
A POLYNOMIAL-TIME PARAMETRIC SIMPLEX ALGORITHM FOR

THE MINIMUM COST NETWORK FLOW PROBLEM

James B. Orlin

Sloan W.P, No. 1484-83 September 1983

-�(a·RISlfU-�XXIL71�� ��-- ��_��- ��______

A Polynomial-Time Parametric Simplex Algorithm for

the Minimum Cost Network Flow Problem

by James B. Orlin

Sloan School of Management

MIT

Abstract

In this paper we consider the minimum cost network flow problem:

min(cx : Ax = b, x 0), where A is an m x n vertex-edge incidence

matrix. We show how to solve this problem as a parametric linear

program with 0(m b*) pivots, where b* is the number of l's in the

binary representation of b. The parametric formulation is non-linear and

is based on Edmonds-Karp scaling technique.

��sai·i�g�rs31--l� a ____

In this paper we consider the minimum cost network flow problem (1).

Minimize cx

Subject to Ax = b (1)

x 0,

where A is a full row'rank m x n matrix in which there is at most one

1 and at most one -1 in each column and the remaining entries are all 0.

Moreover, b is an integral m-vector, and c is a real n-vector.

Zadeh (1978) showed that the simplex procedure as applied to (1) may

take an exponentially large number of pivots. Edmonds and Karp (1972)

developed a scaling procedure in conjunction with the out-of-kilter method

that solves the minimum-cost network flow problem in a polynomial number

of steps. The purpose of this note is to provide a parametric simplex

procedure that solves the minimum-cost network flow problem in polynomial

time.

Recently, Ikura and Nemhauser (1983) have independently developed a

similar parametric procedure for the transshipment problem.

2. Preliminaries: Strongly Feasible Bases

As before, we assime that A is the full row rank constraint matrix of

the minimum cost network flow problem (1). We assume without loss of

generality that no two columns of A are the same. We associate with

matrix A the directed graph G = (V, E)

where V = {0, ..., m , and the edge set E is constructed as follows.

(2.1) If a column of A has a 1 in component i and a -1 in

component , then we associate an edge (i, j) of E.

(2.2) If a column of A has a 1 [resp, -1] in component i and

a 0 in the remaining components then we associate an edge

(i, 0) [resp., (0, i)] of E.

2.

As is well known, each basis B of A induces a subgraph GB of G that

is a tree. We assume henceforth that the tree is rooted at vertex 0.

For each tree T of G, we say that the edge e = (i, j) of T is a

downward edge of T if (i, j) is on the unique simple path from to j.

Otherwise, we say that e is an upward edge of T. Suppose that i and

i' are two vertices of T and that e and e' are two edges of T. We

let PT(i, i') be the simple path in T whose initial vertex is i and

whose terminal vertex is i'. Similarly PT(e, e') is the simple path in

T whose initial edge is e and whose terminal edge is e'. We define

PT(i, e) and PT(e, i) analogously.

We say that e is an ancestor of e' in T if e E PT(, e'). We

also say that e' is a descendent of e. We say that e is the father

of e' (and that e' is the son of e) if e is the second to last edge

on PT(O, e'). For each vertex v V and for each edge ei of the basic

spanning tree T, we associate the colors red, green and yellow as follows.

(3.1) If x.i > 0, then we color edge ei "green".

(3.2) If xi = 0 and if ei is an upward edge of T then

ei is colored "red".

(3.3) If xi = 0 and if ei is a downward edge of T then ei

is colored "yellow".

(3.4) For each vertex v V, if PT(O, v) has at least one

red edge then v is colored "red".

(3.5) For each vertex v V, PT(O, v) solely of green and

yellow edges then v is colored "green".

We say that a red edge e = (i, j) in T is maximum in T if i is

red and j is green. Thus the ancestors of e in T are green.

As per Cunningham (1976), we say that a basic feasible flow is strongly

III

3.

feasible if no edge of the corresponding tree is red. (Orlin (1983)

showed that a basic feasible flow is strongly feasible if and only if it

is lexico-positive.)

In general, the dual simplex pivot rule that we adopt will pivot out

red edges. For each red (and hence upward) edge e = (i, j), let Te be

the vertices of V that are in the same connected component of T - e as

vertex 0. Let F(T, e) be the fundamental cutset of T induced by e

and defined as follows.

F(T, e) = {e' = (i', j') G - T i' Te and j' T - T }

We illustrate these terms in Figure 1 and in Tables 1 and 2. In Figure 1,

the only maximal red edge is e = (4, 2). The fundamental cutset induced

by e is F(T, e) = {(1, 6)}

Edge Tree Edge Reduced Cost Flow Color

(0, 1) Yes 3 green

(0, 2) Yes 0 yellow

(1, 6) No 5 0

(2, 1) No 2 0

(2, 3) Yes 4 green

(4, 2) Yes 0 red

(4, 5) Yes 2 green

(4, 6) Yes 6 green

(5, 3) No 6 0

Table 1. The data for the edges of the graph of Figure 1.

Vertex Supply/Demand Color

1 -3 green
2 4 green
3 -4 green
4 8 red
5 -2 red
6 -6 red

Table 2. The data for the vertices of the graph in Figure 1.

_ s�l�ll�

3

0

/0

Figure 1. A basic feasible solution that is not
strongly feasible. Edge (4,2) is red.
The edge numbers refer to the edge flows.

11

0

4.

3. Dual Pivoting to Reach Strong Feasibility

In Section 4 we will develop a parametric procedure in which the

parameter decreases whenever strong feasibility is obtained. Our parametric

algorithm relies on the efficient procedure developed below for moving

from feasibility to strong feasibility using dual pivots.

The dual simplex pivoting procedure is well-known; see for example

Dantzig (1963). Here we describe it using the terminology developed in the

previous section. Moreover, we specialize it for our purposes.

Dual Simplex Pivoting

(4.0). Start with an optimal basic solution x = (xi) that is not strongly

feasible. Let ck denote the reduced cost of variable xk.

(4.1). Select a maximum red edge e in the basis tree T. If no such

edge e exists, then quit because T is strongly feasible.

Otherwise, continue.

(4.2). Select an edge e' in F(T, e) whose reduced cost is minimum.

If F(T, e) = 0, then quit as there is no strongly feasible

basis. Otherwise, let the new basic tree consist of T + e' - e.

Return to (4.1).

REMARK. A special case of the dual simplex pivot rule (4) is the rule of

pivoting out the lexicographically most infeasible edge. See Orlin (1983)

for more details.

We illustrate the dual simplex pivot rule in Figure 2. The variable

pivoted out corresponds to edge (2, 3), the only red edge. The variable

pivoted in corresponds to the edge (1, 6). The spanning tree obtained

subsequent to the pivot is given in Figure 2.

I'�0�-- �--�1�IIIII DD�il� - - -·^ .I_.�_.....���

3

2

Figure 2. A strongly feasible spanning tree solution
obtained from Figure 1 by a dual pivot.

0

5.

We say that PT(i, j) is a red-green chain in T if i is an ancestor

of j and if PT(i, j) has no yellow edges. The red-green chains in

T induce a partial order ST as follows. We write that e e' in

ST if edges e and e' are red and if PT(e, e') is a red-green chain in

T. We illustrate these concepts in Figures 3 and 4.

THEOREM 1. Suppose that B is an optimal basis for the network flow

problem (1) but that B is not strongly feasible. Let T be the

corresponding spanning tree, and let ST be the partial order on the red

edges induced by the red-green chains. Let t be the number of minimal

elements in ST. Then the number of dual pivots using procedure (4) to

create a strongly feasible basis (or prove that none exist) is at least

t and at most tm.

PROOF. Let T, T , ... , Tr be the sequence of trees obtained by

dual pivots, where TO is the tree corresponding to the original basis. In

addition, we define the following notation.

vk = set of green vertices in Tk.

Ek = set of maximum red edges in Tk.

Sk = partial order on the red edges induced by Tk

k k
t = number of minimal red edges in S

k k
s = dilworth number of Sk, i.e., the minimum number of

k
red-green chains to cover the red edges of T

pk(i, j) = PTk(i,) = the path on Tk from i to j.

To complete the proof, we will prove the following relations, all of which

are valid for k [O..r-l]. Here the notation [j..k] refers to the set of

integers j, +l,...,k.

�L ��I���

0

0

2

010
0

Q
Figure 3. A tree with its corresponding feasible flow.

0

I 1
Figure 4. The partial order induced by the red-green

chains of the tree of Figure 3. Elements
(2,0) and (3,1) are maximum. Elements (2,0),
(7,5) and (8,6) are minimal.

I-i-----�L-� _ iBrl �8. sl_ __

6.

vk Vk+l 1 (5)

If Vk + l =V k then IEk+ I < IE kI (6)

!Ekl < k (7)

sk tk. (8)

t k 1 t k + l < t (9)

We will prove the relations (5) - (9) below. First we will investigate

the consequences of these relations.

The fact that the number of pivots is at least tO follows from (9)

since tr = O.

From (7), (8) and (9) we see that IEki < tO for k [..r].

Thus the number of consecutive iterations for which Vk+ = Vk is at most

t0 - 1 by (6) (If Vk 0 then Ekl > 1 .). Since the number of iterations

for which Vk + l $ Vk is at most m by (5), the total number of iterations is

at most t°m = tm.

To prove (5) - (9) we consider tree Tk. Suppose that e' = (i2, i3)

is the edge that is pivoted in at the k-th pivot, and thus e' Tk+l - Tk.

Suppose that edge e = (i5, i4) is the edge pivoted out of tree T . Now

let us consider Figure 5, which represents the circuit created upon adding

edge (i2, i3) to Tk. In Figure 5, i0 is the source vertex 0, and the

"edges" in Figure 5 represent paths in T . Since we will often refer to

the paths in Figure 5 we will sometimes drop the superscript k.

We do not assume that the vertices in Figure 5 are distinct. If, for

example, i = i4 then P(il, i4) is the trivial path consisting of a

single vertex.

The colors of the edges in Tk + l may be summarized as follows.

k+1
(10.1) Edge e' = (i2, i3) is yellow in T

(10.2) If edge e b P(i5, i3) and e T - e, then

e is colored the same in Tk and in Tk+ l

7.

(10.3) If edge e e P(i5, i3) then e has different

orientations in Tk and Tk+l. (Switching orientation

changes red edges to yellow and changes yellow edges to red.)

We are now ready to prove (5). Suppose that vertex v is green in

Tk . Then i5 i pk(o, v). Thus pk(O, v) = k+(0, v) and v is green

k+1.
in T . Thus (5) is true.

Suppose now that Vk + l = Vk . We first claim that i2 is red in Tk.

Otherwise i3 yk+l _- Vk, contrary to assumption. We will now prove that

k+1 k k k+1
E c E. Since e E - Ek + l , this will complete the proof of (6).

* k+1 * k+l *
Let e be a maximum red edge in Tk Let P =P (O, e).

Since e is maximum, i2 P . In fact P n P(i5, i3) = 0. Thus

* k * * k
P pk(O, e), and e is a maximal red edge in T. We have thus shown

that Ek+l c Ek and thus (6) is true.

Relation (7) is immediate since the set of maximum red edges forms an

anti-chain in Sk . (An anti-chain is a set of unrelated elements in Sk).

To see that relation (8) is valid, we first note that sk tk

since the minimal red edges are an anti-chain in Sk . For each red edge

ei let Ri denote the maximal red-green chain of Tk containing ei.

We claim that each red edge e' of Tk is in some chain Ri, and this will

show that sk < tk and complete the proof. Suppose that e' is not

k k
minimal in P . Then e' ei for some red edge ei in Sk. Then

Pk(e', e) c Ri, and thus (8) is true.

We now consider relation (9). Let Mk denote the set of minimal red

edges of Tk. Our proof first takes into consideration the set Mk n Mk+l

We state the result as Lemma 1.

* T T k+ *
LEMMA 1. Suppose that e T u T1 and that e P(i4, i3).

Then e* E Mk if and only if e* M+l.

���s�_l� _r� __�____

8.

PROOF. Suppose that e E Mk and e* P(i4, i3). Since (i5, i4)

is a maximum red edge in Tk, e* P(i0, i4). We suppose that e* Mk+l

and we will derive a contradiction. Let P = P(e*, e') be a red-green

chain in Tk+l terminating at the red edge e'. Then (i2, i3) i P

since (i2, i3) is yellow. Therefore, the chain P does not contain

* kany edge of P(i5, i3) and by (10) it follows that P T. This

contradicts that e E M.

Suppose now that e* E 1Mk+l and e* I P(i3, i5). Suppose further that

e* Mk and that P = P(e*, e') is a red-green chain in Tk that

terminates at the red edge e'. Since (i4, i5) is maximum, we know that

e* ~ P(i0, i4). Thus no edge of P* is in (i5, i3) and thus P* is also

kl * k+l
a path in T . Thus contradicts that e E , completing the proof of

the Lemma. O

To complete the proof of (9) we will define a 1:1 mapping of Mk+ l

into (but not necessarily onto) Mk . However, we will show that there is

at most one element of Mk that is not in the range of the mapping, and

this will complete the proof.

k+l k * k k+l

Let f M + Mk be defined as follows. For e E Mk n Mk+, we

let f(e*) = e . By Lemma 1, we are left with edges on the path P(i3, i5).

For e* E P(i3, i5) n Mk+l let f(e*) be the unique yellow edge e' in

P(i3, i5) that is closest to e . If Pk+l (e*, i5) has no yellow edges,

then let f(e*) = (i5, i4).

We first note that f(e*) is red in Tk by relation (10). We also

note that the mapping is 1:1. Otherwise there are two edges e and e'

such that f(e*) = f(et). In such a case, one can show that P (e*, e') or

Pk+l(e', e*) is a red-green chain and thus at most one of e*, e' is in

Mk+l

III

i 5i2

Figure 5. The circuit created by adding edge (i2 , i3)
to Tk.

ir_�*___DII__�·__��_1_111�______� �-

9.

We now prove via a contradiction that f(e*) is a minimal red edge

in Tk. Suppose that e' = f(e*) and that P* = Pk(e', e") is a red-green

chain in Tk terminating at the red edge e". Let i' be the last vertex

of P that is also on the path P(i5, i3). Thus P = k(e',) u k(i e).

We claim that Pk+l(e , i ') u Pk+l(i', e") is a red-green chain terminating

at the red edge e", and this will complete the contradiction. We note that

e" P(i5, i3). (Otherwise, e" is yellow in Tk. Moreover, e" must

be on the path P(e, i5) since e is yellow in T and P is a

red-green chain. This now contradicts our definition of f(e*) since e"

* k+l
is closer to e than is e".) Since e" P(i5, i3), P (i', e") is

a red-green chain in Tk+ l terminating at the red edge e". We now claim

that Pk+l(e*, i') is a red-green chain. Otherwise, there is a yellow

edge e on the path. But then e is closer to e than is e',

contradicting our definition of f(e*). This completes the proof of the

relation tk+l < t

To complete the proof of the relation 'tk+l tk - 1", we show that

there is at most one edge in Mk - f(Mk+l). By Lemma 1, we may restrict

attention to the path P(i5, i3) Let i be the vertex on P(i3, i5)

such that Pk(i, i 3) is a red-green chain and such that i* is closest

to i5. We claim first that if e* r Mk n P(i*, i4), then e* E f(Mk+l).

To see this, we let e' be the yellow edge in Pk(e*, i3) that is closest

to e . A symmetric argument to the one given above shows that e' E

k* 3
Finally, there is at most one edge in Pk(i , i) n Mk. This completes the

proof of Theorem 1. O

THEOREM 2. Suppose that B is a feasible basis that is not strongly

feasible. Let t be the number of minimal red edges in the partial order

induced by the tree corresponding to basis B. Then the number of pivots

10.

required to reach strong feasibility is at least t. Moreover, if the

directed graph is complete and if we are permitted to pivot in any edge,

then the minimum number of pivots to reach strong feasibility is exactly t.

PROOF. An examination of the proof in Theorem 1 that "t k+ tk- 1",

will show that the proof does not rely on the fact that the edge pivoted

out is a maximum red edge. Thus the number of dual pivots required to reach

strong feasibility is at least t. To prove that there is a sequence of

exactly t pivots to reach strong feasibility, we prove the equivalent

result that there is a single pivot that reduces the number of minimal red

edges from t to t - 1.

Let P(e*, e') be a red-green chain from a maximum red edge e* to a

minimal red edge e'. Let i and j be the initial and terminal vertices

of P(e*, e'). We claim that if we pivot in edge (i, j) and pivot out

edge e*, then the resulting tree T' has at most t - 1 minimal red edges.

If we consider Figure 5 once again, we note first that i4 = i1 = i2 = i

and that i3 = j. Thus P(i4, i3) is a red-green chain in T. Moreover,

any minimal red edge in T' does not lie on P(i3, i5) and thus is a

minimal red edge in T. Since e' T - T', it follows that the number of

minimal red edges in T' is at most t - 1, completing the proof. 0

4. The Parametric Network Flow Algorithm

Consider the parametric linear program Lg(E)

Minimize cx Lg(G)

Subject to Ax = b + g(G)

x > O.

We will soon specify a vector-valued function g for which we can solve

Lg(e) very efficiently. Our choice of g is based on ideas from

Edmonds-Karp scaling technique and on the following Lemma concerning network

flows.

�_

III

11.

LEMMA 2. Suppose that B is a strongly feasible basis for the network

flow problem min(cx : Ax = b, x > 0). Then the following are true.
n

(1) If b' < b, b is integral and Z (bi - b) < , then B

is also feasible for the network flow problem

min(cx : Ax = b', x 2> 0).

(2) If b' b and if B is feasible for the network flow

problem min(cx : Ax = b', x > 0), then B is also feasible

for the network flow problem min(cx : Ax = b*, x 0) for

all b' b* < b.

PROOF. Statement (2) is proved as part of Theorem 1 of Orlin (1983).

We next consider (1). Let T be the spanning tree corresponding to the

basis B. By hypothesis, T has no red edges and thus the flow in any

upward edge of T is strictly positive. By the unimodularity of B and

the integrality of b, the flow in any upward edge of T is at least one.

To obtain the basic flow of b' from the basic feasible flow of b,

one sends b i - bi units of flow along the path PT(0, i). Since

Z(bi - b : i E [l..m]) 1, the resulting flow is non-negative and hence

feasible. a

Let t = max(rlog(Ibi + 1)1 : 1 i < m).

Let us now rewrite bi as

t-l
bi = bti2t - Z bki2k , for i E [l ..m] (11)

k=O

where bki is 0 or 1 for all i. We now define g = (gi) as follows.

For each triple i, j, of integers with

i E [l..m] , j E [O..m-l] , and E [0..t-l] , let

Z bki2k if j [i..mJ
k=O

gi(Im + j) -1 (12)

Z bki2 k if j [O..i-J.
k= 0 k

12.

The Parametric Network Flow Algorithm

(13.0) Obtain an optimal strongly feasible basis B for L (e)

for = tm. (We will discuss this step in more detail below).

(13.1) Determine the minimum integral value O' such that B is feasible

for L g('). If O' < 0, then quit with the optimum basic feasible

solution. Otherwise, continue.

(13.2) Perform dual pivots using procedure (4) until either (a) a

strongly feasible basis B is obtained or (b) F(T, e) = 0 for

some T. In case (a), return to step (13.1). In case (b),

partition Lg(e) into two network flow problems as described by

Cunningham (1976).

THEOREM 3. Suppose that the parametric algorithm (13) is used to solve

Lg() with g defined as in (12). Then the total number of pivots is at

most mb*, where b* is the total number of ones in the binary representation

(11) of b.

PROOF. We will henceforth abbreviate Lg(e) as L(o). Suppose that

the basis B is optimal and strongly feasible for L(O*) for the integer

e* and that ' is the minimal integral value of chosen in (13.1)

such that B is feasible for L(O'). We claim that

(14) ' < .

and (15) The number of dual pivots to create a strongly feasible basis for

L(1') is at most m(e* - ').

Relation (14) is a consequence of (1) of Lemma 2 and our construction of g.

(In order to apply Lemma 2 it will be necessary to divide the right hand

side coefficients b - g(e) by the least common divisor, which is 2k for

a suitable choice of k.)

We now consider (15). Let T be the optimal spanning tree for

·� 1_··rC�_l___�_l__�_l_____l____lslll___

III

13.

P (e*). Let S {i V : gi(') < gi(O*)}. By our construction of g

in (13), ISI e* - e'. Moreover, since we are sending flow along each

path PT(0, i) for i E S, it follows that no edge of any of these paths is

yellow with respect to the flow for L(O'). Thus the set {PT(0, i) : i E S}

is a set of ISI red-green chains that covers all of the red-edges of T

with respect to L(e'). (No other edge is red since T is strongly feasible

for L(O*).) Thus the number of minimal red edges in T for L(O*) is at

most ISI. By Theorem 1, the number of pivots to reach strong feasibility is

at most mSI m(O* - ').

Initialization of the Algorithm

In step (13.0), we assume that we start with a strongly feasible basis

for the network flow problem P (tm). We rewrite this problem as

Mimimize cx

Subject to -Ax = 2tb' (16)

x 0

where b' = 0 or -1 according as b is non-positive or positive. Then
i 1

(16) is a shortest path and may be solved via a number of different procedures.

If the optimum basis for the shortest path problem is not strongly feasible,

then we may obtain a strongly feasible optimum basis with at most m2

additional pivots, as proved in Theorem 1. (In fact, the simplex algorithm

with Dantzig's pivot rule solves the shortest path problem in a number of

pivots that is bounded by a polynomial in IVI, as proved by Orlin (1983)).

On the Binary Representation of b

The algorithm given above also works if the function g(e) is

monotonically decreasing rather than increasing. (It does rely on g being

monotonic). In this case we could write bi as

-b 2t + Z(bki2k : k e [0..t-l]). In this case, the binary representation
ti ki

14.

of bi is the ordinary one if bi > 0. The previous representation was the

ordinary representation of negative integers bi.

If g is monotonically decreasing, the algorithm works essentially the

same way as before except that the roles of yellow edges and red edges are

reversed.

A Speed-up Technique

In (13) we defined the function g in a specific way. However, the

computational bound would be valid if we chose any parametrization such that

g(O) differs from g(+ 1) in at most one component and only in the last

bit of accuracy. It may be worthwhile in practice to consider a heuristic

procedure that determines which component should vary at the value . In

this way one may be able to decrease the number of pivots.

We also note that the pivoting technique consists of dual pivots.

Unfortunately performing dual pivots requires O(Ef) steps per iteration

as opposed to the faster methods for performing primal pivots.

Some Concluding Remarks

Although the above procedure was developed primarily for theoretical

reasons, we hope that the algorithm will prove to be efficient in practice.

As of this time, we have insufficient computational experience with the

algorithm to assess its efficacy.

The above parametric network simplex algorithm runs in polynomial time, i.e.,

time that is polynomially bounded in the size of the data. It is an

interesting open question as to whether the number of pivots is bounded by a

polynomial in IV!. It appears that the "equivalence" arguments of Lemma 3 of

this author (1983) are not strong enough to prove such a bound for the

parametric algorithm.

���1_1� _��

REFERENCES

Cunningham, W. (1976). A network simplex method. Mathematical Programming
11, 105-116.

Dantzig (1963). Linear Programming and Extensions. Princeton University
Press. Princeton, N.J.

Edmonds, J. and R. Karp (1972). Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM 19, 248-264.

Ikura, Y. and G. Nemhauser (1983). Unpublished manuscript.

Orlin, J. (1983). On the simplex algorithm for networks and generalized
networks. Working Paper. Sloan School of Management, MIT.

Zadeh, N. (1973). A bad network flow problem for the simplex method and
other minimum cost flow algorithms. Mathematical Programming 5,
255-266.

-- -. I -- --- - - .I- I.--- ----- -'-- - - - -... ... , ".· I. -- --- I.- -

