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Abstract: This note presents sufficient conditions for a convex

quadratic program, or its dual, to be transformed into a minimum

(Euclidean) norm problem, i.e. a problem of minimizing the norm of a

linear transformation of an element of a polytope. These sufficient

conditions are shown to be necessary under a suitable restriction on

the class of transformations that are allowed. As part of the

sufficient conditions, we characterize when the two linear

inequality systems Ax > b and Az < b have simultaneous solutions.

These results are used in conjunction with duality constructions to

obtain two equivalent reformulations of a given quadratic program.
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program.
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A minimum (Euclidean) norm problem over a polytope is a program

of the form:

NP: minimize UCx + dl
x

subject to: Ex > f

where 11*11 denotes the Euclidean (12) norm.

The purpose of this note is to explore answers to and

implications of the following question: when can a convex quadratic

program or its dual be conveniently transformed into a minimum

(Euclidean) norm program?

The standard convex quadratic program is given as

QP: minimize 1/2 xtQx + qtx
x

subject to: Ax > b

where Q is assumed to be symmetric and positive semi-definite. The

standard dual of QP, see Dorn [1], is given by

QD: maximize -1/2 ytQy + btX
y,X

subject to: -Qy + AtX = q

X > 0

The concern herein lies in discovering properties of the problem

data (Q,q,A,b) that allow the objective function in QP or QD to be

replaced by a norm, thus transforming QP or QD into an instance of

NP.

The rationale for exploring transformations of a quadratic

program to the minimum norm problem is threefold. First, the

minimum norm problem has an immediate geometric interpretation that

may be useful in the analysis and the solution of a given quadratic

program. Second, the minimum norm problem is a classical
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optimization problem, and has received extensive study, see for

example, Luenberger [5]. Third, the author has recently

investigated an alternate duality theory for the minimum norm

problem [2], that is applicable to quadratic programs that can be so

transformed.

If the matrix Q is symmetric and positive semi-definite, then Q

can be written as Q = MtM for some matrix M; efficient procedures

for constructing M are well-known, see e.g. Gill, Murray, and Wright

[3].

Proposition 1. If the system of linear inequalities (1):

At + Qs = q (1.1)

At6 - Qs = -q (1.2)

btT + bt6 > 0 (1.3)

> 0, 6 > O, (1.4)

has a solution (N, 6, s), then the program QP is equivalent to the

minimum norm problem

NP1: minimize {{Mx + Msl
x

subject to: Ax > b,

where M is any matrix for which MtM = Q.

Proof: For any x satisfying Ax > b, 1/2 xtQx + qtx =

1/2 xtMtMx + qtx = 1/2 xtMtMx + tAx + stMtMx = 1/2 UIMx + Msll2

- 1/2 stMtMs + tAx > 1/2 IIMx + MsH 2 - 1/2 stMtMs + btr ,

and similarly, using (1.2),

1/2 xtQx + qtx < 1/2 IIMx + MsI12 - 1/2 stMtMs - bt6. But since

btR > -bth, equality is obtained throughout, and 1/2 xtQx + qtx =
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1/2 IIMx + Ms112 - 1/2 stMtMs + btn. This expression is strictly

increasing in IMx + Msl, and so the quadratic objective function can

be replaced by [IMx + MslI. [X]

Remark 1. If q lies in the column space of Q, i.e., Qs = q has a

solution, then (0, 0, s) solves (1). In particular, If Q is

positive definite, (, 6, s) = (0, , Q-lq) solves (1).

Remark 2. For any solution (n, 6, s) to (1), bt = -bt6, and any

x that solves Ax > b will satisfy ttAx = ntb and tAx = 6tb. In

particular, any index i, 1 i < m, for which i > 0 or i > 0 will

be an always-active constraint of the system Ax > b.

Proposition 1 provides sufficient conditions for QP to be

transformed into a minimum norm problem. Before turning to the

question of necessary conditions, we first introduce some

terminology. Given the matrix Q of the program QP, the norm Cx + dl

is said to be derived from Q if CtC = Q. A norm Cx + d is said

to be monotonically transformable in the objective function of QP if

for any feasible points x, x of QP. [lCx + dl > Cx + dl

(respectively, ) if and only if 1/2 xtQx + qtx > 1/2 xtQx + qtx

(respectively, >).

Proposition 2. If QP is feasible, then QP can be monotonically

transformed to a minimum norm problem with objective function

llCx + d derived from Q only if the system of linear inequalities

(1) has a solution.

Proof: Suppose that system (1) has no solution. Then, by a theorem

of the alternative, there exist vectors x, x and a nonnegative

scalar e that satisfies:
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Ax > be

Ax > be

Qx = Qx

qtx > qtx

There are two cases to consider, depending on whether e is positive

or zero.

Case 1: e > . Without loss of generality, we can assume that

8 = 1, and so x and x satisfy:

Ax > b

Ax > b

Qx = Qx

qtx > qtx

If there exists C and d such that IICx + dll is a strictly monotonic

transformation of the objective function of QP and is derived from

Q, then 11Cx + dl > Cx + dll. But Qx = Qx and Q = CtC implies that

Cx = Cx, and so IICx + dl = IlCx + dll, a contradiction. Thus no such

norm can be found.

Case 2: e = 0. Because QP is feasible, there exists x' that

satisfies Ax' > b. Therefore (x' + x) and (x' + x) satisfy:

A(x' + x) > b

A(x' + x) > b

Q(x' + ) = Q(x + x)

qt(x' + x) > qt(x' + x)

and the proof follows that of case 1, with x replaced by (x' + x)

and x replaced by (x' +x). [X]

Turning to the dual quadratic program QD, our first result is:
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Proposition 3. If the system of linear inequalities (2):

Av > b (2.1)

Az < b (2.2)

Qv - Qz = o (2.3)

qtv - qtz = 0 , (2.4)

has a solution (v, z), then the dual quadratic program QD is

equivalent to the minimum norm problem

NP2: minimize IlMy - Mz
y,X

subject to: -Qy + AtX = q

X > 0O

where M is any matrix for which Q = MtM.

Proof: For any (y, X) that is feasible for QD,

- 1/2 ytQy + btX < - 1/2 ytQy + vtAtX = - 1/2 ytMtMy + qtv

+ vtQy = - 1/2 HMy - Mv 2 + qtv + 1/2 vtQv. Similarly, using (2.2),

we obtain - 1/2 ytQy + btX < - 1/2 My - Mzl 2 + qtz + 1/2 ztQz.

However, Qz = Qv implies that Mz = Mv, and combining this relation

with qtz = qtv, we have - 1/2 ytQy + btX = - 1/2 flMy - Mzll2

+ qtz + 1/2 ztQZ. This expression is strictly decreasing in

HMy - Mz, and so we can replace the maximand by the minimand

IlMy - Mz11. [X]

Remark 3. Proposition 3 is structurally the same as Proposition 1,

applied to the dual. Proposition 3 is obtained by rewriting the

dual QD in the format of the primal and then applying Proposition 1.

In this sense, the two propositions are the same.
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In order to prove a result about necessary conditions for QD to

be transformed into a minimum norm problem, our notation must be

amended. Given the matrix Q of the dual quadratic program QD, the

norm {ICy + EX + dl is said to be derived from Q if CtC = Q and

E = O. A norm Cy + EX + dl is said to be monotonically

transformable in the objective function of QD if for any feasible

points (y, X), (y, X) of QD, Cy + EX + d > Cy + EX + dl

(respectively, ) if and only if - 1/2 ytQy + btX < 1/2 ytQy + btX

(respectively, <).

Analogous to Proposition 2, we have:

Proposition 4. If QD is feasible, then QD can be monotonically

transformed to a minimum norm problem with objective function

RCy + EX + d derived from Q only if the system of linear

inequalities (2) has a solution.

Proof: The proof exactly parallels that of Propostion 2. If QD

is feasible, then if system (2) has no solution, there must exist

vectors X, X, y that satisfy

- Qy + AtX = q

- Qy + AtX = q

X > 

X> 0

btX > btX

Thus if Cy + EX + dl is strictly monotonic in the objective

function of QD, and is derived from Q, then ilCy + EX + d{

< Cy + EX + d, which is clearly a contradiction, because E = 0.

Thus no such norm can be found. [X]
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Proposition 2 (and in the dual, Proposition 4) shows that the

solvability of the system of linear inequalities (1) is necessary

for QP to be transformed to the minimum norm program, provided that

the transformation is restricted by the monotonicity condition and

the condition that the norm be derived from Q. When these

restrictions are relaxed, the solvability of the system (1) is no

longer the necessary condition, as the following example shows. Let

Q 0 0 I, A =1 0 b [31

Then the inequalities (1) have no solution. However, this instance

of QP is monotonically transformable to the minimum norm program

with objective function Cx + d, where

C 1 1 and d = -8]

To see this, note that for any x feasible in QP, qtx > 8, and

indeed, the optimal solution is x* = (3 ,5 )t, with qtx* 8. Also,

UCx + d = 42(qtx -8)(qtx -8)

which is strictly increasing in qtx for qtx 8. Thus Cx + d is

monotonically transformable from QP, even though system (1) has no

solution. However, C is not derived from Q in this example. The

key to the above transformation was the judicious choice of d, based

on a known lower bound on the optimal value of QP.

If the montonicity condition is relaxed, then prior knowledge

of the set of optimal solutions to QP allows us to write any

instance of QP as a minimum norm program. For example, if the

optimal solution x* of QP Is unique (which it can be even if Q=O,
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i.e. QP is just a linear program), then QP is equivalent to the

minimum norm program:

minimize IIx-x*11
x

subject to: Ax > b

This transformation appears somewhat pointless in that the quadratic

program has been solved before the transformation is even made.

Nevertheless, the transformation can be accomplished in polynomial

time, because linear and convex quadratic programming are solvable

in polynomial time [4]. The question of necessary conditions for a

quadratic program to be transformed into a norm program thus clearly

depends on the class of transformations that are allowed.

Note that the pair of inequalities (2.1) and (2.2) of

Proposition 3 are described by reflecting the halfspaces defined by

the feasible region of QP. A curious issue raised in light of

Proposition 3 is the simultaneous solvability of the system Ax > b

and Az < b. This issue is treated in the next proposition. Let

aff(x) and rec(x) denote, respectively, the affine hull and the

recession cone of a set X, see Rockafellar [6]. A constraint Ajx > bj

in the system Ax b is said to be parallel redundant if the

constraint is redundant and Ajx = d > bj for every x that satisfies

Ax > b, i.e., Ajx is constant for every x satisfying Ax > b. The

following proposition characterizes when the system Ax > b and Az < b

both have a solution.

Proposition 5. Let X = {xERnAx > b} and Z = {zERnlAz < b), and

furthermore assume that X and that no constraint of the system

Ax > b is parallel redundant. Then Z if and only if

dim(rec(x)) = dim(x).
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Proof: Suppose Z *. Then there exists x and z for which Ax > b

and Az < b. Let k = dim(x), and note that k > 0. If k=O, then since

0 E rec(x), dim(rec(x)) > 0 = k. However, since dim(rec(x)) < dim(x),

equality must hold, i.e., dim(rec(x)) = dim(X). If k > 0, there exist

vectors xl,...,xk, all elements of X, for which

dim aff{x, xl,...,xk) = k. Therefore dim aff{x, x,...,xk, z}) > k,

and so {xl-z ... ,xk-, -z) has k linearly independent elements.

But A(xl-z) > 0,...,A(xk-z) > 0, A(x-z) > O, i.e. {xl-z,...,xk-z, x-z}

are elements of rec(X). Thus dim rec(X) > k, and hence equal to k,

because dim(rec(x)) < dim(x).

Conversely, suppose Z = *, and assume that dim(rec(x)) = dim(X)

= k > 0. If the constraint matrix A has m rows, then the constraint

index set M = {l,...,m} can be partitioned into disjoint sets a and

B, where u B = M, such that Aax = b for every x E X, and there

exists an element x of X that satisfies Ax > b (x is any element

of the relative interior of X). Furthermore, rank (A.) = n-k. If

k=O, X is a singleton (x) and every index j B is a parallel

redundant constraint, whereby B=0. Thus Ax = b, and so x Z,

contradicting Z=*. Therefore, dim(rec(X)) < dim(x). If k > 0,

there exists linearly independent vectors x1 ,...,xk in rec(x), i.e.

that satisfy Axi > 0, i=l,...,k, and Aaxi = 0, and aff(xl,...,xk,o)

= aff(rec(x)) = {x E RnIAax = b). If there exists an index J 6 B

for which Ajxi = 0, i=l,...,k, then Aj must be a nonnegative

combination of the rows of A, i.e. there exists Xa > 0 for which

tXA = Aj. Thus X ba bj, and Ajx > bj is a parallel redundant

constraint, violating the hypothesis of the proposition. Thus

dim(rec(x)) < dim(x). [X]
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It is curious that the solvability of Ax > b and Az b in

Proposition 5 can be characterized in terms of the dimension of X

and rec(X), as opposed to a characterization in terms of dual

multipliers via a theorem of the alternative.

As the following examples show, the primal, dual, neither, or

both programs will satisfy the linear inequalities (1) and/or (2).

Example 1 Q = 0 , q = 0 A = 0 1 b = 3

In this example (, 6, s) = (0, 0, ) solves (1), whereby QP is a

minimum norm program. However, Az < b has no solution, and so the

transformation of the dual QD by Proposition 3 cannot be

accomplished.

Example 2 Q = -

In this example, = 0, 6 = 0, s = (1, )t solves

(1, )t, z = (-1, -l)t solves (2); therefore both

transformable to norm programs.

(1), and x =

QP and QD are

Example 3

In this example, it is straightforward to show that neither (1) nor

(2) have a solution, and so the transformations of Propositions 1

and 3 cannot be applied.
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An Application of Hidden Norms in Gauge Duality

One motivation for the study of hidden minimum norm programs in

quadratic programming is the author's recent investigation of dual

gauge programs [2], of which the minimum norm problem is a specific

case. If QP can be converted (through Proposition 1) to the minimum

norm problem NP1, then either the standard (Lagrange) dual or the

gauge dual of NP1 can be constructed.

The gauge dual of NP1, see [2], is given by

GNPI: minimize IhU 2

h,X

subject to: Mth - AtX = 0

(stAt + bt)X = 1

> 0O

Replacing the objective function by 1/2 hth and then taking the

standard (Lagrange) dual yields:

QP: minimize 1/2 ftqf + estQf + 1/2 stQse2 - e
f,e

subject to: Af - be > 0.

Because QP is obtained from QP by two consecutive duality

constructions (first the gauge dual, then the Lagrange dual), we

should expect QP and QP to be equivalent. The feasible region of QP

is obtained by adding the extra variable e that scales the right-

hand-side b, and converts the constraints Ax > b to the homogeneous

system Af - be > O, replacing the polytope of QP by a polyhedral

cone in one higher dimension. The sense of equivalence of QP and QP

is shown in the next proposition, which shows how optimal solutions

of QP and QP transform one to the other.
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Proposition 6. Let (T, , s) be a solution to (1). Let x be an

optimal solution to QP with optimal Karush-Kuhn-Tucker (K-K-T)

multipliers , and define t = stQx + stQs + btn + btS. Then

(i) if t O, (f, e) = (x/t, l/t) solves QP with optimal K-K-T

multipliers = ( + )/t.

(ii) if t = O, Ax > b, Qx + Qs = 0 has a solution, and QP is

unbounded.

Let (f, 8) be an optimal solution to QP with optimal K-K-T multipliers

c. Then:

(i) if e # O, x = f/e solves QP with optimal K-K-T multipliers

= C/e + S.

(ii) if e = O, then QP is infeasible. [X]

The proof of this proposition follows from an examination of the K-K-T

conditions and from direct substitution of the indicated

transformations.

The program QP was obtained by taking the gauge dual of QP,

followed by the standard (Lagrange) dual. If (v, z) solves (2), then

the (Lagrange) dual QD is transformable to a minimum norm problem, and

the order of the dualization can be reversed. Starting with the

standard quadratic program dual QD, and converting QD to the minimum

norm problem NP2, and then taking the gauge dual of NP2 yields:

QP: minimize 1/2 wtQw
w

subject to: Aw > 0 (X)

(_qt ZtQ)w = 1 (r)

The feasible region of QP is composed of the intersection of the

recession cone of the feasible region of QP (described by the

homogeneous constraints Aw > 0) with a hyperplane (described by
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(_qt - tQ) w = 1) that scales elements of the recession cone.

Analagous to Proposition 6, we have:

Proposition 7. Let (v, z) be a solution to (2). Let x be an

optimal solution to QP with optimal K-K-T multipliers A, and define

u = -qtx + qtz -_ tQx + tQz. Then

(i) if u # O, w = (x - )/u solves QP with optimal K-K-T

multipliers X = n/u, r = 1/u.

(ii) if u = 0, QP is infeasible.

Let w be an optimal solution to QP with optimal K-K-T multipliers

X, r. Then

(i) if r # 0, x = w/r + v solves QP with optimal K-K-T

multipliers = t/r.

(ii) if r = 0, QP is unbounded. [X]

It is hoped that the equivalences of QP to the programs QP and QP

given herein will be useful in applications of quadratic programming.
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