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1. Introduction.

Common to virtually all empirical investigations of the microstructure of securities

markets is the need for a statistical model of asset prices that can capture the salient

features of price movements from one transaction to the next. For example, because

there are several theories of why bid/ask spreads exist, a stochastic model for prices is a

prerequisite to empirically decomposing observed spreads into components due to order-

processing costs, adverse selection, and specialist market power.1 The benefits and costs of

particular aspects of a market's microstructure, such as margin requirements, the degree of

competition faced by dealers, the frequency that orders are cleared, and intraday volatility

also depend intimately on the particular specification of price dynamics.2 In fact, it is

difficult to imagine an economically relevant feature of the microstructure problem that

does not hinge on such price dynamics.

Since stock prices are perhaps the most closely watched economic variables to date,

they have been modeled by many competing specifications, beginning with the simple

random walk or Brownian motion. The majority of such specifications have been unable

to capture at least three aspects of transactions prices. First, on most U.S. stock exchanges

prices are quoted in increments of eighths of a dollar, a feature not captured by stochastic

processes with continuous state spaces. Of course, discreteness is less problematic for

coarser-sampled data, which may be well-approximated by a continuous-state process.

But discreteness is of paramount importance for intra-daily price movements, since such

finely-sampled price changes may take on only five or six distinct values. 3

Second, another distinguishing feature of transaction prices is their timing, which is

irregular and random. Therefore, such prices may be modeled by discrete-time processes

only if we are prepared to ignore the information contained in waiting-times for transac-

tions.

Finally, although many have computed correlations between transaction price changes

and other economic variables, to date none of the existing models for transaction prices

have been able to quantify such effects formally. Such models have focused primarily on

the unconditional distribution of price changes, whereas what is often of more interest

is the conditional distribution, conditioned on economic quantities such as volume, time

I See, for example, Glosten and Harris (1988), Hasbrouck (1988), Roll (1984), and Stoll (1989).
2 See Cohen et al. (1986), Harris, Sofianos, and Shapiro (1990), Hasbrouck (1989a), Madhavan and Smidt (1990), and Stoll

and Whaley (1989).
3 The implications discreteness has been considered in many studies. See, for example, Cho and Frees (1988), Gottlieb and

Kalay (1985), Harris (1987, 1989a,b), and Petersen (1986).
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between trades, and the sequence of past price changes. For example, one of the unanswered

empirical questions in this literature is what the total costs of immediate execution are,

which many take to be a measure of market liquidity. Perhaps the largest component of

such costs is the price impact of large trades. Indeed, a floor broker seeking to unload

100,000 shares of stock will generally break up the sale into smaller blocks to minimize

the price impact of the trades. How do we measure price impact? Such a question is a

question about the conditional distribution of price changes, conditional upon a particular

sequence of volume and price changes (i.e. order flow).

In this paper, we propose a specification of transaction price changes that addresses

all three of these issues, and yet is still tractable enough to permit estimation via standard

techniques. This specification is known as ordered probit, which has been used most fre-

quently in cross-sectional studies of dependent variables that are limited to a finite number

of values possessing a natural ordering. 4 Heuristically, ordered probit analysis is a general-

ization of the linear regression model to cases where the dependent variable is discrete. As

such, among the existing models of stock price discreteness, 5 ordered probit is perhaps the

only specification that can easily capture the impact of "explanatory" variables on price

changes while also accounting for price discreteness and irregular trade times.

Underlying the analysis is a "virtual" regression model with an unobserved continuous

dependent variable Z* whose conditional mean is a linear function of observed explana-

tory" variables. Although Z is unobserved, it is related to an observable discrete random

variable Z, whose realizations are determined by where Z* lies in its domain or state

space. By partitioning the state space into a finite number of distinct regions, Z may be

viewed as an indicator function for Z* over these regions. For example, a discrete random

variable Z taking on the values ( -8, 0, 1 } may be modeled as an indicator variable

that takes on the value -~ whenever Z* < al, the value 0 whenever ca < Z* < a2, and

the value whenever Z* > a 2. Ordered probit analysis consists of estimating al, a 2 and

the coefficients of the unobserved regression model for Z*.

Since al, a 2 and Z' may depend on a vector of "regressors" X, ordered probit analysis

is considerably more general than its simple structure suggests. In fact, it is well known

that ordered probit can fit any arbitrary multinomial distribution. However, because of the

underlying linear regression framework, ordered probit can also capture the price effects of

4 For example, the dependent variable might be the level of education, as measured by three categories: less than high school,
high school, and college education. The dependent variable is discrete, and is naturally ordered since college education always
follows high school. See Maddala (1983) for further details.

6 See, for example, Ball (1988), Cho and Frees (1988), Gottlieb and Kalay (1985), and Harris (1987).
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many economic variables in a way that models of the unconditional distribution of price

changes cannot.

Using ordered probit analysis we investigate several issues specific to transaction

prices. First, how does the particular sequence of trades affect the conditional distri-

bution of price changes, and how do these effects differ across stocks? For example, does

a sequence of three consecutive buyer-initiated trades (buys") generate price pressure, so

that the next price change is more likely to be positive than if the sequence were three

consecutive seller-initiated trades (sells"), and how does this pressure change from stock

to stock? Second, does trade size affect price changes as some theories suggest, and if

so, what is the price impact per unit volume of trade from one transaction to the next?

Third, does price discreteness matter? In particular, can the conditional distribution of

price changes be modeled as a simple linear regression of price changes on explanatory

variables without accounting for discreteness?

Using 1988 transactions data from the Institute for the Study of Securities Markets

(ISSM) for ten randomly chosen U.S. stocks, we find that the sequence of trades does

affect the conditional distribution for price changes, and the effect is greater for larger

capitalization and more actively traded securities. Moreover, trade size is also an important

factor in the conditional distribution of price changes, with larger trades creating more

price pressure, but in a nonlinear fashion. The price impact of a trade depends critically

on the sequence of past price changes and order flows (buy/sell/buy versus buy/buy/buy).

The ordered probit framework allows us to compare the price impact of trading over many

different market scenarios, such as trading with" versus "against" the market, trading in

"up and down" markets, etc.. Finally, we show that discreteness does matter, in the sense

that the simpler linear regression analysis of price changes cannot capture all the features

of transaction price changes evident in the ordered probit estimates, such as the clustering

of price changes on even eighths.

In Section 2 we review the ordered probit model, provide a few illustrative examples of

its virtuosity, and describe its estimation via maximum likelihood. We describe the data in

Section 3 by presenting some summary statistics for our sample of ten securities. In Section

4 we discuss the empirical specification and selection of conditioning or explanatory"

variables. We report reports the maximum likelihood estimates for our sample in Section

5 and we use these parameter estimates to address the three issues mentioned above. We

conclude in Section 6.
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2. The Ordered Probit Model.

Consider a sequence of transaction prices P(to), P(tl), P(t 2), ... , P(tn) observed at

times to, t, t 2, ... , tn, and denote by Z 1, Z 2, ... , Z, the corresponding price changes,

where Zk - P(tk) - P(tk-1) is assumed to be integer multiples of some divisor called

"ticks" (such as an eighth of a dollar). Let Zk* denote an unobservable continuous random

variable such that:

Zk = X:3 + Ek E[ek Xk] = 0 , Ek i.n.i.d. N(0, a) (2.1)

where the term "i.n.i.d." indicates that the epsilonk's are independently but not identically

distributed, and Xk is a qxl vector of predetermined variables that governs the conditional

mean of Zk*. Note that subscripts are used to denote "transaction" time, whereas time

arguments tk denote calendar or "clock" time, a convention we shall follow throughout.

The essence of the ordered probit model is the assumption that observed price changes

Zk are related to the continuous variable Zk in the following manner:

Zk =

Is 1 if Z E Alk

S2 if Z E A2k
(2.2)

d. Sm if Z E Amk

where the sets Ajk form a partition of the state space S* of Z. (i.e., S* = U 1=l Ajk, and

Aik n Ajk = 0 for i j), and the sj's are the discrete states that comprise the state space

S of Zk. In our application the sj's are 0 , -I, +, , +, and so on, and for simplicity

we define the state-space partition of S* to be intervals:

Alk (-°°k, c1k] (2.3)

A2k -- (alk, a2k] (2.4)
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Ak - ~(ai~-lk X,~ ak] ~(2.5)

Amk (m-lk t 00) (2.6)

where the partition boundaries cjk may also depend on X k.

Although the observed price change can be any number of ticks, positive or negative, to

limit the number of parameters we assume that m in (2.2) is finite. This poses no problems

since we may always let some states in S represent a multiple (and possibly uncountable)

number of values for the observed price change. For example, in our empirical application

we define s to be a price change of -4 ticks or less, 9 to be a price change of +4 ticks or

more, and 52 to s8 to be price changes of -3 ticks to +3 ticks respectively. This parsimony

is obtained at the cost of losing "price resolution" - the ordered probit model does not

distinguish between price changes of +4 and price changes greater than +4 (since the

+4-tick outcome and the greater than +4-tick outcome have been grouped into a common

event), and similarly for price changes of -4 ticks versus price changes less than -4. This,

however, is rarely a problem in practice since the resolution may be made arbitrarily finer

by simply introducing more states, i.e., by increasing m. Therefore, the loss in resolution

from a finite m may be made negligible at the cost of computational complexity. 6

Observe that the sk's in (2.1) are assumed to be conditionally independently but not

identically distributed. 7 This allows for clock-time effects, as in the case of an arithmetic

Brownian motion where the variance a of price changes is linear in the time between

trades. We also allow for conditional heteroskedasticity by letting a depend linearly on

other economic variables. The dependence structure of the observed process Zk is clearly

induced by that of Z and the definitions of the Ajk's, since:

P(Zk = slZk- = = P(Z; E AjklZk-l E Aik-I) (2.7)

As a consequence, if the regressors Xk and the partitions Aik are temporally independent,

the observed process Zk is also temporally independent. Of course, these are fairly restric-

tive assumptions that amount to requiring prices to follow random walks, and are certainly

GMoreover, as long as (2.1) is correctly specified, then increasing price resolution will not affect the estimated O's asymptot-
ically. Of course, finite sample properties may differ.

?Conditional on the Xk's and other economic quantities influencing the conditional variance °£. Unless explicitly stated
otherwise, all the probabilities we deal with in this study are conditional probabilities, and all inferences and statements
concerning these probabilities are conditional, conditioned on these variables.
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not necessary for any of the statistical inferences that follow. We require only that the

Ek's be conditionally independent, so that all serial dependence is captured by the Xk's.

Consequently, the independence of the k's does not imply that the Z's are independently

distributed because we have placed no restrictions on the temporal dependence of the Xk's.

The conditional distribution of observed price changes Zk, conditioned on the regres-

sors Xk, is determined by the partition boundaries and the particular distribution of Ek.

For Gaussian qk's, the conditional distribution is:

P(Zk =siXk) = P(Zk E AklXk) = P( X +k E Ak Xk) (2.8)

P( Xk, + Ek < atk X k if i1

= <P( a-lk <Xk + k < /c | Xk) if l <i< m (2.9)

P( am-lk < X + Ek X k ) if i =m

ai -XIfa ) if i=1

- -Xi ) -:,( 1i-k- ) if 1 < i < m (2.10)

1 ( am-lk-C ) 1if i=m

To develop some intuition for the ordered probit model, observe that the probability

of any particular observed price change is determined by where the conditional mean lies

relative to the partition boundaries. Therefore, for a given conditional mean X'O, shifting

the boundaries will alter the probabilities of observing each state [see Figure 1]. In fact,

by shifting the boundaries appropriately, ordered probit can fit any arbitrary multinomial

distribution. This implies that the assumption of normality underlying ordered probit

plays no special role in determining the probabilities of states - a logistic distribution, for

example, could have served equally well.8

sHowever, it is considerably more difficult to capture conditional heteroskedasticity in the ordered logit model.
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Alternatively, given the partition boundaries, a higher conditional mean X,/3 implies

a higher probability of observing a more extreme state. Of course, the labelling of states

is arbitrary, but the ordered probit model makes use of the natural ordering of the states.

The regressors allow us to separate the effects of various economic factors that influence

the likelihood of one state over another. For example, suppose that a large positive value

of X 1 usually implies a large negative observed price change and vice-versa. Then the

ordered probit coefficient A1 will be negative in sign and large in magnitude (relative to a

of course).

From these observations, it is apparent that the rounding/eighths-barriers models of

discreteness in Ball (1988), Cho and Frees (1988), Gottlieb and Kalay (1985), and Harris

(1989c) may be re-parameterized as ordered probit models. Consider first the case of a

"true" price process that is an arithmetic Brownian motion, with trades occurring only

when this continuous-state process crosses an eighths threshold [see Cho and Frees (1988)].

Observed trades from such a process may be fit to an ordered probit model where the

partition boundaries are fixed at multiples of eighths and the single regressor is the time

interval (or first-passage time) between crossings, which appears in both the conditional

mean and variance of ZZk. For the rounding models of Ball (1988), Gottlieb and Kalay

(1985), and Harris (1989c) which do not make use of waiting-times between trades, define

the partition boundaries as the midpoint between eighths [ e.g. the observed price change

is if the virtual price process lies in the interval [1, 16) ] and omit the waiting time as

a regressor in both the conditional mean and variance [see the discussion in Section 5.3

below].

The generality of the ordered probit model comes from the fact that the rounding and

eighths-barrier models of discreteness can both be incorporated by appropriate definitions

of the partition boundaries. In fact, since the boundaries may be parameterized to be time-

and state-dependent, ordered probit allows for more general kinds of rounding and eighths

barriers. In addition to fitting any arbitrary multinomial distribution, ordered probit may

also accommodate finite-state Markov chains and compound Poisson processes.

Of course, other models of discreteness are not necessarily obsolete, since in several

cases the parameters of interest may not be simple functions of the ordered probit parame-

ters. For example, a tedious calculation will show that although Harris's (1989c) rounding

model may be represented as an ordered probit, the bid/ask spread parameter c is not

easily recoverable from the ordered probit parameters. In such cases, other equivalent

specifications may allow more direct estimation of the relevant parameters.
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Ill

2.1. The Likelihood Function.

Let Yik be an indicator variable which takes on the value 1 if the realization of the k-th

observation Zk is the i-th state si, and zero otherwise. Then the log-likelihood function

L for the vector of price changes Z = [ Z1 Z 2 -- Zn ]', conditional on the explanatory

variables X = [ X1 X 2 ... Xn ', is given by:

L(Zlx) = E {Y log ( ak ) +

~~k=l Ula l l iak ) 

ak ak

Yk log[ 1 , _l(-m X )ok (2.11)

Time-varying probabilities of transiting from one state to another may be allowed by letting

the partition boundaries be time- and state-dependent, so for example we may let aik be

a linear function of predetermined variables. For simplicity, we assume that the acik's are

constant in our current application, hence we omit the subscript k and write the partition

boundaries as a/.

Recall that ak is a conditional variance, conditioned upon Xk. This allows for con-

ditional heteroscedasticity in the Zk's, as in the rounding model of Cho and Frees (1988)

where the Z's are increments of arithmetic Brownian motion with variance proportional

to tk - tk_ 1. For this special case, we have:

Xk:p = /Atk (2.12)

oa = I .2Atk. (2.13)

More generally, we may also let ak depend on other economic variables Wk so that:

Ko
-2 2+ Wik . (2.14)

i=l
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There are, however, some constraints that must be placed on these parameters to achieve

identification since, for example, doubling the a's, the 's, and ok leaves the likelihood

unchanged. We shall return to this issue in Section 4.

3. The Data.

The ISSM transaction database consists of time-stamped trades (to the nearest sec-

ond), trade size, and bid/ask quotes from the New York and American Stock Exchanges

and the consolidated regional exchanges from January 4 to December 29 of 1988. Because

of the sheer size of the ISSM transaction database, we focus our attention on only ten

randomly selected securities that did not undergo any stock splits during 1988.9 They are:

Abitibi-Price Incorporated (ABY), Quantum Chemical Corporation (CUE), Dow Chemi-

cal Corporation (DOW), First Chicago Corporation (FNB), Foster Wheeler Corporation

(FWC), Handy and Harmon Company (HNH), Navistar International Corporation (NAV),

Reebok International Limited (RBK), Sears Roebuck and Company (S), and American

Telephone and Telegraph Incorporated (T). These ten stocks provide a reasonably broad

and representative cross-section of U.S. securities in terms of market capitalization, price

level, and other characteristics.

We take as our basic time series the intra-day price changes from trade to trade, i.e.,

all overnight price changes are discarded. The first and last trade of each day were also

discarded, since those trades may differ systematically from others due to institutional fea-

tures. Several other screens were imposed to eliminate problem" trades, yielding sample

sizes from 1,515 trades for ABY to 178,813 trades for T.10

To obtain a better grasp of this dataset, we report a few summary statistics in Tables

la and b. To see that our sample of ten stocks contains considerable dispersion, observe

that the low stock price ranges from $3.875 (NAV) to $77.375 (DOW), whereas the high

ranges from $7.250 (NAV) to $107.000 (CUE). At $22 million, HNH has the smallest market

capitalization our sample, and T has the largest with a market value of $30.3 billion.

For our empirical analysis we require some indicator of whether a transaction was a

buy or a sell. Following Blume, MacKinlay and Terker (1989), we classify all transaction

gWe confine our attention to stocks that have not split simply to minimize the effects of large changes in price levels.
l°Specifically, the following observations were removed from the sample: (1) trades that occur when the 'firm quotation

obligation' is suspended; (2) trades occurring during 'fast trading' conditions; (3) trades immediately following a trading halt
due to 'news dissemination'; and (4) trades larger than 3,276,000 shares. See the ISSM documentation for further details. Also,
because we use three lags of price changes as explanatory variables, and three lags of 5-mrninute returns on the S&P 500 index
futures prices, we do not use the first three price changes or price changes during the first 15 minutes of the day (whichever is
greater) as observations of the dependent variable.
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prices into three categories using the prevailing bid and ask price quotes: a buy" if

the transaction price is greater than the mean of the bid and ask prices, a "sell" if the

transaction price is less than the mean of the bid and ask prices, and "neutral" if the

transaction price is equal to the mean of the bid and ask prices. From Tables la,b we see

that between 20 and 25 percent of each stock's transactions are neutral, and the remaining

trades fall almost equally into the two remaining categories. The two exceptions are the

two smallest stocks, ABY and HNH. The former has almost twice as many buys as sells,

whereas the latter has more than twice as many sells as buys.

The means and standard deviations of other variables to be used in our ordered probit

analysis are also given in Tables la and b. The precise definitions of these variables will be

given below in Section 4, but briefly, Zk is the price change between transactions k - 1 and

k, Atk is the time elapsed between these trades, ABk is the bid/ask spread prevailing at

transaction k, SP 5 0 0 k is the return on the S&P 500 index futures price over the five-minute

period immediately preceding transaction k, IBSk is the buy/sell indicator described above

(1 for a buy, -1 for a sell, and 0 for a neutral), and Vk is the natural logarithm of the dollar

volume of transaction k. Note that for the larger stocks, trades occur almost every minute

on average, with the exception FNB which has an average Atk of about five minutes. The

smaller stocks trade less frequently, with ABY trading only once every thirty minutes on

average.

Finally, Figure 2 contains histograms for the price change, time between trade, and

volume variables. For all ten stocks, the distributions of price changes are remarkably

symmetric, whereas the distributions of time between trades are not.

4. The Empirical Specification.

To estimate the parameters of the ordered probit model via maximum likelihood, we

must first specify: (i) the partition boundaries aik; (ii) the number of states m; (iii) the

explanatory variables Xk; and (iv) the parametrization of the variance a,. For simplicity,

we assume that the aik's are parameters constant through time, hence we drop the k

subscript.

In selecting m, we must balance resolution against the practical constraint that an m

too large will yield no observations in the extreme states sl and Sm. For example, if we

set m to 101 and define the states s and s10l symmetrically to be price changes of -50

ticks and +50 ticks respectively, we would find no Zk's among our ten stocks falling into

9.3 1.91- 10 -
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these two states. From the histograms in Figure 2, we set m = 9 for the larger stocks,

implying extreme states of -4 ticks or less and +4 ticks or more. For the three smaller

stocks, ABY, FWC and HNH, we set m = 5 implying extreme states of -2 ticks or less

and +2 ticks or more. 11

In selecting the explanatory variables Xk, we seek to capture several aspects of trans-

action price changes. First, we would like to allow for clock-time effects, since there is

currently some dispute over whether trade-to-trade prices are stable in transaction time

versus clock time. Second, we would like to account for the effects of the bid/ask spread

on price changes since many transactions are merely movements from the bid price to the

ask price or vice-versa. If, for example, in sequence of three trades the first and third were

buyer-initiated while the second was seller-initiated, the sequence of transaction prices

would exhibit reversals due solely to the bid/ask "bounce." Third, we would like to mea-

sure how the conditional distribution of price changes shifts in response to a trade of a

given volume, i.e., the price impact per unit volume of trade. And fourth, we would like to

capture the effects of "systematic" or market-wide movements in prices on the conditional

distribution of an individual stock's price changes. To address these four issues, we first

construct the following variables:

Atk: The time elapsed between transactions k - 1 and k, in seconds.

ABk-l: The bid/ask spread prevailing at time tk_1, in ticks.

Zk-l: Three lags (I = 1, 2, 3) of the dependent variable Zk. Recall that for
m = 9, price changes less then -4 ticks are set equal to -4 ticks (state
si), and price changes greater than +4 ticks are set equal to +4 ticks
(state s9), and similarly for m = 5.

VOLkI: Three lags (I = 1, 2, 3) of the natural logarithm of the dollar volume of
the (k-l)-th transaction, defined as the price of the (k-I)-th transaction
(in dollars, not ticks) times the number of shares traded (denominated in
100's of shares), hence dollar volume is denominated in $100's of dollars.
All trades greater than 10,000 shares are set equal to 10,000 to reduce
the influence of extraordinarily large trades. 12

SP500kL: Three lags (I = 1, 2, 3) of 5-minute continuously compounded return
11 The definition of states need not be symmetric - state sl can be -6 ticks or less, implying that state Jo is +2 ticks or

more. However, the symmetry of the histogram of price changes in Figures 2 suggests a symmetric definition of the si's.
12 This is motivated by the New York Stock Exchange's classification of all trades greater than 10,000 shares as block trades.
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of the Standard and Poor's 500 index futures price, for the contract
maturing in the closest month beyond the month in which transaction k -
I occurred, where the return is computed with the futures price recorded
one minute before the nearest round minute prior to tk_ l and the price
recorded five minutes before this. More formally, we have:

F(t 1 - 60)
SP500k_1 - log F(tk-1 - 60) (4.1)

F(t _ x - 360)

Ft, - 360)
SP500k-2

SP500k_ 3

- log
F(tk_- 660)

F(tk_ - 660)
= log

F(tk_1 - 960)

(4.2)

(4.3)

where F(t-) is the S&P 500 index futures price at time t- (measured in
seconds) for the contract maturing the closest month beyond the month
of transaction k - I, and t- is the nearest round minute prior to time t
(for example, if t is 10:35:47, then t- is 10:35:00).13

IBSk_ l: Three lags (I = 1, 2, 3) of an indicator variable that takes the value 1 if
the (k - l)-th transaction price is greater than the average of the quoted
bid and ask prices at time tk-_l, the value -1 if the (k - I)-th transaction
price is less than the average of the bid and ask prices at time tkl, and
0 otherwise, i.e.,

1 if Pk-l > (Pk- + Pk-)

IBSkL _ 0 if Pk-I = 2(Pka-_ + Pk-) (4.4)

if Pk-l < 1 (Pkl + kPb

Whether the (k -/L)-th transaction price is closer to the ask price or the
bid price is one measure of whether the transaction was buyer-initiated
(IBSk_-I = 1) or seller-initiated (IBSk_1 = -1). If the transaction price

13 This rather convoluted timing for computing SP500 ensures that there is no temporal overlap between price changes and
the returns to the index futures price. In particular, we first construct a minute-by-minute time series for futures prices by
assigning to each round minute the nearest futures transaction price occurring after that minute but before the next (hence if
the first futures transaction after 10:35:00 occurs at 10:35:15, the futures price assigned to 10:35:00 is this one). If no transaction
occurs during this minute, the price prevailing at the previous minute is assigned to the current minute. Then for the price
change Zj, we compute SP500_ l using the futures price one minute before the nearest round minute pnrior to t-l, and the
price five minutes before this (hence if tl 1 is 10:36:45, we use the futures price assigned to 10:35:00 and 10:30:00 to compute
SP500Ok- 1).

9.3 1.91- 12 -
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is at the midpoint of the bid and ask prices, the indicator is neutral"
(IBSkL = 0).

Our specification of X13 is then given by the following expression:

43 = Pltk + 2Zk-1 + P3Zk-2 + 4Zk-3 + 5SP500k-_ + 6SP500k-2 +

37SP 50 0 k-3 + 8 IBSk-1 + 9gIBSk_2 + 31oIBSk-3 + 1l(VOLk-l IBSk-l)+

112(VOLk-2 IBSk_ 2 ) + 13(VOLk_ 3 IBSk_) . (4.5)

The variable Atk is included in Xk to allow for clock-time effects on the conditional mean

of Zk*. If prices are stable in "transaction" time rather than clock time, this coefficient

should be zero. Lagged price changes are included to account for serial dependencies, and

lagged returns of the S&P500 index futures price are included to account for market-wide

effects on price changes.

To measure the price impact of a trade per unit volume, we include the term VOLk_-

interacted with IBSkL, an indicator of whether the trade was buyer-initiated (IBSk = 1),

seller-initiated (IBSk = -1), or neutral (IBSk = 0). A positive ,11 would imply that buyer-

initiated trades tend to push prices up and seller-initiated trades tend to drive prices down.

Such a relation is predicted by several information-based models of trading, e.g. Easley

and O'Hara (1987). Moreover, the magnitude of P11 is the per-unit volume impact on the

conditional mean of Zk, which may be readily translated into the impact on the conditional

probabilities of observed price changes. The sign and magnitudes of 12 and 13 measure

the persistence of price impact.

To complete our specification we must parametrize the conditional variance Uk -02 +

'i2Wik . To allow for clock-time effects we include Atk, and since there is some evidence

linking bid/ask spreads to the information content and volatility of price changes, 14 we also

include the lagged spread ABk-l. Finally, recall from Section 2.1 that the parameters c,

A, and 7y are unidentified without additional restrictions, hence we make the identification

assumption that - 2 = 1. Our variance parametrization is then:

or -2 1 + Atk + 2 ABk-1. (4.6)

"4See, for example, Glosten (1987), Hasbrouck (1988, 1989a,b), and Petersen and Umlauf (1990).
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In summary, our specification requires the estimation of 23 parameters, the partition

boundaries al, , , the variance parameters '1 and '2, and the coefficients of the

explanatory variables 1,..., 13.

5. The Maximum Likelihood Estimates.

We compute the maximum likelihood (ML) estimators numerically using the algorithm

proposed by Berndt, Hall, Hall, and Hausman (1974), hereafter BHHH. The advantage of

BHHH over other search algorithms is its reliance on only first derivatives, an important

computational consideration for sample sizes such as ours.

In Tables 2a,b we report ML estimates of the ordered probit model for our ten stocks.

Entries in the columns labelled with ticker symbols are the parameter estimates, and to

the immediate right of each entry is the corresponding z-statistic, which is asymptotically

distributed as a standard normal variate under the null hypothesis that the coefficient is

zero, i.e., it is the parameter estimate divided by its asymptotic standard error.

Tables 2a,b show that the partition boundaries are estimated with high precision for

all stocks. As expected, the z-statistics are much larger for those stocks with many more

observations. The parameters for a 2 are also statistically significant, hence homoskedastic-

ity may be rejected at conventional significance levels. Larger bid/ask spreads and longer

time intervals both increase the conditional volatility of the disturbance.

The conditional means of the Z's for all stocks are only marginally affected by At.

Moreover, the z-statistics are minuscule, especially in light of the large sample sizes. How-

ever, as mentioned above, At does enter into the ao expression significantly, hence clock-

time is important for conditional variances, but not for conditional means.

More striking is the significance and sign of the lagged price change coefficients 2,

33, and 04 - they are negative for all stocks, implying a tendency towards price reversals.

For example, if the past three price changes were each 1 tick, the conditional mean of Zk

changes by 2 + 3 + 4. However, if the sequence of price changes was 1/-1/1, then the

effect on the conditional mean is fp2 - 3 + p4, a quantity closer to zero for each of the

security's parameter estimates. 15

Note that these coefficients measure reversal tendencies beyond that induced by the

16 In an earlier specification, in place of lagged price changes we included separate indicator variables for eight of the nine
states of each lagged price change. But because the coefficients of the indicator variables increased monotonically from the -4
state to the +4 state (state 0 was omitted) in almost exact proportion to the tick-change, we chose the more parsimonious
specification of including the actual lagged price change.
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presence of a constant bid/ask spread, as in Roll (1984). The effect of this "bid/ask

bounce" on the conditional mean should be captured by the indicator variables IBSk_1,

IBSk_2,and IBSk_ 3. In the absence of all other information (such as market movements,

past price changes, etc.), these variables pick up any price effects that buys and sells

might have on the conditional mean. As expected, the estimated coefficients are generally

negative, indicating the presence of reversals due to movements from bid to ask or ask to

bid prices.

More importantly, for each stock the coefficients on the three lagged price change vari-

ables are different, implying that the conditional mean of price changes is path dependent

on past price changes. That is, a sequence of price changes of 1/-1/1 will have a different

effect on the conditional mean than the sequence -1/1/1 even though both sequences yield

the same total price change over the three trades. Similarly, the coefficients of the three

lagged volume variables Vt_kIBSt k are also different. Taken together, these two findings

lend support to Easley and O'Hara's (1987) prediction that information-based trading can

lead to path dependent price changes, so that "To calculate the distribution of the next

trade price, Pt+l, therefore, we need to know not only the current price Pt, but also how

the market got to the current price."

The lagged S&P 500 returns are also significant, but has a more persistent affect

on some securities. For example, the coefficient for the first lag of the S&P is large

and significant for DOW, but the coefficients for the second and third are small and

insignificant. However, for the less actively traded stocks such as CUE, all three coefficients

are significant and of the same order of magnitude. As a measure of how quickly market-

wide information is impounded into prices, these coefficients confirm the common intuition

that smaller stocks react more slowly than larger stocks, and is consistent with the lead/lag

effects uncovered by Lo and MacKinlay (1990a).

5.1. Measuring Price Impact Per Unit Volume of Trade.

By price impact we mean the effect of a sequence of trades on the conditional distri-

bution of the net price change. As such, the coefficients of the variables VOLkl IBSk_ l ,

VOLk-2 IBSk- 2, and VOLk_ 3 · IBSk_-3 measure the price impact of trades per unit vol-

ume. More precisely, recall that our definition of the volume variable is the logarithm of

actual dollar volume divided by 100, hence the coefficient 511 is the contribution to the

conditional mean X',3 that results from a $271.828 trade (since log(271.828/100) = 1).
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III

Therefore, the impact of an $M trade at time k - 1 on X': is simply ,11 log(M/100). The

estimated coefficients in Tables 2a,b are generally positive and significant for all stocks,

with the most recent trade having the largest impact. However, this is not the impact we

seek since Xo is the conditional mean of the unobserved variable Z, not the observed

price change Zk. In particular, since X Bo is scaled by ak in (2.10), it is difficult to make

meaningful comparisons of these coefficients across stocks.

To obtain a measure of a trade's price impact that we can compare across stocks, we

must translate the impact on XJ, into an impact on the conditional distribution of the

Zk's, conditioned on the trade size and other quantities. Since we have already established

that the conditional distribution of price changes is path-dependent, we must condition

on a specific path for past price changes and trade sizes. We do this by substituting our

parameter estimates into (2.10), choosing particular values for the explanatory variables

Xk, and computing the probabilities explicitly. In particular, we set Atk and ABk-1 to

their sample means for each stock, and set the following variables to the same values across

all stocks,

Vk- 2 = 5.298

Vk_ 3 = 5.298

SP500k_ 1 = 0.001

SP500k_ 2 = 0.001

SP500k_3 = 0.001

IBSk_ 1 = 1

IBSk_ 2 = 1

IBSk_3 = 1.

Specifying values for these variables is equivalent to specifying the market conditions that

we wish to measure price impact under. These particular values correspond to a scenario

in which the most recent three trades are buys, where the sizes of the two earlier trades

are $20,000 each [since 5.298 = log($20,000/100)], and where the market index return is

at its sample average during these trades. We then evaluate the probabilities in (2.10) for

different values of Vkl, Zk-l, Zk-2, and Zk-3-
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For brevity, we focus only on the means of these conditional distributions, which we

report in Tables 3 and 4 for the ten stocks. The entries in Tables 3a and b are computed

under the assumption that Zk_1 = Zk-2 = Zk-3 = +1, whereas those in Tables 4a and

b are computed under the assumption that Z_ 1- = Zk- 2 = Zk-3 = 0. The first entry in

the "ABY" column in Table 3a, -0.395, is the expected price change (in ticks) of the next

transaction of ABY stock following a $5,000 buy. The seemingly counterintuitive sign of

this conditional mean is the result of the "bid/ask bounce' - since the past three trades

were assumed to be buys, the parameter estimates reflect the empirical fact that the next

transaction can be a sell, in which case the transaction price change will often be negative

since the price will go from ask to bid. To account for this effect, we would need to include

a contemporaneous buy/sell indicator, IBSk, in Xk and condition on this variable as well.

But such a variable is clearly endogenous to Zk and our parameter estimates would suffer

from the familiar simultaneous-equations biases.

However, to measure price impact we can net out" the effect of the bid/ask spread

by computing the change in the conditional mean for trade sizes larger than our base

case $5,000 buy. As long as the bid/ask spread remains relatively constant, the change

in the conditional mean induced by larger trades will give us a measure of price impact

that is independent of it since it doesn't change as we vary the trade size. For example,

the second entry in the "ABY" column of Table 3a shows that purchasing an additional

$5,000 of ABY ($10,000 total) increases the conditional mean by 0.027 ticks. However,

purchasing an additional $495,000 of ABY ($500,000 total) increases the conditional mean

by 0.182 ticks. As expected, in all cases trading a larger quantity yields a larger price

impact. Moreover, the values of the increases yield useful information: they determine

how to break up larger trades into smaller ones so as to minimize overall price impact.

A comparison across columns in Tables 3a,b shows that large trades have higher price

impact for CUE than for the other nine stocks. However, such a comparison ignores the

fact that these stocks trade at different price levels, hence a price impact of 0.425 ticks

for $500,000 of CUE may not be as large a percentage of price as a price impact of 0.088

ticks for $500,000 of NAV. The second panels of Tables 3a,b reports the price impact as

percentages of the average of the high and low prices of each stock, and between CUE

and NAV a trade of $500,000 does have a higher percentage price impact for NAV [0.197

percent versus 0.061 percent] even though it is considerably smaller when measured in

ticks. Interestingly, even as a percentage, price impact increases with dollar volume.

In Tables 4a,b where price impact values have been computed under the alternative
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assumption that Zk-l = Zk-2 = Zk-3 = 0, the conditional means E[Zk] are closer to

zero for the $5,000 buy. For example, the expected price change of NAV is now -0.211

ticks, whereas in Table 3a it was -1.543 ticks. Since now we are conditioning on a scenario

in which the three most recent transactions are buys that have no impact on prices, the

empirical estimates imply more probability in the right tail of the conditional distribution

of the next price change.

That the conditional mean is still negative may signal the continued importance of the

bid/ask spread, nevertheless the price impact measure AE[Zkl does increase with dollar

volume. Moreover, these values are similar in magnitude to those in Tables 3a,b - in

percentage terms the price impact is virtually identical in both tables for CUE, DOW

and FNB. For these stocks, price impact seems less sensitive to the path of past prices.

An implication of this finding is that, whereas the timing of trades does depend on the

sequence of past prices [since the conditional mean does change between Tables 3a and bl,

the decision to break up a large buy into several smaller orders need not. This, however,

is an empirical feature not shared by NAV and RBK, since the price impact for those

stocks differ considerably between Tables 3b and 4b. This suggests that price impact must

measured security by security.

Of course, there is no reason to focus solely on the mean of the conditional distribution

of Zk since we have at our disposal an estimate of the entire distribution. Under the

scenarios of Tables 3 and 4 we have also computed the standard deviation of conditional

distribution, but since it is quite stable across the two scenarios we have omitted them

from the tables for the sake of brevity. However, to get a sense of their sensitivity to the

conditioning variables, we have plotted in Figure 3 the estimated conditional probabilities

for the ten stocks under both scenarios. In each graph, the lightly cross-hatched bars

represent the conditional distribution for the sequence of three buys with a +1 tick price

change at each trade, for a fixed trade size of $50,000 each. The dark-shaded bars represent

the conditional distribution for the same sequence of three buys but with zero price change

for each of the three transactions, also for a fixed trade size of $20,000 each. The conditional

distribution is clearly shifted more to the right under the first scenario than under the

second, as the conditional means in Tables 3 and 4 foreshadowed. However, the general

shape of the distribution seems rather well-preserved - changing the path of past price

changes seems to translate the conditional distribution without greatly altering the tail

probabilities.

As an aside, note that the conditional distributions of CUE and HNH display a striking
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pattern - the probabilities of even ticks are higher than odd ticks. This is evidence of price

changes "clustering" at the even eighths, so that price changes of +2 ticks tend to be more

likely than price changes of +1 tick. This finding differs from those in the extant literature

in at least two ways. First, we find evidence of price change clustering whereas others

such as Harris (1989a) focus on the clustering of price levels. And second, the evidence of

clustering in Harris (1989a) is based on simple frequency counts of prices falling on eighths,

quarters, etc., hence they are estimates of unconditional probabilities. Our finding is based

on conditional probabilities which control for other effects such as market-wide shocks, past

volume, order flow, etc.

As a final summary of price impact for these securities, we plot "price response"

functions in Figure 4 for the ten stocks, which gives the percentage price impact as a

function of dollar volume. These graphs show that the percentage price impact increases

with volume, and that it increases at a decreasing rate. This, of course, is a feature of

our log-specification for the volume explanatory variable - a plot of the percentage price

impact against the logarithm of dollar volume would yield nearly linear relations. We

are currently investigating more flexible functional forms for the volume variable, such

as the Box and Cox (1964) transformation, where the particular shape is estimated and

not imposed. 16 The price response function may be used to capture several features of

the market microstructure. For example, market liquidity is often defined as the ability

to trade any volume with little or no price impact. For such markets, the price response

function is constant at zero, hence a direct measure of liquidity is how far the empirical

price response function is from the x-axis. Since price response functions are defined in

terms of percentage price impact, cross-stock comparisons of liquidity can also be made.

Figure 4 shows that NAV and RBK are considerably less liquid than the four other stocks,

with percentage price impacts more than triple those of the others. This is partly due to

the low price ranges that NAV and RBK traded in [see Table la,b] - although RBK and

S have comparable price impacts when measured in ticks [see Table 3a], RBK looks much

less liquid when impact is measured as a percentage of price since its share price traded

between $10.375 and $17.500 whereas S traded between $32.250 and $46.000 during 1988.

Not surprisingly, CUE and DOW have the lowest percentage price impacts since their price

ranges are the highest in the sample.

The shape of the price response function measures whether there are any economies

16The Box-Cox transformation f(z) is given by j(z) = (zA - 1)/A, where A is a fixed parameter between 0 and 1. Observe
that our logarithmic transformation is included as the special case when A = 0.
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of scale in trading. For example, a flat response function implies that the percentage

price impact is not affected by the size of the trade. However, an upward sloping curve

implies dis-economies of scale - larger dollar volume trades will yield higher percentage

price impact. As such, the slope may be one measure of "market depth." For example, if

the market for a security is "deep," this is usually taken to mean that large volumes may

be traded before much of a price impact is observed. In such cases, the price response

function may be downward sloping.

5.2. Endogeneity of Atk and IBSk.

Our inferences in the preceding sections are based on the implicit assumption that the

explanatory variables Xk are all exogenous or predetermined with respect to the dependent

variable Z k. However, the variable Atk is contemporaneous to Zk and deserves further

discussion.

Recall that Zk is the price change between trades at time tk_ 1 and time tk. Since Atk

is simply tk-tk_1, it may well be that Atk and Zk are determined simultaneously, in which

case our parameter estimates are generally inconsistent. In fact, there are several plausible

arguments for the endogeneity of Atk. 17 One such argument turns on the tendency of floor

brokers to break up large trades into smaller ones, and time the executions carefully during

the course of the day or several days. By "working" the order, the floor broker can minimize

the price impact of his trades and obtain more favorable execution prices for his clients.

But by selecting the times between his trades based on current market conditions, which

include information also affecting price changes, the floor broker is creating endogenous

trade times.

However, any given sequence of trades in our dataset does not necessarily correspond

to consecutive transactions of any single individual (other than the specialist of course),

but is the result of many buyers and sellers interacting with the specialist. For example,

even if a floor broker were working a large order, in between his orders might be purchases

and sales from other floor brokers, market orders, and triggered limit orders. Therefore,

the Atk's also reflect these trades, which are not necessarily information-motivated.

Another more intriguing reason that Atk may be exogenous is that floor brokers

have an economic incentive to minimize the correlation between Atk and virtually all

other exogenous and predetermined variables. To see this, suppose the floor broker timed

1 7 See, for example, Admati and Pfleiderer (1988, 1989) and Easley and O'Hara (1990)
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his trades in response to some exogenous variable also affecting price changes, call it

"weather." Suppose that price changes tend to be positive in good weather and negative

in bad weather. Knowing this, the floor broker will wait until bad weather prevails before

buying, hence trade times and price changes are simultaneously determined by weather.

However, if other traders are also aware of these relations, they can garner information

about the floor broker's intent by watching his trades and by recording the weather, and

trade against him successfully. To prevent this, the floor broker must trade to deliberately

minimize the correlation between his trade times and the weather. As such, the floor

broker has an economic incentive to reduce simultaneous equations bias! Moreover, this

argument applies to any other economic variable that can be used to jointly forecast trade

times and price changes. For these two reasons, we assume that Atk is exogenous.l8

However, endogeneity does matter for the inclusion of the contemporaneous buy/sell

indicator IBS k. or a sell. Without the contemporaneous indicator IBSk, we are condition-

ing only on whether the past trades were buys or sells. By adding IBSk as a regressor, we

obtain an alternative to the price impact measure constructed in Section 5.1. With such a

specification, we can now ask how large the next price change is likely to be conditional on

the nezt trade being a buy or a sell. But there are few circumstances in which the contem-

poraneous buy/sell indicator IBSk may be considered exogenous, since simple economic

intuition suggests that factors affecting price changes must also enter the decision to buy

or sell. Indeed, limit orders are explicit functions of the current price. Therefore, if IBSk

is to be included as an explanatory variable in Xk, its endogeneity must be taken into ac-

count. Unfortunately, the standard estimation techniques such as two-stage or three-stage

least squares do not apply here because of our discrete dependent variable. Moreover,

techniques that allow for discrete dependent variables also cannot be applied because the

endogenous regressor IBSk is also discrete. In principle, it may be possible to derive con-

sistent estimators by considering a joint ordered probit model for both variables, but this

is beyond the scope of the current paper. For the present, we restrict our specification to

include only lags of IBSk.

lWe have also explored some adjustments for the endogeneity of At along the lines of Hausman (1978) and Newey (1985),
and our preliminary estimates show that although exogeneity of At may be rejected at conventional significance levels (recall
our sample sises), the estimates do not change much once endogeneity is accounted for by an instrumental variables estimation
procedure.
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5.3. Does Discreteness Matter?

Despite the elegance and generality with which the ordered probit framework accounts

for price discreteness, irregular trading intervals, and the influence of explanatory variables,

the complexity of the estimation procedure raises the question of whether these features

can be satisfactorily addressed by a simpler model. Since ordered probit may be viewed

as a generalization of the linear regression model to discrete dependent variables, it is not

surprising that the latter may share many of the advantages of the former, price discreteness

aside. However, linear regression is considerably easier to implement. Therefore, what is

gained by ordered probit? For example, suppose we ignore the fact that price changes Z k

are discrete, estimate the following simple regression model via ordinary least squares:

Zk = XkP + k (5.1)

and then compute the conditional distribution of Zk by "rounding," thus:

Pr ( Zk = Pr( < Xk' + Ek < (5.2)
8 8 8

With suitable restrictions on the Ek's, the regression model (5.1) is known as the "linear

probability" model. The problems associated with applying ordinary least squares to

(5.1) are well-known see for example Judge et al. (1985, Ch. 18.2.1)], and numerous

extensions have been developed to account for such problems. However, implementing

such extensions is at least as involved as maximum likelihood estimation of the ordered

probit model, therefore the comparison is of less immediate interest. In spite of these

problems, we may still ask whether the OLS estimates of (5.1) and (5.2) yield an adequate

"approximation" to a more formal model of price discreteness. Specifically, how different

are the probabilities in (5.2) from those of the ordered probit model? If the differences

are small, then the linear regression model (5.1) may be an adequate substitute to ordered

probit.

Under the assumption of i.i.d. Gaussian Ek's, we evaluate the conditional probabilities

in (5.2) using the OLS parameter estimates and the same values for the Xk's as in Section

5.1, and graph them and the corresponding ordered probit probabilities in Figure 5. These

graphs show that the two models yield very different conditional probabilities. All of the
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OLS conditional distributions are unimodal and have little weight in the tails, in sharp

contrast to the much more varied conditional distributions generated by ordered probit.

For example, the OLS conditional probabilities show no evidence of the clustering that

is readily apparent from the ordered probit probabilities of CUE. This is not surprising

given the extra degrees of freedom that the ordered probit model has to fit the conditional

distribution of price changes. Because the ordered probit partition boundaries {ax} are de-

termined by the data, the tail probabilities of the conditional distribution of price changes

may be large or small relative to the probabilities of more central observations, unlike those

of (5.1) which are dictated by the (Gaussian) distribution function of k. Moreover, it is

unlikely that using another distribution function will provide as much flexibility as ordered

probit, for the simple reason that (5.1) constrains the state probabilities to be linear in

the Xk's (hence the term "linear probability model"), whereas ordered probit allows for

nonlinear effects by letting the data determine the partition boundaries {ac}.

A more direct test of the difference between ordered probit and the simple "rounded"

linear regression model is to consider the special case of ordered probit in which all the

partition boundaries {ao} are equally spaced and fall on sixteenths. That is, let the

observed discrete price change Zk is related to the unobserved continuous random variable

Zk in the following manner:

Zk = 

-j or less if Z E ( -oo, + 1)

L if Z E [ - ', i+ ), 3 . (5.3)

or more if Z E [ - , oo )A~ ~~i StE[-~ ~

This follows the spirit of Ball (1988), in which there exists a "virtual" or "true" price

change Zk linked to the observed price change Zk by rounding ZZ to the nearest multiple

of eighths of a dollar. A testable implication of (5.3) is that the partition boundaries {(a}

are equally-spaced, i.e.,
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a 2 -al = a 3 -a 2 = ... = am-1-C-am-2 (5.4)

where m is the number of states in our ordered probit model. We can re-write (5.4) as a

linear hypothesis for the (m - 1 x 1)-vector of a's in the following way:

H: Aa = O (5.5)

/1 et I 1 f% n% 

where A
(m-3x m-1)

L , I U V U ' UI

O 1 -2 1 0 0 ...-- 0
O 0 1 -2 1 0 - O

A n n n n 1 _)o 1

(5.6)

v u V V u -,. 1/

Since the asymptotic distribution of the maximum likelihood estimator & is given by:

-(&- a) a N(0, r) (5.7)

where E is the appropriate sub-matrix of the inverse of the information matrix correspond-

ing to the likelihood function (2.11), the delta method" yields the asymptotic distribution

of the following statistic 0 under the null hypothesis H:

H: 0 - T&'A'(AEA')-'A& X2m_3- (5.8)

Table 5 reports the O's for our sample of ten stocks, and since the 1 percent critical values of

the X2 and X2 are 9.21 and 16.8 respectively, we can easily reject the null hypothesis H for

each of the ten stocks. However, because our sample sizes are so large, large X2 statistics

need not signal important economic departures from the null hypothesis. Nevertheless the

point estimates of the a's in Tables 2a,b show that they do differ in economically important

ways from the simpler rounding model (5.3). With CUE, for example, 3 - &2 is 2.890 but
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&4 - 3 is 1.122. Such a difference captures the empirical fact that (conditioned on the

Xk's) -1 tick changes are rarer than -2 tick changes, rarer than predicted by the simple

linear probability model. Discreteness does matter.
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6. Conclusion.

We conclude by discussing several extensions that we hope to pursue in ongoing re-

search. Because of the flexibility and robustness of the ordered probit framework, we suffer

from an embarrassment of riches in that there are too many empirical issues that may be

investigated, even with the small group of ten stocks we have chosen. For example, we

hope to see how sensitive the price response functions are to specific sequences of trades,

which may be viewed as a measure of the path dependence predicted by Easley and O'Hara

(1987). We also plan to construct a formal measure of market liquidity using the slope of

the price response function and compare liquidity across stocks, across time, and over var-

ious price ranges. Beyond the current sample of stocks are many others with considerably

different characteristics, and we hope to broaden our sample to obtain truly representative

cross-section.

Finally, diagnostics for the "residuals" k are called for, such as simple tests for auto-

correlation. If the disturbances are autocorrelated but independent of the regressors, then

our parameter estimates are consistent but the standard errors are not. In this case, we

may still obtain consistent standard errors by a simple extension of the results in Levine

(1983) and Poirier and Ruud (1988). However, autocorrelation in Ek may be due to omitted

variables, in which case our parameter estimates are inconsistent. In such circumstances,

economic theory must guide our selection of additional regressors, and we hope to stimulate

the development of such theories with these findings.
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Table la

Summary statistics for transactions prices of Abitibi-Price Incorporated (ABY - 1,515
trades), Quantum Chemical Corporation (CUE - 27,141 trades), Dow Chemical Company
(DOW - 81,916 trades), First Chicago Corporation (FNB - 17,915 trades), and Foster
Wheeler Corporation (FWC - 18,460 trades), for the sample period from 4 January 1988
to 29 December 1988. Note: Market values are computed at the beginning of the year.

Statistic

Low Price
High Price

Market Value (x$10 9)

% Trades at Prices:
> Mean of Bid/Ask
= Mean of Bid/Ask
< Mean of Bid/Ask

Means and SD's:

Mean(Zk)
SD (Zk)

Mean(tk)
SD(Atk)

Mean(ABk)
SD(ABk)

Mean(SP500k)
SD(SP500k)

Mean(IBSk)
SD (IBSk)

Mean(Vk x IBSk)
SD(Vk X IBSk)

ABY

15.500
21.500
0.144

50.10
20.59
29.31

0.0238
0.7356

1815.4271
2400.9813

2.1373
1.2946

0.0036
0.1058

0.2079
0.8668

0.8859
3.8407

CUE

,,

66.000
107.000

0.223

42.29
20.07
37.64

0.0012
1.2332

203.7964
282.8014

3.2922
1.6236

-0.0014
0.1237

0.0466
0.8928

0.3285
5.5935

DOW

77.375
93.000
17.738

39.46
24.81
35.73

0.0003
0.7841

68.6545
84.6750

2.3265
1.3034

0.0010
0.1371

0.0373
0.8663

0.3224
5.4837

FNB-

19.500
35.125

1.125

37.58
24.66
37.76

0.0011
0.6835

307.0260
459.4382

2.3764
1.4659

-0.0025
0.1494

-0.0018
0.8680

0.0192
4.4660

FWC

11.500
16.875
0.501

37.64
27.00
35.36

-0.0005
0.6395

296.9080
416.5058

2.0740
1.1467

-0.0056
0.1498

-0.0228
0.8541

-0.0712
3.7294

9.3.1a

_ . _

. .
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Table lb

Summary statistics for transactions prices of Handy and Harmon Company (HNH - 3,621
trades), Navistar International Corporation (NAV - 90,212 trades), Reebok International
Limited (RBK - 62,512 trades), Sears Roebuck and Company (S - 90,262 trades), and
American Telephone and Telegraph Company (T - 178,813 trades), for the sample period
from 4 January 1988 to 29 December 1988. Note: Market values are computed at the
beginning of the year.

Statistic

Low Price
High Price

Market Value (x$10 9 )

% Trades at Prices:
> Mean of Bid/Ask
= Mean of Bid/Ask
< Mean of Bid/Ask

Means and S.D.'s of:

Mean(Zk)
SD(Zk)

Mean(Atk)
SD(Atk)

Mean(ABk)
SD(ABk)

Mean(SP500k)
SD(SP500k)

Mean(IBSk)
SD(IBSk)

Mean(Vk x IBSk)
SD(Vk x IBSk)

HNH

14.500
18.375

0.022

22.31
28.82
50.87

0.0000
0.7551

1158.4952
1520.8643

2.4134
0.9155

-0.0026
0.1152

-0.2856
0.8065

-1.1957
3.5037

NAV

3.875
7.250
1.057

40.79
17.88
41.33

0.0032
0.6434

59.0604
79.4750

1.4884
0.7693

-0.0011
0.1224

-0.0054
0.9062

-0.0023
3.3163

RBK

10.375
17.500

1.209

38.24
25.70
36.06

0.0033
0.6322

89.6373
131.1619

1.7917
1.2887

-0.0030
0.1278

0.0219
0.8617

0.0947
3.6875

S

32.250
46.000
13.390

38.23
23.50
38.27

0.0047
0.6766

59.2988
76.4844

2.2179
1.2356

-0.0011
0.1180

-0.0003
0.8747

0.0196
4.6903

T

24.250
30.000
30.332

41.51
25.96
32.53

0.0050
0.6445

31.0025
35.3834

1.6616
0.7990

0.0004
0.1204

-0.0898
0.8557

-0.3188
4.1509

9.3.1b
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Table 3a

Price impact of trades as measured by the change in conditional mean of Zk, or AE[Zk],
when trade sizes are increased incrementally above the base case of a $5,000 trade. These
changes are computed from the ordered probit probabilities, conditional on the three most
recent trades being buyer-initiated, and the three most recent price changes being +1
tick each, for Abitibi-Price Incorporated (ABY - 1,515 trades), Quantum Chemical Cor-
poration (CUE - 27,141 trades), Dow Chemical Company (DOW - 81,916 trades), First
Chicago Corporation (FNB - 17,915 trades), and Foster Wheeler Corporation (FWC -
18,460 trades), for the sample period from 4 January 1988 to 29 December 1988, for the
sample period from 4 January 1988 to 29 December 1988. Percentage price impact is
computed as a percentage of the average of the high and low prices.

9.3.3a

$ Volume ABY CUE DOW FNB FWC

(Ticks)

E[Zk]: 5,000 -0.395 -0.584 -1.206 -0.807 -0.892

AE[Zk]: 10,000 0.027 0.063 0.054 0.028 0.020
AE[Zk: 20,000 0.054 0.127 0.107 0.057 0.041
AE[Zk]: 50,000 0.091 0.212 0.177 0.094 0.068
AE[Zk]: 100,000 0.118 0.276 0.230 0.121 0.089
AE[Zkj: 250,000 0.154 0.360 0.299 0.158 0.117
AE[Zk]: 500,000 0.182 0.425 0.351 0.185 0.137

(% of Price)

E[Zk]: 5,000 -0.275 -0.084 -0.177 -0.369 -0.786

AE[Zik]: 10,000 0.019 0.009 0.008 0.013 0.018
AE[Zkj: 20,000 0.038 0.018 0.016 0.026 0.036
AE[Zk]: 50,000 0.063 0.031 0.026 0.043 0.060
AE[Zk]: 100,000 0.082 0.040 0.034 0.056 0.078
AE[Zk]: 250,000 0.107 0.052 0.044 0.072 0.103
AE[Zk]: 500,000 0.126 0.061 0.051 0.085 0.121

12.90
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Table 3b

Price impact of trades as measured by the change in conditional mean of Zk, or AE[Zk],
when trade sizes are increased incrementally above the base case of a $5,000 trade. These
changes are computed from the ordered probit probabilities, conditional on the three most
recent trades being buyer-initiated, and the three most recent price changes being +1
tick each, for Handy and Harmon Company (HNH - 3,621 trades), Navistar International
Corporation (NAV - 90,212 trades), Reebok International Limited (RBK - 62,512 trades),
Sears Roebuck and Company (S - 90,262 trades), and American Telephone and Telegraph
Company (T - 178,813 trades), for the sample period from 4 January 1988 to 29 December
1988. Percentage price impact is computed as a percentage of the average of the high and
low prices.

9.3.3b

$ Volume HNH NAV RBK S T

(Ticks)

E[Zk]: 5,000 -0.460 -1.543 -1.394 -1.473 -1.565

AE[Zkl: 10,000 0.012 0.013 0.034 0.035 0.028
AE[Zk: 20,000 0.025 0.027 0.067 0.070 0.056
AE[Zk]: 50,000 0.041 0.044 0.110 0.115 0.092
AE[Zkl: 100,000 0.053 0.058 0.143 0.149 0.120
AE[Zk]: 250,000 0.069 0.075 0.185 0.193 0.155
AE[Zk]: 500,000 0.082 0.088 0.216 0.226 0.182

(% of Price)

EIZk: 5,000 -0.350 -3.468 -1.250 -0.470 -0.721

AE[Zk]: 10,000 0.009 0.030 0.030 0.011 0.013
AE[Zk]: 20,000 0.019 0.060 0.060 0.022 0.026
AE[Zk]: 50,000 0.031 0.100 0.099 0.037 0.043
AE[Zk]: 100,000 0.040 0.129 0.128 0.048 0.055
AE[Zk: 250,000 0.053 0.168 0.166 0.062 0.072
AE[Zk: 500,000 0.062 0.197 0.194 0.072 0.084

.
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Table 4a

Price impact of trades as measured by the change in conditional mean of Zk, or AE[Zk],
when trade sizes are increased incrementally above the base case of a $5,000 trade. These
changes are computed from the ordered probit probabilities, conditional on the three most
recent trades being buyer-initiated, and the three most recent price changes being 0 tick
each, for Abitibi-Price Incorporated (ABY - 1,515 trades), Quantum Chemical Corpo-
ration (CUE - 27,141 trades), Dow Chemical Company (DOW - 81,916 trades), First
Chicago Corporation (FNB - 17,915 trades), and Foster Wheeler Corporation (FWC -
18,460 trades), for the sample period from 4 January 1988 to 29 December 1988, for the
sample period from 4 January 1988 to 29 December 1988. Percentage price impact is
computed as a percentage of the average of the high and low prices.

9.3.4a

$ Volume ABY CUE DOW FNB FWC

(Ticks)

E[Zk]: 5,000 -0.190 -0.451 -0.447 -0.196 -0.227

AE[Zk]: 10,000 0.028 0.064 0.049 0.025 0.022
AE[ZkI: 20,000 0.055 0.128 0.098 0.050 0.043
AE[Zkl: 50,000 0.092 0.213 0.162 0.083 0.072
AE[Zk]: 100,000 0.120 0.277 0.211 0.108 0.093
AE[Zk]: 250,000 0.156 0.362 0.274 0.141 0.122
AE[Zk: 500,000 0.184 0.426 0.323 0.166 0.143

(% of Price)

E[Zk]: 5,000 -0.132 -0.065 -0.066 -0.090 -0.200

AE[Zk]: 10,000 0.019 0.009 0.007 0.012 0.019
AE[Zk]: 20,000 0.038 0.018 0.014 0.023 0.038
AE[Zk: 50,000 0.064 0.031 0.024 0.038 0.063
AE[Zk]: 100,000 0.083 0.040 0.031 0.050 0.082
AE[Zk]: 250,000 0.109 0.052 0.040 0.065 0.107
AE[Zk]: 500,000 0.128 0.062 0.047 0.076 0.126

12.90



Table 4b

Price impact of trades as measured by the change in conditional mean of Zk, or AE[Zkl,
when trade sizes are increased incrementally above the base case of a $5,000 trade. These
changes are computed from the ordered probit probabilities, conditional on the three most
recent trades being buyer-initiated, and the three most recent price changes being 0 tick
each, for Handy and Harmon Company (HNH - 3,621 trades), Navistar International
Corporation (NAV - 90,212 trades), Reebok International Limited (RBK - 62,512 trades),
Sears Roebuck and Company (S - 90,262 trades), and American Telephone and Telegraph
Company (T - 178,813 trades), for the sample period from 4 January 1988 to 29 December
1988. Percentage price impact is computed as a percentage of the average of the high and
low prices.

9.3.4b

$ Volume HNH NAV RBK S T

(Ticks)

E[Zk]: 5,000 -0.228 -0.211 -0.192 -0.207 -0.292

AE[Zk]: 10,000 0.013 0.008 0.021 0.024 0.018
AE[Zk]: 20,000 0.025 0.015 0.041 0.047 0.037
AE[Zk]: 50,000 0.042 0.025 0.068 0.078 0.061
AE[Zk]: 100,000 0.055 0.032 0.089 0.101 0.079
AE[Zk]: 250,000 0.071 0.042 0.116 0.132 0.104
AE[Zk]: 500,000 0.084 0.050 0.136 0.156 0.122

(% of Price)

E[Zk: 5,000 -0.173 -0.474 -0.172 -0.066 -0.134

AE[Zk]: 10,000 0.010 0.017 0.019 0.008 0.008
AE[Zk]: 20,000 0.019 0.034 0.037 0.015 0.017
AE[Zk]: 50,000 0.032 0.056 0.061 0.025 0.028
AE[Zk]: 100,000 0.042 0.073 0.080 0.032 0.037
AE[Zk]: 250,000 0.054 0.095 0.104 0.042 0.048
AE[Zk]: 500,000 0.064 0.112 0.122 0.050 0.056

III
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Table 5

Tests of equally spaced partition boundaries {ai} from the ordered probit model for
Abitibi-Price Incorporated (ABY), Quantum Chemical Corporation (CUE), Dow Chemi-
cal Company (DOW), First Chicago Corporation (FNB), and Foster Wheeler Corporation
(FWC), Handy and Harmon Company (HNH), Navistar International Corporation (NAV),
Reebok International Limited (RBK), Sears Roebuck and Company (S), and American
Telephone and Telegraph Company (T), for the sample period from 4 January 1988 to 29
December 1988. Entries in the column labelled m" denote the number of states in the
ordered probit specification. The 5 and 1 percent critical values of a X2 random variate
are 5.99 and 9.21 respectively. The 5 and 1 percent critical values of a X2 random variate
are 12.6 and 16.8 respectively.

9.3.5

Sample
Stock Size X2_3 m

ABY 1,515 12.91 5
CUE 27,151 306.01 9
DOW 81,916 1,559.07 9
FNB 17,915 462.07 9
FWC 18,460 157.35 5
HNH 3,261 12.60 5
NAV 90,212 1,588.72 9
RBK 62,512 1,907.53 9
S 90,262 2,711.75 9
T 178,813 1,667.73 9

12.90
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Figure 1.

Illustration of ordered probit probabilities Pi which are determined by the ai's and distri-
bution of Zk. In particular, pi - Prob(Z = si) = Prob(ac_l < Z < ), i = 1,..., 9
where, for notational simplicity, we define ao -- o and a 9 - +o.
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Figure 2 (Continued).
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Figure 2 (Continued).
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Figure 3 (Continued).
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Response Functions
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Figure 4.

Percentage price impact as a function of dollar volume computed from ordered probit prob-
abilities, conditional on the three most recent trades being buyer-initiated, and the three
most recent price changes being +1 tick each, for Abitibi-Price Incorporated (ABY - 1,515
trades), Quantum Chemical Corporation (CUE - 27,141 trades), Dow Chemical Company
(DOW - 81,916 trades), First Chicago Corporation (FNB - 17,915 trades), Foster Wheeler
Corporation (FWC - 18,460 trades), Handy and Harmon Company (HNH - 3,621 trades),
Navistar International Corporation (NAV - 90,212 trades), Reebok International Limited
(RBK - 62,512 trades), Sears Roebuck and Company (S - 90,262 trades), and American
Telephone and Telegraph Company (T - 178,813 trades), for the sample period from 4
January 1988 to 29 December 1988. Percentage price impact is computed as a percentage
of the average of the high and low prices.
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OLS vs. Ordered Probit - ABY
Conditional Distributions B/B/B & 1/111
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CLS v;.. rdered Probit - NAV
Conditional Dlstributions B/B/B & 1/1/1
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Conditional Distributions B/B/B & 1/1/1
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Figure 5 (Continued).
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