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Abstract

We propose and analyze a generic mathematical model for dynamic vehicle routing

problems, which we call the dynamic traveling repairman problem (DTRP). The model

is motivated by applications in which the objective is minimizing the wait for service

in a stochastic and dynamically changing environment. This is a departure from tra-

ditional vehicle routing problems which seek to minimize total travel time in a static,

deterministic environment. Potential areas of application include repair, inventory,

emergency service and scheduling models. The DTRP is defined as follows: Demands

for service arrive according to a Poisson process in a region A and, upon arrival, are

independently and uniformly assigned a location in A. Each demand requires an in-

dependent and identically distributed service by a vehicle that travels at unit velocity.

The problem is to find a policy that minimizes the average time a demand spends in the

system. We propose several policies for the DTRP and analyze their behavior. Using

approaches from queueing theory, geometrical probability, combinatorial optimization

and simulation, we find a provably optimal policy in light traffic and several policies

that have system times within a constant factor of the optimal policy in heavy traffic.
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heuristics.
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Introduction

The traveling salesman problem (TSP) is one of the most studied problems in the operations

research and applied mathematics literature. The attention it receives is due in large part

to the problem's richness and inherent elegance; however, its popularity is also due to the

fact that the TSP is encountered frequently in practical problems, both directly and as

a subproblem. Yet, in many of these practical applications, the TSP is a deterministic,

static approximation to a problem which is, in reality, both probabilistic and time varying

(dynamic). Also, there are often costs associated with intervisit delays that are not captured

in the objective of minimizing travel distance.

A prototypical application of the TSP is the routing of a vehicle from a central depot to

a set of dispersed demand points so as to minimize the total travel (delivery) costs. In a real

system, however, the demands may arrive randomly in time and the dispatching of vehicles

may be a continuous process of collecting demands, forming tours and dispatching vehicles.

In such a dynamic setting, the wait for a delivery (service) may be a more important factor

than the travel cost. The primary applications that motivate our investigation in which the

wait for service rather than the total travel time is a more suitable objective and also the

demand pattern is both dynamic and stochastic include:

1. The demands from the remote locations are requests for replenishment of stock that

occur randomly in time. In this case, large waiting times mean that large inventories

are needed at the remote sites. Thus, decreasing the wait for delivery is important for

reducing inventories.

2. Demands represent requests for emergency service. The objective is therefore to reduce

the wait for service rather than to minimize the travel cost of the emergency vehicle.

In this case, we want real time policies that can be applied in a stochastic environment.

3. The demands are geographically dispersed failures that must be serviced by a mobile

repairman. The objective in this case is to minimize the downtime (wait plus service

time) at the various locations. Examples in this category include servicing of geo-

graphically distributed communications or utility networks, automobile road service

(AAA), or the dispatching of a roving expert to local sites.

4. In sequencing airplanes for landing in major airports it might be more appropriate to
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minimize the total average waiting time in the air rather than minimizing the time

the last airplane lands, which is exactly the TSP objective. In this example demand

for service is dynamically changing. A similar application is the problem of managing

a fleet of taxis to minimize the average waiting time of customers.

5. Finally, for completeness consider the problem in which a salesman receives leads

randomly in time and wants to make his sales calls so as to minimize the average

amount of time each prospective customer spends contemplating his purchase!

Motivated by these application areas, we propose and analyze a generic mathematical

model which we call the dynamic traveling repairman problem (DTRP). The DTRP is de-

fined as follows: a region A contains a vehicle (server) that travels at unit velocity. Demands

for service arrive according to a Poisson process and, upon arrival, are independently and

uniformly assigned a location within A. The problem is to find a policy for servicing the

demands that minimizes the average system time, which includes both the waiting time in

queue and the on-site service time.

The DTRP has several important characteristics:

1. The objective is to minimize waiting time not travel cost.

2. Information about future demands is stochastic.

3. The demands vary over time (i.e. they are dynamic).

4. Policies have to implemented in real time.

5. The problem involves queueing phenomena.

Indeed, Psaraftis [21] provides an extensive list of other characteristics that distinguish

dynamic versions of the TSP from their static counterparts and points out that, in general,

little is known about dynamic vehicle routing problems. More importantly, Psaraftis [21]

defines the dynamic traveling salesman problem (DTSP), which motivated our investigation

on dynamic vehicle routing problems, as follows. In a complete graph on n nodes demands

for service are independently generated at each node i according to a Poisson process with

parameter Ai. These demands are to be serviced by a salesman who takes time tij (which

can be stochastic) to go from i to j, and spends a stochastic time X, which has a known

distribution, servicing each demand (on location). The goal is to find strategies that optimize
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over some performance measure (waiting time, throughput). In comparison with the DTSP,

the DTRP is defined in the Euclidean plane and specifically optimizes over the total system

time.

Some of the above characteristics have been considered before in isolation in the liter-

ature. The first important characteristic of the DTRP is that the objective is to minimize

waiting time rather than total travel time. In a deterministic setting, this idea appears in

the traveling repairman (or delivery) problem (TRP), in which a repair unit has to ser-

vice a set of demands V starting from a depot. If d(i, j) denotes the travel time from i

to j, the problem is to find a tour starting from the depot through the demands so as to

minimize the total waiting time of the demands. As a result, if the sequence in which the

repair unit travels is t = (1, 2,..., n, 1) then the total waiting time is Wt = nl wi, where

wi - d(j, j + 1) is the waiting time of the demand i. The problem closely resembles

the TSP and can be thought of as the deterministic and static analog of the DTRP. As

is the case with the TSP the TRP is NP-complete both on a graph and in the Euclidean

plane (Sahni and Gonzalez [22]). In contrast with the TSP, which is trivial on trees, the

TRP seems difficult on trees. Minieka [20] proposes an exponential O(nP) algorithm for the

TRP on a tree T = (V, E), where IVI = n and p is the number of leaves in T. Despite its

interest and applicability the problem has not received much attention from the research

community. As a result not much is known about the problem.

Jaillet [10], Bertsimas [5] and Bertsimas, Jaillet and Odoni [6] address the first and

third characteristic under the unifying framework of a priori optimization. They define and

analyze the probabilistic traveling salesman problem (PTSP) and the probabilistic vehicle

routing problem (PVRP) which are defined as follows. there are n known points, and on

any given instance of the problem only a subset S consisting of ISI = k out of n points

(0 k < n) must be visited. Suppose that the probability that instance S occurs is p(S).

We wish to find a priori a tour through all n points. On any given instance of the problem,

the k points present will then be visited in the same order as they appear in the a priori tour.

The problem of finding such an a priori tour which is of minimum length in the expected

value sense is defined as the PTSP. In case the vehicle has capacity Q then the corresponding

problem is the probabilistic vehicle routing problem. It is clear that the policy followed is a

real time policy, but the problem is inherently static, i.e. it is solved a priori using only the

probabilistic information.
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A distinct characteristic of the DTRP is that it incorporates queueing phenomena into

the routing problem. Queueing considerations in the context of location problems have

been considered in Berman et. al. [3] and Batta et. al. [1]. In this setting the authors

define the stochastic queue median problem (SQMP), in which the important decision is a

strategic one. We would like to locate a server in a network which behaves like an M/G/1

queue. In particular, this model, which is very appropriate for the location of emergency

servers, assumes that arrivals occur in a dynamic manner according to a Poisson process.

A vehicle (server) is dispatched from a central depot and then returns to the depot again.

The problem is to locate the depot on a network so that the mean queueing delay and mean

travel time is minimized. In our setting, the SQMP can be seen as a particular case of the

DTRP in which the policy followed is to strategically locate the server and then follow a

FCFS dispatching rule. We compare the performance ot this policy with other policies in

Section 4.1.

The DTRP in the Euclidean plane is analyzed using a variety of techniques from combina-

torial optimization, queueing theory, geometrical probability and simulation. Our strategy

is the following: first, we establish some lower bounds on the average system time for all

policies. Then, we propose several policies and find exact analytic expressions for their

performance. A variant of the FCFS policy, called the stochastic queue median policy, is

shown to be optimal in the case of light traffic. In heavy traffic, several policies are shown

to be within a constant factor of the lower bounds and thus from the optimal policy.

The paper is organized as follows. Since we use a variety of results from several areas, we

briefly describe these results and give appropriate references in Section 1. In Section 2, we

formally describe the DTRP and introduce notation. Lower bounds for the optimal system

time are derived in Section 3. In Section 4, which is central to the paper, we introduce

and analyze several policies for the DTRP (FCFS, stochastic queue median, partitioning,

TSP and nearest neighbor policies). In this section, we prove that the stochastic queue

median policy is optimal in the light traffic limit and that several policies are within a

constant factor of optimality in the heavy traffic limit. The policy with the best provable

performance guarantee in heavy traffic is one based on forming TSP tours. It has an average

system time of no more than 2.1 times the optimal system time. The nearest neighbor policy

is shown via simulation to be within approximately 1.6 of the optimal system time, but this

bound is not proven analytically. In Section 4.5, an example is given to illustrate the relative
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performance of the policies. Finally in Section 5 we summarize the contributions of the paper

and give some concluding remarks.
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1 Probabilistic and Queueing Background

In this section, we briefly describe the results used in the following sections of the paper.

An Upper Bound for the Waiting Time in a GI/G/1 Queue

In a GI/G/1 queue let , 7 be the expected interarrival and service time and let a2, o2 the

variances of the interarrival and service time distribution respectively. Let p = A be the

traffic intensity. There is no simple explicit expression for the expected waiting time W in

this case. Note that the average system time T is simply W + 7. Kingman [13] (see also

Kleinrock [15]) proves that

W< (f+o) (1)
- 2(1 - p)

In addition, this upper bound is asymptotically exact as p --, 1. For the M/G/1 it is well

known (see Kleinrock [15]) that

W (2)2 (1 - p)'

where 2 -= o + 72 is the second moment of the service time.

Symmetric Cyclic Queues

Consider a queueing system that consists of k queues Q1, Q2,..., Qk each one with infinite

capacity. Customers arrive at each queue according to independent Poisson processes with

the same arrival intensity A/k. The queues are served by a single server who visits the

queues in a fixed cyclic order Q1,Q2, ... ,Q ,Q1,Q2, .... The travel time to around the

cycle is d. The service times at every queue are independent identically distributed random

variables with mean T and second moment . The traffic intensity is p = A7. The server

uses either the exhaustive service policy, i.e. servicing each queue i until the queue is empty

before proceeding, or the gated policy, where only customers in queue at the time of the

servers arrival are served. The expected waiting time for this symmetric cyclic queue using

an exhaustive service policy is given by (see Bertsekas and Gallager [4], p.156)

W= ( + (l)d. (3)
2(1 - p) +2(1 - p)

For the gated service policy, the waiting time is

W 2( - + 2( d. (4)
w = 2(1 - p) +2(1 - p)

We note that in an asymmetric cyclic queue, in which arrival processes and service times

are not identical, there are no closed form expressions for the waiting time (see Ferguson

7
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and Aminetzah [9]).

Jensen's Inequality

If f is a convex function and X is a random variable then

E[f(X)] > f(E[X]) (5)

provided the expectations exist.

Geometrical Probability

Given n uniformly and independently distributed points zl,..., zn in a square of area A,

then the following lower bound for the distance to the nearest neighbor is known (see for

example Beardwood et. al. [2]):

E[min I-zi ]> 2 v /A'. (6)

Also,

E[lzl - 2 11 = c 1 ', E[Izl- 2 12] = c2 A, (7)

where cl t 0.52,c2 = 3 (see Larson and Odoni [16], p.135).

If we let z' denote the center of a square of area A, then it is known [16] that the first

and second moment of the distance to a uniformly chosen point are given by

E[lz* - 1] = c3v/A, E[lz* - 12] = c4A, (8)

where C3 = ( + In( + Vq)/6 0.383, c =.

Asymptotic Properties of the TSP in the Euclidean Plain

Let zl ... ,, be independently and uniformly distributed points in a square of area A and let

Ln denote the length of the optimal tour through the points. Then there exists a constant

PTSP such that

lim n -=/rsPVA. (9)

with probability one (see [23], [19]). In his recent experimental work with very large scale

TSP's, Johnson [11] estimated PTSP t 0.72. In addition, it is also well known (see [19], p.

189) that limn-oo var(Ln) = 0(1), and therefore

lim r() 0. (10)
n-oo n
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2 Problem Definition and Notation

The DTRP was defined broadly in the introduction. We repeat the definition here for

convenience and to establish notation.

The DTRP is defined as follows: A convex region A of area A contains a vehicle (server)

that travels at constant, unit velocity between demand (or customer) locations. Demands for

service arrive according to a Poisson process with rate A and, upon arrival, are independently

and uniformly assigned a location within A. Each demand i requires an independent and

identically distributed on-site service with mean duration 7 and second moment . The

fraction of time the server spends in on-site service is denoted p, and for stable systems

p = ,I. The system time of demand i, denoted Ti, is defined as the elapsed time between

the arrival of the demand and the time the server completes the service of i. The problem

is to find a policy for servicing demands that minimizes the steady-state, average system

time, T lim oo E[Ti].

We restrict the class of policies slightly by requiring that routing decisions be made

only at service completion epochs. This means the server travels in straight lines between

demand locations and is prohibited from making changes in "mid-course". We let di denote

the straight-line travel time to the ith demand location from the location at which the

server made the decision to service i. The term di is therefore the travel time component

of demand i's (total) service requirement. The steady state expected value of di is denoted

d and is given by d limi-.o E[di].

A final remark concerning the difference between the DTRP and the M/G/1 queue: in

the DTRP, the total service time has both a travel and on-site service component. Although

the on-site service requirements are independent, the travel times are generally not. As a

result, total service times are not i.i.d. random variables, and therefore the methodology of

the M/G/1 queue is not directly applicable.

3 Lower Bounds on the Optimal DTRP Policy

To simplify the calculations and the presentation, it is assumed throughout the next two

sections that the region A is a square of area A. This restriction can be relaxed without

affecting the results, though the actual calculations may be more difficult. The strategy we

follow is to first establish two simple but powerful lower bounds on the optimal expected

9
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system time, T*. In Section 4, we use these lower bounds to evaluate the performance of

the proposed policies.

3.1 A Light Traffic Lower Bound

The first bound for the DTRP is established by dividing the system time of customer i, Ti,

into three components: the waiting time of customer i due to the servers travel prior to

service of i, denoted Wid; the waiting time of customer i due to service of customers served

prior to customer i, denoted W'; and customer i's service time, si. Thus,

T= Wd + W + 8is

Taking expectations and letting i -- oo gives

T = Wd + W + , (11)

where Wd -= limi-.oo E[Wid] and W' limioo E[W,'].

To bound Wd, note that the travel component of the waiting time of a given customer

(demand) is at least the travel delay between the servers location at the time of the cus-

tomer's arrival and the customer's location. In general, the server is located in the region

according to some (generally unknown) spatial distribution that depends on the server's

policy; thus, Wd is bounded by the expected distance from a uniform location to a server

location selected from this distribution. Now, suppose we had the option of locating the

server in the best a- priori location, x*, prior to the arrival. That is, the location that mini-

mizes the expected distance to a uniformly chosen location, z. This certainly yields a lower

bound on the expected distance between the server and the arrival, so

Wd > min E.[Ilxz- zol0] (12)
- XoEA

The location x* that achieves the minimization above is the median of the region A. For the

case where A is a square, x* is simply the center of the square, in which the lower bound is

from (8),

Wd > c3 VA ~ 0.383 V (13)

To bound W', let NT denote the expected number of customers served during a cus-

tomer's system time. Then since service times are independent, we have

As2
W' =NT +

2'
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where the second term is the expected residual service time of the customer in service.

Since in steady state the expected number of customers served during a wait is equal to the

expected number who arrive, we can apply Little's law to get

W = AT+ + = pT+ 2

By using (11) we obtain

W'= P (Wd )+ 2s- ) (14)
1-P 2(1 - p)'

Combining (13) and (14) and noting that these bounds are true for all policies we get

the first bound on T*,
T > C3vrA + (15)

- i-p 2(1-p) (15)

As shown below, this bound is most useful in the case of light traffic (A -, 0).

3.2 A Heavy Traffic Lower Bound

A second lower bound on T* is obtained by examining the stability conditions for the DTRP.

For the system to remain stable, the average amount of work (time) each customer requires

from the server must not exceed the average time between arrivals,

1 > (16)

Recall that d is the average travel time between customers and that the server makes service

decisions at customer completion epochs.

Let di denote the distance between the server and the closest customer location at the

epoch of the decision to service i; then by conditioning on the number of customers N in

the system at the decision epoch we find

= EN [E[diIN]] > EN [E[d IN]] (17)

Now, suppose the policy the server follows is such that the locations of the N customers in

the system are independent and uniformly distributed. For example, this is the case for any

policy in which service order is independent of customer locations, such as a FCFS, LCFS,

or SIRO policy. In this case, E[di IN] is bounded by (6),

E[dIN] > (18)
S 2 ,IN

11
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For an arbitrary policy, the location of the N customers in the system at a completion

epoch may not be uniformly distributed and independent; however, we make the assumption,

that for all stable policies (18) is a valid lower bound. Indeed, we conjecture that this

assumption is valid, though we have not been able to prove it. Arguing intuitively, the

density of customers in the immediate vicinity of the server should be lower than the density

of customers spread uniformly throughout the region due to the fact that recent service

completions are, on average, close to the server's current location ( sufficiently small to

satisfy (16)); thus, the customers are likely to be "thinned out" near the server. It is

therefore reasonable that the expected value of di' is as least as large as would be obtained

if the N locations were uniform.

Assuming (18) is true generally, then by an identical argument to that of the M/G/1

queue, the number of customers in the system at service completion epochs has the same

distribution as the number in the system at a random point in time; therefore, we can

consider the random variable N above to be the number of customers in the system at a

random instant. Applying Jensen's inequality to (18) and noting that E[N] = AT* for the

optimal policy, we have from (16) that

1 _a

which after rearrangement yields

T* > 4(1 - p)2' (19)

This establishes the second lower bound. For - this bound approaches zero and is

therefore not useful in the light traffic case. For p - 1, on the other hand, this bound

dominates (15).

The lower bound in (19) says that the waiting time for any policy must grow at least

as fast as (1 - p)-2 rather than (1 - p)-l as is the case for a classical queueing system.

This is significantly different behavior from that of a traditional queueing system (e.g. the

M/G/1 system). The reason for this difference lies in the geometry of the system; the bound

(19) gives (via Little's Theorem) the minimum average number of customers that must be

maintained in the system to ensure that the average travel distances, d, satisfy the stability

condition (16). This minimum number, however, grows much more rapidly than the average

number in the system due simply to queueing delays. Indeed, as shown in the next section,

every policy we analyzed that is stable for p - 1 has a dominant term proportional to

12
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AA/(1 - p)2. This is further evidence that the lower bound (19) correctly describes the

asymptotic behavior of the DTRP.

4 Some Proposed Policies for the DTRP

In this section, we propose and analyze several policies for the DTRP. The first class of

policies are based on variants of the FCFS discipline. We show that one such policy is optimal

in light traffic, in the sense that it asymptotically achieves the light traffic lower bound of the

last section for A --* 0. These policies, however, are unstable for high utilizations; therefore,

we turn next to a class of partitioning policies based on subdividing the large square A into

smaller squares, each of which is served locally using a FCFS discipline. Using results on

cyclic queues, we are able to find exact expressions for the waiting time. Based on these

explicit expressions, we determine the optimal number of partitions. These results show

that the partitioning policies are within a constant factor of the lower bounds for all values

of p < 1. They also establish p < 1 as the stability condition; that is, there exists stable

policies for every p < 1. We then introduce a more sophisticated policy based on forming

successive TSP tours. Its average system time is about 2.1 times the lower bound, which

is nearly twice as good as the best partitioning policy. Finally, we examine the policy of

serving the nearest neighbor. Because of analytical difficulties, we use simulation to analyze

its performance. The simulation results show that this policy has an average system time

within a factor of approximately 1.6 of the lower bound.

4.1 FCFS Policies

The simplest policy for the DTRP is to service customers in the order in which they arrive

(FCFS). The first policy we examine of this type is defined as follows: 1) when customers

are present, the server travels directly from one customer location to the next following a

FCFS order, and 2) when no customers are present at a service completion, the server waits

until the next customer arrives before moving. The random variable d is, therefore, the

distance between two independent, uniformly distributed locations.

Because customer locations are independent of the order of arrivals and also the number

of customers in queue, the system behaves like an M/G/1 queue. Note that the travel times

di are not strictly independent (e.g. consider the case d, = V2'iA); however, it is true that

13
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they are identically distributed and also independent of the number in queue. Therefore,

the Pollaczek-Khinchin (P-K) formula (2) still holds. (See [4] page 142-143 for a proof of

the P-K formula that does not require mutual independence of service times.)

The first and second moments of the service time are, by (7), + clVA and 7 +

2cliVs+ c2 A respectively, where cl , 0.52, c2 = -. The average system time (waiting time

plus service time) is therefore

TFCFS = (s + 2cli + c 2A). (20)

The stability condition for this policy is p + Acl/A < 1; therefore, this policy is unstable

for values of p approaching 1. For A -- 0, the first term in (20) approaches zero. Likewise,

the second term of (15) also approaches zero as A - 0; therefore, for the light traffic case

we have

TFCFS < + Cl1 a<, as A - O.
T* - +c3V '

Since could be arbitrarily small, the worst case relative performance for this policy in light

traffic is TW "_ < c/c 3 - 1.36.

The FCFS policy can be modified to yield asymptotically optimal performance in light

traffic as follows: consider the policy of locating the server at the median of A and following

a FCFS policy, where the server travels directly to the service site from the median, services

the customer, and then returns to the median after service is completed. We call this policy

the stochastic queue median policy (SQM). As before, the server waits at the median if no

customers are present in the system. Again, since locations are independent of the order of

arrival and the number in queue, the system behaves as a M/G/1 queue; however, we have

to be somewhat careful about counting travel time in this case. From a system viewpoint,

each "service time" now includes the on-site service plus the round trip travel between the

median and the service location. The system time of an individual customer, however,

includes the wait in queue plus a one way travel to the service location plus the on-site

service. Therefore, the average system time under this policy is given by

A ( s + 4C3 + 44A)
TSQM = (2(1 2c3 V4 - p) + + C3 V, (21)

where c3 ;t 0.383, c4 = . The stability condition for this policy is 2Ac 3 VAT+ p < 1.

Letting A approach zero, the first term above goes to zero and since c3 is the constant

14
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of the lower bound (15) we get

Ts
1, as A - O. (22)T °

This argument can be generalized to arbitrary regions A; therefore, we have the following

theorem.

Theorem 1 The SQM policy of locating the server at the median of the region A and ser-

vicing customers in a FCFS order (returning to the median after each service is completed)

is asymptotically optimal for the DTRP as A approaches zero.

This is an intuitively satisfying (if not altogether surprising) result. It is analogous to

the results achieved by Berman et. al. [3] and Batta et. al. [1] for the optimal location of a

server on a network operated under a FCFS policy. Our result is somewhat stronger in that

(15) is a lower bound on all policies, not just FCFS policies. It therefore establishes not only

the optimality of the median location in light traffic, but also the optimality of the FCFS

discipline itself; however, this is mitigated by the fact that very little queueing occurs in

light traffic so the service discipline is insignificant compared to the server's location. As a

practical matter, (15) can be used to bound the deviation from optimality of FCFS policies

as A is increased from zero.

Because of the stability conditions of the FCFS policies, TFCFS becomes unbounded as

p + clAVT - 1 and TSQM becomes unbounded as p + 2Ac 3 V -a 1. As we show in the

next subsection, there are stable policies for p < 1; therefore, the performance guarantee on

the FCFS policies can be arbitrarily bad in moderate to heavy traffic conditions.

4.2 Partitioning Policies Based on Cyclic Queues

The intuitive reason the FCFS policies are unstable for high utilization values is that the

average distance traveled per service, 3, remains fixed. The stability condition (16), however,

implies d < , so 3 must decrease as p (and A) are increased. A policy that is stable for

all values of p must, therefore, increasingly restrict the distance the server is willing to travel

between services as the traffic intensity increases. This section examines two policies that

achieve this restriction through a partition of the service region A. The analysis relies on

results for symmetric, cyclic queues, so readers unfamiliar with this area are encouraged to

reexamine the definitions and results in Section 1.
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Figure 1: Sequence for Serving Subregions PART1 (m = 4)

4.2.1 The PART1 Policy

Consider the following policy for the DTRP which we call PART1: the square region A is

divided into m2 subregions, where m > 1 is a given integer that parameterizes the policy.

Within each subregion, customers are served using a FCFS discipline identical to the first

FCFS policy of the previous section. The server services a subregion until their are no more

customers left in that subregion. It then moves on to the next subregion and services it

until no more customers are left, etc. The sequence of regions the server follows is shown

in Figure 1. (Note that the server always moves to an adjacent subregion.) The pattern is

continuously repeated.

To move from one subregion to the next, the server uses the projection rule shown in

Figure 2. Its last location in a given subregion is simply "projected" onto the next subregion

to determine the server's new starting location. The server then travels in a straight line

between the two locations. As a result of this rule, note that the distance traveled between

subregions is a constant 4, and that each starting location is uniformly distributed and

independent of the locations of customers in the new subregion. These properties of the

starting location simplify the analysis. In practice, one might use a more intelligent rule

than the projection policy (e.g. moving directly to the first customer in the next subregion).

The total travel distance around the subregions is m2(f/m) = m A'.

Note that to construct the pattern shown in Figure 1, m must be even. If m is odd, the

16
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Figure 2: PART1 Projection Policy for Moving to Adjacent Subregion

server ends up in the upper right subregion and must travel to the lower right subregion

to restart the cycle. This adds an additional v - v'-/m to the total travel distance. To

simplify the analysis, we use only the expression for even m. As shown below, m must be

large in heavy traffic, so for p -- 1 the error in total travel distance is negligible.

Each subregion behaves as an M/G/1 queue with an arrival rate of x, and first and

second moments of ! + cl a and 2 + 2cl, + c2 A respectively (cl 0.52, c2 = ).

The policy as a whole behaves as a cyclic queue with k = m2 queues and exhaustive

service, where the total travel time around the cycle is m/A and the queue parameters

are those given above. Again, as with the FCFS policy, the travel times are not mutually

independent; however, they are identically distributed and independent of the number in

queue. Therefore, the analysis in [4] still holds. Recalling that the expression in (3) is for

the waiting time in queue only, the average system time for this policy is then given by

TPR+ 2-(S 1+ mv+ c + C. (23)

2(1 - A('! + cl ()) m

The stability condition for this policy iq

(T+ cl \.) < 1 X m > c IXV
m 1-p

If we define the critical value me by

mc- , V (24)

then the stability conditions says that m must be strictly larger than me. Note that for any

p < 1 we can find an m > mc such that this policy is stable. Since the optimal policy has a

waiting time no greater than this partitioning policy, we have the following theorem.

Theorem 2 There exists a policy that has a finite waiting time for all p < 1 (the PART1

policy) for the DTRP and hence there exists an optimal policy for all p < 1.

17

x- - - -> -- -x

T t
Last Service New Starting
Location in Location in
This Subregion Next Subregion



III

For given system parameters A, , s 2 and A, one could perform a one dimensional

optimization over m > 1 using (23) to get the optimum number of partitions; however,

since equation (23) is quite complicated, we concentrate on finding the optimal value of m

for the light and heavy traffic cases. In the light traffic case, (23) becomes, approximately,

TPART1 -+ + 7 . (25)
2 m

It is easy to check that the best value of m > 1 is m = 2 in this case. For m = 2, the waiting

for service is approximately 1.26vA/ + . This is more than either of the FCFS policies, so

we gain nothing by using this policy in light traffic.

In heavy traffic (p -- 1), (24) implies that any feasible m is large (m > me); therefore

ignoring the constant terms and assuming m is large, (23) becomes, approximately,

TPART1s2 + m_/ m2V + mA(26)
Tp Ac2(1-/m) m(1 - p) -Ac (26)

Differentiating the above with respect to r gives

dTPART1 /irn m
2 (1 - p) - 2Acl/VArm - A2 cls2

dm 2 (m(1 - p)- Aclv/A)2

Setting the numerator equal to zero and solving for m gives

Ac i A2c2A + ( - p)A2cS-2
m =

1-p

Only the positive root is feasible, so for p - 1 the second term under the radical approaches

zero, and therefore
2ci Jam* -- - = 2m,.

1-p

Thus, in heavy traffic, the optimal number of partitions approaches twice the critical number

me.

If we substitute the optimal value m* into (26), the optimal waiting time in heavy traffic

is given by

TPART1 - 2C AA) + A (27)

For p -.* 1, the first term above dominates; therefore (recalling the bound (19)) we have

TRT1 < 8cl, as p 1. (28)

Since cl - 0.52, this says that the PART1 policy with m = r2mrn has an average system

time no more than approximately four times the optimal system time in heavy traffic. Also

18
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Figure 3: Sequence for Serving Subregi-ns PART2 (m = 6, n = 2)

note that the dominating term is a constant times i, as suggested by the lower bound

(19).

4.2.2 The PART2 policy

A modification of the PART1 policy, which we call PART2, has a performance guarantee

in heavy traffic slightly better than 8c1 . Consider the partition of the region A shown in

Figure 3. The square has been divided horizontally into n equal sized strips and vertically

into m equal sized strips to form nm, equal-sized rectangles. Within each subregion, the

server travels on the vertical line centered in the rectangle and travels horizontally to service

customers as shown in Figure 4. Only customers already in the subregion at the time of

the server's arrival are serviced (gated service). Customers are served in the order in which

they are encountered as the server moves along the vertical line. The sequence the server

follows is indicated in Figure 3. It is easy to calculate that the total length of the path is

(m + 2 - )v'A. Again, we assume m is even in this calculation. For m odd, a slightly

different pattern must be followed. Since we are primarily concerned with the heavy traffic

case, m is large and the difference is negligible.

Note that the horizontal, roundtrip distances to individual customers are uniformly dis-

tributed with mean . and second moment !. If we consider these horizontal, roundtrip

distances as the travel component of a customer's total service time, the system is almost

a gated, cyclic queue. The problem is that the server's travel is distributed between the
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I

1-5
4-I

3-4I

I-2

Server nters
Subreqion ere --> *

Figure 4: Policy for Serving Customers Within Subregion PART2 (Server travels horizon-

tally to service customers. Numbers indicate service order.)

services within a subregion rather than occurring strictly before or after the services are

completed; however, we can bound the delay as follows: suppose we consider a system

where, upon arrival of the server in a subregion, the customers are "slid" towards the server

in the vertical direction as shown in Figure 5. The server then services these customers (in

the same order as before) prior to crossing the region. Let W denote the waiting time in

queue for this modified policy and WPART2 denote the waiting time in queue for the PART2

policy. Clearly, the waiting time of customers cannot be lengthened by this procedure since

we are serving each customer sooner than in the original system. Also, note that if we were

to observe a busy period in a subregion, the total duration of the busy period as well as

the set of customers served would be identical under both policies; therefore it follows that

W < WPART2-

Similarly, we can consider a system where the customers are "slid" away from the server

(see Figure 5). The average waiting time in this system, denoted W, is an upper bound

on the waiting time in the original system, W > WPART2. Now, each of these modified

systems is in fact a cyclic queue. Further, it follows from the construction of the systems

that for any realization of arrivals and on-site services, the same set of customers is served in

each busy period in both system; therefore, since the customers in the upper bound system

have to wait an additional travel time of exactly VA//n, Wu = WI + . Thus,

WI < WPART2 < W + (29)n

20
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Since the lower bound system is a cyclic queue with gated service we can apply (4) to

get
A(2+ ,+ A7) 1+(p+ALX)/nm 2WI M- 3m ~) + 2m (m + 2 - -)Vi-. (30)
2(1 - p- ) 2(1 - p- XA) m

If we let n -- oo, (29) implies WPART2 - WI and therefore from (30) we have

WPART2 = ( + 2 - )v, n - 00. (31)
2(1- p - A) 2(1- p- =)

Note that the lower and upper bounds in (29) are minimized for n - oo, so letting n get

arbitrarily big is not only analytically convenient but also optimal. Intuitively, the behavior

of the PART2 policy for large n is for the server to patrol the m vertical strips and to travel

horizontally to service any customer encountered along the way.

As before, this policy can be shown to be no better than the FCFS policies in light

traffic. In heavy traffic, we get results paralleling those for PART1. In order for the policy

to be stable the critical number of vertical partitions is given by

me-- 2(1- p)'

and in heavy traffic the optimal number of partitions can be shown to approach 2m. Since

TPART2 = WPART2 + + + A , the average system time in heavy traffic becomes

A ART2+ 1-p(1 - P)+ 1- p
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where we have neglected constant terms . Again, since the first term dominates in heavy

traffic we can use (19) to get

TPART2 < 4 
T* -

This is a slightly better performance guarantee compared with the PART1 policy (about

4% lower). Nevertheless, these performance guarantees are not terribly satisfactory from a

practical standpoint. In the next section, we examine a policy that is quite different from

the partitioning policies above and yields a significantly better performance guarantee.

4.3 The Traveling Salesman Policy

The travelling salesman policy (TSP for short) is based on collecting customers into sets

that can then be served using an optimal TSP tour. Let Nk denote the kth set of N

customers to arrive, where N is a given constant that parameterizes the policy, e.g. N 1

is the set of customers 1,..., N, N 2 is the set of customers N + 1,... ,2N, etc. Assume

the server operates out of a depot at a random location in A. When all customers in set

N1 have arrived, we form a TSP tour of these customers starting and ending at the depot.

Customers are then serviced by following the tour. If all N 2 customers have arrived when

the tour of N1 is completed, they are serviced using a TSP tour; otherwise, the server waits

until all N2 customers arrive before serving it. In this manner, sets are serviced in a FCFS

order. Note also that queueing of sets can occur.

Suppose one considers the set Nk to be the kth customer. Since the interarrival time

(time for N new demands to arrive) and service time (N on-sites services plus the travel

time around the tour) of sets are i.i.d., the service of sets forms a GI/G/1 queue, where

the interarrival distribution is Erlang of order N. The mean and variance of the interarrival

times for sets are N/A and N/A2 respectively. The service time of sets is the sum of the

travel time around the tour, which we denote LN, and the N on-site service times. If we let

E[LN] and var[LN] denote, respectively, the mean and variance of LN, then the expected

value of the service time of a set is E[LN] + NY and the variance is var(LN) + Na,2, where

a2 = 2 _ 2 is the variance of the on-site service time.

We are now in a position to apply the GI/G/1 upper bound (1) for the average waiting

time of sets, W,,t. This gives

w,, - 2( 1- V(I[LN] + N2) (32)
-2(1 - (E[LN] + Ng))
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2(1- p- A+-) ()

As we show below, in order for the policy to be stable in heavy traffic N has to be large.

Thus, because the locations of points are uniform and i.i.d. in the region, we have from the

asymptotic results for the TSP (9) and (10)

E[LN] (34)
N ]NTSP

and
var[LN] 0, (35)

N

where the approximations are arbitrarily good for N - oo. In order to simplify the final

expressions, we have neglected the difference between N+ 1 and N in the above expressions.

(The tour includes N points plus the depot.) Since N is large, the difference is negligible.

Therefore, for large N
A(1/X + ,2)W.et - 1 2 + (36)

2(1 - - A*SP )

For stability, we require p + AITSP / < 1, which implies

N> ( p2 (37)

Thus in heavy traffic N must be large, so the asymptotic TSP results are indeed appropriate.

The waiting .time given in (36) is not itself an upper bound on the wait for service of

an individual customer; it is the wait in queue for a set. The time of arrival of a set is

actually the time of arrival of the last customer in that set; therefore, we must add to (36)

the time a customer waits for its set to form and also the time it takes to complete service

of the customer once the customer's set enters service. By conditioning on the position

that a given customer takes within its set, it is easy to prove that the average wait for

a customer's set to form is E < . By doing the same conditioning and noting that

the travel time around the tour is no more that the length of the tour itself, it is easy to

show that the expected wait for service once a customer's set enters service is no more than

rsrpN,RT+ J ,n=l n < arsp NV A+ Ng. Therefore, the total system time, TTSP, is

TTSP < A( /A ) + N(12A) +TTsP -. (38)
2(1 -p- -,6Tsp N)
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We would like to minimize (38) with respect to N to get the least upper bound. (One can

verify that (38) is convex, so there is indeed a minimum.) Doing this directly is tedious;

therefore, motivated by the partitioning policy results, consider a change of variable where

we pick N to satisfy

1-P-A Sp = V - A)
where M > 1 is a new parameter. Such a value for N satisfies the stability condition and,

in terms of M is given by

N = A2#TspA (39)
(1 - p)2(1 - )2 '

Thus, M = 2 corresponds to N four times its critical value, and large values of M correspond

to N close to its critical value. Substituting this value into (38) gives

TTSP 1 pA(+) +MA( /A+ +2(1-p):(1 - 7): + --_ 2 (1 -p2p)(1 - A)

Letting p - 1 the dominating term above is the first term, which approaches

A#4spA

(1 - p)2(1- k)2 '

and therefore using the lower bound (19)

TTSP 4Ts4p
. (1- ~)2

Thus, if we pick M to be large (which is equivalent to setting N close to its critical value

(37)), the bound can be made arbitrarily close to 4/,sP (e.g. select M = (1-p)'-/2 and let

p - 1). Since the best estimate to date of PTSP is approximately 0.72 [11], the TSP policy

has a system time in heavy traffic of no more than approximately 2.1 times the optimal

system time. This is an average system time about half that of the partitioning policies

of the previous sections. It is encouraging that the (considerable) extra effort involved in

constructing TSP tours does indeed yield a significant performance improvement over the

less "intelligent" partitioning policies.

These results suggest that the policy of forming successive TSP tours, which is a reason-

able policy in practice, is also quite good theoretically. Note that it is not necessary to have

p - 1 for the GI/G/1 upper bound to be tight; what is really necessary is N >> 1 in (37).

For example, consider the case where ' is small, and thus even moderate values of p result

in very large arrival rates. In such cases, the optimal N is also close to the critical value;

therefore, the queue of sets is truly in heavy traffic even though p is not close to one. This
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illustrates that preconceived ideas of what values of p constitute "light" and "heavy" traffic

do not necessarily apply to the DTRP. A better guideline for applying the TSP policy, or

any of the DTRP policies, is to use (19) to determine whether or not the minimum average

number of customers in the system is large. If the minimum number is much larger than

one, the partitioning, TSP or (as shown next) nearest neighbor policies are appropriate; if

it is order one or smaller, the FCFS policies are probably more appropriate.

4.4 The Nearest Neighbor Policy

The last policy we consider is to serve the closest available customer after every service

completion (nearest neighbor (NN) policy). The motivations for considering such a policy

are: 1) the nearest neighbor was used to obtain the heavy traffic lower bound (19), and

2) the shortest processing time (SPT) rule is known to be optimal for the classical M/G/1

queue [8]. As mentioned before, however, the travel component of service times in the DTRP

depends on the service sequence, so the classical M/G/1 results are certainly not applicable;

they are only suggestive.

Because of the dependencies among the travel distances di, analysis of the nearest neigh-

bor policy is difficult. However, if we assume there exists a constant 7 such that

E[d IN] < 7 -, (40)

where N is the number of customers in the system at a service completion epoch, then by

using a modification of the argument in [14] Section 5.5, it is possible to show that for p -- 1,

TNN < (1 p) (41)

where TNN denotes the system time of the nearest neighbor policy. As a result,

TNN < 472 as p 1.
T* -

Though we believe that assumption (40) is quite reasonable, there is no analytical guid-

ance in selecting the constant y. In the lower bound (19) we made an assumption similar

to (40); however, in that case we argued that the constant 1/2 obtained from assuming

uniformly distributed points gave a lower bound. In the case of the nearest neighbor policy,

no analogous argument exists for a constant 7 that gives an upper bound.

We therefore performed simulation experiments to estimate 7 and to verify the asymp-

totic behavior of TNN. The method of batch means (see [17]) was used to estimate the
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Figure 6: Simulation Estimate of TNN vs. Lower Bound (log-log plot)

graphed separately.

Figure 7 shows the system time as a function of p for the FCFS and SQM policies. The

lower bound is also included. Note that although the SQM policy is asymptotically optimal

as p -+ 0, it is quickly surpassed by the FCFS policy as p increases. This is due to the extra

travel distance of the SQM policy, which hinders the policy as queueing sets in. Also note

that both policies reach their saturation points for relatively low values of p.

The system times for the PART1, PART2, TSP and NN policies were calculated (simu-

lated in the case of NN) for the same example. The results are shown in Figure 8 along with

the lower bound (19). Note that the graphs have nearly identical shape as one would expect

from the AA asymptotic behavior of each policy. (Only the constant of proportionality

differs.)

The relative performance of the policies for intermediate values of p did not reflect the

asymptotic performance in some cases. For example, in the range 0.1 < p < 0.8, the PART1

policy actually performed better than the PART2 policy. Also, because we assumed a large

set size for the TSP analysis, the upper bound for the TSP was plausible only for values of

p > 0.5. The results suggested a mixed strategy for this example: for p < 0.05 the SQM

policy was clearly the best. For 0.05 < p < 0.1, the FCFS and NN performed comparably.
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As p was increased above 0.1, the NN policy dominated. The TSP was clearly second best in

the range where its upper bound was valid (p > 0.5). This example suggests that no single

policy dominates for all traffic conditions, and thus a case-by-case analysis is warranted.

5 Concluding Remarks

We presented a new model for dynamic vehicle routing problems that attempts to capture

the dynamic and stochastic environment in which real-world systems operate. It constitutes

a major departure from traditional static and deterministic models. Several application

areas were suggested for which this model is appropriate. We derived lower bounds on the

optimal system time and characterized the performance of several diverse policies.

The stochastic queue median policy, in which we strategically locate a depot and then

follow a FCFS service order, was shown to be optimal in light traffic. As the traffic inten-

sity increases, however, FCFS policies become unstable. In heavy traffic we showed that

partitioning policies behave reasonably well, since they have constant factor performance

guarantees, and have finite system times for all values of p < 1. In addition, they have the

advantage of being easily extendible to the case of many servers (vehicles). The best policies

in heavy traffic were the TSP and nearest neighbor (NN) policies, which were within a small

constant factor of the lower bound. The TSP policy has the advantage that the server reg-

ularly returns to the depot. It also appears more "fair" in the sense that it partially obeys

a FCFS discipline, since sets are served in FCFS order. It also has a provable performance

guarantee. The nearest neighbor policy, on the other hand, performs about 25% better than

the TSP strategy according to our simulation study; however, it can severely violate the

FCFS discipline and does not return to a single location on a regular basis. Also, it does

not have provable performance guarantees.

A common characteristic of all the policies we proposed is that they are easily imple-

mentable in a real-world environment. They also have, despite their diversity, identical

asymptotic behavior in heavy traffic. The behavior is proportional to (1 - p)- 2 and does

not depend on the service time variation (). This is in stark contrast to the behavior of

traditional queues. Its root cause is perhaps most clearly seen in the derivation of the bound

(19). Though the proof of this bound is partly heuristic, the insights and results it provides

are, in our estimation, correct.
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We believe that this class of dynamic vehicle routing problems constitutes a very inter-

esting and realistic class of models, and as such deserves additional attention. An obvious

extension is to multiple server (vehicle) models. This is a topic we are currently investigat-

ing. Another, probably more elusive, goal would be a rigorous proof of the bound on the

nearest neighbor distance (18), which was the critical relation in establishing (19). Finally,

one could certainly construct other DTRP policies and analyze them using the techniques

of Section 1.
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