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Abstract

The probabilistic vehicle routing problem (PVRP) is a natural
probabilistic variation of the classical vehicle routing problem (VRP),
in which demands are probabilistic. The goal is to determine an a
priori route of minimal expected total length, which corresponds to the
expected total length of the route plus the expected value of the extra
distance that might be required because demand on the route may
occasionally exceed the capacity of the vehicle and force it to go back
to the depot before continuing on its route. In this paper we analyze
the PVRP using a variety of theoretical approaches. We find closed-
form expressions and algorithms to compute the expected length of
an a priori route under various probabilistic assumptions. Based on
these expressions we find upper and lower bounds for the PVRP and
the VRP re-optimization strategy, in which we find the optimal route
at every instance. We propose heuristics and analyze their worst-case
performance. Moreover, we perform probabilistic analysis for the case
that customer locations are random in the unit square and succeed
in proving some sharp asymptotic theorems for the PVRP and the
VRP re-optimization strategy, in which we find the optimal route
at every instance. We further propose some asymptotically optimal
algorithms. It is quite surprising to find that the PVRP and the
strategy of re-optimization are asymptotically equivalent in terms of
performance. Our results suggest that the PVRP is a strong and
useful alternative to the strategy of re-optimization in capacitated
routing problems.

Key words:Probabilistic vehicle routing problem, re-optimization strategy,

probabilistic analysis, worst-case analysis of heuristics.
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Introduction
We consider a standard vehicle routing problem, i.e. a routing problem

with a vehicle of capacity Q, a single depot and an objective function which

minimizes total distance traveled, but with demands which are probabilistic

in nature rather than deterministic. The problem to determine a fixed

route of minimal expected total length, which corresponds to the expected

total length of the fixed set of routes plus the expected value of the extra

distance that might be required by a particular realization of the random

variables, is called the probabilistic vehicle routing problem (PVRP). The

extra distances will be due to the fact that demand on the route may

occasionally exceed the capacity of the vehicle and force it to go back to

the depot before continuing on its route. This class of problems differs from

the stochastic vehicle routing problems described in [13] in the sense that

here we are concerned only with routing costs without the introduction of

additional parameters.

Depending on the time information becomes available, Jaillet and Odoni

[81 define several alternative versions of the PVRP. Two examples are shown

in Figure 1.

Under strategy a the vehicle visits all the points in the same fixed order

as under the a priori route, but serves only customers requiring service that

day. The total expected distance traveled corresponds to the fixed length

of the a priori route plus the expected value of the additional distance

that must be covered whenever the demand on the route exceeds vehicle

capacity. Strategy b is defined similarly to a with the sole difference that
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4(i) An a priori route through 6 customers (each with
a demand of zero orone unit) by a vehicle of
capacity 2 

Class A Class B

4(ii) The two strategies when only the second, third
and fifth customers have a non-zero demand. -

Figure 1: The PVRP methodology
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customers with no demand on a particular instance of the vehicle tour are

simply skipped.

The difference between the two strategies (strategy a and b) is essentially

due to the time the information on demand becomes available. Strategy a

models situations in which there is no a priori information on customers'

demand. The demand (if any) of any particular customer becomes known

only when the customer is visited. The vehicle is then forced to return

to the depot when its capacity is reached. Under strategy b, however, the

actual demand is known before the tour starts, so that savings can occur

by skipping customer locations with zero demand.

The reason for not re-optimizing the route on every problem instance

could be that the system's operator does not have the resources for doing so;

or, it may be decided that such redesign of tours is not sufficiently important

to justify the required effort and cost. Even more importantly, the operator

may have other priorities, such as regularity and personalization of service

by having the same vehicle and driver visit a particular customer every day.

These priorities can best be attained by following a probabilistic vehicle

routing strategy.

The PVRP has important applications in the fields of logistics and of

goods distribution. In general, PVRPs arise in practice whenever a com-

pany, on any given day, is faced with the problem of collections (deliveries)

from (to) a random subset of its (known) global set of customers in an area,

does not wish to or, simply, cannot redesign the routes every day and the

capacity of the vehicles used is a major constraint. Consider for example
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a problem in which a central bank has to collect money on a daily basis

from several but not all of its branches. The capacity Q of the vehicle used

may not correspond to any physical constraint but to an upper bound on

the amount of money that a vehicle might carry because of safety reasons.

There is a certain probability that a certain branch requires a visit depend-

ing on the amount of money it handles. In the same way there is a similar

problem, when the bank wishes to deliver money to the automatic teller

machines that are located in several locations in each area. In both cases

the problem of designing the routes can very well be modeled as a PVRP.

Similarly, the distribution of packages from a post office can be modeled

as a PVRP, where the probability that a certain building requires a visit

is given and the capacity Q corresponds to the physical constraint that a

mailman can carry only a fixed weight. Other areas of application include

transportation and strategic planning.

The scientific literature concerning the VRP has been expanding at a

very rapid pace, see for example the three excellent review volumes on the

traveling salesman problem [11], on routing and scheduling [3] and on vehi-

cle routing [5], each of which offers several hundreds of references. Except

for an isolated result in the 1970's ([14]), VRPs with stochastic elements in

their definitions have received attention only recently. Stewart and Golden

[13], Dror and Trudeau [4], Laporte and Louveau [9] and Laporte et al.

[10] use techniques from stochastic programming to solve optimally small

problems and find bounds for the problems, the definitions of which are

different from the ones we are considering in this paper.
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The idea of using an a priori tour for the solution of traveling salesman

problems when instances are modified probabilistically was first introduced

in the Ph.D thesis of Jaillet [7]. This idea was generalized to other com-

binatorial optimization problems in the Ph.D thesis of the author [2], in

which the probabilistic minimum spanning tree, the probabilistic traveling

salesman problem, the probabilistic vehicle routing problem and facility

location problems were analyzed.

The paper is organized as follows. In section 1 we address the question

of finding closed-form expressions and algorithms to compute the expected

length of an a priori route under various probabilistic assumptions. In

section 2 we examine some combinatorial properties of the problem by

proving bounds for the PVRP and the VRP re-optimization strategy, in

which we find the optimal route at every instance. In section 3 we exploit

the bounds derived in section 2 and propose some heuristics with provable

worst-case performance. In section 4 we perform a probabilistic analysis for

the case that customer locations are random in the unit square, prove some

sharp asymptotic theorems for the PVRP and the VRP re-optimization

strategy and also propose some asymptotically optimal algorithms. In the

final section we summarize the contributions of the paper.

1 The Expected Length of an a Priori Route

The PVRP defines an efficient strategy for updating vehicle routes when

problem instances are modified probabilistically in response to customers
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not having any demand. Given an a priori route r we define

L (S) the length of the route which will result under strategy i a, b

if only customers in the set S have a unit demand. For example in Figure

1, S = {2,3,5} and La(S), Lb(S) are the lengths of the routes shown in

Figure (i), (ii) respectively.

Then if p(S) is the probability that only customers in the set S have a unit

demand, the problem can be defined formally as follows:

Problem definition:

Given a complete graph G = (V, E), a cost function d: E - R an integer

capacity Q and a probability function p: 2 - [0,1], we want to find a

route ri that minimizes the expected length Ei [L,]:

Ei[L,] = p(S)L'(S),
SCVsc~v

where the summation is taken over all subsets of V, the instances of the

problem. Note that at this level of generality we can model dependencies

among the probabilities of zero demand of sets of customers.

An alternative strategy would be the re-optimization strategy EVR, in

which we find the minimum length route of the set of customers with non-

zero (unit) demand in every instance. Let R(S) be the length of the optimal

route when only customers in the set S have a unit demand. We then define

the expectation of this re-optimization strategy as follows:

E[EVRI] p(S)R(S).
scv

The probabilistic traveling salesman problem (PTSP) defined in [7] and

further explored in [2] provides a related strategy for the problem. In the
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context of the PVRP, the PTSP can be viewed as a special case of the PVRP

under strategy b, for which the capacity Q is equal to n, i.e. the capacity

of the vehicle is not a binding constraint. Similarly, the usual TSP can be

viewed as a special case of the PVRP under strategy a, if the capacity Q =

n. Related to the vehicle routing re-optimization strategy is the traveling

salesman re-optimization strategy, in which we find the optimum traveling

salesman tour at every instance. We denote with E[I2TspI the expectation

of the TSP re-optimization strategy, defined completely analogously with

the vehicle routing re-optimization strategy.

Our initial goal then is to compute Ei[L]I, i = a, b efficiently for a given

a priori route r.

Let pi be the probability that customer i has demand of one unit and

1-pi of not having any demand independently of any other customer. Then

we can compute the expected length of an a priori route as follows:

Theorem 1

If the a priori route is r = (0,1,..., n, n + 1 A 0) then

n n

E.[L.] = Ed(i,i + 1)+ Tis(i,i + 1), (1)
i=O i=1

n i-1 n n

Eb[LT] = ad(O,i)pi l(1- pr) + Ed(i,O)pj I (1-pr)+
i=1 r=l i=1 r=i+l

n n j- 1 n n j-1

Z Z d(i,j)pip II (1-p,) + E EZ s(i, j)yipj T (-pr) (2)
i=l j=i+l r=i+l i=1 j=i+l r=i+l

where

s(i,j) d(i,O) + d(O,j) - d(i,j),

9



7,i=O, i=O...Q-1,
r

rQ+i = prQ+i E f(rQ + i-1, kQ-1), 0 < i < Q (3)
k=l

and f(m, r) Pr{exactly r customers among the customers 1,.., m have

non-zero demand} are computed from the recursion

f(m, r) = pmf(m - 1, r-1) + (1-pm)f(m-1 r), (4)

with the initial conditions

m m

f(m,m) = J p,, f(mO) = 11(1-p).
i=1 i=1

Proof:

Consider first strategy a. The expected length of the route is a summation

of the length of the a priori route plus the expected value of the extra

distance when the vehicle reaches its capacity. To evaluate this second

term, let i be a node on the route where the vehicle reaches its capacity.

The vehicle will then go to the depot before going back to the following node

in the route, which is i+1 under strategy a, even if node i+1 has no demand.

The extra distance traveled is then s(i, i+ 1) = d(i, O)+d(O, i+ 1)-d(i, i + 1).

In (1) yi is the probability that the vehicle reaches its capacity Q at node

i. Clearly Yi = 0 for i = 0,..., Q - 1. Consider now node rQ + i. Then

in order for the vehicle to reach its capacity at node rQ + i (0 i < Q),

node rQ + i must have a unit demand and from the previous rQ + i - 1

nodes exactly kQ- 1 must be present for some k = 1,... r, so that with

the addition of node rQ + i the capacity is reached. From this observation

10
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(3) follows. The probabilities f(m, r) are computed recursively from (4) by

conditioning on the event that node m has a demand.

Under strategy b, the first three terms in (2) are simply the expected

length of the tour r in the PTSP sense. The fourth term is identical with

strategy a, except that when the vehicle reaches its capacity at node i, it

goes back, after a visit to the depot, to the first node j with a non-zero

demand, skipping nodes i + 1, i + 2,. ,j - 1 with no demand..

As an application of expressions (1) and (2) we find the closed-form

expressions derived in [8] for the case in which all points have the same

probability p of requiring a visit. Then expressions (4) imply that f(m, r) =

(7) pr(l - p)m-r, and thus
r~~~~~~~~~~~~~~~~~~~~~~~

Ea[L,] = L + s(i,i + 1) kkQ- l)P kQ(1 _p)i-kQ, (5)
i=1 k=

IL1 1J n~\7

Eb[Lr] = E[Lr] + k _ (lk i) pkQ(1 _ p)i-kQ E s(i,j)p(1 -p)j-i-.
i=1 k=1 

(6)

An important consequence of expressions (1), (2) is that they provide

an algorithm of O(n 2) to compute Ea[L.], Eb[LrI for the general case of

unequal probabilities, because the computation of the probabilities f(m, r)

can be done recursively from (4) in O(n 2), and there are n- Q non-zero

probabilities i. The computation of each one of these probabilities from

(3) requires the evaluation of a sum of at most [1 terms. Thus we can

compute all the -y7 in 0((n-Q)n +n 2 ) = O(n 2). Finally, the expectation of the
Qlength of the route, given that we have already computed the probabilities

length of the route, given that we have already computed the probabilities
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-i is done in O(n) for strategy a and O(n 2 ) for strategy b, which means

that we can compute the expected length of an a priori route in O(n 2 ) for

both strategies.

In the next section we exploit the expressions found in this section for

Ea[L,] and Eb[L,] to prove some interesting combinatorial properties of the

PVRP.

2 Some Combinatorial Properties of the PVRP

Let ra, b be the optimal routes for strategies a, b respectively of the PVRP

and let also rp, rTSP be the optimal tours for the PTSP and the TSP

respectively. For Q = n, clearly ra = TTSp, b = Trp.

In this section we concentrate on understanding the relation among the

expected lengths of the optimal solutions for the PVRP under strategies a,

b (Ea[L,], Eb[Lb]), the expected length of the optimal tour for the PTSP

(E[L7P]), the length of the optimal deterministic tour (LTSP) and the ex-

pectation of the re-optimization strategies E[EVR], E[ETSP].

2.1 Relation among the Different Strategies

The probabilistic strategies are useful in a routing context, mainly in the

case where the triangle inequality holds. In this case we can find the fol-

lowing relation among the strategies.

Proposition 2

12
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Under the triangle inequality

E[EVR] < Eb[L.,] < Ea[La.]. (7)

Proof:

Consider an a priori route r. Then

L'(S) < L(S),

because under strategy b we skip customers with zero demand and thus

because of the triangle inequality the length of the resulting route is smaller.

Note that the breakpoints in the routes occur at the same customers under

both strategies. As a result,

Eb[LT,] < Ea[Lr].

Consider now the tour r. The above inequality gives

Eb[L70 ] < Ea[Lja.

But, because of the optimality of the route rb for strategy b,

Eb[Lb] < Eb[Lra],

from which the right inequality of (7) follows. Also, since R(S) < Lb (S)

in every instance the left inequality follows..

2.2 Lower Bounds

In this subsection we derive some lower bounds for the different strategies.

For convenience we assume that the distance matrix is symmetric.
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Xi xj+1

Figure 2: The optimal route at instance S

Proposition 3

If the probability that customer i has a unit demand is pi, then under the

triangle inequality

E[EVR] > max Ed(O,i)pj, E[ETSPI) (8)

Proof:

Consider an instance S of the problem. Under the re-optimization strategy,

a vehicle starts from the depot, visits a subset Xj C S of customers (XjI <

Q), returns to the depot and then continues to the next subset Xj+1. See

also Figure 2. Then, if Lj is the length of the route for visiting the subset

Xj of customers in the optimal solution at instance S, we have

Lj > 2maxd(O,i) > 2 iEX j d(O,i) > 2iExj d(O,i)
iEX, - IXj > Q

As a result,

R(S) = L j> 2 EiEsd(O, i)
Q
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Consequently,

2 2" 2"
E[EvR > £ p(S) E d(O, i) = E d(O, i) E p(S) = d(O, i)pi,

sCv iES i=1 SiES i=1

since Es,iEs P(S) = pi. Also, because of triangle inequality R(S) > LTSP(S)

and thus E[EvRI > E[TSrp]. *

We then use (7) and (8) to find some lower bounds on Ea[L,], and

Eb[Lb].

Proposition 4

If the probability that customer i has a unit demand is pi, then under the

triangle inequality

Ea[L,.] > max ( d(O,
Qi=1

Eb[LTb] > max (

, i)pi, LTSP) ,

i)pi, E[LIp]) .d(O,
i=1

From the triangle inequality s(i,i + 1) > 0. Therefore, from (1) Ea[La] >

L,. > LTSP. From (7) and (8), (9) follows.

Similarly, Eb[Lb > E[L, > E[Lp], and hence from (7) and (8), (10)

follows. *

In propositions 3 and 4, if the distance matrix is asymmetric, then we

should replace the term ?= d(O, i)pi in (8), (9) and (10) with E= [d(O, i)+

d(i, O)]p.

If we do not assume the triangle inequality, we can still find lower bounds

on the Ea[LI], Eb[Lb].

15
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Proposition 5

If r, rb are the optimal routes for strategies a, b respectively, then

Ea[L,.] > Za,

where z is the optimal solution to the transportation problem:

z = min E xij d(i, j)
ij$j

n

= 1 + E7i,
i=1

n

= 1 + Yi,
i=1

n

] xi = 1,
i=O

n

xij = 1,
j=O

xi,j > 0.

Similarly,

Eb[Lb] > zb ,

where is the optimal solution to the transportation problem:

Zb = min E xijd(i,j)
i,j

n

II (1 -Pr)),

n

II (1 -pr)),
r=i+l

xi,j > O.

n

E i,j = ji,
i=0

n

E xij = Pi,
j-o

j > 1

i > 1 (14)

The numbers yi appearing in (12) and (14) are computed from (3).

Proof:

16
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(13)
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i=O
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E Xo,j
j=O

n

= 1 + ]'Y(1 -
i=1

n

= 1 + E 'r( -
i=l



Let dI(i,j) _ d(i,j)-ui-vj. By renumbering the nodes let r = (0,1,2,..., n, O)

be the optimum route under strategy a with respect to the original distances

d(i,j). Let E[L..], E[LI] be the expected lengths of the route ra with

respect to distances d(i,j), di(i,j) respectively. Then

n n
E.[L'.] = Ea[Lra.] - E(u, + v,) - (o + Vo)(1 + E>Yi)

i=1 i=1

If we demand that di(i,j) = d(i,j) - - vi 0 we have the trivial bound

Ea[LI] > O. As a result, we obtain

n n
Ea[LT.] > E(us + v,) + (Uo + vo)(1 + -iy).

i=1 i=

Since we want the best possible bound, we wish to choose ui, vi satisfying:

n n
max (u, + v,) + (o + vo)(1 + E i),

i=1 i=1

d(ij) - ui - vj > O. (15)

The dual of the linear program (15) is (12) and hence (11) follows from

strong duality. Using the same ideas the bound (13) follows..

2.3 Upper Bounds

For the upper bounds we concentrate on the case pi = p and for convenience

we assume that the distance matrix is symmetric. Consider the following

heuristic.

Cyclic Heuristic

1. Given an initial route r T r = (0,1, 2, .. , n, 0), consider the routes

ri = (0, i,...,n, 1,...,i- 1,0), i = 2,...n.
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2. Compute Ea,[Li] for all i = 1,..., n,

3. The route with the minimum expectation is the proposed solution TH

to the PVRP under strategy a.

Proposition 6

Let the probability that customer i has a unit demand be p. If the initial

route to the cyclic heuristic is the optimal deterministic tour and TH is the

tour proposed by the heuristic, then under the triangle inequality

2 p~~~ni"_ d(O, i)E.[La] < Ea[LH] < LTP(l --- Q) + 2(2 + -, ). (16)Q Q n
Proof:

If the initial route to the cyclic heuristic is the optimal deterministic tour,

then let

L A ,_- d(i, i +1) + d(n, 1). With this definition the lengths of the routes

ri become:

L = L + d(O, 1) + d(O, n)- d(1, n),

L., =L+d(O,i)+d(O,i-1)-d(i,i-1), i=2,...n.

As a result, E?= Li = 2 EiE?= d(O, i) + (n - 1)L. Clearly,

1n
Ea[Lra] < Ea[LrI • 1 Ea[L] =

1 - n ni nn i i~i=1

since the probability multiplies every term s(i,i + 1) in I?= Ea[Le].

Therefore,

1 = n n n
Ea[L,.] < 2 d(O, i) + (n - 1)L + ( 7,)(- d(O, i) + d(O, i + 1) - d(i, i + 1))

n i - - 1i-

18



1'n n n
2E d(O, i) + (n - 1)L + ( 7i)(2 d(O,i) - L) . (17)

i=1 i=1 i=1

Our goal is then to find an upper bound for the term >l 7i. We define

the random variable

N _ the number of breakpoints in the route, where the capacity is reached.

Let also

Xi the indicator random variable taking the value 1 if a breakpoint occurs

at customer i and 0 otherwise. With these definitions, N = =l Xi. But

since Pr{Xi = 1} = 7i then
n n

E[N] = Z E[X] = Zyi.
i=1 i=1

If W = the number of customers with non-zero demand then

E[N] =E r ] <E W+1 $~+l,
[ Q ] [Q ] Q

and hence,
n

,Y < - + 1. (18)
i=l 

Using (18) in (17) and since L < LTSP, (16) follows .

We now prove an upper bound for strategy b.

Proposition 7

If the probability that customer i has a unit demand is pi, then under the

triangle inequality
n

Eb[Lb] < Eb[Lp] < E[Lp] + 2 E d(O,i)pi. (19)
i=1

Proof:

Consider the optimal tour for the PTSP rp = (0,1,... , n, 0) as a solution
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to the PVRP under strategy b. Then,

n n j-1

Eb[Lrb] < Eb[Lp] = E[Lp] + j E yiPj II (1 - pr)S(i,j).
i=1 j=i+l r=i+1

Since s(i, j) = d(i, O)+d(0,j)-d(i,j) < 2d(0, i) from the triangle inequality

and Ey=i+j pi ri-]+ (1 - Pr) = (1 - ini+j(1 - Pr)),

n n

Eb[Lb] < E[Lrp] + 2 -fid(0,i) < E[L,p] + 2 pid(O,i),
i=l i=1

because -yi = piPr{Wi_ is a multiple of Q} < pi, where Wi_1 is the number

of non-zero demand customers among the customers 1,..., i - 1..

We finally find an upper bound on the re-optimization strategy E[EVR].

Proposition 8

If the probability that customer i has a unit demand is p, then under the

triangle inequality

E[EVR] < E[TSPI(1 - ) + 2(- + ) d(0, i). (20)n

Proof:

We use a result of [6] that

R(S) < 2FiS1 Eies d(0, i) + LTSP(S)(1 -

Q ISI

As a result,

E[2 vR] = E p(S)R(S) < E[rTSP](1- ) + 2 Ep(S) r I SiEs d(o, ) <
< ES TSP]1 ) + 2 Q + 'Q' ) d° IS 

<E[~2TSP]1
< E[ETSPI( - )+ 2 s ( + 1) d(O, i)p(S).

Q S Q ISI ~iES
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But since Es EiEs d(O, i)p(S) = p .= d(0, i) and

E Z d(O,i)p(S) = E E Ed(O,i)p(S)=
S i k=x S, Sl=k iES

= E Vp(1 - p)n-k E d(O, i) - _ (1-(1 - p)) E d(O, i),
k=l k=1 n~

(20) follows. 

From (8) and (20) we can establish a relation between the re-optimization

strategies E[EVR] and E[ETSP].

Theorem 9

If the probability that customer i has a unit demand is p, then under the

triangle inequality

E[~vR] 1 Q 1
<1 [ < 2 - + = 2 + (-). (21)

E[ETSPI Q np n

3 Heuristics for the PVRP

In this section we exploit the bounds derived in the previous section to pro-

pose some heuristics with good worst-case performance. In section 2.3 we

introduced the cyclic heuristic. In the following theorem we prove that the

heuristic is within a constant factor from the optimal route under strategy

a.

Theorem 10

Let the probability that customer i has a unit demand be p. Then if the

initial route given to the cyclic heuristic s rTSP and the tour found by the
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cyclic heuristic is rTH, then under the triangle inequality

E.[Lr,] P 1 2Q P 1
E <[L] - 2 ~ + n(- - 1) = 2-- + O()' (22)

Proof:

From (16) and (9) we obtain

EQ[LH] < LTSP(1( - ) + ( 2 + ) =l d(O, i)
Ea [L. - max(2 PzE 1d(O, i), LTSP)

<1-- + Q (2+ p)<2-P+-( -2)-n Q np Q Q n p
Theorem 10 says that the cyclic heuristic produces a solution to the

PVRP under strategy a, which, for large enough n, is within a factor of

2- of the optimal route. If instead of the optimal deterministic tourQ

we give to the cyclic heuristic the Christofides tour then the guarantee

will be 5 - + (2Q -2), and the running time of the combined heuris-
2 Q n p

tic (Christofides heuristic and then the cyclic heuristic) is O(n3 ), since

the Christofides heuristic takes O(n 3 ) and the cyclic heuristic needs the

evaluation of the expected length of n routes, each of which takes O(n 2).

Therefore, this combined heuristic runs in polynomial time and produces

solutions which are within a constant factor of the optimal route under

strategy a.

The natural question is then to investigate if a constant-guarantee heuris-

tic exists for the PVRP under strategy b.

Theorem 11

If the probability that customer i has a unit demand is pi, then under the
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triangle inequality

Eb[L T- < Q + 1. (23)
Eb[L-,,] 

where rp is the optimal tour for the PTSP. Proof:

From (19) and (10) we have that

Eb[LTp] < E[Lp] + 2 =d(O,i)p < Q + 1..
Eb[L.] - max(Q E=ld(0,i)pi, E[Lp])

Thus, for constant capacity Q and even in the case of unequal prob-

abilities pi, the optimal tour for the PTSP (PTST) is within a constant

factor of the optimal route for the PVRP under strategy b. For Euclidean

problems, if instead of the optimal PTST, which we do not know how to

compute in polynomial time, we use the spacefilling curve heuristic TSF

in [121, which is found in O(nlogn) time, then it was found in [2] (equa-

tion 3.30) that E[Lrsr]/E[Lp] = O(logn). Thus, the following guarantee

follows immediately from (19):

Eb[LTsF] < E[LsF] + 2 E"= Z d(O, i)pi

Eb[Lrb] -max( n=l d(0, i)p,, E[Lp]) (

Platzman and Bartholdi [12] conjecture that the spacefilling curve heuristic

produces a tour TSF, which is within a constant factor of the optimal TST.

Bertsimas [2] proves that this conjecture implies that the expected length

of rSF is within a constant factor of the optimal PTST and thus,

Eb[L]F] < Q + 0(1),
Eb[LrbJ -

i.e. there exists a constant-guarantee heuristic for the PVRP under strategy

b.
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III

4 Asymptotic Theorems for the PVRP in

the Random Euclidean Model

In this section we investigate under the random Euclidean model the asymp-

totic behavior of the PVRP and of the re-optimization strategy.

Let X 1,X 2 ,... be a sequence of independent, identically distributed

random points in the unit square. Let E[r] be the expected distance from

the origin and let X(n) denote the first n points of the sequence. We denote

with

E[R] E[VR(X )],

E=[Ln] E=[L.(X(n))], Eb[Lnb ] Eb[Lb(X(n))].

Observe that the quantities we just defined are random variables since the

locations of the customers are random.

For the PTSP the following results are known. Fix the probability p of

unit demand. Let E[nS] - E[Tsp(X(n))], and E[LP] - E[Lp(X(n))].

Then with probability 1

li [EnsP
lim =I = TSP, svi, Jaillet [7]. (25)

lim [P] = /TSPx/p, Bertsimas [2], (26)

where TSP is the constant appearing in the celebrated Beardwood et. al.

[1] theorem.

We first investigate the asymptotic behavior of E[ VR] and then estab-

lish the asymptotic behavior of Ea[Lna], Eb[LnbI.
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4.1 The Asymptotic Behavior of the Re-optimization

Strategy

The asymptotic behavior of E[E'R ] depends critically on the dependence

of the capacity Q on the number of customers n. This dependence is also

critical for the asymptotic behavior of the VRP examined in [6]. Let Q,

denote the capacity of the vehicle to indicate its dependence on n. We

prove the following theorem:

Theorem 12

Fix the probability p of non-zero demand.

1. If Q is a constant, then almost surely

li E[EVR] 2E[r]p lim = .(27)
n-oo n Q

2. If limn-,. , = 0, then almost surely

lim QnE[ = 2E[rlp. (28)
n-oo nn

3. If limn_.o o = oo, then almost surely

E[Z aR]
lim vf =3TSPvp. (29)

Proof:

We define _ .(,i)

1. Assume that Q is constant. From (8) and (20)

2pQn -< n] < [En~P~]( 1 2pn (1+2p < E[E?,R < Els]( _ U) ~ ( + p)
Q Q Qn
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But E[r] < oo implies that r-- E[r] almost surely by the strong law

of large numbers. Furthermore, from (25) lim"_~ 0 I = n 3T P ,

i.e. lim -oo E[p] = 0 almost surely. As a result,
n

2 p r < E[ER] < E[SP]1] 1- I 2p r Q
Q -n n QQ)+ + )

from which, by taking limits, we obtain (27).

2. Similarly,

?•E[FnR] < QnE_____
2p < QnE[R ] < Q [sP] + 2p r (1+ . ). (30)

n n np

Since with probability 1, limn- QnE.[sP] = limn..oo Q [ =P 0

and limn-+,oo Q = 0, the result follows by taking limits in (30).np

3. From (8)

E[FTSP] E[En ] 2p [ Q. Ensp]
< - < 1 + ,,) +V - vn Qn/n np V/I

From (25) limn_.oo -. E = TSPl/P almost surely and also

lim / (1 +p-) = lim 2pE[r](Q + ) = On °Qn/ np Q. Bo n p2;
from which (29) follows..

The case Qn = Q(vif) is not covered in theorem 12. The reason is that

in this case neither of the two terms; the radial collection term, 2nr (1 +
Qn

Qn), and the local collection term, E[ sp], dominates as was the case in

theorem 12. In cases 1 and 2 the radial collection term dominated and in

case 3 the local collection term dominated.
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4.2 Asymptotic Theorems for the PVRP under Strat-

egy a

As in the previous subsection the dependence of the capacity Q on the

number of customers n is critical. We assume again that each customer

has the same probability p of a unit demand. In the following theorem we

examine the asymptotic behavior of the strategy a and propose asymptot-

ically optimal heuristics.

Theorem 13

Fix the probability p of non-zero demand.

1. If Q is a constant, then almost surely

lim Ea[Ln] 2E[r]p (31)
n-o n Q

2. If limn O = 0, then almost surely

lim QnEa[Lno] = 2E[r]p. (32)
n--oo n

In both cases 1, 2 any tour produced by the cyclic heuristic with

initial tour any tour of length O(/i) is asymptotically optimal.

3. If limn,-o Q = oo, then almost surely

lim Ta TSP (33)

The route produced by the cyclic heuristic with initial tour the opti-

mal TST is asymptotically optimal.
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Proof:

1. Assume that Q is constant. From (9) and (16)

2 p E<[LL] Ls P + 2p r 4 r<[ ] __n-n Q n

Since r-+ E[r] almost surely as n - oo and lim - 0, (31)

follows.

2. Similarly,

2 p r< QnEa[Ln] < Qn SP+ 2p r +r Q.

Since with probability 1, limnoo _ = 0, (32) follows easily.

Since in both cases 1,2 the radial collection term dominates asymp-

totically, if instead of the TST we used in the cyclic heuristic any

tour r0 with length O(Vf) (for example a tour produced by the strip

method), then the tour produced by the cyclic heuristic would be

asymptotically optimal.

3. From (9)

Lsp<E[Lnr] 2p r 4 r LnTs p
v Qn/T + +

L"
Since limn_,o . = fiTsP almost surely and also im.oo 4 = oo

(33) follows.

In this case if the initial tour to the cyclic heuristic is the TST, then

the tour produced by the heuristic is asymptotically optimal. 
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In theorem 13 we characterized very sharply the asymptotic behavior of

the PVRP under strategy a and furthermore we proposed asymptotically

optimal heuristics. We next consider the PVRP under strategy b.

4.3 Asymptotic Theorems for the PVRP under Strat-

egy b

We assume again that each customer has the same probability p of a unit

demand. We then characterize the asymptotic behavior of strategy b.

Theorem 14

Fix the probability p of non-zero demand.

1. If Q is a constant, then almost surely

lim Eb[L b] 2E[r]p (34)
n-oo n Qn Q '

2. If limo - = 0, then almost surely

lim QnEb[Lb]= 2E[r]p. (35)
n--*oon

3. If limno - = co, then almost surely

lim Eb/jb = PTSPV/p. (36)

Proof:

Cases 1 and 2 follow from (7) since

E[nVRI <Eb[L] < Ea[Lo]
n n n
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and hence (34) and (35) follow, because in theorems 12 and 13 both the

lower and the upper bounds converge to the same limit almost surely.

For the third case, from (10), (19) we find

i=1 i=1n np

E[L;n] + 2V2( P + 1).
TO Q.

E[Ln ]
Dividing with V/~ , taking the limit as n - oo and using (26) that lim,_o --- =

/TSPYv5 (34) follows. 

Note that in case 3 the PTST solves the PVRP optimally. An even

more surprising consequence of theorems 11, 12 and 13 is that in the cases

Q being a constant and lim -. oo = 0, then both the probabilistic strate-

gies a and b ae asymptotically equivalent to the re-optimization strategy.

Furthermore, in these cases any tour produced by the cyclic heuristic with

initial tour any tour of length O(x/y) is asymptotically equivalent to the

re-optimization strategy. In the case limn-oo Q = 0o, strategy b is asymp-

totically the same as the strategy of re-optimization and even further the

PTST is asymptotically optimal.

Finally, we only considered the case where customer locations are uni-

formly distributed in the unit square. Similar asymptotic theorems can be

proved in the d-dimensional Euclidean space and furthermore, for the case

that the distribution of customer locations has continuous part with density

f. We chose the Euclidean plane in the exposition because the geometry is

clearer and the uniform distribution since it is more intuitive.
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5 An Overview of the Paper

In this paper we showed that the PVRP is a natural extension of the deter-

ministic VRP and has a large area of potential applications. We proposed

an O(n 2) method to calculate the expected length of an a priori route un-

der various probabilistic assumptions. Based on these expressions we found

upper and lower bounds for the expected length of the optimal routes under

strategies a and b, as well as for the strategy of re-optimization. Based on

these bounds we proposed the cyclic heuristic for the PVRP under strategty

a, which is within a constant factor ( - ) of the optimal solution, if the

starting tour is Christofides tour. For the PVRP under strategy b we found

that the spacefilling curve heuristic provides good solutions (within a log-

arithmic factor) of the optimal solution. Moreover, we conjectured that

the spacefilling curve heuristic is within a constant factor of the optimal

solution.

More importantly, we proved that if customer locations are random

in the unit square, strategy b performs asymptotically the same with the

strategy of re-optimization in all cases, and strategy a performs the same

with the strategy of re-optimization if the capacity is "small", which is

a strong indication of the usefulness of these strategies. Furthermore, our

analysis revealed some asymptotically optimal heuristics for both strategies

a, b. As a result of our analysis, the two strategies we considered provide

a strong alternative to the strategy of re-optimization, and therefore they

can be both useful in practice.
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As a final conclusion, we believe that the paper demonstrated that in the

context of capacitated vehicle routing problems a priori strategies (PVRP)

are a serious and practical alternative to re-optimization strategies. Our

investigation in [2] reached the same conclusion for other combinatorial op-

timization problems.
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