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ABSTRACT

The traditional perturbution (or lexicographic) methods for

resolving degeneracy in linear programming impose decision rules

that eliminate ties in the simplex ratio rule and, therefore,

restrict the choice of exiting basic variables. Bland's

combinatorial pivoting rule also restricts the choice of exiting

variables. Using ideas from parametric linear programming, we

develop anti-cycling pivoting rules that do not limit the choice of

exiting variables beyond the simplex ratio rule. That is, any

variable that ties for the ratio rule can leave the basis. A

similar approach gives pivoting rules for the dual simplex method

that do not restrict the choice of entering variables.



The primal simplex method for minimization problems permits an

entering variable at each iteration to be any variable with a

negative reduced cost and permits the exiting variable to be any

variable that satisfies the minimum ratio rule. As is well-known,

any implementation of the procedure is guaranteed to converge if the

problem is nondegenerate. In addition, there are two well-known

methods for resolving degeneracy. The first of these, the

perturbation (or equivalently, the lexicographic) method, avoids

cycling by refining the selection rule for the exiting variable

(Charnes [1952], Dantzig [1951], Wolfe [1963]). The second method,

the combinatorial rule, developed by Bland [1979], avoids cycling by

refining the selection rule for both the exiting and entering

variables. The situation raises the following natural question: Is

there a simplex pivoting procedure for avoiding cycling that does

not restrict the minimum ratio rule choice of exiting variables? In

this note, we answer this question affirmatively by describing an

anti-cycling rule based on a "homotopy principle" that avoids

cycling by refining the selection rule for only the entering

variable. We also describe an analogous dual pivoting procedure

that avoids cycling by refining only the choice of exiting

variables.

Our procedures are based upon a few elementary observations

concerning parametric simplex methods. These observations may be of

some importance in their own right, since they may shed light on

some theoretical issues encountered in several recent analyses
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of average case performance of parametric simplex methods

(e.g., Adler [1983], Borgward [1982], Haimovich [1983], Smale

[1983]). In particular, whenever the probability distribution of a

parametric linear program is chosen, as is frequently the case, so

that the problem satisfies a property that we call dual

nondegeneracy, then the parametric algorithm converges finitely even

if it is degenerate.

Parametric Linear Programming

Consider the following parametric linear programming problem:

Minimize (c + ed)x

subject to Ax = b P(e)

x > 0

where A is an mxn constraint matrix with (for notational

convenience) full row rank. For a given value , we say that P(e)

is nearly dual nondegenerate if for each primal feasible basis B

there is at most one nonbasic variable x i whose reduced cost

ci + ed i is 0. We say that the parametric problem P is dual

nondegenerate if P(e) is nearly dual nondegenerate for all ecR.

Consider the usual parametric simplex algorithm for solving

P(e) for all values of e, starting with a basis that is optimal for

all sufficiently large values of . In the case that P is dual

nondegenerate, we show that the procedure will not cycle (without

any perturbations). We then apply this result to give new primal

simplex pivot rules that (1) are guaranteed to avoid cycling, and
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(2) rely only on the selection of the entering variable; i.e., any

basic variable satisfying the minimum ratio rule may leave the

basis.

The following procedure is a version of the usual parametric

simplex method as applied to a minimization problem.

Begin

let BO be an optimal basis for P(e) for all 8 > 90;

let i=1;

while d 0 do

begin

let B = Bi-1;

let c, d denote the reduced costs for the vectors c and d

with respect to basis B;

select index s so that -cs/ds = max (-cj/dj:dj > 0);

let e i = -Cs/ds;

if B- 1As < 0 then quit (since P(e) is unbounded from below

for all e < e');

else let Bi be obtained from B by pivoting in x and

pivoting out any variable chosen by the usual simplex

pivot rule (i.e., ties in the ratio rule can be broken

arbitrarily);

let i = i+1;

end.

end.
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We note that if d < 0 at any point in this algorithm, then

c + ed > c + ei-ld for all < ei- i and hence B is an optimal basis

for all e < ei - 1 . The iterative modification of in the parametric

programming procedure can be conceptualized differently as expressed

in the following observation.

REMARK 1. Suppose that B=Bi- 1 is an optimal basis for problem P(e*)

for some e* and let ei be selected as in the "while loop" of the

parametric algorithm when applied to this basis B (consequently, c

and d are defined by B). Then ei = min (e: B is optimal for P(e)).

PROOF. If < ei, then c s + e ds < 0 and B is non-optimal. Also,

by our choice of ei,

Cs + eids if d > 

cj + ei dj >

cJ + e dj if dj < O.

But then each cj + eidj > O, since c s + sid = 0 and cj + e*adj > 

because B is an optimal basis for P(e*). Since cj + eidj = 0 for

every variable j corresponding to a column from B, B is optimal for

p(ei)

Let B be an optimal basis for P(e ° ) and let 8 i and Bi for i > 1

be defined recursively as in the parametric procedure. Moreover, let

i = reduced cost with respect to the basis Bi- 1 of the variable
s

pivoted into Bi - 1 to obtain Bi.
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PROPOSITION 1. For all i > 0,

(i) Bi is optimal in [ei+ 1, i];

(ii) If P(e) is dual nondegenerate, then e i+ 1 < el;

(iii) ci < 0 for all i such that ei > 0.
5

PROOF: Part (i) is a consequence of our previous remark, the fact

that both Bi and Bi - 1 are optimal at ei , and the fact that (8e: Bi is

optimal for P(e)) is an interval. We prove (ii) via a contradiction.

Let i be selected so that e i + 1 = eI and either i = O or else e i < e i -1

Let xt be the variable pivoted into basis Bi to obtain Bi+1 and

let xp be the variable pivoted out of basis Bi- 1 to obtain Bi. Also

let be the reduced cost for d with respect to Bi. Then xt # xp

because dt > and dp < 0 (dp < 0 since cp + e i dp = 0 and

cp + dp > 0 for < ei). Moreover, the assumption ei+l = 

implies that ct + ei+l dt = t + e dt = p + ei p = O,

contradicting the near dual degeneracy of P(ei).

To see (iii), note that i = -ci/di and d1 > 0.

This proposition implies that the sequence of pivots generated

by the parametric algorithm defines a simplex algorithm for the

nonparametric problem minimize {cx: Ax = b, x > O)}. We record this

result as follows:

COROLLARY. Let BO, ... , Bt be a sequence of bases obtained by

the parametric algorithm, and let t be first index for which t+ is

less than O. Then
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(i) Bt is optimal for min (cx: Ax = b, x > 0);

(ii) the bases BO, ... , Bt are distinct;

(iii) the pivot sequence satisfies the usual pivot selection

rule, viz., the entering variable has a negative reduced

cost for cost vector c. I

REMARK 2. Note that Proposition 1 remains valid if we replace dual

nondegeneracy with the slightly weaker assumption that the argmax

(-cjldj:dj > 0) is unique and hence the index s is unique at each

iteration of the parametric algorithm.

An Application to a Primal Pivot Rule

We next show how to apply the previous proposition to define

primal pivoting rules that, without any special provision for

choosing the exiting variable, avoid cycling.

Our previous results demonstrate that the parametric simplex

method defines an anti-cycling pivot sequence for

minimize cx

subject to Ax = b (P)

x > 0

whenever we can choose the objective function coefficients c and d so

that

(i) some basis B of A is optimal for all sufficiently large

values of , and

(ii) P is dual nondegenerate.

To establish these two criteria, let B be any feasible basis for (P)

7



corresponding to the columns of B and with positive components

corresponding to the columns of N will satisfy property (i). To

ensure that P is dual nondegenerate, however, requires that we avoid

ties in computing the entering variables from the parametric ratio

test -cs/d s = max {-cj/dj: dj > 0). One natural approach is to use

perturbations of c or d. For example, following the lead from the

usual (nonparametric) perturbation theory of linear programming, we

might perturb the nonbasic columns of c or d by distinct powers of 

for some small > . Alternatively, we might use a variant of the

familiar big M method: choose the nonbasic cost coefficients of d as

distinct powers of M for some large constant M. These procedures

lead to the following parametric objective functions:

(1) c + N + e N,

(2) c + e(¢N + IN), and

(3) c + e(l/c)N.

In these expressions, N denotes a vector with zero components

corresponding to columns in B and with components c 1, 2, ... , e n - m

for all columns in N in, say, their natural order from A. Also

1N = N with = 1, and (1/c)N = 6N with = 1/. The first two of

these objective functions perturb c and d. The third objective

function is the polynomial big M method alluded to prior to the last

display with the choice M = 1/c.

For each of these objective functions, for all 0 < < 1, B is a

unique optimal basis for sufficiently large values of e. Therefore,

each one defines an anti-cycling pivot rule if P is dual

nondegenerate. To demonstrate this property, we first establish a

preliminary result by a modification of the usual perturbation

argument.
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PROPOSITION 2

Let Al, ... , Am be the columns of some basis B. Suppose that

D = (D 1, D 2, ... , D) is any other basis, possibly containing

some columns of B. Suppose that A = [B,N], that h = N and

that h = h - hDD-1A (hD is the subvector of h corresponding to

the columns in D.) Then hi and hj are distinct nonzero

polynomials in c with zero constant terms whenever i and j are

indices corresponding to distinct columns of A other than

D1, D2 ... , D.

PROOF:

We use a linear independence argument. First, let us duplicate

the columns of D and consider the following partitioned matrix:

0 I CD

B N D

containing an (n-m) x (n-m) identity matrix I, and a submatrix CD of

[0,I] corresponding to the columns D from [B,N]. Therefore, each

column of CD is either a copy of a column of the submatrix 0 or a

copy of a column of the identity matrix I. We observe that the

matrix M has linear rank of n. Let denote the vector ( 1, c2,

en-m). Let Q = [0,I]. Then h = Q. Next consider the following

matrix obtained by pivoting on the basis D in M:

CB CN O

Mt I
D'-lB D-1 N I.
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Let Q' = [CB, CN]. Then Q' has full row rank n-m because M has full

row rank n, and M' is obtained from M by pivoting. Moreover, the last

m columns of M' are copies of columns of the first n columns. The

column of Q' corresponding to each of these "original columns" must be

a 0 vector. Deleting these n zero vectors leaves an (n-m) x (n-m)

nonsingular submatrix Q''.

Finally, observe that h - hDD-1A = Q - CDD-1A = cQ''.

Consequently, the two polynomials hi and hj refered to in the

statement of the proposition may be obtained from two distinct

elements of the vector Q'' and are thus distinct polynomials in £

with zero constant terms. X

Now consider the selection rule for the incoming variable at any

point in the parametric simplex method. Assume that the current

basis is D and that c and d are the reduced costs of c and d = 1N with

respect to this basis. As in Proposition 2, let h = N. Then the

ratio rule for choosing the incoming variable for the three objective

functions (1), (2) and (3) becomes:

(1') max -(cj + hj)/dj: dj > 0)

(2') max {-cj/(dj + hj): dj > 0), and

(3') max {-cj/hj(l1/): hj(l/c) > 0).

In (3'), hj(1/e) denotes the polynomial in 1/c obtained by replacing

E by 1/e in hj. By the usual purturbation argument, if £ is a

sufficiently small constant (i.e., < (D) for some constant (D) <

1), then a single index j gives the unique minimum in each of these

ratios. Consequently, for all < min ({e(D): D is a basis of A), the
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entering variable is unique and Proposition 1 (see Remark 2 as well)

and its Corollary apply. (Similarly, if we express the reduced cost

for D as a function of 'c and , then by Proposition 2, each reduced

cost is a different nonconstant polynomial in and is linear in .

Therefore, if is sufficiently small, then the value of e for which

the reduced of xj is 0 is different for all nonbasic variables j.

That is, P is dual nondegenerate.)

Each of the perturbations (1), (2), and (3) lead to different

pivot rules that can be interpreted as certain lexicographic selection

procedures. Since our purpose in this note has been merely to

establish the possibility of simplex point rules that do not restrict

the leaving variable, we will not specify the details of these

procedures, nor do we discuss their computation requirements (or claim

that they are efficient).

In concluding this section, we might note that the parametrics

(or homotopies) seem essential for the results given in this paper.

Simply perturbing the objective function to avoid ties in the

selection of an entering variable will not suffice. For example, in

standard examples of cycling in the simplex method, there is no dual

degeneracy and the choice of an entering variable is unique.

Dual Pivot Rules

Arguments similar to those used previously apply to right-hand

side parametrics in a dual simplex algorithm. That is, consider the

parametric problem

minimize cx

subject to Ax = b + eg

x > 0.
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We say that this problem is primal nondegenerate if for any dual

feasible basis B (i.e., c - cgB B-1A > 0) and parameter value ', there

is at most one basic variable xj whose value is zero. Then, assuming

that B° is an optimal basis for sufficiently large values of the

parameter e and assuming primal nondegeneracy, we can mimic our

earlier arguments to show that the usual parametric dual simplex

method will

(i) compute optimal solutions to P'(e) for all < 0° ,

(ii) for values of > 0, defines a dual simplex method

(i.e., at any step (i), the leaving variable x r

satisfies br = [(Bi)-lb]r < 0).

Consequently, the primal nondegeneracy assumption results in a

finitely convergent dual simplex algorithm that permits any variable

satisfying the dual minimum ratio rule to leave the basis. In order

to ensure primal nondegeneracy, we can introduce right hand side

perturbations; that is consider right hand sides such as the following

[here is a column vector defined by £ = (1, 2, .... cm)]:

(i) b + eg + , or

(ii) b + e(g + c).

Choosing the m-vector g so that (BO)- 1 g > 0 will ensure that B is a

unique optimal basis for sufficiently large values for and that this

perturbation will ensure primal nondegeneracy.

Acknowledgment

We are grateful to Robert Freund for a suggestion that led to an

improvement in the proof of Proposition 2.

12

· _1___1_1_____·___1___I�_-_�._�_E--·r^-� �·�_l_�_i___·___�_�_���_I· .__..I ___.___�. � �



References

Adler, I. (1983). "The Expected number of pivots needed to solve
parametric linear programs and the efficency of the self-dual
simplex method," Technical Report, Department of Industrial
Engineering and Operations Research, University of California,
Berkeley, California.

Bland, R.G. (1977). New finite pivoting rules for the simplex method.
Math. of Oper. Research 2, 103-107.

Borgwardt, K.H. (1982). "The average number of steps required by the
simplex method is polynomial," Zeitschrift fur Operations
Research 26, 157-177.

Charnes, A. (1952). Optimality and degeneracy in linear programming.
Econometrica 20, 160-170.

Dantzig, G.B. (1951). Maximization of a linear function of variables
subject to linear inequalities. In T.C. Koopmans (ed.), Activity
Analysis of Production and Allocation, John Wiley and Sons, Inc.,
New York.

Haimovich, M. (1983). "The simplex method is very good! - On the
expected number of pivot steps and related properties of random
linear programs," Technical Report, Columbia University, New
York.

Smale, S. (1983). "On the average number of steps of the simplex
method of linear programming," Mathematical Programming 27, 241-
262.

Wolfe, P. (1963). A technique for resolving degeneracy in linear
programming. J. SIAM 11, 205-211.

13

111


