = 0.

The above remark is an elementary consequence of Lemma 1. As an example,

consider the static graph G = (V,E,T) of Figure 5.1. Then G is bipartite.

However, if the transit time of (1, 2) were changed from 0 to 2p+1 then there

would be an odd circuit in G with 2p+9 edges. (If we take 2 copies of the

triangle in G and 2p+3 copies of the loop then we obtain an odd closed

path P in G with t(P) = 0).

-2

1 1

A graph G whose induced dynamic graph is bipartite.

__ __

v

F igur e 5. 1.

-23-

We observe that the shortest odd circuit in G would have 2p+9 edges

and thus has an exponential number of edges as p gets large. (Recall that the

length of the input string is O(log p)). It is fortunate that we can detect

the odd circuit much faster than we can list the edges of the circuit.

Before proceeding to the algorithm we define the graph G2 = (V2, E2)

as follows:

V2 = {v1, 2 : vEV} ,

E = {(u1, w1) : (u, v)EE, i,j E {1, 2, tu j - i (mod 2)

THEOREM 5. Suppose that G = (V,E,T) is a static graph and that G

is connected. Then G is bipartite if and only if G2 is bipartite.

PROOF. Suppose

length closed path P

length closed path in

co

first that G is

in G such that

G2 , and thus G2

not bipartite. Then there is an odd

t(P) = 0. Then P induces an odd

is not bipartite.

Suppose conversely that G2 is not bipartate. Then there is an odd length ;

closed path in G2 , and this path induces a closed path P in G such that

t(P) 0 (mod 2). Let k = t(P)/2; and let v be the initial vertex and

terminal vertex of P. By assumption G is connected and thus there is some

closed walk P' in G from v to v with t(P') = -k. Then P* = P,P',P' is

an odd closed walk in G and t(P*) = 0, thus showing that G is not

bipartite D.

We observe that the conclusions of Theorem

dropped the assumption that G is connected.

Figure 5.1 induces a dynamic graph G that is

bipartite.

5 would not be true if we

In particular, the graph of

bipartite whereas G2 is not

I _ _

-24-

6. Minimum Average Cost Spanning Trees

Here we consider the extension of the minimum cost spanning tree problem

to dynamic graphs. Let G (V,E,T,C) be a static graph in which each edge

(u, v)cE has a cost cuv . Moreover, the cost of each copy of edge (u, v) in

the dynamic graph G = (V ,E ,C) is cuv . A dynamic spanning tree refers

to a spanning tree of G

Let GP = (Vp, EP) be the subgraph of G induced by the vertex set

VP = {vr : veV and -r<p<r}. For each dynamic spanning tree S let cP(S)

be the sum of the costs of the edges in S n EP . The dynamic spanning tree

problem is to determine a dynamic spanning tree S that minimizes the long run

average cost per period, i.e., the value

liminf (2p+l)-lcP(s) .
p -*

To determine a minimum average cost spanning tree for G it is possible

to use the standard approaches of Kruskal (1956) on GP and let p approach

infinity. Instead we use Edmond's (1971) greedy algorithm to determine a minimum

weight basis of the matroid M defined below. In fact, the greedy algorithm

as applied to M may be interpreted as an efficient implementation of the

greedy algorithm for trees as applied to E

For each static graph G = (V,E,T) we define the quasi-dynamic matroid

(or Q-matroid) to be the matroid Q(G) (E, I) on the edge set of G such

that a subset A c E is independent if (1) there is at most one circuit in

A and (2) there is no simple circuit D in A with t(D) = 0. For example,

the edges of the graph in Figure 6.1 are independent, but the edges in

�_ I

-25-

Figures 6.2a and 6.2b are not. An equivalent definition is that the subset

A is independent if there is no non-trivial closed path in A whose transit

time is 0.

To verify that M defined above is a matroid, we will show that M is

equivalent to another well known matroid. For a given network G = (V,E,T),

let us define another network G' (V,E,T') where t' = exp(tu).
uv uv

For each path P in G', let f(P) be the product of the forward edges

ef P divided by the product of the backward edges of P. It is easy to

see that t(P) = 0 if and only if f(P) = 1.

Then G' may be interpreted as a generalized network. In such a

network, if x is the flow originating in edge (u,v), then the flow arriving

at the head of (u,v) is t' x . Let A be the column vector with a 1 in

component u and a "-t' " in component v. Then it is well known (see,
UV

for example, Dantzig (1963)) that a subset of columns of A = (A v) is

linearly independent if and only if there is no non-trivial closed path P

consisting of arcs of A such that f(P) = 1 or, equivalently, t(P) = 0.

�__I_ --·II�---- ·C- I

-26-

1 0

Figure 6.1. An independent set of edges with respect to the quasi-dynamic
matroid of G.

ia;-1

6.2a 6.2 b

Figures 6.2a and 6.2b. Dependent sets of edges with respect
quasi-dynamic matroid of G.

THEOREM 6. Let G = (V,E,T,C) be a static graph such that Gc is

connected and suppose that A c E is a minimum cost basis for the Q-matroid

Q(G). Then the forest FA obtained as the union of the infinite number of

copies of A may be extended to a minimum average cost dynamic tree via

the addition of a finite number of edges.

PROOF. By Lemma 1, FA has no simple circuit. We see that FA may be

extended to a dynamic tree through the addition of a finite number of edges

as follows. First, G must have some non-zero length circuit and must be

connected since G is connected. Thus A must have IVI edges, as every basis

of Q(G) has IVI edges. Since no component H of A can have two circuits,

E

to the

-27-

it follows that each component H of A has IV(H) edges and exactly one

circuit. Thus the dynamic graph induced by such a component H induces k

components of G where k is the transit time of the circuit of H. It

follows that FA has a finite number of components and can be extended to a

spanning tree SA by the addition of a finite number of edges. Also the

average cost per period c' of SA is the same as that of FA.

To see that SA is the minimum average cost dynamic spanning tree of G ,

let S' be any other spanning tree. By the construction of the greedy algorithm

it follows that FAnEp is a subset of the minimum cost spanning tree of G .

Also S'nE may be extended to a spanning tree of GP by the addition of at

most 2tmax edges, and these edges have a total cost bounded above by

c = 2 .maxtmax . Thus

cP(S') 2 cP(FA) - c

and thus

liminf (2p+l)-lcP(S') liminf (2p+1)-cP(FA) - c = c'.O
p+ c p+*O

7. Summary

In the previous sections we have shown how to solve various problems on

dynamic graphs by reducing the problems to easily solved problems on finite graphs.

In each case, the proof that the transformation is correct uses little more than

Lemma 1 and some elementary graph theoretic analysis.

It may seem plausible that every problem on dynamic graphs reduces to a

problem on the static graph G. While this reduction is indeed always possible

in the trivial sense that G is itself defined in terms of G, in a very real

sense there can be no such reduction in general. In particular, there is no

such reduction if the reduced problem must be in the class NP, unless NP = PSPACE

---I ~ ~ ~ ~ ~ ~ ~ ~ __

-28-

since the dynamic version of 3-colorability and many other graph problems is

PSPACE-complete, as proved by Orlin (1981c).

There are no known general conditions which guarantee that the dynamic

variant of a given problem is polynomially solvable. There are also no known

general conditions which guarantee that the dynamic variant of an NP-complete

problem is PSPACE-complete. There are general approaches for determining the

complexity of dynamic problems, but it would be interesting if there were a

broader, more encompassing theory of the complexity of these problems. It

would be of theoretical interest if such a theory could be developed, and it

is likely that such a theory would have much deeper ramifications into the

structure of the classes NP and PSPACE.

ACKNOWLEDGMENTS

I wish to thank Rita Vachani for her careful reading of this manuscript

and for her helpful suggestions.

-29-

References

Baker, K. R. (1976). Workforce Allocation in Cyclical Scheduling Problems.
Operations Research Quarterly 27, 155-167.

Bartlett, T. E. (1957). An Algorithm for the Minimum Number of Transport
Units to Maintain a Fixed Schedule. Naval Research Logistics
Quarterly 4, 139-149.

Bartlett, T. E. and A. Charnes (1957). Cyclic Scheduling and Combinatorial
Topology: Assignment and Routing of Motive Power to Meet Scheduling
amd Maintenance Requirements. Part II: Generalization and Analysis,
Naval Research Logistics Quarterly 4, 207-220.

Dantzig, G. B., W. Blattner, and M. R. Rao (1967). Finding a Cycle in a
Graph with Minimum Cost to Times Ratio with Application to a Ship
Routing Problem. In P. Rosenthiehl (ed.). Theory of Graphs.
Dunod, Paris, Gordon and Breach, New York, 77-84.

Dantzig, G. B. and R. Simpson (1962). Consulting work for United Airlines.

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton University

Press, Princeton, N.J.

Dhall, S. K. and C. L. Liu (1978). On a Real-Time Scheduling Problem.

Operations Research 26, 127-140.

Edmonds, J. (1971). Matroids and the Greedy Algorithm. Math. Prog. 1, 127-136.

Euler, L. (1736). Solutio Probematis ad Geometriam Situs Pertinentis.
Comentarii Academicae Petropolitanae 8, 128-140.

Ford, L. R. and D. R. Fulkerson (1958). Constructing Maximal Dynamic Flows from
Static Flows. Operations Research 6, 419-433.

Gale, D. (1959). Transient Flows in Networks. Michigan Math Journal 6, 59-63.

Karp, R. M. (1972). Reducibility among Combinatorial Problems. In Miller
and Thatcher (eds.). Complexity of Computer Computations. Plenum Press,
New York.

Kruskal, J. B. (1956). On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem. Proc. American Math. Soc. 7, 48-50.

Labetoulle, J. (1974). Some Theorems on Real-Time Scheduling. In E. Gelenbe
and R. Mahl (eds.). Computer Architecture and Networks. North-Holland
Publishing Company, 285-298.

Lawler, E. L. (1967). Optimal Cycles in Doubly Weighted Linear Graphs. In
P. Rosentiehl (ed.), Theory of Graphs. Dunod, Paris, Gordon and Breach,
New York, 209-214.

IIYLIII1�-·I-------I ---�-··· �---·1111·1

-30-

Lawler, E. L. and C. U. Martel (1981). Scheduling Periodically Occurring Tasks
on Multiple Processors. Submitted for publication.

Liu, C. L. and J. W. Layland (1973). Scheduling Algorithms for Multiprogramming
in a Hard Real-Time Environment.- JACM 20 46-61.

Orlin, J. B. (1981a). Minimum Convex Cost Dynamic Network Flows. Chapter 4,
Ph.D. Dissertation, Department of Operations Research, Stanford University,
Stanford, California.

Orlin, J. B. (1981b). The Complexity of Dynamic Languages and Dynamic Optimiza-
tion Problems. Transactions of the 13th Annual ACM Symposium on the Theory
of Computing, Milwaukee, Wisconsin.

Orlin, J. B. (1982a). Minimizing the Number of Vehicles to Meet a Fixed
Periodic Schedule: An Application of Periodic Posets. Operations
Research 30, 760-776.

Orlin, J. B. (1982b). Maximum Throughput Dynamic Network Flows. Accepted for
publication by Mathematical Programming.

Orlin, J. B. (1982c). Dynamic Matchings and Quasi-Dynamic Fractional Matchings
I and II. Working Papers 1331-82 and 1332-82, Sloan School of Management,
MIT.

Papadimitriou, C. and K. Steiglitz (1982). Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, N.J.

Simpson, R. W. (1968). Scheduling and Routing Models for Airline Systems.
Report FTL-R68-3, Department of Aeronautics and Astronautics, MIT,
100-107 and 128-134.

Tarjan, R. E. (1972). Depth First Search and Linear Graph Algorithms.
SIAM J. Computing 1, 146-160.

Wollmer, R. D. (1980). An Airline Schedule Tail Routing Algorithm. Presented
at the Fall 1980 ORSA/TIMS conference in Colorado Springs.

- -

