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Abstract

The purpose of this study is to broaden the scope of projective transformation

methods in mathematical programming, both in terms of theory and algorithms.

We start by generalizing the concept of the analytic center of a polyhedral system of

constraints to the w-center of a polyhedral system, which stands for weighted center,

where there are positive weights on the logarithmic barrier terms for reach

inequality constraint defining the polyhedron X . We prove basic results regarding

contained and containing ellipsoids centered at the w-center of the system X . We

next shift attention to projective transformations, and we exhibit an elementary

projective transformation that transforms the polyhedron X to another polyhedron

Z , and that transforms the current interior point to the w-center of the transformed

polyhedron Z . We work throughout with a polyhedral system of the most general

form, namely both inequality and equality costraints.

This theory is then applied to the problem of finding the w-center of a

polyhedral system X . We present a projective transformation algorithm, which is

an extension of Karmarkar's algorithm, for finding the w-center of the system X .

At each iteration, the algorithm exhibits either a fixed constant objective function

improvement, or converges superlinearly to the optimal solution. The algorithm

produces upper bounds on the optimal value at each iteration. The direction chosen

at each iteration is shown to be a positively scaled Newton direction. This broadens

a result of Bayer and Lagarias regarding the connection between projective

transformation methods and Newton's method. Furthermore, the algorithm

specializes to Vaidya's algorithm when used with a line-search, and so shows that

Vaidya's algorithm is superlinearly convergent as well. Finally, we show how the

algorithm can be used to construct well-scaled containing and contained ellipsoids at

near-optimal solutions to the w-center problem.

Key Words: analytic center, w-center, projective transformation, linear program,

ellipsoid, barrier penalty, Newton method.

Running header: Projective Transformations.
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I. Introduction.

The purpose of this study is to broaden the scope of projective transformation

methods in mathematical programming, both in terms of theory and algorithms.

We start by generalizing the concept of the analytic center of a polyhedral system of

constraints to the w-center of a polyhedral system, which stands for weighted center,

where there are positive weights on the logarithmic barrier terms for reach

inequality constraint defining the polyhedron X . We prove basic results regarding

contained and containing ellipsoids centered at the w-center of the system X . We

next shift attention to projective transformations, and we exhibit an elementary

projective transformation that transforms the polyhedron X to another polyhedron

Z , and that transforms the current interior point to the w-center of the transformed

polyhedron Z . We work throughout with a polyhedral system of the most general

form, namely both inequality and equality constraints. This theory is then applied to

the problem of finding the w-center of a polyhedral system X . We present a

projective transformation algorithm, which is an extension of Karmarkar's

algorithm, for finding the w-center of the system X . At each iteration, the

algorithm exhibits either a fixed constant objective function improvement, or

converges superlinearly to the optimal solution.

The W-Center of a Polyhedral System. In [15], Karmarkar simultaneously

introduced ideas regarding the center of a polyhedral system, a projective

transformation that centers a given point, and a linear programming algorithm that

uses this methodology to decrease a potential function involving an objective

function component and a centering component. Karmarkar's ideas have since been

generalized along a umber of lines, both theoretical and computational. Herein, we

expand on Karmarkar's methodology in at least two ways. First we analyze the



w-center of a polyhedron system X = (xeR I Ax < b, Mx = g) , defined as the

solution to the following optimization problem:

m
Pw: maximize E w i In si

i=l

s.t. Ax + s = b

Mx =g,

s> O

Note that P is a generalization of the analytic center problem first analyzed

by Sonnevend [22], [23]. This problem has had numerous applications in

mathematical programming, see Renegar [19], Gonzaga [13], and Monteiro and Adler

[17,18], among others. Also note the P is defined for the most general polyhedral

representation, namely inequality as well as equality constraints of arbitrary form. In

PW, the weights w i can be arbitrary positive scalars, and for convenience they are

m
normalized so that E w i = 1. Let be the smallest weight, i.e., w = min (wi)

i=l i

The main result for the w-center problem is that if x is the w-center, then there exist

well-scaled contained and contained ellipsoids at x as follows. Let

X = (xeR Ax < b, Mx = g} . Then there exist ellipsoids EIN and EoUT

centered at , for which EIN c X c EOUT, and

(EOUT - ) = ((1 - W)/) (EIN - ), i.e., the outer ellipse is a scaled copy of the

inner ellipse, with scaling factor (1 - w)/w . When the weights are identical,

w = (1 Im)e , and (1 - WI/) = (m - 1) . Essentially, the scaling factor

(1 - w)/-W is (almost exactly) inversely proportional to the smallest (normalized

weight w i
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Projective W-Centering for Polyhedra in Arbitrary Form. Numerous

researchers have extended Karmarkar's projective transformation methodology, and

this study broadens this methodology as well. Gay [10] has shown how to apply

Karmarkar's algorithm to linear programming problems in standard form (i.e.,

"Ax = b , x 0" ), and how to process inequality constraints by implicitly

converting them to standard form. Later, Gay [11] shows how to process problems in

standard form with upper and lower bounds, as does Rinaldi [20]. Bayer and Lagarias

[4] have added to the theoretical foundations for linear programming by showing

that for inequality constrained problems, there exists a class of projective

transformation for centering a polyhedron about a given point . Anstreicher [2]

has shown a different methodology for processing linear programming problems in

standard form, and in [7] the author gives a simple projective transformation that

constructively uses the result of Bayer and Lagarias for linear programming

problems with inequality constraints. Even though linear programs in any one form

(e.g., standard primal form) can be either linearly of projectively transformed into

another form, such transformations can be computationally bothersome and

awkward, and lack aesthetic appeal. Herein, we work throughout with the most

general polyhedral system, namely X = (xeR n Ax - b, Mx = g). This system

contains all of the above as special cases, without transformations, addition or

elimination of variables, etc. In Sections III and IV of this paper, we present an

elementary projective transformation that projectively transforms a general

polyhedral system X = (x R n I Ax _ b, Mx = g) to an equivalent system

Z = (zeR n Ax _ b, Mx = g), and that results in a given point (in the

relative interior of X ) being the w-center of the polyhedral system Z . The

approach taken is based on classical polarity theory for convex sets, see Rockafellar

[21] and Grunbaum [14].
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A Canonical Optimization Problem. The results on the w-center problem are

applied to the following canonical optimization problem:

CP: minimize F(x) = n(U - cx) - w iln(b i - Aix)
i=l

s.t. Ax + s = b

s> 0

Mx =g

Tcx < U.

where X = (xeRn | Ax < b, Mx = g is given. Note that problem CP has two

important special cases: linear programming and the w-center problem itself. If

p = c is the objective function of a linear program maximization problem defined

on X = (xeR I Ax < b, Mx = g , andif U isan appropriateupperbound on

the optimal objective function value, then CP is just the problem of minimizing

Karmarkar's potential function (generalized to nonuniform weights w i on the

constraints). If c = 0 and U = 1 , then CP is just the w-center problem P . In

Section V of this paper, we present a local improvement algorithm for program CP

that is analogous to and is a generalization of Karmarkar's algorithm.

An Algorithm for the W-Center Problem. In Sections V and VI, the

methodology and theory regarding the w-center, projecting to the w-center, and the

local improvement algorithm for the canonical optimization problem CP , are

applied to an algorithm to solve the w-center problem P . Other algorithms for

this problem have been developed by Censor and Lent [5] and by Vaidya [26]. We

present a projective transformation algorithm for finding the w-centerthat is an

extension of the ideas of Karmarkar's algorithm applied to the program CP .
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This algorithm produces upper bounds on the optimal objective value at each

iteration, and these bounds are used to prove that the algorithm is superlinearly

convergent. We also show that the direction chosen at each iteration is a positively

scaled Newton direction. Thus, if the algorithm is augmented with a line-search, it

specializes to Vaidya's algorithm. Although Vaidya has shown that his algorithm

exhibits linear convergence, our approach and analysis demonstrate that his

algorithm is actually superlinearly convergent, verifying a conjecture of Vaidya [27]

that his algorithm might exhibit stronger convergence properties. We also show

that after a fixed number of iterations of the algorithm, that one can construct "well-

scaled" containing and contained ellipsoids at the current iterate of the algorithm. If

X = (x Rn I Ax < b, Mx = g} is the current iterate, one can easily construct

ellipsoids FIN and FOUT centered at x , with the property that FIN c X c FOUT

and (FOUT - X) = (2.9 / W) (FIN - ) . When all weights are identical, then this

scale factor is (2.9m) which is O(m) . In general, the order of this scale factor is

O (1 / W) , which is the same as for the ellipses EIN and EOUT centered at the

optimal solution to Pw, whose scale factor is (1 - W)/ = 1/w - 1 

The paper is organized as follows. Section II presents notation, definitions

and a characterization of the properties of the w-center. Section III presents general

results regarding properties of projective transformations of polyhedra. In

Section IV, we exhibit an elementary projective transformation for transforming the

current point to the w-center of the transformed polyhedral system. In Section V,

we introduce the canonical optimization program CP , and present a projective

transformation algorithm for the w-center program P . In Section VI, the

performance of this algorithm is analyzed, and we demonstrate superlinear

convergence. In Section VII, we show that the direction generated by the algorithm

at each iterate is a positively-scaled Newton direction, and we discuss consequences
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of this result. In Section VIII, we show how to construct inner and outer ellipsoids at

points near the w-center.

II. Notation and Characterization at the w-Center.

Throughout this paper, we will be concerned with a system of constraints of the

form

Ax < b

Mx = g

(2.1)

where A is mxn, M is kxn, xE Rn, bE Rm, and gE Rk.

One can think of the constraint system as given by the data (A, b, M, g), and so we

denote

X = (A,b,M,g) (2.2)

as the symbolic representation of the constraint system of (2.1). In many contexts,

however, it will be particularly convenient to represent the polyhedron determined

by all solution x of (2.1) and so we write

X = {x Rn IAx b , Mx = g . (2.3)

Although the notation (2.2) and (2.3) are different, when referring to X in this paper

the denotation will be clear. For convenience we assume that A has rank m and

M has rank k, and so m > n and k < n .
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If X is given, we denote the slack space of X by

S = (se R m s 0, s = b - Ax forsome x satisfying Mx = g) , (2.4)

i.e., S is the space of all slack vectors s = b - Ax of the constraint system X . We

say X has an interior if and only if there exists x for which Ax < b and Mx = g ,

and we write int X • ( . Likewise, if there is a vector s E S for which s > 0 , then

S has an interior and we write int S • 1 . Obviously int X • (1 if and only if

int S • .

Also, we use the following standard notation for diagonal matrices: if w , s,

, are vectors in Rm , then W , S, S denote the diagonal matrices whose

diagonal entries correspond to the vectors w , s , . Let e = (1, ..., 1)T denote the

column of ones of appropriate dimension. Let ei denote the ith unit vector.

Let w be a vector in Rm for which w > 0 and w has been normalized so

that

T
ew =i, w>0

Consider the problem

(2.5)

Pw: maximize

s.t.

m
Fw(x) = E

i=l

Ax +

Mx

w i In (bi - Aix)

s=b

= g

s>0.

7
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This problem is a (weighted) generalization of the analytic center problem,

posed by Sonnevend [22, 23], and used extensively in interior point algorithms for

solving linear programming problems, see Renegar [19], Gonzaga [13], and Monteiro

and Adler [17, 18], among others.

Under the assumption that X is bounded and int X • ( , then Pw will have

a unique solution, x , which we denote as the w-center of the constraint system

X . The Karush-Kuhn-Tucker (K-K-T) conditions are necessary and sufficient for

optimality in Pw, and thus x is the w-center of X if and only if x satisfies

(2.7a) A + = b

(2.7b) MR = g (2.7)

(2.7c) § > 0

T -- 1 -T - k
(2.7d) w S A = M for some scE R

Let W denote the smallest component of w , i.e.

w = min {wl, ..., w m} , (2.8a)

and define

r= R . (2.8b)

Generalizing Sonnevend [22, 23], we have the following properties of the

w-center of X , that characterize inner and outer ellipsoids centered and x .

8
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Theorem 2.1. Let X = {xe Rn Ax b , Mx = g , and let x be the w-center of X,

and let s = b-A . Let

EIN = {xeR n IMx = g,

and EOUT = {xeRn IMx = g,

-T TS-1 W -- I(x-x) AS W S A (x - ) r)

T TT- 1 -- 1(x-x) A S WS A(x-x) R 2) , where r and

R are defined in (2.8).

Then EIN C XC EOUT -

Before proving this theorem, we make the following remark.

Remark 2.1. (EOUT - X) = (R/r) (EIN -X) , i.e., the outer ellipse is a scaled copy of

the inner ellipse, with scaling factor R/r = (1 - w)/- . If w = (1 /m) e , then

w= 1/m , andso the scaling factoris R/r = (m-l) .

The proof of Theorem 2.1 is aided by the following three propositions:

Proposition 2.1. If x is the w-center of X, and s = b- Ax , then S is contained in

the simplex A = (s E Rm s 0,

T--1Proof. If se S , then w S s = 

wT -S 1Ss=l 

T -1
VTS (b-Ax) for some xc X, and so

T--1 -1w S s=wS ( + A - Ax) = w T S-1= W +W A ( - x) . From (2.7d), this

T -1
latter expression equals wT S

M(x-x) = g-g = 0 .

-_T T--1 T
+ M(-x) = w S = w e = 1 , since

.

9
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Proposition 2.2. Suppose v E Rm and v satisfies wTv = 0 and

T 2
v Wv < r . Then vil < 1 for each i=l,...,m.

Proof. If suffices to show that vi < 1 , i = 1, ... , m . For each i , consider the

program

max vi

s.t. v Wv < w i / (1 - w i) (a)

T
w v=O. 

The optimal solution to this program is

v* = (1/1 - wi)) (- w i e + e i) , with K-K-T multipliers

a = (1 - w i) / (2w i) and 3 = 1 , which satisfy the K-K-T conditions

ei = 2a Wv + Pw . Notice that v i = 1 . Thus if vTWv < r2 < wi / (1- w i) and

Tw v = 0 then vi < 1 .

-1
Proposition 2.3. Let x be the w-center of X . If s Rm satisfies wTS s = 1 and

(s-) S W S (s -) < r2 , then < s i < 2si, i= 1,..., m

Proof. Let s be as given in the proposition. Let v = S (s- ) . Then v satisfies

the hypotheses of Proposition 2.2, and hence v i < 1 , i = 1, ..., m . Thus

0 < s i < 2s i , i=l1,...,m .

Proof of Theorem 2.1. We first prove that X c EOU T . By Proposition 2.1, S c A

The extreme points of A are ( / wi) ei , i = 1, ..., m . Note that each extreme point

10
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T- 1 - -1 2
satisfies ((-i / wi) ei - )TS W S (si / wi) -s ) = (1 -w i) / w i < R . Thus,

-1 -12
because A is a convex set, every s S satisfies (s - s)T S W S (s - ) <R2 . But

T- 1 - 2(s-s) = -A(x-x) , so (x-)A S WS A(x - ) < R . This shows that

Xc EOUT .

We next show that EIN C X . Let x EIN , and let s be the slack

corresponding to x , i.e., s = b-Ax . Then (s-S)T W S (s-1 ) =

T- 1 -- 1 r2(x -x) ATS W S A (x - x) < r2 . Also, similar to Proposition 2.1, it is

T -- 1
straightforward to show that w S s = 1 . Thus by Proposition 2.3, s 0 . Thus

Ax < b, and since x EIN , Mx = g . Thus xeX. 

The next proposition shows how the w-center can be used to construct an upper

bound on the slack si = (b - Ax) i of any constraint of X, i = 1, ... , m .

Proposition 2.4. Let be the w-center of X . For each i = 1, ..., m , for any x E X,

(bi - A i x) < Si / Wi

T -1Proof. Forany xE X, let s = b-Ax . By Proposition 2.1, w S s = 1 , s > 0

so s i < si / wi , i.e., b i - A i x < si / wi .

The last result of this section characterizes the behavior of the weighted-

logarithmic function w i In (bi - A i x) near the w-center of X . This lemma
i=l

parallels similar results for the uniformly weighted center in Karmarkar [15] and

Vaidya [26].

11
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Lemma 2.1. Let be the w-center of X, let = b -A , and let d E R be a

T T -1 - -1 2
direction that satisfies Md = 0 , and d T A W S Ad r . Then for all a

satisfying 0 a < 1 ,

m m
w i ln (b i - A i (x + acd)) > 

i=1 i=

2
a 2 

i In (i) - c0-- r1 _ a)

-- 1 T T-- 1 -T - k
Proof. Let v = S Ad. Then w v = w S Ad = Md = 0 forsome R by

T 2
(2.7d). Furthermore v Wv < r . Thus by Proposition 2.2, vi < 1 , i = 1, ... , m

Therefore

m m
, w i n(b i -A i (x + ad)) = w i ln (i (1- avi))

i=1 i=

m

i=1

m

i=1

w i In (i) +
m

i=l

w i n (-i) +
m m
I= i(- (=1
i=1 i=1

(a v 02

Wi2 (1 -a)

(by Proposition A.2)

m _T 2vTW vT
T avWv

= Xwiln i - o 2w v-
i=2 (1 -

2
m a 2

i= l S 2(1 -a)i=
.

12

11'

wi n (1 - avi)



III. Projective Transformations.

Let X be the polyhedron defined by (2.2) or (2.3) and let S be the slack space

of X defined in (2.4). This section develops a class of projective transformations of

X and S into image sets Z and T .

Let x satisfy Ax < b and Mi = g , i.e., xe int X, and let = b-A be

the slack vector corresponding to . Our interest lies in properties of a projective

transformation of X of the form

x-x

z = g(x) = gy,(x) = + 1-yT(x- (3.1)

for a suitable choice of the vector parameter y R n appearing in the denominator

of the transformation. The criterion of suitability that we impose is that the

denominator 1 - yT (x -x) remains positive for all x e int X . If y is chosen so that

ye intYx = {ye R y = A S X forsome X > 0 satsfying X e = 1), (3.2)

then it is elementary to verify that yT (x - x) < 1 for all x E int X , so that the

projective transformation g (x) given in (3.1) is well defined for all x X . Note

that g (x) is more formally denoted as g y, (x) because the transformation is

parameterized by y and . Also note that is a fixed point of g () , i.e.,

x = g () . If x E int X and z = g (x) , then it is straightforward to verify that z

satisfies the constraint system

Az < b (3.3)

Mz = g

13



where

TA=A- sy

T-
b = b -sy x

Analogous to (2.2), (2.3) and (2.4), we thus can define the image of g (-) as

z=zyi = (, b, M, g) = (As xT- bA- y x b - y x, M, g) (3.5)

as a constraint system or

Z = Zy. = {zeRnlXz < b,Mz = g} = {zeRnl(A-yT)z < (b-§yT), Mz = g)
g)=(Z ( y) 

and the slack space of Z as

= (t Rm t O, t = b-Az for some z satisfying Mz = g)

The inverse of g () is given by the function

x = h(z) = h y,x(z) =
-1

gy,{(z)
_ z-x

= +

1 + yT(z- )

The transformations developed in (3.1) - (3.8) are illustrated in Figure 3.1. Finally,

we can extend g (.) and h (.) to the slack spaces S and T as follows. Let

(X; S) = ((x,s)RnxRmAx + s = b, s , Mz=g

14
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Ax < b

Mx = g

g(x) = x +

- X

1 + y (z-X)

X

yT

- yT) z < (b - yT x)

My. = a
.LY - b

Figure 3.1. Projective Transformation

X



= ((z,t)e RxRmlAz + t = b, t 0, M = g) , and define

= gy,jx(x, s) =

= h y,x (Z t) =

x + T II- 1 x-xy - 3
1-yT(x-X)

+
l+y T(z- ) 

s1 T ) i for (x, s) (X, S),

1 + yT( - for (z, t) (Z, T,t - for (z, t) E (Z, ),1 + y (z _ 3j|

To formally identify the properties of the transformation g () = gy,x(.) , we

consider the two cases when X is bounded or not as separate.

Lemma 3.1. Let X be given by (2.2) or (2.3), and suppose X is bounded. Let x e int X

be given, let = b - A , let y , g() , h (.) , Z , and T satisfy (3.2) - (3.9). Then

(i) g() maps X onto Z and S onto T.

(ii) h (.) maps Z onto X and T onto S

(iii) X and Z are the same combinatorial type, and g (.) maps faces of X

onto corresponding faces of Z

Proof. It suffices to show that (i) yT(x-) < 1 for all x E X and (ii) -yT(z-) < 1

for all z e Z .

15
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(i) Suppose x X and yT(x- ) 1 . Then from (3.2),

1 yTxT- -I T - T -1
1 y (x-i) = X S A(x- -b+) = X S (Ax-b)+1 ,

T--1
and so X S (Ax-b) 2 O . Thus Ax = b, since

Therefore v = x-x satisfies Av = - < 0 and

unbounded, which is a contradiction. Therefore

(ii) Now suppose z eZ and -yT(z-) 1

that v 0 . We have

X> O and Ax < b .

Mv = 0 , and so X is

yT(x-) < 1

. Then define v = z-x. and note

Av = Az - A = Az-b+ < Az - b - (yT(z-)) = Az - b < 0

from (3.4) - (3.6). Also Mv = 0 , so that v is a ray of X , which contradicts the

boundedness of X .

In the case when X is unbounded, we no longer can guarantee that the projective

transformation g () is onto and invertible, unless we assume that the system

Ax b has been appended to include a trivial constraint of the form Tx < 1 . We

then have:

Lemma 3.2. Let X be given by (2.2) or (2.3), and suppose that the last row of the

inequality constraints Ax b is of the form 0Tx < 1 . Let x E int X be given, let

s = b - A , andlet y, g() , h (.) ,Z and T satisfy (3.2)- (3.9). Then

16



(i) g (-) is well defined for all x X

g(-) maps int Xonto int Z and int S onto int T.

g (-) maps bounded faces F of X onto those faces G of Z that do not

meet the hyperplane H = ({z E Rn I _ yT(z_ ) = 1} .

(ii) h (.)

h ()

h ()

X.

is well defined for all z Z

maps int Z onto int X and int T onto int S.

maps faces G of Z that do not meet H onto bounded faces F of

(iii) If z E Z and z H, then r = z- x isarayof X.

Proof. (i) Let x EX , and let s = b - Ax . Then s > 0 , and from (3.2),

T T-1 T_-1
y (x - x) = S (s-s) = 1- X S s < 1 , because the last constraint of

TAx < b is O0x < 1 , m = Sm = 1, and X > 0 . Thus g () is well-defined for all

x E X . If z = g (x), then it remains to show that -yT(z_-) < 1 . We have

- yT(z ) = yT(x) < 1 ,
1 -y T(x-)

because yT(x--x) < 1.

(ii) If z E Z then the last constraint of Az < b is -_yz < 1 - y , from (3.4).

If z H , then -yT (z- ) < 1 , andso h(z) = g-l(z) is well-defined. U

As a corollary to both Lemma 3.1 and 3.2 we have:

17
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Corollary 3.1. Let X be given by (2.2) or (2.3), and suppose that X satisfies the

condition A:

(A) Either X is bounded or the last row of the inequalities Ax < b is of the form

0x < 1 . (3.10)

Then the mappings g (.) and h (.) of Lemmas 3.1 or Lemma 3.2 are well-defined

for all x E intX and zE intZ .

Properties of the projective transformation g () = g y, () for general

constraint systems X (bounded or not, without the restriction on the last row of

(A, b)) are developed further in [8]. Also, in [8], it is shown that the projective

transformation g (.) is quite general, in that any projective transformation g (.)

that leaves fixed and preserves directions from can be written in a form

satisfying (3.1) and (3.2). The projective transformation g (x) = gy,x (x) can also be

developed through convex polarity theory. The set Y of (3.2) is the polar of

(X - ) , see Griinbaum [14], and Rockafellar [21]. The set (Z - ) then is the polar

of the translation of Y by y , i.e., Z = ((X - x) - y) + x , see [8].

IV. Projective Transformations to w-Center a Given Interior Point.

Let X be the constraint system defined by (2.2) or (2.3) and let S be the slack

space of X defined in (2.4). Let satisfy AR < b and MR = g , i.e., je int X ,

and let = b - AR be the slack vector corresponding to . Suppose we wish to

find a projection parameter y Y - so that is the w-center of the projectively

18
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transformed constraint system Z = Z y , under the projective transformation

g (x) = gy, (x) .

Theorem 4.1. Let w > 0 be an m-vector satisfying e Tw = 1 . Let X be a constraint

system of the form (2.2), (2.3), let x E int X , = b - A , and let

y = ATSw . (4.1)

Then y E Y - given in (3.2), and x is the w-center of the projectively transformed

constraint system Z = Z y , given by (3.3) - (3.6), under the projective

transformation g (x) = gy,i (x) of (3.8) - (3.9).

Proof. By setting X = w , we see that y int Y . Note that g(x, ) = (T), ), so

that (, )e (Z; T), i.e., Ax + s = b, M = g . From (2.7), it remains to show 17

that wTs -A = 7M for some 7e R . Let r = . Then wTS - 1 =

wT (A - - T) = wTS -I(A - wTS A) = 0 = TM . Thus (2.7) is satisfied,

completing the proof. U

Theorem 4.1 is a generalization of a theorem of Lagarias [16] which asserts the

existence of a projective transformation that will result in being the w-center of a

full-dimensional polytope X in the case of w = (1/m)e . Theorem 4.1 covers a

general linear system of both inequality and equality constraints, and covers the case

of non-uniform weights w . It also generalizes the projective transformation

construction in [7]. Although the projective transformation g (x) = gy,i (x) defined

in Theorem 4.1 using (4.1) does not appear to resemble Karmarkar's projective

transformation [15] for centering in simplex, it is shown in [8] that Theorem 4.1
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specializes to Karmarkar's projective transformation when viewed in the slack space

S.

V. Local Improvement of a Canonical Optimization problem, and an Algorithm

for the w-Center Problem.

In this section, we consider the following canonical optimization problem:

CP: minimize
x

F(x) = In (U - cTx) - I w i ln(bi - Aix)
i=l

Ax + s = b

s> 0

Mx =g

cTx < U.

(5.1)

The data for the problem is the data for the constraint set X = (A, b, M, g), plus the

m-vector of positive weights w = (w, ..., wm) T which satisfy the normalization

T T
e w = I , plus the data for constraint cx < U . Note that the linear programming

problem:

LP: maximize

s.t.

T
Cx

Ax < b

Mx = g,

(5.2)

can be cast as an instance of CP . By setting c to be the LP objective function and

U to be an upper bound on the optimal LP objective value, CP becomes the

20
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potential function minimization problem for LP , as in Karmarkar [15], see also [7].

This problem instance has already been treated in [7] and also [8].

The problem of finding the w-center, namely problem Pw defined in (2.6), is

also an instance of CP . By setting

c= 0O and U= 1, (5.3)

problem CP specializes to problem Pw . In this section, as well as in Sections 6 and

7, we present an analysis of problem Pw viewed through the canonical optimization

problem CP 

Returning now to problem CP directly, suppose we wish to solve CP , and

T-
that we have on hand a feasible solution x of CP , i.e., x e int X and c x < U . If

x happens to be the w-center of X , then x has optimized the second part of the

objective function F(x) of CP . If is not the w-center of X , we can perform the

projective transformation of Theorem 4.1 in order to ensure that x is the w-center of

the transformed constraint set Z = Z y, (where y = ATS w is given in(4.1))

under the projective transformation z = g(x) = gy, (x) of (3.9). Under this

projective transformation, the constraints of X are mapped into the constraints of

Z , which are given by (3.3) and (3.4). Furthermore, if x e X and x satisfies
T

c x < U , it is then elementary to show z = gy,,(x) will satisfy

cz < U (5.4)

where c = c - ( - )y, U = U - (U - c T)yTx . (5.5)
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The next lemma shows that under the projective transformation gy,- () , that

program CP is transformed into program

F(z) = n (U - c z) - w i n (bi - Aiz ) (5.6)
i=l

s.t. Az

Mz
cT

cz

+ t = b ,t>0,

= g

< U

where U , c are given by (5.5) and (A , b) is given by (3.4).

Lemma 5.1 (Equivalence of CP and CP y,). Suppose y e int Y R of (3.2) and

define the projective transformation g () = gy,x() as in (3.9a) and its inverse

h (.) = h y,x(.) as in (3.9b). If X satisfies condition (A) of (3.10), then programs CP

and CP are equivalent, i.e.,

(i) if x is feasible for CP , z = g(x) is feasible for CP and F(x) = F(z)

(ii) if z is feasible for CP , x = h(z) is feasible for CP and F(z) = F(x)

Proof. (i) If x is feasible for CP , then x E int X and so from Corollary 3.1,

z = g(x) is well-defined and z E int Z . The equality F(x) = F(z) follows by direct

substitution. Parallel logic also demonstrates assertion (ii). E

Lemma 5.1 implies that in optimizing CP we can instead optimize program CP. If

ye int Y- is chosen as y = A S w (from 4.1), then from Theorem 4.1, is the

w-center of the constraint set Z . In this case the second part of the objective

22
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function F(z) of (5.6) has already been optimized, because this second part is simply

the objective function of the w-center problem. Therefore, in analyzing the program

CP , we can presume without loss of generality that the current point is the

w-center of the constraint set X , by performing the projective transformation

gy,X(x) of (3.9), where y is given by (4.1).

We therefore suppose, without loss of generality, that we have on hand a

feasible solution of CP, i.e., x E X , and c x < U , and that x is the w-center

of X . Then the inner ellipsoid EIN at the w-center is contained in X (from

Theorem 2.1), and F(x) can be improved by optimizing c x over the inner ellipsoid

EIN . From Theorem 2.1, the problem of finding the direction d that maximizes

T . Tmaximize c d

T T-- 1 -- 1 2
s.t. dAS WS Ad < r (5.7)

Md =0,

where r is defined in (2.8), and = b - A . Under the assumption that A and

M have full rank, program (5.7) has a unique solution given by

-d = rGc (5.8a)
c Gc

where

Q ATSWS-1 --1( MT) Q = ATS- WS A and G = Q-1 Q M TMQ-M (5.8b)
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It is straightforward to check that G is positive semi-definite, and so cTGc > o .

Furthermore, c TGc = 0 if and only if cT lies in the row space of M , which implies

that solves CP , due to the supposition that x is the w-center of the system X

Therefore, unless solves CP , the denominator of (5.8a) is well-defined and d

given in (5.8) is the unique solution to program (5.7).

The extent of improvement in optimizing F(z) of (5.1) by moving from in

the direction d of (5.8) is presented in the following theorem.

Theorem 5.1 (Improvement of CP from the w-center x ). Suppose i is the w-center

of X, = b - A , and let d be the solution to (5.7) given in (5.8). Define the

quantity

Ta

(Y - c 2 (5.9)
(U - c r

Then (i) if Y > /r2, program CP is unbounded from below.

(ii) if < /,2 then F( + d) < F(x) - r 2~ - a forr2 2 x 2(- c') 2

all caX [0,1)

Before proving the theorem, we offer the following comments. The optimal

objective value of the inner ellipsoid maximization program (5.7) is c d , and so Y

is just a rescaling of this value by the quantity (U - cTx r2 . In (ii) of the theorem,

the extent of improvement in the objective function CP is proportional to the

function
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2
f(a) = a - (1 -a (5.10)

20 -()

The value of a that maximizes f(a) over a e [0,1) is

a = 1 - (5.11)
11 + 2y (5.11)

which yields the value of f(a) of

k(y) = (1 + y- 1 + 2) . (5.12)

Summarizing, we have

Corollary 5.1. If a is given in (5.11) in Theorem 5.1 (ii), then

F(x + acd) - F(x) -r 2(1 + - 11 + 2) = r 2 k(y). (5.13)

Proof of Theorem 5.1. (i) Suppose Y > r 2 . Then from (5.9), cTd > U- cTx,

i.e., cT( + d) > U. Thus, as a - 1, ln(U - cT( + ad)) - -oo. Asa

consequence of (5.7), (5.8), and Theorem 2.1, x + ad E X for all a E [0, 1) . If CP is

not bounded from below, then Ai(E + ad) - b i for every i = 1, ..., m, as

a - 1, i.e., Ad = s, which implies X is unbounded, which in turn implies

that the w-center of X cannot exist, contradicting the hypothesis of the Theorem.

Thus CP is unbounded from below. (ii) Suppose Y < Yr2 . Then
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F( + adi - dF)=U - c(x+ a)) - n bi - Ai( + ad))
F (-x aU- Fx = a ) i=l i n b - Ai l

iln(l - ar2y) - wiln(l - as Adi (from 5.9)
i=l

2 r 2 2
< -r + (1 a) (from Proposition A.1 of the

Appendix and Lemma 2.1)

2t- Y· t r)
- r_ ya + 2(1 a) N

Lemma 5.1 and Theorem 5.1 suggest an algorithm for solving CP as follows:

At each iteration, CP is projectively transformed to C P = CP y of (5.6) where

y = A S w (of (4.1)), which transforms the current point to the w-center of the

transformed constraint set (Theorem 4.1). Then the algorithm steps a length a in

the direction d of (5.7) - (5.8) that maximizes the transformed objective function

vector over the inner ellipsoid EIN , where a is given by (5.11). This basic

algorithm methodology can then be used to solve a linear program (5.2) or to solve

Pw (2.6), which are each special instances of CP . The specialization of the

algorithmic methodology of this section to solving LP is detailed in [8]. The

remainder of this section treats the specialization of this methodology to solve the

w-center program Pw .

Recall that program Pw (2.6) is the special case of CP (5.1) where c = 0 and

U = 1 (5.3). The algorithm for solving Pw then is as follows:
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Algorithm WP (A, b, M, g, w, x, s).

Step 0 (Initialization). = x , w = m in{w,...,Wm) }, r = w1 -

*

R = /( - , F = + 00

Step 1 (Projective Transformation to w-center).

s = b - Ax

T- -1

= -y u = 1 -

Step 2 (Optimization over inner ellipsoid). Solve the program:

EP: maximize

s.t.

-y d

T T_ -1 -1- 2
dA S WS Ad < r

Md = 0.

The optimal solution is given by

- -Gy

/yTGy

...- T_ -1-
where Q = A S WS A and

G= = -1 - -1 T -1MT -1
- Q M MQ M M J .

If EP is unbounded from above, stop. Pw is unbounded.
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Step 2a (Update upper bound on F ).

Set = y(-) = (-yTdI)/r2

If y > 1/r 2, stop. Problem Pw, is unbounded, and d is a ray of X.

Ify< 1 ,F <- min (F + 2
2(1- 

+ (0.82)r 2 y2}IfY < F*8'

Step 3 (Take step in the set Z ).

a = 1 - 1
¥1 +2y

ZNEW = + ad

Step 4 (Transform back to the set X ).

XNEW = +
ZNEW - x

1 + Y'(ZNEW - )

Step 5 (Stopping Criterion).

Set x = XNEW If Fw(x) F - e , stop.
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(5.18)

(5.19)

(5.20)

(5.21)

F ," (x)+ 

<--min V Fw(-x
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Otherwise, go to Step (1).

The data for the problem is the data (A, b, M, g) of the constraint set X , the vector
T 0

w of positive weights that satisfy eT w = 1 , an initial feasible solution x of Pw,

and an optimality tolerance e > 0 . We can assume without loss of generality that

the constraint set X satisfies condition (A) of (3.10) by prior knowledge of the

boundedness of X or by adding the null constraint 0 x < 1 to the system (A, b)

In Step 0, the value of is initialized and the constants w , r , and R of (2.8) are

computed. In Step 1, the value of y of (4.1) is computed, and the constraint set data

is transformed according to (3.4). In addition, we have from (5.3) and (5.5) that

T-
c = -y and U = 1 - y x (5.22)

In Step 2, the inner ellipsoid program of (5.7) is solved via (5.8) for the transformed

data. In Step 2a, the upper bound F is updated. The bounds given in (5.19) and

(5.20) will be proven in Section 6. (The unboundedness criteria of (5.16) and (5.18)

will be proven below in Lemma 5.3). In Step 3, the stepsize ca is computed according

to (5.9) and (5.11). Note that the computation of from (5.9) is

-T- T
-cd y d

U -,Tx)r2 r2

as is stated in (5.17). In Step 4, the new value of z = ZNEW (in the transformed set

Z ) is transformed back to the set X via the projective transformation

h (z) = h y, (z) of (3.9). In Step 5, the optimality tolerance criterion is checked.
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Lemma 5.1, Theorem 5.1, and Corollary 5.1 combine to yield the following:

Lemma 5.2 (Performance of Algorithm WP ). At each iteration of Algorithm WP ,

FW(XNEW) F w(x) + r2 (1 + y - /1 + 2),

where Y = y(x) is defined in (5.17). 

Remark 5.1 (Use of line-search). Steps 3 and 4 can be augmented by a line-search of

the objective function Fw(x) , without affecting the conclusion of Lemma 5.2.

Because the projective transformation g (-) preserves directions from one can

perform the line-search in the space X directly. Specifically, one can replace the

computation of a in Step 3 and all of Step 4 by finding a value of 6 > 0 for which

Fw(3 + d) is approximately maximized. As shown in Todd and Burrell [24], there

will be only one local minimum of Fw(x + d) for 8 > 0 . The search could be

started with 6 = a , where a is given in Step 3, which corresponds to
1 + ccy d

the value of a in (5.11).

Lemma 5.3 (Detecting Unboundedness in Algorithm WP ).

(i) If Algorithm WP stops via (5.16), then Pw is unbounded.

(ii) If Algorithm WP stops via (5.18), then Pw is unbounded.

Proof: (i) If program EP of (5.14) has no solution, there exists a vector d for

which dQd = 0 , Md = 0 , and -ytd > 0 (where Q isdefinedin (5.15)).
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Thus Ad = 0, i.e., Ad = yTd. If X is bounded, then d = 0, contradicting

T
-y d > 0.

(ii) In this case, from Lemma 5.1 and Theorem 5.1 (i), program CP is unbounded

from below, and so program CP is unbounded from below. I

In the next section we will demonstrate the bounds of (5.19) and (5.20), and

will prove that Algorithm WP is superlinearly convergent.

VI. Linear and Superlinear Convergence of Algorithm WP.

The

Algorithm

purpose of this section is to establish the following four results regarding

WP for solving the w-center problem Pw .

Lemma 6.1 (Optimal Objective Value Bounds). At Step 2a of Algorithm WP ,

(i) If < 1 , P has an optimal solution , and

Fw() Fw(3)
2

+ 7y+ 
2 (1 - y)

(ii) If Y < 1 then Fw(x) < Fw(x) + (0.82)r 2 2
8'''

Note that Lemma 6.1 validates

algorithm.

the upper bounds computed in (5.19) and (5.20) of the
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- - Lemma 6.2 (Local Improvement). At Step 2a of Algorithm WP ,

(i) If y > 1 , F(XNEW) > Fw(i) + (0.0069)r 2

(ii) If Y < 1,8 then Fw(XNEW) > Fw(x) + (0.44)r r

Lemma 6.3

Algorithm

(Linear Convergence or Fixed Improvement). At each iteration of

WP , at least one of the following is true:

(i) FW(XNEW) F(E) + (0.0069)r 2

(ii) Fw(x) - Fw(XNEW) < (0.46)(Fw(x) - Fw(X)), where x is the

w-center of X .

Lemma 6.3 states that each iteration achieves either constant improvement (i) or

linear convergence (ii) with a convergence upper bound constant of 0.46. The next

theorem states that this upper bound constant will go to zero in the limit, thus

establishing superlinear convergence.

Theorem 6.1. If program Pw is bounded, then Algorithm WP exhibits superlinear

convergence.

The proofs of these results will make use of the following functions, defined below

for convenience.
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= 1 + - 1 + 2y

k (0)
2

h - ln(1

, >0

+ h)

+ hp(h) - 1 + (hhp(h))2 ),

= p (h) (q(h))2
2(1 - q(h))

= k (q (h)) (6.6)

j (q (h)) (6.7)

Inequalities relating to these functions can be found in Propositions A.4 - A.9 of the

Appendix. We first will prove Lemma 6.1 (i). The proof of Lemma 6.1 (ii) is more

involved.

Proof of Lemma 6.1 (i). Under the projective transformation g(x) = g y,x(x) where

y = A S w, x is thew-center of the system Z = (A, b, M, g) andproblem

Pw (2.6) is transformed, as in Lemma 5.1, to the program
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7Y 0 (6.1)

(6.2)

k (y)

j(0)

p(h)

q(h)

v(h)

m(h)

n(h)

(6.3)

h > O (6.4)

h > O (6.5)

1 (i
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'w: maximize Fw(z) =
Z,t

T m
+ y (z - )+ 

i=l
wiIn( -

Az + t = b

t> 0

Mz

T
-y Z < 1 T-

- y x.

Because x is the w-center of Z , then

mi
wi n bi

i=l
- Aiz) < M wiln(i = Fw(X),

i=1

for all z Z . Also, because + d maximizes -yT z over the ellipsoid EIN

Z polytope (defined in Theorem 2.1), then x + d R /r maximizes - yT z over the

outer ellipsoid EOUT of the Z polytope (also defined as in Theorem 2.1). Because

Z c EOUT, _yTZ c yT( + R /r) for all z Z . Put another way,

_yT (z - ) < for all z Z . (6.10)

This follows because - yTf R/r

Therefore Fw(z)

-yTad/r2 = /

= -ln(1 + yT(z- x)) + wi lnb i
i=l

- Xjz)

< -ln(1 + yT(z - )) + w()
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2
'Y + +

2(1 - y)
(from Proposition A.2)

Therefore, from the equivalence of P and Pw under the projective transformation

g(x) = gyx(x) and Lemma 5.1, F(x) -

xE int X .

2

Fw(x) < 't + 2 for all
2(1 - y)

.

The proof of Lemma 6.1 (ii) will follow as a consequence of the following three

lemmas.

Lemma 6.4. Let h > 0 be a given parameter. Suppose x is the w-center of X, let

s = b - Ax, and suppose x e X satisfies:

( - x)TATS W S A(x
2

- 3) = P 

Then

wi ln () <

i 2hp-h- (h) P

-p (h)hrp

if hr

if hr

where r is defined in (2.8) and p (h) is defined in (6.3).
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Proof. First observe that

m
wi ln(bi - A

i=l
-- 1A

v = S A( -

i5) - wiln(si) = wiln(l + vi) where
i=l i=l

) . Then note that wTv = wTSA( -1 =

- Rk T 2
for some i E R , from (2.7d). Also v Wv = . Therefore

(v r/ )T W (v r/ ) = r2 , and so from Proposition 2.2, I vir/[13

Ivil < 3/r, i=l,..,m .

We now prove the two cases of the Lemma.

-T
M - =O ,

< 1, i.e.,

(6.11)

Case 1. ( <i hr) . In this case Ivil < h . From Proposition A.7,

In(1 + v) < vi - p(h)(v) 2 . Summing over i yields

m
Z wiln(l
i=1

+ v) < w Tv - p(h)vTWv
2

= -p(h) 

Case 2. ( > hr) . In this case, from proposition A.3 (with a

m

i=l
wiln(1 + v.0 < - wiln -r i=l

= (hr/) ), b = vi )

+ rh vi) .
I

However, from (6.11), rh vi < h , and so from Proposition A.7,
1

m
I wiln(l
i=l

+ Vi) < (P)(rwT V
r2h vWvp

2 T Wvp(h))
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-= rh - = -p(h)hr . .

Lemma 6.5. Let be the current iterate of Algorithm WP and let , y , b , A ,

Q , and be as defined in Steps 1, 2, and 3. Suppose x is the optimal solution to

Pw, andlet^z = g(x) = g YX-() 

Suppose ( - )t Q (z - ) =
2

p.

If h > 0 is a given parameter and y < 1 , then

(6.12)

2
-p(h)[3

-p (h) hr 

F w(x̂) - Fw(x)
+ ry +

222
2r - 7)

2(1 - y)

+ ry + r '

2(1 - y)

if P < hr

if P 2 hr

Proof. Let P, be the projectively transformed equivalent program of Pw , i.e.,

program (6.8). Then it suffices to show that Fw(^x) - Fw(-R) is less than or equal to

the expressions in parentheses, by Lemma 5.1.

From Lemma 6.4.,

m
I wiln(bi
i=1

m
- XAi) - wiln(sj

i=1

2

- P (h) hr 

if 3 < hr

if hr
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It thus remains to show that - In (1
222

+ yT( )) < ry + r . Let
20( - y)

d = z - . Then from (6.12), +d r /1 satisfies the constraints of EP (5.14), so

that

±+yTdr/ < yTd = yr2 (from 5.17),

and consequently

lyTdl yr -

Furthermore, because of (6.12), from Theorem 2.1, we conclude that

1/r , i.e., r < 1.

Finally, we obtain

ln(1 + yT(z - = ln (1 + y d) > -yrp) -yr -

from Proposition A.2, (6.14), and (6.15).

(6.14)

(6.15)

yr 
2(1 - y)

.
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Lemma 6.6. Under the hypothesis of Lemma 6.5,

if y S q(h), then [ < hr,

where q (h) is defined in (6.4).

Proof. Suppose , > h r . Then from Lemma 6.5,

Fw(x) - Fw(x) < f(y, P) 

where f(y, ) = - p (h) h r r2 2+ 2ry +Y
2 (1 - y)

Note that f (y, [3) increases in for 

calculation reveals that f(y, P) = if

> 0 and 0 < y < 1 . Straightforward

1 + h p (h) - V/1 + (h p (h))2 - 2h p (h) +

2 - r3

> 1 + hp(h) - V/i + (hp(h))
2

= q(h)

because 0 r < 1 from (6.15).

Thus if y < q(h), f(y, ) < 0 , contradicting the optimality of in (6.16).

Therefore if y < q(h), I < hr. 
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Proof of Lemma 6.1 (ii). We will actually prove a stronger result, namely:

If 0 < h < 1, and y < q(h), then F(x) - Fw() < (4h)) y 2 r2,

where v (h) is defined in (6.5).

Lemma 6.1 (ii) will follow by substituting h = 0.93 . Then q(h) 2 1, and
8

(4v I(h)< 0.82.

To prove (6.17), observe that if y < q(h) , from Lemma 6.6, < hr , and so from

Lemma 6.5,

2
< -p(h) + D1ry + 

2(1 - y)

2S +222 P y
< -p(h) + ry +

2(1 - y)

2 2
Y P

2(1 - y
+ ry

However, (p (h)

Proposition A.9,

2 \

2(1 - )

p (h)
2

2(1 - y)'

(h) because y < q(h), and so from

) 2 v(h) > 0 for h < 1 , so that the bound
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(6.18)

F w(-x - F (-x

= - p (h



of (6.18) is a concave quadratic is . The maximum possible value of the bound is

then given by [ = ry
2

2p(h) - (
(1 - )

, which yields from (6.18)

22
ry

4p (h)

2 2
ry

4v (h)2
2Y(1 -

(1 - 7)

Proof of Lemma 6.2. (i) We will actually prove a stronger result, namely:

If 0 < h < 1, and y > q(h), then Fw(xNEW) - F w() m(h)r 2

where m (h) is defined in (6.6).

Lemma 6.2 (i) will follow by setting h = 0.923 . Then q(h) 1 and
8

m (h) > 0.0069 .

To prove (6.19), observe from Lemma 5.2 and Theorem 5.1 that

- Fw(x) + r2(1 + y - 1 + 2)

= Fw(X) + r2k ()

> Fw(E) + r 2 k (q (h)) = Fw() +

from Proposition A.8.
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(6.19)

Fw(XNEW) (6.20)

(see (6.1))

r2 m(h) ,

F w (x - F w (-x)



(ii) We will prove a stronger result, namely:

If 0 < h 1 , and y q(h), Fw(XNEW) - Fw() n(h)r ,

where n (h) is defined in (6.7).

Lemma 6.2 (ii) will follow by setting h = 0.929 . Then q(h) 1 and
8

n (h) (0.44).

To prove (6.21), observe from (6.20) that

Fw(xNEW) >

(6.21)

Fw(X) + r2k (M

2 Fw(E) + r 2 j(0)y2 for 0 < y < 0

(from Proposition A.5)

= Fw(i) + r 2 j (q(h)) y

(substituting q(h) = 0 )

= Fw(5) + n(h)r2y 2 . , (from (6.7))
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Proof of Lemma 6.3. Let h = 0.929 . (i) follows from (6.19) if y > q(h) .

Now suppose y q(h) . Then from (6.17) and (6.21),

= 1 Fw(XNEW)
Fw( ) -

< 1 - n (h)r 2 y2

(4vh) r y

= 1 - 4n(h) v(h).

< 0.46 .

Proof of Theorem 6.1. It suffices to prove that as h 0 , the convergence

constant of (6.22) goes to zero. This constant is

1 - 4v(h) n(h) = 1- 4(p(h)
2(1 - q(h)) (j(q(h)))

From Propositions A.4, A.6, and A.8, p (h) --

j (q(h)) - , ash2
-- 0 . Thus

1 - 4v(h) n(h) -+ 1 = 0 as h - O. .

Remark 6.1. (Alternative Convergence Constants). Lemma 6.3 asserts that at each

iterate of the algorithm that we obtain a constant improvement of at least 0.0069r2 ,
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Fw(X) -
FW(x)

Fw(XNEW)

- FX)

(6.22)

1, q(h) --
2

0, and

- - F (X-

- 4 1



or linear convergence to the optimal objective value, with convergence constant

0.46 . The constants 0.0069 and 0.46 are derived by using the value of h = .93 in

(6.17), (6.19), and (6.21). If instead of choosing h = .93 , one chooses h = 2 , for

example, then by paralleling the methodology in Section 6, one obtains Lemma 6.3

with a constant improvement of at least .013r2 or a linear convergence rate with

convergence constant 0.65 . The choice of h = .93 was fairly arbitrary.

Remark 6.3. (Monotonic Values of y ). One natural question to ask regarding

Algorithm WP is whether the values of generated at each iteration are

monotonically decreasing. We have:

Proposition 6.1. Suppose Y1 and 2 are two successive values of generated by

Algorithm WP . Then if Y1 < 1 /8, 2 < (0.92)y1 

Proof. Let x and x2 be the successive iterates of Algorithm WP that generate the

values of = 1 and Y = 2 , respectively, and let x3 be the iterate value of x

after x2 . Let h = 0.93 . Then 1 < q(h) . Suppose Y2 does not satisfy

72 < q(h) . Then from (6.17), (6.19), and (6.21),

F. (x3) < Fx) < Fw(x 1) + (4v ) r2 (6.23)

Fw(x 3) Fw(x2) > Fw(x ) + n(h) 1 r (6.24)

Fw(x )> Fw(x3) > Fw(x2) + m(h)r 2 .
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Combining the above inequalities yields

(4 v (h))71
2

> m(h) + n(h)y1,

i.e., 'Y1 i.e., 7 2 V 4v(h) - n(h) 

However, Y1 < q (h), which is a contradiction at h = 0.93 . Thus Y2 q (h).

This being the case, from (6.21) we obtain

Fw(x3) - Fw(X2) n (h) 2 (6.25)

which in combination with (6.23) and (6.24) yields

Y2 (
1

4 v (h)
n

- n(h) )

(h) 1 < (0.92)y1 - '

VII. The Improving Direction is the Newton Direction.

In this section, we show that the direction d of Step 2 of Algorithm WP is a

positively scaled projected Newton direction. As a byproduct of this result, the

computation of d in Step 2 can be carried out without solving equations involving
. .._T_-I -- 1.-.

the matrix Q = A S W S A, which will typically be extremely dense.

Vaidya's algorithm for the center problem [26] corresponds to computing the

Newton direction and performing an inexact line-search. Thus, Algorithm WP
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specializes to Vaidya's algorithm when the algorithm is augmented with a line-

search, see Remark 5.1. Furthermore, this establishes that Vaidya's algorithm then

will exhibit superlinear convergence.

Let x be the current iterate of Algorithm WP , let = b - A , and

T-- 1 - T
y = A S w and A = A - s y as in Step 1 of Algorithm WP, and let

T--1 -1_, T_-1 _-1
Q = AS WS A, and Q = A S WS A . By assumption, A has full

rank, so that Q is nonsingular and positive definite. Let F w (x) be the weighted

logarithmic barrier objective function of Pw given in (2.6). Then the gradient of

Fw(.) at 3x is givenby -y , i.e., VFw(x) = -y , and the Hessian of Fw(.) at is
2

given by -Q , i.e., V F w(x) = -Q . Thus the projected Newton direction dN at

x is the optimal solution to

maximize -yTd - (1/2)d T Qd (7.1)

s.t. Md = 0,

and the Newton direction dN together with Lagrange multipliers lN is the unique

solution to

Qd N - M nN = -y (7.2)

MdN = 0.

Because Q has rank n and M has rank k , we can write the solution to (7.2) as

d N Q-1 Q-1 M TdN = yQ- + M N (7.3)

where = (MQ- MT)-IMQ-1y
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Theorem 7.1 (Positive Scaled Newton Direction). Let dN be the Newton direction

given by the solution (7.3) to (7.2), and consider the scaled version of dN :

= dNr

dNQ dN4
(7.4)

where Q is given in (5.15), and r is given in (2.8).

(i) If the denominator of (7.4) is positive, d of (7.4) is the direction of

Step 2 of Algorithm WP

(ii) If the denominator of (7.4) is zero, dN is a ray of X and program EP

of Step 2 of Algorithm WP is unbounded from above, and hence so is

Pw .

Proof. (i) Let /rN be as givenin(7.3), z = lN/(1 + y TdN), and

= dNQdN/(2r(l + y TdN)) . Then d, i, 1 satisfy the K-K-T conditions
-T - 2 -

of program EP, namely d Q d = r ,Md = O, and -y = 2Q d -

> 0 , solongas 1 + y T d N > 0 . It thus remains to show that

1 + yTdN > . Note first that Q = Q - yy , where Q
T---l -1

= A S WS A.

By hypothesis, we have

0 <QdN dQ - YYQdN = dN QdN -(y dN)

which implies yTdN > -1 , i.e., 1 + y TdN

= -yd N - (yTdN)2

> 0.
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(ii) Suppose dN Q dN = 0 . In view of (7.5), we have y dN = -1 , and

dN Q dN = O, and MdN = 0 . Thus program EP is unbounded, and as in the

proof of Lemma 5.3, dN is a ray of X .

Remark 7.1. (Simplified Computation of d ). Theorem 7.1 shows that d is just a

positive scale of the Newton direction dN . Thus in order to solve for d , one need

not solve a system involving the possibly-very-dense matrix Q . Rather one need

only solve the equations (7.2) for dN and then compute = d N r/d TN dN

Remark 7.2. (Relation of Algorithm WP to Vaidya's algorithm). Theorem 7.1

shows that d is just a positive scale of the Newton direction dN . Suppose

Algorithm WP is implemented with a line-search replacing Steps 3 and 4, as

suggested by Remark 5.1. Then because the projective transformations g (x) and

h (z) given by (3.8) and (3.9) preserve directions from x , the algorithm's direction

in the space X will be dN . Therefore, when using a line-search, the algorithm is

just searching in the Newton direction. This is precisely Vaidya's algorithm [26],

when all weights w i are identical. And because the complexity analysis of

Sections V and VI carries through with or without a line-search, we see that Vaidya's

algorithm exhibits superlinear convergence.

Remark 7.3. (An Extension of a Theorem of Bayer and Lagarias). In [4], Bayer and

Lagarias have shown the following structural equivalence between Karmarkar's

algorithm for linear programming and Newton's method: First one can projectively

transform the problem of minimizing Karmarkar's potential function over a

polyhedron X to finding the (unbounded) center of an unbounded polyhedron Z 
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where Z is the image of X under a projective transformation that sends the set of

.optimal solutions to the linear program to the hyperplane at infinity. Then the

image of Karmarkar's algorithm (with a line-search) in the space Z corresponds to

performing a line-search in the Newton direction for the center problem in the

transformed space Z . Theorem 7.1 is in fact a generalization of this result. It states

that if one is trying to find the center of any polyhedron X (bounded or not), then

the direction generated at any iteration of the projective transformation method (i.e.,

Algorithm WP ) is a pbsitive scale of the Newton direction. Thus, if one

determines step-lengths by a line-search of the objective function, then the

projective transformation method corresponds to Newton's method with a line-

search.

Another important relationship between directions generated by projective

transformation methods and Newton's method can be found in Gill et al. [12]

Remark 7.4. (No Finite Termination of Algorithm WP). The solution to the

w-center program can have irrational components, and so Algorithm WP will not

stop after finitely many iterations if the optimality tolerance is zero. Even if

program Pw is unbounded, the algorithm may never detect unboundedness via

(5.16) or (5.18). This is shown in an example of Section 4 of Bayer and Lagarias [4]. In

that example, X = {xER2Ixl > -1, xl < -1, x2
> 0, }

w = (1/3, 1/3, 1 /3) , and the starting point of the Algorithm WP is

x = (1 /3, 2 /3) · They show that Newton's method (with a line-search) never

produces a ray of X . As a consequence of Theorem 7.1, Algorithm WP (with a

line-search) will never detect unboundedness for this example.
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VIII. Inner and Outer Ellipsoids at an approximate w-center point x .

One of the special features of the w-center x of a constraint system X is the

fact that there exist ellipsoids EIN and EOUT , with center at , such that

EIN c X c EOUT and EOUT = (R/r) EIN see Theorem 2.1. Although the iterates

of Algorithm WP will converge to , there may not be finite termination, and in

fact the solution may involve irrational data. A natural question is whether one

can construct good ellipsoids FIN and FOUT about points near x , with the

property that FIN c X c FOUT , and FOUT = c. FIN , where c = (1 / W) . The

main result of this section answers this question in the affirmative:

Theorem 8.1 (Inner and Outer Ellipses Near the w-center). If x is feasible for Pw 

s = b - A , and y = y(x) of Algorithm WP satisfies y < , then
8

FIN (X= R n - WS A(x - ) < r , Mx = g

n T 2WS A(x- 5)< R ,Mx=g}and FOUT = (x R I (W S A( -x)TAT R , M-1 

satisfy FIN c X c FOUT ,

where i = i and R = 1 (1 + 14.6y) (8.1)

In particular, R /- < 2.9 /w

Remark 8.1. Note that if w = (1/m)e , then R/r < 2.9m . Furthermore, as

Y - 0, R/- (1/w) = m
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The proof of Theorem 8.1 will follow as a consequence of the following intermediate

results.

Proposition 8.1. If y < 1 , and h = 7.44 , then y < q(h).
8

Proof. The function q (h) is concave for h > 0 , and lim q(h) = 0 , see
h -- 0

Proposition A.8. Therefore, for any fixed value of !h > 0 , q(h) > (h q (h)) /h for

hE (0, h] . Nowlet h = 0.93 . For < 1 and h =
8

and so q(h) hq(h) /h = y(7.44)q(h) / h > I-

7 .4 47, then h E (0, h,

.

Lemma 8.1. If x is the current iterate of Algorithm WP , s = b - Ax, h > 0

is given, h < 1 , and y < q(h), then

T- - 1 - -1A( - ) A S WS x
r2h2(1 + 2)

(1 - hry)2

where is the w-center of X .

Proof. Let ^z = gyx' , where y = A S w , i.e., z is the image of x under the

w-centering projective transformation at . Let

TXT- -1W - --
x) ASWSA( - x) . Then from Lemma 6.6,

,3 < hr.
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P=(72 

(8.3)

111

- ) <



Let d = z - x , and from (6.14),

yTl < yr .- (8.4)

T - - -1 , .T- -1 - -1, TLet Q = AS WS A, Q = A S WS A, and note that Q = Q - yy

Then

- T_ _, T - = ( - j 
(x-x-)TATS WS 1 A(' -x -))( + yy )(_ -x)

(1 + y ( -))

(from (3.9))

2 IT 2
+ dyJ

= (i T +
(1 + y dJ

2 2r 2 2
(+ y-r )

(1 - r 2ry~
(from (8.4))

242
h 2r 2 + h r4y

< (1- hr2)
(from (8.3))

h2r2(1 + Y2)

(1 - hry)2

As demonstrated in Section VI, as Y = Y(x) -- 0 , the iterates x converge

to the w-center x of the constraint system X . Therefore, if is "small", then x

will be "close" to x . The above phrase can be made mathematically precise, as

follows. Let

(8.5)-6 = () / - g; - -A(x -)= 8 (5 '( x K)T A S W A x - ) .
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Theorem 8.2. (Relationship of 6 to y ). If x is feasible for Pw and y = (x) of

Algorithm WP satisfies y < 1., then 6 = 86() of (8.5)satisfies

6 = 6(u) < 8.5yr.

Proof. Let h = 7.44 . From Proposition 8.1, y < q(h) . Substituting in (8.2) and

noting that r < 1, weobtain 6 = 86() r(7.44y) 1 + 64 8.5yr
(1 - 7.44/64)

Proof of Theorem 8.1. We first show that FIN c X . Let x e FIN and let

s = b - Ax . It suffices to show that s > 0 . Because x E FIN ,

T- -1 -- 1 -2
(s - S WS - - s) < r = w . Therefore, for i=1,...,m,

(Si - i wi/ i2 < W < wi. Therefore s i > 0, i=l,...,m.

.

We next show that X c FOUT . Let = b - Ax, where x is the

w-center of X . Then from Theorem 8.2,

T( -1 -1 2 (8.5) w
-s) ~ W S-1 _ < (8.5y) 2 r2 - (8.¥)2V

1 -w

which implies that

si 8.5y
Si < X + 8.5 y i = l,...,m
Si V1 - w

Forany x e X, let s = b - Ax . Then

(8.6)

(8.7)

(S - )S'W '(s - = (s - )(S )S W S (s -
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8.5 + Y 2

(8.8)< + 8.5y )lR2< (I 1 - ,

from Theorem 2.1.

Using the triangle inequality on (8.6) and (8.8) yields

(x _ )TATs-lw -- 1- WS A( - ) < R + 8.5y_ ) + 8.5yr

( 1 w(IN w I

< 1 (1

1 (1
-w

+ 8.57y 
+r-- ....).. 

+ 8.5y + 6.1y)

+ 14.6y)

> w > 0 and I w
1 -w

< 1 < 1
q2-w

Substituting y =1
8

in (8.1) yields iR/ < 2 .9 /W

54

+ 8.5y wv-)

because 
2

.

T, -1 , -1 - S (from 8.7)



Appendix - Inequalities Related to Logarithms

PropositionA.1. In (1 + a) < a .

Proof: Follows from the concavity of the logarithm function.

Proposition A.2. If lal < e < 1, then ln(1

Proof: See, e.g., Todd and Ye [25] .

PropositionA.3. If 0 < a < 1 and Ibl < 1 , then In(1 + b) < ()ln(1

Proof: ln (1 + ab) = ln(a(1 + b) + (1 - a)(1)) a ln (1 + b) + (1 - a) ln (1) = a ln (1 + b) ,

where the inequality follows from the concavity of the logarithm function. .

Consider the functions k (y), j (0) , p (h) , q (h) , v (h) , m (h) , and n (h)

defined in (6.1)- (6.7).

Proposition A.4. (i) j () is decreasing in 0

(ii) lim j(0) = 1/2.
0 -- O

PropositionA.5. (i) k(y) > j(0) y2 for 0 y

Proof: (i) Follows from Proposition A.4 (i) .

A-1

.

+ a) a
2

a
2 (1 - ) '

+ ab).

<0,

0,

U



(i) p (h) is decreasing in h .

(ii) lim p(h) = 1/2 .

Proposition A.7. In (1 + x) x - p (h) x 2 for -1 < x < h.

Proof: Follows from Proposition A.6 (i).

Proposition A.8. (i) q (h) is increasing in h .

(ii) lim q(h) = O.

(iii) 0 < q(h) < 0.30 forallh > 0 .

(iv) q (h) is a concave function.

Proposition A.9. (i) v (h) is decreasing in h .

(ii) v(h) > 0 for h < 1.

Proof: (i) follows from Proposition A.6 (i), A.8 (i) and A.8 (iii).

from (i) and direct substitution.

Assertion (ii) follows

.

A-2

.

.

Proposition A.6.
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