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Abstract

In 1986, the total profits of the U.S. airline industry were of the order of

$800 million, while its total delay costs due to congestion approached the figure

of $2 billion. Motivated by this important problem of congestion costs and

observing that ground delays are far more preferable than airborne delays, we

have formulated and studied generic integer programming models in order to

assign optimal ground holding delays in a general network of airports, so that

the total (ground plus airborne) delay cost of all flights is minimized. All

previous research on this problem has been restricted to the single-airport case,

which neglects "down-the-road" effects due to transmission of delays between

successive flights performed by the same aircraft.

We give three general pure 0-1 integer programming formulations of the

problem, one of which also takes into account the possibility of cancelling flights.
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We then present a heuristic algorithm which finds a feasible solution to the inte-

ger program by rounding the optimal solution of the LP relaxation. Finally, we

present extensive computational results with the goal of obtaining qualitative

insights on the behaviour of the problem under various combinations of the in-

put parameters. We demonstrate that the problem can be solved in reasonable

computation times for networks with at least as many as 6 airports and 3000

flights. Our formulations refer to static deterministic versions of the problem,

but they can be easily extended to cover dynamic versions.

Congestion problems are becoming increasingly acute in many major European

and American airports. For European airlines, the total yearly delay cost due to

congestion (including cost to passengers) was estimated to be $8 billion in 1989 [1].

For U.S. airlines, the direct delay cost due to congestion was claimed to be $2 billion

in 1986 [2]. Given the fact that, in 1986, the total profits of the U.S. airline industry

were about $800 million [2], it can be seen that congestion problems are a phenomenon

of undeniable significance.

Limited capacity is the major cause of congestion. The problem with airport

capacity is that it is highly variable, since it is heavily influenced by, among other

factors, weather conditions (visibility, wind, precipitation). It is not unusual to en-

counter 2:1 and even 3:1 ratios between the highest and the lowest capacity of an

airport.

Solution approaches to this problem vary according to the contemplated time-

horizon. Long-term approaches include construction of additional airports, construc-

tion of additional runways at existing airports, and use of larger aircraft. Medium-
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term approaches include modification of the temporal pattern of aircraft flow in order

to eliminate periods of "peak" demand. Short-term approaches have a planning hori-

zon of 6-12 hours and include, most importantly, "ground-holding" policies. These

policies are based on the fundamental fact that airborne delays are much costlier

than ground delays, because the former include fuel, maintenance, depreciation, and

safety costs. Thus, the motivation underlying ground-holding policies is that one may

hold an aircraft on the ground before take-off so that, when the aircraft arrives at its

destination, it will not have to wait in the air before landing.

Ground-holding policies have been in effect for several years. The Federal Aviation

Administration operates in Washington, DC, an Air Traffic Control System Command

Center (ATCSCC,-formerly called the Central Flow Control Facility), equipped with

outstanding information-gathering capabilities. ATCSCC, however, relies primarily

on the judgement of its expert air traffic controllers rather than on any decision-

support or optimization models to develop flow management and ground-holding

strategies.

The problem of determining how much (if at all) each aircraft must be held on

the ground before take-off (and also, possibly, in the air during the flight, e.g., by

means of a speed reduction en route) in order to minimize the total (ground plus

airborne) delay cost will be referred to as the Ground-Holding Problem (GHP). Static

and dynamic versions of the GHP can be distinguished. In the static versions, the

ground (and airborne) holds are decided once for all at the beginning of the day,

whereas in the dynamic versions they are updated during the course of the day as

better weather (and hence capacity) forecasts become available. Deterministic and
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probabilistic versions of the GHP can also be distinguished, according to whether

airport capacities are considered deterministic or probabilistic.

Because each of a large number of aircraft performs more than one flight on any

given day, "network" (or "down-the-road") effects may be important: when a specific

aircraft is delayed, in many cases the next flight performed by the same aircraft

will also be delayed. Moreover, at a "hub" airport, a late arriving aircraft may

delay the departure of several flights, given current airline scheduling practices which

emphasize passenger transfers. To the best of our knowledge, previous research on

the GHP has neglected network effects, and has been restricted to the single-airport

problem. Odoni [2] seems to be the first to have given a systematic description of

the problem. Andreatta and Romanin-Jacur [3] proposed a dynamic programming

algorithm for the single-airport static probabilistic GHP with one time period. Terrab

[1] proposed an efficient algorithm to solve the single-airport static deterministic GHP,

as well as several heuristics for the single-airport probabilistic GHP. He also suggested

two formulations for the multi-airport static deterministic GHP. Finally, Richetta [4]

dealt with the single-airport dynamic probabilistic GHP. It seems that no significant

research has been done to date concerning the effects of ground-holding policies on

an entire network of airports.

In this paper, the multi-airport GHP is being addressed for the first tinle. By

using a mathematical programming approach, we solve the deterministic network

GHP in a quite general setting. We propose several integer programming formulations

which have the important advantages of being remarkably simple while capturing the

essential apects of the problem and of being sufficiently flexible to accommodate
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various degrees of modeling detail. We present several structural insights on the

parameters that influence the problem, based on extensive computational experience.

Most importantly, our approach enables one to solve realistic size problems involving,

e.g., 6 airports and 3000 flights in very reasonable computation times. (This should

be compared with the previous "record" of about 600 flights for the single-airport

GHP [1].) Our approach can thus be used to assign ground holds for at least a major

part of the network of the most important U.S. or European airports. Although we

focus on the static multi-airport GHP, our algorithms could also be used dynamically

by solving the problem, say, every two hours, as better capacity estimates become

available.

The outline of this paper is as follows. Section 1 defines the problem and gives in-

teger programming formulations of three versions of it. Section 2 proposes a heuristic

based on the solution of a linear programming relaxation. Section 3 gives insights on

the parameters influencing the behaviour of the problem, based on an extensive series

of actual runs. Finally, Section 4 summarizes the results of the paper and points out

directions for future research.

1 Problem definition and formulations.

1.1 Notation.

Consider a set of airports K = {1,..., K } and an ordered set of time periods T =

{1,..., T}. For instance, K: might be the set of the 20 or so busiest U.S. airports,

and T might be a set of 64 time periods of 15 minutes each, amounting to a time
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horizon of 16 hours, i.e., the portion of a day from 7am to 11pm (when most flights

take place). Consider finally a set of flights F = (1,..., F}. (Note that a single

aircraft may perform several of these flights.) F is the set of all flights of interest,

e.g., all flights departing from an airport in K and arriving to another airport in

K. This interpretation of F corresponds to a closed network of airports, for which

departures from and arrivals to the external world are not considered important. If

an open network of airports is to be considered, then one of the airports in K must

represent the external world.

For each flight f E F, the following data are assumed to be known: kI E K,

the airport from which f is scheduled to depart; k EG K, the airport to which f is

scheduled to arrive; df E T, the scheduled departure time of f; r E T, the scheduled

arrival time of f; Cg(.), the ground delay cost function of f (whose argument is the

ground delay of f in time periods); and Ca(.), the airborne delay cost function of f

(whose argument is the airborne delay of f in time periods). For each (k, t) E K x T,

the departure capacity Dk(t) and the arrival capacity Rk(t) (in number of aircraft)

are also given. Since this paper deals with deterministic versions of the GHP, these

capacities are considered fixed numbers rather than random variables.

Consider finally the set F' C F of those flights that are "continued". A flight is

said to be continued if the aircraft which is scheduled to perform it is also scheduled to

perform at least one more flight later in the day. For each flight f' E F', we assume we

know the next flight f scheduled to be performed by the same aircraft, and the "slack"

or "absorption" time sft such that, if f' arrives at its destination at most sf' time

periods late, the departure of the next flight f will not be affected. s, is obviously

6
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equal to the difference between (i) the time interval between the scheduled departure

time of f and the scheduled arrival time of f', and (ii) the minimum "turnaround"

time of the aircraft performing both flights.

1.2 Preliminary remarks.

We define the decision variables g, f E F, equal to the number of time periods

that flight f is held on the ground before being allowed to take off, and the decision

variables a, f E , equal to the number of time periods that flight f is further held

in the air (e.g., by means of a speed reduction en route) before being allowed to land.

Since this paper deals with static versions of the GHP, it is assumed that these ground

and airborne holds are decided once for all at the beginning of the day for all flights.

Consider now the following description of the real-world situation. If a flight f is

scheduled to depart at period d! and is delayed on the ground for gf periods, then it

will be available to depart at period d + gf. Will it actually depart at that period?

This will depend on whether the total number of aircraft available to depart from

airport k at that time period will exceed or not the available departure capacity. If

it does exceed it, then the aircraft performing flight f will have to wait qd time periods

in the departure queue. q will depend on the particular service discipline adopted

for the departure queue. So flight f will actually take off at period df + f + q'.

Since flight f will be further delayed in the air for af time periods, it will arrive at its

destination, airport k, and will be available to land at period r + f +qd +af. Will it.

actually land at that period? This will depend on whether the total number of aircraft

available to land at airport k at that period will exceed or not the available landing



capacity. If it does exceed it, then the aircraft performing flight f will have to wait qf

time periods in the arrival queue, and will actually land at period rf+g +q +a. + qf.

The total cost corresponding to flight f will be the sum of c(gf + qd) (the ground

delay cost) and ca(af + qa) (the airborne delay cost).

Because we are examining the deterministic case, the above description can be

considerably simplified. In fact, it makes little sense to assign to a flight f a ground

hold of gf time periods such that f will have to further wait qd time periods in the

departure queue: one might as well assign to f a total ground hold of gf + qd time

periods such that f will not have to wait at all in the departure queue. Similar

remarks hold for airborne delays. Given this simplification, the total ground delay

of flight f will be gf, and its total airborne delay will be a, resulting in a cost of

cI(gf) + ca(af). This leads us to the following integer programming formulation of

the static deterministic multi-airport GHP.

1.3 A pure 0-1 integer programming formulation of the

multi-airport GHP.

(Pi) min f g1 + Ca a

s.t. If:kd=k ft < Dk(t), (k,t) K x T; (1)

-f:k =k 1tft < Rk(t), (k,t) E K x T; (2)

tEltd 11ft f E ; (3)

itE; z'ft = 1, f E f; (4)
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g9' + af - sf' < gf, f E YF'; (5)

af > 0. f E ; (6)

uft, 'f E {0, 1 };

where uft is 1 if flight f finally takes off at period t (i.e., if rf + gf = t) and 0

otherwise, and vft is 1 if flight f finally lands at period t (i.e., if rf + gf + af = t)

and 0 otherwise. For every flight f, exactly one of the variables uft must be equal

to 1 and the others must be equal to zero, and similarly for the variables vft. (This

is ensured by constraints (3) and (4).) Given this fact, the delay variables gf can be

expressed in terms of the assignment variables upft in the following way:

g = tuft - d, f , (7)
tET'

where Tfd is the set of time periods to which flight f may be assigned to take off,

given by: Td = t E T : d < t < min(df + Gf,T)}. This simply says that flight

f cannot take off before period d, its scheduled departure time, nor can it take off

after d + Gf, where G1 is an upper bound on the acceptable ground delay of f.

Similarly, the delay variables a can be expressed in terms of the assignment

variables vft in the following way:

af = tt -rf - 9f f E X, (8)
teT

where Tf" is the set of time periods to which flight f may be assigned to land, given
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by: Tfa = t E T : rf < t < min(rf + Af, T)}, where A! is an upper bound on the

acceptable airborne delay of f.

For simplicity of exposition, variables g and a were kept in formulation (P1 ),

but it should be clear that they can be eliminated by mere substitution through (7)

and (8), so that uft and vft are the only decision variables.

Note that nonnegativity of gf is guaranteed by (7), whereas nonnegativity of a

is not guaranteed, this is why constraints (6) are needed.

In the objective function of (P1 ), the cost functions cf(t), ca(t) were replaced by

their linear counterparts Cft, c ,t (,Ca being the constant marginal costs). Con-

straints (1) and (2) are the departure and arrival capacity constraints, respectively.

Recall that these have to be satisfied because we choose gf and af such that the queue-

ing delays qd, qf are 0 (and that we can do this because the problem is deterministic).

(Strictly speaking, we also need the condition that Gf and A! be sufficiently large.)

Constraints (5) are the coupling constraints: they "transfer" any excessive delay of

flight f' to its next flight f. In fact, the coupling constraints say that, if flight f'

arrives at its destination with a total delay gf' + aft which is greater than s f , (the

"slack" defined above), then the next flight f will have to be delayed on the ground at

least gf+ af, - s, time periods; otherwise, the departure of the next flight f will not

be affected. Note that the existence of these coupling constraints allows us to have a

separable objective function: the cost of delaying flight f because of an excessive de-

lay of its previous flight f' is taken into account via the term of the objective function

corresponding to f (i.e., c gf ), and so need not be included in the term corresponding

to f'. Note also that, if the coupling constraints did not exist, the problem would be
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decomposable into K subproblems concerning one airport each, so that one could use

the already existing techniques to solve for each of the K airports separately. A final

interesting remark concerning the coupling constraints is that they can be interpreted

in a more general way than the linking of successive flights scheduled to be performed

by the same aircraft; i.e., they can be used to link any pair of flights f' and f such

that f cannot be allowed to depart before f' has arrived (possibly because passengers

in f' connect to f). In this interpretation, a flight f' may have more than one "next"

flights f. This interpretation will not be pursued in the sequel.

1.4 A simpler case: infinite departure capacities and zero

airborne delays.

Formulation (P1 ) is about as general as one could wish for the static deterministic case,

but it can be simplified considerably without significant loss of practical applicability.

Note, first, that it is usually undesirable to delay aircraft in the air. In fact, the

fundamental goal of ground holding policies is to avoid this kind of delay. Therefore,

we may eliminate airborne delays as decision variables. We will be left then with

airborne delays resulting only from arrival queueing (denoted earlier by q), and our

only decision variables will be gf. (Note that, since the problem is deterministic, qa

are determined if gf and service disciplines for the arrival queues are given.)

Now consider a feasible solution gf, f E T} and the associated arrival queueing

delays {q, f E Y}, and compare its cost with the cost of the new solution {gf +qa, f E

F}, in which all airborne delays are incorporated into ground holding delays. Given
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that the cost functions are linear, and given that airborne delays are costlier than

ground delays (i.e., for any positive t, and for all f, c(t) > cgf(t)), it is easy to show

that the new solution will have a lower cost than the previous solution. In fact,

c(gf + q) = c(gf) + c(qa) < c(9gf) + c(q~). It would appear, therefore, that

airborne delays need not be taken into consideration, because they will never appear

in an optimal solution. The problem, however, is that the new solution {gf + qf, f E

.F} will not necessarily satisfy the departure capacity constraints. This problem

disappears if we assume that all departure capacities are infinite, but are we entitled

to make this assumption? For practical purposes, this assumption may often be a

good approximation, since congestion problems are mostly due to limited landing

rather than departure capacities. Moreover, computational experience reported in

Section 3 shows that the impact of finite departure capacities is indeed negligible.

This a posteriori argument justifies the assumption of infinite departure capacities.

Note that, in the single-airport case, which is the only case considered so far in

the literature, no departure capacities are involved, so that one is in fact rigorously

justified to consider only feasible solutions with zero airborne delays (provided the

problem is deterministic and the cost functions are linear).

Assuming infinite departure capacities eliminates thus airborne delays and gives

the following pure 0-1 integer programming formulation of the static deterministic

multi-airport GHP:

(P 2) -min _f= C9g

12
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s.t. f:k;=k t'ft < Rk(t), (k,t) E K x ;

7tET;t'ft , fE ;

gf' - Sf' < g9. f' E F; (9)

vtft E {0,1, f E , t E Tf;

where gf is determined by setting a = 0 in (8):

9f= ~ tvft-rf, fE', (10)

and variables uft are now redundant, so that tift are the only decision variables.

(It can be seen that now G! and A! express the same bound, so that they must

be taken to be equal.)

Note the simplicity of formulation (P2 ). The number of constraints is F+ F'+ KT,

and the number of variables is at most ZfEt(Gf + 1) which, if all Gf are equal to

4 (corresponding to a maximum ground hold of one hour), becomes 5F. Therefore,

the total number of flights F is the major determinant of the size of the problem.

The number of time periods T has almost no influence on the size of the problem,

and the same holds for the number of airports K. Of course, the number of airports

has an indirect influence on the size of the problem, since it influences the number

of flights to be considered. Typically, a major U.S. airport has 1000-2000 operations

(landings plus take-offs) each day, corresponding to 500-1000 flights per day. But

still, the fact that the problem is insensitive as to how the total number of flights is

distributed among airports and time periods is very welcome. This becomes clear in

13



dynamic versions of the ground-holding problem (not treated in this paper), where

the time horizon is limited to a portion of a day, so that fewer flights per airport have

to be considered, and it becomes possible to solve the problem for a large number of

airports.

Note, finally, that, if the coupling constraints (9) are omitted from the formulation,

what is left is exactly the single-airport formulation given, e.g., in [1]. It follows that

the coupling constraints (9) are the gist of the model. It is indeed surprising is that

the network effects can be taken into account in such a simple way without loss of

generality. Simplez sigillum veri ("the simple is the sign of the true").

1.5 How to handle infeasibility: Cancelling flights.

If the arrival capacities are low, then formulation (P 2) may become infeasible. Even

though the total daily capacity of an airport may be sufficient to accommodate the

total number of flights scheduled to arrive at that airport, the problem may still be

infeasible if excessive congestion appears during some portion of the day. This is

mainly due to the requirement that there be an upper bound, Gf, to the delay of

flight f. In order to grasp this point, take the extreme case where the landing capacity

of an airport is reduced to zero for Gf + 1 successive time periods. Then, if a flight

was scheduled to arrive exactly before the zero capacity interval, it will be impossible

to reassign this flight and the problem will become infeasible. Similar remarks hold

for formulation (P 1 ).

In situations where delays become excessive, it is common airline practice to cancel

some flights. Motivated from this, we developed an alternative formulation which

14
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eliminates infeasibility problems and takes into account the possibility of cancelling

flights.

The new formulation will be presented as a generalization of (P 2). We keep the

old decision variables vft and we define the decision variables zf,f E F, to be 1 if

flight f is cancelled and 0 otherwise. Denote by Ali the cancellation cost of flight

f. When a flight in ' (i.e., a flight that is "continued") is cancelled, there are two

possibilities concerning the next flight initially scheduled to be performed by the same

aircraft: either it is performed by a replacement (or a "spare") aircraft, or it is also

cancelled. The first case is more common in practice, but our formulation is general

enough to incorporate a combination of both cases. Partition F' into GY, the set of

those flights in ' whose cancellation will not affect their next flight, and AT', the

set of those flights in F whose cancellation will entail the cancellation of their next

flight. We will now first give the new formulation and then comment on it.

(P3 ) min F (cfgf + (M + crf)z) (11)

s.t. Ef:k=k Vft < Rk(t), (k,t) E K x T; (12)

Zf + ttET; Vt = 1, f E f; (13)

9f'- SI + (fI + r s , - rf), g, f, f' ; (14)

9f - sf' + (sf' + rf' + Gf + )zpf < gf + (rf + Gs + 1):s. f' ft;(15)

·t!ft, f E {0, 1}. (16)
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The above formulation incorporates some technical tricks which are necessitated

by the fact that, when a flight f is cancelled (i.e., zf = 1), then all ft corresponding

to f are 0 (by (13)), so that (10) gives gf = -rf. Keeping this fact in mind, it can

be seen immediately that, when zf = 1, the objective function term corresponding

to f is Mf. It is also clear that, when z, = 1, (14) becomes -rf < gf, which holds

even if flight f is cancelled (so that cancellation of f' leaves f unaffected). Finally, if

zf, = 1, (15) becomes Gf + 1 < g! + (rf + G! + 1)zf, entailing zf = 1 (since g! < Gf

always), which is precisely what we wanted: if f' is cancelled, then f is also cancelled.

The variables g! were again left in the formulation, but it should be clear that they

can be eliminated by mere substitution through (10). It is important to notice that

the variables z can also be eliminated through (13), provided that (13) is replaced

by EtET- vft < 1. In this case, it can be seen that the objective function becomes:

min f=i1[M + EtEr; vt(cf(t - r1) - Mf)]. It follows that the only decision vari-

ables left are vft, so that the new formulation (P3 ) has exactly the same number of

variables and of constraints as the previous formulation (P2 ). (P3 ), however, enjoys

considerable advantages both in terms of generality (the real-world problem is better

approximated) and in terms of flexibility (infeasibility problems are eliminated).

This section has presented three quite general and, we believe, elegant formulations

of the static deterministic GHP.
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2 A heuristic.

This section presents a heuristic which finds a feasible solution of the integer program

(P3) starting from a feasible solution of the linear programming (LP) relaxation of

(P3 ). The next section will show, on the basis of computational experience, that it

is easy to solve optimally the LP relaxation of (P 3) and that, when one applies the

heuristic to this optimal solution, one gets a "good" feasible solution of the integer

program (P3).

The heuristic will be presented in rough outline here. An algorithmic presentation

is given in the appendix.

Consider a feasible solution {ft: f E F, t E Tf} U {zf : f E } of the LP

relaxation of (P3 ) and denote by I the set of "problematic" flights f E F, i.e., the

set of flights for which some integrality constraint is violated. The heuristic gives a

"rounding" scheme for flights in which leaves undisturbed, as far as possible, the

remaining flights (which already satisfy integrality). The basic idea of the heuristic

is to treat each flight in 4 once for all.

The heuristic starts by partitioning I into classes, each class corresponding to an

aircraft and containing all and only the flights of 4 scheduled to be performed by that

aircraft. The heuristic treats each class separately; the order in which the classes are

treated is more or less arbitrary.

Each class is treated in the following way. The flights in the class are examined

one at a time, in the order in which they are scheduled to be performed by the aircraft

defining the class. For-each specific flight 4, the heuristic takes the following actions.

17



For each time period t at which can be allowed to land, it computes the available

"capacity slacks" Rk;(t)- Ef.k'-=k vf t, which will be denoted by S(t). (If some

vft have already been updated by new values, then the new values are used in the

computation of the capacity slacks.) It can be seen that, if S,(t) > 1 - vt, then it

is possible to assign flight 4) to period t without violating the corresponding capacity

constraint. If this is possible for no t, then flight is cancelled and we are done with

it. Otherwise, i.e., when there are time periods to which it is possible to assign flight

4 without violating the corresponding capacity constraint, flight is assigned to the

earliest such period, r. (Recall that this assignment is made once for all.) After this

asssignment, all constraints involving flight 4 are satisfied, with the possible exception

of the coupling constraints.

In order to deal with the coupling constraint linking flight with its next flight

4 (if such a next flight exists), the heuristic removes certain time periods from the

set of time periods at which ~ can be allowed to land, and proceeds to examine .

The removed time periods are those which would violate the coupling constraint in

question if ~ were assigned to them (given that 4) has already been assigned to r). It

can be seen that, if flight 4) has a previous flight ', the coupling constraint linking 4)'

and need not be dealt with while examining flight , because it has already been

dealt with when examining flight ' (since is the nezt flight to 4'.)

As pointed out above, this is only a rough outline, and a more rigorous formulation

is given in the appendix.
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3 Structural insights.

This section investigates the behaviour of the GHP on the basis of extensive compu-

tational experience. The investigation is conducted in three parts, each part dealing

with one of the formulations (PI), (P2), and (P 3). For each formulation, we examine

the variation, as a function of the input parameters, of the optimal objective function

values of the following three mathematical optimization problems: the integer pro-

gram (denoted by I), the corresponding linear programming relaxation (denoted by

L), and the Udecomposed" program (denoted by D), defined as the integer program

without the coupling constraints.

It is important to understand the role of D in the comparison. The "decomposed

GHP" corresponding, e.g., to formulation (P 2) is simply (P 2) without the coupling

constraints (9). Solving the decomposed GHP is equivalent to solving the GHP

for each airport separately, and then adding the optimal objective function values

corresponding to the various airports. Note that the optimal objective function value

of the decomposed GHP is equal to the optimal objective function value of the LP

relaxation of the decomposed GHP, because the constraint matrix of any single-airport

GHP is totally unimodular [1]. Therefore, D can be defined as a linear rather than

an integer program.

Denote the optimal values of I, L, and D by vr, VL, and VD, respectively. Now

the greater the gap between VD and v (and, a fortiori, the greater the gap between

VD and VL), the greater the impact of the network effects. A large gap between VD

and v presumably justifies one in pursuing the application of algorithms pertaining
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to the multi-airport (coupled) GHP rather than solving for each airport separately by

means of the existing methods for the single-airport GHP. This much is clear. What

is less clear is how a very small gap between VD and vx should be interpreted. A small

gap would not necessarily mean that the multi-airport GHP is valueless. Consider the

extreme case where VD = vl. The zero gap means that we could ignore the coupling

constraints without any change in the optimal value of I. But if D has multiple

optimal solutions, then solving it will not necessarily give a solution satisfying the

coupling constraints, i.e., a solution feasible for I.

It should be noted that the objective of this section is to investigate the be-

haviour of the problem under various combinations of the input parameters, not to

demonstrate the efficiency of any particular algorithm. In fact, we solved the various

instances of the problem by using the well-known commercial package MPSX, rather

than any custom-tailored algorithm. We give CPU times simply in order to indicate

whether the problem can be solved in reasonable time, rather than in order to provide

any "good" bounds on computation times.

This section is divided into three subsections. The basic conclusions are reached in

the first subsection, which deals with formulation (P 2). The second subsection, which

deals with formulation (P1 ), verifies that the impact of finite departure capacities

would be negligible in many practical cases. Finally, the third subsection deals with

formulation (P 3) (with flight cancellations) and with the performance of the heuristic.
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3.1 The model without flight cancellations.

This subsection deals with formulation (P 2). We consider first a test case with K = 3

airports, T = 100 time periods, F = 1800 flights (600 flights per airport), and

F' = 600 flights. With the exception of capacities, all parameters were kept fixed in

this test case: the cost function slopes were 50, the slacks were 0, the upper bounds

on the delays were 4 time periods, and the scheduled arrival times were arbitrarily

chosen.

As mentioned in Section 1, if arrival capacities are very low, the problem becomes

infeasible. Let us consider only cases in which the arrival capacity of any given airport

is constant over the whole time horizon: Rk(t) = Rk. Then it is found that, for the

particular test case under consideration, for (R 1, R 2, R3) = (10,10,10) the problem

is feasible, while for (9,9,9) the problem is infeasible. Furthermore, for (9,10,10),

(10,10,9), (9,10,9), and (10,10,8) the problem is feasible, while for (10,9,10), (8,10,10),

and (10,10,7) the problem is infeasible. These results give us a fairly good picture of

the border between capacity regions corresponding to feasibility and to infeasibility

for the test case under consideration. Delimitation of this border is important because

it is there that the greatest delays are expected to occur: if capacities are very high,

then there is little need to delay aircraft.

Table 1 gives the optimal objective function values of L, D, and I for the various

capacity cases. It is seen that these values always turn out to be very close. An exam-

ination of the optimal solution of D, however, reveals that usually about 180 to 200

of the 600 coupling constraints are violated. It follows that solving the decomposed
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Table 1: Behaviour of the test case around the capacity border between feasibility
and infeasibility.

problem is probably of little use as far as getting a feasible solution to the coupled

problem is concerned. Nevertheless, solving the decomposed problem provides a good

indicator of what the optimal value of the coupled problem will be.

The proximity of VD and VI needs an explanation, but we must first ascertain

that it is a common phenomenon rather than a peculiar feature of the particular test

case under consideration. To this end, we examined a systematic series of test cases.

In all these cases, T is kept fixed and equal to 64 (corresponding to a 16-hour time

horizon with 15-minute periods), and K is determined by F via the assumption that

500 flights are scheduled to land at each airport during the time horizon. Three cases

for F are examined: 1000, 2000, and 3000 flights (corresponding, respectively, to 2, 4,

and 6 airports). For each particular F, four values of F' are examined, corresponding

to a ratio F'/F equal to 0.20, 0.40, 0.60, and 0.80. The results are summarized in

Table 2. The capacities appearing in the table for any particular case are at the

infeasibility borders (and were found by trial and error). The cost function slopes are

always 50, all slacks are 1, and all upper bounds on delays are 4.

These results lead to the following conclusions. First, the gap between VD and

22

# of coupling % of % of
Capacities vD VL VI constr. that f E .F' f E F - F'

D violates delayed in I delayed in I

(10,10,10) 43,550 43,550 43,550 179 12% 30%
(9,10,10) 51,900 52,800 52,900 204 18% 36%
(10,10, 9) 48,500 49,000 50,600 183 17% 34%
( 9,10, 9) 56,850 57,450 57,950 238 20% 40%
(10,10, 8) 55,650 56,700 58,000 235 19% 37%
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Table 2: Results for various cases at the infeasibility border.

vl is always small. Second, the computation times (given in CPU seconds) tD and

ts are quite reasonable, but t can become excessive. Third, as one would expect,

the computation times increase as F increases, because the number of constraints

and the number of variables increase. Fourth, for any given F, t does not vary

significantly with F', while tL and t increase as F' increases. This is due to the fact

that an increase in F' increases the number of constraints of L and I (which have

KT + F + F' constraints), while it leaves unaffected the number of constraints of D

(KT + F). Finally, the last column in Table 2 gives the number of flights for which

the optimal solution of L had noninteger values. It can be seen that this number is

usually small, around 10% of F. This observation provided the motivation for the

development of the heuristic given in Section 2.

Now we must explain the fact that VD and VI are typically very close. Two possible

explanations suggest themselves. The first is that the capacities at the border between

feasibility and infeasibility, although they cannot be lowered in the context of the
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F F'/F Capac. VD tD V'L tL VI | t | 
1000 0.20 (12,14) 71,000 218 71,000 258 71,000 371 63
1000 0.40 (10,10) 56,000 235 56,000 327 56,000 894 84
1000 0.60 (11,11) 84,200 242 84,300 377 84,700 6958 168
1000 0.80 (10,10) 65,000 235 65,000 453 65,500 9512 128
2000 0.20 all 14 96,300 664 96,300 731 99,000 5126 117
2000 0.40 all 14 88,400 652 89,933 973 93,200 9522 195
2000 0.60 all 12 71,600 644 71,600 1148 71,800 13607 252
2000 0.80 all 17 53,250 617 57,387 1603 65,500 18093 355
3000 0.20 all 12 128,000 1188 129,200 1453 129,400 11360 110
3000 0.40 all 18 55,800 1208 55,800 1808 57,300 13291 119
3000 0.60 all 17 90,200 1166 96,550 2547 99,687 17980 414
3000 0.80 all 18 80,500 1180 84,250 3072 87,012 25021 232



present model, are still too high for network effects to have a severe impact. This

explanation, if true, would undermine the utility of the model as a representation

of the real-world situation. This explanation, however, is not true. First, VD and

v are very close even with quite low capacities (see the second and the fourth rows

of Table 2). Second, in Subsection 3.3, where formulation (P3 ), which is immune to

infeasibility, is examined, it will be seen (cf. fifth row of Table 3) that VL and VD

are very close even with capacities as low as 256 aircraft per airport per day (4 per

period) (again, with 500 aircraft scheduled to land, so that the remaining flights are

cancelled).

The second possible explanation for the proximity of VD and v is that, if there

is a choice (in I) between delaying a continued flight and a noncontinued flight,

it will usually be preferable to delay the latter, since delaying the former would

probably result in a greater total cost (because the next flight might also have to be

delayed). If this is the case, then, in the optimal solution of I, few flights in ' will be

delayed. This effect would be particularly noticeable for small slacks. A look at the

last two columns of Table 1 corroborates this hypothesis. A second way to confirm

this hypothesis is by varying the cost function slopes so as to disadvantage continued

flights. If continued flights have much lower marginal costs than noncontinued flights,

then it may often be preferable to delay a continued rather than a noncontinued

flight when a choice is available, with the consequence that network effects may be

significant. The test case with 1800 flights was run with capacities equal to 10 and

with cost function slopes equal to 10 for the continued flights and equal to 100 for

the noncontinued flights, and the results were: VD = 13,950 and vL = 22,811, a very
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significant gap. (Cf. also Table 6 in Subsection 3.3.)

This subsection reached the following conclusions. First, the gap between D

and vu is usually very small. Second, the explanation seems to be that, given equal

marginal costs, continued flights are typically not delayed in optimal solutions of I,

so that network effects are not very significant. Third, although network effects do

not have a very significant impact on the optimal objective function values, solving

the decomposed GHP appears to be of little use for the network problem, because

optimal solutions of D typically violate a large percentage of the coupling constraints

of I.

3.2 The negligible impact of finite departure capacities.

In order to check the impact of finite departure capacities and to demonstrate that

formulation (P1 ), which has about twice as many variables and constraints as for-

mulation (P 2 ), can be also solved in reasonable computation times, we examined the

problems of the first two rows of Table 2 with various departure capacities. In order

to make meaningful comparisons, we kept the scheduled arrival times unchanged.

The new data, besides the departure capacities, were the scheduled departure times

or, equivalently, the flight times. Table 3 gives results for various combinations of

departure capacities and flight times. Airborne marginal delay costs were taken to

be 75 versus ground marginal delay costs of 50.

It can be seen from Table 3 that, when flight times are uniform (e.g., all equal

to 2 time periods) or slightly nonuniform, the differences between finite and infinite

departure capacities are negligible. It is only with wildly nonuniform flight times
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Table 3: Results for various cases with finite departure capacities.

that some minor differences appear. These results justify us in pursuing our investi-

gation with the more manageable formulation (P2), although formulation (P1) is also

manageable (running times for the cases of Table 3 were about 2000 CPU seconds).

3.3 The model with flight cancellations.

Table 4 gives results for selected cases from Table 2, but for formulation (P3), and

for various capacities and cancellation costs M. The rows with "infinite" cancellation

costs correspond to formulation (P2 ) and are taken from Table 2. All marginal delay

costs were equal to 50.

These results strongly support the conclusion that, for cancellation costs greater

than 100 times the marginal delay cost (i.e., here, M > 5000), no flight is ever

cancelled, so that models (P2 ) and (P3) give the same results. For cancellation costs

greater than 20 times the marginal delay costs (M > 1000), few flights are cancelled.

so that the optimal values of (P 2) and (P3) are very close. Finally, for cancellation

costs less than 10 times the marginal delay cost (M < 500), more flights are cancelled

and significant differences between (P2) and (P3) emerge. Note also that, in that
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F IF'/F Arr. Cap. Dep. Cap. Flight tiles t 'L

1000 0.20 (12,14) oo - 71,000
1000 0.20 (12,14) (12,14) Uniform: 2 71,000
1000 0.20 (12,14) (15,17) Nonuniform: 1 or 2 71,500
1000 0.40 (10,10) c - 56,000
1000 0.40 (10,10) (10,10) Uniform: 2 56,000
1000 0.40 (10,10) (15,15) Nonuniform: 1 to 30 64,965
1000 0.40 (10,10) (16,16) Nonuniform: 1 to 30 57,633
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F F'/F Cap. M VD tDJ[ VL tL VH

1000 0.60 11 1000 70,300 297 70,300 479 78,500
1000 0.60 10 1000 117,000 286 117,000 475 125,450
1000 0.60 08 1000 240,700 280 241,805 524 253,750
1000 0.60 06 1000 402,600 274 403,476 513 411,500
1000 0.60 04 1000 582,300 272 583,417 484 586,700
1000 0.60 11 100 28,700 283 28,700 498 30,250
1000 0.60 11 1000 70,300 297 70,300 473 78,500
1000 0.60 11 10000 84,200 276 84,300 444 240,700
1000 0.60 11 oo 84,200 242 84,300 377 -

2000 0.20 14 500 77,500 652 77,500 803 82,000
2000 0.20 14 1000 94,000 691 94,000 922 103,300
2000 0.20 14 5000 96,300 717 96,300 931 165,200
2000 0.20 14 oo 96,300 664 96,300 731
2000 0.40 14 500 73,100 815 74,983 1020 75,800
2000 0.40 14 1000 86,100 690 86,372 1102 93,650
2000 0.40 14 5000 88,400 675 89,933 1176 168,900
2000 0.40 14 o 88,400 652 89,933 973

3000 0.60 17 100 38,250 1119 38,693 1911 42,350
3000 -0.60 17 500 71,800 1128 72,240 1708 84,600
3000 0.60 17 750 81,000 1148 81,338 1931 95,000
3000 0.60 17 1000 87,000 1187 87,156 2114 130,300
3000 0.60 17 10000 90,200 1248 96,550 3767 667,750
3000 0.60 17 o 90,200 1166 96,550 2547 -

3000 0.80 18 100 36,600 1114 38,042 1846 58,900
3000 0.80 18 500 71,500 1140 71,559 2320 83,350
3000 0.80 18 750 78,700 1128 78,707 2693 106,800
3000 0.80 18 1000 80,500 1235 82,214 2900 111,350
3000 0.80 18 10000 80,500 1230 84,250 3227 509,900
3000 0.80 18 oo 80,500 1180 84,250 3072 -

Table 4: Results for various cases with flight cancellations.
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F F'/F Cap. M VD tD L tL

3000 0.80 nonun. 500 232,800 1142 252,045 1973
3000 0.80 nonun. 750 302,700 1200 330,040 2217
3000 0.80 nonun. 1000 366,200 1215 403,127 2228

Table 5: Results for various cases with flight cancellations and nonuniform capacities.

last region of cancellation costs, the slope of the optimal value as a function of the

cancellation cost becomes quite abrupt.

The last column of Table 4 shows the value A'H of the objective function corre-

sponding to the feasible solution found by the heuristic. It can be seen that vH is

quite close to VL (hence to v) for small cancellation costs. For large cancellation

costs, however, the heuristic performs poorly. This was to be expected, because the

heuristic will inevitably cancel some flights, and these will inflate the objective func-

tion value if the cancellation cost is excessive. This is not worrisome, however, since,

as was pointed out above, for cancellation costs above 1,000 few flights are cancelled,

so that for such high cancellation costs neither formulation (P3 ) nor the heuristic have

much practical use.

Table 5 gives results concerning cases with nonuniform arrival capacities. It can

be seen that gaps between VD and v are quite significant.

Finally, another reason why the optimal values of L and D are so close might be

the assumption that the costs of all flights are equal. In order to check this, we ran

some cases with three classes of costs: 40% of all flights had cost 100, 40% had cost

50, and 20% had cost 20, corresponding to the relative direct operating costs of large,

medium-sized, and small aircraft, respectively. Aircraft performing continued flights
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F F'/F Cp. !M ! ! tD t L tL

3000 0.60 nonun. 500 305,690 1236 373,271 2099
3000 0.60 nonun. 750 385,830 1253 491,791 2219
3000 0.60 nonun. 1000 460,230 1305 601,331 2332

Table 6: Results for various cases with flight cancellations and three cost classes.

were generally assigned to the large- or medium-cost category. Results are shown in

Table 6. It can be seen that the differences are significant (22-27%).

The last column of Table 4 shows the value VH of the objective function corre-

sponding to the feasible solution found by the heuristic. It can be seen that v is

quite close to VL (hence to v) for small cancellation costs. For large cancellation

costs, however, the heuristic performs poorly. This was to be expected, because the

heuristic will inevitably cancel some flights, and these will inflate the objective func-

tion value if the cancellation cost is excessive. This is not worrisome, however, since,

as was pointed out above, for cancellation costs above 1,000 few flights are cancelled,

so that for such high cancellation costs neither formulation (P3) nor the heuristic have

much practical use.

4 Conclusions.

The multi-airport GHP was shown to be tractable. Our formulations capture the

essential aspects of the problem, for the static deterministic case at least, and do so

in a very simple way. It is this simplicity, reflected in the small numbers of constraints

and variables, that is responsible for the tractability of large-scale GHPs.

It is not yet clear how large a network one can deal with by means of our formu-
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lations. We went up to 6 airports and 3,000 flights, but one could probably go far

beyond this if one were willing to use supercomputers. This would not be unrealistic,

given the importance of the practical problem.

A principal conclusion arising from the computational experience we presented is

that network effects are not very significant if all cost functions are assumed identical.

This assumption is incorrect, since the delay of large aircraft is more costly than

the delay of small aircraft. However, the practice of implicitly considering all cost

functions identical seems to be a well-entrenched practice of the FAA, which avoids

"discriminating" in any way among users.

A second basic insight was that the relative insignificance of the network effects

does not imply that network formulations are useless. In fact, the opposite is true,

because solutions of the decomposed problem typically violate a large number of the

coupling constraints.

A third important result was that departure capacities can be taken to be infinite

in most practical cases, so that airborne delays can be avoided and the size of the

formulations can be significantly reduced.

A direction for future research is to extend our formulations to the dynamic deter-

ministic case. We have already performed this extension, which is relatively straight-

forward, although it needs to incorporate some subtleties due to the fact that airborne

delays cannot be totally avoided in the dynamic case.

Another interesting direction of research, referring to the dynamic case, would

be to run our formulations for limited time horizons of, say 2 hours. This would

dramatically decrease the size of the problem for a given number of airports, and so
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would enable one to tackle much larger networks-of airports.

The most challenging direction for future research is, of course, the case of prob-

abilistic airport capacities (see 4] for the single-airport problem). This case may

require a totally new approach.

Appendix: Algorithmic description of the heuris-

tic.

The heuristic takes as input a solution {Vft: f E F,t E Tf U {z : f E F} which

is feasible for the LP relaxation of (P 3), and gives as output a solution which is

feasible for (P3). The heuristic is presented here for the case in which, when a flight

is cancelled, the next flight scheduled to be performed by the same aircraft is not

affected. The other case, in which the next flight is also cancelled, can be treated

mutatis mutandis.

BEGIN

Define 4: { E .F: (zo { {0, 1}) V (3t)(vot 0 {0, 1})}.

Partition r4 into its equivalence classes corresponding to the equivalence relation

"is performed by the same aircraft as": = U=14_ .

Order each class according to the order in which the flights in the class are sched-

uled to be performed by the aircraft defining the class: +, = { (.kl.....:(}.

Order the classes, e.g., in decreasing order of the cost of their first flight, and

break ties, e.g., according to the increasing order of scheduled arrival times for first

flights.

31



FOR = 1 TO DO:

FOR = 1 TO (') DO:

Put = -(.

IF = 1 THEN:

Define h- := T.

IF d has a previous flight 4' THEN:

Remove from '1 those t that are smaller than

ra + g9, - s, (because, if were assigned to

such a t, then the coupling constraint linking 4

and ' would be violated).

END IF

END IF

Define the Capacity slacks SO(t) := Rk;(t)-E f:k;=k; Vft, t E T4

Define h := {t E : SO(t) > 1 - Vot}.

IF = 0 THEN

Cancel : Put z = 1, vt = O, t E T.

CONTINUE (

END IF

Assign current flight to r, the smallest element of 1T,: put zO =

O,v,,= ,vot = O,t E 0\{r}.

IF has a next flight THEN:

32
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IF r - r- s > g, AND ~ B THEN

Include in

quent indices

END IF

Define g = {t E

I, as ,,+l and modify subse-

( accordingly.

: t - r > - r - }.

END IF

CONTINUE (

CONTINUE 3,

END
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