
Richard E. Walton
Harvard Business School
and
Robert B. McKersie
MIT School of Management

90s: 88-062

October 1988

This paper to be presented at an October 1988 conference sponsored by the Panel on Technology and Employment of the U.S. National Academy of Sciences and the U.S. Department of Labor

©1988 Massachusetts Institute of Technology

Management in the 1990s
Sloan School of Management
Massachusetts Institute of Technology
Management in the 1990s

Management in the 1990s is an industry and governmental agency supported research program. Its aim is to develop a better understanding of the managerial issues of the 1990s and how to deal most effectively with them, particularly as these issues revolve around anticipated advances in Information Technology.

Assisting the work of the Sloan School scholars with financial support and as working partners in research are:

- American Express Company
- BellSouth Corporation
- British Petroleum Company, p.l.c.
- CIGNA Corporation
- Digital Equipment Corporation
- Eastman Kodak Company
- Ernst & Young
- General Motors Corporation
- International Computers Ltd.
- MCI Communications Corporation
- United States Army
- United States Internal Revenue Service

The conclusions or opinions expressed in this paper are those of the author(s) and do not necessarily reflect the opinion of the Massachusetts Institute of Technology, the Management in the 1990s Research Program, or its sponsoring organizations.
Introduction

New technologies are often essential to the effort of enterprises to become more competitive. How the technology is introduced, in particular, how labor-management issues are handled, will strongly influence whether the new technology makes its potential contribution. The purpose of this paper is to outline briefly what we have learned over the past decade about this subject.

We need to distinguish at the outset between two broad work-force management strategies, because what we have been learning applies more to one of these strategies than the other. We label one of these strategies "mutual compliance" and the other "mutual commitment." (Walton, 1987a) We propose that these alternative approaches to workforce management influence the design of technology as well as the way it is implemented. Conversely, we propose that the design and implementation of new technology can be a powerful force toward either a compliance or commitment organization.

The traditional employment relationship assumes no more than employer and employee compliance. Each agrees to comply with certain terms of employment, either prescribed or tacitly understood. Under mutual compliance employees are expected to give a fair day's effort for a fair day's pay and management is expected to supervise this bargain in a firm but fair manner. Mutual commitment goes well beyond such a traditional arrangement. The employee becomes committed to the organization and its goals, which is matched by additional commitment by the employer to the employee's welfare. Employee commitment takes many forms, including initiative to improve quality, reduction of scrap and other waste, and an increase in the productivity of their own labor. Similarly, the organization's commitment to workers can be expressed in a variety of ways,
including strong employment assurances, opportunities to participate in decisions, and programs for training and retraining.

Many organizations continue to rely upon control and compliance techniques that have been perfected over many decades--clear demarcations between planning and executing, narrow and deskill ed jobs, individual accountability, standards of minimum performance, close supervision, and labor, in general, treated as a variable cost. While these techniques often are depersonalizing and demotivating, their adverse effects may be minimal in practical terms; moreover under control conditions, the organization has circumscribed its dependence on the competence and internal motivation of the individual. Therefore, some corporations and government agencies still regard mutual compliance as the most practical approach available to them for managing at least a fraction of their work force.

While a few companies have practiced mutual commitment for many decades, the trend toward relying upon policies that elicit employee commitment and less on ones that impose control really began in the early 1970's, as management sought to extend to other workers an approach long idealized in relations with the professional work force--challenging work, self-supervision, open communication, and mutual influence. In effect, labor is treated as a resource to be developed rather than as a variable cost.

The above distinctions are important for the present discussion of new technology. The choice between contrasting management strategies--control versus commitment--will determine the labor relations dynamics that will be encountered in the process of introducing new technology, and therefore the
steps that are appropriate in order to make the process as constructive as possible. Also, some of the new work place technologies, especially those utilizing advanced information technologies, usually can be exploited significantly better with the mutual commitment approach than with control and compliance. Therefore, while we will also discuss the dynamics and techniques associated with new technology introduced into a stable framework of mutual compliance, we will emphasize situations where management is attempting to initiate or strengthen a commitment organization.

Mutual compliance is found in both non-unionized and unionized companies. Similarly, mutual commitment is being pursued in companies that do not deal with unions as well as those that do. Often the mutual commitment approach is jointly sponsored by management and union.

Management's approach to its work force, which we have been discussing, and its strategy for dealing with unions are closely related. Beginning in the mid-1970's, American management's strategies toward unions developed along two contrasting paths. One strategy attempts to weaken the union, permitting management to manage as it sees fit. The other strategy attempts to expand the area of cooperation between management and the union.

These two strategies are alternative approaches to the same compelling problem confronted by management—a lack of competitiveness. Management's predicament is aptly portrayed in the framework in Figure 1. (Walton 1987b.) Consider that management's relations with its union can be either adversarial or cooperative (or some point on the spectrum defined by these
end points) and that the union can either have high relative power (meaning it can effectively prevent management from doing much of what it would like to do) or low power. Union-management relations in many American industries had become firmly established in the adversarial/high union power quadrant during the 1950s and 1960s. As long as American auto makers and steel companies, for example, were only competing with other domestic producers who had similar labor relations, this condition created no serious competitive problems. However, once these companies confronted tough foreign competitors in the U.S. market, their managements began to recognize that the combination of powerful unions and adversarial relations was a non-competitive position.

Two routes are available to escape this condition. The first is to attempt to weaken the unions' power and accept the possibility that adversarial attitudes may be intensified, at least for a period of time. This route is best dramatized by an example outside the private sector, namely President Reagan's actions to break the air traffic controller strike and the PATCO union, but it also is exemplified by actions taken by Continental Airlines, Phelps Dodge, Greyhound, and perhaps U.S.X.

The second escape route is for management to accept the union's strength and to attempt to transform the relationship into one that emphasizes the parties' mutual interests to strengthen the competitiveness of the enterprise. This strategy has generally characterized the relations in recent years between Ford and the UAW, LTV and USW, ATT and CWA, and Xerox and the Amalgamated Clothing and Textile workers (ACTWV) - to cite several examples.

Different advantages and disadvantages are associated with these contrasting strategies. By attempting to confront and prevail over the
union, management usually seeks deep economic concessions and work rule changes. However, the adversarial climate usually is not conducive to initiatives by management to enlist employees in other productivity improvement activities. In contrast, by attempting to structure collaborative relations with its union, management hopes that it can implement commitment policies and practices and enlist the spontaneous cooperation of employees in performance improvement activities. With this strategy economic concessions and formal work rule changes usually are relatively modest, at least in the short term.

The Mutual Compliance/Adversarial Scenario

Certain patterns characterize the introduction of new technology into companies which adhere to a mutual compliance approach for at least part of its work force and which accept an adversarial relationship with the union, if one is present. (Walton 1985.) Managers tend to be preoccupied by technical and economic criteria and deal with social issues only if and when the reactions of employees or unions require action. Unions attempt to impose conditions on implementation in order to limit the technology's adverse effect on the work force; e.g., slowing the introduction to ameliorate employment effects, grieving working conditions for health and safety reasons, enforcing bidding procedures to protect traditional seniority rights, and protesting technology-based monitoring in order to reduce job pressure.

Responding to--or anticipating--employee and union resistance, management adds social control to the other criteria that shape the design of new technology and generally intensifies the adversarial battle over managerial prerogatives. Management finds itself in one or both of the
self-reinforcing cycles depicted in Figure 2. In mutual compliance situations, managements tend to hold pessimistic assumptions about workers' motivations and skills. These assumptions lead management to develop technologies that deskill and routinize work, which in turn generate worker apathy or antagonism, thereby justifying management's earlier assumptions and its control strategy. The development of intense adversarial labor relations in many unionized companies has reinforced the dynamics surrounding technology design. An assumption of adversarial relations by management leads it to pursue objectives and utilize tactics that increase the union's tendency to challenge and constrain management actions.

Each of the two self-reinforcing loops depicted in Figure 2 is robust by itself, but in combination, they are especially formidable. For example, preoccupied with its position in an adversarial union relationship, management will be especially interested in work technology that desskills jobs, controls workers more closely, and permits the removal of tasks from members of the bargaining unit, because these effects will increase management's operational flexibility and minimize certain labor relations "hassles."

By way of elaboration, the dynamics associated with mutual compliance and adversarial relations lead to the following patterns of work-technology development:

First, in the design of new work technology, jobs tend to be deskillled, fragmented, and routinized. This increases management's control over the work force, but the new jobs also demoralize employees and limit the positive contribution they can make to service and cost effectiveness.

Second, as new technology is designed and implemented, the full potential of retraining employees is seldom realized, even though such
retraining could be advantageous to both the company and the employees. In
addition, management fears that contract provisions will force them to fill
positions with unqualified persons.

Third, the design of new technology sometimes moves tasks out of the
bargaining unit. This shift may give management certain tactical
labor-relations advantages, but it assigns to professionals and supervisors
work that neither uses nor develops their potential and takes away from
workers in the bargaining unit some work that would have utilized and
developed their potential.

Fourth, electronic monitoring capabilities are built into the work
system that may ensure achievement of minimum performance but that
discourage workers from providing any more than the minimum.

What advice can be given to planners of new technology where the
employee-management relationship is for some reason locked into a mutual
compliance pattern and the union relationship, if one exists, is locked in
an adversarial mode? In a competitive business environment it is still in
the interests of all parties to make effective use of new technology. It
is clearly in management's interest to minimize employee resistance to the
new technology.

The ingredients of effective introduction of technology in this
scenario include (1) careful communication by management of the competitive
rationale for the technology and the implementation plans; and (2)
practical compromises that respond to workers' major concerns, such as
advance notice and buffering the employment and income effects of the
technology, and at the same time ensuring that workers comply with major
operational priorities, such as the staffing patterns for new technology.
Another ingredient is adequate training of the users to operate the new technology. Certainly, training is a key intervention for the mutual commitment/cooperation scenario that we will consider shortly. But training also serves an important function in the mutual compliance situation, namely, to set the stage for holding the workers accountable for specified results because they have been instructed in the relevant knowledge to operate the new equipment.

Most fundamentally, however, we advise managements and unions presently in the compliance/adversarial scenario to continue to explore the feasibility of moving in the direction of mutual commitment and cooperation. The reasons for this recommendation become apparent in the next discussion of the commitment/cooperation scenario.

The Mutual Commitment/Cooperation Scenario

Advanced information technology, which is integral to most new work technologies today, is strengthening management's incentives for creating a commitment organization. (NRC, 1986; Walton and Susman, 1987; and Zuboff, 1988). The nature of computer-based work technology has been changing in a way that places a higher premium on an internally motivated and intellectually competent workforce. The trend has been away from automation applications that simply substitute capital for labor toward more complex applications that augment the role of labor in the production process or the delivery of services.

Computer-based work systems primarily oriented to cost reduction often attempt to automate as completely as possible functions previously performed by individuals. In contrast, systems oriented to adding value (by increasing effectiveness or generating new products) often emphasize a
dynamic interaction between the technology and its users, including the generation of new information by the system to be used in cognitively complex ways by the users. Zuboff (1985) has referred to these options as "the two faces of intelligent technology" and labelled them "automate" and "informate." By automate she means: "The application of technology that increases the self-acting, self-regulating, and self-correcting capacities of systems." In contrast, informate means "The application of technology that translates objects, events, and processes into data and displays that data." She has demonstrated in a convincing way how these two technology strategies have profound implications for the nature of work and power relations in industrial society. (Zuboff, 1988.)

Sharply different types of organizational requirements are associated with different forms of information technology. Technology that is almost exclusively designed to automate operations usually reduces both headcount and the dependence of the production system on the judgements of the remaining operators. It is likely to reduce the amount of training operators needs. Under these conditions of automation adequate performance can often continue to be obtained by close supervision and control oriented organizational rewards and punishments.

A contrasting organization is needed when new technology is designed not only to automate certain functions (including storing, retrieving, and manipulating information) but also, and more importantly, to provide operators with new forms of information to upgrade their decisions and the goods and services they produce. For this type of technology to be operated effectively, the human resource policies and practices must elicit a high level of spontaneous commitment, provide for higher level cognitive
skills, and encourage substantial influence on the part of those who operate the new system.

A case in point is computer integrated manufacturing (CIM). A National Research Council (NRC) committee composed of executives, labor leaders, and academics and chaired by one of the authors studied human resource practices in 16 state-of-the-art installations of advanced manufacturing technology in the United States. A majority of these installations were computer integrated manufacturing systems. The committee found that certain features of this advanced technology make a number of high commitment practices especially appropriate. For example, elements of the manufacturing system become more closely coupled with CIM technology. The tighter interdependence of tasks makes broader jobs and more flexible assignment patterns extremely advantageous. In addition, the more integrated the system, the more alert and ready to act workers must be. Therefore, it is crucial that workers be internally motivated.

As indicated earlier, close supervision can compensate for lack of motivation where the technology involves repetitive, short-cycle activities, but it cannot obviate the need for individual responsibility in the complex CIM environment. Fortunately, the increased capital intensity of CIM and the smaller crew typically required to operate it make it easier for management to devote the time and resources to develop high commitment.

Therefore the advanced forms of computer-based work technology are more effectively exploited by commitment organizations. Many forms of advanced information technology not only depend for their effectiveness upon users who are internally motivated, but they must be designed and managed in a way that elicits that type of motivation. Advanced information technologies not only benefit directly from an operator's
understanding of the unit's business; they also can impart such understanding. These technologies not only require continuous learning; they also promote and reinforce it.

However, whether these potentially positive relationships between a general commitment orientation of the organization and the new technology are realized depends upon how the technology is introduced and managed. The following are offered as constructive practices.

Articulate Organizational Ideals. In an increasing number of corporations top management has formulated a vision of the type of organization which it believes will enable the corporation to compete. For example, these visions often call for some combination of the following: fewer levels of management, delegation of decisions to the lowest level where information and expertise can be provided, more teamwork, more entrepreneurial spirit, more self-supervision, and a stronger customer service orientation. It is our contention that a new technology can either promote or frustrate the movement toward some of these ideals, depending on how it is designed and managed.

The existence of an explicit statement of ideals, whether it is called a management philosophy or an organizational vision, can serve as a set of social criteria to guide the development of new technological systems. These social criteria can be applied in the approval and assessment processes in a way similar to technical specifications and economic justification.

Unfortunately, even corporate organizations that have clearly articulated philosophies and use them to drive quality-of-work life efforts and other organizational development activities seldom ensure that they are
applied in the design and implementation of new technology. Thus, in the early 1980's when ATT was trying to revise its managerial style to be less controlling, and was sponsoring QWL activities jointly with the Communications Workers of American (CWA), the Bell Labs and ATT central staffs were designing automated technologies and computer-aided administrative systems that ran counter to these new ideals. The automation deskillled, routinized, and paced workers and more closely monitored their behavior. Such an experience is not atypical. American managers and union officials generally have been slow to appreciate that technological choice is social choice. They fail to appreciate that many technical solutions exist for a given economic problem, and that each technical solution has a unique set of social consequences. Therefore, education about the relationship between organizational and technological choices is needed for line managers, systems developers, human resource managers, and union officials. Both private and public sector institutions should give priority to responding to this need for new understanding of these important relationships.

Address Threshold Issues. Certain issues are often so crucial in determining the response of employees and their representatives to new technology that they should be addressed in policy terms, ideally in advance of any specific new technology project.

The first threshold issue is employment security. No other aspect of the context for implementing new technology is more important than the presence or absence of assurances about employment. Workers hold similar concerns whether we are talking about non-union or unionized workplaces, although the presence of a union usually ensures that employment security
issues and their relationship to new technology are addressed more explicitly. The NRC study concluded that "to build and preserve human commitment and skills required to operate advance manufacturing technology, the policies that govern employment security and ease labor dislocations must be as favorable as the competitive circumstances of the enterprise permit." (p.4) Robert Zager's paper in this series, "Continuous Learning and Employment Security", outlines innovative practices in this area.

During the 1980's we have seen the evolution of a number of key principles re employment security in several bell weather collective bargaining agreements. In the auto industry the employers have agreed to the premise that no layoffs should occur as a result of the introduction of new technology. Management has been willing to agree to this principle since it can control the pace of technological change and the displacement effects for the workforce can be planned for and handled via a variety of redeployment efforts involving job banks, retraining, transfer and even out placement to work in other industries.

Another principle that has emerged recently in some labor agreements is that before work is moved out of the bargaining unit (e.g., subcontracting, shift to overseas operations, etc.), the workers whose jobs are at risk should be given a chance to form task forces to study the situation and to formulate a restructuring plan for their operations so the in house costs come within range of the competitive benchmarks. Xerox and the ACTWU have followed this procedure with the result that a number of departments have "saved their jobs".

A second threshold issue occurs in a unionized context. It relates to the effect of new technology on the bargaining unit. New technology often changes the nature of work so fundamentally that it creates ambiguities
about whether the new tasks are appropriately placed within or outside the bargaining unit.

Recall that in the adversarial scenario both parties view the introduction of new technology as an opportunity to redefine the effective scope of the bargaining unit in their favor. In the cooperative scenario they are more likely to address other issues without emphasizing where work ends up in relation to the bargaining unit. For example, if management is otherwise trying to delegate functions to lower levels of the organization, it may willingly move new activities such as programming and new decision-making responsibilities into the work of bargaining unit members. Similarly, if some computerized functions previously performed by bargaining unit members are now more naturally packaged electronically in the work of supervisory or professional personnel, the union is relaxed about that outcome.

This can be a highly sensitive issue. The important point is to recognize that management's willingness to embrace more work in the bargaining unit depends in part upon the prospects for union-management cooperation; and that the union's readiness to enter into a cooperative relationship depends upon management actions that respect the integrity of the bargaining unit.

As the traditional demarcation lines between blue collar, white collar, and professional work become blurred a number of tension points and opportunities are presented to the parties. In an instrument factory studied by one of the authors where a compliance pattern existed the following sequence occurred. When first generation technology was ordered from the vendor, the breakin and customizing was performed by the operators, all members of the IAM local. As more specialized and advanced
equipment began to be introduced, the company found it necessary to perform the customizing work in house but decided to have it be performed by specialists located in the "model shop" - not a part of the bargaining unit. Conceivably, the equipment operators could have been trained in the advanced skill areas of electronics and optics but the company chose to maintain (and even intensify) the adversarial relationship with the union - in part, because this was the only unionized plant of this multi-plant company and the corporate approach emphasized containment (and if possible shrinkage) of union influence.

Contrast this example with the experience of Cummins Engine and its independent white collar union. With the same trends mentioned above more and more work was naturally falling within the domain of engineering associates, a position not normally within the bargaining unit of technicians. The solution reached by the parties was to include the engineering associate position in the bargaining unit (a gain for the union) but not cover it with the existing bargaining contract provisions (a gain for management). (Cappelli and Sherer, forthcoming.)

Initiate a Constructive Climate. Many steps in addition to those described above can serve to create a climate generally favorable to the introduction of new technology. We will discuss several.

Employment security may relieve some of the anxiety associated with technological change, but many employees are anxious about their ability to operate in the new computer-based environment. An IBM facility with which the authors are familiar provides an example where management either encouraged or supported a large fraction of the work force to become educated about the information technologies that would in the future become
the bases for new work processes and jobs. The positive motivational
effect of this education was at least as important as the enhanced
competence it produced. Motivation and competence were, of course, both
important dimensions of the social context for the specific new technology
projects.

Some of the most powerful initiatives for creating a social context
favorable to new technology are those that involve employees directly in
problem-solving activities designed to improve the working environment and
performance. These activities, encouraged under such umbrella concepts as
quality of work life (QWL), employee involvement (EI), participative
management, and quality circles, help develop the increased social and
cognitive skills and the attitudes of self-confidence and self-reliance
that will contribute to effective use of the new technology. Naturally
these positive effects occur only when the activities reflect the genuine
commitment of management to the spirit of participation, are also sponsored
by the union if one is present, and are accompanied by other supportive
changes such as training. The value of establishing a pattern of employee
participation as a prelude to the effective introduction of new technology
was confirmed by the NRC study and has been demonstrated in other
experiences of GM, Ford, ATT, Cummins Engine, with which the authors are
familiar.

Management initiatives to change its relationship with unions usually
must occur in parallel with those designed to involve employees.
Illustrative are the Common Interest Forum (CIF) initiated in a number of
union-management relationships, including those involving UAW with GM and
Ford and the CWA with ATT.
In the case of ATT and CWA the parties agreed in 1983 to institute CIFs in the many separate entities of the Bell System. The forums have been used in practice to varying degrees. The CIF at Pacific Bell became a major vehicle in 1985 and 1986 for jointly addressing employment security issues and for expressing a new "business partnership" between the parties. (Kanter, 1988). Local CIFs were established to deal with other matters including the introduction of technology. The CIF was also the setting for developing joint ATT-CWA training and retraining efforts, finalized in one form in the 1986 collective bargaining agreement as a non-profit organization, The Alliance for Employee Growth and Development. AT&T committed $7 million per year to the Alliance.

Based on these and other similar experiences, the CWA Executive Board Committee reviewed the general requirements for moving its relations with management from adversarialism to cooperation and the specific contributions that CIFs can make, and concluded:

This cooperation between union and management depends in large part on management's attitude to the union. Cooperation must be a two-way street. Just as the union leadership must understand and respect the company's need to remain profitable and competitive, so the company must understand and respect the union's need to further the goals of members and to organize new members. Companies cannot form non-union subsidiaries at the same time they expect the union to support their competitive strategies. Both company and union need to trust each other so that management does not undermine the union and the union does not hold mutually beneficial programs hostage to collective bargaining demands.

Ongoing Common Interest Forum discussions can build understanding and deal with differences in a non-adversarial manner. The union will be better able to serve its members and help the company's position if it has an early knowledge of and a voice in company strategies that affect employment, work processes, and life on the job. This requires that union leaders talk directly to the line managers who make these decisions before they are made. This cannot be achieved if the union related only to the Labor Relations department. While management leaders in Labor Relations took the lead in bringing the union together with line managers, the CIFs must include line managers. In similar fashion at local levels, the CIF works only when local CWA
leaders develop a working relationship with line management. (CWA Resolution, April 14, 1988. p. 4.)

A concrete example of how the common interest forum approach works in practice comes out of the experience of Pacific Northwest Bell and the CWA. The position of systems technician had experienced considerable change as a result of new technology and testing procedures. The initial approach to upgrading skills emphasized individual learning with a battery of tapes and learning modules. A number of technicians expressed via the work relations survey a need for a different approach to new skill acquisition. As a result a task force was created consisting of technicians appointed by CWA, line managers, and representatives from the local vocational educational system. As a result of the recommendation of this group a telecommunications course was started on company time for any technicians who volunteered. It has been very successful and a follow up course has been launched. (Hilton and Straw, 1987.)

Management sometimes uses improvements in the union relationship as a criterion for deciding whether to invest in new technology in a particular plant. It may also use the prospect of the investment to induce the union to agree to special conditions favorable to the implementation of the new technology. For example, when Allen-Bradley started up a computer integrative manufacturing (CIM) facility in April 1985 to manufacture contactors and relays, it wanted to manage the system with innovative organizational and human resource practices. (Goldstein and Klein, 1987). UE officials agreed to give management carte blanche in designing the CIM work organization during the pilot stage of the project because they wanted to encourage the company to place new technology in established unionized locations rather than greenfield sites. The parties subsequently agreed to
such matters as jobs classifications and selection procedures when the
system was moved from the development unit to the production department
where it was covered by the union contract.

This arrangement between Allen-Bradley and the UE illustrates another
condition helpful to the introduction of new technology, namely a
willingness to give planners space to experiment and learn. In this case,
both management and the union could withhold judgement about what
departures from their conventional working arrangements--job
classifications, flexibility of assignments, pay systems, and selection
criteria and procedures--would be operationally desirable and politically
acceptable. They could learn from experience the operational advantages of
certain practices and workers' reactions to them before deciding which of
them to institutionalize for the CIM system.

The Allen-Bradley example also illustrates the reciprocal relationship
between technology and social variables, in this case the tenor of
union-management relations. The introduction of new technology is
certainly influenced by the extent of cooperative labor-management
relations - but the major event or the occasion of new technology also
provides an opportunity to create new arrangements and understandings which
help elaborate mutual commitment that may only be at a formative stage.

Structure Participative Planning, Implementation, and Assessment.
User involvement has long received at least lip service by technology
developers. The concept is being broadened to call for the participation
of not only users but other stakeholders in the process, and not only in
implementation activities but also in the design process. Participation
can take many forms, as the examples below illustrate.
The NRC study found that employees are sometimes involved as early as the selection or adoption decision of technology. At five unionized sites included in the NRC study workers or union officials accompanied engineers on trips to vendors and rendered opinions on what equipment to buy. Employees and union representatives also were consulted on how to operate the equipment and how to organize the work.

When the union is consulted early in the technology development process, it is more likely to become an advocate for the new technology, reassuring union members that the technology will secure more jobs than it threatens. Union officials who participate in the selection or preliminary implementation process do this recognizing that they may be taking political risks in order to serve the long term interests of their members.

Since new technology may increase the job evaluation point value of the impacted jobs, some union leaders are reluctant to become involved at the design stage for new technology for fear they will become co-opted and unable to represent member interests when the bargaining issues come on the table.

At Boeing this dilemma was resolved by instituting an annual technology briefing for top IAM officials. Long term trends in CAD/CAM, robotics, and composite materials were dealt with in these annual sessions. However, for specific technology projects union officials were not involved at the strategic stage, thereby leaving them free to pursue the distributive issues of staffing and pay levels.

Deal with Potential Constraints. We have mentioned the many aspects of the organization that may need to be redesigned--including jobs, pay schemes, selection procedures, training, structure, and performance
management. The ideal organization can be introduced readily in a
greenfield site with a new work force in a favorable labor market. More
typically new technologies are introduced into more constrained
environments requiring adaptations. We treat here how constraints may be
imposed by union contracts on the one hand and the existing skills and
attitudes of supervisors on the other.

Unions often limit to some extent the flexibility that is otherwise
appropriate for operating new technology, precluding for example the
integration of operating and maintenance work. The union principle of
seniority also often constrains the selection process. Where the
technology raises skill demands, increases capital intensity, and renders
the system more sensitive to mistakes, effective utilization of
manufacturing technology is more dependent than ever on selecting the best
talent available for operating positions.

In some cases management has been unable to negotiate change in the
traditional way ability and seniority are balanced. An appliance plant's
procedures are typical of facilities where management introduced only
modest changes. The managers classified the new, multiskilled operator
position above other jobs--in part to minimize bumping during layoffs--but
they instituted no new selection procedures. Accordingly, they encountered
problems when the new pay rate for this job attracted 50 bids for the first
6 positions--many from applicants who lacked the basic verbal and
quantitative skills to absorb the training. The labor contract mandated
training for the senior employees who bid on the job, however, so
management's only screening option was to spell out the job's multiple
duties and encourage self-selection. Although about half the applicants
withdraw, the managers realized that in the future they would need to
negotiate a change in the selection process so that the most proficient operators would have a chance at the training.

The NRC study found more innovative selection processes in other unionized plants. At an axle plant, for example, applicants for skilled jobs completed an eight-hour assessment of their technical and interpersonal skills, conducted by a local community college. They were given a four-to six-hour skill-level inventory, which included simulated problem-solving exercises, and then attended a family night with their spouses to discuss the program. The 45 applicants who remained from an initial group of 100 were then ranked by seniority. Some of them declined the new jobs; 16 were eventually placed. Many dropped out because working in the new plant involved shift work or demanded higher performance standards than they were prepared to accept. Others declined because they felt unqualified or had only a few years to go before retirement and did not want to waste the company's investment.

A unionized diesel engine plant devised a multistep process in which the 250 initial applicants were divided into small groups and given a four-hour briefing on the technology and the new job's duties and expectations. Those who persisted were interviewed by a committee of two manufacturing supervisors and two union representatives. The union representatives went out of their way to warn applicants how different the new operation would be and cautioned them to reflect on their interests and aptitudes. Taking the interview results into account, as well as attendance records, seniority, experience, and any evaluation records, the same committee made the final selection.
The general point is that managements and unions can devise ways to consider criteria other than seniority without losing workers' confidence in the fairness of the selection process.

Another juncture for these creative arrangements arises when workforce reductions are required. At an auto plant with a CIM system the parties worked out a procedure whereby senior workers could not bump CIM system operators, but would "back fill" positions vacated by individuals who were on a "qualifiable" list - in turn the latter moved into the unit to displace the junior people who would then be placed on layoff.

The unions involved pursued these innovations because union officials, as much as their counterparts in management, appreciated the importance of selecting people who would be able to perform well. They understood that the effectiveness of the new technology--and thus the plant's competitiveness--would depend on the performance of the operators. And they were concerned about wasting money training the wrong people.

Supervisors' predispositions can be as much a constraint on the effective utilization of certain technologies as the union contract. We have emphasized the importance of a set of organizational ideals to guide technology development. However, even if the system is designed to be managed in a prescribed way, there is no guarantee the managers actually in charge of the system will manage in the intended spirit. An aspect of the organization that is especially susceptible to differing managerial predispositions is the approach to performance management.

In a case involving a decision support system for paper machine operators, which gave them the cost information and process expertise they needed to operate with more autonomy, supervisors of the operators felt threatened by their loss of relative power and began to use the monitoring
capacity of the system to tighten their supervisory control. (Bronsema and Zuboff, 1984.)

A study of the Internal Revenue Service's (IRS) implementation of its Automated Collection System (ACS) by Chalykoff (1988) found that supervisors differed in terms of their use of the computer-aided-monitoring feature of the ACS. This feature enabled supervisors to monitor an employee's terminal work and phone interactions with taxpayers. Some supervisors tended to use this capacity in ways that developed employees, while others used it in ways that made employees feel controlled and subjugated. These patterns reflected the dispositions of supervisors, dispositions that would be influential even if the ACS planners had been more prescriptive about how the monitoring capacity was to be used.

In another technology introduction at IRS - the issuance of lap top computers to 14,000 examiners - the Treasury Workers' Union insisted on an agreement that use or lack of use of the new PC's could not be considered in performance appraisals. While such a policy was understandable given the union's concerns that supervisors might exert undue pressure on the examiners to use the new tool, such a restriction is certainly untenable for the long run and illustrates a generally adversarial relationship and lack of involvement by the union in the early phases of decision making regarding new technology.

Thus the paper mill and IRS cases underscore the need for implementation methods that include efforts to enlist the support of all stakeholders.
Conclusion

The current scene presents many opportunities for introducing new technology via constructive labor relations. It was only several decades ago that a number of unions actively opposed new technology or at best sought to control its introduction with various work rules and crew size requirements. Today, such stories by unions are much more the exception.

Some relationships remain locked in an adversarial mode that prevents the realization of the full benefits of new technology but this is due as much to habit or management's desire for an arm's length relationship as to union policy.
REFERENCES

Cappelli, Peter and Peter Sherer, "Spanning the Union-Nonunion Boundry at Cummins Engine". forth coming in Industrial Relations.

CWA Executive Board Committee Resolution. Quality of Worklife and Employee Participation, Motion passed and adapted April 14, 1988.

Figure 1

Labor Relations Orientation

Adversarial
Cooperative

<table>
<thead>
<tr>
<th>High Union Power</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Union Power</td>
<td></td>
</tr>
<tr>
<td>Low Union Power</td>
<td></td>
</tr>
</tbody>
</table>

Strategy A - Attempt to weaken union power in order to secure deep economic and work rule concessions; and accept adversarial relations.

Strategy B - Attempt to generate a cooperative relationship with union in order to support participative improvements in quality and productivity; and accept that economic concessions and formal work rule modifications may be modest.
Figure 2
Management of Technology and Labor Relations

Some Self-reinforcing Dynamics

Management Assumptions

- Management assumes that employees tend to be apathetic or antagonistic toward work.
- Management assumes that union will be adversarial in virtually all of its dealings with the company.

Management Strategies

- Management develops work technology that replaces labor, deskills, fragments, and routinizes work, and monitors workers.
- Management guards "perogatives," even if economic concessions are the price.
- Management restricts information, presents union with fait accompli, plans to win any challenge, and operates without a union wherever possible.

Employee and Union Responses

- Employee apathy and antagonism generated or is reinforced.
- Union's adversarial posture is strengthened.

Source: R. Walton, 1985, p. 208
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-001</td>
<td>Management in the 1990s Mission Statement</td>
<td></td>
<td>7/85</td>
</tr>
<tr>
<td>85-002</td>
<td>Sponsors' Vision Document</td>
<td></td>
<td>5/85</td>
</tr>
<tr>
<td></td>
<td>(Rev 3/86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-003</td>
<td>Management in the 1990s Program Research Themes and Request for Proposals, Fall 1985</td>
<td>DeLong, Rockart</td>
<td>11/84</td>
</tr>
<tr>
<td></td>
<td>(Rev 3/86)</td>
<td>Scott Morton</td>
<td></td>
</tr>
<tr>
<td>85-006</td>
<td>Future Directions in DSS Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-007</td>
<td>Information Technology and Corporate Strategy: A Research Perspective</td>
<td>Bakos, Treacy</td>
<td>3/85</td>
</tr>
<tr>
<td></td>
<td>(Rev 3/86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-008</td>
<td>Supporting Senior Executives' Models for Planning and Control</td>
<td>Treacy</td>
<td>6/85</td>
</tr>
<tr>
<td>85-009</td>
<td>Designing Organizational Interfaces</td>
<td>Malone</td>
<td>9/85</td>
</tr>
<tr>
<td>85-100</td>
<td>Out of print. Superceded by 86-025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-011</td>
<td>Organizational Structure and Technology: Elements of a Formal Theory</td>
<td>Malone</td>
<td>8/85</td>
</tr>
<tr>
<td>85-012</td>
<td>Computer Support for Organizations: Toward an Organizational Science</td>
<td>Malone</td>
<td>9/85</td>
</tr>
<tr>
<td>85-013</td>
<td>Influence of Task Type on the Relation Between Communication and Performance</td>
<td>Hauptman</td>
<td>5/85</td>
</tr>
<tr>
<td>85-014</td>
<td>Implications of Changes in Information Technology for Corporate Strategy</td>
<td>Scott Morton, Rockart</td>
<td>1/83</td>
</tr>
<tr>
<td></td>
<td>(Rev 3/84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-015</td>
<td>Identifying the Attributes of a Successful Executive Support System Implementation</td>
<td>De Long, Rockart</td>
<td>2/86</td>
</tr>
<tr>
<td>86-016</td>
<td>Out of print. Superceded by 86-025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

86-017 Information Technology, Integration, and Organizational Change Benjamin, Scott Morton 4/86
86-019 Toward a Cumulative Tradition of Research on Information Technology as a Strategic Business Factor Treacy 4/86
86-020 Executive Support Systems and the Nature of Executive Work Rockart, Delong 4/86
86-022 Out of print. Superceded by 87-032
86-023 Economic Issues in Standardization Farrell, Saloner 10/86
86-024 Floor Lay-out Design for Effective Software Production: Applying the Implications from the Optimal Communication Pattern of a Software Project Team Hauptman 6/86
86-025 Intelligent Information Sharing Systems Malone, Grant, Turbak, Brobst 11/86
86-026 Semi-Structured Messages are Surprisingly Useful for Computer-Supported Coordination Malone, Grant, Lai, Rao, Rosenblitt 11/86
86-028 Strategy Formulation Methodologies Scott Morton 11/86
86-029 Some Thoughts on the Information Technology Revolution in Standard Oil Horton 11/86
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>86-030</td>
<td>The Value-Added of Strategic IS Planning: Understanding Consistency, Validity, and IS Markets</td>
<td>Henderson, Sifonis</td>
<td>11/86</td>
</tr>
<tr>
<td>86-031</td>
<td>A Common Agenda for an Uncommon Future: Address to the Sloan School of Management</td>
<td>Whitmore</td>
<td>11/86</td>
</tr>
<tr>
<td>87-032</td>
<td>Managing the Data Resource: A Contingency Perspective</td>
<td>Goodhue, Quillard, Rockart</td>
<td>2/87</td>
</tr>
<tr>
<td>87-033</td>
<td>Information Technology in Marketing</td>
<td>Little</td>
<td>2/87</td>
</tr>
<tr>
<td>87-035</td>
<td>Data Envelopment Analysis for Managerial Control and Diagnosis</td>
<td>Epstein, Henderson</td>
<td>5/87</td>
</tr>
<tr>
<td>87-036</td>
<td>Managing the IS Design Environment: A Research Framework</td>
<td>Henderson</td>
<td>5/87</td>
</tr>
<tr>
<td>87-037</td>
<td>Freeing Work from the Constraints of Location and Time: An Analysis Based on Data from the United Kingdom</td>
<td>Bailyn</td>
<td>6/87</td>
</tr>
<tr>
<td>87-038</td>
<td>The Influence of Communication Technologies on Organizational Structure: A Conceptual Model for Future Research</td>
<td>Hauptman, Allen</td>
<td>5/87</td>
</tr>
<tr>
<td>87-039</td>
<td>The Line Takes the Leadership</td>
<td>Rockart</td>
<td>8/87</td>
</tr>
<tr>
<td>87-040</td>
<td>Information Technology and Work Organization</td>
<td>Crowston, Malone</td>
<td>10/87</td>
</tr>
<tr>
<td>88-043</td>
<td>Determinants of Employees’ Affective Response to the Use of Information Technology in Monitoring Performance</td>
<td>Chalykoff</td>
<td>2/88</td>
</tr>
<tr>
<td>88-044</td>
<td>How Expectations About Microcomputers Influence Their Organizational Consequences</td>
<td>Carroll, Perin</td>
<td>4/88</td>
</tr>
<tr>
<td>88-047</td>
<td>The Competitor Intelligence Function in the Very Large-Scale Organization: Assessments and Uses</td>
<td>Westney, Ghoshal</td>
<td>5/88</td>
</tr>
<tr>
<td>88-048</td>
<td>Adding Value in an Information Function</td>
<td>Westney, Ghoshal</td>
<td>5/88</td>
</tr>
<tr>
<td>88-049</td>
<td>Compatibility Standards and the Market for Telecommunications Services</td>
<td>Besen, Saloner</td>
<td>5/88</td>
</tr>
<tr>
<td>88-051</td>
<td>The Moral Fabric of the Office: Organizational Habits vs. High-Tech Options for Work Schedule Flexibilities</td>
<td>Perin</td>
<td>6/88</td>
</tr>
<tr>
<td>88-054</td>
<td>An Assessment of the Productivity Impact of Information Technologies</td>
<td>Loveman</td>
<td>8/88</td>
</tr>
<tr>
<td>88-055</td>
<td>Involvement as a Predictor of Performance in IS Planning and Design</td>
<td>Henderson</td>
<td>8/88</td>
</tr>
<tr>
<td>88-056</td>
<td>Planning and Managing Change</td>
<td>Schein</td>
<td>8/88</td>
</tr>
<tr>
<td>88-057</td>
<td>Information Technology: From Impact On to Support For Organizational Design</td>
<td>Invernizzi</td>
<td>9/88</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>88-059</td>
<td>Dimensions of IS Planning and Design Technology</td>
<td>Henderson Cooprider</td>
<td>9/88</td>
</tr>
<tr>
<td>88-060</td>
<td>Issues of Gender In Technical Work</td>
<td>Ballyn</td>
<td>10/88</td>
</tr>
<tr>
<td>88-061</td>
<td>More than Just a Communication System: Diversity In the Use of Electronic Mail</td>
<td>Mackay</td>
<td>10/88</td>
</tr>
<tr>
<td>88-064</td>
<td>Innovative Cultures and Organizations</td>
<td>Schein</td>
<td>11/88</td>
</tr>
<tr>
<td>89-065</td>
<td>Computer-Aided Monitoring: Its Influence on Employee Job Satisfaction and Turnover</td>
<td>Chalykoff Kochian</td>
<td>1/89</td>
</tr>
<tr>
<td>89-066</td>
<td>Partially Shared Views: A Scheme for Communicating among Groups that Use Different Type Hierarchies</td>
<td>Lee Malone</td>
<td>3/88</td>
</tr>
<tr>
<td>89-067</td>
<td>What Is Coordination Theory?</td>
<td>Malone</td>
<td>2/88</td>
</tr>
<tr>
<td>89-068</td>
<td>Joint Ventures in the Information Technology Sector: An Assessment of Strategies and Effectiveness</td>
<td>Koh Venkatraman</td>
<td>12/88</td>
</tr>
<tr>
<td>89-069</td>
<td>Implementation of End User Computing In the Internal Revenue Service</td>
<td>Pentland</td>
<td>3/89</td>
</tr>
<tr>
<td>89-070</td>
<td>A Process Model of Strategic Alliance Formation In Firms In the Information Technology Industry</td>
<td>Wilson</td>
<td>3/89</td>
</tr>
<tr>
<td>89-072</td>
<td>Electronic Integration and Strategic Advantage: A Quasi-Experimental Study in the Insurance Industry</td>
<td>Venkatraman Zaheer</td>
<td>4/89</td>
</tr>
<tr>
<td>89-073</td>
<td>Electronic Mail and Organizational Cooperation: A Case Study</td>
<td>Invernizzi Luberto</td>
<td>6/89</td>
</tr>
<tr>
<td>89-074</td>
<td>Cotechnology for the Global 90s</td>
<td>Stevens</td>
<td>7/89</td>
</tr>
<tr>
<td>89-075</td>
<td>The Role of the CEO in the Management of Change: The Case of Information Technology</td>
<td>Schein</td>
<td>8/89</td>
</tr>
<tr>
<td>89-076</td>
<td>Strategic Alignment: A Framework for Strategic Information Technology Management</td>
<td>Henderson Venkatraman</td>
<td>8/89</td>
</tr>
<tr>
<td>89-077</td>
<td>Strategic Alignment: A Process Model for Integrating Information Technology and Business Strategies</td>
<td>Henderson Venkatraman</td>
<td>10/89</td>
</tr>
<tr>
<td>89-078</td>
<td>Building and Sustaining Partnership Between Line and IS Managers</td>
<td>Henderson</td>
<td>9/89</td>
</tr>
<tr>
<td>90-079</td>
<td>Corporate Reform in American Manufacturing and the Challenge to Economic Theory</td>
<td>Piore</td>
<td>1/89</td>
</tr>
</tbody>
</table>