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Abstract

In this paper we present simple approximations for networks of queues
with overtime operation at some stations. This type of network is
commonly encountered in practice in several manufacturing applications.
We provide bounds on the performance of the approximations for single
and multiple machine stations. Our results suggest that the methods
perform satisfactorily. These approximations can be used in conjunction
with the parametric decomposition methods to analyze queueing networks.
The computational results indicate that the performance of the
decomposition approach does not deteriorate when combined with the
methods proposed in this paper.
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Approximations for Manufacturing Networks of ueues with Overtime

1.0 Introduction:

Queueing network models have been used to model a variety of

systems in computer and communication networks, service facilities, and

discrete and flexible manufacturing systems. However, exact results for

analysis of such systems is limited to product form networks (see

Jackson 1963; Kelly 1975; Baskett et.al. 1975; and Lemoine 1977). For

more general systems, the focus has been on the development of

approximations and simulation methods. In the analysis of manufacturing

systems modeled by open networks of queues, the parametric decomposition

method has been used with good results, among others, by Shanthikumar

and Buzacott (1981), Whitt (1983) and Bitran and Tirupati (1988a). This

approach generalizes the notion of independence and product form

solutions of Jackson type networks. In this method, the arrival process

at each station is approximated by a renewal process and the squared

coefficient of variation (scv) of interarrival times at each station is

computed approximately. Performance measures such as the mean number of

jobs and queue lengths at each station are estimated based on two moment

approximations. For a detailed description of this approach see Whitt

(1983), Bitran and Tirupati (1988a) and references therein. Recently,

Bitran and Tirupati (1988b) have extended these methods to certain types

of batch operations encountered in manufacturing systems. Segal and

Whitt (1988) describe a new version of the queueing network analyzer

that incorporates several features found in manufacturing lines. These

include machine breakdowns, changing lot sizes, product testing with

partial yields etc.
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A feature of manufacturing systems that is not usually considered

(at least explicitly) in queueing network models is the use of overtime.

It is common to encounter plants where relatively heavily utilized

stations work more hours per day than others. Also, in stations with

multiple machines, the number of machines that operate during overtime

is not necessarily the same as that used during regular time. Job

releases to the shop, subsequent movement between stations, and

departures from the system usually take place during regular hours.

In theory, such situations can be modeled as nonstationary systems.

However, the exact analysis is extremely complex, if not impossible.

The focus of the research on nonstationary queues has been on describing

the time dependent behavior (for example, see Rothkopf and Oren 1979;

Keller 1982; and references therein) and asymptotic behavior of the

system (see Lemoine 1981; Wolff 1982; Heyman and Whitt 1984 and

references therein). These results do not provide a mechanism to

estimate performance measures such as the mean number of jobs, and mean

waiting times in networks of queues with features described in the

previous paragraph.

In this paper our objective is to present simple approximations

that can be used in the context of networks of queues to model stations

with overtime. In stations with multiple machines, we consider cases in

which only some machines work overtime. We provide bounds on the

performance of the approximation for single and multiple machine

stations. For multiple machine stations, our results suggest that in

most practical situations, the approximation is likely to be robust.

These conclusions are supported by computational experiments reported in

Section 3. One of these examples is a network with 13 stations and 10
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products that is based on a semiconductor facility producing specialty

devices. In addition, our computational results suggest that the

parametric decomposition methods are fairly robust in the analysis of

such systems.

The remainder of the paper is organized as follows. In the next

section we present the approximations and the related results. In

Section 3 we describe the computational experiments. In Section 4 we

conclude with comments on the scope of these approximations.

2.0 Approximations to Model Stations with Overtime

2.1 Approximation for a Single Machine Station:

Consider a single machine station (System A) with the following

characteristics:

(i) The machine is available for r hours of regular time every

day.

(ii) The machine is available for ov hours of overtime every day,

i.e., the total availability is (r+ov) hours per day.

(iii) Jobs arrive at the station at a rate per day with all

arrivals taking place during regular time only.

(iv) Jobs that are completed during regular time leave the

station immediately upon completion.

(v) Jobs that are completed during overtime leave the station at

the beginning of the following day.

(vi) First come, first serve discipline (FCFS) is observed at the

station.

We use the following notation to describe the system:
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ai (dai , tai): arrival time of the ith job; dai represents the

day and tai the hour of arrival of the ith job.

bi: service time of job i (in hours). Let b denote the mean service

time.

di (ddi, tdi): departure time of the ith job; ddi and tdi

represent respectively the day and hour of the departure epoch for

the ith job.

p: utilization = Ab/(r +ov)

We propose an approximate analysis of system A by analyzing a

related single machine system Al with the following characteristics:

(i) The machine is available for r regular hours per day.

(ii) The pattern of job arrivals is identical to that of system

A, i.e., ai' = ai for all i, where ai' represents the

arrival epoch of the ith job in system Al.

(iii) The service time of the ith job, bi', is scaled as follows

bi = kbi, where k = r/(r+ov), i = 1, 2, ...

(iv) All jobs leave the system immediately upon completion of

service.

(v) The priority discipline is FCFS.

Let ai ' = (dai', tai'), di' = (ddi', tdi'), bi' and p' denote the

corresponding variables in system A1.

di - x, di' - x: denote a time x hours before the departure of job i

in system A and A respectively.

di + x, di' + x: denote a time x hours after the departure of job

i in system A and Al respectively. Idi - di'l < x indicates that the

departure times of job i in A and Al are within x hours.
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The primary motivation for the approximation above follows from -the

fact that the service or processing rate measured as the number of jobs

per day is the same in both systems A and Al. Hence, as long as the

systems are busy, the amount of work completed in the two systems during

an integral number of days are equivalent. The method has other

advantages as well. First, the utilizations in the two systems A and A1

are the same, i.e., p' = p. This is important since, in most queueing

systems, utilization is a major determinant of the performance measures.

Second, the approximation is easy to apply in a network of queues. By

applying this procedure at all stations, we obtain a related network in

which all stations work the same hours. This system can be analyzed by

conventional methods using either exact or approximate methods or

simulation. Proposition 1 below suggests that the approximation is

likely to be robust, particularly when the utilization is high.

Definition: A sample path is defined as a sequence of job arrivals with

associated service times.

Proposition 1: In every sample path, the departure instances of

corresponding jobs in systems A and Al do not differ by more than k ov.

Specifically, this implies the following:

(i) If job i is completed during regular time, i.e.,

0 < tdi r, then di'e d*, d**), where d* and d** are

defined as follows:

d* : (ddi-l, r-k ov+tdi) if tdi<k ov

(ddi, tdi-k ov) otherwise.

d**: (ddi, tdi+k ov) if tdi<r-k ov

: (ddi+l, tdi+k ov-r) otherwise.
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(ii) If the ith job is completed during overtime in system A then

either ddi = ddi' and tdi 0, and tdi' < k ov;

or ddi ddi' + 1 and tdi D 0, and r - k ov < tdi'~ r.

We denote the above result as di - di'I < k ov. (The proof

of the proposition above is in Appendix 1.)

When both systems A and Al are busy, equivalent amount of work is

completed (in the two systems) over any interval spanning an integral

number of days. Proposition 1 describes one consequence of this fact

which suggests that the performance measures in system A may be

estimated from the corresponding measures in Al. For example, the error

in estimating mean waiting time is not greater than k ov hours. (If the

waiting time is measured in days, the error is not greater than k ov/r

days.) The application of Little's law provides a corresponding error

bound on the mean number of jobs. As a result, if the utilization is

high and the average waiting times are large, the relative error in

measuring the mean waiting time and the mean number of jobs is likely to

be small.

Corollary 1: In a system where the interarrival times are independent

and identically distributed (iid), service times are iid and utilization

p < 1, so that we have steady state, the relative error in estimating

the mean number of jobs tends to zero as p 1.

This is an encouraging result. As we observed earlier in Section

1, we expect stations with relatively high utilization to work overtime.

Corollary 1 suggests that in those cases the approximation is good.

When the utilizations are low and the waiting times are small, we expect

that the absolute error in the estimates of the mean number of jobs will

6
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not be significant. This fact was also observed in computational

experiments not reported in this paper for brevity.

2.2 Multiple Machine Station:

Consider a m machine work station (system B) with the following

characteristics:

(i) The station operates with m machines on regular time for r

hours each day.

(ii) The station operates ov hours of overtime each day with

m2 m machines.

(iii) A FCFS discipline is observed.

(iv) Jobs completed during overtime depart from the system the

following day, while those that are completed during regular

time leave immediately upon completion of service.

As an approximation to system B, we propose a m machine station

(system B1) with the following characteristics:

(i) The station operates with m machines during regular time of

r hours each day.

(ii) The service times are scaled as bi ' klbi

where k = mlr/(mlr + m2ov)

(iii) The priority scheme is FCFS and jobs leave the system

immediately upon completion.

Observe that the service rate (measured with days as the unit of

time) is (r + ov)/b jobs per day for the m2 machines that work over

time, while it is r/b for the remaining machines that only work regular

hours. In system B all machines have a processing rate of r/(klb) so

that the aggregate processing rate in the two systems is the same. The

motivation for the approximation follows from the fact that if all the
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machines are busy, i.e., the number of jobs is not less then ml, an

equivalent amount of work is completed in the two systems over any

interval that spans an integral number of days. The approximation has

other advantages similar to those for the single machine case. Both

systems B and B1 have the same utilization, and the use of B permits

analysis of networks using conventional methods. When all machines work

over time, i.e., m2 - ml, the results of proposition 1 hold for this

approximation as well.

Proposition 2: Suppose that m2 = m and all machines work overtime in

system B. Then in every sample path, the departure instances of

corresponding jobs in systems B and B do not differ by more than k ov,

i.e., Idi - di' I k ov.

The proof of this proposition is in Appendix 1.

Observe that, in general when m2 < ml, B1 involves approximations

in two dimensions -- in the number of machines and the hours worked.

Hence, we expect that the approximation will be weaker than that for the

single machine station. The following example suggests that in any

sample path it is possible for individual jobs to have corresponding

departure times (in systems B and B) arbitrarily apart.

Example: Consider a job that arrives at the station (in system B) when

the system is empty. Let the process time for the job be b hours. This

represents a processing requirement of b/(r + ov) days. In system Bl

the corresponding process time is b' = klb hours, which in turn

corresponds to {ml/(mlr + m2ov) } b days of work.

Note that (ml/(mlr + m2ov)) b = {ml(r+ov)/(mlr + m 2ov)) [b/(r+ov)]

> b/(r+ov), if m2 < ml and ov > 0.

8
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Even if the waiting time for the job is zero in system B (same as

in B), the difference in departure epochs (measured in days) in systems

B and B1 can be made arbitrarily large by choosing a correspondingly

large b. This difference will increase further if the job has to wait

in B1.

The example suggests that system B may not be a good approximation

for specific jobs. However, we note that when the number of jobs in the

system is not less than m at any point in time, the work content in the

two systems would be close. Also in that case the work completion rate

on a daily basis will be the same in both systems.

Lemma 1: Consider a multimachine station with m2 < ml. Assume that the

job arrivals and service times are such that the number of jobs in

systems B and B are at least ml at any point in time. Then in every

sample path,

wk(t) - (mlr + m2ov) wk'(t) m2ov
m lr

where wk(t), and wk'(t) respectively represent the unfinished work

content in systems B and B. The unfinished work content is measured as

the hours of processing required to complete the jobs in process and

those in queue in the respective systems.

Furthermore, if t is integral in number of days, k wk(t) = wk'(t).

Lemma 1 provides an error bound on the estimates of the work

content wk(t). However, we note that it is not easy to obtain similar

bounds for the number of jobs. With m2 < ml, the processing rates

(measured as number of jobs per day) is not identical for all machines

in system B, and can result in the assignment of jobs to different

machines in the two systems. While the amount of work completed in B
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and B1 are nearly equivalent, the number of jobs processed depends on

sequencing and priority rules used during overtime operation. In Remark

1 below, we provide a parametric bound on the difference in the number

of jobs in relatively heavily utilized systems. This bound depends on

the ratio of maximum and minimum process times, and in some sense,

represents a worst case error bound on the performance of the

approximation.

Remark 1: Consider a multimachine station with m2 < ml. Assume that

the job arrivals and service times are such that the number of jobs is

at least m in both systems B and B at any point in time. Also assume

that at time t = 0, the processing of first job is initiated in both

systems B and B. Let b* = bmax/bminJ, where bmax and bmin

respectively denote maximum and minimum process times. Consider systems

B and B at the start of any day, i.e., at any point in time T, where T

is integral in number of days. The number of jobs in the two systems do

not differ by more than (ml - 1) (b* + 1) - 1. (See Appendix 1 for

proof of this assertion.)

These results are encouraging. Since in most manufacturing systems

overtime is used only when there are waiting jobs, we expect that in

most practical cases at stations that work overtime, the mean number of

jobs will not be small and the approximation should be adequate. The

results of the computational experiments described in the next section

support this conjecture.

3.0 Computational Results:

We examined the quality of the approximations proposed in this

paper by comparing estimates of the mean number of jobs (at each

station) in a series of five experiments. In the first four experiments

10
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we considered single product systems and tandem queues with two and

three stations. In two cases we had stations with single machine and in

the other two we tested problems with multiple machines. In the last

experiment we considered a network derived from a semiconductor facility

producing specialty devices. It consists of 13 single machine stations

and 10 product classes. A secondary objective of the computations was

to evaluate the robustness of the parametric decomposition approach

(together with the approximations of this paper) in estimating the mean

number of jobs in systems with overtime at some stations. These

approximations are based on Shanthikumar and Buzacott (1981), Whitt

(1983, 1985), and Bitran and Tirupati (1988a) and are summarized in

Appendix 2. Since exact solutions are not available for most of the

test problems, we used simulation as a benchmark. This is a common

practice in evaluating queueing approximations. (For example, see Albin

1984, Whitt 1985, and Bitran and Tirupati 1988a.) In the design of the

test problems the squared coefficient of variation (scv) of interarrival

and service times were chosen not greater than one. This choice was

motivated by our experience in manufacturing systems in which the

corresponding scvs are typically smaller than one.

3.1 Experiments in Networks with One-machine Stations: In the first

experiment we considered a single product, two station tandem queue

shown in figure 3.1. The work schedules at the two stations were

different. While station 2 operated a regular time of 8 hours each day,

station 1 was available for additional (overtime) operation each day.

The objective of this experiment was two fold. First, we examined the

quality of approximations of section 2 in estimating the mean number of

jobs at station 1. Second, we examined the impact of overtime operation
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on the estimates at station 2. We expect that the impact on stations

further downstream would be even less significant. In the design of the

test problems we considered the following factors:

(i) Overtime operation at station 1: We considered three levels

of overtime -- 0, 1 and 2 hours each day. The availability

varied from 8 to 10 hours per day. These systems are

denoted as (8,8), (9,8) and (10,8) respectively.

(ii) The arrival rate was set at 1 job per day (mean interarrival

time 8 hours). Experiments in which the arrival rates are

larger than one are described in Section 3.3. Job arrivals

take place during regular time hours only. The interarrival

times were assumed to have independent and identical

distributions (iid). We considered two distributions --

exponential and second order Erlang for interarrival times.

(iii) Service times at each station were assumed to be iid. We

considered two distributions for service times --

exponential and second order Erlang. In these problems, the

service time distribution was the same at both stations.

(iv) The utilization at station 2 was set at 0.8. At station 1

we considered two levels of utilization; 0.75 and 0.85.

Note that station utilization together with the number of

hours of operation and choice of distribution (Erlang or

exponential) completely specifies the service time

distribution at each station.

The number of test problems in this experiment was 24. The

simulation estimates of the mean number of jobs is presented in Table

3.1. The table also presents the corresponding estimates by the
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decomposition approach using the approximations of this paper. These

results are very encouraging. First, note that the variation in the

mean number of jobs with overtime level is not significant. Case (a) in

Table 3.1 represents the proposed approximation for systems (b) and (c).

The estimates of (a) compare very well with those of (b) and (c) which

suggests that the approximation adjusting for overtime operation should

be adequate in most practical situations. Also note that the impact of

overtime on the mean number of jobs at station 2 is also insignificant.

The approximations for estimating the number of jobs seem to be very

effective. The table also provides, for each problem, the maximum of

the absolute relative errors in estimating the mean number of jobs in

systems (a), (b) and (c) using the decomposition methods. These errors

range between .88% and 7.06% and are typical of the decomposition

approach. These results suggest that the performance of the

decomposition method does not deteriorate when combined with the

approximation of Section 2.1.

The simulation estimates reported in the table are based on six

batch runs of 100,000 jobs each and represent the average of 600,000

jobs. We felt that these runs were sufficiently long to provide

representative estimates. To illustrate the accuracy of the simulation

estimates we present, for two of the test problems, the standard

deviation of the six batch estimates for the mean number of jobs. The

two examples correspond to the following cases:

Example 1: System (10,8); Pi = 0.85; Erlang distribution for

interarrival and service times.

Example 2: system (9,8); P1 = 0.75, Exponential distribution for

interarrival and service times.
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The standard deviations of the mean number of jobs for the first

example were .0512 and .0293 at stations 1 and 2 respectively. The

corresponding figures for the second example were .0429 and .0766.

These figures are representative of the results obtained. Note that the

differences in the mean number of jobs with varying overtime is of the

same order as the standard deviation of the simulation estimates. This

again suggests that these variations are insignificant.

In the second experiment we considered a three station network

shown in figure 3.2. The objective in this test was to examine the

quality of the proposed approximation with a wider variation in the

operating schedules. We simulated the test problems with the following

schedules:

(a) All 3 stations working 8 hours per day (no overtime). This is

denoted by (8,8,8).

(b) The first and the third stations work 8 hours each day while

the second works 10 hours; (8,10,8).

(c) First station works 6 hours, second 10 hours and the third 8

hours per day; (6,10,8).

(d) The three stations work 8, 10 and 6 hours respectively;

(8,10,6).

These cases represent a wide variation in operating hours that

accommodate many manufacturing applications. (Note that the ratio of

maximum to minimum working hours is 1.67.) Observe that system (a)

above is the proposed approximation for systems (b), (c) and (d). For

each of these systems we simulated 4 test problems with the following

parameters.
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(i) The arrival rate was 1 job per day. (Experiments in which

the arrival rates are larger than one are described in

section 3.3). The interarrival times were assumed to be

iid. We considered two alternative distributions --

exponential and second order Erlang.

(ii) Service times at each station were assumed to be iid. We

considered two distributions for service time -- exponential

and second order Erlang. Again in each problem, the scv of

service time was the same at all stations.

(iii) The utilization at stations 1 and 3 was set at 0.8, while at

station 2 it was set at 0.85.

The computational results for the 16 cases are presented in table

3.2. It is clear from these results that (a) is indeed a very good

approximation for (b), (c) and (d). The variation in the simulation

estimates is small. (It is of the same order as the standard deviation

of the batch results.) The performance of the approximation is also

encouraging. The table presents the maximum absolute relative error in

estimating the mean number of jobs in systems (a), (b), (c) and (d)

using the decomposition method. These errors range between 1.25% and

8.27%. Again, the simulation estimates are based on six batch runs of

100,000 jobs in each run and the accuracy is similar to those in the

first experiment.

3.2 Experiments in Tandem Networks with Multiple-Machine Stations: In

this section we report the results of tests in networks with multiple

machine centers. The network for the first experiment was the two

station system of figure 3.1. The number of machines at stations 1 and

2 was 3 and 2 respectively. Station 2 operated on regular time schedule
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of 8 hours per day and we considered three levels of overtime at station

1. During overtime operation only 2 machines were available at this

station. Thus, we had the following three systems defined by the

overtime levels.

(a) No overtime and both stations work 8 hours per day. This is

denoted by (8,8).

(b) Overtime of one hour per day at station 1, i.e., system (9,8).

(c) System (10,8) with two hours of overtime at station 1.

For each system we simulated four problems by varying the

distribution of interarrival and service times. The alternative

distributions considered were similar to the test problems in Section

3.1 and consisted of exponential and second order Erlang distributions.

In all test problems the utilization at station 1 was 0.85 and 0.8 at

station 2. Observe that system (a) represents our proposed

approximation for systems (b) and (c). In these experiments, we

implemented the FCFS discipline in the following manner. When the

number of jobs in the systems was not greater than m all the jobs are

processed during overtime. When the number of jobs was greater than ml,

the machines that were processing the first m2 jobs (jobs with the

highest priority) work overtime.

The results presented in Table 3.3 support conclusions similar to

those observed in the single machine experiments of Section 3.1. The

mean number of jobs at each station in systems (a), (b) and (c) are very

close and well within the accuracy of the simulation estimates. This

suggests that the proposed approximation is very reasonable. Table 3.3

presents for each problem, the maximum percentage error of the absolute

deviation of the approximation from the simulation results. These

16



errors range from 1.36% to 6.69% which is acceptable in most

applications.

The simulation estimates in this experiment are based on twelve

batch runs with 50,000 jobs in each run. We felt a total of 600,000

jobs was sufficient to provide good estimates. To illustrate the

accuracy of these results, we provide the standard deviation of the

batch estimates for the following two cases:

Example 1: System (c); distribution of interarrival and service

times are Erlang.

Example 2: System (b); interarrival and service time distributions

are Erlang and exponential respectively.

In the first example, the standard deviation of the mean number of

jobs was .0716 and .0991 at stations 1 and 2 respectively. The

corresponding figures for the second case are .1291 and .0676.

The three station system of Figure 3.2 was the network for the

second experiment. The number of machines was 2 at stations 1 and 3,

and 3 at station 2. The design of the test problems was similar to the

previous experiments. Station 2 had overtime operation while the other

two worked during regular time hours only. Also, during overtime only

two machines were used. We defined three systems with varying overtime

levels. These are (a) (8,8,8) -- No overtime. All stations work 8

hours; (b) (8,9,8) -- overtime of 1 hour at station 2; and (c) (8,10,8)

-- overtime of 2 hours at station 2. As in the previous experiments,

for each of these systems we tested four problems by varying the

distribution of interarrival and service times. The utilizations were

set at 0.8, 0.85 and 0.8 at stations 1, 2 and 3 respectively.

17
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The results presented in table 3.4 support the conclusions of the

previous experiments. Observe that estimates from system (a) would be a

very good approximation for systems (b) and (c). The differences in the

simulation figures are not significant. The approximations continue to

perform well. The range of the maximum percentage absolute error

(relative to the simulation values) was 0.69% to 8.00%. These errors

are typical of the parametric decomposition approach in the analysis of

general networks. It is interesting to note that differences between

estimates in column (d) and columns (a), (b), (c) are comparable. Hence

it appears that the performance of the decomposition approach when

combined with the approximations proposed in Section 2.2 does not

deteriorate.

3.3 A Network Example: In this section we describe an experiment with

a network that models the manufacturing facility of a semiconductor

company producing specialty semiconductor devices. The facility

consisted of 13 single machine stations and processed jobs classified

into 10 product families. The routing for jobs in each class was

deterministic and described in Table A3.1 of Appendix 3. Observe that

the number of operations for each job is between 7 and 13 and a job

returns to the photolithography department (station 2) several times.

The arrival rate of jobs in each family was 1 per day and the

distribution of interarrival times are presented in Table A3.1. The

resulting net arrival rates at the stations in the network range from 3

to 25 jobs/day. The station data consisting of operating schedule,

utilization and process time distribution is described in Table A3.2.

Note that the service time distribution is completely specified by this

data together with the net arrival rate computed from product data.

18
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Table A3.2 also specifies an averar- dollar value (vj) for each job at

station j. The work-in-process (wip) at station j is measured as the

product of vj and the mean number of jobs (Lj). The total wip in the

system is obtained by adding the station wips. Observe that the work

schedules of the stations in the network vary considerably. For

example, stations 1, 4 and 6 work only regular time hours while 8 and 12

operate more than 10 hours. These variations are typical of many

manufacturing systems. We refer to this as system (a).

In Table 3.5 we present three estimates for the mean number of jobs

at each station and total system wip. Estimates (a) in the table are

based on simulation of the network described by Tables A3.1 and A3.2.

Estimates (b) are obtained by simulating the network derived by applying

the approximations presented in Section 2. In this network all stations

work the same schedule. The station utilizations match those in system

(a). The third estimate is obtained by using the parametric

decomposition method to analyze the network of system (b). The

surprisingly close match between the three estimates suggests that the

approximations are quite effective. For example the error in estimating

the total number of jobs is 2.93%. The error in estimating the total

wip is even lower at 1.68%. This limited computational evidence

suggests that the performance of the decomposition approach does not

deteriorate when combined with the approximations introduced in Section

2.

4.0 Conclusions:

We have considered queueing networks where stations operate on

different work schedules resulting in nonstationary product flows. This

problem is not usually considered in the traditional approaches to the
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analysis of queueing networks. In this paper we suggest a mechanism by

which we construct a related network where all stations work the same

schedule. We also present bounds on the performance of the

approximation. We propose that performance measures in the original

network can be estimated by analyzing the derived network, either by

simulation or by exact or approximate methods. The experimental results

of this paper are very encouraging and suggest that the approximation

scheme is robust. Also the test problems provide additional evidence

regarding the effectiveness of the decomposition methods of Shantikumar

and Buzacott (1981), Whitt (1983, 1985), and Bitran and Tirupati (1988a)

in estimating network performance.
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Table 3.1 Estimates of the Mean Number of Jobs

Utilization at Station 1

SCV of
interarrival
times

SCV of
Service
times

Station

1

Station

2

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

1

1 0.5

2.98

3.04

3.00

3.00*

1.32

3.99

3.94

3.95

4.00*

1.52

2.45

2.47

2.45

2.44*

1.21

2.81

2.83

2.79

2.73

3.53

0.75

0.5

1 0.5

2.33

2.31

2.36

2.37

2.60

3.40

3.44

3.42

3.64

7.06

1.80

1.77

1.82

1.81

2.26

2.30

2.32

2.31

2.33

1.30

Note: 1. (a), (b), (c) represent respectively simulation estimates for
the mean number of jobs with overtime levels of 0, 1 and 2
hours per day at station 1, i.e, availability of 8, 9, and 10
hours/day.

2. (d) is the estimate of the mean number of jobs based on the
decomposition approach (formulae in Appendix 2) using the
approximations of Section 2.1.

3. (e) is the maximum % absolute deviation of estimate d from
the estimates (a), (b) and (c).

4. * exact result.

0.85

1

1 0.5

0.5

1 0.5

5.68

5.64

5.72

5.67*

0.88

3.96

4.01

4.02

4.00*

1.01

4.50

4.45

4.40

4.46*

1.36

2.63

2.61

2.55

2.59

1.54

4.36

4.24

4.40

4.39

3.54

3.64

3.56

3.70

3.77

5.90

3.16

3.09

3.15

3.19

3.24

2.30

2.30

2.30

2.33

1.30
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Table 3.2

ca = 1
Cs = 1

ca = 1
cs = 0.5

ca = 0.5
cs = 1

ca = 0.5
cs = 0.5

STATION

1

2

3

1

2

3

1

2

3

1

2

3

Estimates of the Mean Number of Jobs

a

3.99

5.70

3.97'

3.21

3.89

2.54

3.10

4.93

3.71

2.28

3.13

2.29

b

3.94

5.67

3.95

3.26

3.89

2.55

3.02

4.95

3.78

2.32

3.20

2.30

c

3.97

5.86

4.02

3.20

3.99

2.60

3.11

5.01

3.80

2.28

3.29

2.36

d

3.93

5.62

4.00

3.24

3.89

2.57

3.13

5.00

3.76

2.31

3.23

2.31

app.

4.00

5.67

4.00

3.20

3.66

2.43

3.13

5.22

3.92

2.33

3.19

2.33

e

1.50

3.24

1.25

1.84

8.27

6.54

3.64

5.88

5.66

2.19

3.04

1.27

Note: 1. a, b, c, and d represent simulation estimates with the
following work schedules at stations 1, 2, and 3.
a - (8,8,8), b - (8,10,8), c- (6,10,8), d - (8,10,6)

2. app. column represents the estimates based on the parametric
decomposition approach with the approximations of this paper.

3. e is the maximum % absolute error of the approximation
relative to the a, b, c and d estimates.

4. ca is the scv of interarrival times and cs is the scv of
service time.



Table 3.3 Estimates of the Mean Number of Jobs

SCV of
interarrival
times

SCV of
service
times

1

0.5 1

0.5

0.51

Station

a

b

1 c

d

e

a

b

2

Note:

c

d

e

1.

6.72

6.81

6.76

6.69

1.76

4.53

4.37

4.52

4.44

1.99

5.67

5.46

5.54

5.67

3.85

3.21

3.23

3.24

3.42

6.54

5.40

5.37

5.27

5.46

3.61

4.03

4.12

4.04

4.19

3.97

4.42

4.40

4.47

4.46

1.36

2.99

2.99

3.05

3.19

6.69

a, b and c represent respectively simulation estimates with
0, 1 and 2 hours of overtime at Station 1 (availability of 8,
9 and 10 hours/day).

2. d is the estimate computed from formulae in Appendix 2 with
the approximations of Section 2.

3. e is the maximum % absolute error of d relative to estimates
a, b, and c.



Table_ 3.4 ____ Esiae of th en ubr fJb

ca cs STATION

1

1 1 2

3

1

1 0.5 2

3

1

0.5 1 2

3

1

0.5 0.5 2

3

Note: 1.

a

4.55

6.83

4.48

3.67

5.18

3.17

3.50

5.81

4.14

2.89

4.54

3.04

b

4.41

6.65

4.40

3.73

5.15

3.18

3.55

5.91

4.14

2.91

4.56

3.02

c

4.37

6.73

4.46

3.76

5.23

3.19

3.61

5.82

4.11

2.88

4.43

3.00

d

4.44

6.69

4.44

3.74

5.17

3.32

3.58

6.23

4.35

2.89

4.74

3.24

e

2.42

2.05

0.91

1.91

1.15

4.73

2.29

7.23

5.84

0.69

7.00

8.00

ca and cs are the scv of the interarrival and service times
respectively.

2. a, b and c are simulation estimates with availability of 8, 9
and 10 hours respectively at Station 2. At Stations 1 and 3
the availability is 8 hours.

3. d is the estimate computed from formulae in Appendix 2 with
the approximation of Section 2.

4. e is the maximum % absolute error of d relative to estimates
a, b and c.
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Table 3.4 Estinmntes of the Mean Number of Jobs



Table 3.5 Results of Tests with 10 Product. 13 Station Network

mean number
(a) Simulation of
network with overtime

2.19

2.63

2.51

1.57

1.35

1.20

1.19

1.44

1.54

1.18

1.64

1.99

1.34

21.77

Total System
WIP ($) 30739

of jobs

(b)

2.20

2.55

2.46

1.56

1.34

1.17

1.19

1.38

1.51

1.19

1.58

1.88

1.29

21.29

29920

(c)

1.92

2.44

2.46

1.53

1.33

1.09

1.17

1.46

1.52

1.22

1.77

1.92

1.32

21.15

(2.93)*

30231
(1.68)**

Note: 1. a is the simulation estimate with the network data as
specified in Appendix 3.

2. b is the simulation estimates with the network derived from
approximations of Section 2.

3. c is the computed value for the network in b, with parametric
decomposition approach (formulae in Appendix 2).

4. *maximum % error of approximation (c) relative to simulation
values (a) and (b).

5. ** maximum % error in WIP value of (c) relative to simulation
values (a) and (b).

Station

1

2

3

4

5

6

7

8

9

10

11

12

13

Total



Appendix 1

Proof of Proposition 1:

First, we show that the proposition is true for job 1 and then, by

induction, we show that it holds for any job i, i > 2. Recall that by

notation (di -x, di + x) denotes an interval of length 2x hours, x

hours before and after departure of job i in System A. Note that, both

A and Al are empty when job 1 arrives and the corresponding waiting

times are zero. Also note that al:(dal, tal) al':(dal', tal'). We

make the following observations about departure times d and dl':

(i) If the service time b is an integral number of days, i.e.,

bl = nl(r+ov) for some positive integer nl, then the corresponding

service time in Al is also equivalent to n days of work, i.e.,

bl' = nlr, and the departure instants d and d' are the same.

(ii) Let the service time for job 1 in A be equivalent to n days and

n2 hours, i.e., b = nl(r+ov) + n2, where n is a non-negative

integer and 0 < n2 < (r+ov). Then the difference in the departure

times d and d' is entirely due to n2.

Let y = dal + L(bl + tal)/(r+ov)J,

1 (r - tal)/k, and z2 = tal + k(r - tal),

where LxJ denotes the largest integer not greater than x, Lx] denotes

the smallest integer not smaller than x, and k is the scaling factor for

process times as defined in Section 2.1. Observe that, depending on the

value of n2, the completion of service for job 1 and its departure occur

either on day y or y+l in Systems A and Al.

We consider the following four mutually exclusive and collectively

exhaustive cases to compare the departure times d and dl'. The reader



may find figure Al.1, which illustrates these cases, useful in

understanding the arguments presented below.

Case (1): 0 < n2 (r - tal). Service is completed during regular time

of day y in both A and Al. In this case,

ddl y, td1 tal + n2 ; ddl' - y and tdl' - tal + kn2.

Since td - td1' = (l-k)n2 n2 ov/(r+ov) r ov/(r+ov) k ov, we

have Idl - dl'l k ov.

Case (2): r - ta1 < n2 z1. In this case the service for job 1 is

completed during overtime of day y (departure at the beginning of day

y+l) in System A and during regular time of day y in Al.

ddl = y + 1, td1 0; ddl' y and td1' tal + kn 2

By definition of zl and z2, z2 tdl' r.

Since r - z2 = (l-k) (r-tal) (l-k)r = ov r/(r+ov) = k ov,

we have Idl - dl'l k ov.

Case (3): z1 < n2 (r + ov - tal). In this case service for job 1 is

completed during overtime of day y (and departure at the start of day

y + 1) in A and during day (y+l) in Al.

dd1 = y + 1, td1 = 0; dd1 ' = y + 1 and td1 ' k(n 2 - Zl)

The bounds on n2 imply that 0 td1' k ov and Idl - dl'j < k ov.

Case (4): (r + ov - tal) < n2 < (r+ov). In this case the job is

completed during regular time of day y + 1 in both systems A and Al.

ddl = y + 1, td1 = n2 - (r + ov- tal); ddl' = y + 1

and td1' = k(n 2 - zl).

Note that tdl' - td1 = k(n 2 - z1 ) n2 + (r + ov - tal) =

ov[l - n2/(r + ov)].

Since n2 < (r + ov) , tdl' - td1 > 0, and

n2 > r + ov - tal, td1' - td1 < ov tal/(r + ov) < k ov.
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Hence dl - dl'J k ov and the proposition follows for job 1.

To prove the proposition for the general case, say job i, i 2, assume

that the result is true for jobs 1, 2, ...i-l. To prove the proposition

we consider four mutually exclusive and collectively exhaustive cases.

Case (1): At time ai, the arrival epoch of job i, both A and Al are

empty. This case is identical to that of job 1 and the result follows.

Case (2): At time ai, A is busy and Al is idle.

Let j, j < i denote the last job before i which sees an idle server in

System A upon arrival. (Clearly such a job exists.) Let sj and s'j

denote the start time (day and hour) of service for job j in systems A

and Al. Let si and s'i be the corresponding times for job i. We make

the following observations on the operation of A and Al.

1. sj = aj and s'j sj

2. The machine in A is busy from aj till the completion of service

job i.

3. s'i = ai and si > s'i.

To derive the bounds on Idi - di'l, consider the following alternatives:

(a) delay the start of service for job i in Al such that the start

time is the same in both systems, i.e., it is si in both A and

Al. Denote the departure time for job i in system Al so

modified as dl'

Clearly dl' > di'. By an analysis similar to that of job 1,

we obtain, di - k ov dl' di + k ov

which implies that di + k ov > di' (1)

(b) Consider a system Al in which the processing of job j starts

at the same time as in A, i.e., s'j = sj and jobs j, j+l,...

i are processed without any intervening idle time. Let d2'



denote the departure time of job i in system Al. It is clear

that d2' < di'.

By treating jobs j through i as a single job with process time

bj + bj+l + ... + b i, and an analysis similar to job 1, we

obtain di - k ov d2'< di + k ov which implies that

di - k ov < di (2)

From (1) and (2), we have di - k ov < di' < di + k ov, and the

proposition follows.

Case (3): At time ai, A is idle and Al is busy.

This case can be analyzed in a manner similar to case (2). Let j denote

the last job before i which sees an idle machine in Al upon arrival.

Let sj and s'j (si and s'i) respectively denote the start of service for

job j (job i) in systems A and Al. Note that:

1. sj' = aj and sj > s'j

2. si = ai and s'i > i

3. System Al is busy from aj till the completion of service of job

i.

Consider the following alternatives:

(a) Delay the start of service for job i in A such that si = s'i.

Let dl denote the departure time of job i in A. Then dl > di,

and di' - k ov < dl d'i + k ov which implies

di < di' + k ov (1)

(b) Consider a system A in which j starts at time aj and jobs j,

j+l, ... i are processed without any intervening idle time.

Let d2 denote the departure time of job i. Then d2 < di, and

di' - k ov d2 < di' + k ov which implies that

di' - k ov < di (2)

ii�······-··-·------__ 1�



From (1) and (2) di' - k ov < di < di' + k ov and the

proposition follows.

Case (4): At time ai both A and Al are busy.

In this case note that jobs i-1 and i are processed in sequence without

any interruption. The completion of service for job i is determined by

the time taken to process (bi 1 + bi) in System A and k(bil.1 + bhi) in

system Al from the start of service for job i-1 in both systems.

Note that, by assumption Idi.1 - di-l'l k ov and this is independent

of process time bi_1 .

Replacing the process time of job i-l by (bi + bhi) and repeating the

analysis for job i-1, we obtain di - d'il < k ov.

Proof of Proposition 2

Without any loss of generality we assume that

(i) If more than one machine is available, a job is assigned to the

machine which became free first, and

(ii) The machines are numbered such that the first m jobs are

respectively assigned to machines 1, 2, ...m1.

Lemma Al: Consider a system B in which all m machines work overtime,

i.e., m2 ml1. suppose ml jobs with process times bl, b2, ... bm

are assigned to the m machines and begin service at the same time

(say t = 0). Assume that in B also the jobs begin service at time

t - 0. Then the order in which the m jobs complete service is the

same in B and B1. And the sequence in which the machines become

free is also identical in B and B1.

Lemma A2: In any given sample path defined by a sequence of job

arrivals and associated service times, let

__�_____I�_F______IS_�O_�i______�_�·



Jj(Jj') be the set of jobs assigned to the machine j, j - 1, 2,

...ml in system B(B1).

Then Jj - Jj' , j 1, 2, ... mi.

Outline of Proof of Proposition 2:

Observe that for any given sample path, B can be decomposed into ml

single machine subsystems Aj for each machine j, j 1, 2, ...ml.

Jobs in Jj represent the sequence of arrivals and associated

service times for Aj.

Let Alj represent the approximation of section 2.1 for system Aj,

and let d'j i represent departure times of job i in Alj, i e Jj, j

= 1, 2, ... ml.

From proposition 1, we have Idi - d'j i| < k ov, i c Jj, j = 1, 2,

... ml. (a)

Also observe that B can likewise be decomposed into m subsystems

Blj, j 1, 2, ... ml.

Furthermore, from Lemma A2 it follows that Blj and Alj are

identical, i.e., both systems have same machine schedules, with

identical job arrivals and service times.

Hence di' = d'j i , i Jj, j = 1, 2, ...ml (b)

From (a) and (b), we obtain di - di' < k ov and the proposition

follows.

Remark 1

Consider a multimachine system with m2 < ml. Assume that the job

arrivals and service times are such that the number of jobs is at

least ml in both systems B and B1 at any point in time. Also

assume that at time t=O, the processing of first job is initiated

in both systems B and B1. Let b* = Lbmax/bmin] where bmax and bmin



respectively denote maximum and minimum process times. Consider

systems B and B1 at the start of any day, i.e., at any point in

time T, where T is integral in number of days. Then, the number of

jobs in the two systems do not differ by more than (ml - 1) (b* +

1) - 1.

Outline of Proof:

Since the number of jobs is at least ml in both B and B, the

amount of work completed during the interval [O,T] are equivalent,

i.e., WP(T) = (mlr + m2ov)T, WP' (T) - mlrT, and WP' (T) = klWP(T),

where WP(T) and WP' (T) respectively represent the amount of work

processed in B and B during the interval O,T] and k is as

defined in Section 2.2.

Let N(N') denote the set of jobs processed either completely or

partially in B(B1) during [O,T]. Let NC(NC') denoted the set of

completed jobs in B(B1) and NP(NP') the set of in-process jobs.

Let INCI = n and INC' = n'. Note that INPI IJNP' ml.

Let xj (xj'), j = 1, 2, ... ml be the amount of work completed on

job in process on machine j in B(B1).

We make the following observations:

ml1
(i) WP(T) = Z bi + Z xj

iENC j-1

ml

(ii) WP' (T) = Z bi' + Z xj' = kWP(T)
iE NC' j=l

(iii) Since the priority discipline is FCFS, the start of service of job
i implies that the number of completed jobs is i - m + 1.

CLAIM 1: n' > n - (ml - 1) (b* + 1) + 1

Case (a): N' N: In this case there exists a job i, which is

__ ____·�____�1__�_____q��____ll�_a__l_____



Case (b):

processed either partially or completely, only in B. A FCFS

discipline implies that i > n + ml, and from observation

(iii) above, it follows that n' i - ml + 1 > n + 1 > n -

(b* + )(m1 - 1) + 1.

N' N: Consider the schedule for processing jobs in the set

N in system B with the following process times:

bl'i = klbi if i NC

= klxj if i NP and is being processed on machine j.

Note that Z bl' i - WP'(T).
iEN

A job is considered in process, if it is assigned a machine

and the service is not yet complete at the end of day T. We

note that:

(i) At most m - 1 jobs are in-process.

(ii) At least one of the in-process jobs in B is also in-process in B.

This is clearly true for job (n + ml) which is the last job to

enter service.

(iii) At most m - 1 jobs in the set NP can be scheduled to start prior

to those in NC.

(iv) If all jobs in the set NP start service only after the jobs in NC,

then the number of completed jobs in B is at least n - ml + 1.

(v) For each job j in NP that is scheduled to start before some jobs

in NC it is possible that amount of processing is greater than

klxj. In that case, each such job can delay completion of at most

b* jobs.

(vi) (iii) and (iv) together imply that n' n - ml - b*(ml - 1) = n +

1 - (ml - )(b* + 1).



CLAIM 2: n > n' + 1 - (ml - l)(b* + 1). The arguments are similar to

those in Claim 1. Claim 1 and 2 together imply that n - n' I <

(m1 - )(b* + 1) - 1.

Since job arrivals are identical in B and B, the above results

implies that the number of jobs in the two systems do not differ

by more than (ml - l)(b* + 1) - 1.

�_____�_____1 _·1_1__·__1____�__1�__I_. __.___ _�_·__._�____·�ll_�i�·_-r^lC----l^-ll ��_.�
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P 

/- , A/1,

P1 Q1 Q1
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R1

tca l 1

Day y Day y + 1 time

denotes machine not available in Al (no overtime).

P and R represent start and completion of overtime in A.

P1 and R1 represent points in time in Al that correspond to P and R in
A. (Corresponding points imply equivalent amount of work completion in
the two systems.)

Q1 is the corresponding point for Q in A and represents the start of day
y+l and the end of day y.

FIGURE A.1

SYSTEM A

SYSTEM Al

e- ta, --- :0

._



Appendix 2

In this appendix, we present a summary of approximations based on the

parametric decomposition approach for estimating mean number of jobs in

open queueing networks with multiple products and deterministic routing.

For details of these results, the reader is referred to Shanthikumar and

Buzacott (1981), Whitt (1983, 1985) and Bitran and Tirupati (1988a).

The approximations involve two steps: (a) determination of the mean and

squared coefficient of variation (scv) of product flows in the network,

and (b) estimation of the mean number of jobs in a GIIGIm queue.

Estimation of the mean and scv of product flows in the network:

Let m = number of products

J = number of stations

ai = arrival rate of product i

u i = number of operations required for product i

ui,k = station visited by product i at step k

cdi,k = scv of product stream i after processing at step k

(cdi,0 is the scv of product arrivals to the network.)

Aj = net arrival rate at station j

yj = service rate of each machine at station j

caj = scv of arrivals at station j

cdj = scv of departures from station j

csj = scv of service time at station j

mj = number of machines at station j

pj = utilization at station j = j/(mjpj)

1H(x) = indicator function = 1 if xH and 0 otherwise.



m U i

Aj = Z ailu i , r )' j 12, 2 J; (A2.1)
i=1 r=l

cdj 1 + (1 - pj2) (caj - 1) + pj2(c - 1) + pj (A2.2)

m u i

ijca a icdir-lltUi r = J) j 1, 2, ...J (A2.3)
i-l r=l

cdi,k Picdj + cn i, k = 1, 2, .. .ui; i 1, 2, ...m (A2.4)

where j = Ui,k, and Pi ai/Aj in (A2.4).

For the case where the arrival distribution of the aggregate

product, i.e., the composition of all products arriving at station j

except i, can be approximated by a Poisson distribution, (A2.4) reduces

to

cdi,k Picdj + (l-pi){Pi+(l-Pi)cdik-l), k = 1, 2, ...ui (A2.4')

i = 1, 2 ...m;

Other approximations for cni are discussed in Bitran and Tirupati

(1988a).

Estimation of mean number of jobs in a GIIGIm queue

(see Whitt, 1985 for details)

Additional Notation:

Lqj = mean number of jobs in queue at station j

Lj = mean number of jobs at station j

Lqj* = mean number of jobs in an MMIm queue with utilization pj.

Then Lj = Lqj + mjpj, (A2.5)

where Lqj is given by the following:



III

Case (1): m = 1:

Lqj = pj 2/(1-p) (caj + csj)/ 2 g(pj, caj, csj) (A2.6)

2
where g(p, ca, cs) = exp [-2(1-p)(1-ca) 2/(3p(ca + cs))], ca 1

= exp [-(l-p)(ca-l)/((l+p)(ca + 10cs2))], ca > 1

Case 2: m > 1:

Lqj = ,(pj, caj, sj, mj) caj + csj L(A2.7)
2

Where (p, ca, cs, m)

= 4 (ca - cs) 41 (m,p) + cs e ((ca + cs)/2,m,p), ca > cs

4 ca-3cs 4ca-3cs

= (cs-ca)/(2(ca+cs))3(m,p) + (cs+3ca)/(2(ca+cs))e((ca+cs)/2,m,p), cacs

e(a,m,p) = 1 , a > 1

= (24(m,p)) 2 ( 1-a) o < < 1

6(m,p) = min (0.24, (l-p) (m-l) [ (4+5m)0 5 - 2]/(16mp))

0l(m,p) = 1 + 6 (m,p)

02(m,p) = 1 - 4 6(m,p)

03(m,p) = 2(m,p) exp (-2(1-p)/(3p))
04(m,p) = min (1, (l(m,p) + 3 (m,p) )/2 )



Appendix 3. Data for the Network Example (Section 3.3)

Table A3.1: Product Data

Distribution of
Product interarrival Routing Sequence

times

1 Erlang, order 2 1,2,4,2,9,10,11
2 Erlang, order 2 1,2,5,2,8,9,10,11
3 Erlang, order 3 1,2,6,4,2,9,12,11
4 Erlang, order 3 1,2,7,4,2,9,10,11
5 Uniform 1,2,4,12,2,9,2,13
6 Erlang, order 3 1,2,5,12,2,9,7,13
7 Erlang, order 4 1,2,6,12,2,8,2,13
8 Exponential 1,2,3,7,4,12,2,8,6,9,2,13
9 Exponential 1,2,3,5,4,6,12,2,8,2,10,6,13

10 Erlang, order 3 1,2,3,6,2,4,12,7,2,9,11,5,13

Table A3.2: Station Data

Work
Service Time Schedule Utilization

Station Distribution vj hours/day (p-)

1 Erlang order 2 100 8.00 0.7692
2 Erlang order 4 1612 8.72 0.8284
3 Uniform 733 9.52 0.7979
4 Erlang order 2 1052 8.00 0.7000
5 Uniform 912 8.29 0.6861
6 Erlang order 4 1683 8.00 0.6501
7 Exponential 1662 9.20 0.5797
8 Erlang order 3 1812 10.13 0.7018
9 Erlang order 3 1730 8.96 0.7143

10 Erlang order 3 1600 8.56 0.6547
11 Uniform 1882 9.91 0.7418
12 Erlang order 2 1486 10.05 0.7495
13 Erlang order 2 3250 9.81 0.6522

Note: 1. The distribution of interarrival times for jobs in each
product family is completely specified by data in Table A3.1
and the fact that the arrival rate is 1.0 per day.

2. The service time distribution at each station is completely
specified by the data in Table A3.2 together with the net
arrival rate computed from routing data (using formulae in
Appendix 2) in Table A3.1.

3. All stations operate on a 5 day/week schedule.
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