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ABSTRACT

In oligopoly models, the symmetric case is special theoretically
and neglects asymmetries that may be important empirically. This
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1. Introduction_ _ _ _ _ _ _ _ _ _ _

The main objective of this study is to begin to fill a gap in the

literature on oligopoly theory by systematically exploring the implications

of long-lived efficiency differences for collusive equilibria. Once beyond

existence theorems, most treatments of oligopoly theory focus on the symmetric

case. 1 But Demsetz (1973), Porter (1985) and others have stressed the

empirical importance of long-lived differences in efficiency, broadly defined,

and it has become standard, following Iwata (1974), to allow for such differ-

ences in econometric studies of particular industries.2 The symmetric

case is thus of doubtful empirical relevance. And, as I hope this essay

makes clear, the symmetric case turns out to be very special theoretically.

When firms' costs differ, so do the implications of a variety of techniques

for effecting collusion that are essentially equivalent in the symmetric

case. The simplest possible model, which is easily analyzed when costs are

equal, becomes an algebraic mess when they are not.

A number of recent works on oligopoly theory that allow for cost differ-

ences assume, generally without much discussion, that the objective of

collusion is the maximization of total industry profits. 3 But, as Bain

(1948) argued persuasively almost 40 years ago in an incisive comment on

Patinkin's (1947) classic paper, this objective makes sense only when side

payments are possible. 4 When side payments are not possible, colluding

sellers face a relatively complicated bargaining problem that has not been

systematically analyzed. In general, total industry profits may have to be

reduced in order to attain an equitable division of gains from collusion;

there may be an equity/efficiency tradeoff. A second objective of this
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study is to apply the tools of cooperative bargaining theory to explore the

range of likely--solutions to this problem.5

Most empirically-oriented discussions of oligopolies with cost differ-

ences stress the fact that collusion is more complex than in the symmetric

case because firms' preferred prices differ.- (ee, for instance, Blair and

Kaserman (1985, pp. 145-6) or Scherer (1980, pp. 156-60).) And casual

empiricism suggests that effective collusion is indeed relatively rare- in

the presence of substantial competitive advantage. (IBM has been accused of

many things! collusion is not one of them.) But complexity may not be the

only reason for this. If a leading firm's cost advantage over its rivals is

great enough, non-cooperative behavior yields it approximately its monopoly

profits. That is, the maximum possible gains to a low-cost leader from

collusion go to zero as its cost advantage increases. Since collusion

involves costs and (both legal and other) risks, one would not expect to

observe it when the low-cost firm has little to gain. In the limit as the

leader's cost advantage increases, then, the probability that collusion will

be attempted goes to zero.

This limiting argument is of little empirical interest, however. The

more interesting question involves the likely gains to a low-cost firm from

collusion when cost differences are moderate, so that the aggregate share of

high-cost firms in non-collusive equilibrium is not negligible. The third

objective of this study is to examine the magnitude of the low-cost firm's

potential gains in such situations, in order to evaluate the likely empirical

importance of the limiting argument advanced aove. This objective requires

numerical evaluation of alternative equilibria. This approach is also made

attractive by the algebraic complexity of the simple model employed here

when costs differ.
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The remainder of this essay is organized as follows. Section 2 sets

out the assumptions and notation employed. Section 3 describes and compares

four alternative collusion technologies, three of which are equivalent in

the special symmetric case. The conjectural variations representation of

collusive equilibria is also discussed. Section 4 describes the solution

concegts employed- to characterize collusive outcomes and compares some of

their general implications. Section 5 presents the results of applying

those concepts to each of the four technologies described in Section 3. The

main results of this study and their implications are briefly summarized in

Section 6.

2.AssumRtions and Notation

I consider a market for a homogeneous product in which one low-cost

firm faces competition from N identical high-cost sellers. This permits me

to vary the intensity of non-cooperative rivalry in a tractable fashion. In

most of the analysis, the market demand function is taken to be linear.

With appropriate choice of units for money and output, the inverse demand

function can thus be written as

P * P(Q) - 1 - gI (1)

where P is market price and Q is total output.

The low-cost firm, which will be referred to as the leader or firm 1 in

what follows, is assumed to have costs given by

C(q 1 ) = (1 - 81)q 1 , (2)
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where q is the leader's output and 81 is a constant between zero and one.

The assumption of constant unit costs and neglect of capacity constraints is

consistent with a focus on long-lived differences in costs or products. Let

nl be the leader's profit.

The high-cost firms, which will be referred to as followers or firms of

type 2, also have constant unit costs:

C(q2) = (1 - 82)q2, (3)

where q2 is the output of a single follower, and 82 is a constant between

zero and one. The two cost parameters must satisfy 82 < E < 282. (The

second of these inequalities ensures that the followers' costs are below the

leader's monopoly price, 81/2.) Let Nn2 be total followers' profit.

These functional form assumptions produce a model that is algebraically

simple, at least as compared to other asymmetric oligopoly models. This

model also has the convenient property, which basically derives from relations

involving similar triangles, that as long as attention is limited to relative

(i.e., percentage) changes in such quantities as profit and consumers'

surplus, only the ratio R 81/82 matters. The market is thus effectively

described by two parameters, R and N. On the other hand, the use of specific

functional forms necessarily limits the generality of the results.

I assume that if collusion does not occur, the market is in Cournot

equilibrium. The Cournot point serves in what follows as a benchmark for

evaluating the effects of collusion as well as the status quo point in

collusive negotiations. The Cournot assumption has a number of advantages.

First, it is familiar and tractable. Second, it has the realistic implica-

tion, not shared by the natural Bertrand alternative, that high-cost sellers

have positive market shares. Third, following Kreps and cheinkman (1983),
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it assigns central importance to capacity decisions and is thus consistent

with the long-ruif focus of this inquiry. Note that under this assumption

the leader/follower distinction refers only to market shares; there is no

behavioral asymmetry.

The ratio R is difficult to relate to observables, as it reflects both

cost differences and the potential profitability of the market considered.

To see this, let R' (1-82)/(1-81), the ratio of followers' to leader's

unit cost. A bit of algebra then yields

R 81/ - R'(1-81 )3. (4)

Increases in R' clearly increase R. But, since R' exceeds one, R is a

decreasing function of 81. For any given value of R', R is thus lower the

more profitable the market would be to firm as a monopolist. Accordingly,

R can best be thought of as measuring the importance of the leader's cost

advantage relative to potential market profitability. But, for the sake of

brevity, I will refer to R simply as the leader's cost advantage in what

follows.

To provide a closer link to observables, we can describe the market

by N and S, where S is the share of the leader in Cournot equilibrium. The

relation among these parameters is easily shown to be the following:

R N(I+S)/(N+1-S). (5)

Increasing S or N, with the other parameter held constant, increases the

leader's cost advantage. The larger is N, the more intense is competition,

and the larger the leader's cost advantage must be to sustain any given

market share. Note also that the condition 1 < R < 2 corresponds to

1/(N+1) < S < 1.
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The alternative to Cournot equilibrium is assumed to be perfect collus-

ion, in the sense that a point on the relevant profit-possibility frontier

is chosen.6 I turn first to a discussion of alternative frontiers and then

consider alternative rules for selecting the collusive point.

3. _Cllusion Technologies and Coniectural Variations

Depending on the methods available for affecting collusion, the litera-

ture suggests four alternative profit-possible frontiers. Since the followers

have identical and constant costs, each follower's share of total follower

profit is just equal to its share of total follower output. We thus lose no

generality by dealing throughout with average follower output and profit, q2

and n2, respectively.

Side Payments (SP) If the colluding firms can make side payments (or

merge), all production will be done by the leader. Total collusive output

will thus equal the leader's monopoly output, 1/2, and total profit will

equal the leader's monopoly profit, ( )2/4. (Note that this neglects any

short-run fixed costs associated with followers' capacity.) This simplest

technology is represented by the straight line labeled SP in Figure 1 and by

the similarly-labeled point in Figure 2. In both Figures, the point labeled

C corresponds to the Cournot equilibrium. (Figures 1 and 2 are approximate

representations of the case N 2 and R 1.143 (or S .455), a case with

relatively unimportant cost differences.) It is perhaps best to think of

the SP technology as a standard of comparison, rather than as a realistic

possibility in many situations.

Market Sharing_ MS) If side payments are ruled out for legal or other

reasons, each firm's earnings derive only from its own production and sales.

6
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(In Bain's (1948) phrase, "earnings follow output.") Profit possibilities

are thus restricted as compared to the side payments technology, since

production must be inefficient if both types of firms receive positive

profits, The market sharing technology is most commonly assumed in such

situations: firms are assumed to set and abide by output quotas. It is

demonstrated in the Appendix that for constant marginal costs and !ny demand

function satisfying the second-order conditions, the profit-possibilities

frontier is strictly convex, as is the curve labeled MS in Figure 1. Rising

marginal cost is necessary but not sufficient for total industry profit to

attain a local maximum at a point where ql and q2 are both positive.

When demand and cost are given by equations (1) - (3) above, it is

straightforward to use the first-order conditions for maximization of n2

subject to a lower bound on in to solve for profits of the two types of

firms as functions of total output along the collusive frontier:

l = [(81-Q) 2(2Q-82)]/(81-82 ) (6a)

Nn2 = (82-2) (8 -2Q)3/(8 1-8 2). (6b)

From these equations it is easy to show that as one moves to the northwest

along the MS locus in Figure 1, total industry output falls from the leader's

monopoly output, 81/2, to the followers' monopoly output, 82/2, and total

profit falls accordingly.

The same first-order conditions yield an explicit expression for the

contract curve labeled MS in Figure 21

q2 {[28+82] - [(281-82)
-Bq1(81-82 )3] /2 }/4N - ql/N (7)
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This curve is strictly convex, as drawn. (Bishop (1960, p. 948) asserts the

convexity of the contract curve in this case.) The leader's market share

declines as one moves to the northwest along this curve.

Market Division (MD) When the relevant frontier in a bargaining problem

is non-concave, one normally thinks of using mixed strategies to convexify the

feasible set. This seems unnatural here, however. If a coin were to be

flipped once to decide which type of firm were permitted to monopolize the

market, some enforcement mechanism would be required to compel the loser(s)

to exit. Even if such a mechanism could be imagined, one would have to

allow for risk-aversion in evaluating the expected payoffs from alternative

coins and. Alternatively, if a coin were to be flipped many times, so that

average profits per period equaled expected profits in the limit, firms

would have to start up and shut down frequently. Neither scenario resembles

any obvious example of actual cartel behavior.

But an alternative convexification device does correspond to a

frequently-observed pattern of cartel behavior, the firms can divide the

market. 7 That is, each actual or potential customer can be assigned to a

single firm. If all customers are identical, as I will assume for simplicity,

and firm one is allocated a fraction W of them, its inverse demand curve is

given by PP(q1/W), and it will charge its monopoly price. Firms of type 2

will similarly charge their higher monopoly price to the customers they have

been allocated. tarting from any point on the MS contract curve, if each

firm is given a share of customers equal to its market share at that point,

all will be able to increase profits by changing price.

Because market division requires different prices for the same product

when sellers' costs differ, it is clearly feasible only when some mechanism

can be used to rule out arbitrage at moderate cost. When such a mechanism
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is available, the profit-possibility frontier (gross of the costs of

preventing arbitrage) becomes the locus labeled MD in Figure 1. The corres-

ponding contract curve is similarly labeled in Figure 2. Note that production

is inefficient under market division, as under market sharing. Profit

possibilities are lower under the latter technology because firms with

different costs sharing the same market impose what amounts to a negative

externality on each other. This occurs because, except at the extreme

points, all must depart from their preferred price.

When costs are equal, the SP, MS, and MD loci coincide in both Figure 1

and Figure 2. In this symmetric case, and only in this case, the division

of monopoly output among colluding sellers does not affect total industry

profit.

PEoRErtional Reduction (PR) In many situations in which side payments

are impossible, arbitrage will prevent market division. Moreover, the

complexity of the market sharing technology when costs differ may make long

and complex negotiations necessary, especially when firms are imperfectly

informed about their rivals' costs, and this may entail unacceptable antitrust

risks. In such situations, colluding sellers may resort to simple rules to

set output quotas.

One such rule that immediately suggests itself involves maintaining

market shares at their non-collusive (Cournot) values and reducing the

output of all sellers proportionately. This constrains the firms to move

along the PR line in Figure 2. By doing so they can reach a point on the MS

contract curve and enjoy the corresponding profits. B In the symmetric case,

this point maximizes total industry profit and divides it equally among all

sellers. When costs differ, however, this point has no special attraction.
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Movements in toward the origin along the PR curve in Figure 2 produce

movements away rom the Cournot point, C, on the PR locus in Figure 1. The

tangency of this latter locus and the M contract curve always occurs above

the Cournot point; it occurs to the left of that point, so that the leader

is worse off than in Cournot equilibrium, if (1+S) > 1 and the following

condition is satisfiedl

N > (1-S2)/(82 + S - 1). (8)

The right-hand side of this expression is a decreasing function of S. For

N=I, the leader is worse off at the intersection of the PR and MS loci than

at the Cournot point if S>.781. As N increases, the critical value of S

declines, approaching .618 in the limit. Firms with large cost advantages

will thus refuse to enter into collusive arrangements that use the propor-

tional reduction technology to reach the market sharing contract curve.

Alternatively, if the market sharing technology is employed, such firms will

require a higher market share than at the Cournot equilibrium; a point on

the MS locus to the right of its intersection with the PR locus will

accordingly be chosen.

ConjIctural Variations When firms of both types are operating and

sharing the market, as in Cournot equilibrium or in collusive equilibria

produced by the MS or PR technology, one can describe behavior either by the

sellers' outputs or by the corresponding implied conjectural derivatives.

The conjectural derivative of any firm i is defined, as usual, as X. =

t(dQ/dqi) - 13. This is to be understood as the increase in its rivals'

total output that firm i expects to occur as a response to a small unit

increase in its own output. Then, corresponding to any vector of seller
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outputs, there exists a vector of Xi such that the first-order conditions

for individual profit-maximization are satisfied.

Particularly in collusive equilibria, it makes little sense to think of

observed behavior as actually involving this sort of maximization. But,

following the pioneering work of Iwata (1974), a number of authors have

estimated conjectural derivatives econometrically. This approach can best be

understood as providing a convenient summary description of market behavior,

which may in fact involve a complex mix of cooperative and non-cooperative

elements. The Appendix explores the implications of MS and PR collusion for

implied X1 in a general asymmetric odel. It is shown there that if one

leader faces N identical followers, then under any cost and demand conditions

satisfying the relevant second-order conditions, MS collusion implies

N + (N-1)X1 -XIX 2 = . (9)

This expression is positive under PR collusion at points outside the MS

contract curve in Figure 2. It is negative at points inside that curve.

4. Collusive Solution Concepts

All reasonable solution concepts impose individual rationality. That

is, they limit attention to outcomes at which all parties are at least as

well off as at the status quo point. This serves to limit attention to

points to the northeast of C in Figure 1, between the two dashed lines. The

solution concepts discussed below satisfy this requirement for all values of

N and R. (This discussion relies on Roth's (1979) excellent development of

axiomatic bargaining theory.) In the descriptions that follow I use an

asterisk to denote a collusive outcome and a super-script c" to denote the

11
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Cournot status quo point. As above, attention is confined to collusive

equilibria in wich the (identical) followers are treated identically.

Nash In the classic Nash (1950) solution, the product of the parties'

gains,

(H* c)(H* c)Nn 1 2 n2 

is maximized along the relevant frontier.

Kalai-Smorodinsky (K-S) To compute the solution proposed by Kalai and

Smorodinsky (1975), define nm as the maximum profit the leader can receive

on the relevant frontier when all followers receive their status quo profit,

and define n as the maximum profit a single follower can receive when the

leader and the other N-1 followers receive their status quo profit. The K-S

solution is then the point on the frontier satisfying

(n'- Tc)/(Hm - c) (f* - Rc)/(f - f2). (10)

If the profit-possibility frontier is linear, as implied by the SP and MD

technologies, it is easy to show (using the ability to allocate total follower

profit arbitrarily among followers) that the Nash and K-S solutions coincide.

Under the PR technology all followers must have the same profit, so that n2

is given by the intersection of the vertical dashed line and the PR locus in

Figure 1.

EgualGains(E6) Roth (1979, pp. 92-97) suggests the possible relevance

of solutions in which the absolute gains to all parties are equal:

(n - 3 n ). (11)

Along the SP frontier, it is easy to show that the Nash, K-S, and EG solutions

all coincide. Thus all firms gain an equal absolute dollar amount from
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collusion in all three general bargaining solutions. (In relative terms, of

course, the followers gain more than the leader because their status quo

profits are lower.)

Along the flatter MD frontier in Figure 1, the E solution lies to

the left of the Nash/K-S solution. The latter thus gives the low-cost firm

a greater absolute gain than each high-cost firm. If the PR technology is

employed, no solution satisfying (12) exists when N 1. And when N 2,

the EG solution maximizes firm 's profit on the PR frontier.

IWAS In the MD technology, a natural focal point (in the sense of

Schelling (1960)) is provided by the allocation of customers to firms in the

original Cournot equilibrium. Accordingly, for this technology only, I

consider solutions in which W*, the fraction of customers assigned to the

leader, equals S, the leader's initial market share. Each follower than

receives a fraction (1-S)/N of the market demand curve. This is the only

obvious focal point solution that satisfies individual rationality for all N

and S. 9

5._Collusive Eguilibria

Under the SP and MD technologies, the equilibria corresponding to the

Nash/K-S, E, and (MD only) W*=S solutions can be obtained explicitly as

functions of N and S. Under the PR technology, the K-S and EG equilibria

can be also obtained analytically. All the formulae involved are too complex

to be informative, however. Moreover, under the MS and PR technologies,

numerical solution of equations is necessary to obtain values for Nash

equilibria, and the K-S and E equilibria must also be treated numerically

under the MS technology. Accordingly, this Section adopts a purely numerical
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approach. Alternative equilibria are presented for some illustrative

parameter values, and general relations revealed by computation of many

equilibria are discussed. 10

Two implications of cost differences should be kept in mind in inter-

preting the results that follow. First, when costs differ, production

in the original Cournot equilibrium is inefficient. The possibility of

rationalizing production gives rise to potential gains from collusion that

are not present in the symmetric case. Second, when costs differ, the

low-cost firm's profit in Cournot equilibrium exceeds that of its rivals. As

I noted in Section 1, this limits the leader's potential gains from collusion.

Consider Table 1, which describes the effects of alternative forms of

collusion in the duopoly case. When costs are equal, the natural symmetric

collusive equilibrium raises both firms' profits by 12.5%, lowers consumers'

(Marshallian) surplus by 43.75%, and produces a reduction in total surplus

of 31.25%. T1 In all the asymmetric equilibria in Table 1, as in all I have

examined, the leader's percentage gain from collusion is below the followers',

and the difference rises with increases in the leader's Cournot share. This

of course reflects in part the difference in their initial, noncollusive

profits.

When the leader's cost advantage is small (Ra1.143), all parties do

better in relative terms under SP collusion than in the symmetric case

because production is rationalized. As the leader's cost advantage increases,

its percentage gain decreases, the follower's percentage gain increases, and

consumers' percentage losses decrease. It is straightforward to show that

SP collusion produces a net gain in (Marshallian) social welfare if

S > (N+B)/(5N+B) or R > (6N+16)/(5N+12). (12)
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The critical value of S (R) falls from .692 (1.294) to .200 (1.200) as N

increases. All collusive equilibria computed under the other three tech-

nologies involve a net social loss.

If the SP technology is not employed, total industry profits are not

maximized. The last column in Table 1 gives the percentage by which total

industry profits fall short of their maximum value. For all values of N and

all non-SP equilibria, this profit sacrifice is maximized for moderate

values of R. As R approaches one, the sacrifice goes to zero as the symmetric

case is approached, while as R approaches two, the followers' significance

approaches zero.

All parties are generally substantially worse off in collusive equil-

ibrium if the SP technology is not employed. For any given technology

not involving side payments, outcomes more favorable to the leader are also

more favorable to consumers, since the leader prefers a lower price than the

followers.

The differences between the MD and MS solutions are relatively small,

as are those between the MS/Nash and MS/K-S equilibria. These patterns

reflect the near-linearity of the MS profit-possibility frontier for most

values of N and S. (This was noted by Bishop (1960, p. 948).) The PR

solution is surprisingly close to the other two in some cases, though it

is generally clearly inferior from the leader's viewpoint. Because it

precludes rationalizing production by increasing the leader's share, the

extent to which total output can be restricted is limited, and consumers are

often better off under PR collusion than if the MD or MS technologies had

been employed.
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In the examples of MD collusion described in Table 1, the W*=S solution

lies to the left of the Nash and EG solutions along the MD frontier. This

implies that the Nash and ES solutions involve W*>S, so that the leader's

share of customers (and, a fortiori, of output) is increased by collusion.

For large N and small R, however, the W*=S solution can be more favorable to

the leader than either of the others. When this occurs, Nash or E collusion

involves a reduction in the leader's share of customers. In extreme cases,

the leader's share of output may be lower than at the Cournot point.

Efficiency calls for an increase in the leader's share, but potential ration-

alization gains are small when R is near one, and equity considerations

become important when N is large.

Under the MS technology, when the Nash and K-S solutions differ

noticeably, as they do for large values of R or N, the latter is more favor-

able to the leader. Both are to the right of the E solution along the

MS frontier. The leader's collusive market share exceeds S at all MS

equilibria in Table 1. But, as under the MD technology, collusion may

involve reducing the leader's market share when R is small and N is large.

Also as above, this occurs most often in the E solution.

Along the PR locus, the Nash solution generally involves a smaller

output reduction than the K-S solution and is thus better for the leader.

When N 2, the E solution is better for the leader than either of the

others. For N > 2, it is worse than the others except for R very close to

two.

Table 2 shows the effect of changes in N, with R held constant at a

moderate level. In the symmetric case, increases in N simply increase the

intensity of competition at the status quo point and thus increase the

sellers' gains and buyers' losses produced by collusion. When costs differ,
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however, increases in N also increase the aggregate bargaining power and

status quo share of the high-cost followers. The latter effect increases

the potential gains from rationalizing production. The increased bargaining

power of the followers as N increases tends to increase the profit sacrifice

made in the interests of equity when side payments are impossible, as the

last column in Table 2 shows.

Followers' percentage gains tend to increase with N, reflecting both

their increased bargaining power and the corresponding fall in their status

quo profits. For small values of R and N, the leader's relative gains tend

to rise with N, reflecting the increasing potential gains from rationalizing

production. Otherwise, the bargaining power effect dominates, and increases

in N reduce the leader's relative (and, a fortiori, absolute) gains. (The

borderline values of N and R depend on the technology and solution concept,

as Table 2 reveals.)

Table 3 shows the effect of increases in N when S is held constant, so

that R rises with N. The pattern shown there thus reflects the effects of

changes in both R and N discussed above. The followers' gains accordingly

rise more rapidly with N than in Table 2, the leader's gains are more likely

to decline, and the profit sacrifice and consumers' losses rise less rapidly

with N than in Table 2.

Tables I - 3 indicate that in the presence of substantial competitive

advantage, corre§ponding to large R the leader's gains from collusion are

likely to be small, both relative to status quo profits and to gains in the

symmetric case. This is particularly clear if side payments and market

division are ruled out. While the leader's potential relative gains do not

approach zero rapidly as R increases, they seem small relative to likely

year-to-year fluctuations for values of R and N that might be encountered in
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practice: see especially Table 3. (Note also that the figures shown deal

only with economic profits; the corresponding percentage increases in the

accounting profits reported to shareholders are likely to be much smaller.)

It thus seems likely that the absence of gains commensurate with the risks

involved tends to make collusion less likely than otherwise in the presence

of substantial competitive advantage. 12

Finally, Table 4 presents the conjectural derivatives consistent with a

variety of MS and PR collusive equilibria. In all equilibria examined, the

leader's conjectural derivative, Xi, is less than the followers', X2. As

Table 4 indicates, the difference between these parameters can be quite

dramatic. If estimates of this sort were obtained econometrically in some

market, there would be a tendancy to characterize the followers as more

concerned about competitive reactions than the leader. But, by construction,

the parameter values in Table 4 characterize solutions to cooperative games,

not differences in expectations or competitive behavior.

When either the MS or the PR technology is employed, both parameters

tend to increase with N, as condition (9) suggests. Holding N constant,

increases in R tend to lower X1 and to raise X2 in MS collusion. Under the

PR technology, increases in R tend to lower both parameters, but several

exceptions to this rule are visible in Table 3. As cost differences are

increased, it becomes harder to make large proportional reductions in output

without making the leader worse off. Consistent with this, all of the PR

equilibria shown in Table 4 correspond to points outside the MS contract

curve (where, in the notation of the Appendix, > 1), except for the three

ES equilibria in the upper right-hand corner of the Table.
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6, Conclusion!

Symmetric oligopoly models may lack empirical relevance; they are

certainly very special theoretically. Even with functional forms selected

for tractability, relaxation of the assumption of symmetry gives rise to

considerable albegraic complexity. Four technologies for affecting collusion

that are essentially equivalent in the symmetric case are quite distinct

when sellers' costs differ. Numerical analysis of collusive solutions

implied by axiomatic bargaining theory reveals a variety of distinctions and

effects not present in the symmetric case.

Two of these seem particularly important for applied work. First, if a

leading firm's cost advantage is substantial, its likely gains from collusion

are relatively small. Accordingly, collusion is unlikely to be observed in

the presence of substantial competitive advantage. Second, conjectural

derivatives consistent with perfect collusion may vary substantially from

firm to firm, depending on the nature of collusion, the importance of cost

differences, and the number of sellers. Differences in estimated conjectural

derivatives may thus reflect bargaining outcomes, not differences in rivalrous

behavior.
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APPENDIX

This Appendix explores two aspects of the market sharing technology

under general cost and demand conditions. First, we examine conditions

for convexity of the profit-possibilities frontier. Second, we describe

points on that frontier in terms of conditions on conjectural derivatives.

The latter conditions are relevant to the use of estimated conjectural

derivatives to describe seller behavior, following Iwata (1974).

For the case of two firms or two groups of identical firms, the profit-

possibilities frontier is obtained by maximizing 112 subject to the constraint

n - k 0, for k between zero and firm 's monopoly profit. The constraint

will be binding in this range, and the corresponding multiplier, , will

thus be positive. By the envelope theorem, at an optimum will equal

-d22 */dk = -dn2/dnl, where n2* is the constrained maximum of n2. The profit-

possibilities frontier, 2 = n2*(nl) ' will thus be convex if and only if

d+/dk is negative.

Totally differentiating the first-order conditions for a constrained

maximum of 2 and the constraint with respect to k and solving by Cramer's

rule, one obtains

d+/dk = - [(1-p) )2 + X(2P'+A) + X2(2+P'+A) - XI1X2]/D, (A1)

where A P(fq1+q2), Xi = d2Ci/dqi2 for i 1,2, and D is the determinant

of the bordered Hessian. The second-order conditions for constrained

maximization require D to be positive. In the constant cost case, X=X2=O,

and strict convexity follows immediately for any demand function satisfying

the second-order conditions. By continuity, the collusive frontier will

also be strictly convex for any demand function if marginal costs are rising

slowly enough. In order for the profit-possibilities frontier to be concave
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at any point, so that total profits attain a local or global maximum with

both firms (or types of firms) producing, marginal costs must be rising

sufficiently rapidly.

Let us now consider description of points along this frontier in terms

of conjectural derivatives. Let there be T firms, all of which may have

different cost functions, and let q-i be the output of all firms except firm

i. Then firm i's conjectural derivative, Xi, is its expectation of dqi/dqi.

Re-arranging the first-order condition for maximization of firm i's profits,

it is easy to see that the conjectural derivative consistent with equilibrium

at any qi, q-i pair is given by

= -(P - C + qiP')/qi P ' , (A2)

where C is firm i's marginal cost.

Points on the MS collusive frontier correspond to points at which n is

maximized subject to the constraints ni - ki > 0, i = 2,...,T. These

constraints will all be binding in the relevant region. Let i > 0 be the

multiplier corresponding to the constraint on firm i's profits. Writing out

the first-order conditions for this problem and substituting from (A2), we

obtain the equations that describe a point on the MS profit-possibilities

frontier in terms of the conjectural derivatives:

-X 1 ' I z1

1 -X 1 z
2 2· . 0, (A3)

1 i or' -Xi 

where zI1 ql and zi = iqi for i = 2,...,T.
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Since the zi are all positive, it follows from (A3) that all conjectural

derivatives are positive at a collusive equilibrium.13 Setting the

determinant of the matrix on the left of (A3) equal to zero, one obtains the

necessary and sufficient condition for perfect collusion, the Iwatacondition:

T
t E X i = 1, (A4)

il

where i = /(l+Xi) for all i. Equation (A4) is equivalent to Iwata's

(1974, p. 961) equation (6.12).

Since is a continuous function of the vector of outputs and (assuming

that Xi > -1 for all i) is zero only on the market sharing contract curve in

output space, it must have the same sign for all points above this curve.

Consider a set of small output changes, qi, i=l,...,T. The corresponding

changes in profits are given by

ani = (P-ci)(.i- ).q i , (A5)

where i = qi /&Q for all i. Since the i sum to unity, a necessary and

sufficient condition for there to exist a set of output increases (decreases)

that raise the profits of all sellers is clearly t < 1 ( > 1). Thus 

exceeds unity at all points above the MS contract curve in output space.

The quantity 1/9 accordingly provides a natural measure of the extent to

which industry behavior is collusive. This quantity is generally confined

to the unit interval, though < 1 is implied by use of the PR technology to

reach a point strictly inside the MS contract curve in output space. (This

corresponds to a point to the left of the tangency between the MS and PR

loci in Figure 11 points to the right of this tangency correspond to points
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on PR outside the MS locus in Figure 2.) The numerical results in Section

5 in the text suggest that such equilibria are unlikely, however.

A few special cases of condition (A4) are worth presenting. For T 2,

the condition is simply X1X 2 = , and when T=3, (A4) implies

XIX2X3 - (XI+X 2+X3) = 2. (A6)

When X2=X3=...= T one obtains equation (9) in the text. (The expression

shown there has the sign of -1.) Finally, setting X1=X2 in that equation

yields the condition for the symmetric case: Xi = (T-1) for all i. Except

in this case, perfect collusion is consistent with substantial differences

in implied (or estimated) Xi across firms. (See Table 4 for some examples.)

When = 1, such differences should be interpreted as reflecting bargaining

outcomes, not differences in rivalrous behavior.
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III

FOOTNOTES

Much of the research reported here was performed while I was a visitor

at CORE, I am indebted CIM (Belgium) for financial support, to Jacques

Thisse for arranging my visit, and to him and my other hosts at Louvain for

making my stay pleasant and productive. I am also grateful to participants

in seminars at CORE, LSE, and the Norwegian School of Economics and Business

Administration for helpful discussions of earlier versions of this essay and

to Garth Saloner for useful comments and suggestions. The usual waiver of

liability applies, of course.

1. See, for instance, Friedman (1983). Osborne and Pitchik (1983) provide

a recent exception to this generalization. They assume equal costs,

however, and use the Nash (1953) variable-threat bargaining model to

analyze the implications of differences in capacity.

2. It is perhaps also worth noting that in the FTC Line-of-Business data

for 1975, industry dummy variables and market share together explain

only about 20% of the sample variance of business unit profitability; see

Schmalensee (1985). That is, intra-industry differences in profitability

are much more important than inter-industry differences, even when the

effect of market share is controlled for.

3. See, for instance, Osborne (1976) and Clarke and Davies (1982). Osborne

stresses a mechanism for enforcing maximization of total industry

profit against violations of output quotas, but his mechanism rests on

threats that are not fully credible (p. 839).
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4. See also Fellner (1949), Bishop (1960), and, for a treatment broadly

similar in spirit to that undertaken here, Osborne and Pitchik (1983).

Chandler (1977, chs. 4 and 10) discusses the behavior of and problems

encountered by 19th century cartels in the US.

5. I am persuaded that non-cooperative bargaining theory (see, for instance,

Fudenberg and Tirole (1983)) provides a more satisfactory approach in

principle. But for the purposes of the present study I need relatively

simple solutions that can be applied to a static model, and non-

cooperative theory has yet to produce such solutions.

6. 1 thus ignore the possibility that a point inside the frontier will be

chosen in order to enhance cartel stability. See Porter (1983) or, for

an interesting precursor, Orr and acAvoy (1965). Note that the

possibility of entry is also neglected.

7. Blair and Kaserman (1985, ch. 7) discuss this device at some length.

For brief discussions, see Stigler (1984) and Scherer (1980,

pp. 168-175). Market division, when possible, may serve to enhance

cartel stability by facilitating detection of cheating, but our concern

here is solely with its implications for profitability in the absence

of cheating.

8. Even though Figure 2 suggests that the proportional reduction technology

can reach a point on the MD contract curve, it should be clear that total

profits at that point are less than the corresponding market division

profits, since the market is in fact being shared by firms charging a

single price.
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9. The other obvious focal point would set S*, the leader's collusive

share of output, equal to S. But under MS or PR, this "solution" makes

the leader worse off than at the status quo point if condition (8) in

the text is satisfied Under the MD technology, the analogous condition

can be shown to be S(4S+I)>1 and

N > (1+2S-3S2)/(4S2+S-1).

Any (N,S) pair satisfying condtion () in the text also satisfies this

condtion, but not conversely. For N 1, the condition above is

satisfied for S > .611; as N increases, the critical declines to

.390.

10. All the equilibria discussed in the text were computed for N = 1,

2,...,10, for R ranging over the interval (1.0, 2.0). Programs were

written in IBM/Microsoft BASIC, Release 2.0, and executed on an IBM

PC. The author will be happy to supply copies of all programs employed

to anyone sending a suitable formatted diskette.

11. The general formulae for these changes in the symmetric case are as

follows. Profits increase by 100xN2/[4(N+1)3X%. This quantity rises

without bound as N increases (since symmetric Cournot profits go to

zero as N increases). Consumers' surplus decreases by

100x[N(3N+4)]/[4(N+1) 2 %. This quantity rises to 75% as N increases.

Finally, total surplus falls by 100x[N(N+4)]/4(N+1)(N+3)]. The net

loss due to collusion rises to 25% of the Cournot total surplus as N

increases.
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12. It must be recalled that stability considerations have been ignored

throughout this analysis. If cost differences served in general to

enhance the stability of collusive arrangements, perhaps by facilitating

the choice of a price leader, this conclusion would have to be qualified

to some extent.

13. The first-order conditions for an interior maximum of total industry

profit are given by A3) with zi z qi for all i. From this one obtains

immediately the Clarke-Davies (1982) result that i=(I-Si)/Si for all i

at such a point, where Si is firm i's share of industry output.
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Table 1: Collusive Equilibria, N=1

Values of Percentage Surplus Gain % Profit
S and R Technology/Solution Leader Followers Consumers Net Sacrifice

RS=.500 Symmetric Benchmark
R=1.000

O-A AA

SP Nash

MD Nash
EG

W*=S

MS Nash
K-S
EG

PR Nash
K-S
EG

SP Nash

MD Nash
EG

W*=S

MS Nash
K-S
EG

PR Nash
K-S
EG

S=0.750-- -- 

12.50

16.67

9.86
8.55
6.67

9.50
9.50
8.22

6.67
6.40

12.50

7.17
4.84
2.08

5.81
5.81
3.78

2.08
1.70

5.09

3.87
1.94
0.28

2.51
2.52
0.96

0.28
0.21

12.50 -43.75 -31.25

37.50

16.99
19.29
22.50

18.69
18.69
22.49

20.14
21.60

112.50

32.91
43.58
56.25

25.18
25.18
34.00

31.73
40.82

412.50

105.02
157.31
202.50

48.01
47.95
78.08

42.93
61.27

-36.00

-41.73
-41.84
-42.00

-41.95
-41.95
-42.20

-36.46
-42.24

- -

-5.88

-14.31
-14.47
-14.71

-14.57
-14.57
-14.92

-12.36
-15.06

- -

-23.44 2.08

-31.41 -8.55
-32.05 -9.40
-32.81 -10.42

-38.43 -12.78
-38.43 -12.78
-39.14 -13.62

-23.86 -7.80
-32.53 -11.34

-9.75 2.56

-13.82 -2.06
-14.85 -3.24
-15.75 -4.26

-27.24 -8.41
-27.24 -8,41
-29.01 -9.81

-9.85 -3.24
-14.29 -4.82

0

0

8.95
9.13
9.37

9.33
9.33
9.50

9.97
9.75

0

10.42
11.25
12.24

12.05
12.05
12.82

14.25
13.79

0

4.51
5.66
6.56

6.35
6.35
7.41

8.42
8.27

Note: The PR/EG equilibrium does not exist when N = 1.

O-U. UUV

R=1.143

S=0.750
R=1.400

S=0.900
R=1.727

SP

MD

MS

PR

Nash

Nash
EG

W*=S

Nash
K-S

EG

Nash
K-S

EG



Table 2: Collusive Equilibria, R=1.40

Value
of N Technology/Solution

1 Symmetric Case, R=l

(S=.75) SP Nash

MD Nash
EG

W*=S

MS Nash
K-S
EG

PR Nash
K-S
EG

3 Symmetric Case, R=1

(S=.59) SP Nash

MD Nash
EG

W*=-S

MS Nash
K-S
EG

PR Nash
K-S
EG

5 Symmetric Case, R=l

(S=.53) SP Nash

MD Nash
EG

W*=S

MS Nash
K-S
EG

PR Nash
K-S
EG

Percentage Surplus Gain % Profit
Leader Followers Consumers Net Sacrifice

ii

12.50

12.50

7.17
4.84
2.08

5.81
5.81
3.78

2.08
1.70

56.25

16.31

12.47
7.25
7.08

11.32
11.47
6.52

7.02
6.19
6.29

04.17

15.63

12.86
7.15

10.34

11.84
12.14
6.62

10.05
9.29
6.62

12.50

112.50

39.21
43.58
56.25

25.18
25.18
34.00

31.73
40.82

56.25

306.25

119.52
136.19
136.74

107.28
106.80
122.48

104.99
119.19
118.18

104.17

493.06

210.74
229.48
219.01

195.24
194.25
212.51

184.56
196.84
212.50

-43.75

-23.44

-31.41
-32.05
-32.81

-38.43
-38.43
-39.14

-23.86
-32.53

-60.93

-36.72

-48.48
-49.37
-49.40

-54.70
-54.68
-55.48

-39.74
-47.75
-47.11

-65.97

-41.38

-54.49
-55.28
-54.84

-60.02
-59.98
-60.63

-47.21
-52.24
-60.94

-31.25

2.08

-8.55
-9.40

-10.42

-12.78
-12.78
-13.62

-7.80
-11.34

-21.88

4.88

-14.61
-16.09
-16.13

-19.24
-19.20
-20.58

-12.78
-16.64
-16.31

-23.44

6.43

-17.37
-18.81
-18.01

-21.89
-21.82
-23.13

-15.32
-17.97
-23.32

0

0

10.42
11.25
12.24

12.05
12.05
12.82

14.25
13.79

0

0

18.58
19.99
20.04

20.30
20.26
21.60

22.87
22.08
22.11

0

0

22.36
23.71
22.96

24.02
23.95
25.24

25.68
25.13
25.24

Note: The PR/EG equilibrium does not exist when N=l.
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Table 3: Collusive Equilibria, S=0.75

Value Percentage Surplus Ga
of N Technology/Solution Leader Followers Consume

Symmetric Cas

SP

MD

Cas

Cas

MS

PR

3 Symmetric

(R=1.62) SP

MD

MS

PR

5 Symmetric

(R=1.67) SP

MD

MS

PR

;e, R=l 12.50

Nash 12.50

Nash 7.17
EG 4.84

W*=S 2.08

Nash 5.81
K-S 5.81
EG 3.78

Nash 2.08
K-S 1.70
EG -

;e, R=1 56.25

Nash 8.10

Nash 6.61
EG 3.00

W*=S 2.08

Nash 5.44
K-S 5.60
EG 2.25

Nash 2.07
K-S 1.66
EG 1.85

;e, R=l 104.17

Nash 5.65

Nash 4.99
EG 2.01

W*=S 2.08

Nash 4.13
K-S 4.38
EG 1.50

Nash 2.05
K-S 1.66
EG 1.33

12.50

112.50

39.21
43.58
56.25

25.18
25.18
34.00

31.73
40.82

56.25

656.25

205.23
242.64
252.08

151.91
150.42
181.90

126.18
159.81
150.00

104.17

1270.83

404.17
452.43
451.25

299.53
295.89
337.95

228.32
278.32
300.00

-43.75

-23.44

-31.41
-32.05
-32.81

-38.43
-38.43
-39.14

-23.86
-32.53

-60.93

-23.44

-33.67
-34.93
-35.24

-46.31
-46.31
-47.63

-25.08
-32.93
-30.56

-65.97

-23.44

-34.64
-35.71
-35.69

-48.56
-48.46
-49.64

-26.24
-32.98
-36.00

.in % Profit
Irs Net

-31.25

2.08

-8.55
-9.40

-10.42

-12.78
-12.78
-13.62

-7.80
-11.34

-21.88

6.01

-8.16
-9.90

-10.34

-15.63
-15.54
-17.32

-8.07
-11.26
-10.26

-23.44

6.83

-8.80
-10.30
-10.26

-16.94
-16.80
-18.38

-8.48
-11.23
-12.56

Note: The PR/EG equilibrium does not exist when N=1.

1

(R=l.40)

Sacrifice

0

0

10.42
11.25
12.24

12.05
12.05
12.82

14.25
13.79

0

0

13.37
15.01
15.42

15.68
15.60
17.21

18.85
18.24
18.37

0

14.63
16.03
16.00

16.97
16.85
18.28

19.67
19.13
19.02

-
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Table 4: Implicit Conjectural Derivatives at Collusive Equilibria

N = 1 N=3 N=5
Value Technology/ 2
of R Solution 1 2 1 2 1 2

1.143 MS Nash 0.81 1.23 2.03 3.48 3.06 5.64
K-S 0.81 1.23 2.03 3.48 3.05 5.64
EG 0.83 1.20 2.17 3.38 3.30 5.52

PR Nash 0.83 0.95 1.78 2.86 2.65 5.01
K-S 0.93 1.06 1.94 3.12 2.70 5.12
EG - - 2.57 4.12 5.44 10.32

1.400 MS Nash 0.57 1.77 1.17 4.57 1.56 7.21
K-S 0.57 1.77 1.16 4.58 1.55 7.22
EG 0.61 1.64 1.29 4.32 1.71 6.92

PR Nash 0.34 0.73 0.78 2.40 1.08 4.39
K-S 0.51 1.09 1.03 3.19 1.29 5.22
EG - - 1.01 3.12 1.73 7.00

1.727 MS Nash 0.32 3.12 0.57 7.30 0.69 11.21
K-S 0.32 3.12 0.56 7.34 0.69 11.28
EG 0.37 2.72 0.63 6.75 0.75 10.63

PR Nash 0.11 0.59 0.22 1.85 0.29 3.25
K-S 0.17 0.88 0.32 2.67 0.39 4.47
EG - - 0.29 2.39 0.44 4.97

Note: The PR/EG equilibrium does not exist when N = 1.
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